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ABSTRACT 

Conley, Jason M. Ph.D., Purdue University, December 2013. Novel Modulation 
of Adenylyl Cyclase Type 2. Major Professor: Val J. Watts. 
 
 
 Adenylyl cyclase isoforms are distinctly modulated by G protein subunits 

and are therefore hypothesized to be uniquely regulated by proteins that 

influence G protein signaling.  Activator of G protein signaling 3 (AGS3) is a G 

protein modulator that binds Gαi subunits in the GDP-bound state, implicating 

AGS3 as an important regulator of Gi-coupled receptor signaling.  We studied the 

ability of AGS3 to modulate recombinant adenylyl cyclase (AC) type 1 and 2 

signaling in HEK293 cells following both acute and persistent activation of the D2L 

dopamine receptor (D2LDR).  AGS3 expression modestly enhanced the potency 

of acute quinpirole-induced D2LDR modulation of AC1 or AC2 activity.  AGS3 

also promoted desensitization of D2LDR-mediated inhibition of AC1, whereas 

desensitization of D2LDR-mediated AC2 activation was significantly attenuated.  

Additionally, AGS3 reduced D2LDR-mediated heterologous sensitization of AC1 

and AC2.  Our results suggest that AGS3 alters G protein signaling in a complex 

fashion that is effector-specific and dependent on the duration of receptor 

activation.  The present work also addressed the role of Gβγ subunits in the 

development of D2LDR-mediated sensitization of AC2.  The molecular signaling 
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components that contribute to the development of heterologous sensitization are 

largely unknown, but G protein subunits are strongly implicated in this adaptive 

process.  We utilized Gβγ subunit sequestering proteins, small molecule and 

peptide Gβγ signaling inhibitors, and pharmacological Gβγ effector and kinase 

inhibitors to study the role of Gβγ subunit signaling pathways in the development 

of AC2 sensitization in HEK293 cells.  Our results suggest that Gβγ subunit 

signaling is necessary for D2LDR-mediated sensitization of AC2.  The multitude 

and diversity of Gβγ signaling pathways that may underlie AC sensitization 

prompted us to develop a high-throughput cAMP assay platform to facilitate 

future unbiased approaches for the study of AC sensitization, such as siRNA 

library screening.  As an intermediate step to the development of such assays, 

we addressed the lack of potent and selective small molecule modulators of AC.  

Identification of chemical probes for AC2 is particularly important because there 

are no published genetic deletion studies and few small molecule modulators.  

Therefore, we developed and executed an intact-cell small molecule screening 

approach and subsequent validation paradigm for the discovery of AC2 inhibitors.  

The NIH clinical collections I and II were screened for inhibitors of AC2 activity, 

using PMA-stimulated cAMP accumulation as a functional readout.  Active 

compounds were subsequently confirmed and validated as direct AC2 inhibitors 

using orthogonal and counter screening assays. The screening effort identified 

SKF-83566 as a selective AC2 inhibitor with superior pharmacological properties 

for selective modulation of AC2 when compared to currently available AC  
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inhibitors.  The utility of SKF-83566 as a small molecule probe to study the 

function of endogenous ACs was demonstrated in C2C12 mouse skeletal muscle 

cells. 
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CHAPTER 1. INTRODUCTION 

1.1 The foundation of second messenger signaling: A historical perspective 

 Cyclic AMP (cAMP) is the prototypical second messenger signaling 

molecule and the impact of cAMP signaling research is highlighted by the fact 

that four Nobel prizes have been awarded for the study of cAMP signaling 

components (Sutherland in 1971, Krebs and Fischer in 1992, Gilman and 

Rodbell in 1994, and Lefkowitz and Kobilka in 2012). The identification of cAMP 

was first reported in the late 1950s by Earl Sutherland and colleagues while 

studying the relationship of the hormones epinephrine and glucagon to the 

activation of liver phosphorylase (Rall et al., 1957; Sutherland and Rall, 1958).  

Specifically, hormone treatment resulted in activation of liver phsophorylase and 

a heat-stable molecule was isolated from the particulate fraction of the tissue 

homogenate following fractionation (Sutherland and Rall, 1958).  Remarkably, 

the heat-stable factor was able to activate liver phosphorylase in the supernatant 

fraction, while hormone treatment had no effect on the liver phosphorylase in the 

supernatant fraction (Rall et al., 1957; Sutherland and Rall, 1958; Sutherland and 

Rall, 1960).  Ultimately, the heat-stable factor was found to be cAMP and the 

enzyme that synthesizes cAMP was termed the adenylyl cyclase (AC) enzyme 

(Rall and Sutherland, 1958; Sutherland et al., 1962).  Cyclic AMP was 
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considered a second messenger because their results suggested that the 

hormone-mediated activation of liver phosphorylase occurs in two distinct steps 

(Rall et al., 1957).  For example, the first messenger (hormone) was unable to 

activate liver phosphorylase on its own, but stimulated AC to produce cAMP 

(second messenger), which was capable of activating liver phosphorylase in the 

supernatant fraction (Sutherland and Rall, 1960).  It was subsequently realized 

that a variety of hormones and catecholamines were able to stimulate cAMP 

responses in multiple tissue types (and elicit specific physiological responses), 

suggesting a common mechanism of signal relay (Robison et al., 1968; 

Sutherland and Rall, 1960).  Nonetheless, until the early 1970s, it was unclear if 

adenylyl cyclases were responsible for both hormone-binding and cAMP 

synthesis or if intermediates between hormone and adenylyl cyclase existed 

(Robison et al., 1968).  The requirement of GTP for hormonal activation of AC 

was the first explicit suggestion that intermediate signal transducers were 

involved in hormone-mediated AC activity (Rodbell et al., 1971a; Rodbell et al., 

1971b).  It was further observed that a stimulatory regulator (the guanine 

nucleotide-binding protein, Gs) was necessary for significant adenylyl cyclase 

activity under physiological conditions and that binding of GTP to the G protein 

promoted its association with the catalytic moieties (Pfeuffer, 1979; Ross and 

Gilman, 1977).  It was also demonstrated that agonist binding of receptor 

increased the receptor size as measured by gel exclusion chromatography, but 

was not due to interaction of the AC catalytic moieties, as they eluted 

independently.  (Limbird and Lefkowitz, 1978).  Soon after, it was then 

 

 



3 

demonstrated that agonist-activated receptor coupled with G protein (Limbird et 

al., 1980), leading to the conclusion that the G protein is a communicator 

between the agonist-activated receptor and the AC enzyme (Figure 1.1).  These 

studies intimately link receptor and G proteins to AC/cAMP-mediated 

physiological responses and form the backbone of the signaling pathway 

mechanism for how a hormone or catecholamine ligand is transduced into a 

physiological response. 
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Figure 1.1 Schematic of hormone-stimulated cAMP signaling. 
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1.2 Adenylyl cyclase topology and catalytic mechanism 

 Early studies of cAMP suggested that the enzyme that catalyzes the 

formation of cAMP is membrane-bound (Sutherland and Rall, 1958).  The 

topology of AC, however, was not realized until over three decades later, upon 

the cloning of the first AC isoform (Krupinski et al., 1989).  Specifically, 

hydropathy analysis of the primary sequence suggested that the enzyme could 

be conceptually divided into two large sets of alternating hydrophobic and 

hydrophilic domains, where each of the hydrophobic domains consisted of six 

transmembrane spans and each of the hydrophilic domains was homologous to 

the cytoplasmic domain of guanylyl cyclase (Krupinski et al., 1989).  The cloning 

of eight additional transmembrane AC isoforms suggested similar overall 

topology.  The proposed structure of AC is thought to have a short, variable 

cytoplasmic N-terminus that is followed sequentially by the first six-

transmembrane cassette (M1), the first large cytoplasmic domain (C1a and C1b), 

the second six-transmembrane cassette (M2), and finally another large 

cytoplasmic domain (C2a and C2b) (Figure 1.2) (Sunahara et al., 1996).  The 

most conserved stretches of primary sequences reside in the N-terminal 

segments the large cytoplasmic domains, specifically in C1a and C2a, whereas 

the sequences are most divergent in the N-terminus and C1b and C2b domains 

(Sadana and Dessauer, 2009).   
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Figure 1.2 Topology of adenylyl cyclase. 
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 A complete understanding of the structure of AC has remained elusive, as 

a crystal structure of an entire AC enzyme remains to be reported.  However, 

much of what we know about the structure and function of AC stems from 

biochemical studies of the C1a and C2a cytoplasmic domains.  For example, 

these regions can be expressed independently of other domains and possess 

catalytic activity (Dessauer and Gilman, 1996; Whisnant et al., 1996; Yan et al., 

1996) and such biochemical studies of the catalytic domains provided the basis 

for the crystal structures of AC.  Specifically, high resolution crystal structures of 

a C2 domain homodimer from AC2 (Zhang et al., 1997) and an AC5-C1a/AC2-

C2a heterodimer (Tesmer et al., 1997) have been described.  The crystal 

structures of the two cytoplasmic domains suggest that they interact to form a 

“pseudosymmetrical” structure that makes up the catalytic core of AC (Tesmer et 

al., 1997; Zhang et al., 1997).  The interface of the C1a and C2a domains is 

expected to have conformational flexibility that allows for the relative orientation 

of the domains to change, while remaining associated (Tesmer et al., 1997).  For 

example, the catalytic core is thought to exist in at least two states: an open state 

that is thought to be unable to accommodate ATP, and a closed state where 

domains collapse around ATP to form the active site (Tesmer et al., 1997).  The 

mechanism of catalysis of ATP to cAMP is thought to be a two-metal-ion 

catalysis mechanism (similar to that utilized by Pol I DNA polymerases) where 

two metal ions coordinate with ATP in the active site to stabilize a pentavalent 

transition state, facilitating the conversion of ATP to cAMP (Tesmer et al., 1999).  

Additionally, the crystal structures of the catalytic domains of AC suggest that 
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Gαs and the small molecule AC activator, forskolin, (see below for discussion of 

AC modulation by forskolin) act allosterically to influence the orientation of the 

C1a/C2a interface, thus priming the active site for catalysis (Tesmer et al., 1999).  

In contrast, the Gαi subunit of the inhibitory G protein (Gi) is thought to 

allosterically influence the relative orientation of the C1a/C2a interface in an 

opposite manner, thereby inhibiting the collapse of catalytic residues around ATP 

(Dessauer et al., 1998; Tesmer and Sprang, 1998).  The crystal structures of the 

AC catalytic domains, together with biochemical studies have provided a great 

deal of insight into the mechanism of AC modulation by forskolin, Gαs, and Gαi 

subunits.  However, the nine membrane-bound ACs are distinctly modulated by 

many signaling molecules (including Gαi/o subunits, Gβγ protein subunits, Ca2+, 

and protein kinases) that are downstream components of G protein coupled-

receptor signaling (Hanoune and Defer, 2001).  Each of these signaling 

molecules may affect catalysis by allosterically modulating the C1a/C2a interface, 

but the precise molecular details that contribute to the differential modulation of 

AC isoforms are currently not well understood (Tesmer and Sprang, 1998). 

 

 

1.3 Overview of cAMP signaling: Adenylyl cyclase as a signal integrator within 

the cascades that link extracellular stimuli and the resulting cellular 

responses 

 The early studies of hormone-stimulated AC signaling identified the 

general G protein-mediated signal transduction mechanism by which 
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extracellular ligands can modulate cellular responses via cAMP second 

messenger signaling (i.e., receptor-binding of ligand stimulates G protein 

activation, resulting in AC activation and cAMP formation).  These studies 

defined ACs as effectors of G protein-coupled receptor signaling.  The decades 

following these seminal studies have provided a great deal of research that has 

built upon the backbone of G protein-mediated signal transduction to reveal a 

high level of complexity and specificity.  ACs serve as general signal integrators, 

receiving input that is transduced from a variety of ligands that modulate diverse 

types of G protein-coupled receptors, thus providing cAMP as an intermediate 

signal between extracellular stimuli and cellular response.   

 The cellular levels of cAMP are directly modulated by two families of 

enzymes: adenylyl cyclases, that synthesize cAMP from ATP as described above 

(Hanoune and Defer, 2001), and phosphodiesterases (PDEs) that degrade cAMP 

(Bender and Beavo, 2006).  PDE activity was described soon after the discovery 

of cAMP and AC activity (Butcher and Sutherland, 1962) and it is currently known 

that PDEs are phosphohydrolase enzymes that regulate the cellular levels of 

cyclic second messengers by catalyzing the hydrolysis of the 3’ cyclic phosphate 

bonds of cyclic adenosine- and guanosine-3’,5’-monophosphate (cAMP and 

cGMP) (Bender and Beavo, 2006).  PDEs have been classified into 11 different 

families based on amino acid sequence homology and can be further grouped 

into three categories based on their substrate specificity (i.e., cAMP-specific, 

cGMP-specific, or dual specificity for cAMP and cGMP).  There are 21 different 

gene products that have alternative transcriptional start sites and alternative 
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splicing of mRNA, yielding the possibility of >100 PDE protein products (Bender 

and Beavo, 2006).  The many forms of PDE dynamically modulate the balance of 

cellular cAMP and have been linked to specific physiological processes (Bender 

and Beavo, 2006). 

 The ACs functionally integrate signals that are transduced from a variety 

of diverse extracellular stimuli into a single second messenger molecule, cAMP.  

Downstream of cAMP, the canonical signaling pathway proceeds by direct 

activation of cAMP-dependent kinase, also known as protein kinase A (PKA).  As 

cAMP is the prototypical second messenger, PKA is the prototypical protein 

kinase and was identified in 1968 (Walsh et al., 1968).  The PKA holoenzyme is 

formed by two regulatory subunits and two catalytic subunits from a selection of 

four regulatory subunit isoforms (RIα, RIβ, RIIα, and RIIβ) that are functionally 

non-redundant and three catalytic subunit isoforms (Cα, Cβ, and Cγ) (Taylor et 

al., 2012).  Upon binding of two cAMP molecules to each regulatory subunit 

within a holoenzyme, the catalytic subunits dissociate and phosphorylate specific 

targets on serine and threonine residues that are found within a (RRX-S/T-X) 

PKA consensus motif (Kemp et al., 1977; Taylor et al., 2012; Ubersax and Ferrell, 

2007).  PKA signaling specificity is achieved by the complement of regulatory 

and catalytic subunit isoforms and PKA substrates that are expressed within a 

particular cell (Taylor et al., 2012).  The signaling is further fine-tuned by the 

directed subcellular localization of PKA by direct binding to A-kinase anchoring 

proteins (AKAPs) (Welch et al., 2010).  The AKAPs facilitate the formation of 
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macromolecular complexes that form PKA signaling hubs within specific cellular 

locations that contribute to diverse biological processes (Taylor et al., 2012).   

 PKA was initially thought to be the sole downstream effector of cAMP and 

remains a prevalent effector signaling system, but it has also become apparent 

that cAMP modulates additional downstream targets.  For example, cyclic 

nucleotides directly modulate channels that conduct cations into the cytoplasm.  

Two structurally-related families of cyclic nucleotide modulated cation channels 

have been identified that differ in their mode of activation (Craven and Zagotta, 

2006).  Specifically, the cyclic nucleotide gated (CNG) cation channels are 

opened upon direct binding of cAMP or cGMP (Kaupp and Seifert, 2002).  The 

CNG channels have been detected in several tissue types and are highly 

expressed in retinal photoreceptors and olfactory neurons, where they are known 

to be key mediators of visual and olfactory signal transduction (Kaupp and Seifert, 

2002).  The other family of cyclic nucleotide-modulated cation channels are the 

hyperpolarization-activated cyclic nucleotide-modulated (HCN) channels and are 

mainly modulated by voltage (the channels open to cations upon 

hyperpolarization, but close due to depolarization), but the probability of channel 

opening is increased upon cyclic nucleotide binding (Craven and Zagotta, 2006).  

HCN channels are expressed in brain and heart tissue and are thought to 

underlie the cation current following hyperpolarization in excitable cells such as 

neurons and cardiac pacemaker cells (Biel, 2009).  

 In 1998, it was discovered that cAMP activates a family of guanine 

nucleotide exchange factors that were named exchange proteins activated by 
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cAMP (Epacs) (de Rooij et al., 1998; Kawasaki et al., 1998).  Two Epac isoforms 

have been characterized, Epac1 and Epac2, and it is thought that Epacs catalyze 

the exchange of GDP for GTP on the ras-like GTPases Rap1 and Rap2 upon 

binding cAMP (Gloerich and Bos, 2010).  Interestingly, Rap-independent Epac 

signaling has more recently been observed through a variety of additional 

signaling molecules including ras, phospholipase C, protein kinase D, and 

ERK1/2 (Billington and Hall, 2012).  The expanding signaling functions of Epac 

proteins have gained attention for their contribution to cAMP signaling in the 

heart, brain, pancreas, vasculature, and lungs (Schmidt et al., 2013). 

 In summary, ACs are central mediators of the signal relay that is initiated 

by extracellular stimuli and results in a cellular response (Figure 1.3).  Signaling 

input from a large number of G protein-coupled receptors is integrated by ACs 

and is further relayed in the form of cAMP.  Cyclic AMP proceeds to modulate 

downstream effector proteins that include PKA, Epacs, and CNG/HCN channels 

that influence specific cellular responses that ultimately modulate diverse 

physiological processes including metabolism (Robison et al., 1968), cell growth 

and differentiation (Boynton and Whitfield, 1983; Friedman, 1976), learning and 

memory (Kandel, 2001), cardiac contractility (Drummond and Severson, 1979; 

Sobel and Mayer, 1973), and immune responses (Mosenden and Tasken, 2011; 

Peters-Golden, 2009; Serezani et al., 2008).  The complete molecular details that 

contribute to the signaling specificity that allows for such diverse responses 

remain unclear, but are thought to be dependent on the complement of signaling 
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proteins that are expressed within a given cell and the molecular organization of 

these associated signaling components. 
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Figure 1.3 Position of adenylyl cyclase within the cAMP signaling pathway. 
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1.4 Adenylyl cyclase signaling properties: Contributions to cAMP signaling 

specificity 

 The specificity of cAMP signaling is tightly regulated, in part, by the 

repertoire and interplay of signaling molecules present within a given cell.  

Though ACs are only one part of the cAMP signaling pathway, a major 

contributing factor to this specificity is that nine membrane-bound mammalian AC 

isoforms have been identified, each with distinct patterns of regulation by G 

protein subunits, protein kinases, and Ca2+ (Hanoune and Defer, 2001; Patel et 

al., 2001).  The modulation of cAMP signaling at the level of AC is considered in 

detail below. 

 

1.4.1 G protein-coupled receptor signaling 

1.4.1.1 G protein activation cycle 

 The G protein-coupled receptor family is a large (~1000 genes in the 

human genome) (Fredriksson et al., 2003) and versatile receptor family whose 

members contribute to nearly all physiological processes (Lefkowitz, 2004).  G 

protein-coupled receptors bind extracellular ligands that induce conformational 

changes in the receptor that facilitate the activation of associated G protein 

heterotrimers by exchange of GDP for GTP on the G protein α subunit (Gilman, 

1987).  Upon activation, the G protein heterotrimer undergoes a conformational 

change that allows Gα and Gβγ subunits to dissociate/rearrange into an 

orientation that permits these subunits to modulate effector proteins (Coleman et 
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al., 1994; Lambright et al., 1994; Taussig et al., 1994).  The G protein signaling 

cycle terminates upon hydrolysis of GTP to GDP on the Gα subunit, resulting in 

the inactivating reassociation/rearrangement of Gα and Gβγ (Figure 1.4) 

(Coleman et al., 1994; Mixon et al., 1995). 
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Figure 1.4 G protein activation cycle. 
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1.4.1.2 Effector modulation 

 Four families of Gα, five Gβ subunit isoforms, and twelve Gγ subunit 

isoforms have been identified (Hurowitz et al., 2000; Khan et al., 2013).  Early 

studies implicated Gα subunits in effector modulation and it is known that the 

specific type of Gα subunit can contribute to the direct or indirect modulation of 

AC (Figure 1.5).  For example, members of the Gαs family (the GNAS gene is 

thought to give rise to several gene products) (Bastepe, 2007) are thought to 

directly bind to AC in the C2a region (Tesmer et al., 1997; Yan et al., 1997) and 

stimulate AC activity (Iyengar, 1993).  The inhibitory Gα subunits are comprised 

of Gαi1, 2, and 3, Gαo, and Gαz and directly inhibit AC activity by interacting with the 

C1a domain (Dessauer et al., 1998), presumably preventing the “closed state” of 

the AC catalytic core (Tesmer and Sprang, 1998). 
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Figure 1.5 Gα subunit signaling. 
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The identification of Gα12 and Gα13 was first reported in 1991 (Strathmann and 

Simon, 1991) and Gα12/13 modulation of Rho guanine nucleotide exchange 

factor proteins (RhoGEFs) has been widely observed (Siehler, 2009).  However, 

Gα12/13 has also recently been implicated in the direct and selective modulation 

of AC7 (Jiang et al., 2008; Jiang et al., 2013b).  In contrast to Gαs, Gαi, and 

Gα12/13 (that directly modulate AC activity), Gαq/11 is thought to indirectly 

modulate AC activity.  For example, Gαq/11 activates phospholipase C, which 

catalyzes the conversion of PIP2 into IP3 (binds to IP3 receptors on the ER, 

causing Ca2+ release) and diacylglycerol (stimulates protein kinase C) (Hepler et 

al., 1993; Smrcka et al., 1991; Sternweis and Smrcka, 1992).  Ca2+ and protein 

kinase C (PKC) uniquely modulate ACs in isoform-dependent manners (see 

regulatory properties). 

 Gβγ subunits were originally thought to be necessary for the inactivation of 

Gα subunits (Northup et al., 1983) and reassociation/rearrangement of the G 

protein heterotrimer, thus allowing receptor coupling and subsequent activation.  

However, the Gβγ subunits have since gained appreciation for direct modulation 

of a large number of effectors including ACs, phospholipase Cβ, Kir3 potassium 

channels, and voltage-gated Ca2+ channels and are being increasingly 

recognized for their contribution to diverse signaling pathways that are related to 

the different effectors that they modulate (for reviews, see (Khan et al., 2013; 

Smrcka, 2008)).  Furthermore, genetic knockdown of individual Gβ and Gγ 

subunits in animal models suggest that specific Gβγ subunit isoforms contribute 
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to diverse biological functions including nociception, angiogenesis during 

embryonic development, and seizure susceptibility (Khan et al., 2013).  

1.4.1.3 Modulation of G protein cycle by accessory proteins 

 In addition to G protein-coupled receptor modulation, the G protein 

activation cycle is sensitive to accessory proteins that include regulators of G 

protein signaling (RGS) and activator of G protein signaling (AGS) proteins 

(Blumer et al., 2007; Neubig and Siderovski, 2002).  There are 20 distinct genes 

that have been identified for RGS family members (some with splice variants) 

that are categorized into four subfamilies (R4/B, RZ/A, R7/C, and R12/D) 

(Abramow-Newerly et al., 2006).  All members of the RGS protein family have a 

conserved ~120 residue region that is known as the RGS domain and this region 

binds directly to GTP-bound Gα subunits to accelerate the rate of GTP hydrolysis, 

thereby terminating the G protein cycle (Abramow-Newerly et al., 2006; Neubig 

and Siderovski, 2002).  The AGS proteins are a diverse family of 10 proteins 

(AGS1-10) that were identified in a functional yeast-based screen for receptor-

independent signaling (Blumer et al., 2007).  AGS proteins are divided into three 

groups based on their activity in the yeast-based screen and biochemical studies 

(Blumer et al., 2007).  The Group I AGS protein (AGS1) displays guanine-

nucleotide exchange activity similar to that of a G protein-coupled receptor.  The 

remaining AGS proteins function independent of guanine-nucleotide exchange 

and are subdivided based on their interaction partners.  Specifically, Group II 

AGS proteins (AGS3-AGS6) interact with Gα subunits and Group III AGS 
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proteins (AGS2, 7, 8, and 10) interact with Gβγ subunits.  The RGS and AGS 

proteins influence G protein signaling and effector activation in diverse ways, 

including modulation of the rate of GTP hydrolysis and the availability and/or 

stability of Gα or Gβγ subunits (Blumer et al., 2007; Neubig and Siderovski, 2002; 

Sato et al., 2006). 

 

1.4.2 Regulatory properties of adenylyl cyclase isoforms 

 The common regulatory property of all AC isoforms is that they are 

activated by the stimulatory G protein α subunit (Gαs), but otherwise display 

unique regulatory profiles that are modulated by multiple arms of the G protein-

coupled receptor pathways.  The AC isoforms are categorized into four 

subgroups based on their sequence similarities and specific regulatory properties 

(Hanoune and Defer, 2001; Patel et al., 2001).    

 

1.4.2.1 Group I ACs 

 Group I ACs (AC1, AC3, and AC8) are collectively considered the 

Ca2+/calmodulin-stimulated ACs.  Ca2+-bound calmodulin stimulates AC1 and 

AC8 via direct interactions (Cali et al., 1996; Choi et al., 1992a) within the C1b 

and C2 domains of AC1 and the N-terminus and C2 domains of AC8 (Gu et al., 

2000; Simpson et al., 2006).  In contrast to AC1 and AC8, AC3 appears to be 

conditionally activated by calmodulin, as it is dependent on activated Gαs or 

forskolin treatment (Choi et al., 1992b).  Extensive studies of AC1 and AC8 
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suggest that these ACs are physiologically modulated by Ca2+ via a phenomenon 

known as capacitative calcium entry (CCE) (Willoughby and Cooper, 2007).  

CCE was first proposed in 1986 and is characterized by Ca2+ entering the cell 

through store-operated calcium channels in the plasma membrane in response to 

depletion of intracellular Ca2+ that is stored in the endoplasmic reticulum (Putney, 

1986).  It is thought that the proximity of ACs to the store-operated calcium 

channels contributes to the modulation of these ACs by local pools of Ca2+ 

(Willoughby and Cooper, 2007).  Interestingly, AC1 appears to be more sensitive 

to Ca2+ stimulation than AC8, as Ca2+ more potently stimulates AC1 (Masada et 

al., 2009).  Furthermore , the modulation of AC1 and AC8 by Ca2+ appears to be 

influenced by coincident signaling of Gαs because the convergent stimulation of 

AC1 by Gαs and Ca2+ influx is synergestic, but merely additive for AC8 (Cumbay 

and Watts, 2001; Nielsen et al., 1996).  Though AC1 is relatively more sensitive 

to Ca2+ and Gαs signaling than AC8, studies suggest that AC1 is also more 

sensitive than AC8 to inhibition by Gαi in response to Gi-coupled receptor 

activation (Cumbay and Watts, 2001; Nielsen et al., 1996; Taussig et al., 1993a).  

Direct inhibition by Gβγ subunits is a common property of each of the group I 

ACs (Diel et al., 2008; Diel et al., 2006; Steiner et al., 2006; Tang and Gilman, 

1991).  Specifically, Gβγ subunits modulate AC1 signaling with a pattern that 

includes attenuation of AC stimulation in response to Gαs-mediated activation, 

whereas the inhibition observed by Gαi is enhanced (Tang and Gilman, 1991; 

Taussig et al., 1994).     
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 The group I ACs are also notably regulated by protein kinases.  For 

example, though Ca2+-bound calmodulin is known to stimulate group I ACs, AC1 

and AC3 are inhibited directly by calmodulin-dependent kinase (CaMK) 

phosphorylation.  Specifically, AC1 is inhibited by CaMKIV (Wayman et al., 1996) 

and AC3 is inhibited by CaMKII (Wei et al., 1996), offering distinct modes of 

feedback inhibition through calmodulin, whereas AC8 does not appear to be 

sensitive to either CaMKII or CaMKIV phosphorylation (Wayman et al., 1996).  It 

is also suggested that AC8 is insensitive to PKC modulation, whereas AC1 and 

AC3 are stimulated by phorbol ester treatment (Jacobowitz et al., 1993). 

 

1.4.2.2 Group II ACs 

 Group II ACs (AC2, AC4, and AC7) are collectively insensitive to Ca2+ 

(submicromolar concentrations) and widely believed to be insensitive to Gαi/o 

modulation (Tang and Gilman, 1991; Taussig et al., 1993b; Taussig et al., 1994).  

As with all AC isoforms, each of the group II ACs are activated by Gαs 

stimulation.  However, the group II ACs display unique profiles of modulation in 

response to PKC activation.  AC2 is stimulated by PKC activation and has been 

the most extensively studied group II AC isoform with regard to PKC activation.  

For example, PKC-mediated stimulation of AC2 has been demonstrated both in 

vitro and in intact cell systems and has been observed in response to phorbol 

ester treatment (Jacobowitz and Iyengar, 1994; Shen et al., 2012; Yoshimura 

and Cooper, 1993; Zimmermann and Taussig, 1996) and via Gq-mediated PKC 
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activation (in response to Gq-coupled receptor activation and by constitutively 

active Gq (Q209L)) (Cumbay and Watts, 2005).  A comprehensive study of every 

PKC isoform has not been reported, but PKCα and PKCδ have both been 

implicated in the activation of AC2 (Nguyen and Watts, 2006; Zimmermann and 

Taussig, 1996).  Further solidifying the direct modulation of AC2 by PKC 

phosphorylation, a recent study mapped the phorbol ester- and muscarinic 

receptor-mediated PKC phosphorylation in HEK293 cells to S490 and S543 in 

the C1b domain (Shen et al., 2012).  Similar to AC2, AC7 is stimulated by PKC 

activation in response to phorbol ester treatment (Hellevuo et al., 1995; Watson 

et al., 1994).  Phorbol ester treatment also potentiates Gs-coupled receptor-

mediated AC7 activity (Haslauer et al., 1998) and PKCδ is thought to mediate 

this potentiation response (Nelson et al., 2003).  In contrast to AC2 and AC7, 

AC4 does not appear to be activated by PKC as tested in response to phorbol 

ester treatment and reconstituted PKCα (Jacobowitz et al., 1993; Zimmermann 

and Taussig, 1996).  Further, Gαs stimulation and Gβγ-mediated potentiation of 

AC4 activity can be inhibited by PKCα activation (Zimmermann and Taussig, 

1996).  

 In addition to PKC modulation of group II ACs, Gβγ subunits are thought 

to modulate the AC activity of all members of group II (AC2, AC4, and AC7) (Gao 

and Gilman, 1991; Tang and Gilman, 1991; Yoshimura et al., 1996).  

Interestingly, the Gβγ-mediated stimulation of group II ACs is thought to be 

conditional, as it is dependent on additional modes of AC stimulation (including 

Gαs- and PKC-mediated activation) (Tang and Gilman, 1991; Taussig et al., 
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1993b; Taussig et al., 1994).  These modulatory properties of group II ACs are 

well-established and have been demonstrated in vitro and in intact cell assays in 

response to Gi/o-coupled receptor activation. (Federman et al., 1992; Tang and 

Gilman, 1991; Tsu and Wong, 1996; Zimmermann and Taussig, 1996).  Studies 

with AC2 are consistent with a direct modulation of AC2 activity, as multiple Gβγ 

interaction sites have been characterized within the C1a, C1b, and C2 domains 

of AC2 (See Figure 1.6) (Boran et al., 2011; Diel et al., 2008; Diel et al., 2006; 

Weitmann et al., 2001).  Though Gβγ subunits in response to Gi-coupled 

receptor activation provide enhancement of AC2 activity, recent evidence 

suggests that Gβγ subunits from Gq-coupled receptor activation provide modest 

inhibition of AC2 activity (Shen et al., 2012), suggesting bi-directional modulation 

of AC2 by Gβγ subunits that is dependent on the Gα subunit that defines the 

heterotrimer.   
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Figure 1.6 Gβγ subunit interaction sites on adenylyl cyclase 2. 
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 Novel regulation of AC7 by Gα12/13 has also been reported.  Initially, a 

synergistic cAMP response to isoproterenol and sphingosine-1-phosphate in 

RAW 264.7 macrophages was found to be mediated by the G13 pathway (Jiang 

et al., 2007).  Subsequent research identified AC7 as the specific AC mediator of 

the synergistic response (i.e., AC2 did not mediate the synergistic response) and 

it was also shown to be dependent on Gα12/13 subunits (Jiang et al., 2008).  

Furthermore, the generation of a series of AC7/AC2 chimeras identified the C1a 

and C1b domains of AC7 to be important for the synergistic response (Jiang et 

al., 2013b). 

 

1.4.2.3 Group III ACs 

 The group III ACs (AC5 and AC6) are known as the Ca2+-inhibited group 

of ACs, as they are inhibited by submicromolar concentrations of free Ca2+.  

Analogous to the modulation observed for group I ACs, it is hypothesized that 

CCE is the mechanism by which AC5 and AC6 are physiologically modulated by 

free Ca2+, including in response to Gq-mediated receptor activation (Fagan et al., 

2000; Willoughby and Cooper, 2007).  In contrast to the inhibition of group III 

ACs by Ca2+, Gq-coupled receptor activation in cardiac fibroblasts and gastric 

smooth muscle (tissues that express both AC5 and AC6) provides enhanced 

downstream AC signaling (Beazely and Watts, 2006; Meszaros et al., 2000; 

Ostrom et al., 2003).  However, Gq-mediated signaling observed in stably 

transfected HEK293 cells indicates that Gq-mediated signaling enhances AC6, 
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but not AC5, suggesting a possibility for selective modulation of AC6 (Beazely et 

al., 2005). 

 AC5 and AC6 are robustly stimulated by Gαs subunits and inhibited by 

Gαi subunits (Chen-Goodspeed et al., 2005).  Though in vitro studies suggest 

that group III ACs are insensitive to Gαo (Taussig et al., 1993a; Taussig et al., 

1994), a number of intact cell and studies of cAMP signaling in tissues that 

express Group III ACs and Gαo suggest that receptor-mediated Gαo signaling 

can modulate AC5 and AC6 activity (for review, see (Beazely and Watts, 2006)).  

Some evidence exists for the modulation of group III ACs by Gβγ subunits.  For 

example, overexpression studies in cells suggest that Gβγ expression inhibits 

AC5 and AC6 (Bayewitch et al., 1998).  However, a more recent study suggests 

that Gβγ subunits bind directly to the N-terminus of AC5 and AC6 as part of a 

GαsGβγ heterotrimer and enhance Gαs-stimulated activity (Gao et al., 2007; 

Sadana et al., 2009).  The differences in the reports of Gβγ modulation of AC5 

and AC6 may be attributed to differences in the experimental methodology. 

 Protein kinases are also thought to modulate AC5 and AC6 activity.  For 

example, PKA phosphorylation of AC5 and AC6 has been observed and provides 

feedback inhibition for these isoforms (Bauman et al., 2006; Beazely et al., 2005; 

Iwami et al., 1995).  Furthermore, PKA-mediated inhibition of AC6 occurs via a 

single phosphorylation site in the C1 domain (S674) (Chen et al., 1997), and the 

corresponding residue in AC5 also mediates PKA-dependent inhibition (Bauman 

et al., 2006).     

 

 



30 

 The effects of PKC activity on the modulation of group III ACs appear to 

be complex.  AC5 activity is thought to be enhanced by PKC activity, as both in 

vitro and cell-based assays demonstrate stimulation of AC5 (Kawabe et al., 1996; 

Kawabe et al., 1994).  The effects of PKC activity on AC6, however, are difficult 

to interpret because a range of modulation has been observed.  For example, 

early studies of phorbol ester treatment on recombinant AC6 transiently 

expressed in HEK293 cells suggest only modest (Jacobowitz et al., 1993) or no 

significant stimulation of cAMP accumulation (Yoshimura and Cooper, 1993).  

However, PKC has been demonstrated to inhibit AC6 activity in in vitro 

membrane experiments (Lai et al., 1999; Lin et al., 2002).  In contrast, phorbol 

ester treatment potentiated forskolin- and Gαs-mediated cAMP in HEK293 cells 

stably expressing AC6 (Beazely et al., 2005).  Furthermore, phorbol ester 

treatment similarly potentiated drug-stimulated cAMP in two cell models thought 

to abundantly express AC6 (Chinese hamster ovary cells and Cath.a 

differentiated cells) (Beazely et al., 2005; Johnston et al., 2002; Varga et al., 

1998).  The contrasting observations surrounding PKC modulation of AC6 may 

reflect differential modulation by PKC isoforms and/or differences in the specific 

experimental approaches that were utilized. 

 

1.4.2.4 Group IV AC 

 AC9 is the lone member of group IV and is most recognized for its relative 

insensitivity to stimulation by forskolin.  The forskolin insensitivity is attributed to a 
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single residue in the C2 domain (Y1021) because mutation of this residue to 

leucine functionally restored sensitivity to forskolin (Yan et al., 1998).  Early 

studies suggest that AC9 is stimulated by Gαs (a property common to every AC 

isoform) (Hacker et al., 1998), but distinctly inhibited by Ca2+/calcineurin 

(Paterson et al., 1995).  Gi/o-coupled receptor activation inhibits Gαs-stimulated 

AC9 activity in a pertussis-toxin dependent manner, suggesting that AC9 is also 

sensitive to inhibition by Gαi subunits (Cumbay and Watts, 2004).  However, Gβγ 

subunits may also contribute to AC9 inhibition because potentiation of Gαs-

stimulated cAMP activity in cells stably expressing AC9 was observed upon 

sequestration of Gβγ subunits (via Gαt expression) (Cumbay and Watts, 2005).  

In addition to G protein modulation, AC9 appears to be susceptible to modulation 

by protein kinases.  For example, phorbol ester treatment inhibits Gαs-stimulated 

AC9 activity in a PKC isoform-dependent manner, as the PKC inhibitor 

bisindolylmaleimide I was able to block phorbol ester-mediated inhibition, but 

Gö6976 (a PKCα and –β selective inhibitor) had no effect (Cumbay and Watts, 

2004).  Interestingly, studies of Gq-mediated AC9 modulation identified a 

Ca2+/calmodulin/CaMKII-mediated potentiation of Gαs-stimulated AC9 activity 

that is PKC-independent (Cumbay and Watts, 2005).  These studies suggest that 

AC9 is complexly modulated by multiple arms of Ca2+ and kinase signaling 

pathways. 

 

 

 



32 

1.4.3 Adenylyl cyclase localization: Tissue distribution, compartmentalization, 

and signalosomes 

 The specificity of AC signaling can be further attributed to the tissue-

specificity and subcellular localization of AC isoforms and by their protein-protein 

interactions within these locations.  The AC isoforms are thought to display 

unique tissue distribution profiles.  It is notable that most AC expression studies 

are inferred from mRNA measurements, as relatively low AC expression and the 

lack of specific antibodies have hindered the study of AC isoform protein 

expression (Hanoune and Defer, 2001).  Table 1.1 summarizes the unique tissue 

expression of AC isoforms.  These expression patterns, together with the AC 

isoform-dependent regulatory properties discussed above, suggest that the 

concurrent expression of AC isoforms and other signaling molecules contribute to 

distinct, tissue-specific AC-mediated signaling pathways. 
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Table 1.1 Adenylyl cyclase tissue distribution 
 

AC isoform Tissue Distribution 
AC1 Brain, adrenal gland 
AC2 Brain, skeletal muscle, lung, heart 
AC3 Brain, olfactory epithelium 
AC4 Brain, heart, kidney, liver, lung 
AC5 Brain, heart, kidney, liver, lung 
AC6 Widespread 
AC7 Brain, platelets, widespread 
AC8 Brain, lung 
AC9 Brain, skeletal muscle, widespread 
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 AC isoforms are also thought to selectively reside in specific membrane 

microdomains (Ostrom et al., 2012; Ostrom and Insel, 2004).  The segregation of 

AC isoforms into membrane microdomains such as lipid rafts may contribute to 

specificity observed for cAMP signaling.  Lipid rafts are sphingolipid and 

cholesterol rich portions of the plasma membrane (Simons and Ikonen, 1997) 

and it is thought that AC isoforms differentially localize to either lipid raft or non-

lipid raft domains of the membrane (Willoughby and Cooper, 2007).  Specifically, 

the Ca2+-modulated ACs (AC1, AC3, AC5, AC6, and AC8) are thought to reside 

in lipid rafts, whereas the Ca2+-insensitive ACs (AC2, AC4, AC7, and AC9) 

localize to non-lipid raft domains (Ostrom and Insel, 2004; Willoughby and 

Cooper, 2007).  Furthermore, many signaling molecules that are associated with 

AC signaling including receptors, G proteins, and other effectors also reside with 

ACs in specific membrane microdomains (Allen et al., 2007; Patel et al., 2008).   

A relevant example of AC signaling specificity imparted by lipid raft organization 

has been observed in human bronchial smooth muscle cells.  It has been 

demonstrated that β adrenergic receptor-mediated signaling specifically activates 

AC6, whereas EP2 prostanoid receptor activation specifically modulates 

AC2/AC4 signaling in this cell type (Bogard et al., 2012; Bogard et al., 2011).  

Though all ACs are sensitive to stimulation by Gαs (Iyengar, 1993), and both β 

adrenergic receptors and EP2 prostanoid receptors are Gs-coupled receptors, 

AC-isoform-specific signaling was observed.  It is particularly notable that the 

selective signaling is consistent with the membrane microdomain organization of 

receptors and AC isoforms in human bronchial smooth muscle cells (AC6 and β 
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adrenergic receptors are in lipid rafts, whereas AC2/AC4 and EP2 prostanoid 

receptors are in non-raft membrane domains) (Bogard et al., 2011).  Similar 

specific receptor-AC signaling has also been observed according to localization 

in membrane microdomains of other tissues including aortic smooth muscle cells 

and cardiac myocytes (Ostrom et al., 2001; Ostrom et al., 2002; Ostrom et al., 

2000). Thus, it is apparent that organization of signaling molecules into 

membrane microdomains contributes to signaling efficiency and specificity by 

concentrating specific receptor-AC groups in close proximity.   

