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ABSTRACT 

Chen, Liangliang, Ph.D., Purdue University, December 2013. Semiconductor 
Nanomaterial Development for Photovoltaic and Thermoelectric Applications. Major 
Professor: Xiulin Ruan, School of Mechanical Engineering. 
 
 
 

Today’s world is frequently going through fossil energy shortage and environmental 

consequences brought by the over-emission of greenhouse gas from burning fossil fuels. 

Therefore, it is urgent now more than ever to discover or develop clean and sustainable 

power generation approaches. Among various approaches, photovoltaics and 

thermoelectrics have been more and more attentive both in academia and industry. 

Photovoltaic power generators can significantly decrease carbon dioxide emission by 

directly converting sunlight into electricity, and thermoelectric power generators can 

increase energy use efficiency by recycling waste heat into electricity. This research 

seeks to gain a better understanding of the mechanism that influences the energy 

conversion process in photovoltaic and thermoelectric materials and meanwhile use nano-

engineering approaches to improve the performance of thermoelectric materials. 

For photovoltaic nanomaterials, we have first made progress in simulations of electron-

phonon coupling, which is a major mechanism for efficiency loss, in CdSe quantum dots. 

Time-domain non-adiabatic ab initio simulations have been performed to study the 

phonon-assisted hot electron relaxation dynamics in CdSe nanocrystals. It is found that 
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the shape of the nanocrystals has a strong impact on the electron decay dynamics. The 

electron-phonon coupling is generally stronger in elongated nanocrystal than in the 

spherical nanocrystal. The relaxation of hot electrons proceeds faster in the elongated 

nanocrystal than in the spherical nanocrystal, and it also shows stronger temperature 

dependence in the elongated nanocrystal. The hot electron decay rates calculated from 

non-adiabatic molecular dynamics show weaker temperature dependence than the T-1 

trend in both elongated and spherical nanocrystals, which can be attributed to the thermal 

expansion effect. 

We then performed experiments to synthesize and characterize semiconductor 

nanocrystals. Monodisperse CdSe, PbSe, and PbTe nanocrystals of various morphologies 

have been synthesized by using different combinations of surfactant and solvent in the 

refined phosphonic-acid-assisted organometallic method. XRD spectra have confirmed 

the formation of desired crystal phase and size. SEM and TEM images have confirmed 

the morphology and crystallinity. UV-visible absorption spectra show that the bandgap 

decreases with increasing crystal size. With collaborators, we have characterized the hot 

electron relaxation dynamics using transient absorption spectroscopy. The results show 

that the hot electron relaxation can result from both electron-phonon coupling and the 

Auger process  

Raman spectroscopy has also been used to investigate the size, shape and temperature 

dependence of phonon vibrational modes, for the interest of Raman thermometry using 

NCs. For spherical CdSe NCs of diameters 2.8 nm, 3.6 nm, and 4.4 nm, the temperature 

sensitivities are -0.0131 cm-1/K, -0.0171 cm-1/K, and -0.0242 cm-1/K, respectively. This 

trend indicates that as the diameter increases, the effect of increasing phonon 
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anharmonicity dominates over the effect of the decreasing thermal expansion coefficient. 

On the other hand, triangular NCs with a size of 4.2 nm and elongated NCs of a 

dimension of 4.6 nm by 14 nm show temperature sensitivities of -0.0182 cm-1/K and        

-0.0176 cm-1/K, respectively. This trend indicates that in non-spherical shape NCs, the 

effect of decreasing thermal expansion coefficient dominates over the effect of slightly 

increasing phonon anharmonicity.  

For thermoelectric nanomaterials, both material synthesis and device fabrication have 

been conducted. For the material synthesis part, Bi2Te3-based nanocrystals have been 

made using both pyrolysis of organometallic method and ball milling method. 

Experimental parameters have been optimized to make impurity-free Bi2Te3 nanocrystals 

of various morphologies. Raman spectroscopy has been used to investigate the 

morphology dependence of phonon modes. The A1u mode is invisible in bulk Bi2Te3, but 

becomes visible in Bi2Te3 nanocrystals no matter whether they are synthesized by wet-

chemistry method or ball milling method. Furthermore, for wet-chemistry synthesized 

Bi2Te3 nanocrystals, the 2D nanostructure shows similar Raman features as those of few-

quintuple-thick Bi2Te3 layers, while the 0D and 1D nanostructures show a blue-shifted 

A1g
2 mode and a much stronger A1u mode, which is the first report regarding the 

morphology impact on the Raman modes of Bi2Te3 nanocrystals. 

We have also used ball milling and hot pressing to obtain nanostructured bulk and 

improve the figure of merit of Bi2Te3 based alloys. Nanostructured bulk pellets are 

fabricated by densifying nanocrystal powders into bulk using hot pressing method. Due 

to the increased phonon scattering at the grain boundaries introduced in nanostructured 

bulk process, significantly reduced thermal conductivities have been obtained on 
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nanostructured bulk Bi2Te3 pellet samples. It is also observed that thermal conductivity 

decreases with decreasing average grain size. Several post-fabrication treatments, like 

removing surface oxide layer by Ar plasma and improving crystallinity by thermal 

annealing, have been used to further improve the thermoelectric properties of the samples. 

Ion bombardment by Ar plasma is found to improve the contact between the metal 

electrodes and the material. Thermal annealing is found to not only increase the electrical 

conductivity but also the increase the Seebeck coefficient. The improved figure of merit 

at room temperature is around 1.23 on the p-type Bi0.5Sb1.5Te3 sample and 0.32 on the n-

type Bi2Te2.7Se0.3 sample. The value from the p-type sample is close to the state-of-the-art 

value and still has room for improvement. 
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CHAPTER 1. INTRODUCTION 

Molecular and bulk materials have exhibited distinct properties in optical, thermal, 

electrical, thermoelectric, photovoltaic, as well as magnetic applications. The size of 

nanomaterials lies in the intermediate regime between molecular and bulk scales. The 

study of nanoscale materials brings up a chance for scientists to study the evolution of 

those properties as size increases from molecule to bulk.  

The size dependent properties of semiconductor nanomaterials mainly arise from the 

size dependent electronic structures when their size falls into the so-called strong 

confined region, Bohr Radius. Within the strong confined region, the continuous 

electronic energy bands in bulk materials break into discrete energy levels and the 

spacing between electronic levels as well as the bandgap increases with decreasing size. 

This is so called quantum confinement effect. By studying the size-dependent behavior of 

physical and chemical properties, people can gain a better understanding of the 

underlying mechanism, which will hence lead to advances in synthesizing materials with 

desired properties in more precise ways. 

1.1 Photovoltaic Applications of Semiconductor Nanomaterials 

In photovoltaic semiconductor materials, valance-band electrons can be excited into 

conduction band upon the absorption of photons with enough energy. These excited 

electrons are called hot electrons, and as a result of the broad bandwidth of the solar 
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radiation, electrons may end up in different energy states depending on the energies of 

the absorbed photons.  

However, these hot electrons are in a metastable status and can eventually lose their 

excess energies to the ambient via a series of scattering events, with phonons, photons, 

holes, defects, and so on, among which electron-phonon interaction is of great 

importance. These energy loss processes compete strongly with the energy harvest 

process, and this is undesirable in the photovoltaic applications. As a matter of fact, such 

energy loss has been dominating over energy harvest and become a big limiting factor in 

further increasing the conversion efficiency of solar cell devices. It prevents the cost of 

using solar energy from being reduced. Therefore, to address this issue for possible solar 

efficiency improvement, the hot electron relaxation (decay) rate should be significantly 

reduced so that hot electrons can be extracted into the external circuit before decaying 

back to the valence band and making no contributions.[1-3] 

Minimizing electron-phonon coupling is helpful in slowing down hot electron 

relaxation rate, so it is necessary to study phonon properties in these confined 

nanocrystals to gain a better understanding of energy-involved electron-phonon 

interactions. 

With an energy band gap (1.73 eV) lying within the visible region of the solar 

spectrum, cadmium selenide (CdSe) is considered to be a promising substitute for the 

conventional silicon materials in photovoltaic industry. When the size reduces to a few 

nanometers, the band gap of CdSe nanocrystals (NCs) can be tuned through changing 

size [4] and surface chemistry [5, 6], or doping [7]. This makes it convenient to control 

absorption properties for potential solar cell applications. Lead selenide (PbSe), an IV-VI 
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group semiconductor, has exhibited similar size-tunable optical and electrical properties 

[8, 9]. Different from CdSe, whose bandgap is located in the visible range, PbSe has a 

much smaller energy bandgap (0.27eV), located in the infrared range. This small bandgap 

extends the absorption range to the infrared area and favors the multiple exciton 

generation process but makes PbSe-based solar cells less likely to provide high 

photovoltage output. Schottky solar cell devices based on PbSe nanocrystal films have 

achieved an energy conversion efficiency (ECE) of up to 3.6% [10], and nanocrystal 

sensitized solar cell devices using CdSe nanocrystal as the light absorber have reached an 

ECE of up to 4.44%[11]. 

Guyot-Sionnest et al.[12] have demonstrated the strong influence of surface ligands on 

the intraband electronic relaxation in CdSe NCs. Jaroz et al.[13] have showed in their 

work that photoconductivity of NC films can be increased by treating the as-deposited 

film with amines and sodium hydroxide, which can significantly increase the NC surface 

passivation and reduce the inter-NC spacing. Gur et al.[14] have found out sintering at 

appropriate temperatures could increase the solar cell efficiency. Koleilat et al.[10] have 

increased the efficiency of PbSe NC film based solar cell to 3.6% by replacing the long 

oleate ligands with a strongly bound bidentate linker, benzenedithiol.  

Semiconductor NCs have also been chosen as substitutes for dyes in dye sensitized 

solar cells because of their size-tunable bandgap and relatively large absorption cross 

sections[15].  Although the efficiency of NC sensitized solar cell is still lower than the 

efficiency of traditional dye sensitized solar cell (11%), some progresses have been made 

in the past few years. By increasing the fraction of large TiO2 particles and keeping the 

balance between the light scattering and surface area, Zhang et al. are able to obtain 
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efficiency as high as 4.92% in their CdSe/CdS co-sensitized solar cell device. Zheng and 

co-workers[11] have obtained a 4.44% efficiency in devices made through refined 

fabrication techniques. 

Some experiments have shown that the electron-hole interaction, which is also called 

Auger process and usually proceeds faster than the electron-phonon interaction, can co-

exist with and hence dominate over the electron-phonon interaction in the electron 

relaxation process in NCs [16]. Depending on the types of the materials, status of surface 

passivation, and types of surface ligands, the Auger process can be suppressed if 

electrons and holes are separated or if electrons and holes have similar density of states 

(DOS). For instance, with shallow hole-trapping surfactants attached to the NCs, the 

Auger process is dominating and the hot electron relaxation is very fast,[16-20] while 

with deep hole-trapping surfactants attached, the Auger process can be suppressed 

through an effective electron hole separation and leave the electron-phonon interaction 

dominating in the decay process.[16, 21]  

With the knowledge of suppressing the relatively fast electron-hole coupling, the 

remaining step to reduce the electron decay rate is to further suppress the relatively slow 

electron-phonon interaction in materials via modifying the electronic properties of the 

materials. For bulk materials, it’s hard to achieve this. However, making the bulk 

semiconductors into nanostructures, such as quantum dots and quantum rods, has shown 

the potential to slow down the electron-phonon interaction. According to the quantum 

confinement effect, when bulk materials are made into nano materials, their previously 

continuous energy bands will break into discrete energy levels, and the spacings between 

adjacent energy levels will increase as decreasing the size and exceed the energy of a 
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single phonon at some point, which will hence result in mismatch between electronic 

transition energy and phonon energy. As a result, hot electrons will need to couple with 

multiple phonons simultaneously to relax to lower levels. This higher order process is 

supposed to result in lower electron decay rates in nano materials, in contrast to bulk 

materials.[1, 22, 23] Such prediction has been observed in experiments.[16, 24] 

Furthermore, slowing down the electron relaxation rate is also desired for the possible 

multiple exciton generation process to be efficient,[3, 25-30] which in turn will also 

improve the overall conversion efficiency of solar cell devices.  

Recognizing the importance and feasibility of slowing down the electron-phonon 

interaction in the application of photovoltaic materials, it is both fundamentally and 

practically crucial to first understand how the electron-phonon relaxation is affected by a 

variety of factors, such as material, temperature, nanoparticle size and shape, surface 

terminations, surfactants, etc.[31] Progresses have been made in both experiments and 

simulations.  

For instance, Guyot-Sionnest et al.,[16] have investigated the influence of capping 

ligands and observed a 200ps long decay curve on CdSe NCs capped with pyridine, 

which is orders of magnitude longer than that observed in bulk CdSe. Yu et al.[32] have 

found that the intraband energy relaxation is 8 times faster in the thin CdSe QRs than the 

thick ones. Mohamed et al.[33] have shown that electrons of higher energy states decay 

faster in the CdSe QRs than the QDs. In addition to the experimental progresses, a non-

adiabatic molecular dynamics approach has been developed[34, 35] to simulate the hot 

electron relaxation process in NCs,[36-38] and this approach has been used to investigate 
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the temperature dependence of hot carrier relaxation in PbSe and CdSe NCs.[39, 40] It’s 

also found that the hot electron relaxation time decreases with increasing temperature, but 

the dependence deviates from the classical T-1 trend due to the thermal expansion effect.  

Raman spectroscopy has been widely used to study the phonon vibrations in CdSe NCs 

by virtue of its sensitivity to local atomic arrangement and lattice vibration. The impact 

of nanocrystal shape and size, capping ligand, excitation wavelength, and matrix on 

phonon modes in CdSe nanocrystals has been intensively studied using Raman 

spectroscopy [6, 41-53], in which phonon properties can be exacted from the frequency 

and bandwidth of the Raman modes, and the intensity ratio of the LO mode to the 2LO 

mode [44-46, 50-52].  

For instance, Tanaka et al. have found that the LO phonon peak shifts to lower 

frequencies and the bandwidth broadens with decreasing NC size or increasing 

temperature[54]. Meulenberg et al. have shown that the ZnS-shell-induced LO phonon 

shift is larger for smaller dots than for larger dots because of the larger compressive stress 

resulting from the larger mismatch between core and shell for smaller dots[55]. Kusch et 

al. have found that higher-order phonon processes are enhanced with decreasing NC 

size[56]. Tanaka ea al have studied CdSe microcrystals embedded in a germanate glass 

matrix and found the frequency of the peak decreases and the bandwidth broadens with 

decreasing size [42]. It’s also found that surface tension, resulted from the lattice 

mismatch, can cause the frequency and bandwidth to change, which can be seen in 

typical core/shell QDs and QDs embedded in glass matrices [42, 43, 57]. In the work of 

Dzhagan et al., LO phonon peak of two kinds of CdSe/ZnS core/shell QDs is found to 
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shift to opposite sides of the LO phonon peak of the uncoated CdSe QDs  due to different 

intermixing rates of core and shell materials [57]. Meulenberg’s work has shown that a 

ZnS shell can induce a much larger compressive stress on a smaller dot than a larger dot, 

which can be attributed to the larger mismatch in the case of the smaller dot [55]. These 

studies have contributed to unveil the underlying mechanisms affecting the phonon 

vibrational behavior in CdSe NCs.  

