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ABSTRACT

Anupindi, Kameswararao Ph.D., Purdue University, December 2013. A novel multi-
block immersed boundary method enabling high order large eddy simulation of patho-
logical and medical device hemodynamics. Major Professor: Steven H. Frankel,
School of Mechanical Engineering.

Computational fluid dynamics (CFD) simulations are becoming a reliable tool in

understanding disease progression, investigating blood flow patterns and evaluating

medical device performance such as stent grafts and mechanical heart valves. Previous

studies indicate the presence of highly disturbed, transitional and mildly turbulent

flow in healthy and pathological arteries. Accurate simulation of the transitional flow

requires high order numerics together with a scale resolving turbulence model such

as large eddy simulation (LES). This in turn limits one to use a structured fluid flow

solver on which complex, branching arterial domains that are typical in the human

blood circulatory system could not be handled. To overcome this, a novel multiblock

based immersed boundary method (IBM) is developed based on high order discretiza-

tion schemes that can efficiently simulate blood flow in complex arterial geometries

using structured Cartesian fluid flow solvers. The developed solver, WenoHemo, is

systematically validated for each of the newly introduced numerics using a variety

of numerical and experimental results available in the literature. Three dimensional

laminar flow over a sphere, laminar flow in a backward facing step, laminar and tran-

sitional flow in an abdominal aortic aneurysm (AAA), transitional flow in a model

stenosed artery, and turbulent flow in a mixing layer are used as benchmark cases for

validating the solver thoroughly.

WenoHemo is then applied to study blood flow patterns in a pathological thoracic

aortic aneurysm (TAA) and in a resulting thoracic aorta with a stent graft (TASG)

geometry after an endovascular repair (EVAR). Phase averaged velocity profiles, tur-



xviii

bulence kinetic energy levels, viscous wall shear stresses and turbulence energy spectra

are used to compare the similarities and differences between the blood flow patterns

obtained. Presence of well developed turbulence is detected in the case of TAA

whereas TASG showed periodic vortex shedding with lower turbulence levels and

improved blood flow to the descending aorta. Application of the solver to simulate

blood flow patterns obtained in a bi-leaflet mechanical heart valve (BMHV) placed

in a model aorta with imposed kinematics of the leaflets is also carried out, which

reveals complex blood flow patterns that need to be considered in the design of the

same for reliability and to reduce post surgical complications.
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1. INTRODUCTION

1.1 Motivation

The main motivation for the present work is to understand the blood flow patterns

in physiologically relevant pulsatile inflow conditions in pathological arteries as well

with those treated with a medical device solution. The present research focuses on

simulating hemodynamics in two important but different categories of pathological

blood flow that medical community is faced with. The first problem falls in the

category of endovascular repair of an aortic aneurysm and the second one is related

to a leaky natural heart valve that is replaced with a mechanical heart valve. In what

follows, we provide quick introduction to both the problems and defer the detailed

discussion until later in the respective chapters to follow.

An arterial aneurysm is a local, permanent dilation of the blood vessel. The

likelihood that an aneurysm will rupture is influenced by its size, and expansion rate.

Aortic aneurysms constitute the 14th leading cause of death in the United States [1].

Endovascular repair (EVAR) of aneurysms has become a widespread treatment option

for aortic diseases, as an alternative to open surgery [2]. In EVAR stent grafts are

placed in the artery, excluding blood flow to the aneurysm, which prevents their

rupture. However, post EVAR complications arise, such as stent graft migration, and

endoleak. These complications cause severe pressure build up in the aneurysm region.

Simulations of blood flow in pathological and medical device implanted arteries can

provide insights into the disease progression (such as the expansion rate, and wall

shear stress distribution) and the forces that act on the stent grafts. Computational

fluid dynamics (CFD) simulations can provide valuable information to the medical

device manufacturers and surgeons in making critical decisions in the treatment of

aortic aneurysm repair.
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Natural heart valves may become leaky because of age or an acquired disease

owing to plaque formation. Leaky heart valves cannot hold blood during the diastolic

phase as a result the primary function of the heart to pump oxygenated blood is

not accomplished. Depending on the severity of the leakage and urgency of the need

medical intervention is prescribed. This results in replacing the natural heart valves

with either a tissue or biological heart valve or with a mechanical heart valve. There

are several types of mechanical heart valves that are available in the medical device

manufacturing market and none of them are perfect when it comes to reliability in

the long run. It is very difficult if not impossible to test and monitor the health and

function of the mechanical heart valves when implanted in a subject. The motivation

of the present work is that understanding the blood flow dynamics in a mechanical

heart valve will provide valuable information into the environments they are subjected

to.

1.2 Cardiovascular Fluid Mechanics

The working fluid that transports oxygen, nutrients and waste in the human body

is blood. Blood is a complex mixture of cells, proteins, lipoproteins, and ions [3].