 Lipid raft structures also appear to be important for CCE-modulation of 

ACs (Willoughby and Cooper, 2007).  Disruption of lipid rafts by sequestration of 

cholesterol is known to disrupt the CCE modulation of AC6 (Fagan et al., 2000) 

and AC8 (Smith et al., 2002).  It is also thought that CCE machinery is localized 

to lipid rafts, suggesting that CCE-modulated AC signaling is dependent on 

membrane organization by lipid rafts (Martin et al., 2009; Pani et al., 2008).  It is 

clear that AC signaling modulation (and specificity) is influenced by the 

localization of ACs and additional signaling molecules that modulate AC function 

within specific membrane microdomains.   

 Cyclic AMP signaling specificity is also controlled by compartmentalization 

of AC-containing multi-protein signalosomes (Dessauer, 2009).  For example, the 

AKAP family of proteins contributes to the signaling specificity that is observed 

with cAMP signaling by enabling close proximity of signaling components via 

signalosomes (Taylor et al., 2012; Welch et al., 2010).  Over 50 AKAPs have 

been identified and each AKAP has a common PKA regulatory subunit 
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interaction motif, but are otherwise divergent (Welch et al., 2010).  AKAPs are 

localized to various subcellular areas and function to anchor PKA to specific 

substrates (Dessauer, 2009).  Interestingly, several of the AKAPs that localize to 

the plasma membrane selectively associate with AC isoforms (Dessauer, 2009).  

In some cases, AKAPs are thought to be components of a feedback loop for ACs 

that are directly modulated by PKA.  For example, AKAP79/150 directly interacts 

with AC5/AC6 and also scaffolds PKA (Bauman et al., 2006).  Expression of 

AKAP79/150 functionally contributes to the modulation of AC5 by promoting 

accelerated decay of Gs-coupled receptor-mediated cAMP responses via PKA 

phosphorylation (Bauman et al., 2006).  These observations suggest that 

AKAP79/150 is part of a negative feedback loop to attenuate AC5/AC6 activation 

(consistent with Group III ACs being inhibited by PKA phosphorylation).  Similar 

observations were also reported for PKA-dependent modulation of AC5 signaling 

that is mediated by mAKAPβ in cardiac myocytes (Kapiloff et al., 2009).   

 In addition to PKA scaffolding, perhaps signaling efficiency is also attained 

by additional scaffolding functions of AKAPs.  It is known that AKAPs interact 

with both upstream modulators and downstream effectors of AC (protein kinases, 

G protein-coupled receptors, PDEs, and Epacs) (Bauman et al., 2007; Dodge-

Kafka and Kapiloff, 2006; Dodge-Kafka et al., 2005).  This is especially 

interesting in light of AKAP-mediated AC modulation that is thought to be 

independent of PKA function.  For example, the AKAP Yotiao directly interacts 

with AC2 and functionally inhibits AC2-mediated cAMP signaling (Piggott et al., 

2008), but AC2 is not thought to be modulated by PKA.  The mechanism of 
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Yotiao modulation of AC2 is unclear, but possibilities include anchoring of PDEs 

in proximity of AC2 or by direct allosteric modulation (Dessauer, 2009).  Together, 

these studies suggest that AKAPs are diverse modulators of AC signaling, but an 

appreciation of the underlying mechanisms of AKAP-mediated AC modulation 

requires further study.  A growing number of AC-interacting proteins that 

modulate cAMP signaling (Sadana and Dessauer, 2009; Wang et al., 2009) 

support the hypothesis that signalosome-mediated AC modulation is an 

important contributor to cAMP signaling specificity and may even be crucial 

components of the mechanisms that control cAMP-mediated signaling diversity. 

 

 

1.5 Heterologous sensitization of adenylyl cyclase 

 Acute activation of Gi/o-coupled receptors generally leads to attenuation 

of cAMP accumulation by inhibition of AC, but prolonged stimulation of Gi/o-

coupled receptors results in heightened sensitivity to subsequent stimulatory 

input to AC (Watts and Neve, 2005).  This phenomenon, known as heterologous 

sensitization of AC (also known as superactivation, cAMP overshoot, and 

supersensitization), was first observed in Dr. Marshall Nirenberg’s laboratory in 

1975 and was hypothesized to be a molecular form of adaptation that contributes 

to opiate dependence and tolerance (Sharma et al., 1975).  Since the 

observation of δ opioid receptor-mediated AC sensitization in Nirenberg’s lab, 

persistent activation of several additional types of Gi/o-coupled receptors 
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including D2 dopamine, 5HT1A serotonin, µ opioid, and CB1 cannabinoid 

receptors have also been found to mediate sensitization, suggestive of a 

signaling adaptation that is common for nearly all Gi/o-coupled receptors (Watts 

and Neve, 2005).  Despite the prevalence of AC sensitization and the study of 

this adaptive response since 1975, an understanding of the signaling steps that 

link the initial Gi/o signaling event to the enhancement of AC responsiveness 

remains elusive. 

 That sensitization occurs following prolonged Gi/o-coupled receptor 

activation and is inhibited by pertussis toxin suggests that G protein subunits 

from Gi/o heterotrimers are central to the development of sensitization (Watts, 

2002).  Subsequent studies utilized pertussis-toxin insensitive Gα subunits as 

tools to investigate the specific roles of individual Gαi/o subunit isoforms in 

heterologous sensitization of AC.  Pertussis toxin-insensitive Gαo (but not 

pertussis toxin-insensitive Gαi1, 2, or 3) was capable of supporting D2 dopamine 

receptor-induced AC sensitization, but with a reduced response as compared to 

that observed in the absence of pertussis toxin treatment in NS20Y cells stably 

expressing the D2 dopamine receptor (Watts et al., 1998).  Consistent with these 

observations, pertussis toxin-insensitive Gαi1, 2, or 3 subunits are also unable to 

support sensitization in response to μ or κ opioid receptor-activation (Tso and 

Wong, 2000; Tso and Wong, 2001).  In contrast, another study reported that 

individual pertussis toxin-insensitive Gαi1,2,3, and Gαo subunits are able to 

support μ opioid receptor-mediated sensitization of AC (but with a reduced level 

of sensitization) in both C6 glioma and HEK293T cells and that the level of 
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sensitization observed in these cell types is dependent on the expression levels 

of the pertussis toxin-insensitive G protein subunits (Clark and Traynor, 2006).  

Furthermore, pertussis toxin-insensitive Gαi1 partially recovers δ opioid receptor-

induced sensitization (but pertussis toxin-insensitive Gαi3 and Gαi2/z have no 

effect) (Tso and Wong, 2000; Tso and Wong, 2001).  The attenuated 

sensitization responses that are mediated by individual pertussis toxin-insensitive 

Gαi/o subunits suggest the possibility that multiple Gαi/o subunit isoforms 

simultaneously contribute to the development of the full sensitization response. 

 Pertussis toxin treatment also inhibits the rearrangement/release of Gβγ 

subunits, thus implicating Gβγ subunit signaling in the development of 

heterologous sensitization of AC.  The most direct evidence for Gβγ subunits in 

sensitization has been obtained with the Gβγ subunit-sequestering proteins Gαt 

and the C-terminus of G protein-coupled receptor kinase 2 (GRK2-ct or βARK-ct).  

Multiple studies demonstrate a consensus that expression of Gβγ subunit 

sequestering tools provides inhibition of heterologous sensitization of AC in 

response to persistent activation of several G protein-coupled receptors 

(AvidorReiss et al., 1996; Nguyen and Watts, 2005; Rhee et al., 2000; Rubenzik 

et al., 2001; Thomas and Hoffman, 1996).  Given that Gβγ subunits differentially 

influence the direction of AC modulation in an AC isoform-dependent manner 

(see AC isoform regulatory properties), it is unlikely that the development of 

heterologous sensitization is modulated by direct interactions of Gβγ with AC 

isoforms.  Thus, it is intriguing that Gβγ subunits are becoming more recognized 

for modulation of diverse signaling pathways (Khan et al., 2013; Smrcka, 2008), 
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suggesting that Gβγ subunits are components of complex signaling pathways 

that may lead to the development of AC sensitization.   

 Protein kinases modulate the activity of AC isoforms (see the regulatory 

properties of AC section).  It is therefore possible that prolonged Gi/o-coupled 

receptor activation leads to the downstream modulation of protein kinases that 

are able to enhance the activity of ACs, resulting in sensitization of AC.  

Consistent with this hypothesis is that Gαi and Gβγ signaling are known to 

modulate protein kinases that include PKC, PKA, and Raf-1 (Watts and Neve, 

2005).  For example, PKC enhances the activity of several AC isoforms (i.e., AC1, 

AC2, AC5, AC6, and AC7) and heterologous sensitization has been observed in 

cells that express AC2 and AC5, suggesting a role for PKC in the development of 

AC sensitization.  Furthermore, enhanced PKC-mediated phosphorylation of ACs 

(group II ACs) was observed in ileum longitudinal muscle myenteric plexus 

preparations obtained from chronic morphine-treated guinea pigs (Chakrabarti et 

al., 1998).   

 Several studies also implicate Raf-1 kinase in heterologous sensitization.  

For example, pharmacological inhibition of Raf-1 kinase in Chinese hamster 

ovary (CHO) cells decreased cAMP signaling, suggesting that Raf-1 can 

stimulate AC6 activity (endogenously expressed) (Tan et al., 2001; Varga et al., 

2003; Varga et al., 1998).  Consistent with this observation, studies also suggest 

that Raf-1 kinase inhibition attenuates sensitization of AC in CHO cells (Beazely 

et al., 2005; Varga et al., 2002; Varga et al., 2003).  Furthermore, studies 

suggest that Raf-1 can enhance AC activity upon modulation by PKC and 
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receptor tyrosine kinases (Beazely et al., 2005; Chen et al., 1995b; Tan et al., 

2001; Varga et al., 2003). 

 Protein kinase A may also have a role in heterologous sensitization of ACs.  

For example, it is known that PKA phosphorylation inhibits AC5 and AC6 activity, 

suggesting that inhibitory modulation of PKA may enhance the catalytic activity of 

these isoforms.  Consistent with this hypothesis, activators of PKA attenuated 

sensitization, whereas inhibitors of PKA induced sensitization in a cell line that 

endogenously expresses AC6 (Johnston et al., 2002).  Additional studies also 

support a role for PKA in sensitization via the use of a PKA-deficient cell line 

(Thomas and Hoffman, 1989) and activators of PKA in DDT1-MF2 cells (Port et 

al., 1992).  Contrary to these studies, several approaches also suggest that PKA 

is not essential for heterologous sensitization of AC (Avidorreiss et al., 1995; 

Watts and Neve, 1996; Watts et al., 1999).  These differences may be reflective 

of the complement of ACs and other signaling molecules that are present in each 

given system and demonstrate the complexity associated with differential 

modulation of AC isoforms by protein kinases. 

 

 

1.6 Adenylyl cyclase isoforms in physiology and disease 

 AC isoforms are implicated in a variety of physiological processes and 

disease states in both the central nervous system and the periphery.  Much of 

our current understanding of the contribution of individual AC isoforms to 
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biological processes is from knockout and transgenic animal studies and is 

summarized below. 

 

1.6.1 Adenylyl cyclase function in peripheral tissues  

 Knockout and transgenic overexpression models implicate both AC5 and 

AC6 in cardiac function and heart failure.  Specifically, AC5 deletion impairs 

sympathetic, parasympathetic, and Ca2+-mediated regulation of left ventricular 

function (Okumura et al., 2003a; Tang et al., 2006).  However, cardiac-directed 

overexpression of AC5 enhances heart rate and fractional shortening, but does 

not differ from wild type mice in response to β adrenergic receptor stimulation 

(Tepe et al., 1999).  Interestingly, deletion of AC6 has no significant effect on the 

basal left ventricular function, but disrupts cAMP signaling and Ca2+ handling and 

reveals a role for AC6 in β adrenergic receptor-mediated left ventricular function 

(Tang et al., 2008).  Deletion of AC5 is protective against increased apoptosis 

and reduces the left ventricular ejection fraction associated with heart failure in 

response to pressure overload induced by thoracic aortic banding (Okumura et 

al., 2003b).  Targeted overexpression of either AC5 or AC6 displays protective 

effects in cardiac function in response to Gq-expression induced cardiomyopathy 

(Roth et al., 1999; Tepe and Liggett, 1999), but only AC6 overexpression 

reduces hypertrophy and enhances survival (Roth et al., 2002).  Interestingly, 

subsequent studies further suggest beneficial effects of AC6 expression for 

cardiac function (for review, see (Gao and Hammond, 2011)) and that many of 
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these effects are independent of the cAMP-generating catalytic function of AC6 

(Gao and Hammond, 2011; Gao et al., 2011).  Further stratifying the biological 

functions of AC5 and AC6, AC5-/- mice show protective effects against age-

induced cardiomyopathy and display increased life-span associated with 

additional protective effects against age-related oxidative stress, apoptosis, and 

loss of bone quality (Yan et al., 2007).  In summary, AC5 and AC6 demonstrate 

overlapping, but distinct functions in cardiac function and models of heart failure 

and AC5 is implicated in pathophysiological processes associated with aging.   

 Immune responses also appear to be mediated by at least one AC isoform.  

For example, AC7 has recently been implicated in distinct types of immune 

responses.  Specifically, mice with AC7-deficient immune systems are sensitive 

to endotoxic shock (via lipopolysaccharide (LPS) injection) as measured by 

survival following a semi-lethal dose of LPS (Duan et al., 2010).  Biochemical 

analysis revealed blunted cAMP responses and enhanced pro-inflammatory 

cytokine production in macrophages from the AC7-deficient mice, suggesting that 

AC7-mediated cAMP signaling may underlie immune responses to bacterial 

infection (Duan et al., 2010).  The AC7-deficient mice also display an overall 

reduction of cAMP signaling in T and B cells, and altered antibody responses 

(Duan et al., 2010).  Interestingly, it has also been recently proposed that certain 

pathogens may evade host immune responses by enhancing AC7-mediated 

signaling in macrophages, thereby deceiving the system into reduced pro-

inflammatory cytokine responses (Jiang et al., 2013a).  These data suggest that 

AC7-mediated cAMP signaling contributes to distinct types of immune responses 
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and is potentially modulated by pathogens to evade host immune responses 

(Duan et al., 2010; Jiang et al., 2013a). 

 

1.6.2 Adenylyl cyclase function in the central nervous system 

 Several AC isoforms are implicated in distinct types of pain and analgesia.  

AC5 is thought to mediate both acute and chronic pain responses.  Specifically, 

AC5-/- mice display reduced behavioral responses to acute pain elicited by 

thermal and mechanical stimuli, inflammatory stimuli, and visceral nociceptive 

stimuli (both inflammatory and non-inflammatory) (Kim et al., 2007).  Furthermore, 

AC5-/- mice show attenuated mechanical and thermal allodynia in two separate 

neuropathic pain models (the L5 spinal nerve ligation model and a tail nerve 

injury model) (Kim et al., 2007).  Interestingly, the Ca2+/calmodulin-stimulated 

ACs, AC1 and AC8 are also implicated in chronic pain, but not acute pain 

responses.  AC1-/-, AC8-/-, and AC1-/-/AC8-/- mice are not different than wild type 

mice in acute pain response to noxious thermal, mechanical, and inflammatory 

stimuli (Vadakkan et al., 2006; Wei et al., 2002).  However, AC1-/- and AC1-/-

/AC8-/- mice display reduced responses to chronic inflammatory stimuli (injection 

of formalin and complete Freund’s adjuvant injection) (Vadakkan et al., 2006; 

Wei et al., 2002).  Furthermore, AC1-/-/AC8-/- mice show attenuated behavioral 

responses to nerve injury (Wei et al., 2002). 

 Multiple AC isoforms have also been distinctly associated with morphine 

action.  AC5 is thought to mediate the behavioral effects of morphine because 
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AC5-/- mice lost morphine-induced analgesia (latency for response to acute 

thermal stimuli), locomotor activity, reward, dependence, and behavioral signs of 

withdrawal (Kim et al., 2006).  On the other hand, mice with genetic deletion of 

Ca2+/calmodulin-stimulated ACs (AC1 and AC8) retain short-term morphine-

induced analgesia, but display reduced tolerance and withdrawal-associated 

behaviors (Li et al., 2006; Zachariou et al., 2008).  Interestingly, transgenic mice 

overexpressing AC7 in the CNS demonstrate enhanced sensitivity to the acute 

analgesic effects of morphine (measured by paw-lick latency in the hot plate test) 

and show more rapid tolerance to morphine treatment, but no difference in 

withdrawal-associated behaviors as compared to wild type animals (Yoshimura 

et al., 2000).  

 The Ca2+/calmodulin-stimulated ACs are implicated in important CNS-

related biological processes that are associated with aging.  For example, the 

Ca2+/calmodulin-stimulated ACs are thought to have redundant roles in long term 

memory, as AC1-/-/AC8-/- mice are deficient in late phase long-term potentiation 

and long term memory, but genetic deletion of AC1 or AC8 individually has no 

effect on these measures (Wong et al., 1999).  The Ca2+/calmodulin-stimulated 

ACs are also implicated in neurodegenerative processes including excitotoxicity.  

Excitotoxicity is neuronal damage/death that results from overstimulation of 

NMDA receptors by glutamate.  The excessive stimulation of NMDA receptors 

results in a Ca2+ overload in neurons, resulting in cell death.  It is thought that 

excitotoxicity contributes to the acceleration of neurodegenerative processes.  

AC1 is associated with excitotoxicity because primary cortical neurons from 
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AC1-/- mice are resistant to glutamate- and NMDA-induced excitotoxicity and 

AC1-/- mice have attenuated neuronal cell death in response to intracortical 

injection of NMDA (Wang et al., 2007a).  Ca2+-stimulated ACs are further 

implicated in neurodegeneration in neonatal mice.  Specifically, ethanol, the 

GABAa receptor modulator phenobarbital, and the NMDA receptor antagonist 

MK801 each enhance neurodegeneration in neonatal AC1-/-/AC8-/- mice.  

Furthermore, AC1-/- or AC8-/- mice display similar neurodegenerative effects 

(Maas et al., 2005).  In summary, several AC isoforms contribute to biological 

processes in the central nervous system including pain, analgesia, learning and 

memory, and neurodegeneration. 

 

 

1.7 Small molecule modulation of adenylyl cyclase 

 It is clear that AC isoforms are implicated in several disease states and it 

is hypothesized that AC isoform-selective small molecules could be utilized 

together with knockout and transgenic animal models to investigate the 

physiological roles of AC isoforms and validate their therapeutic potential (Pavan 

et al., 2009; Pierre et al., 2009).  However, small molecule AC modulators are 

generally non-selective and/or display low potency for AC modulation (Seifert et 

al., 2012).  The current collection of AC modulators is discussed below.  

 Forskolin (Figure 1.7) is a labdane diterpene that was isolated from the 

roots of the Coleus forskohlii plant, and was found to be a reversible activator of 
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adenylyl cyclase activity in several tissues including the cerebral cortex, striatum, 

heart, and liver (Seamon et al., 1981).  Subsequent studies with recombinant 

adenylyl cyclases suggest that forskolin directly binds AC and is capable of 

stimulating all AC isoforms with the exception of AC9 (Sadana and Dessauer, 

2009; Tesmer et al., 1997).  Though forskolin has been used extensively as a 

research tool for the study of ACs and cAMP signaling (Insel and Ostrom, 2003), 

several properties of forskolin are suboptimal.  For example, forskolin is not 

water-soluble, modulates AC isoforms in a non-selective fashion, and is known to 

modulate other enzymes including glucose transporters (Laurenza et al., 1989).  

To improve upon these shortcomings, much effort has been directed toward the 

synthesis and pharmacological characterization of forskolin analogs.  For 

example, NKH477 was identified as a water-soluble forskolin analog that has 

enhanced potency for AC5 as compared to AC3 and AC2 (Toya et al., 1998).  

More recent studies identified forskolin derivatives that display a range of 

modulatory properties, including inactivity, partial activation, enhanced efficacy 

for AC isoforms, and inhibition of AC isoforms (Onda et al., 2001; Pinto et al., 

2008).  Notably, BODIPY-conjugated forskolin displays potent inhibition of AC2, 

while partially activating AC1 and AC5 (Pinto et al., 2008).  Additional chemical 

modification of forskolin may yield derivatives with novel modulatory properties or 

more favorable AC isoform-selectivity profiles, but studies to date have only 

provided marginal improvements. 
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Figure 1.7 Chemical structures of small molecule adenylyl cyclase modulators. 
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 Early approaches to the development of adenylyl cyclase inhibitors 

focused on compounds that are nucleotides that contain an adenine (or purine) 

ring, known as the “p-site” inhibitors (Dessauer et al., 1999).  The p-site inhibitors 

are generally non-selective for inhibition of adenylyl cyclase isoforms (Johnson et 

al., 1997) and bind to the active site in the presence of pyrophosphate (Tesmer 

et al., 2000), but non-competitively with respect to ATP (Dessauer and Gilman, 

1997; Tesmer et al., 2000).  It is clear that the nucleotide phosphate groups 

confer potency for inhibition of ACs, as adenine nucleoside 3’-polyphosphate 

ligands are among the most potent p-site inhibitors (Johnson et al., 1997).  

However, the polyphosphate groups are expected to be poorly membrane-

permeable. Though p-site ligands are generally non-selective, ribose-modified p-

site ligands such as SQ22,536 and 9-CP-Ade display some degree of AC isoform 

selectivity in vitro (i.e., both compounds have similar potency values for inhibition 

of AC1, AC6, and AC8, but little or no activity for inhibition of AC2), but are 

relatively less potent than the adenine 3’-polyphosphate p-site ligands (Johnson 

et al., 1997).  The p-site inhibitors identified to date appear to have a trade-off 

between potency and AC isoform selectivity.  Furthermore, p-site inhibitors may 

have off-target effects such as inhibition of DNA replication or purine metabolism 

due to their adenine rings (Seifert et al., 2012).  

 Given concerns about an intact adenine ring facilitating off-target effects, a 

virtual screen was conducted for compounds that retained the pharmacophore of 

a ribose-substituted p-site inhibitor for AC, but without an adenine ring (Onda et 

al., 2001).  This screen yielded the second generation p-site inhibitor, NKY80 
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(Onda et al., 2001).  Though NKY80 displays selectivity for AC5 over AC2 and 

AC3, and binds non-competitively with ATP and forskolin, the compound 

generally lacks potency for inhibition of AC (Onda et al., 2001).   

 An additional strategy for the development of more potent and/or selective 

inhibitors of AC involved the fusion of a metal-coordinating hydroxamic acid 

moiety to an adenine ring to exploit the requirement of metal ions for AC catalytic 

activity (Levy et al., 2003; Levy et al., 2002a; Levy et al., 2002b; Tesmer et al., 

1999).  In in vitro Sf9 cell membrane assays, PMC-6 emerged as a selective AC5 

inhibitor (over AC2 and AC3), and the most potent among the PMC class of 

inhibitors (Iwatsubo et al., 2004).  Furthermore, PMC-6 has activity for inhibition 

of isoproterenol-stimulated cAMP in intact cardiac myocytes, where it also 

displays efficacy for inhibition of apoptosis (Iwatsubo et al., 2004), suggesting 

possible therapeutic utility. 

 More recent studies have identified NB001 as a potent inhibitor of AC type 

1 in intact cell assays (Wang et al., 2011).  Interestingly, in agreement with AC1 

knockout mouse studies, inhibition of AC1 activity with NB001 has analgesic 

effects in animal models of neuropathic and inflammatory pain (Vadakkan et al., 

2006; Wang et al., 2011).  These studies suggest that targeting AC1 has 

analgesic utility, but the activity of NB001 in in vitro AC assays and an 

understanding of the structure-activity relationship surrounding NB001 remain to 

be reported. 

 2’(3’)-O-N-Methylanthraniloyl (MANT)-substituted fluorescent nucleotides 

were found to be a novel and potent class of competitive AC inhibitors (Gille and 
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Seifert, 2003).  Subsequent crystallography studies with MANT-GTP suggest that 

the MANT moiety binds in a hydrophobic patch at the C1/C2 interface and 

prevents a necessary rotation that is required for AC catalytic activity (Mou et al., 

2005; Wang et al., 2007b).  Furthermore, a series AC isoform-selectivity and 

structure-activity relationship studies  on the MANT class of compounds revealed 

a general preference for inhibition of AC5 and AC6 over other AC isoforms and 

that the catalytic site can accommodate nucleotides including adenine, guanine, 

hypoxanthine, and uracil (Gille et al., 2004; Goettle et al., 2009; Huebner et al., 

2011; Mou et al., 2006; Pinto et al., 2011; Suryanarayana et al., 2009).  

Consistent with the latter observation, MANT-ITP was identified as the most 

potent AC inhibitor from this class of compounds.  Though the MANT nucleotides 

are generally more potent than the p-site inhibitors for inhibition of AC in vitro, 

these compounds are also limited by poor membrane-permeability (Seifert et al., 

2012).  Thus, these studies are most useful for the structural information that 

they provide surrounding the binding of ligands in the catalytic site of ACs.     

 Efforts to develop potent and AC isoform-selective small molecule 

modulators have only modestly contributed to the current understanding of AC 

targeting and several limitations surrounding specificity, AC isoform-selectivity, 

and cell permeability remain.  Furthermore, the current repertoire of AC 

modulators has not been comprehensively studied with respect to each of the 

nine membrane-bound AC isoforms in both in vitro and intact cell models, making 

it difficult to fully assess the isoform-selectivity of these compounds (Seifert et al., 

2012).  The discovery and development of novel small molecule modulators of 
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AC that are potent and isoform-selective is expected to facilitate the in vivo study 

of individual AC isoforms and allow for the full evaluation of AC isoforms as 

potential therapeutic targets. 

 

 

1.8 Scope of the work 

 The goal of the work reported here is to investigate the modulation of 

adenylyl cyclase type 2 signaling within the context of the following three specific 

aims: 

1.) To test the hypothesis that AGS3 expression influences D2L dopamine 

receptor-mediated cAMP signaling mediated via AC1 and AC2.  This specific 

aim was designed to investigate the effects of expression of the G protein 

regulator, AGS3, on recombinant AC1 and AC2 in response to both acute and 

persistent activation of the D2L dopamine receptor in HEK293 cells.  The 

differential modulation of AC1 and AC2 by G protein subunits offers unique 

properties to study the effects of AGS3 expression on G protein-coupled receptor 

signaling. 

2.)  To test the hypothesis that D2L dopamine receptor-mediated 

heterologous sensitization of AC2 is Gβγ subunit-dependent.  The 

mechanism of D2L dopamine receptor-induced heterologous sensitization of AC2 

is unclear.  Specific aim 2 was designed to study the role of Gβγ subunit 
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signaling to D2L dopamine receptor-mediated sensitization of AC2 in HEK293 

cells.   

3.)  To develop and implement a high-throughput screening paradigm for 

the discovery of small molecule modulators of AC2.   Specific aim 3 

encompassed the development of a cell-based high-throughput screening 

paradigm for the measurement of cellular cAMP.  The assay platform was then 

utilized to conduct an intact-cell small molecule screen for direct AC2 inhibitors in 

HEK293 cells.  The work in this aim was designed as an intermediate step in the 

overall goal to develop unbiased methods for the study of AC sensitization.  
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CHAPTER 2. DIFFERENTIAL EFFECTS OF AGS3 EXPRESSION ON D2L 
DOPAMINE RECEPTOR-MEDIATED ADENYLYL CYCLASE SIGNALING 

2.1 Introduction 

 G protein-coupled receptors bind ligands that induce conformational 

changes in the receptor and facilitate the activation of G protein heterotrimers by 

exchange of GDP for GTP on the G protein α subunit (Gilman, 1987).  Upon 

activation, the G protein heterotrimer undergoes a conformational change that 

allows Gα and Gβγ subunits to regulate effector proteins such as adenylyl 

cyclases (ACs) (Coleman et al., 1994; Lambright et al., 1994; Taussig et al., 

1993a).  The G protein signaling cycle ends by hydrolysis of GTP to GDP on the 

Gα subunit (Coleman et al., 1994; Mixon et al., 1995).  In addition to G protein-

coupled receptor modulation, the G protein activation cycle is sensitive to 

accessory proteins such as regulators of G protein signaling (RGS) or activator of 

G protein signaling (AGS) proteins (Blumer et al., 2007; Neubig and Siderovski, 

2002; Sato et al., 2004).  These proteins influence G protein signaling and 

effector activation by modulating the rate of GTP hydrolysis and the availability 

and/or stability of Gα or Gβγ subunits (Blumer et al., 2007; Neubig and 

Siderovski, 2002; Sato et al., 2004)
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 The activator of G protein signaling 3 (AGS3) is a G protein regulator that 

has been linked to adaptive behaviors involved with drugs of abuse (Bowers et 

al., 2008; Bowers et al., 2004; Yao et al., 2005).  AGS3 was identified as a 

receptor-independent G protein activator and is thought to bind Gαi subunits in 

the GDP-bound state, thereby preventing re-association of Gα and Gβγ subunits 

(De Vries et al., 2000; Peterson et al., 2000; Takesono et al., 1999).  The precise 

molecular actions of AGS3 have yet to be fully described, however it is 

hypothesized that AGS3 expression may specifically adjust the landscape of 

effector activation by modulating Gα and Gβγ subunit signaling.  Previous studies 

examining the actions of AGS3 on G protein-coupled receptor signaling in cell-

based assays suggest that the effects of AGS3-like molecules are dependent on 

the duration of receptor activation.  For example, an AGS3 consensus peptide 

was shown to have no effect on the ability of D2DRs to modulate G protein-

regulated inwardly rectifying potassium (GIRK) channels acutely, but promoted 

functional desensitization of this response following repeated receptor activation 

(Webb et al., 2005).  Furthermore, the actions of AGS3 on α2 adrenergic 

receptor regulation of cAMP signaling were explored in CHO cells, which 

predominantly express AC6 (Varga et al., 1998).  The acute effects on α2 

adrenergic receptor-mediated AC signaling were not altered, but sensitization of 

AC in response to persistent α2 receptor activation was attenuated by AGS3 

expression (Sato et al., 2004).  More recent studies in nucleus 

accumbens/striatal neurons have suggested that opioid receptor-induced 
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expression of AGS3 enhances the activity of AC5 and AC7 in a protein kinase-

dependent manner (Fan et al., 2009).  

 The observations described above suggest a complex mode of AGS3 

modulation of receptor-mediated AC signaling.  The complexity is further 

exacerbated by the expression and signaling of multiple AC isoforms that display 

unique patterns of Gα and Gβγ regulation (Sunahara et al., 1996; Watts and 

Neve, 2005).  The present study was designed to examine the effects of AGS3 

on G protein-coupled receptor modulation of two recombinant ACs, AC1 and 

AC2.  AC1 is a member of the Ca2+-stimulated group of ACs and can be 

activated by the Ca2+ ionophore, A23187, and inhibited by both Gαi and Gβγ 

subunits (Choi et al., 1992a; Cumbay and Watts, 2001; Taussig et al., 1993b).  

AC2 is a member of a group of ACs that are conditionally activated by Gβγ 

subunits (Federman et al., 1992; Taussig et al., 1993b).  AC2 is also robustly 

activated by protein kinase C (PKC) phosphorylation in response to phorbol ester 

stimulation (e.g. PMA) (Shen et al., 2012; Yoshimura and Cooper, 1993).  The 

distinct regulatory properties of AC1 and AC2 provide important tools to 

selectively study the effects of AGS3 expression on G protein-coupled receptor 

signaling. 

 It is widely accepted that alterations in cAMP signaling pathways and 

enhanced activation of dopamine systems in the brain play central roles in the 

molecular adaptations associated with drug addiction (Carlezon et al., 2005; 

McClung and Nestler, 2003; Nestler, 2001).  The dopaminergic signaling and 

cAMP signaling pathways are linked by dopamine receptors that modulate 
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adenylyl cyclases via G protein activation.  There are two families of dopamine 

receptors, D1-like (D1 and D5) that couple to Gαs, and D2-like (D2, D3, and D4) 

that couple to Gαi/o (Missale et al., 1998).  We chose to study D2LDR signaling 

based on the overlapping tissue distribution of the D2LDR with AC1 and AC2 in 

the brain, and its well-characterized roles in AC signaling and drug abuse, where 

AGS3 has also been implicated (Maldonado et al., 1997; Phillips et al., 1998; 

Ralph et al., 1999; Visel et al., 2006; Weiner et al., 1991).  HEK293 cells 

expressing the D2LDR together with either AC1 or AC2 were used to explore 

cAMP signaling in the absence or presence of AGS3.  Our studies revealed that 

AGS3 expression had modest, but significant potentiating effects on acute D2LDR 

modulation of AC1 or AC2 activity.  In contrast, AGS3 displayed differential 

effects on AC regulation following persistent D2LDR activation.  These findings, 

along with those reported in the literature, suggest that AGS3 modulates AC 

signaling in a manner that is isoform-specific and dependent on the duration of 

receptor activation. 

 

 

2.2 Materials and methods 

2.2.1 Materials 

 [3H]-cAMP (33 Ci/mmol) was purchased from PerkinElmer Life and 

Analytical Sciences (Boston, MA).  Spiperone, (±)-quinpirole, A23187, 3-isobutyl-

1-methylxanthine (IBMX), G418, Dulbecco’s modified Eagle’s medium (DMEM), 
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and trichloroacetic acid were purchased from Sigma-Aldrich (St. Louis, MO).  

Phorbol 12-myristate 13-acetate (PMA) was purchased from Tocris Bioscience 

(Ellisville, MO).  Lipofectamine 2000 and Zeocin were purchased from Invitrogen 

(Carlsbad, CA).  FetalClone I (FCI) serum, bovine calf serum (BCS), and Earle’s 

balanced salt solution (EBSS) were purchased from Hyclone (Logan, UT).  

Hygromycin B was purchased from Calbiochem (La Jolla, CA). 

 

2.2.2 Cell culture and stable cell line generation 

 HEK293 cells stably expressing AC1 or AC2 were grown in DMEM 

supplemented with 5% FCI, 5% BCS, 1 unit/ml penicillin, 1 μg/ml streptomycin, 

2.5 ng/ml amphotericin B, and either 100 μg/ml Hygromycin B (HEK-AC1) or 300 

μg/ml G418 (HEK-AC2) and were maintained in a humidified incubator at 37°C 

with 5% CO2.  Cell lines were transfected with the dual expression vector 

pBudCE4 with the gene for the human D2LDR driven by the CMV promoter and 

either rat AGS3-Venus (long splice variant), AGS3-Q/A-Venus, or no gene 

behind the EF-1α promoter.  Several studies have utilized AGS3 fused with a 

fluorescent protein at the c-terminus (An et al., 2008; Oner et al., 2010; Oner et 

al., 2013; Vural et al., 2010) and these studies suggest that the AGS3-fluorescent 

fusion proteins retain similar cellular localization (An et al., 2008; Blumer et al., 

2002; Pizzinat et al., 2001; Vural et al., 2010) and interaction with Gαi subunits 

(De Vries et al., 2000; Oner et al., 2010; Oner et al., 2013; Peterson et al., 2000) 

as compared to untagged AGS3.  Stable transfections were carried out with 
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Lipofectamine 2000 according to the manufacturer’s protocol.  Clones were 

isolated by selection with Zeocin (200 μg/ml) and characterized for specific AC 

function by cAMP accumulation assays, D2LDR expression by radioligand binding, 

and AGS3 expression by fluorescence microscopy. 

 

2.2.3 Cyclic AMP accumulation assay 

 Cells were grown to confluency in 48-well plates and cAMP assays were 

performed on ice in assay buffer (EBSS containing 15 mM Na+-HEPES, 2% BCS, 

and 0.02% ascorbic acid).  For acute cAMP accumulation experiments, cells 

were stimulated at 37°C for 15 minutes in the presence of 500 μM IBMX.  The 

stimulation buffer was decanted and cells were lysed with ice-cold 3% 

trichloroacetic acid.  The plate was stored at 4°C for at least 1 h before cAMP 

quantification.  For persistent receptor activation experiments, cells were grown 

to confluency in 48-well plates and pretreated in assay buffer with either vehicle 

or 1 μM (±)-quinpirole for 2 h at 37°C and 5% CO2.  Cells were washed with 

assay buffer three times (3 minutes each), and subsequently stimulated as 

described for acute cAMP accumulation assays.  For desensitization assays, 

pretreatments were carried out as described above, followed by re-activation of 

the receptor as described for acute cAMP accumulation experiments.  For 

heterologous sensitization experiments, subsequent stimulation was achieved by 

selective activation of AC isoforms (AC1, 10 μM A23187; AC2, 1 μM PMA) in the 
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presence of 500 μM IBMX and 1 μM spiperone to block residual agonist binding 

from the pretreatment. 

 

2.2.4 Cyclic AMP quantification 

 Cyclic AMP was quantified using a competitive binding assay (Przybyla 

and Watts, 2010).  Duplicate samples of lysate from the cAMP accumulation 

assay were added to reaction tubes, followed sequentially by [3H]-cAMP (~1 nM 

final concentration), and cAMP-binding protein (~100 μg of crude bovine adrenal 

extract) in 500 μL of cAMP binding buffer (100 mM Tris-HCl, 100 mM NaCl, 3 

mM EDTA, pH 7.4).  The assay was carried out at 4°C for 2 hr and harvested by 

filtration through Millipore FB 96-well filter plates, and radioactivity was quantified 

on a TopCount NXT scintillation counter (Perkin Elmer).  Cyclic AMP 

concentrations were estimated from a standard curve ranging from 300 pmol to 3 

nmol cAMP. 

 

2.2.5 Data analysis 

 GraphPad Prism software was used to generate all dose-response curves 

(GraphPad Software, San Diego, CA).  All logIC50/logEC50, and maximal 

activation/inhibition values were calculated in GraphPad Prism using a non-linear 

regression and sigmoidal dose-response equation and were analyzed by 

unpaired t-tests. 
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2.3 Results and discussion 

 AGS3 interacts with the GDP-bound state of Gαi subunits, and it has been 

suggested that this interaction prevents the re-association of Gαi and Gβγ 

subunits (De Vries et al., 2000; Peterson et al., 2000).  The interaction between 

AGS3 and Gαi-GDP may cause altered G protein signaling through effectors 

regulated by Gαi and Gβγ subunits.  AC isoforms display differential patterns of 

regulation by G protein subunits (Sunahara et al., 1996; Watts and Neve, 2005).  

Given that AGS3 may alter signaling by Gαi and/or Gβγ subunits, and AC 

isoforms are differentially regulated by G protein subunits, we were interested in 

studying the effects of AGS3 expression on the regulation of AC isoforms 

following acute and persistent activation of D2LDRs. 

 

2.3.1 Characterization of HEK293 stable cell lines 

 To study the effects of AGS3 on D2LDR-mediated signaling through AC 

isoforms, several HEK293 cell lines were generated and characterized (HEK-

AC1-D2L, HEK-AC1-D2L-AGS3-Venus, HEK-AC2-D2L, HEK-AC2-D2L-AGS3-

Venus, and HEK-AC2-D2L-AGS3-Q/A-Venus).  The function of the stably 

expressed AC isoforms was characterized by the cAMP responses to 

pharmacological conditions for the selective activation of either AC1 (10 μM 

A23187) or AC2 (1 μM PMA) (Figure 2.1A and B). 
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Figure 2.1 Selective activation of recombinant AC1 by the calcium ionophore, 
A23187 and recombinant AC2 by the phorbol ester, PMA.  A. Cell lines 
expressing recombinant AC1 or B. recombinant AC2 were incubated under the 
indicated conditions and cAMP accumulation was measured using a Cisbio 
homogenous time-resolved fluorescent (HTRF) cAMP assay kit according to the 
manufacturer’s protocol.  Data represent the mean ± S.E.M. of three 
experiments.  ** p < 0.01, compared to the basal condition within each cell line 
(one way ANOVA, followed by Dunnett’s post hoc test). 
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  As expected, treatment with the Ca2+ ionophore, A23187 significantly stimulated 

cAMP accumulation in cell lines expressing AC1, but had no effect in cell lines 

expressing AC2.  On the other hand, phorbol ester treatment selectively 

enhanced the cAMP activity in cells expressing AC2, but had no effect in cells 

expressing AC1.  These results suggest that the stable cell lines expressing AC1 

or AC2 can be selectively activated by A23187 or PMA, respectively.  The cell 

lines were further  

characterized for the expression levels of the D2LDR, as quantified by [3H]-

methylspiperone saturation binding (Table 2.1).  Each of the stable cell lines had 

similar Bmax and Kd values, suggesting that the D2LDR expression levels were 

similar.  AGS3-Venus expression was confirmed by fluorescence microscopy 

(Figure 2.2) and spectroscopy (Table 2.2).  Together, these data suggest that cell 

lines that were generated are suitable for studies of the effects of AGS3 

expression on D2LDR mediated signaling mediated by either AC1 or AC2. 
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Table 2.1  D2LDR expression levels in cellular models used for functional studies.  
[3H]-Methylspiperone saturation binding assays and analysis was performed (as 
described in Przybyla and Watts, 2010) to measure the D2LDR expression level 
in each cell line.  Data represent the mean ± S.E.M. of four independent 
experiments. 
 

Cell Line 
Bmax 

(pmol/mg 
protein) 

Kd 
(nM) 

HEK-AC1-D2L 2.5±0.10 0.10±0.02 
HEK-AC1-D2L-AGS3-Venus 4.0±0.27 0.11±0.02 
HEK-AC2-D2L 9.1±2.5 0.11±0.01 
HEK-AC2-D2L-AGS3-Venus 15±3.0 0.17±0.04 
HEK-AC2-D2L-AGS3-Q/A-Venus 8.9±2.1 0.10±0.01 
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Figure 2.2 AGS3-Venus expression by confocal microscopy.  Representative 
fields were imaged for cell lines expressing AGS3 fused to the Venus fluorescent 
protein at 20X magnification using a Nikon A1 confocal system when excited with 
the 488 nm laser and filtered for detection of Venus fluorescence (Emission: 
525/50). 