Despite all the progresses, it is also found that no systematic efforts have been devoted 

to investigating the influence of the CdSe QR length on the hot electron relaxation in 

either simulations or experiments, which hinders a fundamental understanding of the 

structure-property relationship. 

1.2 Microscale Thermometry Applications of CdSe Nanomaterials 

In the field of microscale temperature probing, Raman spectroscopy has also been 

widely used due to its high spatial resolution and feasibility in sample preparation. 

Tanaka et al have studied the phonon modes in the embedded CdSe microcrystals 

below room temperature [42]. Dzhagan et al. have investigated the phonon behavior in 

the core/shell CdSe QDs below room temperature. Song et al. find that radial breathing 

mode corresponding to larger diameter has higher temperature sensitivity in single-walled 

carbon nanotubes[58]. The work of Calizo et al. shows that there’s no significant 

difference in temperature sensitivity between single-layer and bi-layer graphenes[59]. In 

nanomaterials, crystal geometry poses a significant influence on Raman properties. 

However, little work has been done to study the geometry impact due to the ambiguities 

caused by non-monodispersity of CdSe NCs. 
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1.3 Thermoelectric Applications of Bi2Te3-Based Nanomaterials 

Thermoelectric effects refer to phenomena that a temperature difference or gradient can 

generate an electrical potential difference or an electrical current can generate a 

temperature difference. Although thermoelectric effects can be observed in most 

materials, a good candidate material for thermoelectric applications should have a high 

figure of merit value. Compared with insulators, semiconductors have relatively high and 

tunable electrical conductivity. Compared with metals, semiconductors have relatively 

high Seebeck coefficient. The combination of moderate electrical conductivity and 

Seebeck coefficient makes semiconductor materials promising materials for 

thermoelectric applications. Bismuth telluride and its alloys, well known for that they 

possess the highest figure of merit at room temperature, are widely used for solid-state 

cooling devices[60]. Bulk Bi2Te3-based alloys possess a ZT value close to 1 [61]. 

However, in order for TE power generation to become competitive to other power 

generation approaches, a ZT value of 3-4 is required [62].  

Theoretical studies show that low-dimensional nanomaterials can have a much higher 

figure of merit compared with their bulk counterparts[63, 64] as a result of decreased 

thermal conductivities.  Zhao et al.[65] have shown that ZT value of Bi2Te3 

nanocomposites can be enhanced by introducing non-uniform micro structures even 

without changing chemical compositions. Mavrokefalos et al.[66] show that better 

control over chemical composition is necessary to improve the ZT of the electrodeposited 

nanowires. Theoretical studies done by Qiu et al.[67] show that Bi2Te3 nanowires of a 

diameter smaller than 10nm possess a higher ZT value than their bulk counterparts. Hicks 

et al. show that the ZT value of Bi2Te3 quantum well may be 9 times higher than the bulk 
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value [64] and the ZT value of 1D Bi2Te3 nanowire can be increased to ~14 from the bulk 

value [63].  

Raman spectroscopy has been used to detect the lattice vibration of Bi2Te3 materials. 

With Raman spectroscopy, the influence of thickness in few-quintuple Bi2Te3 layers and 

chemical stoichiometry in Bi2Te3 films has been studied [68-71]. To our best knowledge, 

little work has been done to study the phonon modes in Bi2Te3 nanorods and small Bi2Te3 

nanoparticles whose sizes are within the strong quantum confinement region. 

1.4 Progress in Wet-Chemistry Synthesis of Semiconductor Nanomaterials 

For photovoltaic applications, a large part of the contribution to the external quantum 

efficiency (ECE) improvement can be attributed to the progress in NC synthesis and 

modification. So far, II-IV and IV-VI  NCs can be synthesized via organometallic[4, 72, 

73], hydrothermal[74] [75], ultrasonic [76], and microwave irradiation assisted route [8, 

77]. For example, high-crystallinity semiconductor NCs can be synthesized with high 

yield since Murray et al.[4] have developed a new synthesis method by combining hot-

injection with pyrolysis of organometallic compound. Deng et al.[78] have synthesized 

high-crystallinity zinc-blende CdSe NCs with a non-TOP route. Yu et al.[15] have 

developed an empirical equation that directly relates optical absorption maximum with 

the size of NCs. Norris et al.[79] have studied the size-dependent optical properties of 

CdSe NCs. Bullen et al.[80] systematically investigate the nucleation and growth 

mechanisms of CdSe NCs in octadecene, which is a commonly used non-coordinating 

solvent in the synthesis. 

Among the methods mentioned above, the fast-injection organometallic route is 

popularly used to prepare monodisperse CdSe NCs. By employing a hot injection 
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technique at a high temperature (~300 ), the organometallic route can result in a narrow 

size distribution through a fast nucleation process. Additionally, because of the relatively 

high reaction temperature, organometallic route usually produce samples of better 

crystallinity in a far shorter period than samples prepared by other methods. Solvents 

used in the fabrication have strong influence on the NCs’ properties. As a coordinating 

solvent, TOP/TOPO also acts as the surfactant, which is used to stabilize and passivate 

the NCs. Although coordinating solvent can favor the formation of high-crystallinity and 

well-shaped NCs [81, 82], non-coordinating solvents, like octadecene, still have some 

advantages over coordinating solvent [53]. First, when octadecene is used, the 

concentration of the surfactants can be easily tuned in order to optimize the reaction rate. 

Second, octadecene is less toxic and easy to measure and mix with other chemicals. In 

our work, a combination of octadecene and TOPO is used as the solvent in order to take 

advantage of both. Also, Wang et al. [83] have shown in their work that syntheses using 

longer chain phosphonic acids tend to produce spherical CdSe NCs and impose more 

control over the reaction rate.  

For thermoelectric applications, tremendous efforts have also been put into the 

preparation of nanostructured bismuth telluride (Bi2Te3). They have been synthesized via 

methods, like co-precipitation of bismuth and tellurium oxides[84], reduction of metal-

organo complexes[85], surfactant-controlled hydrothermal (solvothermal) methods[86-

89], and electric-field-assisted deposition[90, 91]. Various shapes of Bi2Te3 NCs have 

been synthesized in experiments, including nanorods[92], random[93] and arrayed[90] 

nanowires, nanoparticles[87, 91, 94, 95], nanosheets[87, 93], nanosheet-rods[93], 
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nanotubes[86, 88] and nanofoils[96], with the development of various experimental 

techniques.  

Among all these methods mentioned above, the hydrothermal and electrodeposition 

routes have attracted the most attention because of their easy operations and low-energy 

cost. In the hydrothermal process, the reaction temperature, time, concentration, 

surfactants and reductants all have vital influence on the as-synthesized nanocrystal 

properties, like microstructure, shape and size, while in the electrodeposition process, the 

electric field, reaction time, substrate and template all play an important role. Due to the 

application of high pressure, hydrothermal (solvothermal) approaches normally result in 

overgrown Bi2Te3 nanocrystals [87]. 

However, with the expectation of utilizing the quantum confinement effect, smaller 

Bi2Te3 nanoparticles (< 10nm) with better size distributions are more desirable, which 

have not been realized in either hydrothermal or electrodeposition method. The smallest 

Bi2Te3 nanoparticles that could be achieved in the hydrothermal technique are ~30nm 

with a broad size distribution.  

So far, the synthesis of pure-phase Bi2Te3 nanoparticles smaller than 10 nm still 

remains a challenge due to the high reactivity between bismuth and tellurium salts. A 

recent work by Purkayastha et al.[97] has used an innovative synthetic procedure, which 

results in Bi2Te3 nanoparticles as small as 5nm with relatively narrow distributions. This 

experiment is carried out at room temperature and employs a microemulsion method to 

promote the nucleation and growth of Bi2Te3 nanoparticles. The resulted nanoparticles 

are protected by thioglycolic acid from agglomeration and surface oxidization. The high 

Seebeck coefficient (-107 µV/K)[97] measured from the sample exhibits their potential as 



12 

 

a thermoelectric material with high figure of merit. However the XRD results show the 

existence of sulfur-related impurities. Scheele et al. [98] have used a two-step reduction 

method to produce nanoparticles of 7 nm, but there is still a trace of impurities. 

1.5 Objectives and Scope of Thesis 

This thesis has two objectives. The first objective is to gain a better understanding 

about the phonon vibrations and electron-phonon coupling in photovoltaic materials 

through both simulations and experiments. For simulations, time-domain density 

functional theory is used to study phonon-assisted hot electron relaxation dynamics. For 

experiments, semiconductor nanocrystals are synthesized using pyrolysis of 

organometallic compounds and characterized using various methods, Raman 

spectroscopy, XRD, SEM, TEM, UV-Vis absorption spectroscopy and IR spectroscopy. 

The second objective is to develop high-ZT materials for high-performance 

thermoelectric devices through nanostructured bulk approach. For material development, 

nanocrystals are prepared using both pyrolysis of organometallic compounds and ball 

milling. For device fabrication, nanostructured bulk is fabricated by hot pressing 

nanocrystal powders.  

The thesis is organized in the following way. Chapter 1 is dedicated to giving an 

introduction of research motivation, research background, major progresses and 

challenges in the research. Chapter 2 and 3 are dedicated to studies regarding 

photovoltaics and will demonstrate the research progress and findings that I have made in 

photovoltaics area. Chapter 4 and 5 are dedicated to studies regarding thermoelectrics and 

will demonstrate the research progress and findings that I have made in thermoelectric 

area. Chapter 6 is dedicated to a brief summary of important achievement during my PhD 
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study as well as suggestions for future research directions. Details about the methods and 

equipment used for experiments and simulations will be given in each individual chapter.  

Chapter 2 focuses on the simulation work that has been done to study the hot electron 

decay dynamics in CdSe nanocrystals. The real-time ab initio simulation is performed by 

implementing trajectory surface hopping into time-domain Kohn-Sham theory. Two 

types of CdSe nanocrystals are studied, spherical NC and elongated NC. The electronic 

DOS and band structure are first calculated. Then the band gap is calculated from which 

the optical absorption spectra are derived. The electron-phonon coupling strength spectra 

are then obtained by taking the Fourier transforms of the time-domain electronic energy 

levels. The hot electron decay rates are calculated using non-adiabatic molecular 

dynamics and their dependencies on temperature and shape are analyzed. 

Chapter 3 focuses on experimental work inspired by the simulation findings and 

performed to synthesize and characterize semiconductor nanocrystals for photovoltaic 

applications. For the synthesis part, monodisperse CdSe, PbSe, and PbTe nanocrystals of 

various morphologies are synthesized using the refined phosphonic-acid-assisted 

organometallic method. For the characterization part, XRD spectra are used to 

characterize the crystal phase and size. SEM and TEM images are used to characterize 

the crystal morphology and crystallinity. UV-visible absorption spectra are used to 

monitor the crystal growth. Raman spectroscopy is used to study the size, shape and 

temperature dependence of phonon vibrational modes in CdSe nanocrystals. Besides 

photovoltaic applications, with the understanding of temperature-dependent phonon 

properties, knowledge acquired can also be used to improve the application of Raman 

spectroscopy in microscale thermometry.  
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For thermoelectric applications, both material synthesis and device fabrication have 

been conducted. 

Chapter 4 focuses on material synthesis and characterization for thermoelectric 

applications. For the material synthesis part, Bi2Te3-based nanocrystals have been made 

using both pyrolysis of organometallic method and ball milling method. Experimental 

parameters have been optimized to make impurity-free Bi2Te3 nanocrystals of various 

morphologies. Raman spectroscopy has also been used to investigate the morphology 

dependence of phonon modes. The A1u mode is invisible in bulk Bi2Te3, but becomes 

visible in Bi2Te3 nanocrystals no matter whether they are synthesized by wet-chemistry 

method or ball milling method. Furthermore, for wet-chemistry synthesized Bi2Te3 

nanocrystals, the 2D nanostructure shows similar Raman features as those of few-

quintuple-thick Bi2Te3 layers, while the 0D and 1D nanostructures show a blue-shifted 

A1g
2 mode and a much stronger A1u mode, which is the first report regarding the 

morphology impact on the Raman modes of Bi2Te3 nanocrystals. 

Chapter 5 focuses on nanostructured bulk fabrication and characterization for 

thermoelectric applications. For the thermoelectric device fabrication, nanostructured 

bulk approach has been adopted to improve the figure of merit of Bi2Te3 based alloys. 

Nanostructured bulk pellets are fabricated by densifying nanocrystal powders into bulk 

using hot pressing method. Due to the increased phonon scattering at the grain boundaries 

introduced in nanostructured bulk process, significantly reduced thermal conductivities 

have been observed in nanostructured bulk Bi2Te3 samples. It is also observed that 

thermal conductivity decreases with decreasing average grain size. Several post-

fabrication treatments, like removal of surface oxide layer by Ar plasma and thermal 
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annealing, have been used to further improve the thermoelectric properties of the samples. 

Thermal annealing is found to not only increase the electrical conductivity but also the 

increase the Seebeck coefficient. The improved room-temperature figure of merit on p-

type Bi0.5Sb1.5Te3 is around 1.23, which is close to the state of the art value and still has 

room for improvement.  
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CHAPTER 2. PHOTOVOLTAICS -- PHONON ASSISTED HOT ELECTRON 
RELAXATION IN CDSE NANOCRYSTALS 

For this part of the work, we have performed time-domain non-adiabatic molecular 

dynamics simulations on CdSe spherical quantum dot (QD) and elongated quantum dot 

(EQD) in order to gain a clear picture of how the length and temperature affects the 

phonon-assisted hot electron relaxation dynamics.  

2.1 Simulation Method and Details 

The time-domain non-adiabatic molecular dynamics simulation of the electron-phonon 

relaxation dynamics is realized by implementing the fewest switching surface hopping 

technique [34, 99, 100] in the time-domain Kohn-Sham theory [101]. Details of this 

method can be found in the reference [38], and here we only outline the procedure. 