Approximately 40% of the blood is occupied by red blood cells. Red blood cells are

semisolid particles and affect the properties and behavior of the blood by increasing its

viscosity. The viscosity of blood is a function of the flow rate and blood exhibits non-

Newtonian behavior in the micro-circulatory system. The non-Newtonian behavior is

most prominent in very low shear rate regions when the red blood cells clump together

forming a large particle. Apart from the low shear rate regions, the non-Newtonian

behavior is observed in small branches, and capillaries. However, in most arteries

blood behaves as Newtonian fluid, and its viscosity can be taken as a constant [3]. In

the present study the dynamic viscosity of blood is taken to be equal to 3.5 centipoise.

The cardiovascular system is a closed loop circulatory system that can be divided

into the systemic circulation supplied by the left ventricle (LV) and the pulmonary
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circulation supplied by the right ventricle (RV). The arteries are the larger blood

vessels that carry the oxygenated blood from the heart to the micro circulation in

the tissue to be perfused and then the veins carry the venous blood back to the

heart [4]. The cardiovascular system typically features a low Reynolds number (Re)

pulsatile flow due to the cyclic pumping motion of the heart. The heart ejects and

fills the blood in alternating cycles called systole and diastole. Blood is pumped

out of the heart during systole, and heart rests during the diastole, and no blood is

pumped out. Because of this the blood flow and pressure are unsteady and pulsatile

through out the cardiovascular system with varying values of pulsation. The presence

of unsteady or pulsatile flow virtually through out the cardiovascular system makes

the fluid flow problem an unsteady problem by including the local acceleration term.

The typical Re range of blood flow in a healthy circulatory system varies from 1 in

the small arteries to approximately 4000 in the largest artery, the aorta [3]. Pulsatile

flows are characterized through a non-dimensional number known as Womersley or

Witzig parameter, α = R
√

ω/ν, where, R is the radius of the pipe, ω is the circular

frequency of the pulsation, and ν is the kinematic viscosity of the fluid [3]. This is same

parameter used in the similarity transformation developed in the well-known Stokes’

Second Problem in fluid mechanics, in which the flow is induced by an oscillating

flat plate [3,5]. The Re being defined as the ratio of the inertia forces to the viscous

forces, the Womersley parameter α can be interpreted as the ratio of the unsteady

forces to the viscous forces. When the Womersley parameter is low the viscous forces

dominate, velocity profiles are parabolic in nature, and the center line velocity in the

pipe oscillates in phase with the driving pressure gradient. For Womersley parameters

above 10, the unsteady inertial forces dominate, and the flow is essentially one of

piston like flow motion with a flat or plug velocity profile. The amplitude of motion

decreases at the higher frequencies, and there is a 90◦ phase shift between the driving

pressure gradient and the flow velocity, similar to a low-pass filter [3].

In contrast to unsteadiness, several features of biological flows may be neglected

in some situations as secondary in importance. These properties include vessel wall
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elasticity, non-Newtonian viscosity, slurry particles in the fluid, temperature effects.

These features of secondary importance are neglected in the present study as it sim-

plifies the analysis greatly.

1.3 Background

There have been various studies of blood flows in aorta. In this section we provide

a brief overview of various past studies that were conducted on abdominal and tho-

racic aortic aneurysms. Asbury et al. [6] experimentally investigated steady inflow

in rigid models of abdominal aortic aneurysm (AAA). They performed laser Doppler

velocimetry and color Doppler flow imaging on seven rigid models with a variety of

diameter ratios of artery to the aneurysm. They observed a core of relatively fast

moving fluid in the center of the dilation, surrounded by an outer annulus of slowly

recirculating fluid. They concluded that there was a tendency for the larger models

of aortic aneurysms to become turbulent at lower Re than the smaller models. In

their study, the largest models produced turbulent velocity fluctuations as great as

40% of the mean center line velocities. Morris et al. [7] performed numerical simula-

tions of blood flow through models of human aorta using commercial fluid dynamics

software FLUENT 6.0. A pulsatile velocity inflow condition was used by the au-

thors, and three different aortic arch configurations were constructed from the spiral

computerized tomography (CT) scan of the aorta obtained from a single subject.

All their thoracic aorta models did not have the peripheral arteries and hence there

is only one inlet at the aortic arch and one outlet in the descending aorta region.