 

 



66 

Table 2.2 The Venus fluorescence intensity (Ex: 485/20 nm and Em: 530/30) of 
cell suspensions was measured in 384-well format using a Biotek Synergy 4 
plate reader.  The fluorescence intensity values of HEK-AC1-D2L and HEK-AC2-
D2L represent the background autofluorescence of the cells. 
 

Cell Line 
Fluorescence 

Intensity 
(RFU) 

HEK-AC1-D2L 1530±110 
HEK-AC1-D2L-AGS3-Venus 18900±2110 
HEK-AC2-D2L 1460±100 
HEK-AC2-D2L-AGS3-Venus 9400±2400 
HEK-AC2-D2L-AGS3-Q/A-Venus 33700±3270 
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2.3.2 Modulation of acute D2LDR-mediated AC1 and AC2 signaling by AGS3 

expression  

 Our initial studies used HEK293 cells stably expressing AC1 or AC2 and 

the D2LDR.  Recombinant AC1 can be selectively activated in HEK293 cells by 

Ca2+ using the calcium ionophore, A23187 or by capacitative calcium entry (Choi 

et al., 1992a; Cooper et al., 1994).  To observe acute Gαi regulation, AC1 activity 

was selectively increased using A23187, and inhibition by the D2DR agonist 

quinpirole was examined.  A23187-stimulated AC1 activity was inhibited by 54±2% 

with a logIC50 of -8.08±0.13 (Figure 2.3A).  In cells expressing AGS3, modest, 

but significant increases in maximal inhibition (67±4%) and potency (logIC50 = -

8.83±0.19) for D2LDR-mediated inhibition of AC1 activity by quinpirole were 

observed.  AC2 is conditionally stimulated (requiring co-activation of AC2 by Gαs 

or PKC) by Gβγ subunits following the activation of Gi/o-coupled receptors (Tsu 

and Wong, 1996; Yoshimura and Cooper, 1993; Zimmermann and Taussig, 

1996).  To study acute Gβγ subunit signaling, HEK293 cells stably expressing 

AC2 and the D2LDR were incubated with PMA to stimulate AC2, and quinpirole to 

activate the D2LDR (subsequently releasing Gβγ subunits).  Maximal activation of 

the D2LDR by quinpirole resulted in a robust increase in cAMP accumulation 

through conditional activation of AC2 (240±18% of PMA response) with a 

logEC50 of -7.05±0.06 (Figure 2.3B).  AGS3 co-expression did not affect the 

maximal activation of AC2 (250±20% of PMA response), but a significant shift in 

the potency (logEC50 = -7.45±0.06) of quinpirole-potentiated cAMP accumulation 
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was observed as compared to cells not expressing AGS3.  Though modest, the 

effects of AGS3 on D2LDR-mediated regulation of AC1 or AC2 are consistent with 

enhanced Gβγ subunit modulation of each effector.  Specifically, Gβγ subunits 

inhibit signaling mediated by AC1, but increase AC2 activity, and AGS3 

expression augments the potency of these effects, presumably by binding Gαi 

subunits.  The effects of AGS3 expression on acute D2LDR-mediated AC1 or 

AC2 activity are contrary to other cell-based studies examining the effects of 

AGS3 expression on acute G protein signaling.  For example, AGS3 did not alter 

α2-adrenergic receptor-inhibited AC activity in CHO cells (Sato et al., 2004).  

Perhaps more relevant to our D2DR-AC2 studies is the observation that AGS3 

failed to alter D2SDR-stimulated GIRK channel activity, a Gβγ mediated signaling 

event (Webb et al., 2005).  These findings suggest that AGS3 may display AC-

specific or even effector-specific regulation of acute G protein signaling. 
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Figure 2.3 Effect of AGS3 expression on acute regulation of AC isoforms.  A. 
Acute inhibition of A23187 (10 μM)-stimulated cAMP accumulation was 
measured following incubation with quinpirole as indicated in HEK293 cells stably 
expressing AC1 and the D2LDR, or AC1 and the D2LDR together with AGS3-
Venus.  B. Cyclic AMP accumulation was quantified in HEK293 cells stably 
expressing AC2 and the D2LDR with or without AGS3-Venus following acute 
treatment with PMA (1 μM) and increasing concentrations of quinpirole as 
indicated.  Data points represent mean ± S.E.M. of at least three independent 
experiments performed in duplicate. 
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2.3.3 Desensitization of D2LDR-mediated AC1 and AC2 signaling  

 In addition to studying AC regulation by acute activation of the D2LDR, we 

were also interested in studying desensitization of the D2LDR.  Cells stably 

expressing AC1 and the D2LDR were treated with quinpirole for 2 h in an effort to 

promote functional receptor desensitization.  Following washing, cells were re-

exposed to quinpirole and the subsequent cAMP accumulation was measured.  

Persistent D2LDR activation by quinpirole failed to induce significant 

desensitization of D2LDR modulation of AC1 activity.  Specifically, quinpirole 

treatment maximally inhibited A23187-stimulated AC1 activity by 56±9.1% with a 

logIC50 of -8.0±0.20 following persistent D2LDR activation, as compared to 

maximum inhibition of 59±1.8% and log IC50 of -8.5±0.20 after vehicle 

pretreatment (n=2).  We then examined the effects of AGS3 expression on 

D2LDR-modulated AC1 activity following persistent D2LDR stimulation.  These 

experiments revealed that AGS3-expressing cells pretreated with quinpirole 

displayed a desensitization of D2LDR-modulated AC1 inhibition that was 

manifested as a significant loss of maximal inhibition (60±6%) compared to 

vehicle pretreated cells (84±8%), but without a significant change in potency 

(logIC50 = -8.03±0.39 and -8.64±0.17, respectively) (Figure 2.4).  The AGS3-

promoted desensitization of AC1 inhibition may occur through interactions with 

Gαi subunits that are involved in the inhibition AC1 activity.  However, it has been 

suggested that Gαi-AGS3 complexes can couple with, and be regulated by Gαi-

coupled receptors upon agonist activation, allowing for the possibility of indirect 
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modulation of downstream Gβγ subunit signaling (Oner et al., 2010).  

Furthermore, an AGS3 consensus peptide disrupted Gβγ subunit activation of 

GIRK channels following repeated stimulation of D2SDRs (Webb et al., 2005).  

Given that Gβγ subunits inhibit AC1 activity (Taussig et al., 1993b), these data 

present the possibility that the desensitization of AC1 inhibition is also associated 

with altered Gβγ subunit signaling.  
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Figure 2.4 The effect of AGS3 expression on functional desensitization of D2LDR-
modulated AC1 activity.  HEK293 cells stably expressing AC1, the D2LDR, and 

AGS3-Venus were treated with quinpirole (1 μM) or vehicle for 2 hrs, followed by 
selective AC1 stimulation with A23187 (10 μM) and activation of the D2LDR with 

quinpirole.  Data represent the mean ± S.E.M. of three independent experiments. 
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  In contrast to AC1, a complete desensitization of D2LDR-mediated 

potentiation of AC2 activation was observed following quinpirole pretreatment in 

D2LDR-AC2 cells.  Specifically, quinpirole pretreatment resulted in 103±11% 

desensitization of D2LDR-mediated potentiation of AC2 activity as compared to 

vehicle pretreatment (Figure 2.5).  These observations suggest potential 

differences in the general mechanisms for desensitization of D2LDR-modulated 

AC1 and AC2 activity.  Such mechanisms presumably reflect the differential 

regulatory properties of AC1 and AC2 that involve G protein modulation 

(Hanoune and Defer, 2001).  Subsequent experiments examined the effects of 

AGS3 on desensitization of D2LDR-potentiated AC2 activity.  Surprisingly, 

expression of AGS3 resulted in significantly less desensitization (46±7%) of 

D2LDR-mediated potentiation of AC2 activity (Figure 2.5).  The specificity of this 

blockade was probed by expressing an AGS3 mutant that does not bind Gαi 

subunits, AGS3-Q/A (Peterson et al., 2002).  AGS3-Q/A failed to significantly 

alter quinpirole-induced desensitization of D2LDR-AC2 signaling (78±3%), 

suggesting that AGS3 expression inhibits desensitization of D2LDR signaling 

through AC2 in a manner that is dependent on the interaction of AGS3 with Gαi. 
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Figure 2.5 The effect of AGS3 expression on functional desensitization of D2LDR-
modulated AC2 activity.  HEK293 cells stably expressing AC2 and the D2LDR 
alone, or together with AGS3-Venus or AGS3-Q/A-Venus were treated with 
quinpirole (1 μM) or vehicle for 2 hrs, followed by stimulation with PMA (1 μM) 
and quinpirole (1 μM).  Data represent the mean ± S.E.M. of at least three 
independent experiments.  ** p < 0.01, compared with AC2+D2L condition, one 
way analysis of variance followed by Dunnett’s post hoc test. 
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2.3.4 Effects of AGS3 expression on heterologous sensitization of AC1 and AC2 

 In addition to desensitization, persistent activation of many Gi/o-coupled 

receptors (e.g., D2 dopamine and μ-opioid) results in enhanced subsequent AC 

activation.  This heterologous sensitization (a.k.a. superactivation) of cAMP 

signaling involves both Gαi/o and Gβγ subunits (Watts and Neve, 2005), but the 

mechanisms of sensitization for AC1 and AC2 appear to differ (Cumbay and 

Watts, 2001).  The functional effects of AGS3 expression on AC sensitization 

following persistent activation of the D2LDR were examined.  For these 

experiments, cells expressing AC1 and the D2LDR were stimulated with the D2DR 

agonist quinpirole for 2 h, followed by selective activation of AC1 by A23187.  

Quinpirole pretreatment resulted in a 235±4% enhancement of A23187-

stimulated AC1 activity compared to the vehicle pretreatment (Figure 2.6A).  

Cells co-expressing AGS3 displayed a reduction in subsequent AC1 stimulation 

(178±12% of vehicle condition) following quinpirole pretreatment, suggesting that 

AGS3 expression attenuates AC1 sensitization by ~40%.   

 The effects of AGS3 expression on the regulation of AC2 following 

persistent D2LDR activation were also explored.  AC2 displayed an enhanced 

responsiveness (182±9% of vehicle condition) to stimulation by PMA following 

quinpirole pretreatment (Figure 2.6B).  The D2LDR-mediated sensitization of AC2 

was nearly eliminated (120±3% of vehicle condition) in AGS3-expressing cells.  

In contrast, AGS3-Q/A did not alter D2LDR-mediated sensitization of AC2 

(202±10% of vehicle response), suggesting that AGS3-Gαi subunit interactions 
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are involved in the inhibition of AC2 sensitization.  The ability of AGS3 

expression to prevent heterologous sensitization of AC1 and AC2 is similar to 

that observed by expressing the Gβγ subunit scavenger, βARK-CT ((Koch et al., 

1994; Nguyen and Watts, 2005) and see chapter 3 for AC2).  These data add 

support to the hypothesis that AGS3 potentially alters Gβγ subunit signaling 

following persistent Gi-coupled receptor activation (Oner et al., 2010; Webb et al., 

2005). 
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Figure 2.6 Effect of AGS3 expression on heterologous sensitization of AC 
isoforms.  A. HEK293 cells stably expressing AC1 and D2LDR were stimulated 
with vehicle or quinpirole (1 μM) for 2 hr, washed, and subsequently stimulated 
with A23187 (10 μM) as indicated.  Data represent mean ± S.E.M. of three 
independent experiments.  * p < 0.05, unpaired t-test.  B. HEK293 cells stably 
expressing AC2 and D2LDR in the absence of, or coexpressed with AGS3-Venus 
or AGS3-Q/A-Venus as indicated were pretreated with vehicle or quinpirole (1 
μM) for 2 hr, washed, and subsequently stimulated with PMA (1 μM).  Data 
represent mean ± S.E.M. of at least three independent experiments.  ** p < 0.01, 
one way analysis of variance followed by Dunnett’s post hoc test. 
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 The inhibition of D2LDR-mediated sensitization of AC1 and AC2 by AGS3 

expression is consistent with a report revealing that AGS3 inhibits α2-adrenergic 

receptor-mediated sensitization of AC isoforms expressed in CHO cells 

(predominantly expressing AC6) (Sato et al., 2004; Varga et al., 1998).  In 

contrast, evidence suggests that opioid receptor-induced up-regulation of AGS3 

expression mediates sensitization of AC5 and AC7 in nucleus accumbens/striatal 

neurons (Fan et al., 2009).  These differential effects suggest an isoform-

dependence for sensitization that may reflect complex and unique isoform-

specific mechanisms of AC sensitization involving Gαi, Gβγ, or a combination of 

the two, and subsequently altered downstream signaling.  Alternatively, the 

isoform-specific effects on AC signaling may reflect differences in receptor types, 

cell types, or experimental paradigms.  The differential effects of AGS3 on AC 

sensitization, desensitization, and acute D2LDR-mediated signaling are similar to 

what has been observed for ligands that possess functional selectivity (or 

promote agonist-directed trafficking) (Kenakin, 1995).  Such an observation 

posits that receptor- and effector-modulating signaling molecules introduce an 

additional level of complexity for cell signaling studies.  For example, AGS3 

differentially alters desensitization of D2LDR-mediated modulation of AC1 and 

AC2, while reducing sensitization of both AC isoforms. These complex 

mechanisms for regulation by AGS3 in vitro suggest the opportunity for greater 

signaling diversity in vivo.  
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2.3.5 Significance of AGS3-regulated AC signaling to drugs of abuse  

 In vivo studies suggest that AGS3 has a “gatekeeper” role for drug-

seeking behavior in response to heroin, cocaine, or ethanol.  For example, 

knocking out AGS3 expression in specific brain regions resulted in a loss of drug-

seeking behavior or cocaine-induced locomotor sensitization (Bowers et al., 2008; 

Bowers et al., 2004; Yao et al., 2005).  Interestingly, AGS3 expression is up-

regulated in the nucleus accumbens core or prefrontal cortex during withdrawal 

periods following prolonged ethanol or cocaine self-administration, respectively 

(Bowers et al., 2008; Bowers et al., 2004).  In conjunction with overwhelming 

evidence that dopamine systems and cAMP signaling pathways are involved in 

drug addiction (Carlezon et al., 2005; McClung and Nestler, 2003; Nestler, 2001), 

our data suggest that AGS3 overexpression during periods of withdrawal may 

change the profile of signaling through specific AC isoforms in response to 

persistent Gi/o-coupled receptor activation.  In addition, recent studies with AC 

knockout mice suggest a role for Ca2+-stimulated ACs (AC1 and AC8) in the 

regulation of cocaine behavioral sensitization (DiRocco et al., 2009).  It will be 

important to study the role of individual AC isoforms in specific brain regions in 

the context of drug-seeking behavior, where AGS3 may be exerting its effects by 

fine-tuning D2LDR-mediated signaling through distinct AC isoforms.    

 Taken as a whole, our data suggest that AGS3 expression alters D2LDR-

mediated regulation of effector proteins in a manner that is effector-specific and 

dependent on the duration of Gi-coupled receptor activation.  The expression of 
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AGS3 has modest, but potency-enhancing effects on effector modulation in 

response to acute Gi-coupled receptor stimulation.  Expression of AGS3 

promoted desensitization of prolonged D2LDR-mediated signaling through AC1, 

but reduced desensitization of AC2 signaling.  In addition, D2LDR-mediated 

sensitization of AC1 and AC2 signaling was attenuated by AGS3 expression.  It 

is becoming apparent that AGS3 is involved in altering G protein signaling in a 

complex fashion that is effector-specific
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CHAPTER 3. HETEROLOGOUS SENSITIZATION OF ADENYLYL CYCLASE 2 
IS DEPENDENT ON G PROTEIN BETA-GAMMA SUBUNIT SIGNALING 

3.1 Introduction 

 AC sensitization was first reported in 1975 in the lab of Marshall Nirenberg, 

but an understanding of the mechanisms of AC sensitization remains elusive 

(Watts and Neve, 2005).  However, the signaling pathways underlying AC 

sensitization appear to be overlapping, but distinct for each isoform (Watts and 

Neve, 2005).  The present study focuses on sensitization of adenylyl cyclase 

type 2 (AC2), as AC2 is expressed in brain regions co-expressing D2DRs and 

can be selectively activated in HEK293 cells (Cumbay and Watts, 2001; Visel et 

al., 2006; Weiner et al., 1991).  AC2 is activated by Gαs and protein kinase C 

(PKC) phosphorylation in response to phorbol ester stimulation (e.g. PMA ) and 

Gq-coupled receptor activation (Shen et al., 2012; Yoshimura and Cooper, 1993; 

Zimmermann and Taussig, 1996).  Furthermore, AC2 is also conditionally 

activated by Gβγ subunits in response to Gi/o-coupled receptor signaling 

(Federman et al., 1992; Taussig et al., 1993b).  In response to persistent D2LDR 

activation, AC2 is readily sensitized, but appears to have a unique mechanism of 

sensitization.   Specifically, AC2 enzymatic activity is enhanced in response to 

 

 



82 

PKC-mediated activation, but not Gαs- or forskolin-mediated stimulation 

(Cumbay and Watts, 2001).  The mechanism of AC2 sensitization, however, has 

been largely unexplored.   An understanding of the molecular adaptations that 

underlie D2 dopamine receptor-mediated sensitization of AC2 signaling would 

provide insight into the diverse modulation of cAMP signaling through AC 

isoforms and contribute to our understanding of the pathophysiology and 

potential therapeutic targeting of neurological disorders including drug abuse.   

 Gβγ subunit signaling is necessary for sensitization of AC isoforms 

including AC1 (Nguyen and Watts, 2005), AC5 (AvidorReiss et al., 1996), and 

AC6 (Thomas and Hoffman, 1996), but has been unexplored for D2LDR-mediated 

sensitization of AC2.  We have demonstrated that D2LDR-mediated sensitization 

of AC2 is inhibited by expression of AGS3 and it is hypothesized that AGS3 

expression may lead to disrupted Gβγ signaling in response to persistent Gi/o-

coupled receptor activation (Chapter 2).  Thus, it is possible that sensitization of 

AC2 in response to long-term D2LDR activation proceeds via Gβγ subunit 

signaling.  We directly examined the role of Gβγ subunits in the development of 

D2LDR-mediated sensitization of AC2 with a Gβγ subunit sequestering protein, 

two small molecule Gβγ signaling inhibitors, and a cell permeable peptide 

inhibitor of Gβγ.  We also pharmacologically investigated the roles of several 

downstream Gβγ subunit effectors in the development of AC2 sensitization. 
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3.2 Materials and Methods 

3.2.1 Materials 

 [3H]-cAMP (33 Ci/mmol) was purchased from PerkinElmer Life and 

Analytical Sciences (Boston, MA).  Spiperone, (±)-quinpirole, 3-isobutyl-1-

methylxanthine (IBMX), G418, Dulbecco’s modified Eagle’s medium (DMEM), 

and trichloroacetic acid were purchased from Sigma-Aldrich (St. Louis, MO).  

Phorbol 12-myristate 13-acetate (PMA) was purchased from Tocris Bioscience 

(Ellisville, MO).  Lipofectamine 2000, antibiotic-antimycotic solution, and Zeocin 

were purchased from Invitrogen (Carlsbad, CA).  FetalClone I (FCI) serum, 

bovine calf serum (BCS), Hank’s balanced salt solution (HBSS), and Earle’s 

balanced salt solution (EBSS) were purchased from Hyclone (Logan, UT). 

 

3.2.2 Cell culture and transfection 

 HEK293 cells were grown in DMEM supplemented with 5% FCI, 5% BCS, 

and 1% antibiotic-antimycotic solution and maintained in a humidified incubator 

at 37°C and 5% CO2.  For transient transfections, HEK293 cells were seeded 

into 96-well plates and allowed to grow to 70% confluency.  Transient 

transfection was carried out for 48 h with Lipofectamine 2000 according to the 

manufacturer’s protocol.  The generation, characterization, and maintenance of 

HEK293 cells stably expressing AC2 and the D2LDR was described in chapter 2. 
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3.2.3 Cyclic AMP accumulation assay 

 Cells were grown to confluency in either 48-well or 96-well plates and 

cAMP assays were performed on ice in assay buffer (EBSS containing 15 mM 

Na+-HEPES, 2% BCS, and 0.02% ascorbic acid).  For acute cAMP accumulation 

experiments, cells were stimulated at 37°C for 15 minutes in the presence of 500 

μM IBMX.  The stimulation buffer was decanted and cells were lysed with ice-

cold 3% trichloroacetic acid.  The plate was stored at 4°C for at least 1 h before 

cAMP quantification.  For persistent receptor activation experiments, cells were 

grown to confluency in 48-well plates and pretreated in assay buffer with either 

vehicle or 1 μM (±)-quinpirole for 2 h at 37°C and 5% CO2.  Cells were washed 

with assay buffer three times (3 minutes each), and subsequent stimulation was 

achieved by selective activation of AC2 (1 μM PMA) in the presence of 500 μM 

IBMX and 1 μM spiperone to block residual agonist binding from the pretreatment.   

 Heterologous sensitization experiments with pharmacological inhibitors 

were carried out in HEK293 cells stably expressing AC2 and the D2LDR.  Cells 

were seeded into 96-well plates and grown to confluency.  Cell growth media 

was decanted and cells were pretreated with pharmacological inhibitors in Hank’s 

balanced salt solution (HBSS), 20 mM HEPES, and 0.1% fatty acid free bovine 

serum albumin for 15 min at 37°C and 5% CO2.  Cells with pharmacological 

inhibitors were then pretreated for an additional 2 h with either vehicle or 100 nM 

(±)-quinpirole.  Subsequent AC2 activation was carried out by stimulating the 

cells with 1 μM PMA in the presence of 500 μM IBMX and 1 μM spiperone at 
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37°C and 5% CO2 for 15 min.  The cells were lysed with 3% trichloroacetic acid 

and stored at 4°C for at least 1 h before cAMP quantification. 

 

3.2.4 Cyclic AMP quantification 

 Cyclic AMP was quantified using a competitive binding assay (Przybyla 

and Watts, 2010).  Duplicate samples of lysate from the cAMP accumulation 

assay were added to reaction tubes, followed sequentially by [3H]-cAMP (~1 nM 

final concentration), and cAMP-binding protein (~100 μg of crude bovine adrenal 

extract) in 500 μL of cAMP binding buffer (100 mM Tris-HCl, 100 mM NaCl, 3 

mM EDTA, pH 7.4).  The assay was carried out at 4°C for 2 h and harvested by 

filtration through Millipore FB 96-well filter plates, and radioactivity was quantified 

on a TopCount NXT scintillation counter (Perkin Elmer).  Cyclic AMP 

concentrations were estimated from a standard curve ranging from 300 pmol to 3 

nmol cAMP. 

 

 

3.3 Results 

 Our initial sensitization experiments employed HEK293 cells that were 

transiently transfected with AC2 and the D2LDR.  Consistent with significant AC2 

expression and function, HEK293 cells co-expressing AC2 and the D2LDR 

displayed a robust increase in cAMP accumulation in response to PMA activation 

of PKC (2.75±0.48 pmol/well, n = 3) as compared to cells transfected with empty 
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vector (0.60±0.06 pmol/well, n = 3).  To observe D2LDR-mediated sensitization of 

AC2, cells were pretreated for 2 h with the D2LDR agonist quinpirole, and 

subsequently stimulated with PMA to activate AC2.  The quinpirole-pretreated 

cells co-expressing AC2 and the D2LDR displayed PMA-stimulated cAMP 

accumulation that was 251±34% of the vehicle pretreatment condition, whereas 

the empty vector transfected cells provided a response that was similar to that of 

vehicle-treated cells (Figure 3.1).  These observations are consistent with our 

previous studies using cells stably expressing AC2, where persistent D2LDR 

activation resulted in a sensitized response to AC2 activation via PKC as 

measured by the enhancement of cAMP accumulation over that of the vehicle 

pretreatment condition (Chapter 2 and (Cumbay and Watts, 2001)).  Studies 

have suggested an important role for Gi/o protein subunits in the development of 

AC sensitization (Watts and Neve, 2005).  The regulatory properties of AC2 offer 

a unique system to dissociate the functional roles of Gαi/o and Gβγ subunits in 

AC sensitization.  Specifically, AC2 is thought to be insensitive to functional 

regulation by Gαi subunits (Tang and Gilman, 1991; Taussig et al., 1994), 

thereby allowing the specific observation of Gβγ subunit-modulated AC2 activity.  

To directly study the role of Gβγ subunits in AC2 sensitization, the membrane-

localized Gβγ subunit-sequestering protein βARKct-CD8 was co-expressed with 

AC2 and the D2LDR in HEK293 cells.  Expression of βARKct-CD8 resulted in a 

blockade of D2LDR-mediated sensitization of AC2 (124±13% of vehicle response), 

suggesting a role for Gβγ subunits in sensitization of AC2 (Figure 3.1). 
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Figure 3.1 Effect of the Gβγ subunit sequestering protein on heterologous 
sensitization of AC2.  HEK293 cells were transiently transfected with AC2, the 
D2LDR, and either empty vector or βARKct-CD8.  Cells were pretreated with 
quinpirole or vehicle for 2 h and subsequently stimulated with 1 μM PMA.  Data 
are expressed as a percentage of the vehicle condition for each transfection and 
are the mean ± S.E.M. of three independent experiments.  The raw cAMP values 
for each condition are as follows: AC2+D2L vehicle pretreatment condition = 2.75 
± 0.48 pmol/well; AC2 + D2L quinpirole pretreatment condition = 6.97 ± 1.55 
pmol/well; AC2 + D2L + βARKct-CD8 vehicle pretreatment condition  = 2.73 ± 
0.78 pmol/well; AC2 + D2L + βARKct-CD8 quinpirole pretreatment condition  = 
3.31 ± 0.89 pmol/well. 
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 The observation that βARKct-CD8 prevented heterologous sensitization 

suggests that the role of Gβγ subunits in AC2 sensitization could be either direct 

or indirect.  In an effort to explore the direct pathway, we tested two small 

molecule Gβγ signaling inhibitors for their ability to modulate sensitization of AC2.  

HEK293 cells stably expressing AC2 and the D2LDR (HEK-AC2/D2L cells) were 

pretreated with increasing concentrations of the agonist quinpirole, followed by 

subsequent AC2 activation by PMA treatment.  As expected, quinpirole 

pretreatment resulted in a concentration-dependent enhanced responsiveness of 

AC2 to activation by PMA (Figure 3.2A).  Initial studies with the small molecule 

inhibitors, M119 and gallein, revealed that the quinpirole-induced enhanced 

response to PMA was not altered by the small molecule Gβγ signaling inhibitors.  

The lack of efficacy of M119 and gallein may represent the reported specificity for 

inhibition of specific Gβγ-effector interfaces (Bonacci et al., 2006). Thus, we 

examined the ability of M119 and gallein to block conditional acute activation of 

AC2 by Gβγ subunits (Federman et al., 1992; Taussig et al., 1993b).  For these 

studies HEK-AC2/D2L cells were treated with PMA (to activate AC2) in the 

presence of quinpirole to activate the D2LDR (allowing for activation of Gαi and 

release of Gβγ subunits) for Gβγ-dependent potentiation of AC2 activity.  The 

results of these studies revealed that the Gβγ signaling inhibitors, M119 and 

gallein, had no effect on either PMA-stimulated or Gβγ-dependent potentiation of 

AC2 (Figure 3.2B).   
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Figure 3.2 The effect of Gβγ signaling inhibitors on D2LDR-mediated AC2 
signaling.  A. The effect of M119 and gallein (10 μM) on quinpirole-induced 
sensitization was measured in HEK-AC2/D2L cells.  Cells were pretreated with 
increasing concentrations of quinpirole for 2 h in the presence of vehicle, M119, 
or gallein and subsequently stimulated with 1 μM PMA.  Data are representative 
of two independent experiments.  B. The effect of M119 and gallein (10 μM) on 
acute quinpirole-induced potentiation of PMA-stimulated AC2 activity was 
measured in HEK-AC2/D2L cells.  Data are the mean ± S.E.M. of three 
independent experiments. 

 

 



90 

 In an effort to rapidly assess the activity of several small molecules for 

modulation of D2LDR-induced sensitization of AC2, we developed a 96 well 

sensitization assay (with reduced wash and decant steps) for increased 

throughput (Conley et al., in press).  The higher throughput sensitization assay 

provided the ability to efficiently investigate multiple pharmacological modulators 

simultaneously.  The observation that βARKct-CD8 expression inhibits D2LDR-

induced sensitization of AC2 and lack of effect by M119 and gallein suggest the 

hypothesis that AC2 sensitization is mediated by Gβγ subunits, in an indirect 

fashion, by a downstream effector of Gβγ subunits.  Furthermore, previous 

sensitization studies with other adenylyl cyclases have provided evidence that a 

number of kinases may also be involved in the development and expression of 

sensitization of adenylyl cyclase (Chakrabarti et al., 1998; Johnston et al., 2002).   

Thus, several ligands including a peptide Gβγ signaling inhibitor, small molecule 

inhibitors of Gβγ effectors, and several additional kinase inhibitors were tested for 

the ability to inhibit quinpirole-induced sensitization of AC2 in HEK-AC2/D2L cells.  

Specifically, HEK-AC2/D2L cells were pretreated with inhibitors in the presence of 

either vehicle or quinpirole, and subsequently stimulated with PMA to promote 

PKC activation of AC2.  The results of these studies are depicted as a 

percentage of sensitization (i.e., quinpirole induced sensitization = 100%).  

Consistent with the effects of βARKct-CD8, the cell-permeable Gβγ subunit 

sequestering peptide, QEHA-TAT significantly inhibited sensitization in the HEK-

AC2/D2L cells, whereas the small molecule Gβγ subunit inhibitor, gallein, had no 

effect (negative control) (Table 3.1).  The next set of compounds included 
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reported pharmacological kinase inhibitors that target Gβγ effectors that include 

c-JNK, Raf-1, PI3K, or MEK.  Much to our disappointment, there was no 

significant difference observed in the D2LDR-mediated sensitization of AC2 in the 

presence of the Gβγ-modulated kinase inhibitors (Table 3.1).  Additional kinases, 

including those that have been identified as being involved in sensitization of AC 

isoforms (i.e., PKC and PKA) were also examined in the same manner 

(Chakrabarti et al., 1998; Johnston et al., 2002).  As expected, the PKC inhibitor 

bisindolylmaleimide I (BisI) blocked sensitization of AC2 (3.0±1.7% sensitization).  

Inhibitors of PKA (H89) and PI3K/PI4K (phenylarsine oxide, PAO) significantly 

reduced the level of D2LDR-mediated sensitization of AC2 (29±12% and 29±5% 

sensitization, respectively), suggesting roles for these kinases in sensitization of 

AC2. 
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Table 3.1 Effects of pharmacological inhibitors on D2LDR-mediated sensitization 
of AC2.  Data are expressed as a percent sensitization with the quinpirole-
induced sensitization = 100%.  Data are the mean ± S.E.M. of five independent 
experiments. 
 

Compound Target Mean±S.E.M. 
Control  100 

10 μM Gallein Gβγ 110±24 
30 µM QEHA-TAT Gβγ 62±8.2* 
10 μM SP600125 c-JNK 130±13 
30 μM GW5074 Raf-1 99±12 

300 nM Wortmannin PI3K 95±10 
30 μM PD98059 MEK 90±6.2 

10 μM H89 PKA 29±12 *** 
10 μM PAO PI3K/PI4K 29±5.5 *** 
1 μM BisI PKC 3.0±1.7 *** 
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3.4 Discussion 

 G protein subunits are known to be important components of the signaling 

pathways that contribute to the development of heterologous sensitization of 

multiple isoforms of adenylyl cyclase (Watts and Neve, 2005).  Studies with 

pertussis toxin and pertussis-toxin insensitve Gαi/o subunits have indicated 

essential roles for Gαi/o subunit activation in AC sensitization (Watts and Neve, 

1996; Watts et al., 1998), but mounting evidence also suggests that Gβγ subunits 

play an important part in the development of AC sensitization (AvidorReiss et al., 

1996; Nguyen and Watts, 2005; Rhee et al., 2000; Rubenzik et al., 2001).  As 

most ACs are differentially regulated by Gαi/o and Gβγ subunits, the precise 

roles of these subunits in sensitization of cAMP signaling have been difficult to 

examine (Hanoune and Defer, 2001; Patel et al., 2001).  Nevertheless, AC2 

shows only conditional activation by Gβγ subunits and is not directly regulated by 

Gαi/o subunits (Tang and Gilman, 1991; Taussig et al., 1994).  These unique 

regulatory properties of AC2 allow for the selective study of Gβγ subunit signaling 

in sensitization of PKC-stimulated AC2 activity.  The present data suggest that 

similar to other AC isoforms, Gβγ subunits are necessary for the sensitization of 

AC2.  Specifically, the membrane-localized Gβγ subunit sequestering protein 

βARKct-CD8 attenuated D2LDR-mediated sensitization of AC2.  Sensitization of 

AC2 was also reduced using a cell-permeable peptide inhibitor of Gβγ signaling, 

QEHA-TAT.  The peptide sequence corresponds to a Gβγ subunit-binding 

sequence derived from the C2 domain of AC2 and is known inhibit Gβγ subunit 

 

 



94 

signaling (Chen et al., 1995a).  Our data are in agreement with our previous 

study, where AGS3 blocked D2LDR-mediated sensitization of AC2 (Chapter 2).  

AGS3 is hypothesized to disrupt Gβγ subunit signaling in response to long-term 

or repeated Gi-coupled receptor signaling.  These findings, along with the unique 

properties of AC2 suggest that D2LDR activation leads to a Gβγ-dependent event 

that selectively enhances PKC-mediated activation of AC2. 

 Two small molecule Gβγ subunit signaling inhibitors, M119 and gallein 

were also studied for their effects on D2LDR-mediated sensitization of AC2.  

Surprisingly, neither small molecule (up to 10 μM) altered sensitization of AC2 or 

D2LDR-potentiated AC2 activity (a Gβγ subunit-mediated effect).  The lack of 

activity of these compounds was discouraging, but may be explained by the 

effector specificity profiles displayed by the small molecule inhibitors (Bonacci et 

al., 2006).  The small molecule inhibitors selectively bind to a common region of 

Gβγ, known as the “Gβγ hot spot”, that interacts with Gα subunits and many Gβγ 

effector proteins (Ford et al., 1998; Hamm, 1998; Li et al., 1998; Lin and Smrcka, 

2011).  It is thought that different residues or regions within the hot spot are 

important for binding different effectors (Ford et al., 1998; Li et al., 1998).  It is 

possible that M119 and gallein do not interact with the region of Gβγ that 

mediates acute potentiation of AC2 signaling.  

 Several studies have contributed evidence that suggests AC2 has multiple 

Gβγ subunit binding sites (Boran et al., 2011; Diel et al., 2008; Diel et al., 2006; 

Weitmann et al., 2001).  Specifically, at least five distinct sites have been 

identified within C1a, C1b, and C2 regions of AC2 for their interaction with Gβγ 
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subunits (see Figure 1.6) (Boran et al., 2011; Diel et al., 2008; Diel et al., 2006; 

Weitmann et al., 2001).  It is therefore possible that persistent activation of the 

D2LDR releases Gβγ subunits that directly interact with AC2, allowing a 

conformation that provides an enhanced response to activation by PKC. The 

identification of multiple Gβγ binding sites makes it tempting to speculate that the 

Gβγ sites for sensitization of AC2 may be unique from those involved with 

conditional activation.  

 Gβγ subunits regulate a multitude of downstream effectors (Khan et al., 

2013; Smrcka, 2008).  Therefore, it is possible that Gβγ subunit signaling 

indirectly leads to sensitization of AC2 via modulation of downstream Gβγ 

effectors.  We addressed this possibility by examining the ability of 

pharmacological inhibitors of Gβγ subunit effectors to modulate D2LDR-mediated 

sensitization of AC2 in HEK-AC2/D2L cells.  The concentrations of 

pharmacological inhibitors tested had no significant effect on D2LDR-mediated 

AC2 sensitization.  However, upon treatment of HEK-AC2/D2L cells with H89 or 

PAO, significant inhibition of AC2 sensitization was observed, suggesting roles 

for PKA and PI4K.  Interestingly, subsequent studies with PAO revealed a 

biphasic potentiation of acute AC2 stimulation in response to PMA treatment 

(data not shown) and no effect of additional PI4K inhibitors (LY294002 and Pik93, 

John Paul Spence and Val J. Watts, unpublished results).  These results suggest 

PAO modulation of D2LDR-mediated sensitization of AC2 is complex and perhaps 

independent of its effects on PI4K.  In summary, our data suggest that PKA and 

 

 



96 

PKC mediate sensitization of AC2 in response to persistent D2LDR activation by 

quinpirole. 

 The present study leveraged the unique regulatory properties of AC2 (i.e., 

lack of direct modulation by Gαi/o subunits and selective sensitization to PKC 

activation) to demonstrate that Gβγ subunits are required for AC sensitization.  

However, the mechanism underlying the enhancement of PKC-stimulated AC2 

remains unknown.  Ongoing efforts to identify signaling components that mediate 

AC sensitization include the development of higher throughput cell-based cAMP 

detection methodology to facilitate unbiased approaches such as siRNA library 

screening and small molecule screening (e.g., known kinase inhibitor sets).  

These approaches are expected to expand the repertoire of signaling molecules 

implicated in sensitization.
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CHAPTER 4. DEVELOPMENT OF A HIGH-THROUGHPUT SCREENING 
PARADIGM FOR THE DISCOVERY OF SMALL MOLECULE 

MODULATORS OF ADENYLYL CYCLASE: IDENTIFICATION OF AN 
ADENYLYL CYCLASE 2 INHIBITOR 

4.1 Introduction 

 Cyclic AMP (cAMP) is a crucial component of signal transduction 

cascades that modulates diverse fundamental biological processes (Hanoune 

and Defer, 2001).  The cellular levels of cAMP are dynamically modulated by two 

families of enzymes.  Specifically, adenylyl cyclases (ACs) synthesize cAMP 

from ATP (Hanoune and Defer, 2001) and phosphodiesterase enzymes degrade 

cAMP (Bender and Beavo, 2006).  The specificity of cAMP signaling is influenced 

by the interplay of signaling molecules that are expressed within a given cell.  For 

example, nine membrane-bound mammalian AC isoforms have been identified 

that have unique profiles of regulation by G protein subunits, protein kinases, and 

Ca2+ (Hanoune and Defer, 2001; Patel et al., 2001).  Specifically, the AC 

isoforms are commonly activated by the stimulatory G protein (Gs), but are 

categorized into four subgroups based on their sequence similarities and 

regulatory properties (Hanoune and Defer, 2001; Patel et al., 2001).  The group I 

ACs (AC1, AC3, and AC8) are stimulated by Ca2+/calmodulin.  In contrast, group
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 II ACs (AC2, AC4, and AC7) are insensitive to Ca2+, but conditionally activated 

by G protein Gβγ subunits.  The group III ACs (AC5 and AC6) are inhibited by 

free Ca2+, Gαi/o subunits, and phosphorylation by protein kinase A.  AC9, the 

lone member of group IV is distinguished by its relative insensitivity to stimulation 

by forskolin.  

 Insight from knockout and transgenic mouse studies suggest that 

individual AC isoforms contribute to important physiological processes and 

diseases (Sadana and Dessauer, 2009), suggesting that selective AC 

modulators have therapeutic utility for the treatment of conditions involving 

cardiac function, aging, and pain.  As such, the AC5/AC6 inhibitors PMC-6 and 

AraAde have shown efficacy in preventing cardiomyocyte apoptosis (Iwatsubo et 

al., 2004) and a mouse model of heart failure, respectively (Iwatsubo et al., 2012).  

Also, a small molecule AC1 inhibitor, NB001, has been reported to have 

analgesic effects in animal models of neuropathic and inflammatory pain 

(Vadakkan et al., 2006; Wang et al., 2011).  However, a dearth of isoform-

selective small molecule AC modulators has limited the study of AC isoforms as 

therapeutic targets (Pierre et al., 2009; Seifert et al., 2012).  For example, AC2 is 

potentially involved in skeletal muscle physiology, lung diseases, neuroendocrine 

tumors (NETs), and colorectal cancer (Berdeaux and Stewart, 2012; Drozdov et 

al., 2011; Duerr et al., 2008; Yu et al., 2011).  Yet, the pharmacological study of 

AC2 is difficult because most small molecule AC inhibitors preferentially inhibit 

other AC isoforms (Pierre et al., 2009; Seifert et al., 2012).  BODIPY-forskolin 

appears to be the most potent AC2 inhibitor, but its use as a chemical probe for 
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AC2 activity is hindered because it also partially activates AC1 and AC5 (Erdorf 

et al., 2011; Pinto et al., 2008).  Given the shortcomings of small molecule AC 

modulators and the absence of published reports of AC2 knockout animals, the 

identification of selective AC2 modulators is expected to provide useful chemical 

probes to facilitate the study of AC2.   

 The present report describes the development and execution of a cell-

based screening approach for the discovery of novel small molecule inhibitors of 

AC2.  We screened the NIH clinical collections I and II (727 compounds) for 

small molecules that inhibit cAMP accumulation in response to selective 

activation of AC2.  Compounds identified as active were examined in a series of 

confirmation assays to validate direct AC2 inhibition and define their AC isoform-

selectivity profiles.  Our studies have resulted in the identification of SKF-83566 

as a selective AC2 inhibitor that is expected to be a promising tool to investigate 

the physiological roles of AC2. 