The electron density is written in the Kohn-Sham (KS) representation as[101], 

                                                 , ∑ | , | ,                                      (2.1) 

where Ne is the number of electrons and ,  is single-electron KS orbital. Applying 

the time-dependent variational principle to the expectation value of the KS density 

functional will lead to the system of coupled equations of motion for the single-particle 

KS orbitals[101],  

                           
, , , , 1, … , .                                 (2.2) 

The time-dependent KS orbitals can be expanded in terms of adiabatic KS orbitals, 



17 

 

                                     , ∑ | ; ,                                   (2.3) 

where R is the ion configuration. After plugging Eq. (2.3) into Equation (2.2), the latter 

transforms into the equation of motion for the expansion coefficients cpk, 

                                 
, ∑ · ,                       (2.4) 

where  is the electron-phonon coupling term defined as, 

                                   ; | | ; .                                 (2.5) 

The non-adiabatic coupling factor is given by [102] 

· ; | | ; ·  

                                     ; ; .                             (2.6) 

Here the adiabatic KS orbitals ;  are calculated by solving the time-independent 

KS equations, as implemented[34] in the Vienna Ab initio Simulation Package 

(VASP)[103]. Using FSSH, the probability of a transition from a given state k to another 

state m within the time interval dt is given by 

                                           ,                                                              (2.7) 

where 

                          2 · , ,                                       (2.8) 
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Here,  and  are the coefficients evolving according to Eq. (2.4). As explained in 

references[99, 104], FSSH gives detailed balance between the upward and downward 

transitions. From the above equations, the time-dependent electron population in each 

electronic orbital can be determined. Note that our approach captures electron-phonon 

relaxation channel, while the electron-hole interactions are not included. 

The geometry optimization, electronic structure calculation, and molecular dynamics 

(MD) are performed with VASP code using converged plane-wave basis density 

functional theory (DFT)[103] in simulation cells periodically repeated in three 

dimensions. Instead of the simultaneous integration of electronic and ionic equations of 

motion adopted in Car-Parrinello method, this approach performs an exact evaluation of 

the instantaneous electronic ground state at each MD-step using an efficient Pulay mixing 

and efficient matrix diagonalization schemes[103]. In our simulations, the initial 

structures of the Cd33Se33 QD and Cd54Se54 EQD were generated from bulk wurtzite-

structured CdSe (a = 4.3 Å, c = 7.02 Å). Compared with the QD, the EQD is of the same 

dimension in radial direction, but elongated in the axial direction. In order to prevent 

spurious interactions between periodic images of the QDs and EQDs, the cells were 

constructed to have at least 20 Å of vacuum between neighboring QDs and EQDs. The 

PW91 density functional [105] and Vanderbilt ultrasoft pseudopotentials[106] were used 

throughout the study. The KS orbitals were expanded using the plane wave basis set with 

the energy cutoff of 12.34 Ry (167.9 eV). Higher cutoff energy was also tested and no 

significant changes were seen in the resulted configuration and electronic structure. For 

the CdSe QD and EQD, only Γ point calculations are necessary. 
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The structure was first fully optimized at 0 K and then heated up to different 

temperatures by MD. Then a 4ps microcanonical trajectory was generated at each 

temperature. The electronic and ionic time steps are set to be 10-3 and 1 fs, respectively. 

The nuclear trajectories from this microcanonical MD were then used to sample 500 

initial conditions to create ensemble averages for the non-adiabatic molecular dynamics.  

2.2 Results and Discussions 

 
Figure 2.1. Optimized structures. (a) Cd33Se33 QD, (b) Cd54Se54 EQD. 

 
The initial structures of the QD and EQD were first optimized at 0 K. During the 

optimization, Cd atoms tend to move inward to minimize the energy and reconstructions 

occurred at or near the surface, however the bulk crystal structures were found to be well 

preserved in both QD and EQD, as is shown in Figure 2.1. The optimized QD is ~1.24 

nm in diameter and the optimized EQD is ~1.24 nm in diameter and ~1.57 nm in length 

(c axis). Some lengths of typical Cd-Se bonds are shown in Fig. 2.1. For the QD, the 

average Cd-Se bond length is 2.663 Å with a spread between 2.491 Å and 2.927 Å, while 

for the EQD, the average Cd-Se bond length is 2.668 Å with a spread between 2.489 Å 

and 2.964 Å. 
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Figure 2.2. (a) Electronic DOS, (b) Electronic structures of the Cd33Se33 
QD and Cd54Se54 EQD. 

 

 
Figure 2.3. Absorption spectra. (a) QD, (b) EQD. 

 
The electronic energy levels and DOS of the CdSe QD and EQD optimized at 0K are 

shown in Fig. 2.2. The first peak in the conduction band can be attributed to the 1s 

electron state (1Se) and the first peak in the valance band is the 1s hole state (1Sh). In both 

cases of QD and EQD, hole states are denser than electron states. This agrees well with 

the effective mass approximation, in which heavier effective mass is used for holes than 

electrons (mh / me ≈ 6) [107]. The band gap is estimated by taking the energy difference 

between the 1Se and 1Sh states. The obtained value here is ~1.3 eV for the QD and ~0.8 

eV for the EQD, both lower than experimental values, which is commonly seen in typical 

DFT-based simulations [36-38, 108]. However, the under-predicted band gap will not 
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significantly affect our calculations of hot electron relaxation since it occurs within the 

conduction band, and the conduction band curves are expected to be well predicted.  

 

Figure 2.4. Band gap as a function of temperature for the QD and EQD. 
 

Previous experiments show that the band gap of CdSe quantum rod whose size is 

within the strong confinement regime decreases as their length increases[109]. In our 

case, the EQD and QD together can be viewed as quantum rods with the same diameter 

but different lengths. The diameter (~1.24 nm) of both is much smaller than their exciton 

Bohr radius (~5.6 nm for bulk CdSe), and therefore the NCs are within the strong 

quantum confinement regime. This fact can explain why in our simulation the shorter 

quantum rod, i.e. QD, shows a noticeably wider band gap than the longer quantum rod, 

i.e. EQD, shown in Fig. 2.2.  
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Figure 2.5. Time evolution of the LUMO energy for the QD and EQD at 
high and low temperatures. 

 
The absorption spectra for the CdSe QD and EQD were calculated by summing over 

individual transitions across the electronic band gap[39], and the results are shown in Fig. 

2.3. According to the DOS, the 1Se-1Sh, 1Se-1Ph (1Pe-1Sh), and 1Pe-1Ph electronic 

transitions correspond to the absorption maxima at around 1.25 eV, 1.85 eV and 2.35 eV 

for the QD and 0.75 eV, 1.2 eV and 1.7 eV for the EQD. Compared with the QD, the 

absorption peaks in the EQD occur at lower energies, which is consistent with the fact 

that the electronic energy levels in the EQD are denser than in the QD. At higher 

temperatures, the absorption peaks are broadened because more phonons are generated 

and coupled to the photon absorption process. In addition, as temperature increases, the 

absorption peaks shift to the red side, indicating that the energy band gap probably should 

have negative temperature dependence for both QD and EQD.  
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Figure 2.6. Fourier transforms of the LUMO energies. (a) QD, (b) EQD. 

The temperature dependence of the band gap of the CdSe QD and EQD is shown in Fig. 

2.4. These band gap values were calculated by averaging the energy differences between 

the lowest unoccupied molecular orbitals (LUMO) and highest occupied molecular 

orbitals (HOMO) over the MD trajectory at the specified temperature. The result can be 

fitted linearly with slopes of -0.2521 meV/K and -0.3824 meV/K for the QD and EQD, 

respectively. The negative temperature dependence of the band gap for both QD and 

EQD agrees well with the experiments [110-112]. It is also noticed that the band gap of 

the smaller quantum dot (QD) shows a weaker temperature dependence than that of the 

larger quantum dot (EQD), and similar trend was also observed in experiments by other 

researchers[113, 114]. Proposed by Olkhovet et al[113], the temperature dependence of 

the NC band gap is determined by four factors: dilation of the lattice, thermal expansion 

of the envelope function, mechanical strain and electron-phonon coupling, among which 

electron-phonon coupling makes the most dominant contribution. The electron-phonon 

coupling consists of intraband and interband coupling. The intraband coupling leads to 

negative temperature dependence, while the interband part gives a positive dependence. 
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Since the intraband energy differences for CdSe NCs do not approach the energy gap of 

bulk CdSe, the intraband coupling contributions are much larger than the interband 

contributions, and therefore the overall temperature dependence of the band gap is 

negative[113]. Furthermore, in CdSe NCs, the temperature dependence of ∆E contributed 

by the intraband part can be approximately related to the electron-phonon coupling 

strength S, ∆E/∆T ~ - S[113]. According to our calculation, which will be shown later in 

Fig. 2.9, the intraband electron-phonon coupling is slightly stronger in the CdSe EQD 

than the CdSe QD, which can qualitatively explain the slighter stronger temperature 

dependence of the band gap in the EQD.  

 

Figure 2.7. Average electron energy decay at different temperatures. (a) QD, (b) 
EQD. 
 

In MD, temperature is evaluated based on the kinetic energy average over the MD 

trajectory. The time evolutions of the LUMO in both QD and EQD at low and high 

temperatures are shown in Fig. 2.5. The energy fluctuations are more significant at high 

temperature than low temperature for both QD and EQD. The LUMO values for the QD 

and EQD at various temperatures were obtained by averaging the LUMO values over the 
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MD trajectory (4000 fs). As temperature increases, the average LUMO value decreases 

and therefore decreases the band gap value. 

 

Figure 2.8. Hot electron relaxation rate as a function of temperature for the QD 
and EQD. 
 

The phonon modes that can effectively couple to electron relaxation were investigated 

by taking the Fourier transforms of the time-dependent LUMO energies. The coupling 

strength spectra at different temperatures are plotted as a function of phonon frequencies 

in Fig. 2.6. As seen, temperature affects the electron-phonon coupling in two ways. First, 

at higher temperatures, the coupling spectra are broadened, indicating that more phonon 

modes are excited and coupled to electrons, which can be attributed to stronger 

anharmonic effect at higher temperatures. Second, at higher temperatures, high-frequency 

tails show up in the spectra, indicating that higher-frequency phonons are excited and 
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coupled to hot electrons. Furthermore, spectral densities are larger and more high-

frequency vibrational modes are involved for the EQD than for the QD, indicating 

stronger phonon-electron non-adiabatic coupling in the CdSe EQD.  

In this part, electrons were first excited to initial energy states at ~0.75 eV above the 

LUMO and then were allowed to relax from the non-equilibrium states to the LUMO. 

The driving force is electron density perturbation induced by lattice vibrations. Within 

this energy range, only transitions with largest optical activities were chosen as the initial 

conditions. The result of the time-dependent relaxation is shown in Fig. 2.7. For each 

temperature, a 3.5 ps decay trajectory is plotted, and the zero energy is set at the 

corresponding average LUMO value. A typical decay curve is composed of two parts, 

including a short-period Gaussian and thereafter an exponential component, similar to the 

previous result[36]. In the CdSe QD, electron energies will decay back to zero at the end 

of the 3.5 ps trajectories when temperature is higher than 50 K. At 342 K, electron 

energies can sometimes even fall below zero, which can be rationalized by taking into 

account the significant energy fluctuation at high temperatures. In the case of EQD, most 

electrons relax back to the LUMO at the end of the trajectories for a wide range of 

temperatures. The temperature-dependent hot electron decay rate can be easily calculated. 

In both QD and EQD, hot electrons decay faster at higher temperatures. 

In order to gain a deeper understanding of the underlying relaxation mechanism, the 

decay rates at different temperatures were extracted from the decay curves, as shown in 

Fig. 2.8. The decay time here is defined as the time that electrons need in order to decay 

to the energy equal to 1/e of their initial energy, and the decay rate is defined as the 

inverse of the decay time with a unit of ps-1. It can be seen in Fig. 2.8 that hot electrons 
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generally decay faster in the EQD than the QD. As mentioned in Section III.B, the 

stronger electron-phonon coupling leads to the higher relaxation rate for hot electrons in 

the EQD. Phonon-assisted electron relaxation can occur via both slow multi-phonon and 

fast resonant-energy-phonon processes, depending on the DOS[38].  

Figure 2.9. Temperature dependence of | dkm |2 for the QD and EQD. 

   In Fig. 2.2, the electron DOS in the QD is different from that in the EQD in two ways. 

First, the 1S electron state in the QD is well separated from the rest of the CB, while the 

1S electron state in the EQD has some overlap with the rest of the CB. Second, in the 

region well above the LUMO, electron states are denser in the EQD than in the QD. The 

non-adiabatic coupling defined in Eq. (2.6) can be rewritten as 

                                          
| R | · .                                           (2.9) 
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According to Fermi’s Golden Rule, the decay rate is proportional to |NA|2 and thus 

inversely proportional to the square of the energy difference between transition states, 

which is (Em - Ek) in Eq. (2.9). Giving the denser energy states in the EQD, the non-

adiabatic coupling should be stronger in the EQD and thus the hot electron relaxation rate 

should be higher in the EQD.  

Based on the theoretical model proposed in our previous work[39], the temperature 

dependence of the hot carrier relaxation rate could be simply written as,            

                                        ~| | ~| | | | ~| | ,                           (2.10) 

where γ, , , , and   represent the relaxation rate, non-adiabatic coupling, 

electron-phonon coupling term, ion velocity, and temperature, respectively. The last 

proportion is based on the statistical thermodynamic definition of temperature. Equation 

(2.10) indicates that γ should be proportional to    if  is temperature-independent. 

However, our calculated results, shown in Fig. 2.8, deviate significantly from the 

expected trend. The decay rate can be better fitted to T0.371 and T0.148 for the QD and EQD 

respectively. This deviation indicates that  must be temperature-dependent. To 

confirm that, we obtained the | |  defined in Eq. (2.5) associated with the initial state 

and LUMO for both QD and EQD at different temperatures, and the results are plotted in 

Fig. 2.9. It is clear that | |  does have a negative temperature dependence, which can 

be fitted to T-0.549 and T-0.885 for the QD and EQD respectively. After substituting | |  

with the fitting functions into Eq. (2.10), the obtained relationships between γ and  

are ~  .  for the QD and ~  .  for the EQD, which agree well with the 

previous results from the fitting. Thus the weaker temperature dependence of hot electron 

decay rate can be attributed to the negative temperature dependence of , which 
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probably arises from the negative dependence of  on the thermal expansion in 

NCs[111]. Furthermore,  has stronger negative temperature dependence in the EQD 

than the QD. Experimental results show that for CdSe NCs, as size decreases the lattice 

constants decrease correspondingly[115]. It could be deduced that lattice parameters in 

the EQD are larger than those in the QD and our calculated results shown in Fig. 2.1 

confirm that Cd-Se bond is longer in the EQD than QD. Therefore, assuming the EQD 

and QD have the same thermal expansion coefficient then a larger thermal expansion is 

expected in the EQD with the same temperature rise, which will in turn make it 

reasonable that  has stronger negative temperature dependence in the EQD. 
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CHAPTER 3. PHOTOVOLTAICS -- WET CHEMISTRY SYNTHESIS AND 
CHARACTERIZATION OF SEMICONDUCTOR NANOCRYSTALS 

3.1 Experiments and Characterizations 

3.1.1 Experiments 

Because of the advantages of organometallic synthesis method mentioned before, 

organometallic method is adopted to synthesize different kinds of semiconductor 

nanocrystals. Typical procedures of pyrolysis of organometallic compounds method 

include precursor preparation, precursor injection, crystal nucleation and growth, reaction 

quenching and post-synthesis treatments, as shown in Figure 3.1. Unless stated otherwise, 

all chemical reagents were purchased from Alfa Aesar. 