The velocity profiles obtained in the aortic arch were different among the models

owing to the fact that the aortic arch radius was different between them to begin

with. However, in the descending aorta region all the models showing similar ve-

locity profiles. They observed greatest recirculation and reverse flow regions during

the maximum deceleration phase, due to the fact that a decelerating fluid is more

unstable than an accelerating fluid. Salsac et al. [8] studied experimentally the spa-
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tial and temporal distribution of wall shear stresses (WSS) during various stages of

the aneurysm development, by constructing models with varying values of diameter

ratios. The evolution of WSS and its gradient are important in understanding the

aetiology, and progression of the aneurysm diseases, as they affect the wall structure

integrity. They conclude that, the flow separation and the associated formation of

a strong vortex ring and of internal shear layers lead to regions of perturbed stress

distribution, which do not exist in a healthy abdominal aorta. Varghese et al. [9,10]

performed direct numerical simulations (DNS) of steady and pulsating blood flow in a

stenosed artery configuration. Stenosis forms the other extreme condition compared

with an aneurysm. In stenosis, the arterial wall becomes constricted and thereby

causing a pathological condition of the artery that needs to be treated. Recent, and

seemingly first large eddy simulation (LES) study of blood flow in a subject specific

thoracic aorta was performed by Lantz et al. [11]. They studied the distribution of

low density lipoprotein (LDL) on the surface of the aorta using the commercial CFD

package CFX, under physiological conditions of pulsating inflow conditions. They

investigated the relationship between WSS and LDL surface concentration and found

that the accumulation of LDL correlated well with WSS. In general, regions of low

WSS correspond to regions of increased LDL concentration and vice versa. Biasetti

et al. [12] performed numerical simulations of blood flow in patient-specific models of

AAA, with a motivation to find possible correlation between the vortical structures

(VS) and intra-luminal thrombus (ILT) formation. Aortic aneurysms are frequently

characterized by the development of an ILT, which is known to have multiple biochem-

ical and bio-mechanical implications. There have been many other studies that were

performed utilizing experimental and/or computational tools for the investigation of

hemodynamics, and the list discussed here is not complete. However, the most com-

mon feature, among the computational studies is that, they employ low order (first

order) numerics to study hemodynamics in complex geometries with potentially tran-

sitional/mildly turbulent flows which may not capture the physics correctly. There
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have been very few studies, which employed high order accurate solvers with an em-

phasis on validation. The present work is a step in that direction.

1.4 Objectives

Blood flow in pathological arteries is shown to be transitional and or mildly turbu-

lent [9–11,13]. Simulation of turbulent fluid flow requires a high order solver with an

accurate subgrid scale (SGS) model. Therefore the primary objective of the present

work is to develop, test, and validate a high order LES solver that is capable of

simulating hemodynamics in complex arterial flows. We validated several aspects of

the developed solver, such as the immersed boundary method (IBM), the multiblock

approach, the flow field obtained from pulsatile inflow conditions. The SGS model

used has already been validated in the previous studies by Shetty et al. [14]. We

also simulate a turbulent mixing layer and validate the results with those obtained in

experiments.

Another objective of the present research is to apply the developed solver to

study blood flow dynamics in a pathological and medical device solution arteries. To

accomplish this two important problems that medical community is facing with are

studied. The first one is related to identifying similarities and differences in blood flow

patterns and the overall effect of stent graft on blood flow dynamics when implanted

in a subject. The second one is resulting blood flow dynamics in an artery fitted with

a mechanical heart valve.

1.5 Organization

An overview of the organization of the present document is presented in this

section. Chapter 2 presents the computational methodology used in the present

work. It starts with a description of the governing equations pertinent to the present

problems of interest, and then the sub-grid scale modeling details are presented. The

review and selection of the IBM is also presented in this chapter. It concludes with a
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description about the multiblock methodology that is implemented, the parallelization

strategy, and the details about the statistical averaging as applied to data reduction

of the steady and pulsatile inflow conditions.

In Chapter 3 a thorough validation of the developed WenoHemo solver is pre-

sented. Laminar three dimensional simulation of flow over a sphere, laminar three

dimensional simulation of flow over a backward facing step, transitional flow in a

model stenosed artery, and finally turbulent flow in a mixing layer with and without

cavitation are considered as benchmark cases and the results obtained are compared

with the numerical or experimental data available in the literature.

Chapter 4 starts with an introduction to the blood flow circulatory system fol-

lowed by anatomy of the human aorta, aneurysms, and their treatment procedures

are presented. Thereafter simulations of AAA are presented under both laminar and

turbulent regimes for steady inflow at a Reynolds number of 500 and 2600. The

results obtained are compared to the experimental results available in the literature.

To demonstrate the capability of the WenoHemo solver to handle complex geometry

a steady inflow in a thoracic aortic aneurysm (TAA) case is considered, which is of

academic interest, and the obtained flow field is studied at Reynolds numbers of 910

and 3727 which correspond to an average flow and peak flow conditions in a phys-

iologically relevant pulsatile inflow condition profile. Finally, the clinically relevant

problem of pulsatile inflow to TAA and thoracic aorta with stent graft (TASG) are

considered to study the similarities and differences obtained in blood flow patterns.