 

 

4.2 Materials and methods 

4.2.1 Materials 

 The NIH clinical collections I and II were purchased from Evotec, Inc 

(South San Francisco, CA).  Oxymetholone, tranilast, amlexanox, duloxetine, and 

indatraline were purchased from Sequoia Research Products (Pangbourne, 

United Kingdom).  [3H]-cAMP was purchased from PerkinElmer Life and 
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Analytical Sciences (Boston, MA).  A23187, 3-isobutyl-1-methylxanthine (IBMX), 

loratadine, prochlorperazine, maprotiline, thioridazine, G418, Dulbecco’s 

modified Eagle’s medium (DMEM), and trichloroacetic acid (TCA) were 

purchased from Sigma-Aldrich (St. Louis, MO).  Phorbol 12-myristate 13-acetate 

(PMA), forskolin, MDL-12,330A HCl, prostaglandin E2 (PGE2), SQ22,536, and 

(±)-SKF-83566 HBr were purchased from Tocris Bioscience (Ellisville, MO).  2’5’-

dideoxyadenosine was purchased from Santa Cruz Biotechnology (Dallas, TX).  

Lipofectamine 2000, opti-MEM, and antibiotic-antimycotic 100x solution were 

purchased from Life technologies (Grand Island, NY).  FetalClone I serum, 

bovine calf serum, HEPES, and Hank’s balanced salt solution (HBSS) were 

purchased from Hyclone (Logan, UT).  BisindoloylmaleimideI (BisI) was 

purchased from Calbiochem (La Jolla, CA).  The HTRF cAMP and Cellul’ERK 

kits were purchased from Cisbio Bioassays (Bedford, MA). 

 

4.2.2 Stable cell line generation and cell culture conditions 

 HEK293 cells were cultured in DMEM supplemented with 5% bovine calf 

serum, 5% fetal clone I, and 1% antibiotic-antimycotic 100x solution and 

maintained in a humidified incubator at 37°C and 5% CO2.  For generation of a 

clonal stable cell line, HEK293 cells were transfected with pcDNA3.1(+) encoding 

human AC1, AC2, or AC5 using Lipofectamine 2000 according to the 

manufacturer’s protocol.  Stable clones were selected by growth in media 

containing 600 μg/ml (AC2) or 800 μg/ml (AC1 and AC5) G418. Stable 
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expression of AC isoforms was confirmed functionally by measuring cAMP 

accumulation to selective pharmacological activation conditions.  For example, 

AC1 was stimulated with 3 µM A23187, AC2 was stimulated with the phorbol 

ester, PMA, and AC5 was activated by 300 nM forskolin. 

 The C2C12 mouse skeletal muscle cell line was purchased from the 

American Type Culture Collection. C2C12 myoblasts were maintained at a low 

confluency in DMEM media containing 10% fetal bovine serum. Myoblasts 

(passages 3-17) were plated in 96-well format at 5x104 cells per well. 

Differentiation into myotubes was induced once the cells reached 90% 

confluency by switching to medium supplemented with 2% horse serum. The 

growth medium was changed every 24 hours. Myotubes were allowed to mature 

for 5 days before being experiments were completed.  

 

4.2.3 Cisbio HTRF cAMP assay 

 The cellular cAMP levels were measured using either the Cisbio HTRF 

cAMP dynamic 2 assay kit or a dynamic 2/HiRange hybrid kit (consisting of 

cAMP-d2 from the dynamic 2 kit and the anti-cAMP cryptate conjugate from the 

HiRange kit).  The cAMP assays were performed on cryopreserved cells that 

were rapidly thawed at 37°C and resuspended in cell suspension buffer (HBSS, 

20 mM HEPES, 0.1% fatty acid free BSA or opti-MEM for HEK-hAC1 cells).  

Cells were centrifuged at 500×g and the supernatant was aspirated.  Cells were 

washed by resuspending in cell suspension buffer and centrifuged at 500×g.  The 
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supernatant was aspirated and cells were seeded into a 384-well plate and 

allowed to incubate at 37°C and 5% CO2 for 2.5 h.  Cells were then treated as 

indicated with ligands diluted in stimulation buffer (HBSS, 20 mM HEPES, 500 

µM IBMX or opti-MEM, 500 µM IBMX for HEK-hAC1 cells) and incubated for 1 h 

at room temperature.  The stimulation was terminated by sequential addition of 

10 μl/well of cAMP-d2 and 10 µl/well of anti-cAMP cryptate conjugate, each 

diluted (1:39) in lysis buffer.  The experiments that used the dynamic 2 kit for 

cAMP detection were performed without IBMX in the stimulation buffer (to 

accommodate the sensitivity for cAMP detection), but with IBMX in the lysis 

buffer (to prevent phosphodiesterase-mediated degradation of cAMP in the 

lysate). Following a 1 h incubation at room temperature, the time-resolved 

fluorescence energy transfer (TR-FRET) was measured with a lag time of 100 μs 

and integration time of 300 μs using a Synergy4 (BioTek) fluorescence plate 

reader (excitation filter: 330/80 nm and emission filters: 620/10 nm and 665/8 

nm).  The resulting cAMP concentrations were calculated in GraphPad Prism by 

applying the 620/665 nm fluorescence ratio values to a standard curve of known 

cAMP concentrations. 

 

4.2.4 Screening conditions 

 Cryopreserved HEK-hAC2 cells were seeded into a 384-well plate at 15 

μl/well using a MultiFlo (Biotek) bulk reagent dispenser.  Following a 2.5 h 

incubation at 37°C and 5% CO2, the cell plates were allowed to equilibrate to 
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room temperature on the bench for 15 min.  Test compounds (80 nl) were added 

to the cells with a MultiPette-mounted 384-well pin tool and allowed to incubate 

at room temperature for 30 min.  AC2 activity was then stimulated by addition of 

5 µl of PMA (50 nM final concentration) diluted in stimulation buffer with the 

MultiFlo reagent dispenser, followed by incubation at room temperature for 1 h.  

The Cisbio HTRF cAMP dynamic 2 kit was used to quantify the cellular cAMP as 

described above.  Briefly, the cAMP-d2 (containing 500 μM IBMX final volume) 

and anti-cAMP cryptate conjugate working reagents were sequentially added (10 

μl/well each) with a MultiFlo reagent dispenser and incubated at room 

temperature for 1 h.  Test compounds were initially screened in singlet or 

duplicate and all cAMP concentrations were converted to percent inhibition of the 

PMA-stimulated cAMP response. 

 

4.2.5 3H-cAMP assay 

 Cryopreserved HEK-hAC2 cells were thawed and prepared as described 

above.  Cells were seeded at a density of 12,000 cells per well into a 384-well 

plate in cell suspension buffer and incubated for 2.5 h at 37°C and 5% CO2.  

Test compounds were added to the cells with a MultiPette-mounted 384-well pin 

tool and allowed to incubate at room temperature for 30 min.  The AC stimulation 

was carried out at room temperature for 1 h and the reaction was stopped by the 

addition of cold (4°C) TCA to provide a final TCA concentration of 3%.  The 

cAMP in the lysate was then quantified using a 3H-cAMP competition assay as 
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previously described (Przybyla and Watts, 2010).  C2C12 cell cAMP experiments 

were performed similarly, with the exceptions that the assay was performed in 

96-well format on continuously propagated cells before differentiation into 

myotubes and compounds were delivered by multi-channel pipette for both 

pretreatment and stimulation steps. 

 

4.2.6 ERK1/2 phosphorylation assay 

 HEK-hAC2 cells were seeded into 96-well plates at a density of 25,000 

cells per well in opti-MEM and incubated overnight at 37°C and 5% CO2.  Drug 

treatment was carried out in opti-MEM as follows.  Cells were pretreated with test 

compound (30 µM) at 37°C for 10 min and ERK1/2 phosphorylation was 

stimulated by the addition of PMA (50 nM) and incubation for 10 min at 37°C.  

The resulting ERK1/2 phosphorylation was measured using the Cisbio htrf 

Cellul’ERK assay according to the manufacturer’s protocol (two-plate protocol).  

Briefly, the stimulation buffer was decanted and supplemented lysis buffer was 

added, followed by shaking at 500 rpm at room temperature for 30 min. The anti-

ERK-Eu3+-cryptate and anti-phospho-ERK-d2 antibodies were combined and 

added to a 384-well low-volume plate (PerkinElmer, white, Proxiplate 384 Plus).  

Lysate from the stimulation or positive/negative control lysate was then added on 

top of the HTRF reagents and incubated for 2 h at room temperature.  The TR-

FRET was then measured on the Synergy4 (BioTek) plate reader. 
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4.3 Results 

4.3.1 Assay development and screening of the NIH clinical collections I and II 

 The lack of robust inhibitors of AC2 (Pavan et al., 2009; Pierre et al., 2009; 

Seifert et al., 2012) and the absence of published reports on AC2-/- mice suggest 

that the discovery of AC2 inhibitors will provide important research tools.  Thus, 

one initial goal of the present study was to develop an approach to identify and 

validate novel inhibitors of AC2 activity in intact cells.  To achieve this goal, we 

developed and optimized assay parameters for the measurement of intracellular 

cAMP in 384-well format in a semi-automated fashion, a tactic that may 

ultimately allow for large-scale high-throughput screening to identify novel AC2 

inhibitors.   

 HEK293 cells are known to endogenously express multiple AC isoforms 

(Hellevuo et al., 1993; Ludwig and Seuwen, 2002).  Therefore, to specifically 

study AC2 modulation, it is important to identify pharmacological stimulation 

conditions that selectively activate recombinant AC2 when expressed in HEK293 

cells.  We and others have previously reported that the protein kinase C (PKC)-

activating phorbol ester, PMA, selectively stimulates cAMP accumulation in 

HEK293 cells stably expressing recombinant rat AC2 (Cumbay and Watts, 2001; 

Yoshimura and Cooper, 1993).  For this study, HEK293 cells stably expressing 

human AC2 (hAC2) were constructed and screened for cAMP accumulation in 

response to PMA.  It is notable that the basal level of cAMP in the HEK-hAC2 

cells was higher than the HEK-wt cells (data not shown) and is likely due to 
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constitutive activity of AC2, a property that has been previously observed (Pieroni 

et al., 1995; Pinto et al., 2008).  As expected, PMA treatment had no effect on 

cAMP in HEK-wt cells, but provided an ~8 fold enhancement of cAMP in HEK-

hAC2 cells (data not shown and Figure 4.1A).  These results suggest that 

recombinant hAC2 can be selectively activated by PMA in an HEK293 cell 

background. 

 Following the verification of PMA treatment as a strategy for selective 

activation of AC2, potential screening parameters were further explored by 

performing a more in-depth evaluation of the effects of PMA in HEK-hAC2 cells.  

PMA treatment provided a concentration-dependent increase in cAMP with an 

EC50 value of 16±5.0 nM (n = 3) (Figure 4.1A).  We chose to use 50 nM PMA 

(~EC85 concentration) to stimulate AC2 for the study of AC2 inhibitors.  As a 

control for the inhibition of AC2 activity, the PKC inhibitor BisI was used to inhibit 

the phorbol ester-mediated activation of AC2.  Treatment with BisI provided full 

inhibition of PMA-stimulated AC2 activity with an IC50 of 16±1.9 nM (n = 3), 

suggesting that 1 μM BisI is sufficient to completely inhibit AC2 activity stimulated 

by 50 nM PMA (Figure 4.1A, inset).   
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Figure 4.1 Optimization of conditions for an intact-cell assay that is capable of 
high-throughput screening for small molecule inhibitors of AC2.  A. 
Concentration-response curve analysis of PMA for stimulation of an AC2-
mediated cAMP response in HEK-hAC2 cells.  Data are the mean±S.E.M. of 
three independent experiments.  Inset: Inhibition of 50 nM PMA-stimulated AC2 
activity with the PKC inhibitor BisI.  Data are the mean±S.E.M. of three 
independent experiments.  B. Evaluation of assay robustness by Z’ analysis (Z’ = 
((AVGmax – 3 * SDmax/√n) – (AVGmin + 3 * SDmin/√n)) / (SDmax/√n)).  Data 
are representative of three independent experiments. 

 

 



108 

 Ultimately, our approach for the identification of AC inhibitors relies on the 

development of a cell-based assay that is capable of high-throughput screening 

of small molecule libraries.  Therefore, it was important to evaluate the 

robustness of the HEK-hAC2 cell cAMP assay when converted to a semi-

automated format that is amenable to high-throughput screening (see methods).  

Specifically, assay robustness was examined by performing a Z’ analysis for the 

assay parameters developed for screening (Zhang et al., 1999).  The Z’ value 

was calculated using 50 nM PMA as the maximum stimulation control and 1 μM 

BisI as the minimum stimulation control.  Our AC2 screening assay provided a Z’ 

= 0.44 ± 0.02 (n = 3), suggesting that the assay is appropriate for small molecule 

library screening (Figure 4.1B) (NCGC Assay Guidance Manual, 

www.ncbi.nlm.nih.gov/books/NBK53196/). 

 The NIH clinical collections I and II consist of 727 total test compounds 

that have a history of use in human clinical trials (www.nihclinicalcollection.com).  

The collections contain drug-like molecules with documented biological activity 

and safety profile information.  The modest size of the collections, paired with the 

reasons stated above, make the NIH clinical collections a good starting collection 

for early screening efforts in the search for AC2 inhibitors.  The NIH clinical 

collections were screened for the ability of test compounds (25 μM) to inhibit 

PMA-stimulated AC2 activity in HEK-hAC2 cells.  Of the 727 compounds 

screened (the full screening results are reported in the appendix, Table A.1), 10 

compounds identified as active for the inhibition of PMA-stimulated cAMP 
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accumulation in HEK-hAC2 cells (displaying > 30% inhibition at 25 µM) were 

chosen for additional confirmation and validation (Table 4.1). 
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Table 4.1 Screening of NIH Clinical Collections I and II for inhibition of AC2 
activity.  The NIH Clinical Collections I and II (25 µM) were screened for inhibition 
of PMA-stimulated (50 nM) cAMP accumulation in HEK-hAC2 cells using the 
Cisbio HTRF cAMP dynamic 2 detection methodology.  The data represent the 
average percent inhibition of the PMA-stimulated cAMP response from duplicate 
plates (see methods). 
 

Compound 
Name 

Inhibition 
(%) 

SKF-83566 85 
Tranilast 69 

Loratadine 64 
Thioridazine 58 
Duloxetine 51 
Amlexanox 41 
Indatraline 39 

Oxymetholone 37 
Prochlorperazine 35 

Maprotiline 33 
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4.3.2 Confirmation and validation of activity 

 Confirmation studies were carried out using freshly prepared powders that 

were purchased from commercial sources. The initial confirmation of active small 

molecules used a single concentration (30 µM) of the test compounds for the 

inhibition of AC2 activity.  HEK-hAC2 cells were incubated with 50 nM PMA to 

selectively activate AC2 in the presence of test compound and the resulting 

cAMP accumulation was measured with the Cisbio HTRF cAMP dynamic 2 kit 

(identical to the assay format used for small molecule library screen).  All test 

compounds provided inhibition of AC2 activity at 30 μM, confirming the activity 

observed in the initial screen (Table 4.2). 
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Table 4.2 Confirmation of the inhibitory activity of test compounds identified in the 
screen of NIH Clinical Collections I and II.  Active compounds (30 µM) were 
tested for inhibition of PMA-stimulated cAMP in HEK-hAC2 cells using either the 
Cisbio HTRF cAMP dynamic 2 technology or a [3H]-cAMP competition method 
for detection of cAMP.  Data are reported as the mean±S.E.M. of the percent 
inhibition of the PMA response from three independent experiments.  ND, not 
determined. 
 

Compound Name 
Inhibition 

(%) 
TR-FRET 

Inhibition (%) 
3H-cAMP 

SKF-83566 95±1.6 94±2.8 
Tranilast 76±2.9 79±5.3 

Loratadine 61±0.5 71±8.1 
Thioridazine 36±5.7 ND 
Duloxetine 39±3.8 ND 
Amlexanox 45±5.7 ND 
Indatraline 60±2.0 53±5.5 

Oxymetholone 58±1.9 58±2.9 
Prochlorperazine 41±8.3 ND 

Maprotiline 26±1.8 ND 
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 The screening assay and initial confirmation of active compounds rely on 

TR-FRET for the detection of cAMP (see materials and methods).  It is possible 

that the active compounds have inherent fluorescence that can be measured in 

the same wavelengths as those utilized for cAMP detection, thereby skewing the 

measured fluorescence and affecting the resulting estimation of the cAMP 

concentration (Degorce et al., 2009).  Thus, we assessed the ability of the best 

compounds (i.e., those that provided at least 50% inhibition in the confirmation 

assay) to inhibit AC2 activity in a non-fluorescence-based assay.  The active 

compounds SKF-83566, oxymetholone, tranilast, indatraline, and loratadine were 

tested for their ability to inhibit PMA-stimulated cAMP accumulation in a 3H-

cAMP competitive binding assay.  All of the compounds tested retained the ability 

to inhibit PMA-stimulated cAMP accumulation in HEK-hAC2 cells, indicating bona 

fide reduction of cAMP, rather than interference with the fluorescence detection 

methodology (Table 4.2).  Furthermore, the extent of inhibition of PMA-stimulated 

AC2 activity by the test compounds in the 3H-cAMP assay was nearly identical to 

that observed in the TR-FRET-based cAMP detection method.  

 Our screening strategy utilized PMA to selectively stimulate AC2 via 

phosphorylation mediated by PKC (Jacobowitz and Iyengar, 1994).  Thus, it is 

possible that the compounds identified as active may exert their cAMP-

attenuating effects through inhibition of PKC rather than directly inhibiting AC2.  

PMA-mediated PKC activation is known to stimulate ERK1/2 phosphorylation in 

HEK293 cells (DellaRocca et al., 1997), allowing for a simple counter-screen to 

eliminate false positives (Figure 4.2A).  Specifically, we measured ERK1/2 
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phosphorylation in response to PKC activation in HEK-hAC2 cells in the absence 

and presence of the active compounds (Figure 4.2B).  As expected, PMA 

treatment resulted in a significant enhancement of ERK1/2 phosphorylation 

(5.7±0.2 fold over basal) that was inhibited completely by the PKC inhibitor, BisI.  

In contrast, SKF-83566, oxymetholone, tranilast, and loratadine did not 

significantly alter the PMA-mediated ERK1/2 phosphorylation in HEK-hAC2 cells, 

suggesting that these compounds do not inhibit PKC.  Indatraline, however, 

inhibited the PMA-mediated ERK1/2 phosphorylation by ~80%. 

 The lack of inhibition of PKC-dependent ERK1/2 phosphorylation by SKF-

83566, oxymetholone, tranilast, and loratadine is consistent with a direct 

inhibition of AC2 activity by these drugs.  To further test this supposition, we 

examined the ability of SKF-83566, oxymetholone, tranilast, and loratadine to 

inhibit AC2 activity stimulated via other mechanisms. AC2 is also stimulated in a 

PKC-independent manner by Gαs in response to activation of Gs-coupled 

receptors and directly via the small molecule AC activator, forskolin.  

Prostaglandin E2 (PGE2) is known to bind and activate the Gs-coupled EP2/4 

prostanoid receptors that are endogenously expressed in HEK293 cells (Bogard 

et al., 2012; Willoughby et al., 2007).  As expected, PGE2 treatment resulted in a 

concentration-dependent increase in cAMP accumulation in HEK-hAC2 cells 

(EC50: 160±78 nM, n = 3).  To examine the effects of inhibitors on Gαs-stimulated 

AC2 activity, the identified active compounds were then tested for the inhibition of 

300 nM PGE2-stimulated cAMP in HEK-hAC2 cells (Figure 4.2C).  Oxymetholone, 

SKF-83566, tranilast, and loratadine significantly inhibited PGE2-stimulated 
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cAMP in HEK-hAC2 cells.  Next, they were similarly tested for their ability to 

inhibit the cAMP generated in response to direct AC stimulation by forskolin 

(Figure 4.2D).  Oxymetholone, SKF-83566, tranilast, and loratadine significantly 

inhibited forskolin-stimulated cAMP accumulation in HEK-hAC2 cells.  These 

data are in agreement with the effects of the test compounds on PKC-mediated 

ERK1/2 phosphorylation.  Specifically, indatraline and BisI inhibited PKC-

mediated ERK1/2 phosphorylation, but not Gαs- or forskolin-stimulated cAMP in 

HEK-hAC2 cells.  Taken together, these observations suggest that inhibition of 

PMA-stimulated cAMP by indatraline in HEK-hAC2 cells is due to inhibition of 

PKC.  More importantly, our data indicate that SKF-83566, oxymetholone, 

tranilast, and loratadine inhibit multiple modes of AC2 stimulation (i.e., PKC-, 

Gαs-, and forskolin-mediated), but do not inhibit PKC activity. 
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Figure 4.2 Counter-screening for validation of active compounds as AC2 
inhibitors.  A.  Schematic for PKC-dependent and PKC-independent activation of 
AC2.  B. The effects of test compounds (30 µM) on PMA-stimulated ERK1/2 
phosphorylation were measured in HEK-hAC2 cells.  Data are mean±S.E.M. of 
three independent experiments.  ***, p < 0.001 (one sample t-test compared to 
100).  C. The effects of test compounds (30 µM) on 300 nM PGE2-stimulated 
cAMP accumulation and D. 3µM forskolin-stimulated cAMP accumulation was 
measured in HEK-hAC2 cells.  Data are mean±S.E.M. of three independent 
experiments. ** p < 0.01, compared to vehicle condtion, one-way analysis of 
variance followed by Dunnett’s post hoc test. 
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4.3.3 AC isoform selectivity profiles 

 The selectivity profiles of the active compounds for inhibition of AC 

isoforms was explored using intact cell cAMP assays.  The ability of compounds 

to modulate cAMP levels in HEK-hAC2 cells was compared to that of HEK-hAC1 

and HEK-hAC5 cells, as well as HEK-wt cells (Figure 4.3).  AC1 and AC5 were 

chosen as representative ACs from group I and group III ACs, respectively.  AC1 

activity was selectively activated by the calcium ionophore A23187 (3 µM) and 

AC5 was stimulated by 300 nM forskolin in HEK293 cells stably expressing each 

isoform (data not shown).  Test compounds (30 µM) were evaluated for the ability 

to modulate selective activation of AC1 and AC5 activity in HEK293 cells.  None 

of the test compounds inhibited AC1 activity, however, loratadine significantly 

potentiated A23187-stimulated cAMP by ~150%.  Studies with HEK-hAC5 cells 

revealed that loratadine and tranilast strongly inhibited forskolin-stimulated cAMP 

in HEK-hAC5 cells, while SKF-83566 had more modest activity (~35% inhibition).  

Tranilast and loratadine also significantly inhibited forskolin-stimulated AC activity 

in HEK-wt cells, whereas SKF-83566 had no significant effect.  Oxymetholone 

modestly, but significantly inhibited PMA-stimulated cAMP in HEK-hAC2 cells, 

but had no effect on the AC responses in HEK-hAC1, -hAC5, or –wt cells.  These 

results suggest that the active compounds show distinct patterns of cAMP 

modulation in HEK293 cells stably expressing recombinant AC1, AC2, or AC5. 
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Figure 4.3 AC isoform-selectivity profile of test compounds in intact-cell studies.  
AC isoform selectivity was assessed by testing the ability of test compounds (30 
µM) to modulate A. 3µM A23187-stimulated cAMP in HEK-hAC1 cells, B. 50 nM 
PMA-stimulated cAMP in HEK-hAC2 cells, C. 300 nM forskolin-stimulated cAMP 
in HEK-hAC5 cells, and D. 3 µM forskolin-stimulated cAMP in HEK-wt cells.  * p 
< 0.05, ** p < 0.01, compared to vehicle condition, one-way analysis of variance 
followed by Dunnett’s post hoc test. 
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 The direct modulation of AC isoforms was explored using a cell free, 

reconstituted system to directly assess the effects of test compounds on AC 

activity (Conley et al., under review).  Specifically, the effects of the test 

compounds have been studied in AC activity assays that were performed using 

membranes from Sf9 insect cells expressing recombinant AC1, AC2, or AC5.  As 

expected, SKF-83566 significantly inhibited forskolin-stimulated AC2 activity (> 

40%), suggesting a direct mode of inhibition (mechanistic studies suggest 

noncompetitive inhibition with respect to ATP).  SKF-83566 was inactive against 

AC1 or AC5.  A similar pattern of AC isoform selectivity was observed with 

tranilast (See figure 4.4 for chemical structures of SKF-83566 and tranilast).  In 

contrast to SKF-83566 and tranilast, a commercially available AC inhibitor, 

NKY80, showed marked inhibition of AC1 and AC5, but only modest inhibition of 

AC2 activity.  These studies identified SKF-83566 as the most favorable 

compound to carry into further studies, as it provided the most robust AC2 

inhibition, while having no effect on forskolin-stimulated cAMP levels in HEK-wt 

cells and retention of AC2 inhibition in vitro. 
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Figure 4.4 Chemical structures of SKF-83566 and tranilast. 
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 The AC isoform-selectivity of SKF-83566 was further characterized by 

performing a concentration-response analysis for inhibition of cAMP in HEK-

hAC2 and HEK-hAC5 cells.  SKF-83566 fully inhibited PMA-stimulated cAMP in 

HEK-hAC2 cells with an IC50 value of 10±1.4 µM and maximum inhibition of 

104±2% (Figure 4.5A).  Additionally, the potency and efficacy values of SKF-

83566 for inhibition of 3 µM forskolin stimulation (IC50: 19±3.3 µM and maximum 

inhibition: 113±2%, n = 3) and 300 nM PGE2 stimulation (IC50: 21±4.5 µM and 

maximum inhibition: 117±2%, n = 3) in HEK-hAC2 cells were similar to those 

observed for inhibition of the PMA response in HEK-hAC2 cells.  The robust 

inhibition below basal levels presumably reflects inhibition of the constitutive AC2 

activity.  As anticipated from the single point studies, SKF-83566 only partially 

inhibited forskolin-stimulated cAMP in HEK-hAC5 cells (< 40%) at a 

concentration of 130 µM. We consistently observed less inhibition of AC5 at 400 

µM suggesting a biphasic response (Figure 4.5A).  Nonetheless, these results 

indicate marked selectivity of SKF-83566 for inhibition of AC2 over AC1 and AC5.   
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Figure 4.5 Concentration-response analysis of SKF-83566 for inhibition of cAMP.  
A. Dose-response curves of SKF-83566 for inhibition of PMA-stimulated (50 nM) 
cAMP in HEK-hAC2 cells and forskolin-stimulated (300 nM) cAMP in HEK-hAC5 
cells.  B. Dose-response curves of SKF-83566, MDL-12,330A, SQ22,536, and 
2’5’-dideoxyadenosine (2’5’ddAd) for inhibition of PMA-stimulated (50 nM) cAMP 
in HEK-hAC2 cells.  The SKF-83566 data in panels A and B are from the same 
experiments, as these studies were performed simultaneously.  Data are 
expressed as a percentage of the stimulation response and are reported as the 
mean±S.E.M. of three independent experiments. 
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 The ability of SKF-83566 to inhibit PMA-stimulated AC2 activity was 

directly compared to several known AC inhibitors (i.e., SQ22,536, MDL-12,330A, 

and 2’5’-dideoxyadenosine; Figure 4.5B).  Efficacy comparisons revealed marked 

differences between SKF-83566 (> 100% inhibition) and the known inhibitors (i.e., 

SQ22,536, 29±3%; MDL-12,330A, 33±4%; and 2’5’-dideoxyadenosine, 38±3%) 

each at a concentration of 400 µM.  These results demonstrate that SKF-83566 

displays superior potency and efficacy for inhibition of AC2 activity when directly 

compared to SQ22,536, MDL12,330A, and 2’5’-dideoxyadenosine in HEK-hAC2 

cells. 

 

4.3.4 SKF-83566 as a chemical probe for AC2 function 

 The most potent and selective AC2 inhibitor (SKF-83566) was examined 

in cell models where AC2 is natively expressed (along with other AC isoforms), 

allowing confirmation of its activity in a more physiological context and evaluation 

of its use as a tool to probe AC2 function.  AC2 is reported to be abundantly 

expressed in skeletal muscle tissues (Ludwig and Seuwen, 2002; Suzuki et al., 

1998; Torgan and Kraus, 1996).  Therefore, the ability of SKF-83566 to inhibit 

forskolin-stimulated cAMP accumulation was studied in differentiated mouse 

C2C12 skeletal muscle myotubes (Figure 4.6).  As expected, SKF-83566 

inhibited forskolin-stimulated cAMP with an IC50 value of 15±6.5 µM and 

maximum inhibition of 69±8.8%, consistent with SKF-83566 inhibiting 

endogenous AC2 activity (Figure 4.6). 
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Figure 4.6 SKF-83566 as a chemical probe for native AC2 activity.  The effect of 
SKF-83566 on forskolin-stimulated (30 µM) cAMP was measured in mouse 
C2C12 skeletal muscle cells that were differentiated into myotubes.  Data are 
mean±S.E.M. of three independent experiments. 
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 Human bronchial smooth muscle cells express AC2, AC4, and AC6 

(Bogard et al., 2012) and recent studies suggest that forskolin-stimulated 

interleukin-6 (IL-6) expression in hBSMCs is selectively mediated by AC2 

(Bogard and Ostrom, 2013).  Therefore, the effect of SKF-83566 on forskolin-

stimulated IL-6 mRNA expression was measured in hBMSCs using quantitative 

RT-PCR (Conley et al., under review).  SKF-83566 treatment reduced the 

forskolin-stimulated IL-6 mRNA to 38±11% of the vehicle treated cells.  These 

results indicate that SKF-83566 inhibited the AC2-mediated upregulation of IL-6 

mRNA expression in hBSMCs, suggesting that SKF-83566 may be a useful tool 

to assess the function of AC2. 

 

 

4.4 Discussion 

 Several studies have implicated AC isoforms in physiological functions 

and disease states, leading to the hypothesis that ACs are potentially novel 

therapeutic targets (Pierre et al., 2009; Sadana and Dessauer, 2009).  However, 

further research is required to validate AC isoforms as therapeutic targets and 

advancements have been limited due to the current paucity of small molecule 

modulators that are potent and AC-isoform selective.  The need for additional 

small molecule tools to assess the in vivo activity of AC isoforms is further 

reinforced in the case of AC2, where there is both a lack of selective small 

molecule modulators and an absence of published transgenic or knockout mouse 
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studies for AC2.  Therefore, we developed an HTS-compatible intact-cell small 

molecule screening approach and subsequent validation paradigm for the 

discovery of AC2 inhibitors. 

 The present study used the HTRF cAMP detection technology from Cisbio 

to develop a robust and scalable HTS assay.  The development of an intact-cell 

assay for small molecule AC modulators was designed to reduce cell-

permeability issues that have plagued the utility of several small molecule AC 

modulators (Seifert et al., 2012).  However, the intact-cell screening format 

presents several challenges that are associated with apparent reductions in the 

cAMP signal that are independent of direct AC inhibition, including fluorescence 

detection artifacts, cell death/toxicity, and indirect modes of cAMP reduction that 

require subsequent validation experiments.  The effectiveness of the validation 

experiments to identify PKC inhibitors was evident in the case of indatraline, as it 

was found to inhibit PMA-stimulated ERK1/2 phosphorylation, but unable to 

modulate PKC-independent stimulation of cAMP in HEK-hAC2 cells.  The 

complementary cAMP studies in wild type and stably transfected HEK293 cells 

validated that the compounds selectively inhibit the exogenously expressed AC 

isoform.  For example, SKF-83566 appeared to have activity for inhibition of 

cAMP in HEK-hAC2 and HEK-hAC5 cells, but no activity for the inhibition of 

cAMP in the HEK293 cell background.  Conversely, the inhibition observed by 

tranilast and loratadine was more difficult to interpret because each of these 

compounds strongly inhibited the forskolin-stimulated cAMP accumulation in the 

HEK293 cell background, in addition to their apparent activity at the 
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exogenously-expressed ACs.  Therefore, tranilast and loratadine appeared to 

have effects on multiple AC isoforms, including endogenous ACs expressed in 

HEK293 cells.  For example, our in vitro studies suggested direct modulation of 

AC2 by tranilast, but indirect modulation of AC1 and AC5.  The identification of 

SKF-83566 as a selective and direct AC2 inhibitor demonstrated the utility of the 

screening approach and the complementary validation experiments.  The 

success of this initial study combined with additional optimization for increased 

assay robustness offers promise for future screening efforts of larger and more 

diverse chemical libraries.   

 The identification of SKF-83566 as a selective AC2 inhibitor represents 

another key contribution of the present report.  SKF-83566 was originally 

reported as an antagonist at D1 dopamine and 5HT2 receptors (Berkowitz et al., 

1984; Ohlstein and Berkowitz, 1985).  Nevertheless, the differences in potency 

between the receptor antagonism (Berkowitz et al., 1984; Ohlstein and Berkowitz, 

1985) and AC2 inhibition by SKF-83566 (i.e., 0.5-30 nM for dopamine/serotonin 

receptor antagonism versus ~10 µM for AC2 inhibition), together with our control 

validation assays, suggested that we were observing AC2 inhibition in HEK-

hAC2 cells.  Interestingly, a recent study suggests that D1/D5 dopamine 

receptors are closely linked to AC by ligand similarity (Lin et al., 2013), perhaps 

suggesting that receptor antagonism and AC2 inhibition may have overlapping 

chemical requirements.  Future studies with SKF-83566 should be focused on 

enhancing its pharmacological properties including its specificity for AC and 

selectivity for AC2.  For example, we used a racemic mixture of SKF-83566, 
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therefore, pharmacological studies of the resolved enantiomers is expected to 

provide enhanced potency for inhibition of AC2.  Additionally, classic structure-

activity relationship studies would also be useful to identify chemical moieties and 

functional groups that are important for AC2 inhibition and enhance the specificity 

and isoform-selectivity for AC2. 

 Despite the potential drawbacks associated with its receptor antagonism, 

SKF-83566 remains an important addition to the repertoire of AC modulators.  

For example, SKF-83566 displayed unmatched potency and efficacy for inhibition 

of AC2 when directly compared to several commonly used AC inhibitors (i.e. 

NKY80, MDL-12,330A, SQ22,536, and 2’5’-dideoxyadenosine).  SKF-83566 also 

selectively inhibited AC2 (vs other AC isoforms), perhaps offering advantages 

over the diterpene analog, BODIPY-forskolin, that non-selectively modulates AC 

isoforms with a bidirectional modulation profile (i.e., inhibition of AC2 and partial 

activation of AC1 and AC5) (Erdorf et al., 2011; Pinto et al., 2008).  The 

bidirectional modulation makes it difficult to use BODIPY-forskolin as a chemical 

probe in systems where multiple AC isoforms are expressed.  In contrast, our 

studies with C2C12 mouse skeletal muscle cells and hBSMCs demonstrated the 

applicability of SKF-83566 as a tool to assess native AC function in a 

physiological context, suggesting the possibility for its use as an in vivo probe.   

 The identification of additional selective AC2 modulators is expected to 

contribute to the understanding of the physiological roles of AC2.  There is 

currently little direct evidence that suggests AC2 as a therapeutic target, but this 

may be due to the limited availability of research tools and strategies for studying 

 

 



129 

AC2.  Despite these limitations, AC2 has been associated with several diseases, 

offering a wealth of opportunities for the use of SKF-83566 as a chemical probe 

for AC2 function.  For example, a potential role for AC2-mediated signaling in 

skeletal muscle physiology is suggested by the abundant expression of AC2 in 

adult skeletal muscle (Ludwig and Seuwen, 2002; Suzuki et al., 1998; Torgan 

and Kraus, 1996) and that increased cAMP signaling is implicated in several 

aspects of muscle physiology including hypertrophy, muscle repair, regeneration, 

and functional adaptation (Berdeaux and Stewart, 2012).  However, the 

contribution of individual AC isoforms is not well-understood in these 

physiological processes (Berdeaux and Stewart, 2012), suggesting that SKF-

83566 can be used as a chemical tool to study the contribution of AC2-mediated 

cAMP signaling to muscle physiology and skeletal muscle pathologies including 

Duchenne’s muscular dystrophy and muscle atrophy associated with cancer, 

ageing, and AIDS.  

 Recent studies also suggest a role for AC2 in the airway, as AC2 

mediates IL-6 expression in hBSMCs (Bogard and Ostrom, 2013).  Consistent 

with this observation, it observed that SKF-83566 was able to inhibit a forskolin-

stimulated IL-6 response in hBSMCs (Conley et al., under review).  Interestingly, 

increased IL-6 expression has been detected in asthma patients (Neveu et al., 

2010) and IL-6 is thought to play an active role in the pathogenesis of lung 

diseases such as asthma and chronic obstructive pulmonary disease (Neveu et 

al., 2010; Rincon and Irvin, 2012).  Taken together, it’s possible that AC2 is 

contributing to lung disease pathology by mediating elevated IL-6 in hBSMCs.  
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Thus, SKF-83566 can be utilized to determine if AC2 mediates the increased IL-6 

levels in lung diseases, and if this event contributes to pathogenesis. 

 AC2 also appears to be involved in neuroendocrine tumors (NETs), as 

ADCY2 expression is upregulated in a “malignant cluster” of pancreatic NETs 

(Duerr et al., 2008) and identified as a component of an upregulated 

cAMP/protein kinase A/CREB pathway in small intestinal NETs (Drozdov et al., 

2011).  Further in vitro expression and pharmacological analysis suggested that 

AC2 may be a functional mediator for upregulation of CREB-regulated transcripts 

that are associated with proliferation in small intestinal NETs (Drozdov et al., 

2011).  It is also noteworthy that ADCY2 expression is inversely correlated with 

survival in colorectal cancer patients (Yu et al., 2011).  The studies described 

above suggest that AC2 has a potential role in the progression of NETs and 

colorectal cancer, but it is unclear if the enhanced AC2 expression is pathological, 

protective, or merely a marker of these disease states.  SKF-83566 could be 

used as a chemical probe to test the functional role of AC2 catalytic activity in 

these pathophysiological states, and in the case of a causal relationship, suggest 

therapeutic utility for targeting AC2. 

 In conclusion, the present report describes the development and 

implementation of an HTS-capable intact-cell screening assay and subsequent 

validation strategy to identify small molecule inhibitors of AC2.  This initial 

screening effort identified SKF-83566 as a selective AC2 inhibitor with superior 

pharmacological properties for selective modulation of AC2 when directly 

compared to the currently available AC inhibitor
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CHAPTER 5. CONCLUSIONS AND FUTURE DIRECTIONS 

 This work addressed various aspects of AC2 modulation within the 

framework of three main research aims: 1.) To test the hypothesis that AGS3 

expression influences D2LDR-mediated cAMP signaling mediated via AC1 and 

AC2.  2.)  To test the hypothesis that D2LDR-mediated heterologous sensitization 

of AC2 is Gβγ subunit-dependent.  3.)  To develop and implement a high-

throughput screening paradigm for the discovery of small molecule modulators of 

AC2.  The conclusions of this work and its implications for future research are 

discussed below. 

 Activator of G protein signaling 3 was first identified in a yeast-based 

screen for receptor-independent activation of G protein signaling and in vitro 

biochemical studies revealed that AGS3 binds Gαi subunits in the GDP-bound 

state and serves as a guanine nucleotide dissociation inhibitor (De Vries et al., 

2000; Takesono et al., 1999).  Such biochemical studies suggested the 

hypothesis that stabilization of Gαi-GDP by AGS3 prevents the inactivating re-

association/rearrangement of the G protein heterotrimer, thus resulting in 

sustained Gβγ subunit signaling.  In addition to the biochemical function of AGS3, 

several studies have implicated AGS3 as in important mediator of behavioral 
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responses associated with drugs of abuse and have demonstrated that AGS3 

expression is up-regulated in the nucleus accumbens core or prefrontal cortex 

during withdrawal periods following prolonged ethanol or cocaine self-

administration, respectively (Bowers et al., 2008; Bowers et al., 2004).  Taken 

together, the biochemical and in vivo studies suggest that AGS3 may contribute 

to molecular changes associated with drugs of abuse by affecting G protein-

mediated AC/cAMP signaling.  Consistent with this hypothesis, others have 

demonstrated that AGS3 expression results in attenuated α2-adrenergic 

receptor-induced heterologous sensitization of AC in CHO cells (Sato et al., 

2004).  However, AC isoforms display distinct patterns modulation by G protein 

subunits, suggesting that AGS3 may differentially modulate G protein signaling 

through AC isoforms.  Given the evidence that AGS3, cAMP signaling pathways, 

and dopamine systems are each involved in drug addiction (Carlezon et al., 2005; 

McClung and Nestler, 2003; Nestler, 2001), we studied the effects of AGS3 

expression on D2LDR-mediated signaling mediated by individual AC isoforms in 

HEK293 cells.  

 We examined the ability of AGS3 to modulate recombinant AC1 or AC2 

signaling in HEK293 cells following both acute and prolonged activation of the 

D2LDR.  AGS3 expression modestly enhanced the potency of acute quinpirole-

induced D2LDR modulation of AC1 or AC2 activity.  Prolonged quinpirole 

activation of the D2LDR was altered by AGS3 in a manner that promoted 

desensitization of D2LDR-mediated inhibition of AC1, whereas desensitization of 

D2LDR-mediated AC2 activation was significantly attenuated.  Additionally, AGS3 
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reduced D2LDR-mediated sensitization of AC1 and AC2 in HEK293 cells.  These 

data suggest that AGS3 is involved in altering G protein-mediated cAMP 

signaling in a complex fashion that is both effector-specific and dependent on the 

duration of receptor activation. 