In the step of precursor preparation, chalcogen precursor is prepared through heating a 

mixture of chalcogen element and metal precursor is prepared through heating a mixture 

of metal compound and surfactant. Chalcogen element, like selenium (Se), tellurium (Te), 

and sulfur (S), can be dissolved by reacting with tri-n-octylphosphine (TOP) to form 

some complex compound. Metal compound can be metal oxide, chloride, or acetate. 

Surfactant can be oleic acid (OA, TCI America), TOP/TOPO, or phosphonic acid (PA). 

Surfactant is the most influential factor that determines the shape and surface chemistry 

property of the synthesized nanocrystals by attaching to various crystal planes and 

modifying their growing speed. Solvent can be either coordinating, like diphenyl ether 
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(DPE), or non-coordinating, like 1-octadecene (ODE). At high temperatures, oleic acid 

may show some degree of decomposition and result in a precursor solution with a 

yellowish or brownish color. 

 

Figure 3.1. Illustration of pyrolysis of organometallic compound method. 
 

In the step of precursor injection, the chalcogen precursor is first mixed with the metal 

precursor and then injected from a syringe into hot solvent under vigorous stirring. The 

fast injection leads to a short burst of homogeneous nucleation. The subsequent depletion 

of reagents and drop of temperature terminate the nucleation process. Continuous heating 

favors the growth of the nuclei. Murray[4] and Reiss[116] claim that slow growth can 

result in highly monodisperse nanocrystals, while Yin et al.[117] claim that slow growth 

can yield nanocrystals with broad size distribution. To obtain nanocrystals with narrow 

size distribution, Ostwald ripening process is not desired because it can broaden the size 

distribution of nanocrystals by growing big particles at the sacrifice of small particles. 
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In the step of reaction quenching, the hot solution is quenched in a mixture of ice and 

water and the reaction is immediately terminated due to the sharply dropped temperature.  

The fast termination of reaction provides a flexibility to precisely control the crystal size 

and avoid any over-growth. 

After synthesis experiment is done, post-synthesis treatments can be performed to 

separate the nanocrystals from the raw solution, remove the excessive surfactants from 

the nanocrystal surface, narrow down the shape and size distribution, and modify the 

surface properties of the nanocrystals.  

To minimize the ambiguities caused by samples’ polydispersity and get a clear view of 

the relationship between material properties and morphologies, monodisperse 

nanocrystals are generally needed. There are two different approaches to narrow down 

size distribution, size selective precipitation[4] and size distribution focusing[116, 118].  

Size distribution focusing is an in-synthesis treatment and is designed based on the 

proposal of Reiss that small crystals can grow faster than large crystals if the monomer 

concentrations are high enough[116], which is the opposite process of Ostwald Ripening. 

In experiment, the high concentrations of monomers are usually achieved by a secondary 

injection of precursors[118]. 

Size selective precipitation is a post synthesis treatment and is the most widely used 

method in narrowing down size distribution. Typical procedures of size selective 

precipitation include adding non-solvent into the solution, centrifuging the solution to 

separate precipitates from the supernatant, and redispersing precipitates with solvent. 

Depending on the requirements on the range of size distribution, size selective 

precipitation might need to be performed multiple times.  
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In our experiments, size selective precipitation is the only method used to narrow down 

the size distribution of synthesized nanocrystals. Hexanes and ethanol are used as the 

solvent and non-solvent pair.  

3.1.2 Characterizations 

Various characterizations are performed on synthesized nanocrystals to study their 

morphologies, structures, optical properties and surface chemistry conditions. 

UV-visible absorption spectroscopy has been used to monitor the nanocrystal growth 

during synthesis and size distribution after synthesis. Samples for UV-visible absorption 

spectroscopy are prepared by dispersing the nanocrystals into hexanes. UV-visible 

spectra are recorded on a Molecular Dynamics SpectraMax Plus 384 UV-Visible Plate 

Reader with the spectrum scanning mode. The scanning range of the wavelength is set to 

be 400 – 750 nm with an increment of 1 nm.  

XRD has been used to characterize the crystal phase and average crystal size of the 

synthesized nanocrystals. Samples for XRD are prepared by precipitating the 

nanocrystals from the solution, thoroughly washing them with ethanol and drying them in 

the nitrogen. XRD patterns are obtained on a Bruker D8 Focus X-Ray Diffractometer 

with the theta-2theta scanning mode. The x-ray is from a Cu kα source with a wavelength 

of 0.154 nm. The scanning range of 2theta is set to be 20 – 65 degrees with an increment 

of 0.0256 degrees. The scanning speed is set to be 5 degrees/min.  

TEM has been used to characterize the morphology and the crystal structure of the 

synthesized nanocrystals. Samples for TEM are prepared by dispersing nanocrystals into 

hexanes and then dropping the solution onto copper grids coated with holey carbon films. 

TEM images are obtained on an FEI-Tecnai TEM with an accelerating voltage of 200 KV.   
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Raman spectroscopy has been used to investigate the phonon properties in the 

nanocrystals. Samples for Raman spectroscopy are prepared by thoroughly washing and 

drying the NCs and then applying the dry NC powders onto glass slides. Raman spectra 

are recorded on a Jobin-Yvon T64000 high resolution Raman spectrometer and a Horiba 

XploRA confocal Raman microscope with excitation energy of 2.33 eV (532 nm). The 

power of the laser is set to be low, ~0.2 mW. The spectrum is obtained by averaging five 

acquisitions, each of which takes 60 s. 

3.2 Results and Discussions 

3.2.1 Growth of CdSe NCs 

 

Figure 3.2. Picture and absorption spectra of CdSe NCs with different sizes. 
 

Figure 3.2 shows a picture and absorption spectra of a series of CdSe NC samples. 

These samples are synthesized at the same temperature, 250 °C, for different reaction 

times. The NC size increases with increasing reaction time. Different sizes of CdSe NCs 

have different colors. As seen in the picture, from left to right, the NC size increases and 

the color changes from light yellow to dark red. With absorption spectra, useful 

information can be obtained about the NCs. The band gap can be calculated from the 

position of the absorption peaks, and the size distribution can be estimated from the width 
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of the peaks. As shown in Figure 3.2, the sharp absorption peak indicates the narrow size 

distribution of the QDs, which is achieved by precisely controlling the reaction 

conditions, such as fast injection, small fluctuation in reaction temperature, vigorous 

stirring and fast quenching. The absorption peak positions are marked. The spectra with 

absorption maxima located at 500, 532, 592 and 675 nm correspond to reaction times of 

10 s, 30 s, 10 min, and 90 min, respectively. The absorption peak shifts from 500 nm to 

670 nm as the reaction time increases from 10 s to 90 min. The red shift of absorption 

peak is attributed to the growth of the QDs, which decreases the band gap.  

The reaction temperature is a crucial factor in determining the upper limit of the QD 

size from the energy perspective, and the absorption results also confirm it. The 

absorption maximum can only go up to 670 nm when the temperature is no higher than 

250  no matter how long the reaction time is. 

 

Figure 3.3. Absorption spectra. (a) After size-selective precipitation, (b) Before 
and after ligand exchange. 

 
Size-selective precipitation is a post-synthesis procedure that can both narrow down the 

size distribution of as synthesized NCs and separate NCs of different sizes. In this 

process, bigger particles tend to aggregate and precipitate faster than smaller particles as 
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a result of the larger Coulomb attraction force between bigger particles. The effect of size 

selective precipitation is displayed in Figure 3.3a. Spectrum 1, 2, 3, and 4 correspond to 

samples obtained after being precipitated once, twice, three times and four times, 

respectively.  It is shown that the QD size increases from sample 4 to 1, which is 

precipitated from the solution subsequently.  

 

Figure 3.4. TEM images of the spherical CdSe NCs. Inset in (b) shows the 
lattice image of a single NC. 

 
Ligand exchange is a post-synthesis procedure that can change the surface chemistry of 

as-synthesized NCs. Here, oleic acid is replaced by pyridine through ligand exchange.  

Figure 3.3b shows the visible absorption spectra recorded before and after the ligand 

exchange. No obvious change occurs in either position or width of the absorption peak 

before or after the ligand exchange, which is also found in the work of Lokteva et al. [119] 

Further study shows that the absorption peak taken from the same pyridine-capped 

sample 10 days after the ligand exchange shifts from 592 nm to 554 nm. The blueshift 

can be attributed to the oxidization of the QDs, which consequently decreases the 
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effective size of the QDs[120]. Because of the concern that QDs can get oxidized, no 

ligand exchange is performed on the QD samples that are to be used for characterizations. 

Figure 3.4 displays typical TEM images of spherical CdSe NCs. Statistical results, 

based on a sample space of 150 random spherical NCs, show that the average size of the 

NCs is 4.3 nm with a standard deviation of 0.3 nm. The narrow size distribution agrees 

very well with the narrow width of the absorption peaks observed in Figure 3.2. The 

high-magnification TEM image in Figure 3.4b shows that neighboring NCs tend to 

organize in a short-range 2D hexagonal pattern. The inset in Figure 3.4b shows the lattice 

image of a single NC. Although some stacking faults are present in the NC, the periodic 

atomic arrangements can still be figured out, indicating the high crystallinity of the wet-

chemistry synthesized QD. 

  

Figure 3.5. Typical TEM images of CdSe NCs of various shapes. (a) Spherical, 
(b) Triangular, (c) Elongated. 

 
Besides spherical NCs, CdSe NCs of other shapes have also been synthesized. The 

morphology control here is mainly done by using different combinations of surfactants. A 

surfactant combination of OA and TDPA can result in spherical CdSe NCs. A 

combination of TOPO and TDPA can result in triangular NCs. A combination of TOPO, 

HPA and TDPA can result in elongated NCs. Generally, the shorter the carbon chain of 
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the PA is, the more anisotropic the shape is. Figure 3.5 shows typical TEM images of the 

spherical, triangular and elongated NCs, respectively. For the spherical samples, diameter 

variations up to ± 0.2 nm can be observed. For the triangular samples, diameter variations 

up to ± 0.4 nm can be observed. For the elongated samples, diameter variations up to ± 

0.2 nm and length variations as much as ± 1.2 nm can be observed. The monodispersity 

in size and shape ensures that the influence of size and shape distribution on the 

characterization results can be minimized.  

 

Figure 3.6. X-Ray diffraction patterns of a series of CdSe NC samples of various 
sizes. 

 
Figure 3.6 shows the X-ray diffraction patterns of a series of CdSe NC samples of 

various sizes. These XRD patterns are taken on stress-free power samples using the same 
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x-ray diffractometer. All the diffraction patterns match the standard diffraction record of 

zinc-blende-structured CdSe. From bottom to top, the NC size increases. The diffraction 

peaks exhibit a trend of becoming narrower and stronger with increasing crystal size, 

while exhibit no trend of shifting with size.  

3.2.2 Growth of PbSe NCs 

3.2.2.1 Morphology Control of PbSe NCs 

PbSe NCs of various shapes are obtained by simply replacing the solvent or tuning the 

volume ratio of TOP to OA. Octahedral (Figure 3.7a) and star-shaped (Figure 3.7b) NCs 

are produced with the same reaction system.  

 

Figure 3.7. TEM images of PbSe NCs of various shapes. (a) Octahedral, (b) 
Star-shaped, (c) Diamond-shaped, (d)Elongated, (e) Nanowire, (f) Spherical. 
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According to the analysis made by Lu et al[72], star-shaped images are recorded along 

the [111] direction of octahedral NCs. When the commonly used solvent, ODE, is 

replaced by DPE, the resulted NCs exhibit different shapes from those produced with the 

reaction system using ODE as the solvent. High volume ratio of TOP to OA results in 

diamond-shaped NCs, and medium ratio results in elongated NCs, while low ratio results 

in nanowires. However, the change of Pb precursor won’t lead to significant shape 

variation, as seen in the work of Lin et al[121]. Spherical NCs are produced by replacing 

ODE with squalane and keeping the volume ratio of TOP to OA at a medium level. 

 

Figure 3.8. TEM images of PbSe NCs at different growing stages.  (a) Initial, 
star-shaped , (b) Final, star-shaped, (c) Initial, nanowire, (d) Intermediate, 
nanowire, (e) Intermediate, nanowire. 
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3.2.2.2 Growth Mechanism of PbSe NCs 

The growth of PbSe NCs is usually faster than that of CdSe NCs. The largest CdSe 

QDs that could be obtained in the pyrolysis of organometallic compound is around 11nm, 

which requires multiple injection of precursor, while the size of PbSe NCs can easily 

grow beyond 20 nm.  

Figure 3.8 clearly shows the formation process of the star-shaped PbSe NCs. Small 

particles first aggregate and form a cluster with a diameter of 80nm. Later on, as the 

reaction proceeds, the small particles melt and re-crystallize into a big crystal.   Figure 

3.8c, 3.8d, and 3.8e demonstrate the growth process of PbSe nanowires. The originally 

discrete small crystals first get close enough to attach with each other. As the reaction 

proceeds, the boundaries of the attached crystals disappear and eventually grow into 

nanowires. 

 

Figure 3.9. TEM images of PbTe NCs of various shapes. (a) Cuboctahedral, (b) 
Cubic. 
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3.2.3 Growth of PbTe NCs 

The strategy to control the shape of PbTe NCs is to vary the molar ratio of Pb precursor 

and Te precursor and thus vary the molar ratio of surfactants. The cuboctahedral NCs are 

produced when the molar ratio of Te to Pb is 1, while the cubic NCs are produced when 

the molar ratio is 5.  

3.2.4 Growth Mechanism of NCs in Wet-Chemistry Synthesis 

Two mechanisms are observed in the growth process of semiconductor nanocrystals: 

addition of monomers and fusion of small crystallites.  

 

Figure 3.10. Illustration of nanocrystal growth mechanisms in the wet chemistry 
method. (a) Addition of monomers, (b) Fusion of small crystallites. 

 
Figure 3.10 illustrates these two mechanisms. Figure 3.10a shows the details of monomer 

addition mechanism. First, nuclei are formed in the solution. Second, monomers in the 

solution are transported to the nuclei and added to the nuclei to grow them bigger. A 

typical material growing in this way is CdSe. Figure 3.10b shows the details of small 

crystallite fusion mechanism. First, small nuclei are formed in the solution. Second, these 

small nuclei get together and form a big cluster and then after getting enough energy they 

fuse into big crystals. Typical materials growing in this way include PbSe and PbTe. 