Chapter 5 presents simulations performed for a bi-leaflet mechanical heart valve

(BMHV) placed in a model aorta for both steady and pulsatile inflow conditions.

The steady simulation considers fixed leaflets at maximum opening angle whereas

the pulsatile inflow condition considers animated leaflets with imposed kinematics.

Chapter 6 contains directions for future work that can be considered in each of

the several areas such as further enhancements to the WenoHemo solver, studies on

TAA/TASG and studies on BMHV.
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2. COMPUTATIONAL METHOD

2.1 Governing Equations

The governing equations for the present problem are the incompressible Navier-

Stokes equations. In LES, these are filtered using a low-pass spatial filter and they

are summarized below in non-dimensional form:

∂ui
∂t

+ uj
∂ui
∂xj

= −
∂p

∂xi
+

1

Re

∂2ui
∂xj∂xj

−
∂τij
∂xj

+ gi (2.1)

∂ui
∂xi

= 0 (2.2)

where u is the velocity vector, p is the fluid pressure, τij is the sub-grid scale (SGS)

stress tensor, Re is the Reynolds number, gi is the gravitational acceleration vector,

and the filtered quantity of variable φ is denoted in the equations 2.1,2.2 by φ. The

SGS stress tensor τij shown in the equation 2.1, represents the difference between

filtered velocity product and the product of filtered velocities, and given by,

τij = uiuj − ui uj −
1

3
(uiuj − ui uj). (2.3)

The residual stress tensor or SGS stress tensor shown above only contains the anisotropic

part and the isotropic part is absorbed into the filtered pressure field and the modified

filtered pressure is,

p = p+
1

3
(uiuj − ui uj). (2.4)

2.2 Numerical Methodology

A high order accurate LES solver developed and validated for fully inhomogeneous

turbulent flows by Shetty et al. [14], is augmented with IBM, and multiblock to handle

fluid flows arising in complex geometries. The key aspects of the numerical methods

used in the solver WenoHemo are discussed here. For a complete explanation of the
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numerical methods, readers are referred to the article by Shetty et al. [14]. The

convective acceleration terms are discretized using a fifth-order weighted essentially

non-oscillatory scheme (WENO) [15], and the viscous terms are discretized using

the standard fourth-order central difference scheme. In order to maintain the order

of accuracy of the spatial discretization even at the boundaries, ghost nodes lying

outside the domain are made use of. The values at the ghost nodes are updated using

a Stokes flow boundary condition described in Morinishi et al. [16].

The governing equations are integrated using a fractional time stepping algorithm,

which solves the equations in a predictor-corrector manner. The velocity values are

predicted with out considering the pressure gradient terms, and a pressure Poisson

equation is solved at every corrector step to satisfy the divergence free condition of

the velocity. The obtained pressure field is then used to correct the velocities that

were computed in the predictor step. The time advancement is carried out using

explicit 3rd order accurate difference formulae described in Shetty et al. [17]. The

pressure Poisson equation was solved using MUDPACK libraries in the original single

block version of the code. However, in the present code multiblock version of the

WenoHemo code, this has been replaced with the hypre [18], which solves the elliptic

equations on a distributed memory machine employing MPI libraries, and a variety

of fast iterative solvers.

2.3 Sub-grid Scale Modeling

The SGS stress tensor shown above in equation 2.3, needs to be modeled to close

the filtered Navier-Stokes equations 2.1. The classical eddy-viscosity model which

employs Bosinessque approximation relates the SGS stress tensor (τij) to the filtered

strain rate tensor as follows,

τij = −2νtSij , (2.5)

where νt is the turbulent eddy viscosity, in the present case also known as the SGS

eddy viscosity and Sij =
1
2
( ∂ui

∂xj
+

∂uj

∂xi
) is the filtered strain rate tensor. Next, we need
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to determine the value of the SGS eddy viscosity (νt), and how this is determined

defines different types of eddy viscosity based models. The first and simplest model

that was used in LES studies is the classical Smagorinsky model [19], in which the

eddy viscosity is computed as follows,

νt = −2(Cs∆)2|S|, (2.6)

where Cs is the Smagorinsky model coefficient, ∆ is the width of the LES filter,

and S =
√

2Smn Smn represents the modulus of the filtered strain-rate tensor. The

model coefficient Cs is not a universal constant rather it varies depending on the flow.