 The effects of AGS3 on D2LDR-mediated sensitization of AC1 and AC2 

are consistent with a mechanism where AGS3 disrupts Gβγ subunit signaling 

associated with persistent Gi-coupled receptor modulation.  Several lines of 

evidence converge to suggest that AGS3 influences Gβγ-mediated effector 

signaling.  For example, our results are consistent with a previous study that 

demonstrated the ability of an AGS3 consensus peptide to disrupt signaling 

mediated by a different Gβγ subunit effector (G protein inwardly rectifying 

potassium channels) following repeated activation of the D2SDR (Webb et al., 

2005).  Furthermore, Gβγ subunit sequestering by expression of βARKct 

inhibited D2LDR-mediated sensitization of both AC1 (Nguyen and Watts, 2005) 

and AC2 (Chapter 3), suggesting that Gβγ subunit signaling is necessary for 

D2LDR-mediated sensitization of these isoforms.  Interestingly, a recent study 

that utilized bioluminescence resonance energy transfer demonstrated that 

AGS3 is able to functionally couple with and dissociate from Gi-coupled 

receptors in an agonist-dependent manner (Oner et al., 2010).  Taken together, 

these studies suggest the possibility that AGS3 competes with Gβγ subunits for 

binding with Gαi-GDP, thus selectively blocking Gβγ subunit signaling in an 

indirect manner via Gαi-AGS3 coupling to receptor.  Adding further complexity, 

the effects of AGS3 on G protein signaling appear to be dependent on the 
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duration of receptor activation because AGS3 alters persistent receptor activation, 

but only displays modest or no significant effects for signaling in response to 

acute receptor activation. 

 Our subsequent studies from chapter 3 directly examined the Gβγ subunit-

dependence of D2LDR-mediated sensitization of AC2 and are therefore relevant 

to the observed effects of AGS3.  The regulatory properties of AC2 provide a 

means to differentiate the contribution of Gα and Gβγ subunits to sensitization.  

Specifically, AC2 is conditionally activated by Gβγ subunits and is not directly 

regulated by Gαi/o subunits (Tang and Gilman, 1991; Taussig et al., 1993b; 

Taussig et al., 1994).  These unique regulatory properties of AC2 allowed for the 

selective study of Gβγ subunit signaling in sensitization of PKC-stimulated AC2 

activity.  The observations from chapter 3 suggest that similar to other AC 

isoforms, Gβγ subunits are necessary for the sensitization of AC2.  Specifically, 

the membrane-localized Gβγ subunit sequestering protein βARKct-CD8 and the 

cell-permeable peptide inhibitor of Gβγ signaling, QEHA-TAT both attenuated 

D2LDR-mediated sensitization of AC2.  The Gβγ subunit-dependence of D2LDR-

mediated sensitization of AC2 is in agreement with our observations from chapter 

2, where AGS3 blocked D2LDR-mediated sensitization of AC2, further 

contributing to the emerging hypothesis that AGS3 alters Gβγ subunit signaling 

following persistent Gi-coupled receptor activation.     

 Future studies of the molecular effects of AGS3 expression on receptor-

mediated Gβγ subunit expression and translocation/localization may shed light 

on the mechanisms underlying the influence of AGS3 on cAMP signaling 
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mediated by AC1 and AC2.  The localization and translocation of Gβγ subunits 

have been studied by fluorescence microscopy upon expression of recombinant 

fluorescently-labeled G protein subunits (Digby et al., 2008), suggesting that the 

influence of AGS3 on D2LDR-mediated Gβγ subunit localization can be explicitly 

studied and in a temporal fashion.  The effects of AGS3 on the localization of 

specific Gβ and Gγ subunit dimer combinations can be similarly studied by 

bimolecular fluorescence complementation (Digby et al., 2006; Digby et al., 2008; 

Mervine et al., 2006; Yost et al., 2007).  This technology relies on the use of a 

fluorescent protein that is split into two non-fluorescent fragments.   One of the 

fragments can be fused to Gβ and the complementary fragment can be fused to 

Gγ, and upon interaction of the tagged Gβ and Gγ subunits, the full fluorescent 

protein reconstitutes, providing fluorescence.  In summary, our data and the 

observations of others suggest that AGS3 may alter Gβγ subunit signaling in 

response to persistent Gi-coupled receptor activation.  Future studies that utilize 

fluorescently labeled Gβγ subunits may facilitate the direct examination of the 

effects of AGS3 on the temporal and spatial localization of Gβγ subunits, perhaps 

providing insight into the mechanistic details of their effects on AC isoform 

signaling. 

 It is clear that Gβγ subunit signaling is necessary for D2LDR-mediated 

sensitization of AC2 in HEK293 cells.  Gβγ subunits directly interact with AC2 in 

several areas and modulate its catalytic activity in a conditional fashion (Boran et 

al., 2011; Diel et al., 2008; Diel et al., 2006; Tang and Gilman, 1991; Taussig et 

al., 1993b; Taussig et al., 1994; Weitmann et al., 2001).  However, Gβγ subunits 
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also directly modulate several downstream effectors including PLCβ2, KIR3.1 

potassium channels, and voltage-gated Ca2+ channels (Khan et al., 2013; 

Smrcka, 2008), suggesting that development of sensitization may occur by either 

direct Gβγ modulation of AC2 or via an indirect Gβγ signaling pathway.  Though 

the pharmacological investigation of downstream Gβγ subunit effectors in 

chapter 3 did not identify effectors involved in sensitization, several observations 

support the hypothesis that the development of D2LDR-mediated sensitization of 

AC2 occurs through indirect Gβγ signaling pathways, rather than Gβγ directly 

modulating AC2.  Specifically, D2LDR-mediated sensitization of AC1 is Gβγ 

subunit-dependent (Nguyen and Watts, 2005), but is inhibited by Gβγ subunits 

(Taussig et al., 1993b; Taussig et al., 1994).  Furthermore, several intermediate 

signaling components have been implicated in the development of AC 

sensitization (Johnston et al., 2002; Varga et al., 2002; Varga et al., 2003; Watts 

and Neve, 2005).  We also observed a complete loss of subsequent D2LDR-

mediated potentiation of PKC activation of AC2 following long-term D2LDR 

activation (Chapter 2).  Though D2LDR activation acutely stimulates AC2 

conditionally via Gβγ subunits, this observation suggests a loss of Gβγ subunit 

activation of AC2 following long term D2LDR stimulation.  Nonetheless, the 

hypothesis that AC2 sensitization is facilitated by direct Gβγ subunit binding to 

AC2 can be directly tested.  Similar to the Gβγ localization studies proposed 

above, fluorescently labeled Gβγ subunits can be monitored by fluorescence 

microscopy following prolonged D2LDR activation.  Furthermore, Rluc-tagged 

AC2 has been utilized in BRET studies to examine the direct interaction of 
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fluorescently-tagged proteins with Rluc-AC2 (Baragli et al., 2008; Dupre et al., 

2007; Petrin et al., 2011; Rebois et al., 2012).  These available research tools 

suggest that BRET studies of fluorescently-tagged Gβγ subunits and Rluc-AC2 

following prolonged D2LDR activation can be used to test the hypothesis that 

D2LDR-mediated sensitization of AC2 occurs by direct modulation of AC2 by Gβγ 

subunits.  

 The observations in chapter 3 provided evidence for Gβγ subunits as 

mediators of AC2 sensitization, but a comprehensive mechanism remains 

unsolved.  However, several possible mechanisms can be proposed for the 

development of the enhanced PKC-mediated stimulation of AC2 following long-

term D2LDR activation.  Previous studies suggest that AC2 shows an activator-

selective pattern of heterologous sensitization (Cumbay and Watts, 2001).  

Specifically, persistent D2LDR activation enhances AC2 cAMP responses to 

phorbol ester activation of PKC, but not in response to forskolin or the Gs-

coupled β-adrenergic receptor agonist, isoproterenol (Cumbay and Watts, 2001).  

These data clearly implicate PKC in AC2 sensitization.  It is possible that long-

term D2LDR activation results in enhanced PKC expression in HEK293 cells, 

leading to enhanced responses to phorbol ester-mediated AC2 activation.  PKC 

expression profiling by western blotting for PKC isoforms in HEK293 cells can be 

performed following prolonged quinpirole treatment and compared to the 

expression levels of a vehicle treatment.  PKCα (Zimmermann and Taussig, 1996) 

and PKCδ (Nguyen and Watts, 2006) are implicated in the acute activation of 

AC2, but a comprehensive assessment of the effects of PKC isoforms on AC2 
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remains to be reported.  A combination of approaches that include siRNA, PKC 

isoform overexpression, and isoform-selective PKC peptide inhibitors can be 

used to determine the specific PKC isoforms that are involved in both acute and 

subsequent activation of AC2 following persistent D2LDR activation.  It is also 

possible that long-term D2LDR activation altered the levels of PKC that are in 

close proximity to AC2.  The latter possibility could be mediated by two anchoring 

proteins (i.e., RACK1 and AKAP79) that are endogenously expressed in HEK293 

cells (Bauman et al., 2006; Liu et al., 2007).  For example, the PKC anchoring 

protein RACK1 functions to target PKC to its substrates (Schechtman and 

Mochly-Rosen, 2001).  Furthermore, RACK1 is known to directly bind Gβγ 

subunits and influence Gβγ-mediated signaling (Chen et al., 2008; Chen et al., 

2005; Chen et al., 2004).  Alternatively, AKAP79 directly interacts with AC2 

(Efendiev et al., 2010) and is also known to scaffold PKA and PKC (Welch et al., 

2010), but Gβγ subunit-modulation of this protein has not been reported (based 

on my knowledge).  Future research should be focused on the potential role of 

these proteins in the development of D2LDR-mediated sensitization of AC2. 

 Molecular studies of heterologous sensitization have largely focused on 

the roles G proteins (e.g., Gαi/o, Gβγ, and Gαs subunits), proteins that modulate 

G protein signaling (e.g., RGS and AGS proteins), and protein kinases that are 

well-known to be downstream of G proteins.  The precise mechanisms of AC 

sensitization are not well understood, even after nearly four decades of research.  

We propose that unbiased approaches can be utilized to identify novel 

components of the signaling pathways that are involved in the mechanisms of AC 
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sensitization.  Such unbiased approaches include siRNA library screening or 

small molecule screening of known pharmacological modulators (e.g., kinase 

inhibitor collections).  The cell-based cAMP detection methodology that our 

laboratory has utilized to study sensitization, however, was generally unsuitable 

for siRNA library or small molecule screening endeavors.  Therefore, steps were 

taken to reduce the number of wash and decant steps, miniaturize the cAMP 

quantification assay, and identify an assay workflow that is amenable to 

automation to facilitate the development an assay format that is amenable to the 

unbiased strategies for the study of sensitization (Conley et al., in press).  As part 

of the initial validation of the high-throughput screening capable cAMP assay and 

workflow, the implementation of this technology to screen for small molecule 

inhibitors of AC2 was reported in chapter 4.  The cell-based high-throughput 

screening paradigm that we developed can likely be readily adjusted to measure 

small molecule modulation of heterologous sensitization.  Furthermore, the assay 

format has since been modified to accommodate screening of an siRNA library 

against the kinome for inhibition of Gi-coupled receptor-mediated sensitization of 

AC isoforms (Conley et al., in press).  It is expected that these unbiased 

approaches will provide new mechanistic information regarding the adaptive 

heterologous sensitization response. 

 The development of an HTS-capable cell-based assay to measure the 

modulation of AC activity was initially designed to address assay format 

requirements for the unbiased approaches to study heterologous sensitization as 

described above.  However, as a strategic intermediate step to the development 
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of an assay format for an siRNA library screen for the modulation of heterologous 

sensitization of AC, we first developed and implemented a screening assay for 

small molecule modulators of acute AC activity.  This strategy allowed for the 

initial development of a relatively simpler assay, while providing the opportunity 

to assess the robustness of the cAMP detection technology and the miniaturized 

assay platform for its HTS-amenable attributes.  Furthermore, the lack of potent 

and selective small molecule AC modulators presented an opportunity to address 

a well-known research need in the AC field, while providing proof-of-concept for 

the HTS-amenable cAMP assay.  Specifically, AC isoforms are implicated in 

several physiological processes and disease states (Pierre et al., 2009; Sadana 

and Dessauer, 2009), but advancements in the therapeutic targeting of AC 

isoforms have been limited by the lack of potent and isoform-selective small 

molecule modulators (Pavan et al., 2009; Pierre et al., 2009; Seifert et al., 2012).  

The discovery of AC isoform-selective small molecules is expected to facilitate 

the validation of AC isoforms as therapeutic targets and augment the study of AC 

isoform function in vivo.  Identification of chemical probes for AC2 is particularly 

important because there are no published genetic deletion studies and few small 

molecule modulators.  Chapter 4 demonstrates the development and 

implementation of an intact-cell small molecule screening approach and 

subsequent validation paradigm for the discovery of AC2 inhibitors.  The NIH 

clinical collections I and II were screened for inhibitors of AC2 activity, using 

PMA-stimulated cAMP accumulation as a functional readout.  Active compounds 

were subsequently confirmed and validated as direct AC2 inhibitors using 
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orthogonal and counter screening assays. The screening effort identified SKF-

83566 as a selective AC2 inhibitor with superior pharmacological properties for 

selective modulation of AC2 when compared to currently available AC inhibitors.  

Furthermore, the utility of SKF-83566 as a small molecule probe to study the 

function of endogenous ACs was demonstrated in C2C12 mouse skeletal muscle 

cells. 

 Future studies should be aimed at understanding the molecular basis of 

AC2 inhibition by SKF-83566.  A combination of biochemical, molecular modeling, 

and mutagenesis studies have typically been employed to understand the 

mechanisms of small molecule modulation of AC.  Biochemical studies of 

enzyme kinetics using cell membranes that overexpress AC2 suggest that SKF-

83566 is noncompetitive with respect to ATP (Conley et al., under review), but its 

relationship to other activators, such as forskolin, or Gαs (Dessauer, 2002; 

Dessauer and Gilman, 1997; Dessauer et al., 1999; Iwatsubo et al., 2004; Onda 

et al., 2001) can also be studied.  There is also a precedent for molecular 

modeling based on the crystal structures of the catalytic C1 and C2 domains 

(Pinto et al., 2008; Tesmer et al., 1997; Zhang et al., 1997).  Similar molecular 

modeling analyses are underway for SKF-83566 docking to AC to predict the 

specific site of interaction.  Subsequent to molecular modeling studies, mutation 

of residues that are predicted to be crucial for binding can be performed to 

experimentally validate the model.  The complementary approaches described 

above may provide useful insight into the mechanism of AC2 modulation by SKF-

83566.   
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 SKF-83566 is an important new chemical probe for AC2, but it also 

displays antagonist activity against D1 dopamine and 5HT2 serotonin receptors 

(Berkowitz et al., 1984; Ohlstein and Berkowitz, 1985).  Future efforts should be 

focused toward strategies to enhance the pharmacological properties of SKF-

83566 to increase the specificity for AC and enhance the potency and selectivity 

for inhibition of AC2.  First, our study utilized SKF-83566 as a racemic mixture, 

warranting additional pharmacological studies to determine which enantiomer is 

more active for inhibition of AC2.  Interestingly, a recent study suggests that 

D1/D5 dopamine receptors are closely linked to AC by ligand similarity (Lin et al., 

2013), perhaps suggesting that receptor antagonism and AC2 inhibition will 

share the same active enantiomer (i.e, (+)-SKF-83566) (Berkowitz et al., 1984; 

Ohlstein and Berkowitz, 1985).  Furthermore, (+)-SCH-23390 (a structural 

analogue of SKF-83566) significantly inhibited PMA-stimulated AC2 activity in 

HEK-hAC2 cells, suggesting that (+)-SKF-83566 is the active enantiomer for 

inhibition of AC2 (Table A.2 and Figure A.1).  The enantiomer studies are 

expected to at least provide enhanced potency for inhibition of AC2.  Additionally, 

classic structure-activity relationship studies would also be useful to identify 

chemical moieties and functional groups that are important for AC2 inhibition and 

enhance the specificity and isoform-selectivity for AC2.  A modest structure-

activity study is reported in Table A.2 and Figure A.1 of the appendix. 

 Our results from chapter 4 demonstrate the utility of the screening 

approach and suggest that the series of complementary post-screening 

experiments are able to validate direct and selective AC2 inhibitors.  Importantly, 
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the success of the initial pilot screen of a 727 compound collection (NIH clinical 

collections I and II) suggests that the screening and validation paradigm is 

sufficiently robust to accommodate future screening of larger and more diverse 

chemical libraries to identify additional novel small molecule AC2 inhibitors.  

Consistent with this prediction, a screen of the Spectrum Collection (2,320 

compounds) for inhibitors of AC2 activity has been performed and the results and 

initial confirmation of activity is reported in the appendix (Table A.3 and Table 

A.4).  Furthermore, the assay format that was developed to study cAMP levels in 

HEK-hAC2 cells is expected to be readily adapted for other AC isoforms, 

including AC1 and AC5.  Specifically, parameters such as pharmacological 

stimulation conditions and cell number should be optimized for each specific 

target, but the overall semi-automated workflow and cAMP detection technology 

is expected to support these studies without modification.  Identification of new 

small molecule modulators of AC1 and AC5 are expected to contribute to our 

understanding of these isoforms in physiological processes including pain 

perception, learning and memory, and cardiac function. 
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APPENDIX 

 A high-throughput screening approach for the discovery of small molecule 

inhibitors of AC2 was described in chapter 4.  Specifically, the NIH clinical 

collections I and II were screened for the ability of compounds (25 μM) to inhibit 

50 nM PMA-stimulated AC2 activity in HEK-hAC2 cells.  The complete screening 

results are reported in Table A.1. 
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Table A.1 Screening of NIH Clinical Collections I and II for inhibition of AC2 
activity.  The NIH Clinical Collections I and II (25 µM) were screened for inhibition 
of PMA-stimulated (50 nM) cAMP accumulation in HEK-hAC2 cells using the 
Cisbio HTRF cAMP dynamic 2 detection methodology.  The data represent the 
average percent inhibition of the PMA-stimulated cAMP response from duplicate 
plates. 

Compound Name % Inhibition 
(-)-Cotinine -14.29 
(+)-3-HYDROXY-N-METHYLMORPHINAN D-TARTRATE 23.30 
(+)-CIS-DILTIAZEM HYDROCHLORIDE -60.31 
(+/-)-Epinephrine hydrochloride -123.98 
(+/-)-NOREPINEPHRINE HYDROCHLORIDE -71.99 
(Â±)-Vesamicol hydrochloride -5.49 
1-(2-Methyl-5-nitro-imidazol-1-yl)-propan-2-ol -41.71 
1,1-DIMETHYL-4-PHENYLPIPERAZINIUM IODIDE -12.35 
1,3,5(10)-ESTRATRIEN-3-OL-17-ONE SULPHATE, SODIUM SALT -34.06 
10H-Phenothiazine, 2-chloro-10-[3-(4-methyl-1-piperazinyl)propyl- [CAS] 35.21 
17-BETA-ESTRADIOL 17-VALERATE -427.70 
19-Norethindrone -79.01 
19-NORETHINDRONE ACETATE -162.15 
1-BENZYLIMIDAZOLE 23.73 
1H-Cyclopenta[b]quinolin-9-amine, 2,3,5,6,7,8-hexahydro-, 
monohydrochloride- [CAS] -1.71 

1H-Imidazol-2-amine, N-(2,6-dichlorophenyl)-4,5-dihydro- [CAS] -14.30 
1H-Imidazole-5-carboxylic acid, 1-(1-phenylethyl)-, ethyl ester, (R)- 
[CAS] -43.54 

1H-Indole-2-propanoic acid, 1-[(4-chlorophenyl)methyl]-3-[(1,1-
dimethylethyl)thio]-Alpha,Alpha-dimethyl-5-(1-methylethyl)- [CAS] -866.27 

2(1H)-Pyrimidinone, 4-amino-1-ÃƒÂ¿-D-arabinofuranosyl- [CAS] 11.06 
2-(2-AMINOETHYL)PYRIDINE 2.82 
2',3'-DIDEOXYCYTIDINE -16.86 
2',3'-DIDEOXYINOSINE -21.84 
2-CHLORO-2'-DEOXYADENOSINE -129.30 
2-CHLOROADENOSINE -213.14 
2H-Indol-2-one, 1,3-dihydro-1-phenyl-3,3-bis(4-pyridinylmethyl)- [CAS] -95.83 
3(2H)-Pyridazinone, 6-[4-(difluoromethoxy)-3-methoxyphenyl]- [CAS] -210.56 
3,5,3'-TRIIODOTHYRONINE -11.34 
3-[3,5-DIBROMO-4-HYDROXYBENZOYL]-2-ETHYLBENZOFURAN -147.33 
3'-deoxydenosine -10.67 
3-HYDROXY-1,2-DIMETHYL-4(1H)-PYRIDONE -0.82 
3-Hydroxy-2-methyl-4-pyrone -61.63 
3-PYRIDINEMETHANOL 36.49 
4-(AMINOMETHYL)BENZENESULFONAMIDE ACETATE -57.21 
4-Chloro-N-(2-morpholin-4-yl-ethyl)-benzamide -20.07 
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Table A.1 Continued. 

4-Thiazolidinecarboxylic acid, 2-oxo-, (R)- [CAS] -28.68 
5-Amino-2-hydroxy-benzoic acid 11.79 
5-Azacytidine -26.30 
5-fluoro-2-pyrimidone -1.08 
5-FLUOROCYTOSINE 13.73 
5-FLUOROURACIL -4.98 
5-Methoxytryptamine -35.57 
5-Nonyloxytryptamine -39.73 
6-[2-ETHOXY-1-NAPHTHAMIDO]-PENICILLIN SODIUM SALT -65.07 
6ALPHA-METHYL-11BETA-HYDROXYPROGESTERONE -102.01 
6-AMINOINDAZOLE -10.70 
6-AZAURIDINE -3.55 
6H-Pyrido[2,3-b][1,4]benzodiazepin-6-one, 11-[[2-[(diethylamino)methyl]-
1-piperidinyl]acetyl]-5,11-dihydro- [CAS] 6.14 

7-NITROINDAZOLE -49.80 
8-Azaspiro[4.5]decane-7,9-dione, 8-[2-[[(2,3-dihydro-1,4-benzodioxin-2-
yl)methyl]amino]ethyl]-, monomethanesulfonate [CAS] -28.35 

8-Chloro-11-piperidin-4-ylidene-6,11-dihydro-5H-
benzo[5,6]cyclohepta[1,2-b]pyridine 13.56 

9-AMINO-1,2,3,4-TETRAHYDROACRIDINE HYDROCHLORIDE 11.92 
ACARBOSE -10.38 
ACEBUTOLOL HYDROCHLORIDE -25.27 
Acetamide, 2-amino-N-(1-methyl-1,2-diphenylethyl)-, (+/-)- [CAS] -36.70 
Acetazolamide -48.41 
Acitretin -23.36 
ACTARIT -7.99 
Acyclovir -30.21 
Adenine 9-beta;-D-arabinofuranoside -9.90 
Adenosine, N-(2-hydroxycyclopentyl)-, (1S-trans)- [CAS] -36.70 
Albalon -71.39 
Albendazole -62.52 
ALFUZOSIN -1.64 
Allegra -10.48 
Allopurinol -43.46 
ALOSETRON HCl -42.93 
Alprazolam -46.53 
Altanserin -611.22 
Altretamine -12.49 
AM 404 -283.12 
AM-251 5.15 
AMCINONIDE -1.11 
AMFEBUTAMONE HCl -12.60 
Aminoglutethimide -38.97 
Aminolevulinic Acid -80.40 
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Table A.1 Continued. 

AMIODARONE HYDROCHLORIDE -370.47 
Amisulpride -19.13 
AMLEXANOX 41.47 
AMLODIPINE BASE 24.13 
AMOXAPINE -16.78 
AMOXICILLIN CRYSTALLINE -60.10 
Ampicillin Sodium -64.53 
AMPIROXICAM -39.71 
Anafranil -68.51 
ANAGRELIDE HCl -115.28 
ANASTROZOLE -9.63 
Annoyltin -15.14 
ARGATROBAN -1.41 
ARIPIPRAZOLE -54.30 
Artane 1.60 
ARTEMETHER -53.69 
ARTESUNATE -12.63 
ATENOLOL 14.86 
ATOMOXETINE HCl 1.54 
ATRACURIUM BESYLATE -64.73 
ATROPINE -60.91 
Azasetron -2.06 
Azathioprine -29.00 
AZELASTINE HCl 1.65 
Azithromycin -44.56 
BALSALAZIDE -16.93 
Beclomethasone -66.70 
Beclomethasone dipropionate -20.74 
BENACTYZINE HYDROCHLORIDE -48.45 
BENAZEPRIL HCl -4.13 
Bendrofluazide -24.41 
BENIDIPINE HCl -194.19 
BENPROPERINE PHOSPHATE -8.36 
Bentyl -89.31 
Benzeneacetic acid, 2-[(2,6-dichlorophenyl)amino]-, monosodium salt 
[CAS] -2.76 

Benzeneacetic acid, Alpha-(hydroxymethyl)-, 9-methyl-3-oxa-9-
azatricyclo[3.3.1.02,4]non-7-yl ester, [7(S)-
(1Alpha,2ÃƒÂ¿,4ÃƒÂ¿,5Alpha,7ÃƒÂ¿)]- [CAS] 

-14.01 

Benzeneacetonitrile, Alpha-[3-[[2-(3,4-
dimethoxyphenyl)ethyl]methylamino]propyl]-3,4-dimethoxy-Alpha-(1-
methylethyl)-, (R)- [CAS] 

-19.11 

Benzenebutanoic Acid -5.73 
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Table A.1 Continued. 

Benzo[a]phenanthridine-10,11-diol, 5,6,6a,7,8,12b-hexahydro-, trans- 
[CAS] -0.81 

BESTATIN -23.10 
BETA-ESTRADIOL -61.63 
Betamethasone -16.61 
Betaxolol hydrochloride 9.57 
BICALUTAMIDE -55.60 
Bifemelane -15.19 
BIFONAZOLE -269.21 
BISOPROLOL FUMARATE -25.29 
Brimonidine -86.58 
Brucine 9.29 
BUDESONIDE -26.53 
Buflomedil HCl -6.25 
BUMETANIDE -1.04 
BUPROPION HYDROCHLORIDE -14.45 
Buspar -25.47 
Busulfan -12.09 
CALCIPOTRIOL -78.88 
CALCITRIOL -79.52 
Cantil 4.85 
Capsaicin -58.39 
CAPTOPRIL -35.91 
Carbamazepine -47.13 
CARBIDOPA -14.95 
Carbinoxamine Maleate -52.66 
Cardene -391.56 
Carisoprodol -16.15 
CARMOFUR -5.31 
Carvedilol -85.91 
CCPA -32.69 
CEFACLOR -6.56 
CEFATRIZINE PROPYLENE GLYCOL -28.72 
CEFAZOLIN SODIUM SALT -44.82 
CEFDINIR 10.10 
CEFIXIME TRIHYDRATE -6.49 
CEFOTAXIME SODIUM SALT -28.23 
CEFOXITIN SODIUM SALT -58.42 
CEFPODOXIME PROXETIL -42.62 
Cefuroxime 9.32 
Celecoxib 16.11 
Cephalexin monohydrate -47.87 
CERIVASTATIN Na -49.49 
Cetirizine -59.23 
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Table A.1 Continued. 

CETRAXATE HCl -19.18 
CGS 12066B -235.66 
CGS 15943 -118.86 
CHLORAMBUCIL -54.68 
Chloramphenicol -31.91 
CHLORDIAZEPOXIDE -109.83 
Chlorothiazide 8.06 
Chloroxine -302.28 
Chlorpheniramine -4.76 
Chlorpropamide -74.63 
Chlorthalidone -2.90 
Chlorzoxazone -31.15 
CILASTATIN Na 11.23 
Cimetidine -17.64 
Cinanserin -28.54 
Cisapride -45.26 
Citalopram -86.53 
citalopram hydrobromide -51.02 
CLARITHROMYCIN 0.08 
Clobenpropit -37.96 
CLOBETASOL PROPIONATE -82.01 
CLOFAZIMINE -76.90 
Clomid -266.53 
clopidogrel -69.38 
CLOTRIMAZOLE -136.54 
Clozapine -22.10 
Cogentin Mesylate -36.32 
Cortell -62.85 
CORTICOSTERONE -74.11 
CORTISONE -78.06 
CORTISONE ACETATE -39.61 
Cromolyn Sodium 0.10 
CYPROHEPTADINE -26.41 
Cytoxan -21.75 
d-3-Methoxy-N-methylmorphinan hydrobromide -21.95 
DACTINOMYCIN -28.81 
DANAZOL -351.79 
Dantrolene sodium salt -16.00 
Dapsone -5.46 
DAUNORUBICIN HYDROCHLORIDE -18.55 
D-CYCLOSERINE -10.81 
D-CYCLOSERINE -42.47 
DEHYDROCHOLIC ACID 21.82 
DEHYDROEPIANDROSTERONE -50.60 
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DELTA1-HYDROCORTISONE 21-HEMISUCCINATE SODIUM SALT -5.61 
Demeclocycline -45.09 
DEPO-MEDROL -48.24 
DEPRENALIN -45.50 
DEPRENALIN -74.72 
DESOXIMETASONE -16.70 
Dexamethasone -13.53 
DEXBROMPHENIRAMINE MALEATE -27.93 
DEXCHLORPHENIRAMINE MALEATE 27.54 
Diazepam -43.54 
DIAZOXIDE -9.39 
Dibenzyline -459.58 
DICHLOROACETIC ACID -55.71 
DICLOXACILLIN SODIUM -52.25 
Diflunisal -144.95 
DIGOXIN 35.26 
Dilantin -12.65 
Diphenhydramine hydrochloride 4.15 
DIPHENOXYLATE -65.13 
diphenylcyclopropenone -424.00 
DIPYRIDAMOLE 15.69 
Disipal 0.76 
DL-PENICILLAMINE -50.23 
DOCETAXEL -34.98 
DOFETILIDE -13.63 
DOLASETRON MESYLATE -29.16 
Donepezil -26.59 
DOXAPRAM HYDROCHLORIDE -14.91 
Doxazosin -92.28 
Doxepin -51.07 
DOXEPIN HYDROCHLORIDE -26.94 
DOXORUBICIN HYDROCHLORIDE 33.53 
DOXYCYCLINE 37.36 
Doxylamine succinate salt -27.08 
DROPERIDOL -39.13 
Duloxetine 16.04 
DULOXETINE HCl 50.54 
Duremesin -458.71 
Duvadilan -18.67 
EBSELEN -166.51 
Econazole Nitrate -301.82 
EDROPHONIUM CHLORIDE 46.54 
EFAVIRENZ -44.75 
ENALAPRIL MALEATE -2.74 
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ENALAPRILAT 22.39 
ENROFLOXACIN -26.16 
Epigallocatechin gallate -13.06 
EPIRUBICIN HYDROCHLORIDE 18.31 
Eryped 4.37 
ESCITALOPRAM OXALATE -33.09 
ESMOLOL HYDROCHLORIDE -9.35 
ESOMEPRAZOLE Mg -70.39 
Eszopiclone -48.05 
ETHACRYNIC ACID -34.64 
Ethambutol -56.84 
Ethionamide -55.49 
Ethylestrenol -81.07 
ETHYNYLESTRADIOL -91.02 
Etodolac -46.54 
Etomidate 9.69 
etoposide -16.54 
Evista -100.36 
EXEMESTANE -115.77 
EZETIMIBE -46.48 
FAMCICLOVIR -28.61 
FAMOTIDINE -5.01 
Felbamate -41.46 
Felodipine -95.05 
FENOFIBRATE -228.94 
FENOLDOPAM MESYLATE -22.47 
FENPIVERINIUM BROMIDE 5.18 
FINASTERIDE -22.29 
Flecainide Acetate -17.60 
Floxuridine -13.78 
FLUBENDAZOLE -53.87 
Fluconazole -39.05 
FLUDARABINE 22.76 
Flumadine -12.51 
FLUMAZENIL -29.89 
FluniSOLIDe -198.75 
FLUOCINOLONE ACETONIDE 12.99 
FLUOCINOLONE ACETONIDE 21-ACETATE -35.57 
Fluorometholone -76.25 
Fluperlapine -9.92 
Fluphenazine Dihydrochloride 14.21 
Flurbiprofen -44.40 
Flurbiprofen -78.82 
FLUTAMIDE -56.61 
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FLUTICASONE PROPIONATE 29.83 
fluvastatin -44.95 
Fluvoxamine 16.65 
Folic acid -22.44 
FORMOTEROL FUMARATE DIHYDRATE -88.12 
FTORAFUR -27.87 
FUROSEMIDE -11.34 
Gabexate mesylate -91.14 
Galanthamine -41.37 
Ganciclovir -41.16 
Gatifloxacin -0.22 
GEMFIBROZIL -44.81 
GLIMEPIRIDE -40.10 
GLIPIZIDE 11.22 
Glyburide -5.62 
Glycine, N-[2-[(acetylthio)methyl]-1-oxo-3-phenylpropyl]-,phenylmethyl 
ester [CAS] -7.71 

Glycopyrrolate 8.42 
Glycopyrrolate -29.69 
GOSERELIN ACETATE 2.29 
GR 89696 17.49 
GRANISETRON HCl -16.86 
Griseofulvin -83.55 
Guanidine, N-cyano-N'-(1,1-dimethylpropyl)-N''-3-pyridinyl- [CAS] 9.58 
HALOMETASONE MONOHYDRATE -6.37 
Haloperidol 15.22 
Hexachlorophene -257.07 
HOMOHARRINGTONINE -37.36 
Homoveratrylamine -36.42 
HONOKIOL -137.50 
HTMT 0.82 
HUPERZINE A 17.45 
Hydrochlorothiazide -54.49 
HYDROCORTISONE -39.84 
HYDROCORTISONE HEMISUCCINATE -65.75 
HYDROFLUMETHIAZIDE 10.38 
HYPEROSIDE -68.78 
IBUPROFEN -35.67 
ICARIIN -43.84 
IDARUBICIN HCl -58.20 
IDEBENONE -328.07 
Ifenprodil 16.10 
IMATINIB MESYLATE -123.01 
Imodium -8.23 
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INDAPAMIDE -57.29 
Indatraline 38.92 
Inderal -14.01 
INDINAVIR SULPHATE 1.17 
Indirubin 26.64 
Indomethacin -26.12 
Intropin 41.82 
IPRATROPIUM BROMIDE MONOHYDRATE -53.51 
IPRIFLAVONE -31.76 
IRBESARTAN -25.62 
IRINOTECAN HCl )trihydrate) -32.70 
IRSOGLADINE MALEATE -30.34 
Isoniazid -6.49 
Isoquercitrin -17.85 
Isotretinoin -150.35 
ISRADIPINE -99.96 
Isuprel -99.87 
ITAVASTATIN Ca -53.39 
ITOPRIDE HCl -35.59 
ITRACONAZOLE -90.04 
Kemadrin -56.49 
ketoconazole -170.07 
KETOPROFEN -81.27 
Ketorolac tromethamine -73.56 
KETOTIFEN FUMARATE -15.38 
KITASAMYCIN -38.50 
L-694,247 -3.82 
LABETALOL HYDROCHLORIDE -19.73 
LACIDIPINE -881.61 
LAMIVUDINE -11.89 
LAMIVUDINE -29.52 
LAMOTRIGINE -12.56 
LANSOPRAZOLE -228.54 
LATANOPROST -364.86 
LETROZOLE -57.57 
LEVETIRACETAM -17.12 
LEVOCETIRIZINE -17.88 
LEVOFLOXACIN 23.25 
LEVONORGESTREL -46.15 
LEVOSULPIRIDE -37.31 
L-Glutamic acid, N-[4-[[(2,4-diamino-6-
pteridinyl)methyl]methylamino]benzoyl]- [CAS] 10.82 

LIDOCAINE -21.96 
Lincomycin hydrochloride -66.35 
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LINEZOLID -10.12 
LOBELINE HYDROCHLORIDE -13.53 
LOFEPRAMINE -179.59 
LOFEXIDINE HCl 0.30 
LOMERIZINE DiHCl -512.44 
LOMIFYLLINE -0.91 
LORATADINE 64.39 
Lorazepam -221.43 
L-Ornithine, N5-[imino(methylamino)methyl]-[CAS] 15.83 
LOSARTAN Potassium -9.59 
LOTEPREDNOL ETABONATE -6.30 
Lovastatin -153.47 
Loxapine succinate -21.33 
LOXOPROFEN SODIUM 1.74 
L-THYROXINE -9.99 
LY 171883 13.22 
Maprotilline HCl 33.13 
Maxolon -47.34 
Mebendazole -62.43 
MECILLINAM -28.98 
Meclomen -129.92 
MEDROXYPROGESTERONE -58.63 
Medroxyprogesterone 17-acetate -58.25 
Mefenamic Acid -141.11 
Mefloquine hydrochloride 31.17 
MEGESTROL ACETATE -52.62 
Meloxicam -22.67 
MEMANTINE HYDROCHLORIDE 3.22 
Memantine hydrochloride -62.34 
MEPIRIZOLE -33.25 
MEPIVACAINE HYDROCHLORIDE -32.43 
Mercaptopurine -6.31 
MEROPENEM 6.18 
Mesna -42.14 
Mesoridazine 27.11 
Mestanolone -49.42 
Mestinon 15.65 
MESTRANOL -65.51 
Metaproterenol -178.71 
Methanesulfonamide, N-[4-[[1-[2-(6-methyl-2-pyridinyl)ethyl]-4-
piperidinyl]carbonyl]phenyl]-, dihydrochloride [CAS] -61.27 

Methazolamide -55.00 
Methimazole -56.87 
Methocarbamol -78.32 
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Methoxsalen -250.02 
METHYLANDROSTENEDIOL -25.46 
Methyldopa -49.37 
METHYLPREDNISOLONE -5.71 
Methyltestosterone -49.64 
METRONIDAZOLE 15.03 
Metylperon -41.07 
METYRAPONE -43.67 
mevastatin -44.00 
Mexitil -26.24 
MICONAZOLE NITRATE -1049.78 
Micropenin 1.62 
MIDAZOLAM HCl -23.02 
MIFEPRISTONE -47.38 
MIGLITOL -31.50 
Milnacipran 1.31 
MILRINONE -2.02 
MINOCYCLINE HYDROCHLORIDE -48.09 
Minoxidil -42.84 
Miochol -19.44 
MIRTAZAPINE -63.94 
mirtazapine -21.76 
MITOXANTRONE 85.56 
Moban -6.90 
Modafinil -28.40 
MONTELUKAST Na -35.55 
MOSAPRIDE CITRATE -35.42 
MOXIFLOXACIN HCl 22.06 
MOXONIDINE HCl -2.44 
Mupirocin -79.38 
N,N'-DIACETYL-1,6-DIAMINOHEXANE -19.56 
NABUMETONE -16.27 
NADOLOL -6.63 
Nafadotride 8.12 
NAFTOPIDIL -115.20 
Nalbuphine -38.64 
Nalidixic Acid -16.93 
NALOXONE HYDROCHLORIDE -48.66 
NALTREXONE HYDROCHLORIDE -7.68 
Naltrindole -16.75 
nandrolone -1195.60 
NAPROXEN SODIUM -101.28 
NATEGLINIDE -2.38 
Nefazodone -131.94 
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NELFINAVIR MESYLATE -28.63 
N-Ethyl-o-crotonotoluidide -39.81 
NIALAMIDE -63.84 
NICORANDIL -14.00 
NICOTINAMIDE -20.26 
NICOTINE 2.90 
Nicotinic Acid -68.84 
NIFEDIPINE -241.22 
NIFEKALANT HCl -26.49 
Nimetazepam -18.85 
NIMODIPINE -150.38 
NISOLDIPINE -67.12 
NITAZOXANIDE -38.92 
Nitrazepam -43.67 
NITRENDIPINE -129.66 
NITROFURANTOIN -0.81 
NIZATIDINE -9.63 
Nobiletin -217.65 
Norflex -41.19 
NORFLOXACIN -30.60 
Nornicotine -5.64 
Norpace -58.43 
Norpramin -14.30 
Novocain -10.70 
OFLOXACIN 37.67 
OLANZAPINE -39.83 
OLIGOMYCIN C -25.65 
OLMESARTAN MEDOXOMIL 17.80 
OLOPATADINE HCl -4.64 
OMEPRAZOLE -74.37 
Ondansetron -44.81 
ONDANSETRON HYDROCHLORIDE -1.88 
ORLISTAT -26.07 
ORMETOPRIM -3.87 
ORNIDAZOLE -20.09 
OXAPROZIN -1.88 
OXICONAZOLE NITRATE -471.14 
Oxiranecarboxylic acid, 2-[6-(4-chlorophenoxy)hexyl]-, ethyl ester- [CAS] -119.90 
OXYBUTYNIN CHLORIDE 7.90 
Oxymetholone 37.00 
OXYPHENONIUM BROMIDE -0.88 
Oxytetracycline hydrochloride -32.15 
ozagrel, monohydrochloride -12.71 
PALONOSETRON HCl -50.02 
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Pamelor 
 10.67 

Pancuronium -2.82 
PANTOPRAZOLE SODIUM SALT 4.43 
PARECOXIB Na -41.08 
Paroxetine 28.75 
PAROXETINE 13.20 
Paroxetine 29.11 
PAZUFLOXACIN -17.74 
PD 81723 -101.66 
PEFLOXACIN MESYLATE 2.49 
Pemoline -26.94 
PENCICLOVIR -9.46 
Penicillin V -29.64 
Pentoxifylline -6.30 
PERGOLIDE MESYLATE -34.66 
PEROSPIRONE HCl -221.05 
PERPHENAZINE 4.55 
Pfizerpen -52.38 
Phenelzine 0.69 
PHENELZINE SULFATE SALT -10.83 
Phenergan -60.34 
PHENOTHIAZINE -185.13 
PHENPROBAMATE -32.26 
PHENTOLAMINE HCL -25.56 
Phylloquinone 16.86 
Physostigmine -34.58 
PICEID -48.05 
Picrotin - Picrotoxinin -7.74 
PIDOTIMOD -25.49 
PILOCARPINE HYDROCHLORIDE -24.04 
Pinacidil monohydrate -37.17 
PINDOLOL 6.77 
PIOGLITAZONE HCl -37.91 
PIPERACILLIN SODIUM SALT -32.15 
PIRENPERONE -39.75 
Piribedil -17.22 
Piroxicam 5.08 
Pizotyline -41.77 
Podofilox -74.63 
Pramipexole -17.68 
PRAMIPEXOLE HCl -10.50 
PRAVASTATIN Sodium -20.49 
PRAZIQUANTEL -32.70 
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Prazosin -74.72 
Prednisolone -71.01 
PREDNISOLONE ACETATE -58.18 
Prednisone -59.54 
PRILOCAINE HYDROCHLORIDE -56.61 
Primaquine Diphosphate -47.21 
Primidone -17.33 
Priscoline 15.88 
Pro-Amatine -45.72 
Pro-Banthine -35.85 
Probenecid -25.57 
PROCARBAZINE HYDROCHLORIDE -10.24 
PROGESTERONE -135.52 
Pronestyl -33.25 
Propofol -96.14 
Propylthiouracil 1.80 
Prostaglandin E1 -281.47 
Proxymetacaine -66.72 
Prozac -0.35 
PTEROSTILBENE -111.36 
Pyrazinamide -28.09 
Pyrazinecarboxamide, 3,5-diamino-N-(aminoiminomethyl)-6-chloro- 
[CAS] -19.57 

PYRIDINE-2-ALDOXIME METHOCHLORIDE 16.69 
Pyrimethamine 4.91 
QUETIAPINE HEMIFUMARATE -55.53 
Quinapril  hydrochloride -59.85 
Quinidine hydrochloride monohydrate -43.57 
R(+)-SCH-23390 hydrochloride -71.68 
RABEPRAZOLE -225.07 
Raclopride -38.11 
RALTITREXED 6.53 
RAMIPRIL -24.47 
RAMIPRIL -27.13 
Ranitidine hydrochloride -7.39 
Ranolazine dihydrochloride -15.06 
Reichsteins substanceÂ S -24.58 
REPAGLINIDE 24.07 
Resveratrol -80.06 
Retinoic acid -39.84 
Ribavirin -43.19 
RIFABUTIN -77.60 
Rifabutin -93.76 
RIFAMPICIN -13.15 
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Table A.1 Continued. 