43 

 

3.3 Temperature and Geometry Dependent Raman Spectra of CdSe NCs 

Table 3.1. Size and shape information of CdSe NC samples. 
Sample Name Shape Size 

Sample 1 Spherical ~ 2.8 nm 

Sample 2 Spherical ~ 3.6 nm 

Sample 3 Spherical ~ 4.4 nm 

Sample 4 Triangular ~ 4.2 nm 

Sample 5 Elongated ~ 4.6 nm (D), ~ 13 nm (L) 

 

 

Figure 3.11. Typical UV-Vis spectra obtained before and after the Raman 
experiments. 

 
Two series of CdSe NC samples have been characterized: spherical NCs of different 

diameters, and NCs of similar diameter but different shapes. All of them are synthesized 

by wet-chemistry method. Their morphology details are listed in Table 3.1. Sample 1, 2 
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and 3 are in the category of spherical NCs of different diameters, and their diameters are 

2.8 nm, 3.6 nm and 4.4 nm, respectively. Sample 3, 4 and 5 are in the category of NCs of 

similar diameter but different shapes, and their shapes are spherical, triangular and 

elongated, respectively. 

 

Figure 3.12. Typical Raman spectra obtained from 306 K to 420 K. (a) Sample 1, 
(b) Sample 2, (c) Sample 3, (d) Sample 4, (e) Sample 5. 

 
UV-Vis absorption spectroscopy is used to monitor the size evolution and distribution 

of all the samples during the temperature-dependent Raman measurements. Figure 3.11 

shows typical absorption spectra obtained before and after the Raman experiments. For 

the purpose of clarification, a vertical line is drawn to mark the peak position of the first 

excitonic transition between 1Se and 1Sh. It can be seen that no obvious change in the 

peak position or width has occurred during the Raman experiments, indicating no local-

heating induced surface environment change or NC growth. This can be attributed to the 
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low excitation-laser power and the protection of residual OA and TOPO from oxidization 

(both OA and TOPO are strong binding ligands[119], unlike pyridine). 

Figure 3.12 shows the Raman spectra as a function of the temperature for all the CdSe 

samples listed in Table 3.1. For the purpose of clarification, the spectra are normalized to 

the intensity of the LO phonon peaks and then shifted vertically. It is seen that for each 

sample the LO phonon peak shifts to lower frequency and broadens with increasing 

temperature, which can be attributed to the anharmonicity in the inter-atomic potential 

[54, 56, 122]. The broad SO phonon peak has been suppressed significantly, which can 

be attributed to the modified dielectric medium in the closely-packed NC 

assemblies[122].  

Compared with its frequency, the full width at half maximum (FWHM) of Raman peak 

is very sensitive to temperature, size distribution and absolute value of peak 

intensity[122]. Although each sample has very narrow size and shape distribution, there 

still are variations of size distribution among different samples, as mentioned previously. 

Therefore, the rest of our study is restricted to the temperature dependence of peak 

frequency.  

As suggested by Burke et al.[123], Raman frequency can be written in terms of 

temperature as,  

                                                                               (3.1) 

where ω0, ΔωTE(T), and ΔωA(T) represent the frequency at 0 K, the frequency shift due to 

thermal expansion effect, and the frequency shift due to anharmonic phonon-phonon 

interaction, respectively. Within the temperature range studied in this work (300 K – 420 

K), both ∆ [122] and ∆ [124] can be approximated to change linearly with 
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temperature. Therefore, the overall frequency shift varies linearly with temperature and 

can be approximated as[123], 

                ∆ 3 ∆ 4 ∆ 3 4 ∆ ,           (3.2) 

where , , and   represent the linear thermal expansion coefficient, the Gruneisen 

parameter, and the constant for the anharmonic three-phonon process, respectively.  

The peak frequency is extracted from the Raman spectra by fitting the peak profile with 

a Lorentzian function. Figure 3.13 shows the LO phonon peak frequency as a function of 

the temperature for two series of NC samples. The data points can be well fitted with the 

linear model and the fitting results are inserted in the figures.  

 

Figure 3.13. LO phonon frequency as a function of temperature. (a) Spherical 
CdSe NCs of different sizes, (b) Various-shaped CdSe NCs of similar size. 

 
Figure 3.13a shows the results for spherical samples of different diameters. It is seen 

that the slopes are higher for larger samples, indicating higher temperature sensitivity in 

larger samples. Although the linear thermal expansion coefficient is found to decrease 

with increasing size[125], the constant for the anharmonic three-phonon process is found 

to increase with increasing size[56] and the anharmonic phonon process contributes much 
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more than the thermal expansion process[126]. Therefore it’s reasonable that the slope 

increases with increasing crystal size.  

As shown in Figure 3.13a and others’ work[56, 127], the diameter has a noticeable 

impact on the Raman peak frequency. Figure 3.13b shows the results for samples of 

similar diameter but different shapes. This series of samples is designed to study the 

effect of shape while minimizing the effect of diameter. At room temperature, the Raman 

peak frequency of the elongated sample is slightly higher than that of the spherical and 

triangular samples because of the slightly larger diameter of the elongated sample, which 

is consistent with others’ result[127]. The slope is smaller for the triangular sample than 

for the spherical sample. This is reasonable considering the diameter of the triangular 

sample is smaller. Furthermore, for 0D samples the shape doesn’t seem to have as 

significant influence on the slope as the diameter. However, that is not always the case 

when comparing the results between the 0D and 1D samples. The slope is smaller for the 

elongated sample than the spherical sample even if the diameter of the former is larger. It 

has been shown that the elongated CdSe NCs are grown from the spherical NCs along the 

c-axis[128] and the LO phonon vibrates along the c-axis[43]. This indicates the necessity 

to take into account the thermal expansion effect in explaining the counterintuitive fitting 

result. The dimension along the c-axis is much larger in the elongated NCs than in the 

spherical NCs, and this results in a much smaller linear thermal expansion 

coefficient[125] in the elongated NCs. According to Equation 3.2, the significantly 

reduced contribution from the thermal expansion effect, together with a slightly increased 

contribution from anharmonic effect, can in turn lead to weaker temperature dependence 
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in the elongated NCs. Therefore it’s reasonable to see a smaller slope in the elongated 

NCs than in the spherical NCs.    
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CHAPTER 4. THERMOELECTRICS -- WET CHEMISTRY SYNTHESIS AND BALL 
MILLING OF BISMUTH TELLURIDE-BASED NANOCRYSTALS 

Besides wet chemistry method, ball milling method can also be used to make 

nanocrystals. Compared with wet-chemistry approach, ball milling approach has both 

advantages and disadvantages. Advantages include higher yield, no organic residue, more 

environment friendly and easier operation. Disadvantages include slower speed, less 

control over size and shape, and higher energy consumption.  In thermoelectric 

applications, ball milling is more suitable in processes which require higher yield and less 

organic residue, while wet chemistry is more suitable in processes which require more 

precise control of the crystal geometry and smaller crystal size.   

Furthermore, for practical thermoelectric applications, both p-type and n-type materials 

are needed, as shown in Figure 4.1a. In p-type materials, the majority charge carrier is 

hole, while in n-type materials, the majority charge carrier is electron. Intrinsic Bi2Te3 

material is n-type semiconductor, and the switch of charge carrier can be realized by 

doping. For example, the doping of Se atoms into Bi2Te3 will form n-type material, while 

the doping of Sb atoms into Bi2Te3 will form p-type material. As shown in Figure 4.1b, in 

the case of Se atom doping, Se atoms will replace Te atoms and get into the lattice, while 

in the case of Sb atom doping, Sb atoms will replace Bi atoms and get into the lattice. 

Doping is mainly a diffusion process and dopants need to get enough energy before they 

can overcome the energy barrier and diffuse into the lattice. Therefore, it’s important to
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supply enough energy in the ball milling process in order to facilitate the doping process. 

Failure to do so will result in a mixture rather than a solid solution of the dopant and 

Bi2Te3.  

  

Figure 4.1. (a) Illustration of a thermoelectric power generator of the simplest 
form, (b) Illustration of Bi2Te3 doping. 

 
4.1 Experiments and Characterization 

4.1.1 Experiments 

 

Figure 4.2. Illustration of ball milling method. 
 

Wet chemistry method has been introduced in details in Chapter 3. Therefore, this part 

mainly introduces the details of ball milling method.  
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Ball milling experiments are performed on a tumble milling machine. All chemical 

reagents, unless stated otherwise, are purchased from Alfa Aesar. Figure 4.2 is an 

illustration of the procedures in ball milling. Unlike the bottom-up wet chemistry 

approach, ball milling is a top-down approach. The starting materials for ball milling are 

usually bulk materials, including Bi2Te3, Bi, Sb, Te, and Se. The bulk materials are first 

loaded into a jar together with ethanol and milling media. Then the jar is sealed under 

inert atmosphere (usually N2) and put on the tumble milling machine to start ball milling. 

During the rotating process, the milling balls are first brought to some elevated position 

and gain potential energy. Then these balls start to fall off from the wall, during which 

their potential energy transforms into kinetic energy. The falling balls will collide with 

materials and transform their kinetic energy into heat, during which materials are crushed 

into smaller size. Since heat is constantly generated, it’s necessary to add liquid solvent to 

help transfer out the heat and prevent undesired oxidation from occurring. After the 

experiment is finished, the milled materials are separated from the milling balls and then 

dried for further processes and characterizations.  

4.1.2 Characterizations 

Various characterizations are performed on synthesized nanocrystals to study their 

morphologies and structures.  

SEM has been used to characterize the morphology of the nanocrystals.  Samples for 

SEM are prepared by spreading the nanocrystal powders onto carbon tapes. SEM images 

are obtained on a Hitachi S-4800 Field Emission SEM with an accelerating voltage of 5 

KV. 
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XRD has been used to characterize the crystal phase and average crystal size of the 

synthesized nanocrystals. Samples for XRD are prepared by precipitating the 

nanocrystals from the solution, thoroughly washing them with ethanol and drying them in 

the nitrogen. XRD patterns are obtained on a Bruker D8 Focus X-Ray Diffractometer 

with the theta-2theta scanning mode. The x-ray is from a Cu kα source with a wavelength 

of 0.154 nm. The scanning range of 2theta is set to be 20 – 65 degrees with an increment 

of 0.0256 degrees. The scanning speed is set to be 5 degrees/min. 

TEM has been used to characterize the morphology and the crystal structure of the 

synthesized nanocrystals. Samples for TEM are prepared by dispersing nanocrystals into 

hexanes and then dropping the solution onto copper grids coated with holey carbon films. 

TEM images are obtained on an FEI-Tecnai TEM with an accelerating voltage of 200 KV.   

FTIR spectroscopy has been used to monitor the surface chemistry conditions of the 

synthesized nanocrystals. Samples for FTIR spectroscopy are prepared by precipitating 

the nanocrystals from the solution, thoroughly washing them with ethanol and drying 

them in the nitrogen. IR absorption spectra are obtained on a Thermo Nicolet Nexus 

FTIR with a Smart iTR ATR.   

Raman spectroscopy has been used to investigate the phonon properties in the 

nanocrystals. Samples for Raman spectroscopy are prepared by thoroughly washing and 

drying the NCs and then applying the dry NC powders onto glass slides. Raman spectra 

are recorded on a Jobin-Yvon T64000 high resolution Raman spectrometer and a Horiba 

XploRA confocal Raman microscope with excitation energy of 2.33 eV (532 nm). The 

power of the laser is set to be low, ~0.2 mW. The spectrum is obtained by averaging five 

acquisitions, each of which takes 60 s. 
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4.2 Results and Discussions 

Several factors have been investigated to understand their influence on properties of the 

final products. Their influence on the final product is mainly evaluated based on the 

results of phase, size and morphology characterizations. Phase and size characterizations 

are mainly done using XRD, and morphology characterizations are mainly done using 

SEM and TEM. Quantitative analysis are made based on x-ray diffraction patterns using 

Scherrer equation.[129, 130] Scherrer equation was first proposed by Scherrer in 1918 

and has been widely used to characterize the crystal size of powder and solid samples. 

Scherrer equation is written as  

                                            ,                                                     (4.1) 

where L, k, λ, β and θ are the average crystal size, shape factor, x-ray wavelength, width 

of the diffraction peak, and position of the diffraction peak, respectively.  

Table 4. 1. Synthesis conditions of the five samples 
shown in Figure 4.3, and 4.4. 

Sample Name Synthesis Condition 

Sample 1  35 °C for 30 s 

Sample 2  35 °C for 60 s 

Sample 3  75 °C for 60 s 

Sample 4 115 °C for 60 s 

Sample 5 155 °C for 60 s 
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4.2.1 Wet-Chemistry Synthesized Nanocrystals 

The x-ray diffraction patterns shown in Figure 4.3 are taken on stress-free powder 

samples using the same X-ray diffractometer. The synthesis conditions of the sample are 

shown in Table 4.1. All the diffraction patterns match the standard diffraction record of 

Rhombohedral-structured Bi2Te3. No unidentified peaks exist, indicating that the samples 

are impurity-free. The diffraction peaks exhibit a trend of becoming narrower, stronger 

and sharper with increasing the crystal size, while exhibit no trend of shifting with size.  

 

Figure 4.3. XRD patterns of Bi2Te3 NC samples synthesized at various 
conditions. 

 

 



55 

 

 

Figure 4.4. TEM images. (a) Sample 1, (b) Sample 2, (c) Sample 2, (d) Sample 3, 
(e) Sample 4, (f) Sample 5. 

 
Representative TEM images of the same 5 samples are shown in Figure 4.4. Figure 

4.4a and 4.4b are taken at different locations of Sample 1, made at the lowest reaction 

temperature (35 °C) that can yield Bi2Te3. The average size of nanoparticles in Sample 1 

is 3±1 nm, much smaller than nanoparticles made by other groups. The inset of Figure 

4.4a is the high-magnification TEM image of a single nanoparticle in Sample 1. Despite 

the existence of some lattice faults, the existence of periodical atomic arrangement 

confirms the high crystallinity of the nanoparticle. Although no obvious agglomeration of 

nanoparticles is observed and the dominant morphology is 0D nanoparticle in Sample 1, 

some nanoparticles are seen to self-arrange into line shapes, shown in Figure 4.4b, 

indicating the tendency of nanoparticles growing into nanorods.  



56 

 

Figure 4.4c shows the morphology of Sample 2, produced with a longer reaction time 

compared with Sample 1. Bi2Te3 nanorods have formed in Sample 2, matching the 

tendency of nanoparticles self-arranging into the line shape seen in Sample 1. The 

diameters of nanorods in Sample 2 match the diameters of nanoparticles in Sample 1. 

Although in Sample 2 some nanoparticles have grown into quasi-2D nanoflakes, the 

dominant morphology is 0D nanoparticle and 1D nanowire.  