Smagorinsky model cannot be used to model transitional flows as it provides non-zero

SGS viscosity in laminar or resolved flow regions, and it cannot handle back-scatter of

energy from the subgrid scales to the filtered scales. Because of these limitations, in

the present study we use another eddy viscosity model developed by Vreman [20] and

referred here as Vreman model. This model is also a global coefficient eddy viscosity

model, but it is applicable to fully inhomogeneous flows [14, 20]. The eddy viscosity

in this model is computed as follows

νt = CΠg, (2.7)

where

Πg =

√

Bβ

αijαij
, (2.8)

αij =
∂uj
∂xi

, (2.9)

βij = ∆2
mαmiαmj , (2.10)

Bβ = β11β22 − β2
12 + β11β33 − β2

13 + β22β33 − β2
23. (2.11)

In the present study, the global coefficient of the Vreman model, C, is taken equal to

0.07. Further details and validation of the model can be found in the original article

by Vreman [20].
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2.4 Spatial Discretization

The domain of interest is discretized using a staggered grid, which stores the

values of pressure at the vertices and each of the velocity components at mid points

between the vertices. According to the present staggered scheme the u, v and w

velocity components are stored at mid points between the vertices in the x, y and

z directions respectively. This staggering scheme is different from those typically

used in finite volume discretizations. In a finite volume discretization, say in a two

dimensional grid, usually u velocity is stored at the mid point between the vertices

in y direction and v velocity is stored at the mid point between vertices in the x

direction. Using the same approach followed in Shetty et al. [14] and Zhang et al. [21]

the convective acceleration terms in the filtered momentum equations are discretized

using a fifth-order WENO scheme [15]. Like any other upwind scheme the direction of

the upwind is determined based on the component of velocity that is premultiplying

the convective derivative term for which WENO discretization is employed. For the

sake of completeness, the working details of the WENO scheme discretization are

provided here, however, full details of the derivation of this scheme can be found in

the original articles [15,21]. Any variable f under consideration can be reconstructed

as follows,

f̂i+1/2 =

3
∑

k=1

ωkf
k

i+1/2 (2.12)

ωk = ω̂k/

3
∑

l=1

ω̂l (2.13)

ω̂l = γl/(ǫ+ βl)
2. (2.14)

If ui+1/2 ≥ 0 then γ1 = 0.3, γ2 = 0.6, γ3 = 0.1 and f̂k is calculated as follows,

f
1

i+1/2 =
1

3
fi +

5

6
fi+1 −

1

6
fi+2 (2.15)

f
2

i+1/2 = −
1

6
fi−1 +

5

6
fi +

1

3
fi+1 (2.16)

f
3

i+1/2 =
1

3
fi−2 +

7

6
fi−1 +

11

6
fi (2.17)
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and βl is calculated as,

β1 =
13

12
(fi − 2fi+1 + fi+2)

2 +
1

4
(3fi − 4fi+1 + fi+2)

2 (2.18)

β2 =
13

12
(fi−1 − 2fi + fi+1)

2 +
1

4
(fi−1 − fi+1)

2 (2.19)

β3 =
13

12
(fi−2 − 2fi−1 + fi)

2 +
1

4
(fi−2 − 4fi−1 + 3fi)

2 (2.20)

if ui+1/2 < 0 then the values of γ1 = 0.1, γ2 = 0.6, γ3 = 0.3 and f̂k can be computed

as follows,

f
1

i+1/2 =
11

6
fi+1 −

7

6
fi+2 +

1

3
fi+3 (2.21)

f
2

i+1/2 =
1

3
fi +

5

6
fi+1 −

1

6
fi+2 (2.22)

f
3

i+1/2 = −
1

6
fi−1 +

5

6
fi +

1

3
fi+1 (2.23)

with the values of βl given as follows,

β1 =
13

12
(fi+1 − 2fi+2 + fi+3)

2 +
1

4
(3fi+1 − 4fi+2 + fi+3)

2 (2.24)

β2 =
13

12
(fi − 2fi+1 + fi+2)

2 +
1

4
(fi − fi+2)

2 (2.25)

β3 =
13

12
(fi−1 − 2fi + fi+1)

2 +
1

4
(fi−1 − 4fi + 3fi+1)

2. (2.26)

Once the values of the function are reconstructed using the above formulae, the

gradient of the function is then calculated from the reconstructed fluxes as,

∂f

∂η
=
f̂i+1/2 − f̂i−1/2

h
(2.27)

where h denotes the distance between the adjacent vertices. The diffusion terms

appearing in the filtered momentum equations are discretized using a fourth-order

central difference scheme [22] as follows,

h2
∂2fi
∂η2

= −
1

12
(fi−2 + fi+2) +

4

3
(fi−1 + fi+1)−

5

2
fi. (2.28)

The first-order derivatives needed in the evaluation of gradient calculations of the

SGS stress tensor are also computed using a fourth-order accurate central difference

scheme [22] as follows,

h
∂fi
∂η

=
1

12
(fi−2 − fi+2) +

2

3
(fi−1 − fi+1). (2.29)
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2.5 Immersed Boundary Method

2.5.1 Motivation for the Development of a Multiblock IBM Solver

Computational fluid dynamics (CFD) simulations are becoming a reliable tool to

not only understand disease progression in pathological blood vessels, but also design

and gauge the performance of several medical device solutions, such as stent grafts and

ventricle assist devices [23,24]. Pathological and medical device hemodynamics often

involve, transitional or mildly turbulent unsteady disturbed flows with streamline

curvature and rotation [9, 10]. In order to accurately simulate such flows, a scale

resolving turbulence model such as LES is required.