RIFAPENTINE -64.54 
RIFAPENTINE -93.03 
RIFAXIMIN -35.08 
Riluzole -58.55 
Rimcazole -8.93 
RISPERIDONE -90.13 
RITONAVIR -145.33 
RIZATRIPTAN BENZOATE -35.64 
ROFECOXIB -19.89 
ROLIPRAM -197.91 
ROLITETRACYCLINE -89.46 
ROPIVACAINE HCl 14.31 
ROSIGLITAZONE HCl -29.74 
ROSIGLITAZONE MALEATE -21.83 
ROXATIDINE ACETATE HCl -23.89 
RU 24969 -100.81 
RUFLOXACIN HCl 16.34 
RUTIN -7.79 
Rythmol -24.02 
S(-)-Timolol maleate -11.27 
SALBUTAMOL SULFATE -57.70 
Salmeterol -66.58 
SAQUINAVIR MESYLATE 0.63 
SB 205607 -87.65 
SDM25N -148.22 
SECOISOLARICIRESINOL 7.48 
Sertraline 30.75 
Sertraline 6.39 
Sibutramine -74.85 
SIBUTRAMINE HCl -48.81 
Simvastatin -282.50 
SKF 83566 85.21 
Sonazine -10.09 
Sotalol hydrochloride -14.64 
SPECTINOMYCIN DIHYDROCHLORIDE PENTAHYDRATE -80.03 
Spironolactone -89.91 
SR 57,227A 4.17 
Stanozolol -168.50 
STAVUDINE -43.12 
STAVUDINE -36.06 
Stiripentol 24.79 
Sulfacetamide -45.86 
Sulfamethoxazole -38.02 
SULFASALAZINE -7.99 
  

 

 



203 

Table A.1 Continued. 

Sulfinpyrazone -53.83 
Sulfisoxazole -37.08 
Sulindac -125.91 
SUMATRIPTAN SUCCINATE 10.65 
Symmetrel -23.92 
SYNEPHRINE -12.39 
TACROLIMUS -176.39 
TADALAFIL 28.66 
Tamoxifen -86.62 
TAXIFOLIN-(+) -15.27 
TAXIFOLIN-(+/-) -1.15 
TEGASEROD MALEATE 21.65 
TELITHROMYCIN -73.24 
TELMISARTAN -84.77 
TEMOZOLOMIDE -3.15 
Terazosin -21.67 
Terazosin -8.54 
TERBINAFINE HCl -1025.30 
Terbutaline Sulfate -92.19 
Testosterone -79.38 
Testosterone -133.96 
TETRACYCLINE -58.86 
TETRAETHYLTHIURAM DISULFIDE -1275.81 
TFMPP 16.24 
Thalidomide -28.80 
Theophylline -69.10 
THIABENDAZOLE -2.52 
Thiophene, 5-bromo-2-(4-fluorophenyl)-3-[4-(methylsulfonyl)phenyl]- 
[CAS] -50.82 

THIORIDAZINE HYDROCHLORIDE 58.40 
THIOTHIXENE 16.34 
TIAGABINE HCl -36.11 
TIBOLONE -131.53 
TICLOPIDINE HCl -242.87 
TINIDAZOLE -19.86 
Tizanidine hydrochloride -98.06 
TOCAINIDE -21.83 
Tofranil -286.92 
TOLAZAMIDE -44.51 
Tolbutamide 39.25 
TOLTERODINE TARTRATE -27.08 
TOPIRAMATE -19.99 
TOPOTECAN HCL 40.67 
TORASEMIDE -41.10 
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TOREMIFENE CITRATE -16.54 
TOSUFLOXACIN TOSYLATE -41.06 
Tramadol -25.90 
TRANILAST 68.77 
TRAZODONE HYDROCHLORIDE -4.12 
TREMULACIN -315.25 
TRIAMCINOLONE ACETONIDE -22.19 
Triamterene 1.47 
TRICLABENDAZOLE -155.68 
Triclosan -181.17 
Trileptal -10.76 
TRIMEBUTINE MALEATE -97.99 
Trimethoprim -0.16 
TRIPELENNAMINE HYDROCHLORIDE -34.08 
Tripfluoperazine Hydrochloride 28.64 
TRIPTOLIDE -5.67 
TROPICAMIDE -60.08 
TROPISETRON HCl -6.79 
TROXIPIDE -24.60 
TRYPTOLINE -81.98 
Tyzine -35.39 
URAPIDIL HYDROCHLORIDE -26.34 
Urecholine -9.34 
URSODEOXYCHOLIC ACID -49.48 
VALACICLOVIR HYDROCHLORIDE -20.27 
VALDECOXIB -42.76 
Valproic Acid -98.54 
VALSARTAN -40.09 
VARDENAFIL CITRATE 16.37 
VECURONIUM BROMIDE -25.16 
VENLAFAXINE HCl -36.29 
VINCRISTINE SULFATE -49.39 
VINDESINE SULFATE -61.35 
VINORELBINE BITATRATE -45.00 
Viramune -11.00 
Vistaril Pamoate 17.41 
VORICONAZOLE -11.99 
WARFARIN SODIUM -12.62 
Westcort -49.55 
XANTHINOL NICOTINATE -56.27 
Zacopride -5.81 
ZAFIRLUKAST 8.66 
Zaleplon 33.51 
ZERANOL -87.34 
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Zidovudine -52.97 
ZILEUTON -85.00 
Zolmitriptan -30.51 
ZOLPIDEM TARTRATE -33.68 
Zonisamide -39.54 
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 The NIH clinical collections I and II contain drug-like molecules with 

documented biological activity and a history of use in human clinical trials.  These 

properties create a bias for biological activity that is non-specific with regard to 

AC2 inhibition.  For example, SKF-83566 was validated as a direct small 

molecule AC2 inhibitor, but is also known to be a dopamine and serotonin 

receptor antagonist (see discussion in chapter 4).  Therefore, it is desirable to 

identify chemical moieties and functional groups that confer specificity and/or 

potency for inhibition of AC2.  As such, a modest structure-activity relationship 

study was designed by testing analogues of four compounds (SKF-83566, 

tranilast, loratadine, and oxymetholone, see Figure A.1 for chemical structures) 

that were identified and validated as modulators of AC2 activity (3671-5745, 

1683-6987, 8005-4220, 4100-1558, and N050-006 were purchased from 

ChemDiv, San Diego, CA).  All compounds were tested for the ability to modulate 

cAMP accumulation in response to activation of AC isoforms in HEK-hAC2 

(activation by 50 nM PMA, 3 μM forskolin, and 300 nM PGE2), HEK-hAC1 

(activation by 3 μM A23187), HEK-hAC5 (activation by 300 nM forskolin), and 

HEK-wt cells (activation by 3 μM forskolin) as described in chapter 4 (Table A.2).  

These experiments represent an initial small-scale structure-activity relationship 

study for the compounds that inhibit AC2 activity, while simultaneously counter-

screening to examine the AC isoform selectivity of the compounds. 
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Figure A.1 Chemical structures of active compounds and their analogues. 

 

 



 

Table A.2 AC isoform-selectivity profiles of test compounds in intact-cell studies.  AC isoform selectivity was assessed 
by testing the ability of test compounds (30 µM) to modulate cAMP responses in HEK-hAC2 cells, HEK-hAC1 cells, 
HEK-hAC5 cells, and HEK-wt cells.  Data are reported as a percent of the vehicle treatment condition and represent 
the Mean ± S.E.M. of three independent experiments.  * p < 0.05, ** p < 0.01,*** p < 0.001 compared to vehicle 
condition, one sample t-test compared to 100. 
 

 
AC2 AC1 AC5 WT 

 

50 nM 
PMA 3 µM FSK 300 nM 

PGE2 
3 µM 

A23187 
300 nM 

FSK 3 µM FSK 

 
Mean±SEM Mean±SEM Mean±SEM Mean±SEM Mean±SEM Mean±SEM 

SKF-83566 HBr 16±0.66*** 36±3.3** 20±2.6** 100±8.1 61±2.7** 85±3.0* 
(+)-SCH23390 HCl 54±1.1*** 74±1.7** 68±3.6* 120±6.6 74±5.7* 100±14 
Nor-S-(-)-SCH 23388 HCl 77±7.9 71±4.1* 82±9.2 81±10 98±5.3 93±8.8 
SKF81297 HBr 86±8.2 130±9.3 100±20 84±16 200±2.4*** 260±8.4** 
SKF82958 HBr 81±16 94±10 82±9 80±12 120±4.1 210±0.74*** 
SCH39166 HBr 98±11 100±1.5 110±8.9 ND ND 110±14 
6264-0080 310±36* 360±25** 360±75 33±4.4** 330±33* 240±19* 
3671-5745 110±18 150±9.7* 130±6.4* 130±15 92±2.2 110±3.5 
Oxymetholone 67±11 56±24 32±1.6*** 75±9.7 100±9.7 84±11 
N050-0006 89±12 110±5.7 110±7.6 100±15 99±2.9 100±4.4 
Tranilast 33±5.0** 32±3.7** 55±2.8** 96±5.4 31±0.31*** 60±6.4* 
1683-6987 98±4.8 92±2.8 110±16 94±5.9 110±2.2* 130±5.6* 
8005-4220 81±12 88±4.7 83±8.2 96±7.3 90±7.2 91±1.4* 
4100-1558 88±7.9 110±1.8* 160±14 75±5.9 110±5.0 110±6.5 
Loratadine 50±6.8* 21±1.3*** 46±2.3** 120±7.8 16±0.80*** 51±3.2** 
Desloratadine 67±4.7* 110±3.5 85±5.8 78±7.5 84±4.0 89±1.9* 

 

208 



209 
 

 The development and initial success of a robust cell-based HTS assay for 

inhibitors of AC2 (see chapter 4) prompted further screening.  In an effort to 

identify novel and diverse small molecule inhibitors of AC2, the Spectrum 

Collection (MicroSource Discovery Systems Inc.) was screened for inhibition of 

PMA-stimulated cAMP in HEK-hAC2 cells as described in chapter 4.  The 

Spectrum Collection is a diverse chemical collection that contains 2,320 

compounds (60% drugs, 25% natural products, and 15% other bioactive 

molecules) and provided the opportunity to extend the screening efforts initiated 

by screening the NIH clinical collections I and II.  The complete results from the 

screening of the Spectrum Collection compounds (20 μM) for inhibition of 50 nM 

PMA-stimulated cAMP in HEK-hAC2 cells are reported in Table A.3. 
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Table A.3 Screening of the Spectrum Collection for inhibition of AC2 activity.  The 
Spectrum Collection (20 µM) was screened for inhibition of PMA-stimulated (50 
nM) cAMP accumulation in HEK-hAC2 cells using the Cisbio HTRF cAMP 
dynamic 2 detection methodology.  The data represent the percent inhibition of 
the PMA-stimulated cAMP response in singlet. 
 

Compound Name % Inhibition 
1-(2-METHOXYPHENYL)PIERAZINE HYDROCHLORIDE -3.07 
1,2alpha-EPOXYDEACETOXYDIHYDROGEDUNIN -40.94 
1,3,5-TRIMETHOXYBENZENE -48.95 
1,3-DIDEACETYL-7-DEACETOXY-7-OXOKHIVORIN 20.00 
1,3-DIDEACETYLKHIVORIN -0.27 
1,4-NAPHTHOQUINONE 99.60 
1,7-DIDEACETOXY-1,7-DIOXO-3-DEACETYLKHIVORIN -25.67 
10-HYDROXYCAMPTOTHECIN 37.10 
11a-ACETOXYPROGESTERONE -15.39 
12a-HYDROXY-5-DEOXYDEHYDROMUNDUSERONE -103.88 
12a-HYDROXY-9-DEMETHYLMUNDUSERONE-8-CARBOXYLIC ACID -1.59 
13-METHYL-4,4-BISNOR-8,11,13-PODOCARPATRIEN-3-ONE -89.76 
14-METHOXY-4,4-BISNOR-8,11,13-PODOCARPATRIEN-3-ONE -104.77 
18alpha-GLYCYRRHETINIC ACID -10.67 
18-AMINOABIETA-8,11,13-TRIENE SULFATE -21.67 
1-HYDROXY-3,6,7-TRIMETHOXY-2,8-DIPRENYLXANTHONE 12.42 
1-MONOPALMITIN 21.46 
1-PHENYLBIGUANIDE HYDROCHLORIDE 1.78 
1R,2S-PHENYLPROPYLAMINE -37.14 
2,2'-AZO-bis-2-AMINOPROPANE 5.68 
2',2'-BISEPIGALLOCATECHIN DIGALLATE 18.01 
2,3,4-TRIHYDROXY-4'-ETHOXYBENZOPHENONE -16.64 
2,3,4'-TRIHYDROXY-4-METHOXYBENZOPHENONE 12.05 
2,3-DICHLORO-5,8-DIHYDROXYNAPTHOQUINONE -75.35 
2',3-DIHYDROXY-4,4',6'-TRIMETHOXYCHALCONE -223.55 
2,3-DIHYDROXY-4-METHOXY-4'-ETHOXYBENZOPHENONE -65.85 
2,3-DIHYDROXY-6,7-DICHLOROQUINOXALINE -110.67 
2,3-DIMERCAPTOSUCCINIC ACID -92.54 
2,4-DICHLOROPHENOXYACETIC ACID 19.65 
2,4-DICHLOROPHENOXYBUTYRIC ACID -90.34 
2',4-DIHYDROXY-3,4',6'-TRIMETHOXYCHALCONE -54.71 
2',4'-DIHYDROXY-4-METHOXYCHALCONE -28.22 
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Table A.3 Continued. 

2',4'-DIHYDROXYCHALCONE -121.12 
2',4-DIHYDROXYCHALCONE -121.33 
2',4'-DIHYDROXYCHALCONE 4'-GLUCOSIDE -29.60 
2,4-DINITROPHENOL -221.20 
2',5'-DIHYDROXY-4-METHOXYCHALCONE -355.99 
2,5-DI-t-BUTYL-4-HYDROXYANISOLE -753.17 
2,6-DIHYDROXY-4-METHOXYTOLUENE 0.08 
2,6-DIMETHOXYQUINONE 98.02 
21-ACETOXYPREGNENOLONE 6.55 
2-ACETYLPYRROLE -14.10 
2-AMINOBENZENESULFONAMIDE -25.00 
2-AMINOGUANIDINE HEMISULFATE 1.26 
2-BENZOYL-5-METHOXYBENZOQUINONE -42.64 
2-HYDROXY-3,4-DIMETHOXYBENZOIC ACID -11.99 
2-HYDROXY-5 (6)EPOXY-TETRAHYDROCARYOPHYLLENE -12.54 
2-MERCAPTOBENZOTHIAZOLE -138.94 
2-METHOXY-5 (6)EPOXY-TETRAHYDROCARYOPHYLLENE -10.31 
2'-METHOXYFORMONETIN 8.29 
2-METHOXYRESORCINOL 5.61 
2-METHOXYXANTHONE -150.57 
2-METHYL GRAMINE -45.27 
2-METHYL-4-(PIPERIDIN-1-YLCARBOXY)-5-
ISOPROPYLPHENYLTRIMETHYLAMMONIUM CHLORIDE 19.65 

2-METHYL-5,7,8-TRIMETHOXYISOFLAVONE 29.32 
2-METHYLENE-5-(2,5-DIOXOTETRAHYDROFURAN-3-YL)-6-OXO--
10,10-DIMETHYLBICYCLO[7: 2: 0]UNDECANE 2.19 

2-THIOURACIL -8.15 
3,16-DIDEOXYMEXICANOLIDE-3beta-DIOL 2.91 
3,3'-DIINDOLYLMETHANE -22.31 
3,4',5,6,7-PENTAMETHOXYFLAVONE -66.71 
3,4-DIDESMETHYL-5-DESHYDROXY-3'-ETHOXYSCLEROIN -1.99 
3,4-DIMETHOXYCINNAMIC ACID 14.27 
3,4-DIMETHOXYDALBERGIONE 88.27 
3,4'-DIMETHOXYFLAVONE -165.77 
3,6-DIMETHOXYFLAVONE -92.72 
3,7-DIHYDROXYFLAVONE 22.49 
3,7-DIMETHOXYFLAVONE -75.57 
3,7-EPOXYCARYOPHYLLAN-6-OL 1.78 
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Table A.3 Continued. 

3,7-EPOXYCARYOPHYLLAN-6-ONE -5.40 
3-ACETAMIDOCOUMARIN -35.65 
3-ACETYLCOUMARIN -138.94 
3alpha-ACETOXYDIHYDRODEOXYGEDUNIN -35.81 
3alpha-HYDROXY-3-DEOXYANGOLENSIC ACID METHYL ESTER 1.07 
3alpha-HYDROXY-4,4-BISNOR-8,11,13-PODOCARPATRIENE 10.19 
3-AMINO-1,2,4-TRIAZOLE -16.48 
3-AMINO-beta-PINENE -4.78 
3beta-ACETOXYDEOXODIHYDROGEDUNIN -10.45 
3beta-HYDROXY-23,24-BISNORCHOL-5-ENIC ACID -12.30 
3beta-HYDROXYDEOXODIHYDRODEOXYGEDUNIN -21.84 
3beta-HYDROXYISOALLOSPIROST-9(11)-ENE -6.63 
3-DEACETYLKHIVORIN -65.18 
3-DEOXO-3beta-ACETOXYDEOXYDIHYDROGEDUNIN -71.94 
3-DEOXO-3beta-HYDROXYMEXICANOLIDE 16-ENOL ETHER -13.90 
3-DEOXY-3beta-HYDROXYANGOLENSIC ACID METHYL ESTER -0.07 
3-DESHYDROXYSAPPANOL TRIMETHYL ETHER -36.43 
3H-1,2-DITHIOLE-3-THIONE -56.41 
3-HYDROXY-3',4'-DIMETHOXYFLAVONE -20.12 
3-HYDROXY-4-(SUCCIN-2-YL)-CARYOLANE delta-LACTONE -13.55 
3-HYDROXYFLAVONE -37.15 
3-HYDROXYTYRAMINE -12.69 
3-ISOBUTYL-1-METHYLXANTHINE (IBMX) -25.40 
3-METHOXYCATECHOL -46.70 
3-METHYLORSELLINIC ACID 1.78 
3-METHYLXANTHINE 6.78 
3-NOR-3-OXOPANASINSAN-6-OL 4.61 
3-OXOURSAN (28-13)OLIDE -64.00 
4-(3-BUTOXY-4-METHOXYBENZYL)IMIDAZOLIDIN-2-ONE -171.13 
4,4'-DIISOTHIOCYANOSTILBENE-2,2'-SUFONIC ACID SODIUM SALT -45.60 
4,4'-DIMETHOXYDALBERGIONE -702.19 
4-ACETOXYPHENOL -1.05 
4'-DEMETHYLEPIPODOPHYLLOTOXIN -25.67 
4-HYDROXY-6-METHYLPYRAN-2-ONE -21.17 
4-HYDROXYANTIPYRINE -38.79 
4'-HYDROXYCHALCONE -32.24 
4'-HYDROXYFLAVANONE -59.61 
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Table A.3 Continued. 

4-HYDROXYINDOLE -25.58 
4'-METHOXYCHALCONE -100.19 
4-METHOXYDALBERGIONE -593.06 
4-METHYLDAPHNETIN -9.99 
4-METHYLESCULETIN -113.38 
4-NAPHTHALIMIDOBUTYRIC ACID 16.66 
4-NONYLPHENOL -64.70 
4-O-METHYLPHLORACETOPHENONE -22.11 
5,7-DIHYDROXY-4-METHYLCOUMARIN 34.78 
5,7-DIHYDROXYISOFLAVONE 12.00 
5alpha-ANDROSTAN-3,17-DIONE -274.74 
5alpha-CHOLESTAN-3beta-OL-6-ONE 26.26 
5alpha-CHOLESTANOL -14.02 
5-AMINOPENTANOIC ACID HYDROCHLORIDE -11.53 
5-CHLOROINDOLE-2-CARBOXYLIC ACID -2.24 
5-FLUOROINDOLE-2-CARBOXYLIC ACID 2.62 
5-HYDROXY-2',4',7,8-TETRAMETHOXYFLAVONE -86.69 
5-METHYLHYDANTOIN -9.77 
6,2'-DIMETHOXYFLAVONE -68.45 
6,3'-DIMETHOXYFLAVONE -17.28 
6,4'-DIHYDROXYFLAVONE -10.37 
6,7-DICHLORO-3-HYDROXY-2-QUINOXALINECARBOXYLIC ACID 24.66 
6alpha-METHYLPREDNISOLONE ACETATE -12.77 
6-AMINONICOTINAMIDE -2.19 
6-HYDROXYANGOLENSIC ACID METHYL ESTER 0.47 
6-HYDROXYFLAVONE -61.41 
6-HYDROXYTROPINONE -26.64 
7,2'-DIHYDROXYFLAVONE 14.40 
7,3'-DIMETHOXYFLAVONE -49.76 
7,4'-DIHYDROXYFLAVONE 15.46 
7,4'-DIMETHOXYISOFLAVONE -2.81 
7,8-DIHYDROXYFLAVONE -133.38 
7-AMINOCEPHALOSPORANIC ACID -32.45 
7-DEACETOXY-7-OXOKHIVORIN -68.27 
7-DEACETYLKHIVORIN 8.93 
7-DESACETOXY-6,7-DEHYDROGEDUNIN 10.81 
7-DESHYDROXYPYROGALLIN-4-CARBOXYLIC ACID -8.07 
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7-HYDROXYETHYLTHEOPHYLLINE -14.68 
7-HYDROXYFLAVONE 5.74 
7-NITROINDAZOLE -45.27 
7-OXOCHOLESTEROL -50.80 
8beta-HYDROXYCARAPIN, 3,8-HEMIACETAL -36.95 
8-CYCLOPENTYLTHEOPHYLLINE -12.07 
8-HYDROXYCARAPINIC ACID -1.19 
ABACAVIR SULFATE -13.47 
ABAMECTIN (avermectin B1a shown) -46.12 
ABIENOL -307.12 
ABIETIC ACID -140.80 
ACACETIN DIACETATE 3.52 
ACADESINE 0.52 
ACAMPROSATE CALCIUM 10.25 
ACARBOSE -21.61 
ACEBUTOLOL HYDROCHLORIDE -12.92 
ACECAINIDE HYDROCHLORIDE -13.25 
ACECLIDINE -10.58 
ACEDAPSONE -23.80 
ACEDOBEN -20.58 
ACEGLUTAMIDE -2.60 
ACEMETACIN -18.04 
ACENOCOUMAROL -13.08 
ACEPROMAZINE MALEATE 41.78 
ACESULFAME POTASSIUM -9.28 
ACETAMINOPHEN -6.04 
ACETAMINOSALOL 23.48 
ACETANILIDE 8.83 
ACETARSOL -11.61 
ACETAZOLAMIDE 13.90 
ACETOHEXAMIDE 2.68 
ACETOHYDROXAMIC ACID 17.87 
ACETOPHENAZINE MALEATE 7.80 
ACETOSYRINGONE -26.37 
ACETRIAZOIC ACID 14.96 
ACETYL ISOGAMBOGIC ACID -31.10 
ACETYLCARNITINE -33.98 
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Table A.3 Continued. 

ACETYLCHOLINE CHLORIDE 13.15 
ACETYLCYSTEINE -0.18 
ACETYLGLUCOSAMINE -56.03 
ACETYL-L-LEUCINE -12.74 
ACETYLPHENYLALANINE -29.13 
ACEXAMIC ACID -25.66 
ACIPIMOX 5.78 
ACONITIC ACID 0.74 
ACONITINE -0.62 
ACRIFLAVINIUM HYDROCHLORIDE 60.54 
ACRISORCIN -19.99 
ACTINONIN -43.23 
ACYCLOVIR -3.55 
ADENINE 4.95 
ADENOSINE -143.95 
ADENOSINE PHOSPHATE -35.03 
ADIPHENINE HYDROCHLORIDE -30.87 
ADONITOL -13.78 
ADRENOLONE HYDROCHLORIDE -35.34 
AESCULIN 31.99 
AGARIC ACID 5.80 
AGELASINE (stereochemistry of diterpene unknown) -21.88 
AGMATINE SULFATE 10.86 
AJMALINE 1.31 
AKLOMIDE 0.32 
ALANYL-dl-LEUCINE 10.87 
ALAPROCLATE 4.93 
ALBENDAZOLE -23.68 
ALBUTEROL -29.04 
ALCLOMETAZONE DIPROPIONATE 1.24 
ALENDRONATE SODIUM -25.22 
ALEURETIC ACID 25.65 
ALEXIDINE HYDROCHLORIDE -17.11 
ALFLUZOSIN 7.19 
ALGESTONE ACETOPHENIDE -116.80 
ALISKIREN HEMIFUMARATE 14.57 
ALIZARIN -48.10 
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Table A.3 Continued. 

ALLANTOIN -10.14 
ALLOPURINOL -26.56 
ALLOXAN -38.79 
ALLYLISOTHIOCYANATE -40.59 
ALMOTRIPTAN -26.32 
alpha-CYANO-3-HYDROXYCINNAMIC ACID -12.69 
alpha-CYANO-4-HYDROXYCINNAMIC ACID -22.14 
alpha-DIHYDROGEDUNOL -44.72 
alpha-HYDROXYDEOXYCHOLIC ACID -25.00 
alpha-MANGOSTIN -78.42 
alpha-METHYL-L-TYROSINE -1.26 
alpha-TOCHOPHEROL -2.62 
alpha-TOCHOPHERYL ACETATE -9.96 
alpha-TOXICAROL (dl) -84.54 
ALPINETIN METHYL ETHER -9.99 
ALPRENOLOL 4.99 
ALRESTATIN -5.76 
ALTHIAZIDE -18.17 
ALTRENOGEST -37.75 
ALTRETAMINE -46.56 
ALVERINE CITRATE -12.25 
AMANTADINE HYDROCHLORIDE -29.46 
AMBROXOL HYDROCHLORIDE 18.10 
AMCINONIDE 5.86 
AMIFOSTINE -28.05 
AMIKACIN SULFATE -20.17 
AMILORIDE HYDROCHLORIDE 5.53 
AMINACRINE -20.42 
AMINOBENZTROPINE -7.07 
AMINOCAPROIC ACID -7.59 
AMINOCYCLOPROPANECARBOXYLIC ACID -3.20 
AMINOETHOXYDIPHENYLBORANE -245.61 
AMINOETHYLISOTHIOUREA DIHYDROBROMIDE -2.24 
AMINOGLUTETHIMIDE -4.43 
AMINOHIPPURIC ACID -14.06 
AMINOHYDROXYBUTYRIC ACID -11.85 
AMINOLEVULINIC ACID HYDROCHLORIDE -5.04 
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Table A.3 Continued. 

AMINOPENTAMIDE SULFATE -11.35 
AMINOPTERIN 12.62 
AMINOPYRINE 9.78 
AMINOSALICYLATE SODIUM -13.99 
AMINOTHIAZOLE 23.05 
AMIODARONE HYDROCHLORIDE -258.09 
AMIPRILOSE -40.59 
AMISULPRIDE -12.25 
AMITRAZ -50.85 
AMITRIPTYLINE HYDROCHLORIDE -8.22 
AMLODIPINE BESYLATE 56.23 
AMMONIUM LACTATE -7.86 
AMODIAQUINE DIHYDROCHLORIDE -23.71 
AMOXAPINE 7.07 
AMOXICILLIN 13.90 
AMPHOTERICIN B -8.29 
AMPICILLIN SODIUM 15.31 
AMPIROXICAM -32.62 
AMPROLIUM -27.90 
AMPYRONE 3.30 
AMPYZINE SULFATE 9.37 
AMSACRINE -20.19 
AMYGDALIN -0.92 
ANABASAMINE HYDROCHLORIDE -10.67 
ANABASINE HYDROCHLORIDE -0.85 
ANAGRELIDE HYDROCHLORIDE -78.00 
ANASTROZOLE 2.40 
ANCITABINE HYDROCHLORIDE -12.50 
ANDROSTA-1,4-DIEN-3,17-DIONE -60.76 
ANDROSTERONE -196.30 
ANDROSTERONE ACETATE -371.76 
ANEBROMPHENIRAMINE MALEATE 20.61 
ANETHOLE -45.28 
ANGOLENSIN (R) -64.73 
ANHYDROBRAZILIC ACID -16.16 
ANIRACETAM -4.05 
ANISINDIONE 7.56 
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Table A.3 Continued. 

ANISODAMINE HYDROBROMIDE 6.34 
ANISOMYCIN -24.59 
ANTAZOLINE PHOSPHATE 1.66 
ANTHOTHECOL -133.15 
ANTHRALIN -46.12 
ANTHRAQUINONE -63.47 
ANTIAROL 56.56 
ANTIMYCIN A (A1 shown) -185.07 
ANTIPYRINE 12.11 
APHYLLIC ACID -42.44 
APIGENIN -17.04 
APIGENIN DIMETHYL ETHER -25.04 
APIIN -22.50 
APIOLE -174.46 
APOMORPHINE HYDROCHLORIDE 0.19 
APOTOXICAROL -82.97 
APRAMYCIN 13.86 
ARABITOL(D) -3.54 
ARBUTIN -3.75 
ARCAINE SULFATE 0.67 
ARECOLINE HYDROBROMIDE 8.04 
ARGININE HYDROCHLORIDE -24.91 
ARIPIPRAZOLE -225.19 
ARSANILIC ACID -16.53 
ARSENIC TRIOXIDE -10.41 
ARTEMETHER 26.30 
ARTEMISIN -2.88 
ARTEMISININ -57.80 
ARTENIMOL -5.09 
ARTESUNATE -11.91 
ARTHONIOIC ACID -123.25 
ASARYLALDEHYDE 2.59 
ASCORBIC ACID 40.72 
ASCORBYL PALMITATE 22.67 
ASIATIC ACID -12.20 
ASPARTAME 20.78 
ASPIRIN 22.77 
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Table A.3 Continued. 

ASTAXANTHIN -26.21 
ASTEMIZOLE 43.15 
ASTRAGALOSIDE IV -21.84 
ATENOLOL -5.65 
ATOMOXETINE HYDROCHLORIDE -13.55 
ATORVASTATIN CALCIUM -8.22 
ATOVAQUONE 5.03 
ATRACURIUM BESYLATE 4.08 
ATRANORIN -110.98 
ATROPINE SULFATE -19.17 
AURAPTENE -6.43 
AURIN TRICARBOXYLIC ACID -5.26 
AUROTHIOGLUCOSE -11.94 
AVERMECTIN A1a -72.25 
AVOBENZONE -404.39 
AVOCADANOFURAN -14.86 
AVOCADENOFURAN -4.02 
AVOCADYNE 38.05 
AVOCADYNE ACETATE 25.46 
AVOCADYNOFURAN -3.41 
AVOCATIN A 50.49 
AVOCATIN B 5.05 
AZACITIDINE 5.90 
AZADIRACHTIN -23.88 
AZAPERONE -44.02 
AZASERINE -36.60 
AZATADINE MALEATE -19.21 
AZATHIOPRINE -27.69 
AZELAIC ACID 22.19 
AZELASTINE HYDROCHLORIDE 13.97 
AZITHROMYCIN -0.08 
AZLOCILLIN SODIUM -23.14 
AZOBENZENE -61.67 
AZTREONAM 23.85 
BACAMPICILLIN HYDROCHLORIDE -16.95 
BACCATIN III 5.99 
BACITRACIN 6.12 
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Table A.3 Continued. 

BACLOFEN -6.73 
BAICALEIN -60.64 
BAICALIN 6.30 
BALSALAZIDE DISODIUM 17.38 
BAMBUTEROL HYDROCHLORIDE 1.31 
BARBITAL -20.14 
BATYL ALCOHOL 0.13 
BECLAMIDE -1.14 
BECLOMETHASONE DIPROPIONATE -36.00 
BEKANAMYCIN SULFATE 10.76 
BEMOTRIZINOL -6.10 
BENAZEPRIL HYDROCHLORIDE 26.21 
BENDROFLUMETHIAZIDE 24.53 
BENFLUOREX HYDROCHLORIDE -19.43 
BENFOTIAMINE 11.77 
BENOXINATE HYDROCHLORIDE 3.39 
BENSERAZIDE HYDROCHLORIDE -41.68 
BENURESTAT 12.69 
BENZALKONIUM CHLORIDE -6.49 
BENZANTHRONE -1067.13 
BENZBROMARONE -115.15 
BENZETHONIUM CHLORIDE -43.26 
BENZO[a]PYRENE -108.23 
BENZOCAINE 21.47 
BENZOIC ACID -23.04 
BENZONATATE -37.01 
BENZOXIQUINE 3.07 
BENZOYL PEROXIDE -17.87 
BENZOYLPAS 5.74 
BENZTHIAZIDE 7.15 
BENZYDAMINE HYDROCHLORIDE -14.24 
BENZYL ALCOHOL -24.54 
BENZYL BENZOATE -16.03 
BENZYL ISOTHIOCYANATE -22.37 
BEPHENIUM HYDROXYNAPTHOATE 13.33 
BEPRIDIL HYDROCHLORIDE -46.09 
BERBAMINE HYDROCHLORIDE -9.92 
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Table A.3 Continued. 

BERBERINE CHLORIDE 2.95 
BERGAPTEN -32.78 
BERGENIN 7.56 
beta-AMYRIN ACETATE 6.85 
beta-CAROTENE -111.70 
beta-CARYOPHYLLENE ALCOHOL -6.45 
beta-ESCIN 41.97 
BETAHISTINE HYDROCHLORIDE -14.46 
BETAINE HYDROCHLORIDE -10.27 
BETAMETHASONE -20.63 
BETAMETHASONE 17,21-DIPROPIONATE 13.86 
BETAMETHASONE ACETATE -1.80 
BETAMETHASONE SODIUM PHOSPHATE 7.35 
BETAMETHASONE VALERATE 6.83 
BETAMIPRON -8.68 
beta-NAPHTHOL -256.18 
beta-PELTATIN -11.36 
beta-SITOSTEROL -13.59 
beta-TOXICAROL -146.05 
BETAXALOL HYDROCHLORIDE 7.13 
BETAZOLE HYDROCHLORIDE 5.83 
BETHANECHOL CHLORIDE -7.67 
BETULIN 17.44 
BETULINIC ACID -148.36 
BEZAFIBRATE 1.04 
BICALUTAMIDE -40.83 
BICUCULLINE (+) -12.12 
BICUCULLINE(-) METHIODIDE -35.95 
BIFONAZOLE -58.83 
BILIRUBIN -68.13 
BIOCHANIN A -46.37 
BIOTIN -6.56 
BIPERIDEN -7.53 
BISACODYL -146.21 
BISANHYDRORUTILANTINONE -620.91 
BISMUTH SUBSALICYLATE -43.00 
BISOCTRIZOLE -56.42 
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Table A.3 Continued. 

BISOPROLOL FUMARATE 10.60 
BISPHENOL A -58.69 
BISSALICYL FUMARATE 1.75 
BITHIONATE SODIUM -139.66 
BITOSCANATE 11.25 
BIXIN -23.21 
BLASTICIDIN S 19.37 
BLEOMYCIN (bleomycin B2 shown) -0.11 
BOLDINE 10.19 
BORNEOL -1.14 
BORNYL ACETATE -28.15 
BOVINOCIDIN (3-nitropropionic acid) 31.38 
BRAZILEIN 13.55 
BRAZILIN 17.12 
BRINZOLAMIDE -2.09 
BROMHEXINE HYDROCHLORIDE -452.06 
BROMINDIONE 4.74 
BROMO-3-HYDROXY-4-(SUCCIN-2-YL)-CARYOLANE gamma-
LACTONE -0.18 

BROMOCRIPTINE MESYLATE -38.09 
BROMOPRIDE -10.14 
BROMPERIDOL 40.08 
BRUCINE -11.18 
BUCETIN 21.31 
BUCLADESINE -2405.69 
BUDESONIDE -16.64 
BUFEXAMAC -118.56 
BUFLOMEDIL HYDROCHLORIDE 7.20 
BUMETANIDE 17.98 
BUPIVACAINE HYDROCHLORIDE -27.00 
BUPROPION -25.84 
BUSPIRONE HYDROCHLORIDE 5.62 
BUSSEIN -37.73 
BUSULFAN -9.96 
BUTACAINE 13.42 
BUTAMBEN -37.52 
BUTOCONAZOLE -44.49 
BUTYL PARABEN -82.45 
  

 

 



223 
 

Table A.3 Continued. 

BUTYLATED HYDROXYTOLUENE -450.16 
CACODYLIC ACID -39.64 
CADAVERINE TARTRATE 13.03 
CADIN-4-EN-10-OL -29.23 
CAFESTOL 11.76 
CAFESTOL ACETATE -12.20 
CAFFEIC ACID -1.19 
CAFFEINE 13.32 
CALCEIN 24.19 
CALCIUM GLUCEPTATE 13.61 
CAMPHOR (1R) 21.52 
CAMPTOTHECIN -12.33 
CAMYLOFINE DIHYDROCHLORIDE -102.32 
CANAVANINE -2.04 
CANDESARTAN -1.28 
CANDICIDIN -163.40 
CANRENOIC ACID, POTASSIUM SALT 18.36 
CANRENONE -34.75 
CANTHARIDIN -13.98 
CANTHAXANTHIN (euglenanone) -7.31 
CAPECITABINE -5.88 
CAPOBENIC ACID -6.49 
CAPREOMYCIN SULFATE -15.75 
CAPSAICIN -18.80 
CAPSANTHIN -79.48 
CAPTAMINE -12.24 
CAPTAN 99.01 
CAPTOPRIL -36.27 
CARAPIN -6.28 
CARAPIN-8(9)-ENE -19.50 
CARBACHOL -13.81 
CARBADOX 14.48 
CARBAMAZEPINE 7.48 
CARBARSONE -18.61 
CARBENICILLIN DISODIUM 11.39 
CARBENOXOLONE SODIUM -15.48 
CARBETAPENTANE CITRATE -120.51 
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Table A.3 Continued. 

CARBIDOPA -48.43 
CARBINOXAMINE MALEATE -9.72 
CARBOPLATIN -27.67 
CARISOPRODOL -17.63 
CARMINIC ACID 17.85 
CARMOFUR 12.06 
CARMUSTINE -76.58 
CARNITINE (dl) HYDROCHLORIDE 8.23 
CARNOSIC ACID -32.45 
CARNOSINE -33.66 
CARPROFEN -23.52 
CARSALAM -29.51 
CARTEOLOL HYDROCHLORIDE 10.14 
CARVEDILOL -75.51 
CARVEDILOL PHOSPHATE -177.70 
CARYLOPHYLLENE OXIDE -53.97 
CARYOPHYLLENE [t(-)] -188.99 
CARZENIDE 7.68 
CASANTHRANOL [cascaroside A shown] -69.10 
CATECHIN PENTAACETATE -139.68 
CATECHIN TETRAMETHYLETHER -50.60 
CEAROIN -60.02 
CEDRELONE -258.13 
CEDROL -107.01 
CEDRYL ACETATE -220.43 
CEFACLOR -3.79 
CEFADROXIL -1.87 
CEFALONIUM 18.77 
CEFAMANDOLE NAFATE -13.64 
CEFAMANDOLE SODIUM 1.14 
CEFAZOLIN SODIUM 18.91 
CEFDINIR -1.32 
CEFDITORIN PIVOXIL -48.78 
CEFEPIME HYDROCHLORIDE 5.72 
CEFMENOXIME HYDROCHLORIDE -13.20 
CEFMETAZOLE SODIUM -2.44 
CEFONICID SODIUM 4.61 
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Table A.3 Continued. 