Figure 4.4d shows the morphology of Sample 3, made at a higher temperature 

compared with Sample 2. Compared with Sample 2, the growth of quasi-2D nanoflakes 

in Sample 3 has been significantly boosted, changing the dominant morphology from 0D 

and 1D nanocrystals in Sample 2 to 2D nanoplates in Sample 3.  

Figure 4.4e and 4.4f show the morphologies of Sample 4 and 5 respectively, both made 

at higher temperatures compared with Sample 3. It is seen that further increase in reaction 

temperature leads to no significant morphology change but improvement in the 

crystallinity. Although both 1D nanorods and 2D nanoplates have been observed to grow 

larger, the dominant morphology is still 2D nanoplates in both Sample 4 and 5. The 

murky image of nanoplates in Sample 4 can be traced back to the partially crystallized 

parts and hence a relatively low local crystallinity, while Figure 4.4f shows that the 

crystallinity has been improved in Sample 5, which can be attributed to the increased 

reaction temperature. 

Size increasing with increasing reaction time or temperature has been confirmed by the 

XRD results.  
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Figure 4.5. TEM images of Bi2Te3 NCs of various morphologies. (a) Mixed 
morphology of nanosheet and nanorod, (b) Single-morphology nanosheet. 

 

 

Figure 4.6. (a) High-magnification TEM image of nanosheet, (b) FFT simulated 
electron diffraction patterns of (a). 

 
However, the morphology evolution is more complicated. A reaction system with ODE 

as the solvent generally results in a mixture of nanosheets and nanorods, as seen in Figure 

4.5a. If ODE is replaced with DPE, the resulted product is single-morphology nanosheets, 
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as seen in Figure 4.5b. This is the first time that single-morphology Bi2Te3 nanosheets are 

synthesized using the pyrolysis of organometallic compound method. 

In TEM images, the brightness is determined by the number of electrons penetrating 

the sample, so the contrast gives information about the thickness variation of the sample. 

Figure 4.6a shows a high magnification TEM image of single-morphology Bi2Te3 

nanosheets. The uniform contrast in the TEM image indicates the uniform thickness of 

the nanosheet. Figure 4.6b shows an FFT simulated electron diffraction pattern of the 

same area shown in Figure 4.6a. A single set of diffraction spots with a six-fold 

symmetry can be figured out. The diffraction pattern can be identified as the projection of 

the reciprocal lattice of hexagonal Bi2Te3 in the [0001] direction, which indicates that 

both the upper and lower surfaces belong to the {0001} planes.  

 

Figure 4.7.  IR absorption spectra of a series of Bi2Te3 samples of various sizes. 
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Organic ligands on the surface of the NCs on one hand can prevent the degradation of 

NCs but on the other hand can form a barrier to prevent charge carriers from transferring 

between neighboring NCs. Therefore, it is necessary use effective methods to monitor the 

residue of organic ligands. Figure 4.7 shows the Infrared absorption spectra of Bi2Te3 NC 

samples of various sizes. From bottom to top, the nanocrystal size increases. The 

absorption peaks around 1465 cm-1 and 1585 cm-1 can be assigned to the carboxylate 

stretches, and the peaks between 2800 and 3000 cm-1 can be assigned to c-h stretch. 

These modes together confirm the existence of residual oleic acid on the NC surface. It 

can be seen that as crystal size increases, the absorption peaks become weaker and 

broader. This can be attributed to the decreasing surface to volume ratio with increasing 

crystal size.  

 

Figure 4.8. The effect of the milling medium size. (a) Ratio of small to big balls 
= 2: 1, (b) Ration of small to big balls = 1 : 2. 
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Figure 4.9. XRD patterns of samples milled by balls made of different 
materials. 
 

4.2.2 Ball Milled Nanocrystals 

The effect of the material and size of milling media has been studied. Figure 4.8 shows 

the SEM images of products milled by balls of different sizes. In Figure 4.8a, more small 

balls are used for milling. A considerable amount of coarse crystals coexist in the sample 

with fine crystals. In Figure 4.8b, more big balls are used for milling. The amount of 

coarse crystals has been significantly reduced and fine crystals are dominant in the 

sample. Comparison between Figure 4.8a and 4.8b shows that bigger balls are more 

efficient in grinding materials than smaller balls.    
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WC and ZrO2 are both common materials for milling balls because of their excellent 

mechanical properties. WC is much heavier than ZrO2. Figure 4.9 shows the XRD 

patterns of Bi2Te3 samples milled by balls made of different materials: WC and ZrO2. 

The samples have been milled for the same amount of time, 72 h. From bottom to top, 

they are samples milled by ZrO2 and WC, respectively. In the sample milled by WC, 

besides the diffractions peaks of Bi2Te3, three additional peaks can be figured out and 

attributed to WC, which means the sample has been contaminated by WC. In the sample 

milled by ZrO2, only the peaks of Bi2Te3 can be figured out. However, the subsequent 

electrical conductivity measurement shows much lower electrical conductivity in ZrO2-

milled samples than in WC-milled samples, which is undesirable in thermoelectric 

applications. This can be attributed to material oxidation induced by the high temperature 

generated during milling and the oxygen element in ZrO2. Therefore, although there’s 

contamination from the balls, WC is a better milling medium than ZrO2 and WC balls are 

used to mill all the samples in the rest of the experiments.   

 

Figure 4.10. SEM images of samples milled for different times. 
 

Figure 4.10 shows the SEM images of samples milled for different times. From left to 

right, the samples are milled for 24h, 48h, and 120h, respectively. As milling time 
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increases, more coarse crystals are ground into fine crystals, which results in an overall 

size reduction. More accurate conclusion can be drawn by quantitatively analyzing the 

XRD patterns using Scherrer Equation.  

Figure 4.11 shows the XRD patterns of unmilled sample, sample milled with WC for 

72h and 120h, respectively. For the purpose of clarification, the intensity of spectra has 

been normalized to the intensity of (015) peak and the pattern has been shifted in the 

vertical direction. The diffraction peak of the unmilled sample is very sharp, indicating 

the bulk nature of the material. As milling time increases, the (015) peak becomes 

broader, which according to the Scherrer Equation indicates size reduction in the sample. 

However, it is noteworthy that the diffraction peaks of WC also appear in the pattern for 

sample milled for 120h. Milling time analysis indicates that there’s a tradeoff between 

sample size and sample purity.   

 

Figure 4.11. XRD patterns of unmilled sample, sample milled for 72h and 120h, 
respectively. 
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Figure 4.12. XRD patterns of samples made with 10g, 20g, 30g of starting 
materials. 

 

The effect of amount of starting materials used for ball milling has also been explored. 

Figure 4.12 shows the XRD patterns of samples milled from various amount of starting 

materials. From bottom to top, the amount of materials has been increased from 10g to 

20g to 30g. In the case of 10g materials, it can be seen the diffraction peaks of WC exist 

in the XRD pattern, indicating that a considerable amount of WC contamination in the 

sample. With increasing the amount of starting materials, the WC diffraction peaks 

eventually become weaker and then disappear in the case of 30g materials, indicating that 

the WC contamination has been minimized in the case of 30g materials. The estimated 

average crystal size, using Scherrer Equation, is 14.9, 15.1, and 19.6 nm, respectively, 

indicating there’s a slight size increase with increasing the amount of starting material. 

Therefore, increasing the amount of starting material can minimize the amount of 
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contamination and increase the production yield without significantly sacrificing the 

nanocrystal size.  

 

Figure 4.13. XRD patterns of Bi2Te3 samples after doping. (a) Se atom doping, 
(b) Sb atom doping. 

 
In the case of ball milling Bi2Te3, the main function of milling is to provide enough 

energy to grind coarse crystals into fine ones. However, in the case of doping Bi2Te3, the 

milling process needs to provide energy to both grind coarse crystals and diffuse dopant 

atoms into the lattice. Therefore, the critical part for doping is whether enough energy can 

be supplied.  

Figure 4.13 shows the XRD patterns of the Bi2Te3 samples after Se atom doping and 

Sb atom doping. The nominal compositions for Se-doped and Sb-doped Bi2Te3 samples 

are Bi2Te2.7Se0.3 and Bi0.5Sb1.5Te3, respectively.  In Figure 4.13a, the diffraction pattern 

matches the standard diffraction pattern of Bi2Te2.7Se0.3 (JCPDS: 50-0954), indicating the 

diffusion of Se atoms into Bi2Te3 lattice and formation of the solid solution of Bi2Te3 and 

Bi2Se3. In Figure 4.13b, as shown in the red circle, there are two peaks existing around 27 

degrees. One can be assigned to the (015) diffraction of Bi2Te3 and the other can be 
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assigned to the (015) diffraction of Sb2Te3. This indicates that the sample is a mixture 

rather than a solid solution of Bi2Te3 and Sb2Te3. Further efforts have been made to 

optimizing the parameters of ball milling experiment, like increasing the milling speed to 

the maximum or increasing the milling time. Like what is shown before, they can further 

reduce the crystal size but they fail to drive Sb atoms into the Bi2Te3 lattice. Therefore, 

ball milling can’t provide enough energy to facilitate the formation of the solid solution 

of Bi2Te3 and Sb2Te3. The sharp contrast between the results of the Se doping and Sb 

doping can be attributed to the different bonding strengths between monoatomic layers 

within the quintuple. As shown in Figure 4.1(b), each quintuple is formed by stacking 

five monoatomic layers on each other along the c-axis in the order of Te(1)-Bi-Te(2)-Bi-

Te(1). There are two different types of Te atoms in the quintuple, and Se doping usually 

first occurs on Te(1) atoms. From the perspective of energy, the bonding strengths on Te(1) 

atoms are not as strong as those on the Bi atoms[70]. Therefore, it requires less energy for 

Se atoms to replace Te(1) than for Sb atoms to replace Bi atoms.    

Table 4.2. Dominant morphology of the five samples shown in 
Figure 4.14. 

Sample Name Dominant Morphology 

Sample 1 0D nanoparticle 

Sample 2 0D nanoparticle and 1D nanorod 

Sample 3 2D nanoplate 

Sample 4 2D nanoplate 

Sample 5 2D nanoplate 
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4.2.3 Morphology Dependent Raman Spectra of Bi2Te3 Nanocrystals 

With the wet-chemistry synthesized Bi2Te3 nanocrystals of various morphologies, the 

morphology effect on Raman features has been systematically studied. Representative 

Raman spectra are shown in Figure 4.14. The dominant morphology in each sample has 

been inserted in Figure 4.14. For the purpose of clarification, all the spectra are 

normalized to the intensity of A1u mode and shifted vertically. Five samples show two 

distinct sets of Raman features. The spectra of Sample 1 and 2 have similar features, 

while the spectra of Sample 3, 4 and 5 have similar features.  

In the spectra of Sample 3, 4 and 5, three vibrational modes, Eg
2, A1u, and A1g

2, are 

present, among which Eg
2 and A1g

2 are Raman active and A1u is forbidden in bulk Bi2Te3. 

However, Tewelderhan et al [69, 70] have shown that the A1u mode shows up in 2D few-

quintuple Bi2Te3 layers due to the symmetry breaking in atomically-thin films. 

Considering the dominant morphology in Sample 3, 4 and 5 is 2D nanoplate, it’s 

reasonable that their Raman features match the record of 2D few-quintuple Bi2Te3 layers 

[69, 70].  

Due to symmetry breaking, A1u mode becomes active not only in 2D nanostructure, but 

also in 0D and 1D structures. As the dimension shrinks from 2D to lower dimensions, the 

relative intensity of A1u mode increases, which obscures the in-plane Eg
2 mode and makes 

it almost invisible, and the frequency of the A1g
2 mode shifts from 135 cm-1 to 143 cm-1. 

Although previous investigations on the blueshift of Raman modes in semiconductor 

nanocrystals have proposed several possible causes, like lattice contraction [46] and 

temperature decrease [42], the origin of the A1g
2-mode blueshift from 2D structure to 

0D/1D structure is not clear yet. Considering the morphology difference between 2D and 
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0D/1D structures, the blueshift of the mode can be induced by the shrink in the axial 

direction of the 0D/1D structure. 

 

Figure 4.14. Raman spectra of wet-chemistry synthesized Bi2Te3 NCs. 
 

Besides the wet-chemistry synthesized NCs, Raman spectra have also been obtained on 

ball-milled NCs. The sample shown here has an average crystal size of 15.4 nm and its 

Raman spectrum is shown in Figure 4.15. The Raman spectrum of bulk Bi2Te3 is also 

shown for the purpose of comparison. Like what is seen in the synthesized samples, in 

addition to the A1g
2 and Eg

2 modes, the A1u mode also exists in the spectrum of ball-

milled NC sample. Compared with the wet-chemistry synthesized NCs, there are no 

organic ligands capping the ball-milled NCs. This indicates that the appearance of the A1u 
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mode mainly depends on the crystal size rather than the surface chemistry condition of 

the crystals.  

 

Figure 4.15. Raman spectra of bulk Bi2Te3 and ball-milled Bi2Te3 NCs. 
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CHAPTER 5. THERMOELECTRICS – THERMOELECTRIC PROPERTY 
CHARACTERIZATION OF NANOSTRUCTURED BULK HOT PRESSED FROM 

BISMUTH TELLURIDE-BASED NANOMATERIALS 

The performance of thermoelectric materials is evaluated by a dimensionless parameter, 

figure of merit (ZT). ZT is defined as 

                                                         ,                                                      (5.1) 

where S, σ, T, k represent the Seebeck coefficient, electrical conductivity, temperature 

and thermal conductivity, respectively. The product of S2 and σ is called power factor. 

Basically, ZT increases with increasing Seebeck coefficient, electrical conductivity and 

temperature, but with decreasing thermal conductivity. A good material for 

thermoelectric applications should have high Seebeck coefficient, high electrical 

conductivity and low thermal conductivity. For decades, the ZT of bulk Bi2Te3-based 

alloys has been around 1 for not being able to further reduce thermal conductivity without 

significantly sacrificing the power factor. The nanoengineering method proposed by 

Poudel and coworkers points out a new approach to improve the ZT by increasing the 

number of grain boundaries in the material and has shown very promising results.[131] 

This chapter is dedicated to demonstrating the work we have done to implement the 

nanoengineering method into the fabrication of thermoelectric devices.  
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5.1 Experiments and Characterizations 

5.1.1 Experiments 

The first step of the nanoengineering method is to produce nanomaterials. Following 

that will be the fabrication of nanostructured bulk using the nanomaterials produced by 

wet-chemistry synthesis or ball milling. Nanostructured bulk is referred to as the bulk 

material with its grain size still remaining in the nanoscale. The purpose of this unique 

design is to decrease thermal conductivity by increasing phonon scattering occurring at 

grain boundaries. However, the electrical conductivity should not be sacrificed as a result 

of the grain size reduction. Therefore, the most critical part of the nanostructured bulk 

fabrication is to use an approach that can both densify the nanocrystals into bulk material 

and avoid any significant growth of the nanocrystals.  Two approaches have been widely 

used to fabricate nanostructured bulk. They are hot pressing and spark plasma sintering 

(SPS). SPS is a sintering technique that combines pulsed DC current and uniaxial force to 

result in a fast consolidation of nanocrystals. The mechanism of SPS is still not very clear, 

but during SPS process, nanocrystals will densify into bulk material by going through 

plastic deformation and atom diffusion. There are several advantages of SPS that are 

beneficial for the nanostructured bulk fabrication. First, the density of the nanostructured 

bulk produced can be as high as 99% of the theoretical density because the plastic 

deformation and atom diffusion. Second, the growth of the nanocrystals can be 

suppressed to a large extent because of the short duration of the process. Third, the 

oxidation of the material can be avoided because of the vacuum or inert atmosphere used 

in the process.  