Turbulence modeling based on LES further requires that high order (greater than

2nd order) methods be used for discretizing and solving the governing equations nu-

merically. However, usage of high order numerical methods often limits one to use

structured grids, which may not be able to handle a variety of complex geometries that

arise in arterial flow domains. IBM emerged as an attractive methodology because of

its ability to efficiently handle complex moving and rotating geometries on structured

grids. The tedious job of mesh generation for complex flow domains is by-passed in

these methods by constructing a global domain containing both the solid and fluid

regions. IBM was introduced by Peskin [25], in which the flow field is solved on a

Eulerian mesh and the immersed surface is discretized using Lagrangian points and

the method was applied to the two-dimensional simulation of flow around a natural

Mitral valve. IBM simulations can handle moving or deforming bodies with com-

plex surface geometry relatively easily without the need for re-meshing at every time

step of the flow simulation as is needed in conventional body-fitted mesh simulations.

There have been many works by several authors, in applying IBM to various fluid

mechanics problems such as dragonfly flight aerodynamics [26], fish swimming [26,27],

human walking as an application of multiple moving immersed objects [28], blood flow

in heart [29], fluid-structure interaction of aortic heart valve [30] and turbo machin-

ery [31], to name a few. Certainly, the application list mentioned here is incomplete
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and the reader is referred to the articles by Mittal et al. [32] and by Peskin et al. [33]

to gain a complete insight. Simulations based on IBM can be readily applied to ex-

ternal aerodynamics problems [34, 35] where the volume of the solid region is much

smaller compared to the fluid region thereby reducing the amount of unnecessary

grid. Adaptive mesh refinement (AMR) was used by Vanella et al. [36] as a way of

reducing the amount of unnecessary grid and also to increase the resolution only in

the regions of interest. Griffith et al. [37] also employed an adaptive, second order

accurate IBM to simulate blood flow in heart and great vessels. They achieved en-

hanced boundary layer resolution in model heart valve by using locally refined mesh

methodology. Using AMR one can specifically refine the mesh based on geometric or

solution driven parameters.

Although IBM based simulations are quite successful in external aerodynamics

problems [28, 32, 34, 35], their applications to internal fluid flow in complex geome-

tries such as blood flow in arteries are scarce. Yokoi et al. [38] used a Cartesian grid

approach together with IBM and simulated blood flow in a cerebral artery with multi-

ple aneurysms. They used a 0.6 million Cartesian grid to immerse the cerebral artery.

Although, no mention of the percentage of total grid nodes in the fluid region is made

in their article, given the ratio of the diameter of the cerebral artery to its lateral ex-

tents it is apparent that a large portion of grid nodes were in the exterior of the fluid

domain. Delorme et al. [24] performed LES studies of powered Fontan hemodynamics

with relatively short vena cavae and long pulmonary arteries in order to reduce the

amount of grid nodes lying in the exterior of the fluid domain. However, again given

the longitudinal and lateral extents of the total cavopulmonary connection (TCPC)

compared to its internal diameter a significant number of grid nodes were located

outside of the fluid domain, as was reported in their article. These are few examples

of the short comings of IBM directly applied to simulate complex arterial networks.

Recently, in an effort to extend IBM to simulate complex arterial geometries, de

Zélicourt et al. [39] developed a serial flow solver, using an unstructured Cartesian

grid approach and studied blood flow in a real-life TCPC anatomy. As de Zélicourt
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et al. [39] point out in their article, one possible reason for the scarcity of studies on

IBM applied to study blood flow in complex internal flow configurations, could be

because of the prohibitive memory and computational demands on the single block

grids that arise in order to handle these geometry. Another point that is of concern

in handling complex geometries on structured grids is the constraint that all the in-

flow and outflow boundaries of the geometry have to terminate only on the boundary

faces of the global bounding box that encloses both the fluid and solid regions. This

requirement could be met in certain cases (as was done in Yokoi et al. [38] and De-

lorme et al. [24]) by properly truncating the complex geometry and in some cases it

is not possible. Such alterations of the complex geometry to make it compatible for

single block simulations might result in altering the results obtained compared to the

unaltered geometry and sometimes the inflow boundary conditions may not even be

known at the altered locations. In order to overcome the aforementioned problems

and extend the applicability of IBM to simulate blood flow in complex anatomies, we

propose a method based on a combination of multiblock structured grids and IBM on

an inherently parallel framework. This particular methodology not only enables simu-

lation of fluid flow in complex geometries but also reduces the amount of unnecessary

grid that goes into the solid regions.