CEFOPERAZONE -2.69 
CEFORANIDE -4.36 
CEFOTAXIME SODIUM -14.87 
CEFOTETAN 17.04 
CEFOXITIN SODIUM -18.35 
CEFPIRAMIDE -5.52 
CEFPODOXIME PROXETIL -22.23 
CEFPROZIL 3.96 
CEFSULODIN SODIUM -9.96 
CEFTAZIDIME 3.26 
CEFTIBUTEN -3.20 
CEFTIOFUR HYDROCHLORIDE -7.64 
CEFTRIAXONE SODIUM TRIHYDRATE -0.28 
CEFUROXIME AXETIL 9.24 
CEFUROXIME SODIUM -5.01 
CELASTROL -307.12 
CELECOXIB 16.46 
CELLOBIOSE (D[+]) 12.87 
CEPHALEXIN 21.42 
CEPHALOSPORIN C SODIUM 18.15 
CEPHALOTHIN SODIUM -1.73 
CEPHAPIRIN SODIUM 18.42 
CEPHARANTHINE -3.38 
CEPHRADINE 6.90 
CETIRIZINE HYDROCHLORIDE 2.30 
CETRIMONIUM BROMIDE 29.30 
CETYLPYRIDINIUM CHLORIDE -8.92 
CHAULMOOGRIC ACID -23.21 
CHENODIOL -13.88 
CHICAGO SKY BLUE 109.19 
CHINIOFON 12.73 
CHLORALOSE -3.73 
CHLORAMBUCIL -10.27 
CHLORAMINE-T 15.88 
CHLORAMPHENICOL 22.42 
CHLORAMPHENICOL PALMITATE 5.59 
CHLORAMPHENICOL SODIUM SUCCINATE -4.35 
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Table A.3 Continued. 

CHLORANIL 81.80 
CHLORCYCLIZINE HYDROCHLORIDE -26.97 
CHLORHEXIDINE HYDROCHLORIDE -67.47 
CHLORINDIONE 6.83 
CHLORMADINONE ACETATE -1.87 
CHLORMEZANONE 5.90 
CHLOROCRESOL -49.66 
CHLOROGUANIDE HYDROCHLORIDE -0.32 
CHLOROPHYLLIDE Cu COMPLEX Na SALT 70.63 
CHLOROPYRAMINE HYDROCHLORIDE -3.88 
CHLOROQUINE DIPHOSPHATE -0.03 
CHLOROTHIAZIDE 18.85 
CHLOROXINE -46.56 
CHLOROXYLENOL -81.46 
CHLORPHENIRAMINE (S) MALEATE -6.70 
CHLORPROMAZINE 25.27 
CHLORPROPAMIDE -7.29 
CHLORPROTHIXENE HYDROCHLORIDE 50.50 
CHLORPYRIFOS -232.94 
CHLORQUINALDOL 19.54 
CHLORTETRACYCLINE HYDROCHLORIDE -27.53 
CHLORTHALIDONE -31.98 
CHLORZOXAZONE -25.02 
CHOL-11-ENIC ACID -16.10 
CHOLECALCIFEROL -100.33 
CHOLEST-4,6-DIEN-3-ONE -19.32 
CHOLEST-5-EN-3-ONE -15.55 
CHOLESTAN-3-ONE -18.91 
CHOLESTANE 18.21 
CHOLESTEROL -6.70 
CHOLESTERYL ACETATE -15.00 
CHOLIC ACID -33.87 
CHOLIC ACID, METHYL ESTER -60.12 
CHOLINE CHLORIDE -4.51 
CHROMOCARB -10.99 
CHRYSANTHEMIC ACID -23.61 
CHRYSANTHEMIC ACID, ETHYL ESTER -3.13 
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Table A.3 Continued. 

CHRYSANTHEMYL ALCOHOL -21.70 
CHRYSAROBIN -535.96 
CHRYSIN -69.57 
CHRYSIN DIMETHYL ETHER -54.22 
CHRYSOPHANOL -300.27 
CHUKRASIN METHYL ETHER -25.67 
CIANIDANOL -12.01 
CICLOPIROX OLAMINE -56.28 
CILOSTAZOL -5.26 
CIMETIDINE 19.96 
CINCHONIDINE -11.09 
CINCHONINE -5.08 
CINCHOPHEN -1.07 
CINNARAZINE -449.99 
CINOXACIN -30.08 
CINTRIAMIDE 3.96 
CIPROFIBRATE 22.54 
CIPROFLOXACIN -12.92 
CISAPRIDE -72.57 
CISPLATIN -57.00 
CITALOPRAM HYDROBROMIDE 11.23 
CITICOLINE 0.25 
CITIOLONE 11.55 
CITRININ -39.10 
CITROPTEN 12.64 
CITRULLINE -10.67 
CLARITHROMYCIN -12.60 
CLAVULANATE LITHIUM -4.61 
CLEMASTINE FUMARATE 12.35 
CLEMIZOLE HYDROCHLORIDE -14.62 
CLENBUTEROL HYDROCHLORIDE -27.86 
CLIDINIUM BROMIDE 2.73 
CLIMBAZOLE 11.60 
CLINAFOXACIN HYDROCHLORIDE 9.25 
CLINDAMYCIN HYDROCHLORIDE 7.25 
CLINDAMYCIN PALMITATE HYDROCHLORIDE -17.62 
CLIOQUINOL -4.00 
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Table A.3 Continued. 

CLOBETASOL PROPIONATE 11.91 
CLOFARABINE -56.99 
CLOFAZIMINE -55.17 
CLOFIBRATE -1.59 
CLOFIBRIC ACID -6.87 
CLOFILIUM TOSYLATE -1.32 
CLOFOCTOL -439.91 
CLOMIPHENE CITRATE 1.75 
CLOMIPRAMINE HYDROCHLORIDE -58.86 
CLONAZEPAM -13.66 
CLONIDINE HYDROCHLORIDE -33.09 
CLOPERASTINE HYDROCHLORIDE -1.76 
CLOPIDOGREL SULFATE 1.77 
CLOPIDOL -11.58 
CLORGILINE HYDROCHLORIDE -1.21 
CLORSULON 15.34 
CLOSANTEL 0.82 
CLOTRIMAZOLE -80.48 
CLOVANEDIOL DIACETATE -62.30 
CLOXACILLIN SODIUM 6.76 
CLOXYQUIN -104.05 
CLOZAPINE 35.04 
COLCHICINE 14.14 
COLESEVALAM HYDROCHLORIDE (high mol wt copolymer @10mg/ml) -11.24 
COLFORSIN -3268.26 
COLISTIMETHATE SODIUM 34.85 
COLISTIN SULFATE -35.98 
CONESSINE 12.20 
CONVALLATOXIN -10.67 
CORALYNE CHLORIDE 6.85 
CORTISONE -28.25 
CORTISONE ACETATE -33.50 
CORYNANTHINE -18.21 
COTARNINE CHLORIDE -7.90 
COTININE -3.22 
COUMARIN -57.97 
COUMOPHOS 0.65 
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Table A.3 Continued. 

CREATININE 12.64 
CRESOL -19.72 
CRESOPIRINE -11.99 
CROMOLYN SODIUM 0.65 
CROTAMITON -22.77 
CRUSTECDYSONE -13.13 
CRYOFLURANE -26.52 
CRYPTOTANSHINONE -630.03 
CURCUMIN -484.54 
CYANOCOBALAMIN 3.11 
CYCLAMIC ACID 9.58 
CYCLANDELATE -81.68 
CYCLIZINE -2.93 
CYCLOBENZAPRINE HYDROCHLORIDE 17.10 
CYCLOCREATINE -0.18 
CYCLOHEXIMIDE 8.53 
CYCLOLEUCINE 10.02 
CYCLOPENTOLATE HYDROCHLORIDE -26.56 
CYCLOPHOSPHAMIDE -3.93 
CYCLOSERINE (D) -7.88 
CYCLOSPORINE -2.36 
CYCLOTHIAZIDE 4.54 
CYCLOVERATRYLENE -9.84 
CYPERMETHRIN -144.72 
CYPROHEPTADINE HYDROCHLORIDE -22.21 
CYPROTERONE -1.28 
CYPROTERONE ACETATE 6.58 
CYROMAZINE -0.72 
CYSTAMINE DIHYDROCHLORIDE -16.96 
CYSTEAMINE HYDROCHLORIDE 3.84 
CYSTEINE HYDROCHLORIDE 19.12 
CYSTINE -1.97 
CYTARABINE 2.86 
CYTIDINE 7.99 
CYTISINE 3.28 
d,l-threo-3-HYDROXYASPARTIC ACID -7.53 
DACARBAZINE -25.18 
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Table A.3 Continued. 

DACTINOMYCIN -25.95 
DALBERGIONE 12.50 
DALBERGIONE, 4-METHOXY-4'-HYDROXY- -30.25 
DANAZOL -30.48 
DANTHRON -250.19 
DANTROLENE SODIUM 19.91 
DAPSONE 2.92 
DARIFENACIN HYDROBROMIDE -38.06 
DASATINIB  -12.94 
DAUNORUBICIN 10.88 
DEACETOXY(7)-7-OXOKHIVORINIC ACID -4.39 
DEACETOXY-7-OXOGEDUNIN -92.69 
DEACETYLGEDUNIN -23.26 
DEBRISOQUIN SULFATE -27.48 
DECAHYDROGAMBOGIC ACID -445.84 
DECAMETHONIUM BROMIDE -23.75 
DECOQUINATE -24.58 
DEFERIPRONE -28.25 
DEFEROXAMINE MESYLATE 8.60 
DEGUELIN(-) -92.20 
DEHYDROABIETAMIDE -48.61 
DEHYDROACETIC ACID 25.15 
DEHYDROCHOLATE SODIUM -6.11 
DEHYDROCHOLIC ACID 8.23 
DEHYDRODIHYDROROTENONE -13.55 
DEHYDROROTENONE -15.76 
DEHYDROVARIABILIN -287.74 
DEMECLOCYCLINE HYDROCHLORIDE -8.93 
DEMETHYLNOBILETIN -150.16 
DENATONIUM BENZOATE -9.12 
DEOXYADENOSINE 68.04 
DEOXYANDIROBIN -10.99 
DEOXYCHOLIC ACID -4.59 
DEOXYGEDUNIN -50.92 
DEOXYKHIVORIN -8.72 
DEOXYSAPPANONE B 7,3'-DIMETHYL ETHER -116.45 
DEOXYSAPPANONE B 7,3'-DIMETHYL ETHER ACETATE -43.29 
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Table A.3 Continued. 

DEOXYSAPPANONE B 7,4'-DIMETHYL ETHER -128.48 
DEOXYSAPPANONE B TRIMETHYL ETHER -113.13 
DEQUALINIUM CHLORIDE -14.70 
DERACOXIB -20.01 
DERRUSNIN -28.30 
DERRUSTONE 38.95 
DESACETYL (7)KHIVORINIC ACID, METHYL ESTER -7.23 
DESACETYLCOLFORSIN -689.41 
DESIPRAMINE HYDROCHLORIDE 1.54 
DESLORATADINE HYDROCHLORIDE -72.14 
DESLORATIDINE 35.35 
DESONIDE -9.95 
DESOXYCORTICOSTERONE ACETATE -17.81 
DESOXYMETASONE -2.50 
DESOXYPEGANINE HYDROCHLORIDE -5.26 
DESVENLAFAXINE SUCCINATE -41.55 
DEXAMETHASONE 33.87 
DEXAMETHASONE ACETATE 12.64 
DEXAMETHASONE SODIUM PHOSPHATE -1.16 
DEXCHLORPHENIRAMINE MALEATE -12.52 
DEXIBUPROFEN -36.90 
DEXLANSOPRAZOLE -19.53 
DEXPANTHENOL 0.90 
DEXPROPRANOLOL HYDROCHLORIDE 23.31 
DIACERIN -10.83 
DIACETAMATE -45.41 
DIALLYL SULFIDE -19.50 
DIATRIZOIC ACID 6.70 
DIAVERIDINE -52.63 
DIAZOXIDE 17.41 
DIBEKACIN -34.02 
DIBENZOTHIOPHENE -202.58 
DIBENZOYLMETHANE -63.72 
DIBUCAINE HYDROCHLORIDE -25.02 
DIBUTYL PHTHALATE -46.34 
DICHLORISONE ACETATE -10.99 
DICHLORVOS -26.61 
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Table A.3 Continued. 

DICLAZURIL -10.33 
DICLOFENAC SODIUM -37.83 
DICLOXACILLIN SODIUM -7.81 
DICTAMNINE -46.34 
DICUMAROL -3.72 
DICYCLOHEXYLUREA -14.07 
DICYCLOMINE HYDROCHLORIDE -2.08 
DIDEACETYL (1,3)-7-DESACETOXY-7-OXO-DEOXYKHIVORINIC ACID 8.34 
DIENESTROL -24.92 
DIETHYLCARBAMAZINE CITRATE -4.73 
DIETHYLSTILBESTROL 7.25 
DIETHYLTOLUAMIDE -1.25 
DIFFRACTAIC ACID -20.97 
DIFLORASONE DIACETATE 31.48 
DIFLOXACIN HYDROCHLORIDE -6.58 
DIFLUBENZURON 4.03 
DIFLUNISAL -43.34 
DIFUCOL HEXAMETHYL ETHER -3.07 
DIGITONIN 102.13 
DIGITOXIN -9.00 
DIGOXIGENIN -5.99 
DIGOXIN 5.01 
DIHYDROCELASTROL -123.96 
DIHYDROCELASTRYL DIACETATE -84.14 
DIHYDROERGOTAMINE MESYLATE -24.92 
DIHYDROFISSINOLIDE -45.93 
DIHYDROFOLIC ACID -16.00 
DIHYDROGAMBOGIC ACID -179.43 
DIHYDROGEDUNIC ACID, METHYL ESTER -28.41 
DIHYDROGEDUNIN -23.26 
DIHYDROJASMONIC ACID 109.86 
DIHYDROJASMONIC ACID, METHYL ESTER -53.32 
DIHYDROMUNDULETONE -77.02 
DIHYDROMYRISTICIN -97.45 
DIHYDROROTENONE -102.56 
DIHYDROSTREPTOMYCIN SULFATE -8.78 
DIHYDROXY (3alpha,12alpha)PREGNAN-20-ONE -2.12 
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Table A.3 Continued. 

DILAZEP DIHYDROCHLORIDE -14.95 
DILOXANIDE FUROATE -34.18 
DILTIAZEM HYDROCHLORIDE -16.56 
DIMENHYDRINATE -5.60 
DIMERCAPROL -730.52 
DIMETHADIONE 24.57 
DIMETHYL 4,4-o-PHENYLENE-BIS (3-THIOPHANATE) -60.23 
DIMETHYL FUMARATE -155.37 
DIMETHYLCAFFEIC ACID -4.09 
DIMINAZENE ACETURATE -6.05 
DIMPYLATE -33.09 
DINITOLMIDE -7.17 
DIOSGENIN -31.75 
DIOSMETIN 11.02 
DIOSMIN -10.21 
DIOXYBENZONE -57.09 
DIPERODON HYDROCHLORIDE -9.35 
DIPHENHYDRAMINE HYDROCHLORIDE -34.31 
DIPHENYLPYRALINE HYDROCHLORIDE 14.31 
DIPLOSALSALATE -12.54 
DIPTERYXIN 22.49 
DIPYRIDAMOLE 44.24 
DIPYROCETYL -14.95 
DIPYRONE -17.20 
DIRITHROMYCIN 8.89 
DISOPYRAMIDE PHOSPHATE -3.22 
DISULFIRAM -673.59 
DJENKOLIC ACID 3.40 
D-LACTITOL MONOHYDRATE -6.94 
d-LIMONENE 5.90 
DOBUTAMINE HYDROCHLORIDE 4.80 
DOCETAXEL -27.18 
DOCOSANOL 12.46 
DOCUSATE SODIUM 7.07 
DOMPERIDONE -68.51 
DONEPEZIL HYDROCHLORIDE -20.72 
DOPAMINE HYDROCHLORIDE 6.01 
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Table A.3 Continued. 

DORAMECTIN -83.97 
DOXAPRAM HYDROCHLORIDE -11.94 
DOXAZOSIN MESYLATE -63.71 
DOXEPIN HYDROCHLORIDE 12.00 
DOXIFLURIDINE -9.51 
DOXOFYLLINE 10.86 
DOXORUBICIN 41.45 
DOXYCYCLINE HYDROCHLORIDE 38.93 
DOXYLAMINE SUCCINATE -4.51 
D-PHENYLALANINE -37.92 
DROFENINE HYDROCHLORIDE -15.03 
DROPERIDOL -32.38 
DROSPIRENONE -20.41 
DUARTIN (-) -66.38 
DUARTIN, DIMETHYL ETHER -68.02 
DULOXETINE HYDROCHLORIDE -58.70 
DUTASTERIDE -31.22 
DYCLONINE HYDROCHLORIDE 24.95 
DYDROGESTERONE 7.19 
DYPHYLLINE 29.23 
EBSELEN -47.51 
ECAMSULE TRIETHANOLAMINE 12.01 
ECONAZOLE NITRATE -79.20 
EDARAVONE -42.09 
EDETATE DISODIUM -11.09 
EDITOL -35.88 
EDOXUDINE 37.66 
EDROPHONIUM CHLORIDE 40.41 
EFAROXAN HYDROCHLORIDE -29.22 
EFLOXATE -208.19 
ELAIDYLPHOSPHOCHOLINE 50.01 
ELETRIPTAN HYDROBROMIDE 3.39 
ELLAGIC ACID -26.13 
EMBELIN -31.22 
EMETINE 0.58 
EMODIN -555.53 
ENALAPRIL MALEATE -15.23 
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Table A.3 Continued. 

ENALAPRILAT -26.80 
ENILCONAZOLE -9.40 
ENOXACIN 30.82 
ENOXOLONE -29.90 
ENROFLOXACIN 8.12 
ENTANDROPHRAGMIN -35.19 
EPHEDRINE (1R,2S) HYDROCHLORIDE -6.61 
EPI(13)TORULOSOL -53.79 
EPIAFZELECHIN (2R,3R)(-) -26.27 
EPIAFZELECHIN TRIMETHYL ETHER 2.88 
EPIANDROSTERONE -114.16 
EPICATECHIN -3.00 
EPICATECHIN MONOGALLATE -12.77 
EPICATECHIN PENTAACETATE -10.19 
EPIESTRIOL 12.06 
EPIGALLOCATECHIN -6.04 
EPIGALLOCATECHIN 3,5-DIGALLATE 14.49 
EPIGALLOCATECHIN-3-MONOGALLATE -47.93 
EPINEPHRINE BITARTRATE -59.39 
EPIRUBICIN HYDROCHLORIDE -18.88 
EPITESTOSTERONE 0.13 
EPOXYGEDUNIN -66.42 
EPRODISATE DISODIUM 1.21 
EQUILIN -115.39 
ERDOSTEINE -5.45 
ERGOCALCIFEROL -82.78 
ERGONOVINE MALEATE 23.45 
ERGOSTEROL -51.70 
ERGOSTEROL ACETATE -46.59 
ERGOTAMINE TARTRATE -6.68 
ERYTHROMYCIN -3.90 
ERYTHROMYCIN ESTOLATE -15.95 
ERYTHROMYCIN ETHYLSUCCINATE 15.39 
ERYTHROSE -0.58 
ERYTHROSINE SODIUM 109.92 
ESCITALOPRAM OXALATE -64.55 
ESCULETIN 20.43 
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Table A.3 Continued. 

ESCULIN MONOHYDRATE 30.74 
ESEROLINE FUMARATE -132.98 
ESOMEPRAZOLE POTASSIUM 22.98 
ESTRADIOL -33.29 
ESTRADIOL ACETATE -64.70 
.ESTRADIOL BENZOATE -164.11 
ESTRADIOL CYPIONATE -192.32 
ESTRADIOL DIACETATE -112.34 
ESTRADIOL DIPROPIONATE -133.79 
ESTRADIOL METHYL ETHER -21.80 
ESTRADIOL VALERATE -155.41 
ESTRADIOL-3-SULFATE, SODIUM SALT 7.24 
ESTRAGOLE -84.80 
ESTRIOL -10.22 
ESTRONE -72.10 
ESTRONE ACETATE -390.03 
ESTRONE BENZOATE -117.50 
ESTROPIPATE 3.91 
ETHACRIDINE LACTATE 44.59 
ETHACRYNIC ACID -164.34 
ETHAMBUTOL HYDROCHLORIDE -14.13 
ETHAMIVAN -0.49 
ETHANOLAMINE OLEATE -22.51 
ETHAVERINE HYDROCHLORIDE -82.34 
ETHINYL ESTRADIOL -113.74 
ETHIONAMIDE -10.22 
ETHIONINE -0.93 
ETHISTERONE 1.79 
ETHOPROPAZINE HYDROCHLORIDE -72.54 
ETHOSUXIMIDE 9.24 
ETHOTOIN 2.88 
ETHOXZOLAMIDE -3.62 
ETHYL PARABEN -49.92 
ETHYNODIOL DIACETATE -456.27 
ETICLOPRIDE HYDROCHLORIDE 17.01 
ETIDRONATE DISODIUM -2.08 
ETODOLAC -16.98 
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Table A.3 Continued. 

ETOMIDATE -20.90 
ETOPOSIDE -8.16 
EUCALYPTOL -12.92 
EUCATROPINE HYDROCHLORIDE -30.68 
EUGENOL -165.81 
EUPARIN -147.74 
EUPHOL -177.13 
EUPHOL ACETATE -27.09 
EVANS BLUE 69.06 
EVOXINE 4.99 
EXALAMIDE -147.14 
EXEMESTANE -56.36 
EZETIMIBE -28.05 
FAMCICLOVIR 23.17 
FAMOTIDINE -23.23 
FAMPRIDINE -12.44 
FAMPROFAZONE -140.62 
FARNESOL -85.01 
FAST GREEN FCF 109.86 
FASUDIL HYDROCHLORIDE 7.93 
FEBUXOSTAT -16.91 
FELBINAC -19.29 
FELODIPINE -8.61 
FENBENDAZOLE -4.73 
FENBUFEN 21.84 
FENBUTYRAMIDE -85.79 
FENDILINE HYDROCHLORIDE -43.69 
FENOFIBRATE -300.63 
FENOFIBRIC ACID 0.88 
FENOLDIPAM MESYLATE 1.18 
FENOPROFEN -0.99 
FENOTEROL HYDROBROMIDE -22.43 
FENSPIRIDE HYDROCHLORIDE 8.31 
FENTHION -85.97 
FERULIC ACID 13.85 
FEXOFENADINE HYDROCHLORIDE -24.58 
FILIPIN -32.72 
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FINASTERIDE 5.00 
FIPEXIDE HYDROCHLORIDE -6.57 
FIPRONIL -120.30 
FIROCOXIB -5.83 
FISETIN 17.01 
FISSINOLIDE -74.68 
FLAVANONE -131.31 
FLOPROPIONE -23.45 
FLORFENICOL 30.48 
FLOXURIDINE -29.51 
FLUCONAZOLE 19.07 
FLUCYTOSINE -1.25 
FLUDARABINE PHOSPHATE 24.58 
FLUDROCORTISONE ACETATE 18.83 
FLUFENAMIC ACID -74.93 
FlUMAZENIL 1.31 
FLUMEQUINE 33.31 
FLUMETHASONE -14.34 
FLUMETHAZONE PIVALATE 9.14 
FLUNARIZINE HYDROCHLORIDE -123.66 
FLUNISOLIDE -15.57 
FLUNIXIN MEGLUMINE 15.37 
FLUNIXIN MEGLUMINE 12.34 
FLUOCINOLONE ACETONIDE -2.65 
FLUOCINONIDE 25.73 
FLUORESCEIN 31.65 
FLUOROMETHOLONE 0.37 
FLUOROURACIL 5.39 
FLUOXETINE 22.16 
FLUPHENAZINE HYDROCHLORIDE 54.99 
FLURANDRENOLIDE 14.98 
FLURBIPROFEN -32.48 
FLUROFAMIDE 2.67 
FLUROTHYL -8.75 
FLUROXENE -10.03 
FLUTAMIDE 2.02 
FLUTICASONE PROPIONATE -10.03 
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FLUVASTATIN -45.40 
FLUVOXAMINE MALEATE -0.90 
FOLIC ACID -17.81 
FOMEPIZOLE -9.73 
FOMEPIZOLE HYDROCHLORIDE 15.83 
FORMESTANE -179.59 
FORMONONETIN 16.59 
FOSCARNET SODIUM 13.42 
FOSFOMYCIN CALCIUM -8.52 
FOSFOSAL 5.48 
FRAXIDIN METHYL ETHER -25.75 
FRIEDELIN -7.83 
FTAXILIDE -33.71 
FUCOSTANOL 31.51 
FULVESTRANT -14.34 
FUMARPROTOCETRARIC ACID -26.30 
FURALTADONE -64.84 
FURAZOLIDONE -19.90 
FUROSEMIDE 24.30 
FUSARIC ACID -22.58 
FUSIDIC ACID 29.23 
GABAPENTIN -6.83 
GABOXADOL HYDROCHLORIDE 5.40 
GADOTERIDOL 15.82 
GALANGIN -21.14 
GALANGIN TRIMETHYL ETHER -24.52 
GALANTAMINE -0.84 
GALLAMINE TRIETHIODIDE -18.43 
GALLIC ACID -5.38 
GAMBOGIC ACID -12.66 
gamma-AMINOBUTYRIC ACID -30.99 
GANCICLOVIR -16.91 
GANGALEOIDIN -97.80 
GARCINOLIC ACID -17.45 
GARLICIN -16.26 
GATIFLOXACIN 16.67 
GEDUNIN -108.29 
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GEDUNOL -11.61 
GEFITINIB -3.90 
GEMFIBROZIL -11.26 
GEMIFLOXACIN MESYLATE 30.71 
GENETICIN -2.99 
GENISTEIN -121.96 
GENTAMICIN SULFATE -13.47 
GENTIAN VIOLET 110.02 
GIBBERELLIC ACID -9.32 
GINKGOLIDE A -9.92 
GITOXIGENIN -19.34 
GITOXIGENIN DIACETATE -35.60 
GITOXIN -5.19 
GLAFENINE -127.42 
GLICLAZIDE -22.37 
GLIMEPIRIDE -47.07 
GLIPIZIDE -7.23 
GLUCITOL-4-GUCOPYANOSIDE 10.92 
GLUCONOLACTONE -12.77 
GLUCOSAMINE HYDROCHLORIDE -3.36 
GLUCOSAMINIC ACID -7.00 
GLUTAMINE (D) -9.28 
GLUTAMINE (L) 28.35 
GLUTATHIONE -3.66 
GLYBURIDE -27.23 
GLYCOCHOLIC ACID -0.53 
GLYCOPYRROLATE 10.92 
GLYCYRRHIZIC ACID, AMMONIUM SALT -0.40 
GOSSYPETIN -39.46 
GOSSYPIN 1.49 
GOSSYPOL -141.55 
GRAMICIDIN -340.92 
GRAMINE 8.53 
GRANISETRON HYDROCHLORIDE 15.28 
GRISEOFULVIN -95.70 
GUAIAZULENE -72.68 
GUAIFENESIN -24.82 
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GUAIOL(-) -90.01 
GUANABENZ ACETATE 12.00 
GUANADREL SULFATE 8.56 
GUANETHIDINE MONOSULFATE -31.58 
GUANFACINE HYDROCHLORIDE -23.67 
GUANIDINE HYDROCHLORIDE -1.83 
HAEMATOMMIC ACID -19.34 
HAEMATOMMIC ACID, ETHYL ESTER -179.06 
HAEMATOPORPHYRIN 87.76 
HAEMATOXYLIN 11.48 
HAEMATOXYLIN PENTAACETATE -53.17 
HALAZONE -12.73 
HALOFANTRINE HYDROCHLORIDE -5.27 
HALOPERIDOL 22.98 
HALOTHANE 11.70 
HARMALINE 29.19 
HARMALOL HYDROCHLORIDE 41.13 
HARMANE -37.78 
HARMINE -29.14 
HARMOL HYDROCHLORIDE -7.60 
HARPAGOSIDE 2.40 
HECOGENIN -14.21 
HECOGENIN ACETATE -49.92 
HEDERACOSIDE C -1.06 
HEDERAGENIN 31.02 
HELENINE -230.86 
HELICIN -16.85 
HEMATEIN -18.64 
HEMICHOLINIUM BROMIDE -12.23 
HEPTAMINOL HYDROCHLORIDE -30.69 
HESPERETIN -9.62 
HESPERIDIN -37.84 
HETACILLIN POTASSIUM 25.08 
HETEROPEUCENIN, METHYL ETHER -117.74 
HEXACHLOROPHENE -140.70 
HEXAMETHONIUM BROMIDE 14.07 
HEXAMETHYLQUERCETAGETIN -133.71 
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HEXESTROL -90.33 
HEXETIDINE -81.36 
HEXYLENE GLYCOL 3.01 
HEXYLRESORCINOL -20.50 
HIERACIN -10.67 
HISTAMINE DIHYDROCHLORIDE -20.24 
HOMATROPINE HYDROBROMIDE 19.04 
HOMATROPINE METHYLBROMIDE 14.96 
HOMIDIUM BROMIDE 100.44 
HOMOPTEROCARPIN -254.80 
HOMOSALATE -244.45 
HUMULENE (alpha) -98.88 
HUPERZINE A -2.19 
HYCANTHONE 34.41 
HYDRALAZINE HYDROCHLORIDE 28.39 
HYDRASTINE (1R, 9S) -15.80 
HYDRASTININE HYDROCHLORIDE 18.62 
HYDROCHLOROTHIAZIDE 27.36 
HYDROCORTISONE -18.26 
HYDROCORTISONE ACETATE 15.44 
HYDROCORTISONE BUTYRATE 8.59 
HYDROCORTISONE HEMISUCCINATE -9.23 
HYDROCORTISONE PHOSPHATE TRIETHYLAMINE -4.08 
HYDROCORTISONE VALERATE -8.45 
HYDROFLUMETHIAZIDE -26.17 
HYDROLYSIS PRODUCT OF BUSSEIN 7.59 
HYDROQUINIDINE 12.40 
HYDROQUININE HYDROBROMIDE HYDRATE 3.20 
HYDROQUINONE -23.42 
HYDROXYAMPHETAMINE HYDROBROMIDE -2.47 
HYDROXYCHLOROQUINE SULFATE 8.75 
HYDROXYPROGESTERONE -9.68 
HYDROXYPROGESTERONE CAPROATE -203.26 
HYDROXYTOLUIC ACID 9.78 
HYDROXYUREA 3.18 
HYDROXYZINE PAMOATE 18.15 
HYMECHROME 37.37 
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HYMECROMONE METHYL ETHER -131.59 
HYOSCYAMINE 7.01 
HYPOXANTHINE -1.78 
IBANDRONATE SODIUM 0.33 
IBUPROFEN -6.26 
ICARIIN 3.86 
IDAZOXAN HYDROCHLORIDE -45.18 
IDEBENONE -168.34 
IDOXURDINE 4.84 
IDRAMANTONE -2.95 
IFOSFAMIDE -12.21 
IMEXON -30.03 
IMIDAZOL-4-YLACETIC ACID SODIUM SALT -14.96 
IMIPENEM 8.23 
IMIPRAMINE HYDROCHLORIDE -68.34 
IMIQUIMOD -26.25 
INDAPAMIDE 2.79 
INDOLE-3-CARBINOL -41.80 
INDOMETHACIN 13.76 
INDOPROFEN 6.76 
INOSINE -28.64 
INOSITOL -15.30 
IODIPAMIDE -32.38 
IODIXANOL -2.51 
IODOQUINOL 15.50 
IOHEXOL -10.58 
IOPANIC ACID -18.54 
IOTHALAMIC ACID -18.61 
IOVERSOL 17.51 
IOXILAN 1.73 
IPRATROPIUM BROMIDE -15.81 
IPRIFLAVONE -13.23 
IPRONIAZID SULFATE -5.60 
IRBESARTAN 4.74 
IRETOL -6.70 
IRIDIN -28.76 
IRIGENIN -50.85 
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IRIGENIN TRIMETHYL ETHER -18.01 
IRIGENIN, 7-BENZYL ETHER -83.12 
IRIGENIN, DIBENZYL ETHER -29.04 
IRIGENOL -54.16 
IRIGINOL HEXAACEATATE -6.05 
IRINOTECAN HYDROCHLORIDE 23.40 
IRSOGLADINE MALEATE -10.52 
ISAXONINE -46.23 
ISOBERGAPTENE -0.12 
ISOBUTAMBEN -64.42 
ISOBUTYLMETHYLXANTHINE -46.70 
ISOETHARINE MESYLATE -108.48 
ISOFLUPREDNONE ACETATE -81.16 
ISOGINKGETIN 1.33 
ISOKOBUSONE 4.16 
ISOLIQUIRITIGENIN -35.09 
ISONIAZID 4.13 
ISOPEONOL -2.73 
ISOPIMPINELLIN -73.27 
ISOPROPAMIDE IODIDE 10.64 
ISOPROTERENOL HYDROCHLORIDE -20.94 
ISOROTENONE -71.23 
ISOSAFROLE -28.02 
ISOSORBIDE DINITRATE 30.36 
ISOSORBIDE MONONITRATE -14.39 
ISOTECTORIGENIN, 7-METHYL ETHER -15.39 
ISOTRETINON -80.73 
ISOVALERAMIDE 5.71 
ISOXICAM 3.20 
ISOXSUPRINE HYDROCHLORIDE -34.31 
ISRADIPINE -51.71 
ITOPRIDE  HYDROCHLORIDE 0.24 
ITRACONAZOLE -114.11 
IVERMECTIN -151.99 
JUAREZIC ACID -20.65 
JUGLONE -99.47 
KAEMPFEROL 10.36 
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KAINIC ACID 3.28 
KANAMYCIN A SULFATE 36.98 
KARANJIN 7.64 
KASUGAMYCIN HYDROCHLORIDE 14.29 
KAWAIN 27.60 
KETANSERIN TARTRATE -6.71 
KETOCONAZOLE -241.68 
KETOPROFEN -13.29 
KETOROLAC TROMETHAMINE 0.65 
KETOTIFEN FUMARATE -23.97 
KHAYANTHONE -38.72 
KHELLIN -24.00 
KHIVORIN -24.41 
KINETIN 25.83 
KINETIN RIBOSIDE -54.96 
KOBUSONE 18.62 
KOPARIN -49.17 
KYNURENINE -38.26 
L(+/-)-ALLIIN -10.90 
LABETALOL HYDROCHLORIDE -4.26 
LACCAIC ACID A 7.53 
LACTOBIONIC ACID -7.22 
LACTULOSE 24.34 
LAGOCHILIN -12.35 
LAMIVUDINE -13.49 
LAMOTRIGINE -10.35 
LANATOSIDE C -31.92 
LANOSTEROL -44.71 
LANOSTEROL ACETATE -85.79 
LANSOPRAZOLE -68.21 
LAPPACONITINE -14.14 
LARIXINIC ACID -30.44 
LARIXOL -82.35 
LARIXOL ACETATE -125.41 
LATHOSTEROL -6.26 
L-BUTHIONINE SULFOXIMINE -16.80 
L-DEOXYALLIIN -15.68 
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LECANORIC ACID 21.37 
LEFLUNOMIDE 6.27 
LEOIDIN -164.28 
LETROZOLE -0.62 
LEUCOVORIN CALCIUM -10.22 
LEVALBUTEROL HYDROCHLORIDE -14.95 
LEVAMISOLE HYDROCHLORIDE -18.37 
LEVCYCLOSERINE -6.98 
LEVOBUNOLOL HYDROCHLORIDE -21.02 
LEVOCARNITINE 7.57 
LEVOCARNITINE PROPIONATE HYDROCHLORIDE 5.20 
LEVOCETIRIZINE DIHYDROCHLORIDE -14.69 
LEVODOPA -8.69 
LEVOFLOXACIN 23.45 
LEVOMENTHOL -28.64 
LEVONORDEFRIN -31.08 
LEVONORGESTREL -64.46 
LEVOSIMENDAN -31.57 
LEVOTHYROXINE 3.01 
LEVULINIC ACID,  3-BENZYLIDENYL- -7.15 
LIDOCAINE HYDROCHLORIDE -23.59 
LIDOFLAZINE 13.06 
LIGUSTILIDE -110.50 
LINAMARIN -6.43 
LINCOMYCIN HYDROCHLORIDE -4.29 
LINDANE -3.14 
LIOTHYRONINE 2.87 
LIOTHYRONINE (L- isomer) SODIUM 0.18 
LIPOAMIDE -24.27 
LISINOPRIL 21.21 
LITHIUM CITRATE 24.58 
LITHOCHOLIC ACID -89.59 
L-LEUCYL-L-ALANINE 16.25 
LOBARIC ACID -1.18 
LOBELINE HYDROCHLORIDE -7.17 
LOBENDAZOLE -45.05 
LOFEXIDINE  HYDROCHLORIDE 6.57 
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Table A.3 Continued. 

LOMEFLOXACIN HYDROCHLORIDE -37.74 
LOMERIZINE HYDROCHLORIDE -255.69 
LOMUSTINE -41.80 
LONIDAMINE -24.45 
LOPERAMIDE HYDROCHLORIDE 30.36 
LORATADINE 38.17 
LORGLUMIDE SODIUM -8.23 
LORNOXICAM -8.90 
LOSARTAN -13.12 
LOVASTATIN -44.37 
LOXAPINE SUCCINATE -2.15 
L-PHENYLALANINOL -18.64 
LUNARINE -22.90 
LUPANINE PERCHLORATE 11.09 
LUPANYL ACID HYDROCHLORIDE -18.30 
LUPEOL 6.30 
LUPININE 3.10 
MADECASSIC ACID -6.57 
MAFENIDE HYDROCHLORIDE -44.13 
MALATHION -476.24 
MANGAFODIPIR TRISODIUM -1.04 
MANGANESE TETRAKIS(4-CARBOXYPHENYL)PORPHYRIN 
CHLORDE -5.97 

MANGIFERIN 16.86 
MANGOSTIN TRIMETHYL ETHER -45.49 
MANNITOL -3.72 
MAPROTILINE HYDROCHLORIDE 5.83 
MEBENDAZOLE 0.62 
MEBEVERINE HYDROCHLORIDE 40.75 
MEBHYDROLIN NAPHTHALENESULFONATE -39.97 
MECAMYLAMINE HYDROCHLORIDE 21.30 
MECHLORETHAMINE -23.75 
MECLIZINE HYDROCHLORIDE -472.39 
MECLOCYCLINE SULFOSALICYLATE 19.17 
MECLOFENAMATE SODIUM -53.54 
MECLOFENOXATE HYDROCHLORIDE -0.03 
MECYSTEINE HYDROCHLORIDE -15.61 
MEDROXYPROGESTERONE ACETATE -3.00 
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Table A.3 Continued. 

MEDRYSONE -54.33 
MEFENAMIC ACID -104.16 
MEFEXAMIDE 4.94 
MEFLOQUINE 53.47 
MEGESTROL ACETATE -54.20 
MEGLUMINE -17.08 
MEGLUTOL -20.59 
MELATONIN -11.51 
MELENGESTROL ACETATE -110.87 
MELEZITOSE 9.79 
MELIBIOSE -19.24 
MELOXICAM SODIUM -11.27 
MELPERONE HYDROCHLORIDE -23.27 
MELPHALAN -19.17 
MEMANTINE HYDROCHLORIDE -14.15 
MENADIONE 93.00 
MENAQUINONE-4 -99.29 
MENTHONE -18.49 
MENTHYL BENZOATE -1200.51 
MEPARTRICIN -66.68 
MEPENZOLATE BROMIDE -41.62 
MEPHENESIN 8.44 
MEPHENTERMINE SULFATE -8.14 
MEPIROXOL -2.46 
MEPIVACAINE HYDROCHLORIDE -22.30 
MEPRYLCAINE HYDROCHLORIDE 16.60 
MEQUINOL -65.26 
MERBROMIN 105.70 
MERCAPTOPURINE -13.91 
MEROGEDUNIN -12.66 
MEROPENEM 31.22 
MESALAMINE 27.95 
MESNA 22.55 
MESORIDAZINE BESYLATE 2.80 
MESTRANOL -30.72 
METACETAMOL 4.89 
meta-CRESYL ACETATE 5.01 
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Table A.3 Continued. 