71 

 

Unlike the complex mechanism in SPS, hot pressing is more straightforward and 

simpler. Hot pressing can be performed on a hydraulic press machine with heating 

elements embedded in the upper and lower plates. During hot pressing process, 

nanocrystals are densified into bulk by the uniaxial force at moderate temperatures. There 

are several advantages of hot pressing that are beneficial for the nanostructured bulk 

fabrication. First, the density of the nanostructured bulk can be high because of the 

applied high uniaxial force. Second, the growth of the nanocrystals can be significantly 

suppressed because of the moderate temperature used in hot pressing.   

Compared with SPS, hot pressing has some superior advantages. First, hot pressing 

equipment is cheaper and less complex than SPS equipment. Second, hot pressing does a 

better job in preserving the size of nanocrystals than SPS because of the relatively low 

process temperature. Here in our project, we mainly use hot pressing to fabricate 

nanostructured bulk from the nanocrystals.  

Figure 5.1 shows a simple illustration of hot pressing method. Nanocrystal powders are 

first loaded into a stainless steel die very carefully to make sure the uniform material 

distribution. The die is then transported onto the hydraulic press machine and aligned 

with the center of the plate. Then pressure is eventually applied onto the die by the plates 

and heat is supplied to the die through the plates. The pressure and temperature will be 

maintained for some time and then eventually released. A nanostructured bulk pellet can 

be obtained after hot pressing. Pictures of nanocrystal powders and nanostructured bulk 

pellet are also shown in Figure 5.1. 
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Figure 5.1. Illustration of hot pressing process. 
 

5.1.2 Characterizations 

SEM has been used to characterize the morphology of the nanostructured bulk.  

Samples for SEM are prepared by sticking the thinned pellet onto carbon tapes. SEM 

images are obtained on a Hitachi S-4800 Field Emission SEM with an accelerating 

voltage of 5 KV. 

XRD has been used to characterize the crystal phase and average crystal size of the 

nanostructured bulk. Since nanostructured bulk is solid sample with a flat surface, no 

further preparation is needed. XRD patterns are obtained on a Bruker D8 Focus X-Ray 

Diffractometer with the theta-2theta scanning mode. The x-ray is from a Cu kα source 

with a wavelength of 0.154 nm. The scanning range of 2theta is set to be 20 – 65 degrees 

with an increment of 0.0256 degrees. The scanning speed is set to be 5 degrees/min. 

Electrical conductivity is measured using a four-point probe method on a home-built 

probe station at room temperature. The probe station consists of a Micromanipulator 

6000 in a dark box on top of a vibration isolation table. A Kiethley 4200 Semiconductor 

Parameter Analyzer is used to collect the data. 
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Seebeck coefficient is measured using MMR SB-100 Programmable Seebeck 

controller and MMR K-20 Programmable Temperature Controller from room 

temperature to 400 K. The heating rate is set to be 10 degrees/min. 

Thermal conductivity measurement has been performed by an external company 

(TPRL, Inc.) from room temperature to 400 K. Thermal conductivity is written as 

                                                             k   αcpρ,                                                         (5.2) 

where α, cp, and ρ represent thermal diffusivity, specific heat and volume mass density, 

respectively.     

Volume mass density (ρ) is obtained by calculating the ratio of the sample's mass to 

volume.  

Thermal diffusivity (α) is measured using the laser flash technique. The measurement 

system consists of a Korad K2 laser, a bell jar equipped with high-vacuum pumps, a 

tantalum or stainless steel tube heater surrounding a sample holding assembly, a 

thermocouple or an IR detector, appropriate biasing circuits, amplifiers, A/D converters, 

crystal clocks and a digital data acquisition system capable of accurately taking data in 

the 40 microsecond and longer time domain.  

Specific heat (cp) is measured using a standard Perkin-Elmer Model DSC-4 Differential 

Scanning Calorimeter with sapphire as the reference material. The heating rate of the 

sample is set to be 20 °C/min. 

5.2 Results and Discussions 

5.2.1 Effect of Thermal Annealing 

In metallurgy, annealing is used to increase the ductility and release internal stresses of 

metals by heating them above some critical temperature, maintaining the temperature for 
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some time and then cooling it down to room temperature. During annealing, atom 

diffusion and rearrangement occur. These processes can occur at room temperature but 

will be greatly accelerated at elevated temperatures. Annealing is such a process that can 

facilitate diffusion and rearrangement by providing energies to break chemical bonds and 

helping atoms move to thermodynamically stable positions. Annealing can release the 

internal stresses and eliminate defects in materials and facilitate the formation of some 

material phase that is thermodynamically difficult to be formed at lower temperatures.  

 

Figure 5.2. XRD patterns of Sb-doped Bi2Te3. (a) Before annealing, (b) After 
annealing. 

 
Figure 5.2 shows the XRD patterns of Sb-doped Bi2Te3 before and after annealing. The 

doped Bi2Te3 is prepared by ball milling Bi2Te3, Sb and Te. For the purpose of 

clarification, their intensities have been normalized to the intensity of the strongest peaks. 

As seen in Figure 5.2a, there are two peaks existing around 27 degrees. These two peaks 

can be assigned to the (015) diffraction of Bi2Te3 and Sb2Te3, respectively. If the phase of 

Bi0.5Sb1.5Te3 has been formed during the ball milling process, there should be only one 

peak existing around 27 degrees. The existence of two peaks means the separation of the 
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two phases, Bi2Te3 and Sb2Te3. Figure 5.2b shows the XRD pattern of the same sample 

that has been annealed at 400 °C for 1h. It can be seen that the original two peaks around 

27 degrees have merged into one single peak. Furthermore, the diffraction pattern 

matches the standard diffraction record of Bi0.5Sb1.5Te3, which indicates the formation of 

Bi0.5Sb1.5Te3 phase after thermal annealing. In close contact with each other, atoms in 

Bi2Te3 and Sb2Te3 can gain enough energy to break the chemical bonds and diffuse into 

each other’s lattice and result in a new phase of material. Further comparison between 

these two XRD patterns shows that the diffractions peaks become sharper and stronger 

after annealing. According to Scherrer equation, smaller full width at half maximum is 

induced by increase in crystal size. Therefore, thermal annealing can not only promote 

the phase formation but also grow the crystal grains. Crystal growth and phase formation 

both involve material diffusion, but crystal growth needs to overcome higher energy 

barriers because material atoms need to go through intergrain diffusion in crystal growth 

while only intragrain diffusion in phase formation.  

Figure 5.3 shows XRD patterns and SEM images of the nanostructured bulk hot 

pressed from wet-chemistry synthesized Bi2Te3 NCs before and after annealing. The 

upper part shows the SEM images of three samples, before annealing, after annealing at 

300 °C and 400 °C.  

For the unannealed sample, at high magnification (200K), the surface is still very 

smooth and no clear crystal grain can be figured out in the image. It might be either 

because the grains are too small to see or because the grains are covered by amorphous 

organic ligands which don’t emit enough secondary electrons for a clear image.  
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For the sample annealed at 300 °C, the surface becomes a little rougher and individual 

grains can be figured out in the image. Cracks and voids are showing up on the surface. 

The cracks and voids can be generated by the evaporation of organic ligands that used to 

reside on the surface of the nanocrystals. The sizes of the grains are still very small. It can 

be because of insignificant growth or no growth of grains at 300 °C. The reason why 

grains become visible after being annealed at 300 °C is partly because the evaporation of 

organic residues on the nanocrystal surface increase the number of secondary electrons 

that are emitted from the nanocrystals and used by the microscope to create a 

morphology-contrast based image. It’s also clear that 300 °C can provide enough energy 

for organic residues to evaporate but not enough energy for crystal growth.  

For the sample annealed at 400 °C, it is figured out that significant grain growth has 

occurred and the number of cracks and voids has increased. The increase in the number 

of cracks and voids can be induced by further evaporation of organic residues. The more 

thorough removal of organic ligands together with higher annealing temperature greatly 

promote the crystal grain growth by reducing the energy barrier for atoms to diffuse cross 

grain boundaries and providing more energies for material atom diffusion.  

The lower part of Figure 5.3 shows the XRD patterns recorded on the three samples 

together with some quantitative analysis results. From bottom to top, the patterns 

correspond to unannealed sample, samples annealed at 300 °C and 400 °C, respectively. 

For the purpose of clarification, their intensities are normalized to the intensity of the 

(015) peak. From bottom to top, the full width at half maximum becomes smaller, 

indicating the increase in grain size. According to Scherrer equation, the estimated 

average crystal sizes for these three samples are 10.2 nm, 10.9 nm, and 18.8 nm, 
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respectively. The quantitative result agrees with the SEM image result that annealing at 

300 °C can remove organic residues on the nanocrystal surface rather than promote the 

growth of the nanocrystals but annealing at 400 °C can both further remove organic 

residues and promote the growth of the nanocrystals.  

Figure 5.4 shows the XRD patterns and SEM images of nanostructured bulk hot 

pressed from ball-milled NCs before and after annealing. The upper part shows the SEM 

images of two samples, before annealing, after annealing at 300 °C. 

For the unannealed sample, unlike the unannealed sample hot pressed from wet-

chemistry synthesized nanocrystals, small crystal grains can be clearly figured out in the 

SEM image. It can be because of two reasons. First, ball-milled nanocrystals are 

generally larger than wet-chemistry nanocrystals, which makes them easier to be seen 

under SEM. Second, since there are no organic ligands are used in ball milling, the 

surface of ball-milled nanocrystals is free of organic residues, which are known to emit 

fewer secondary electrons upon absorption of electrons and thus deteriorate the resolution 

of SEM images.   

For the sample annealed at 300 °C, it is figured out that significant grain growth has 

already occurred. On the other hand, for the sample hot pressed from wet-chemistry 

synthesized nanocrystals, significant grain growth is not triggered until 400 °C. The 

reason for that can be attributed to the difference of the chemistry environments of the 

nanocrystal surfaces. Wet-chemistry synthesized nanocrystals are covered by a layer of 

organic ligands that are used to control the chemistry process in the synthesis, while ball-

milled nanocrystals have fairly clean surface. In the hot pressed samples, ball-milled 

nanocrystals are in direct contact with each other and the energy that atoms need to 
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overcome can be easily achieved at 300 °C. As a result of that, significant crystal growth 

can occur at temperature as low as 300 °C.  

 

Figure 5.3. XRD patterns and SEM images of nanostructured bulk made from 
wet-chemistry synthesized Bi2Te3 NCs before and after annealing. 

 

The lower part of Figure 5.4 shows the XRD patterns recorded on the two samples 

together with some quantitative analysis results. From bottom to top, the patterns 

correspond to unannealed sample, samples annealed at 300 °C, respectively. For the 

purpose of clarification, their intensities are normalized to the intensity of the strongest 
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peak. From bottom to top, the full width at half maximum becomes smaller, indicating 

the increase in grain size. According to Scherrer equation, the estimated average crystal 

sizes for these three samples are 21.7 nm, and 27.3 nm, respectively. The quantitative 

result confirms what has been observed in the SEM images.  

 

Figure 5.4. XRD patterns and SEM images of the nanostructured bulk made 
from ball-milled Bi2Te3 NCs before and after annealing. 
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Bi2Te3-based materials are sensitive to oxygen and can easily get oxidized when they 

are annealed in non-reducing atmosphere or low vacuum. Figure 5.5 shows the effect of 

annealing atmosphere on oxide formation of Bi0.5Sb1.5Te3. From bottom to top, the XRD 

patterns correspond to unannealed sample, annealed sample, annealed and polished 

sample, respectively. The annealing is performed in argon atmosphere. The unannealed 

sample is composed of separate phases of Bi2Te3 and Sb2Te3. The annealing has 

facilitated the atom diffusion and resulted in a single phase of Bi0.5Sb1.5Te3, but 

meanwhile the annealing has  induced the oxidation process and generated an oxide 

phase of Bi, which can be figured out from the new peak around 26 degrees. After a layer 

of about 200 um thick has been polished off from the annealed sample, the oxide peak 

has been significantly reduced. This points out that the oxidation process starts from the 

surface and eventually proceeds from the outside layer to the inside layer and the oxygen 

source comes from the atmosphere rather than from the voids inside the sample.  

5.2.2 Electrical Conductivity 

Oxides are known to deteriorate the electrical conductivity of Bi2Te3-based 

materials.[131] Bi2Te3-based materials are sensitive to oxygen and oxide layer of 1.5 nm 

thick can easily grow at room temperature within 10 days at room temperature.[132] 

They are easier to be oxidized during nanocrystal preparation, hot pressing and thermal 

annealing because these processes are conducted at elevated temperatures. Annealing 

them in reducing-atmosphere can not only prevent them from being oxidized but also 

reduce the already-formed oxides.  Compared with inert gas Ar, forming gas is more 

effective in prevent oxidation from occurring.   
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Figure 5.5. XRD patterns of annealed and unannealed Bi0.5Sb1.5Te3 samples. 
 

 

Figure 5.6.Typical I-V curve obtained on Bi0.5Sb1.5Te3 samples before and after 
annealing in forming gas. 
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Figure 5.6 shows typical room-temperature I-V curves obtained on Bi0.5Sb1.5Te3 

samples before and after annealing in forming gas. The electrical conductivity 

measurement is set up according to Van der Pauw method. The calculated room-

temperature electrical conductivity is 1254 S/m and 18907 S/m for the unannealed and 

annealed samples, respectively. It can be seen that annealing at 400 °C for 1h can greatly 

enhance the transport of charge carriers in the sample. This can be attributed to two 

reasons. First, annealing can improve the crystallinity of individual nanocrystals as well 

as the contact between neighboring nanocrystals. During annealing, atoms gain enough 

energy to diffuse to thermodynamically stable lattice sites and reduce the number of the 

defects within the nanocrystal, which improves the crystallinity and reduces the 

resistance to charge transport. Meanwhile, the atom diffusion also occurs between 

neighboring nanocrystals, which bridges the nanocrystals and increases the probability of 

intercrystal charge transport. Second, annealing can improve the contact between the 

material and metal electrode and reduce the contact resistance.[133] Post-metal-

deposition annealing can facilitate the inter-penetration of metal atoms and material 

atoms and promote the formation of the electrically favorable phase of metal telluride. 