2.5.2 Review and Selection of Immersed Boundary Method

In the present section, we provide a quick review of three types of IBMs, falling

into two different categories. The advantages of applying one method over the other

are discussed. Also, the problems encountered and possible solutions to make the

methods work better are also explained. And the motivation behind choosing the

Ghost Point IBM (GP-IBM) in the present work is explained. First, we quickly

review the following two types of IBM that were previously planned to be used in the

current code and the issues of stability, and mass conservation are the main factors



16

for not considering them further, rather the GP-IBM was selected as the method of

choice in the present work.

2.5.3 Reproducing Kernel Particle Method IBM (RKPM-IBM)

Pinelli et al. [35] developed this IBM for general finite-difference and finite-volume

Navier-Stokes equations. The motivation behind considering this method is that it

can be extended to higher order by simply changing the polynomials used in the in-

terpolation and spreading operators. These operators are based on the Reproducing

Kernel Particle Methods [40]. An important property that is satisfied by the inter-

polation and spreading operators developed in this method is that the integrals of

the force field and its moment are conserved, independent of the grid topology. The

presence of the IB is felt by the Eulerian fluid flow solver through the forcing terms

that are introduced which are non-zero only surrounding the IB. The magnitude of

the force field that needs to be set depends on the deviation of the predicted velocity

field from the boundary value that needs to be attained on the IB, as follows,

F∗(Xk, t
n) =

UΓ(Xk, t
n)−U∗(Xk, t

n)

∆t
, (2.30)

where F∗ is the vectorial force field that needs to be added to make the flow field

attain a value of UΓ from the present predicted value of U∗. The other variables

in the equation 2.30 are, Xk the coordinates of the Lagrangian surface mesh, tn is

the current time instant, ∆t is the time step size. The target value of the velocity

on the IB which is UΓ is known, and the predicted Lagrangian velocity field (U∗)

is interpolated from the Eulerian predicted velocity field (u∗) using the interpolation

operator as follows,

U∗(Xk, t
n) = I [u∗(xi,j,k, t

n)] , (2.31)

where I is the interpolation operator that interpolates the field variable from the

Eulerian mesh to the Lagrangian mesh. The computed force field on the Lagrangian
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mesh has to be distributed back to the Eulerian mesh using a spreading operator as

follows,

f∗(xi,j,k, t
n) = C [F∗(Xk, t

n)] , (2.32)

where C is the spreading operator that is used to translate the singular force field

on the IB to the volume force field defined on the Eulerian mesh points xi,j,k. The

interpolation I, and spreading C operators are derived using the RKPM methods

which satisfy the conservation of integrals of the force and its moment. A Dirac

delta function was used to limit the force field to the nearby points in the discrete

formulation. A rich treatment of the polynomial manipulations was presented by

Pinelli et al. [35] in the article and the above operators finally involve element matrices

whose elements further depend on the distance between the Eulerian and Lagrangian

mesh points identified within a window of interest. To overcome the possibility of

encountering a singular element matrices, small perturbations were added in deriving

the metrics that make up the element matrix entries. The element matrix entries

strongly depend on the distance between the Eulerian and Lagrangian mesh points

and various combination of their products as shown in Pinelli et al. [35].

This method does not need to distinguish the fluid points from the solid points

as the force field is spread over to all the neighboring Eulerian mesh points in the

identified window for every Lagrangian mesh point. Thus the flow field computed

using this method sets up an equal and opposite velocity field (virtual flow field)

inside the solid region, which was referred to as a secondary flow field that is not of

interest in the article [35]. For stationary IB problems, the element matrices can be

precomputed and inverted and stored for each Lagrangian mesh point, so that they

just have to be multiplied at every time step of the simulation which only adds to a

small fraction of the computation time. In the following, we mention the points that

make this method attractive

• This method does not require classification of the Eulerian mesh points into

those belonging to solid and fluid regions
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• Can be readily extended to higher than second order IBM, by incorporating

higher order polynomials in constructing the interpolation and spreading oper-

ators, and with a higher order discrete delta function.