METAMECONINE -23.12 
METAMPICILLIN SODIUM -11.38 
METAPROTERENOL -1.43 
METARAMINOL BITARTRATE -4.90 
METAXALONE -41.43 
METERGOLINE -256.18 
METFORMIN HYDROCHLORIDE -9.80 
METHACHOLINE CHLORIDE -24.46 
METHACYCLINE HYDROCHLORIDE 10.21 
METHAPYRILENE HYDROCHLORIDE 2.22 
METHAZOLAMIDE -11.04 
METHENAMINE 1.06 
METHICILLIN SODIUM 23.03 
METHIMAZOLE 13.78 
METHIONINE SULFOXIMINE (L) -6.34 
METHOCARBAMOL -8.77 
METHOPRENE (S) -758.04 
METHOTREXATE(+/-) 23.75 
METHOXAMINE HYDROCHLORIDE 15.54 
METHOXSALEN -74.98 
METHOXYAMINE HYDROCHLORIDE -0.38 
METHOXYVONE -140.43 
METHSCOPOLAMINE BROMIDE 33.82 
METHSUXIMIDE -26.05 
METHYCLOTHIAZIDE -6.98 
METHYL 7-DESHYDROXYPYROGALLIN-4-CARBOXYLATE -75.60 
METHYL DEOXYCHOLATE -157.39 
METHYL ORSELLINATE -22.37 
METHYL ROBUSTONE -87.88 
METHYLATROPINE NITRATE -1.45 
METHYLBENZETHONIUM CHLORIDE -55.73 
METHYLDOPA -24.06 
METHYLDOPATE HYDROCHLORIDE 5.92 
METHYLENE BLUE 109.92 
METHYLERGONOVINE MALEATE 34.97 
METHYLPHENIDATE HYDROCHLORIDE 1.85 
METHYLPREDNISOLONE 0.70 
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Table A.3 Continued. 

METHYLPREDNISOLONE SODIUM SUCCINATE 9.31 
METHYLTHIOURACIL -15.30 
METHYLXANTHOXYLIN -72.09 
METHYSERGIDE MALEATE -11.51 
METICRANE 0.17 
METITEPINE MALEATE 46.44 
METOCLOPRAMIDE HYDROCHLORIDE -1.81 
METOLAZONE 25.13 
METOPROLOL TARTRATE -14.90 
METRONIDAZOLE -31.68 
METYRAPONE 2.50 
MEVALONIC ACID LACTONE 15.79 
MEVASTATIN 0.17 
MEXAMINE -27.47 
MEXICANOLIDE -20.56 
MEXILETINE HYDROCHLORIDE -11.20 
MIANSERIN HYDROCHLORIDE 14.01 
MICONAZOLE NITRATE -197.94 
MIDODRINE HYDROCHLORIDE 23.55 
MIFEPRISTONE -106.01 
MIGLITOL 8.77 
MILNACIPRAN HYDROCHLORIDE 7.80 
MILRINONE 1.70 
MILTEFOSINE -7.55 
MIMOSINE 18.62 
MINAPRINE HYDROCHLORIDE 11.90 
MINOCYCLINE HYDROCHLORIDE -30.78 
MINOXIDIL -11.56 
MITOMYCIN -101.21 
MITOTANE -747.79 
MITOXANTRONE HYDROCHLORIDE 97.53 
MOCLOBEMIDE -5.01 
MODAFINIL -2.86 
MODALINE SULFATE -57.43 
MOGUISTEINE -19.08 
MOLINDONE HYDROCHLORIDE -0.92 
MOLSIDOMINE -2.93 
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Table A.3 Continued. 

MONENSIN SODIUM (monensin A is shown) -84.16 
MONOBENZONE -86.14 
MONOCROTALINE -1.45 
MONTELUKAST SODIUM 8.11 
MORANTEL CITRATE 34.75 
MORIN 0.91 
MOROXYDINE HYDROCHLORIDE 25.64 
MOXALACTAM DISODIUM 3.97 
MOXIDECTIN -131.04 
MOXIFLOXACIN HYDROCHLORIDE 48.63 
MOXISYLYTE HYDROCHORIDE -7.47 
MUCIC ACID -12.97 
MUNDOSERONE -131.36 
MUNDULONE -117.53 
MUNDULONE ACETATE -291.40 
MUPIROCIN 11.17 
MUUROLLADIE-3-ONE 16.43 
MYCOPHENOLATE MOFETIL -14.40 
MYCOPHENOLIC ACID 0.02 
MYOSMINE -35.34 
N- (9-FLUORENYLMETHOXYCARBONYL)-L-LEUCINE -75.94 
N,N-HEXAMETHYLENEAMILORIDE -13.84 
NABUMETONE -4.83 
N-ACETYLMURAMIC ACID -6.11 
N-ACETYLNEURAMIC ACID -16.08 
N-ACETYLPROLINE -4.24 
NADIDE -40.00 
NADIFLOXACIN 30.42 
NADOLOL 6.23 
NAFCILLIN SODIUM 12.97 
NAFRONYL OXALATE 16.04 
NAFTIFINE HYDROCHLORIDE -63.86 
NAFTOPIDIL -39.21 
NALBUPHINE HYDROCHLORIDE 8.53 
NALIDIXIC ACID 7.37 
NALOXONE HYDROCHLORIDE -4.61 
NALTREXONE HYDROCHLORIDE -5.04 
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Table A.3 Continued. 

NAPHAZOLINE HYDROCHLORIDE 1.77 
NAPROXEN(+) -1.43 
NAPROXOL -11.58 
NARINGENIN -5.91 
NARINGIN 10.47 
NATAMYCIN 23.92 
NATEGLINIDE 0.82 
NEFAZODONE HYDROCHLORIDE -55.26 
NEFOPAM -7.51 
NELARABIN 0.70 
NEOMYCIN SULFATE -6.70 
NEOSTIGMINE BROMIDE 3.84 
NEROL -49.31 
NEROLIDOL -12.09 
NETILMICIN SULFATE 18.89 
NEVIRAPINE -8.01 
NIACIN -27.07 
NIACINAMIDE 12.40 
NIALAMIDE -16.94 
NICARDIPINE HYDROCHLORIDE -510.40 
NICERGOLINE -57.00 
NICLOSAMIDE -24.31 
NICORANDIL 20.33 
NICOTINE BITARTRATE -23.06 
NICOTINYL ALCOHOL TARTRATE -29.41 
NIFEDIPINE -125.76 
NIFENAZONE -8.94 
NIFLUMIC ACID -53.03 
NIFUROXAZIDE -141.38 
NIFURSOL -61.92 
NIKETHAMIDE 11.15 
NILUTAMIDE -24.65 
NIMESULIDE -104.07 
NIMODIPINE -36.16 
NIMUSTINE -37.07 
NIPECOTIC ACID -4.02 
NISOLDIPINE -238.72 
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Table A.3 Continued. 

NITARSONE 19.99 
NITAZOXANIDE -61.10 
NITHIAMIDE -3.90 
NITRENDIPINE -29.12 
NITROFURANTOIN -12.08 
NITROFURAZONE -18.43 
NITROMIDE -23.78 
NITROXOLINE -85.47 
NIZATIDINE -4.29 
N-METHYL (-)EPHEDRINE [1R,2S] -3.64 
N-METHYLANTHRANILIC ACID 24.37 
N-METHYLBENZYLAMINE HYDROCHLORIDE 3.33 
N-METHYL-D-ASPARTIC ACID (NMDA) -16.48 
N-METHYLISOLEUCINE -6.56 
NOBILETIN -101.77 
NOCODAZOLE -32.72 
NOMIFENSINE MALEATE 2.88 
NONIC ACID -1.85 
NONOXYNOL-9 -58.57 
NORCANTHARIDIN -56.65 
NOREPINEPHRINE -12.25 
NORETHINDRONE -56.45 
NORETHINDRONE ACETATE -70.94 
NORETHYNODREL -49.40 
NORFLOXACIN 20.84 
NORGESTIMATE -472.86 
NORGESTREL -21.03 
NORHARMAN -34.27 
NORSTICTIC ACID 18.31 
NORSTICTIC ACID PENTAACETATE -184.67 
NORTRIPTYLINE 7.73 
NOSCAPINE HYDROCHLORIDE -19.20 
NOVOBIOCIN SODIUM -2.40 
N-PHENYLANTHRANILIC ACID -33.90 
NYLIDRIN HYDROCHLORIDE -16.91 
NYSTATIN -8.55 
O-BENZYL-l-SERINE -4.09 
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Table A.3 Continued. 

OBLIQUIN -45.82 
OBTUSAQUINONE -1452.63 
OCTISALATE -156.78 
OCTOCRYLENE -218.18 
OCTODRINE 17.98 
OCTOPAMINE HYDROCHLORIDE 21.70 
OFLOXACIN 37.31 
OLEANDOMYCIN PHOSPHATE 8.47 
OLEANOIC ACID -30.95 
OLEANOLIC ACID ACETATE -66.81 
OLIGOMYCIN (A shown) -105.05 
OLMESARTAN 16.99 
OLMESARTAN MEDOXOMIL -12.92 
OLTIPRAZ -207.03 
OMEPRAZOLE -2.93 
ONDANSETRON -0.55 
ORBIFLOXACIN 0.85 
ORLISTAT -68.21 
ORNIDAZOLE -27.00 
ORNITHINE 10.90 
OROTIC ACID -15.03 
ORPHENADRINE CITRATE 3.05 
ORSELLINIC ACID -0.78 
ORSELLINIC ACID, ETHYL ESTER -64.14 
OSAJIN -526.77 
OSELTAMIVIR PHOSPHATE 24.61 
OUABAIN -11.67 
o-VERATRALDEHYDE -76.02 
OXACILLIN SODIUM -7.35 
OXALIPLATIN 5.85 
OXANTEL PAMOATE 20.56 
OXAPROZIN -2.36 
OXCARBAZEPINE -18.29 
OXEDRINE -18.82 
OXELAIDIN CITRATE -10.52 
OXETHAZAINE -43.00 
OXFENDAZOLE -11.66 
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Table A.3 Continued. 

OXIBENDAZOLE 6.35 
OXICONAZOLE NITRATE -187.67 
OXIDOPAMINE HYDROCHLORIDE -9.98 
OXIGLUTATIONE DISODIUM SALT 13.68 
OXOLAMINE CITRATE -81.85 
OXOLINIC ACID 22.37 
OXONITINE -5.41 
OXTRIPHYLLINE -16.15 
OXYBENZONE -58.72 
OXYBUTYNIN CHLORIDE -12.42 
OXYMETAZOLINE HYDROCHLORIDE 8.29 
OXYPHENBUTAZONE -171.53 
OXYPHENCYCLIMINE HYDROCHLORIDE -11.24 
OXYPHENONIUM BROMIDE -7.47 
OXYQUINOLINE SULFATE -28.80 
OXYTETRACYCLINE 3.89 
OXYTHIAMINE CHLORIDE HYDROCHLORIDE -11.15 
OZAGREL HYDROCHLORIDE 7.23 
PACHYRRHIZIN 14.76 
PACLITAXEL -10.58 
PAEONOL -7.59 
PALIPERIDONE -5.50 
PALMATINE 35.20 
PALMATINE CHLORIDE 31.18 
PANCURONIUM BROMIDE 14.30 
PANGAMIC ACID SODIUM -5.70 
PANTETHINE -14.86 
PANTHENOL (dl) -7.04 
PANTOPRAZOLE -11.99 
PANTOTHENIC ACID(d) Na salt -19.44 
PAPAVERINE HYDROCHLORIDE -73.90 
PARACHLOROPHENOL -11.74 
PARAMETHADIONE 23.82 
PARAROSANILINE PAMOATE -79.76 
PARAXANTHINE -38.05 
PARGYLINE HYDROCHLORIDE 19.63 
PAROMOMYCIN SULFATE 6.78 
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Table A.3 Continued. 

PAROXETINE HYDROCHLORIDE 44.58 
PASINIAZID 1.45 
PATULIN -342.17 
PAZUFLOXACIN MESYLATE -27.09 
p-CHLOROPHENYLALANINE 17.71 
PECTOLINARIN -40.94 
PEFLOXACINE MESYLATE 15.01 
PELLETIERINE HYDROCHLORIDE -27.74 
PEMPIDINE TARTRATE -33.40 
PENBUTOLOL SULFATE -27.87 
PENCICLOVIR 2.47 
PENFLURIDOL -134.52 
PENICILLAMINE 3.45 
PENICILLIN G POTASSIUM -29.00 
PENICILLIN V POTASSIUM 8.29 
PENTACHLOROPHENOL -872.61 
PENTAGASTRIN -4.22 
PENTAMIDINE ISETHIONATE -20.93 
PENTETIC ACID 25.54 
PENTOLINIUM TARTRATE -7.49 
PENTOXIFYLLINE 4.80 
PENTYLENETETRAZOL 3.75 
PEONIFLORIN -16.85 
PERGOLIDE MESYLATE -21.16 
PERHEXILINE MALEATE 28.96 
PERICIAZINE -2.39 
PERILLIC ACID (-) -21.83 
PERILLYL ALCOHOL -94.09 
PERINDOPRIL ERBUMINE 13.69 
PERMETHRIN -103.25 
PERPHENAZINE 66.40 
PERSEITOL 8.23 
PERSEITOL HEPTAACETATE 8.17 
PERUVOSIDE -10.68 
PEUCENIN -12.05 
p-FLUOROPHENYLALANINE -10.99 
PHENACEMIDE 15.88 
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Table A.3 Continued. 

PHENACETIN -33.29 
PHENACYLAMINE HYDROCHLORIDE -24.50 
PHENAZOPYRIDINE HYDROCHLORIDE -10.03 
PHENELZINE SULFATE 3.71 
PHENETHYL CAFFEATE (CAPE) -137.03 
PHENFORMIN HYDROCHLORIDE 8.17 
PHENINDIONE 2.40 
PHENIRAMINE MALEATE -11.09 
PHENOLPHTHALEIN -34.52 
PHENOTHIAZINE -186.10 
PHENOTHRIN -151.67 
PHENOXYBENZAMINE HYDROCHLORIDE -324.11 
PHENSUCCIMIDE -5.96 
PHENTERMINE -28.55 
PHENTOLAMINE HYDROCHLORIDE -0.05 
PHENYL AMINOSALICYLATE 18.80 
PHENYLBUTAZONE -1.95 
PHENYLBUTYRATE SODIUM  -19.51 
PHENYLEPHRINE HYDROCHLORIDE -24.92 
PHENYLETHYL ALCOHOL 15.98 
PHENYLMERCURIC ACETATE 101.37 
PHENYLPROPANOLAMINE HYDROCHLORIDE 3.32 
PHENYTOIN SODIUM -25.36 
PHLORACETOPHENONE -6.78 
PHLORETIN -121.32 
PHLORIDZIN 19.65 
PHTHALYLSULFACETAMIDE -5.38 
PHTHALYLSULFATHIAZOLE -8.37 
PHYSCION -484.54 
PHYSOSTIGMINE SALICYLATE -3.29 
PHYTOL -184.67 
PHYTONADIONE -29.46 
PICEID -24.10 
PICROPODOPHYLLIN -48.28 
PICROPODOPHYLLIN ACETATE -10.90 
PICROTIN -5.12 
PICROTOXININ 3.04 
  

 

 



258 
 

Table A.3 Continued. 

PIDOTIMOD -18.73 
PILOCARPINE NITRATE -10.38 
PIMAGEDINE HYDROCHLORIDE -7.49 
PIMETHIXENE MALEATE 9.60 
PIMOZIDE -275.76 
PIMPINELLIN -33.80 
PINACIDIL 5.20 
PINDOLOL 6.33 
PIOGLITAZONE HYDROCHLORIDE -25.59 
PIPAMPERONE 27.69 
PIPEMIDIC ACID -3.73 
PIPENZOLATE BROMIDE -1.62 
PIPERACETAZINE 32.62 
PIPERACILLIN SODIUM 4.76 
PIPERAZINE -14.30 
PIPERIC ACID 5.62 
PIPERIDOLATE HYDROCHLORIDE 16.41 
PIPERINE 6.20 
PIPERONYL BUTOXIDE -7.37 
PIPERONYLIC ACID 4.81 
PIPLARTINE -131.31 
PIPOBROMAN 47.44 
PIRACETAM 2.54 
PIRENPERONE -37.75 
PIRENZEPINE HYDROCHLORIDE 4.84 
PIRIBEDIL HYDROCHLORIDE -4.73 
PIROCTONE OLAMINE -54.55 
PIROMIDIC ACID 1.91 
PIROXICAM 3.81 
PISCIDIC ACID -4.43 
PIZOTYLINE MALATE 3.52 
PLUMBAGIN -23.88 
PODOFILOX -7.28 
PODOPHYLLIN ACETATE -83.68 
PODOTOTARIN -13.20 
POLYMYXIN B SULFATE 9.80 
POMIFERIN -366.96 
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Table A.3 Continued. 

POTASSIUM p-AMINOBENZOATE -21.37 
PRALIDOXIME CHLORIDE 29.77 
PRALIDOXIME MESYLATE 11.52 
PRAMIPEXOLE DIHYDROCHLORIDE 14.42 
PRAMOXINE HYDROCHLORIDE -1.39 
PRANOPROFEN 0.85 
PRASTERONE -17.36 
PRASTERONE ACETATE -107.41 
PRASUGREL -19.55 
PRAVASTATIN SODIUM 8.69 
PRAZIQUANTEL -2.57 
PRAZOSIN HYDROCHLORIDE -2.15 
PREDNICARBATE -21.54 
PREDNISOLONE 6.08 
PREDNISOLONE ACETATE -23.41 
PREDNISOLONE HEMISUCCINATE -6.56 
PREDNISOLONE SODIUM PHOSPHATE 16.46 
PREDNISONE -8.70 
PREGABALIN 1.18 
PREGNENOLONE SUCCINATE 7.57 
PRENYLETIN 14.18 
PRIDINOL METHANESULFONATE 13.74 
PRILOCAINE HYDROCHLORIDE -5.04 
PRIMAQUINE PHOSPHATE -80.31 
PRIMIDONE -7.44 
PRIMULETIN -140.80 
PRISTIMERIN -166.52 
PROADIFEN HYDROCHLORIDE -9.73 
PROBENECID -36.27 
PROBUCOL 22.18 
PROCAINAMIDE HYDROCHLORIDE 2.54 
PROCAINE HYDROCHLORIDE -3.50 
PROCARBAZINE HYDROCHLORIDE -1.60 
PROCHLORPERAZINE EDISYLATE 31.52 
PROCYCLIDINE HYDROCHLORIDE -15.13 
PROFLAVINE HEMISULFATE 58.47 
PROGESTERONE -113.08 
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Table A.3 Continued. 

PROGLUMIDE -23.71 
PROMAZINE HYDROCHLORIDE 28.74 
PROMETHAZINE HYDROCHLORIDE -27.00 
PRONETALOL HYDROCHLORIDE -18.38 
PROPAFENONE HYDROCHLORIDE 13.15 
PROPANTHELINE BROMIDE -50.68 
PROPARACAINE HYDROCHLORIDE -0.62 
PROPENTOFYLLINE 3.28 
PROPIOLACTONE -7.35 
PROPOFOL -70.70 
PROPOXUR -23.18 
PROPOXYCAINE HYDROCHLORIDE -10.51 
PROPRANOLOL HYDROCHLORIDE (+/-) 17.49 
PROPYLTHIOURACIL -9.23 
PROSCILLARIDIN -9.05 
PROTIONAMIDE 3.92 
PROTIRELIN -5.37 
PROTOPORPHYRIN IX 55.79 
PROTOVERATRINE A 1.31 
PROTRYPTYLINE HYDROCHLORIDE 26.94 
PROXYPHYLLINE 5.52 
PRULIFLOXACIN -10.14 
PSEUDO-ANISATIN 5.84 
PSEUDOEPHEDRINE HYDROCHLORIDE -9.68 
PTAEROXYLIN -225.22 
PUERARIN 13.05 
PUROMYCIN HYDROCHLORIDE -7.27 
PURPURIN -122.18 
PURPUROGALLIN -49.43 
PURPUROGALLIN-4-CARBOXYLIC ACID -28.05 
PUTRESCINE DIHYDROCHLORIDE -15.12 
PYRANTEL PAMOATE 24.39 
PYRAZINAMIDE -3.07 
PYRETHRINS -447.81 
PYRIDOSTIGMINE BROMIDE 7.48 
PYRIDOXINE -1.32 
PYRILAMINE MALEATE -22.79 
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Table A.3 Continued. 

PYRIMETHAMINE 31.31 
PYRITHIONE ZINC 69.94 
PYRITHYLDIONE 4.39 
PYRITINOL -14.86 
PYROCATECHUIC ACID 2.63 
PYROGALLIN -345.99 
PYRONARIDINE TETRAPHOSPHATE 24.19 
PYRROMYCIN -207.03 
PYRVINIUM PAMOATE -41.27 
QUASSIN -20.56 
QUEBRACHITOL -31.55 
QUERCETIN -92.20 
QUERCETIN 5,7,3',4'-TETRAMETHYL ETHER -57.93 
QUERCITRIN -4.04 
QUETIAPINE 12.75 
QUINACRINE HYDROCHLORIDE 50.63 
QUINALIZARIN 9.84 
QUINAPRIL HYDROCHLORIDE -18.88 
QUINAPRILAT 21.98 
QUINESTROL -119.97 
QUINETHAZONE 0.25 
QUINIC ACID -3.88 
QUINIDINE GLUCONATE -0.46 
QUININE ETHYL CARBONATE -32.47 
QUININE SULFATE -5.53 
QUINOLINIC ACID -8.72 
QUINPIROLE HYDROCHLORIDE -16.82 
QUIPAZINE MALEATE 5.50 
RABEPRAZOLE SODIUM -2.93 
RACEPHEDRINE HYDROCHLORIDE -2.16 
RACTOPAMINE HYDROCHLORIDE -18.52 
RALOXIFENE HYDROCHLORIDE -8.44 
RAMIFENAZONE 10.31 
RAMIPRIL 1.53 
RAMOPLANIN [A2 shown; 2mM] -110.63 
RANITIDINE -36.29 
RANOLAZINE 0.19 
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Table A.3 Continued. 

RASAGILINE -20.07 
RAUWOLSCINE HYDROCHLORIDE 7.83 
REBAMIPIDE 18.98 
REPAGLINIDE 4.34 
RESERPINE 11.94 
RESORCINOL -3.86 
RESORCINOL MONOACETATE 1.77 
RESVERATROL -4.68 
RESVERATROL 4'-METHYL ETHER -33.46 
RETINOL -70.56 
RETINYL ACETATE -182.40 
RETINYL PALMITATE -23.76 
RETUSIN 3.61 
RETUSIN 7-METHYL ETHER -7.47 
RHETSININE -16.10 
RHIZOCARPIC ACID -30.07 
RHODINYL ACETATE -194.45 
RHODOCLADONIC ACID 4.74 
RHOIFOLIN -4.61 
RIBAVIRIN -19.21 
RIBOFLAVIN 69.85 
RIBOFLAVIN 5-PHOSPHATE SODIUM -94.57 
RIBOSTAMYCIN SULFATE -13.80 
RIFAMPIN -7.66 
RIFAXIMIN -8.06 
RILUZOLE -39.32 
RIMANTADINE HYDROCHLORIDE 15.34 
RISEDRONATE SODIUM -0.83 
RISPERIDONE -36.06 
RITANSERIN -15.04 
RITODRINE HYDROCHLORIDE -16.57 
RITONAVIR 1.31 
RIVASTIGMINE TARTRATE 95.31 
RIZATRIPTAN BENZOATE 2.55 
ROBUSTIC ACID 75.72 
ROCCELLIC ACID -17.28 
ROFECOXIB -10.27 
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Table A.3 Continued. 

ROLIPRAM -120.30 
ROLITETRACYCLINE -36.48 
RONIDAZOLE -32.72 
ROPINIROLE HYDROCHLORIDE 3.45 
ROSIGLITAZONE MALEATE 10.08 
ROSMARINIC ACID 7.41 
ROSOLIC ACID -57.04 
ROSUVASTATIN CALCIUM -27.38 
ROTENONE -45.82 
ROTENONIC ACID, METHYL ETHER -138.44 
ROXARSONE -18.60 
ROXATIDINE ACETATE HYDROCHLORIDE -21.81 
ROXITHROMYCIN 1.04 
RUFLOXACIN HYDROCHLORIDE 22.86 
RUTILANTINONE -696.28 
RUTIN -0.69 
SACCHARIN 11.51 
SAFROLE -102.39 
SALICIN -42.43 
SALICYL ALCOHOL -14.71 
SALICYLAMIDE -3.65 
SALICYLANILIDE -204.66 
SALIDROSIDE 19.89 
SALINOMYCIN, SODIUM -152.61 
SALMETEROL XINAFOATE -71.41 
SALSALATE 16.55 
SALSOLIDINE 8.47 
SALSOLINE 1.82 
SALSOLINOL HYDROBROMIDE -4.64 
SALVINORIN A -105.89 
SANGUINARIUM SULFATE -38.43 
SANTONIN -30.35 
SAPPANONE A DIMETHYL ETHER -113.75 
SARAFLOXACIN HYDROCHLORIDE -6.79 
SAXAGLIPTIN 11.70 
SCLAREOL -29.41 
SCLAREOLIDE -140.92 
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Table A.3 Continued. 

SCOPOLAMINE HYDROBROMIDE -1.32 
SCOPOLETIN 24.78 
SECNIDAZOLE -11.38 
SECURININE -79.90 
SELAMECTIN -158.83 
SELEGILINE HYDROCHLORIDE -34.14 
SEMUSTINE -108.88 
SENNOSIDE A 1.40 
SENNOSIDE B -20.10 
SERATRODAST -99.16 
SEROTONIN HYDROCHLORIDE 2.01 
SERTRALINE HYDROCHLORIDE 6.11 
SHIKIMIC ACID -8.07 
SIBUTRAMINE HYDROCHLORIDE -44.14 
SILDENAFIL CITRATE -0.55 
SILIBININ -245.16 
SIMVASTATIN -128.76 
SINAPIC ACID 25.53 
SINAPIC ACID METHYL ETHER 8.53 
SINENSETIN 0.52 
SINOMENINE -15.70 
SIROLIMUS -77.69 
S-ISOCORYDINE (+) 2.65 
SISOMICIN SULFATE -32.18 
SITAGLIPTIN -51.49 
SITOSTERYL ACETATE -12.12 
SKATOLE -83.28 
SMILAGENIN -60.25 
SMILAGENIN ACETATE -16.36 
SNAP (S-NITROSO-N-ACETYLPENICILLAMINE) 9.61 
SODIUM FLUOROACETATE -43.62 
SODIUM MONOFLUOROPHOSPHATE 5.21 
SODIUM NITROPRUSSIDE -0.83 
SODIUM OXYBATE -0.48 
SODIUM PHENYLACETATE -68.10 
SODIUM PHENYLBUTYRATE 13.28 
SODIUM SALICYLATE -10.78 
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Table A.3 Continued. 

SODIUM TETRADECYL SULFATE -6.12 
SODIUM THIOGLYCOLATE 27.91 
SOLANESOL -115.03 
SOLANESYL ACETATE -28.68 
SOLASODINE 0.52 
SOLIDAGENONE -94.47 
SOLIFENACIN SUCCINATE -37.43 
SORBITOL -18.61 
SOTALOL HYDROCHLORIDE -1.25 
SPAGLUMIC ACID 20.33 
SPARFLOXACIN 0.28 
SPARTEINE SULFATE -2.02 
SPECTINOMYCIN HYDROCHLORIDE 9.80 
SPERMIDINE TRIHYDROCHLORIDE -24.10 
SPERMINE -16.94 
SPHONDIN -11.84 
SPIPERONE -29.41 
SPIRAMYCIN -0.56 
SPIRONOLACTONE -28.41 
SR-2640 -28.46 
STAVUDINE 2.94 
STICTIC ACID 6.65 
STIGMASTA-4,22-DIEN-3-ONE -16.94 
STIGMASTEROL -18.30 
STREPTOMYCIN SULFATE -11.59 
STREPTOZOSIN -1.87 
STROPHANTHIDIN -20.97 
STROPHANTHIDINIC ACID LACTONE ACETATE 6.98 
STRYCHNINE 10.88 
STRYCHNINE METHIODIDE 15.79 
SUCCINYLSULFATHIAZOLE 5.13 
SUCRALFATE SODIUM (10mM 10% aq DMSO) -58.78 
SUCRALOSE 10.98 
SULBACTAM 10.92 
SULBENTINE -79.20 
SULCONAZOLE NITRATE -72.73 
SULFABENZAMIDE -4.00 
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Table A.3 Continued. 

SULFACARBAMIDE -7.37 
SULFACETAMIDE 11.64 
SULFACHLORPYRIDAZINE -35.01 
SULFADIAZINE -4.51 
SULFADIMETHOXINE -19.07 
SULFADOXINE 14.01 
SULFAGUANIDINE -8.15 
SULFAMERAZINE -2.79 
SULFAMETER 29.00 
SULFAMETHAZINE 6.45 
SULFAMETHIZOLE -3.22 
SULFAMETHOXAZOLE 9.14 
SULFAMETHOXYPYRIDAZINE -9.48 
SULFAMONOMETHOXINE -14.08 
SULFANILATE ZINC -3.76 
SULFANITRAN -11.78 
SULFAPHENAZOLE -14.04 
SULFAPYRIDINE 17.68 
SULFAQUINOXALINE SODIUM 11.09 
SULFASALAZINE 13.38 
SULFATHIAZOLE -16.98 
SULFINPYRAZONE -4.15 
SULFISOXAZOLE 13.71 
SULFISOXAZOLE ACETYL -225.21 
SULINDAC -76.58 
SULISOBENZONE 9.32 
SULMAZOLE -13.80 
SULOCTIDIL -34.47 
SULPIRIDE 4.67 
SUMATRIPTAN SUCCINATE -14.25 
SUPROFEN 10.52 
SURAMIN HEXASODIUM 12.07 
SUXIBUZONE -5.75 
SYMCLOSENE -6.03 
SYRINGIC ACID -22.72 
TACRINE HYDROCHLORIDE -4.51 
TACROLIMUS -39.24 
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Table A.3 Continued. 

TADALAFIL 16.25 
TAMOXIFEN CITRATE -52.87 
TANDUTINIB -9.88 
TANGERITIN -38.20 
TANNIC ACID 43.89 
TANSHINONE IIA -218.61 
TANSHINONE IIA SULFONATE SODIUM -49.88 
TAPENTADOL HYDROCHLORIDE 0.01 
TAURINE -15.62 
TAZOBACTAM 6.96 
TEGASEROD MALEATE 28.44 
TEICOPLANIN [A(2-1) shown] -17.53 
TELENZEPINE HYDROCHLORIDE -4.52 
TELITHROMYCIN 2.35 
TELMISARTAN -7.79 
TEMEFOS 4.40 
TEMOZOLAMIDE -16.37 
TENATOPRAZOLE 2.36 
TENIPOSIDE -52.24 
TENOXICAM 12.19 
TENYLIDONE -143.05 
TERAZOSIN HYDROCHLORIDE -0.69 
TERBINAFINE HYDROCHLORIDE -1117.66 
TERBUTALINE HEMISULFATE 4.13 
TERCONAZOLE -60.28 
TERFENADINE 17.60 
TERPENE HYDRATE 12.12 
TESTOSTERONE -53.81 
TESTOSTERONE PROPIONATE -167.68 
TETRACAINE HYDROCHLORIDE 7.37 
TETRACHLOROISOPHTHALONITRILE 38.66 
TETRACYCLINE HYDROCHLORIDE 29.71 
TETRAHYDROGAMBOGIC ACID -155.12 
TETRAHYDROSAPPANONE A TRIMETHYL ETHER -48.52 
TETRAHYDROZOLINE HYDROCHLORIDE -8.03 
TETRAMIZOLE HYDROCHLORIDE -26.24 
TETRANDRINE -44.94 
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Table A.3 Continued. 

TETROQUINONE -32.56 
THALIDOMIDE -13.90 
THEAFLAVIN 18.62 
THEANINE -1.99 
THEOBROMINE -1.67 
THEOPHYLLINE 3.01 
THERMOPSINE PERCHLORATE 22.68 
THIABENDAZOLE -15.55 
THIAMINE -19.66 
THIAMPHENICOL -7.46 
THIAMYLAL SODIUM 14.75 
THIMEROSAL 75.93 
THIOCTIC ACID 15.77 
THIODIGLYCOL 6.22 
THIOGUANINE 27.41 
THIOGUANOSINE 2.62 
THIOPENTAL SODIUM 1.27 
THIORIDAZINE HYDROCHLORIDE 44.31 
THIOSTREPTON -3.36 
THIOTEPA 19.60 
THIOTHIXENE 36.75 
THIRAM 16.35 
THONZONIUM BROMIDE 33.87 
THONZYLAMINE HYDROCHLORIDE 1.04 
THYMOPENTIN -31.48 
THYMOQUINONE 104.76 
TIAPRIDE HYDROCHLORIDE 21.34 
TIBOLONE -67.78 
TICARCILLIN DISODIUM -34.80 
TICLOPIDINE HYDROCHLORIDE -33.35 
TIGOGENIN -0.25 
TILARGININE HYDROCHLORIDE -12.82 
TILETAMINE HYDROCHLORIDE 14.75 
TILMICOSIN 3.13 
TILORONE 7.93 
TIMOLOL MALEATE 9.44 
TIMONACIC 10.84 
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Table A.3 Continued. 

TINIDAZOLE -22.68 
TIOCONAZOLE -97.63 
TIOPRONIN -41.87 
TIOXOLONE -177.79 
TIRATRICOL -69.75 
TOBRAMYCIN 38.60 
TOCAINIDE HYDROCHLORIDE -37.18 
TODRALAZINE HYDROCHLORIDE 5.59 
TOLAZAMIDE -9.24 
TOLAZOLINE HYDROCHLORIDE -19.29 
TOLBUTAMIDE 30.92 
TOLFENAMIC ACID -212.92 
TOLMETIN SODIUM 6.84 
TOLNAFTATE -49.79 
TOLONIUM CHLORIDE 110.45 
TOLPERISONE HYDROCHLORIDE 9.07 
TOLTRAZURIL -25.31 
TOMATIDINE HYDROCHLORIDE -28.77 
TOMATINE 102.87 
TOPIRAMATE 3.41 
TOPOTECAN HYDROCHLORIDE 60.75 
TOREMIPHENE CITRATE -44.59 
TOTAROL -862.37 
TOTAROL ACETATE -826.37 
TOTAROL-19-CARBOXYLIC ACID, METHYL ESTER -755.34 
TRACAZOLATE -91.43 
TRAMADOL HYDROCHLORIDE 4.34 
TRAMIPROSATE 3.11 
TRANDOLAPRIL 12.84 
TRANEXAMIC ACID -14.25 
TRANILAST 54.21 
TRANYLCYPROMINE SULFATE 5.58 
TRAVOPROST -17.24 
TRAZODONE HYDROCHLORIDE 5.37 
TRETINOIN -117.23 
TRIACETIN 16.51 
TRIACETYLRESVERATROL -109.70 
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Table A.3 Continued. 

TRIAMCINOLONE -19.98 
TRIAMCINOLONE ACETONIDE 14.80 
TRIAMCINOLONE DIACETATE 10.70 
TRIAMTERENE 14.47 
TRICHLORFON 1.40 
TRICHLORMETHIAZIDE -4.65 
TRICHLORMETHINE HYDROCHLORIDE -18.90 
TRICLABENDAZOLE -40.18 
TRICLOSAN -461.75 
TRIENTINE HYDROCHLORIDE -7.01 
TRIFLUOPERAZINE HYDROCHLORIDE -15.55 
TRIFLUPROMAZINE HYDROCHLORIDE 22.31 
TRIFLURIDINE -0.28 
TRIGONELLINE 18.26 
TRIHEXYPHENIDYL HYDROCHLORIDE 12.87 
TRILOSTANE -108.87 
TRIMEBUTINE MALEATE -62.49 
TRIMEDLURE -112.71 
TRIMEPRAZINE TARTRATE -13.39 
TRIMETAZIDINE DIHYDROCHLORIDE -9.75 
TRIMETHADIONE 3.91 
TRIMETHOBENZAMIDE HYDROCHLORIDE -30.30 
TRIMETHOPRIM 15.17 
TRIMETHYLCOLCHICINIC ACID 6.17 
TRIMETOZINE 6.72 
TRIMIPRAMINE MALEATE -23.58 
TRIOXSALEN -75.94 
TRIPELENNAMINE CITRATE -5.38 
TRIPROLIDINE HYDROCHLORIDE 11.29 
TRIPTOPHENOLIDE -109.10 
TRISODIUM ETHYLENEDIAMINE TETRACETATE 20.22 
TROCLOSENE POTASSIUM -5.52 
TROLOX -9.17 
TROPICAMIDE -23.32 
TROPISETRON HYDROCHLORIDE 19.03 
TROXERUTIN 6.28 
TRYPTAMINE -25.58 
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Table A.3 Continued. 

TRYPTOPHAN 7.37 
TUAMINOHEPTANE SULFATE 5.64 
TUBOCURARINE CHLORIDE 15.01 
TULOBUTEROL HYDROCHLORIDE -5.97 
TYLOSIN TARTRATE -15.21 
TYLOXAPOL -58.16 
TYRAMINE -10.99 
TYROTHRICIN 84.13 
UBIDECARENEONE 2.84 
UMBELLIFERONE 7.70 
UNDECYLENIC ACID -15.54 
URACIL 3.14 
URAPIDIL HYDROCHLORIDE -21.20 
UREA -0.95 
URETHANE 5.65 
URIDINE -7.92 
URIDINE TRIPHOSPHATE TRISODIUM -24.68 
URSINOIC ACID 3.61 
URSOCHOLANIC ACID -149.90 
URSODIOL -4.00 
USNIC ACID -32.33 
UTILIN -35.60 
VALACYCLOVIR HYDROCHLORIDE 16.30 
VALERYL SALYCILATE -46.14 
VALGANCICLOVIR HYDROCHLORIDE 11.73 
VALINOMYCIN -225.04 
VALPROATE SODIUM 13.92 
VALSARTAN -19.71 
VANCOMYCIN HYDROCHLORIDE 12.52 
VARDENAFIL HYDROCHLORIDE -15.73 
VECURONIUM BROMIDE 4.67 
VENLAFAXINE HYDROCHLORIDE 12.69 
VERAPAMIL HYDROCHLORIDE -4.96 
VERATRIC ACID 5.05 
VERATRINE SULFATE 8.90 
VESAMICOL HYDROCHLORIDE -10.78 
VIDARABINE -19.46 
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Table A.3 Continued. 

VINBLASTINE SULFATE -32.74 
VINCRISTINE SULFATE -21.89 
VINORELBINE -71.32 
VINPOCETINE -2.93 
VIOMYCIN SULFATE 28.84 
VISNAGIN -8.12 
VORICONAZOLE -45.42 
VORINOSTAT -153.07 
VULPINIC ACID -3.20 
WARFARIN -13.64 
XANTHONE -100.74 
XANTHOPTERIN 24.22 
XANTHOXYLIN -7.97 
XANTHURENIC ACID 1.43 
XANTHYLETIN -82.39 
XYLAZINE -0.47 
XYLOCARPUS A -31.38 
XYLOMETAZOLINE HYDROCHLORIDE -28.90 
XYLOSE 12.29 
YOHIMBIC ACID HYDRATE -6.79 
YOHIMBINE HYDROCHLORIDE -10.06 
ZALCITABINE 0.01 
ZALEPLON 33.32 
ZAPRINAST 6.34 
ZIDOVUDINE [AZT] -5.33 
ZILEUTON -51.13 
ZINC UNDECYLENATE -14.47 
ZIPRASIDONE MESYLATE -291.85 
ZOLMITRIPTAN 18.79 
ZOMEPIRAC SODIUM -10.41 
ZOPICLONE 41.07 
ZOXAZOLAMINE -61.79 
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 Several compounds that were identified in the small molecule screen of 

the Spectrum Collection (6944-0074 and G856-6223 are structural analogues of 

robustic acid and were purchased from ChemDiv, San Diego, CA) for inhibitors of 

AC2 activity in HEK-hAC2 cells were further characterized for the ability to 

modulate cAMP accumulation in response to activation of AC isoforms in HEK-

hAC2 (activation by 50 nM PMA, 3 μM forskolin, and 300 nM PGE2), HEK-hAC1 

(activation by 3 μM A23187), HEK-hAC5 (activation by 300 nM forskolin), and 

HEK-wt cells (activation by 3 μM forskolin) as described in chapter 4 (Table A.4).   

. 

 

 



 

Table A.4 AC isoform-selectivity profiles of test compounds in intact-cell studies.  AC isoform selectivity was assessed 
by testing the ability of test compounds (30 µM) to modulate cAMP responses in HEK-hAC2 cells, HEK-hAC1 cells, 
HEK-hAC5 cells, and HEK-wt cells.  Data are reported as a percent of the vehicle treatment condition and represent 
the Mean ± S.E.M. of three independent experiments.  * p < 0.05, ** p < 0.01,*** p < 0.001 compared to vehicle 
condition, one sample t-test compared to 100. 
 

 
AC2 AC1 AC5 WT 

 

50 nM 
PMA 3 µM FSK 300 nM 

PGE2 
3 µM 

A23187 
300 nM 

FSK 3 µM FSK 

 
Mean±SEM Mean±SEM Mean±SEM Mean±SEM Mean±SEM Mean±SEM 

Amlodipine Besylate 66±13 90±3.0 75±2.8* 140±14 110±4.8 110±15 
Nifedipine 180±22 160±8.3* 260±14** 110±16 130±11 150±11* 
Nicardipine HCl 270±48 110±9.0 230±28* 150±24 110±2.0* 120±13 
6944-0074 220±27* 100±8.7 210±13* 130±9.5 120±6.3 170±11* 
G856-6223 200±51 110±3.9 170±10* 120±8.2 110±11 160±7.4* 
Fluphenazine diHCl 78±12 180±18 93±7.5 62±5.0* 84±6.4 99±5.2 
Methiothepin Maleate 69±11 220±2.0*** 76±8.1 45±1.8** 96±7.0 120±8.1 
Perphenazine 65±6.1* 170±13* 81±8.5 59±5.6* 93±2.3 110±4.9 
(-)-Riboflavin 88±24 64±27 86±29 76±8.3 150±40 260±50 
Deoxyadenosine 64±4.2* 93±7.1 100±5.1 94±6.3 94±4.1 85±5.2 
BisI 2.3±1.4*** 88±3.5 90±9.3 81±4.3* 95±4.9 100±1.5 
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