[134]   

5.2.3 Seebeck Coefficient 

The Seebeck effect is in the induction of electrical potential difference by a 

temperature difference in thermoelectric materials.  Seebeck coefficient, also called 

thermoelectric power, measures materials’ ability to generate a thermoelectric voltage 

upon the application of a temperature gradient across the materials. Seebeck coefficient 

has units of volts per kelvin (V/K), but µV/K is more commonly used. For degenerate 
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semiconductor materials or metals, there’s an approximate relationship between the 

Seebeck coefficient and the charge carrier concentration,[135]  

                                                         S ~ n‐2/3,                                                                     (5.3) 

where n is the charge carrier concentration.  

Figure 5.7 shows the Seebeck coefficient as a function of temperature for Bi2Te3 

nanostructured bulk before and after annealing. These nanostructured bulk samples are 

hot pressed from ball-milled Bi2Te3 nanocrystals. From top to bottom, the plots 

correspond to unannealed sample, samples annealed at 300 °C and 400 °C, respectively. 

First, the Seebeck coefficients here all have a negative sign, indicating that the majority 

charge carriers in undoped Bi2Te3 nanocrystals are electrons. It can be figured out that the 

magnitude of Seebeck coefficient increases with increasing temperature in all three cases. 

The temperature dependence of Seebeck coefficient can be attributed to the temperature 

dependence of Fermi energy.[136] In metals, the Fermi energy is high and almost 

independent of temperature, but in semiconductors, the Fermi energy is low and is 

modified by temperature.  Therefore, for semiconductors, their Seebeck coefficient 

increases with increasing temperature within low temperature range, and then decreases 

with increasing temperature within high temperature range, which is not shown here.  

In Figure 5.7, the Seebeck coefficient result as a function of temperature is shown for 

three samples. It can be figured out that Seebeck coefficient increases after annealing and 

increases with increasing annealing temperature. The effect of annealing temperature on 

Seebeck coefficient can be explained by the influence of annealing temperature on charge 

carrier concentration.  Annealing can influence the charge carrier concentration of Bi2Te3 

samples in two ways.[137] First, annealing can reduce the number of defects, which are 
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the electron donors in Bi2Te3. Second, annealing can possibly induce the formation of 

bismuth oxide, which can result in an increase of hole concentration and an overall 

decrease of charge carrier concentration.  

 

Figure 5.7. Seebeck coefficient as a function of temperature for Bi2Te3 samples 
before and after annealing. 

 

 

Figure 5.8. Seebeck coefficient as a function of temperature for doped Bi2Te3 
samples. (a) Bi2Te2.7Se0.3, (b) Bi0.5Sb1.5Te3. 
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Figure 5.8 shows the Seebeck coefficient as a function of temperature for doped Bi2Te3 

nanostructured bulk samples before and after annealing. The annealing conditions for 

both samples are 400 °C for 1h. In Figure 5.8(a), the negative sign of Seebeck coefficient 

indicates the formation of n-type semiconductor after Se doping in Bi2Te3. The 

magnitude of Seebeck coefficient increases with increasing temperature from 300 K to 

400 K. There’s a moderate increase of Seebeck coefficient after annealing, 60 μV/K. In 

Figure 5.8(b), the positive sign of Seebeck coefficient indicates the formation of p-type 

semiconductor after Sb doping in Bi2Te3. The magnitude of Seebeck coefficient increases 

with increasing temperature from 300 K to 400 K. Unlike the n-type material, there’s a 

significant increase of Seebeck coefficient after annealing, 110 μV/K. Such dramatic 

influence of annealing temperature on Seebeck coefficient in Sb-doped Bi2Te3 can be 

attributed to the formation of single phase Bi0.5Sb1.5Te3 after annealing. As shown in 

Figure 5.2(a), the unannealed sample is a mixture of Bi2Te3 and Sb2Te3, which are n-type 

and p-type semiconductor, respectively. The overall Seebeck coefficient is the difference 

of the Seebeck coefficients of the two phases, which are known to have different signs. 

However, the annealed sample, as shown in Figure 5.2(b), is composed of single-phase 

Bi0.5Sb1.5Te3, which is known to be a p-type material. Therefore, there’s no cancellation 

of Seebeck coefficients of different signs, which results in a drastic increase in overall 

Seebeck coefficient.    
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5.2.4 Thermal Conductivity 

Thermal conductivity measures materials’ capability to conduct heat. Heat transfers 

faster through materials with higher thermal conductivity than materials with lower 

thermal conductivity. Thermal conductivity has the unit of watts per meter kelvin.  

Figure 5.9 shows the thermal conductivity as a function of temperature for two samples 

hot pressed from wet-chemistry synthesized Bi2Te3 nanocrystals.  The upper plot 

corresponds to the sample with an average crystal size of 11.4 nm, and the lower plot 

corresponds to the sample with an average crystal size of 8.2 nm.  

The thermal conductivity in semiconductors is contributed by the transport of charge 

carriers and phonons. The contribution from phonons is also called lattice thermal 

conductivity kl, which is defined as  

                                                           kl    1/3  vs2τc,                                                (5.4) 

where vs, τ and c represents sound velocity, effective phonon relaxation time and specific 

heat, respectively[67]. 

In Figure 5.9, it can be seen that thermal conductivity increases with temperature for 

both samples. This can be explained by the increase of electronic contribution to the 

overall thermal conductivity. The charge carrier concentration increases with increasing 

temperature because of the decreased bandgap of semiconductor nanocrystals and the 

increased energy supplied to electrons in the valence band with increasing 

temperature.[40]  The increase in charge carrier concentration increases the amount of 

heat that can be conducted by charge carriers and thus increase the thermal conductivity 

of the material. 
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In Figure 5.9, a clear dependence of the thermal conductivity on the crystal size can be 

figured out. The room-temperature thermal conductivity of bulk Bi2Te3 is around 2.2 

W/m·K. The room-temperature thermal conductivities of 11.4-nm sample and 8.2-nm 

sample are only 0.23 W/m·K and 0.185 W/m·K respectively. This can be explained in 

two ways, the reduction of electronic thermal conductivity and lattice thermal 

conductivity with decreasing the grain size. 

 

Figure 5.9. Thermal conductivity as a function of temperature for nanostructured 
bulk samples hot pressed from wet-chemistry synthesized nanocrystals. 

 

First, according to Equation 5.4, the lattice thermal conductivity decreases with 

decreasing phonon relaxation time. Compared with bulk material, nanostructured bulk 

material is composed of small grains with nanoscale sizes. This nanostructure will 



88 

 

increase the scattering of phonons at grain boundaries and thus decrease the phonon mean 

free and decrease the relaxation time of phonons. Therefore, it is reasonable that lattice 

thermal conductivity decreases with decreasing grain size in nanostructured bulk samples. 

Second, according to quantum confinement theory, the bandgap of semiconductor 

nanocrystals increases with decreasing the nanocrystal size. In smaller nanocrystals, more 

energies will be needed to excite electrons from valence band to conduction band and 

therefore fewer electrons will be excited and become available for conducting heat.  

 5.2.5 Figure of Merit 

Table 5.1 shows a summary of room-temperature thermoelectric properties measured 

on the n-type Bi2Te2.7Se0.3 sample as well as the state-of-the-art values[138]. The sample 

is hot pressed from ball-milled nanocrystals.  By optimizing the parameters of hot 

pressing and subsequent treatments, the room-temperature figure of merit of n-type 

Bi2Te2.7Se0.3 is around 0.32, which is quite lower than the state-of-the-art value 0.9. This 

is mainly because our electrical conductivity is almost 10 times lower.  

Table 5.2 shows a summary of room-temperature thermoelectric properties measured 

on the p-type Bi0.5Sb1.5Te3 sample as well as the state-of-the-art values[131]. For our p-

type sample, the figure of merit result is much more exciting. The room-temperature 

figure of merit value is around 1.24, which has exceeded the value 1.18 reported in Gang 

Chen’s Science paper[131] and is among the few highest values that have been achieved 

so far. The improvement in figure of merit mainly arises from the drastic reduction in 

thermal conductivity, which can be attributed to decreased lattice thermal conductivity 

from increased number of grain boundaries and defects. 
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Meanwhile, it is also noticed that our electrical conductivity value is lower than the 

values reported in the two literature papers. So far we have seen low electrical 

conductivity in both our n and p type samples.  This is probably because of the relatively 

low densities of the hot pressed samples. We can either increase the pressure used in hot 

pressing or switch from hot pressing to spark plasma sintering. Further research is under 

way. 

Table 5.1. Summary of room-temperature thermoelectric properties of n-type 
Bi2Te2.7Se0.3 and the state-of-the-art values. 

Sample Name Bi2Te2.7Se0.3 state of the art[138] 

Temperature (K) 300 300 

Electrical Conductivity (S/m) 9730  96500  

Seebeck Coefficient (V/K) 0.000173  0.000189  

Thermal Conductivity (W/m·K) 0.272  1.17 

Figure of Merit 0.32 0.9 

 

Table 5.2. Summary of room-temperature thermoelectric properties of p-type 
Bi0.5Sb1.5Te3 and the state-of-the-art values. 

Sample Name Bi0.5Sb1.5Te3 state of the art[131] 

Temperature (K) 300 300 

Electrical Conductivity (S/m) 9730  96500  

Seebeck Coefficient (V/K) 0.000173  0.000189  

Thermal Conductivity (W/m·K) 0.272  1.17 

Figure of Merit 0.32 0.9 
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CHAPTER 6. SUMMARY AND FUTURE PLANS 

6.1 Material Synthesis and Characterization 

In our synthesis, monodisperse CdSe, PbSe, and PbTe nanocrystals of various 

morphologies have been synthesized by using different combinations of surfactant and 

solvent in the refined phosphonic-acid-assisted organometallic method.  

Post-synthesis treatment like size selective precipitation is usually needed to narrow the 

size distribution. However, it is found in our work that by controlling the synthesizing 

conditions more precisely, nearly monodisperse NCs can be readily synthesized. 

For the characterization, XRD spectra confirm the formation of desired crystal 

structures and TEM images confirm the morphology and crystallinity of as-prepared 

nanocrystals. Visible absorption spectra show that absorption peak shifts to longer 

wavelength with increasing the nanocrystal size.  

Bi2Te3 nanocrystals have been produced by both organometallic and ball-milling 

methods. 

Two mechanisms are observed in the wet-chemistry growth process of semiconductor 

nanocrystals: addition of monomers and fusion of small crystals. A typical material 

growing by addition of monomers is CdSe. Typical materials growing by fusion of small 

crystals include Bi2Te3 and PbSe.  
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Raman spectroscopy has been used to investigate the size, shape and temperature 

dependence of phonon vibrational modes. For CdSe nanocrystals, the LO-phonon 

frequency decreases and bandwidth increases with increasing the temperature or 

decreasing the size. The analysis of 0D samples shows that the influence of diameter is 

dominant over that of shape and the temperature sensitivity increases with increasing the 

diameter. On the other hand, the comparison between 0D and 1D samples shows that 

temperature sensitivity decreases with increasing the dimension along the c-axis. 

The 2D nanostructure shows similar Raman features as those of few-quintuple-thick 

Bi2Te3 layers, while the 0D and 1D nanostructures show a blue-shifted A1g
2 mode and a 

much stronger A1u mode, which is the first report regarding the morphology impact on 

the Raman modes of Bi2Te3 nanocrystals. 

For thermoelectric applications, nanostructured bulk approach has been adopted to 

improve the figure of merit of Bi2Te3 based alloys. Due to the increased phonon 

scattering at the grain boundaries introduced in nanostructured bulk process, significantly 

reduced thermal conductivities have been observed in nanostructured bulk Bi2Te3 

samples fabricated by hot-pressing method. It is also observed that thermal conductivity 

decreases with decreasing the average grain size. Several post-fabrication treatments, like 

removal of surface oxide layer by Ar plasma and hydrazine and thermal annealing, have 

further improved the thermoelectric properties of the samples. The room-temperature 

figure of merit values obtained on n-type Bi2Te2.7Se0.3 and p-type Bi0.5Sb1.5Te3 are around 

0.32 and 1.23, respectively. The n-type value is still lower than the state-of-the-art value, 

but the p-type value is among the highest values that have been obtained so far. Certain 

property, like the electrical conductivity, has been found to be consistently way lower 
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than the state-of-the-art value, so further efforts should be emphasized to identify the root 

causes and improving them. 

6.2 Phonon-Assisted Hot Electron Decay 

We have used the time-domain DFT and NAMD to study the phonon-assisted hot 

electron relaxation dynamics in the CdSe QD and EQD. The electronic DOS shows 

shape-dependent features. The band gap is narrower and electron and hole states are 

denser in the EQD than in the QD. The band gap shows negative temperature dependence 

for both QD and EQD. The temperature dependence is stronger for EQD.  By taking the 

Fourier transforms of the LUMO energies, the electron-phonon coupling spectra were 

also evaluated. At higher temperatures, higher-frequency phonon modes are induced to 

scatter with electrons for both QD and EQD. The electron-phonon coupling is stronger in 

the EQD than in the QD, which favors a generally faster relaxation in the EQD. The hot 

electron decay rate shows a weaker temperature dependence than expected for both QD 

and EQD. This could be attributed to the negative temperature dependence of the 

electron-phonon coupling term | |kmd . The hot electron decay rate is higher and shows a 

stronger temperature dependence in the EQD than in the QD. In all, our work shows that 

the shapes of NCs can affect the optical and electronic properties of the NCs through 

modifications of their electronic structure. The results presented in this paper can help to 

understand the fundamental mechanisms of hot electron relaxation dynamics in NCs and 

to guide future experiments. 

6.3 Future Plan 

For thermoelectric applications, future efforts will be dedicated to further improving 

the figure of merit by increasing the electrical conductivity and Seebeck coefficient and 
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decreasing the thermal conductivity. Promising approaches include treating nanocrystals 

with hydrazine and ion bombarding the surface of the nanostructure bulk samples. 

Hydrazine treatment can remove oxides and insulating organic ligands from the surface 

of the nanocrystals, and ion bombardment can effective remove oxides from the surface 

of the pellet sample and improve the contact between metal electrodes and the material. 

These two approaches together are supposed to increase the electrical conductivity of the 

sample. 

For photovoltaic applications, future efforts will be dedicated to fabricating high-

efficiency semiconductor solar cell devices and gaining a better understanding of the 

interaction between phonons and electrons in semiconductor materials.  
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