Although this method seems promising, there are couple of issues that needs to be

addressed when applying this method to internal fluid flow problems, and we will

return to this discussion in section 2.5.5

2.5.4 Physical Virtual Model IBM (PVM-IBM)

The PVM-IBMmethod was proposed by Silva et al. [41]. This method also belongs

to the same category as that of the RKPM-IBM in a sense that it sets up an opposing

virtual flow field inside the solid region. The main difference comes in the calculation

of the forcing function that is computed to drive the fluid to the boundary velocity on

the IB. In the present method the force field is computed as that equal to all the terms

in the Navier-Stokes equations unlike just the local acceleration term as was done in

RKPM-IBM above. Hence, the expression for the force field on the Lagrangian mesh

points is given as follows,

F∗(Xk, t
n) =

∂U∗(Xk)

∂t
+ (U∗.∇)U∗(Xk) +−ν ∇2U∗(Xk) +∇P (Xk), (2.33)

which contains not only the components coming from local acceleration term, but also

the convective acceleration, viscous forces, and the pressure forces, and this makes

the method free of adjustable parameters. The first, and second order derivatives on

the Lagrangian mesh shown in equation 2.33 are computed by constructing a local

vector triad that points in the direction of the fluid region and by interpolating the

values from the background Eulerian mesh. Simple linear interpolation was used in

the article [41].
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ΩSOLID
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Lagrangian surface mesh

Eulerian mesh

Figure 2.1. Schematic showing the local vector triad constructed
on the Lagrangian point to evaluate various terms shown in equa-
tion 2.33.
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Table 2.1. Ratio of volumes of the solid region to the total region
in the test cases considered in the RKPM-IBM article by Pinelli et
al. [35].

Test Case Total volume Volume of solid Volume ratio

Fluid flow over a Ω = ΩFLUID + ΩSOLID ΩSOLID ΩSOLID/Ω

Circular cylinder 49× 34 = 166 0.7854 4.7e− 04

Hill 35× 1 = 35 0.075 2.1e− 04

Sphere 14× 8× 8 = 896 0.5236 3.4e− 03

Normal flat plate 12× 9 = 108 0.0 0.0

2.5.5 Issues with RKPM-IBM, and PVM-IBM

The IBM methods that were discussed previously, namely, RKPM-IBM and PVM-

IBM are readily applicable to external aerodynamics problems. But a few issues show

up when they are applied to solve internal fluid flow. Unfortunately, all the test cases

that were considered in the article by Pinelli et al. [35] are external flow problems.

The volume ratio of the solid region to the fluid region for all the cases solved in

the article [35] is shown in the Table 2.1. As we can see from Table 2.1, the volume

ratio (ΩSOLID/Ω) is very small and it is less than or equal to O(10−3). Not only the

wastage of grid points (those grid points lying in ΩSOLID) is less in these cases but

also, the issue of satisfying mass-conservation does not surface. In both the IBMs

(RKPM and PVM), the pressure Poisson equation that arises in the corrector step

of the fractional time-stepping algorithm gets affected by this volume ratio in the

following way. The following pressure Poisson equation is solved every time-step of

the simulation on the entire domain:

∇2pn+1 =
∇.u∗

∆t
in Ω. (2.34)
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Solving for equation 2.34 is not the same (numerically) as solving the pressure Poisson

equations 2.35, 2.36 separately on each of the domains individually as follows:

∇2φn+1 =
∇.u∗

∆t
in ΩFLUID (2.35)

∇2ψn+1 =
∇.u∗

∆t
in ΩSOLID. (2.36)

We argue that, the pressure field obtained by solving equation 2.34 is not equal to the

sum of the pressure fields obtained by solving equations 2.35, and 2.36, even after

providing consistent boundary conditions for both the cases, at least numerically, and

this can be written as follows,

p in Ω 6= φ in ΩFLUID ∪ ψ in ΩSOLID. (2.37)

From the numerical experiments, we observe that this inequality is a growing function

of the volume ratio of the solid to the total region (ΩSOLID/Ω). In a different way,

we can interpret this as the pressure correction obtained by solving the equation on

the entire domain only ensures mass conservation on the entire domain (Ω), but not

individually on each of the domains. This phenomenon, unfortunately, did not surface

in the external flow simulations performed by Pinelli et al. [35] as the volume ratios

are quite small, which has only negligible effect on the mass conservation. Whereas,

when applied to solve internal fluid flow problems this ratio is around 0.5 or more

and the velocity corrections provided by solving the pressure Poisson equation do

not ensure solenoidality of velocity in the fluid region alone. This motivates us to

chose another IBM approach which is known as mirroring IBM or ghost point IBM

(GP-IBM) which does not suffer from the mass conservation issue and is well suited

for internal as well as external fluid flow computations.

2.5.6 Ghost Point Immersed Boundary Method (GP-IBM)

For the sake of completeness, here we describe the working details of GP-IBM.

The GP-IBM method was proposed and tested by Mark et al. [42] for incompressible
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flow simulations. The same method was also tested by Chaudhuri et al. [43] for

compressible flow simulations with shocks. In the IBM, a Lagrangian surface mesh

of the immersed boundary is used to demarcate the solid and the fluid regions on the

Eulerian mesh which happens to be the domain on which the governing equations (2.1)

are solved. Identification of inside/outside of a surface is known as point in polyhedron

problem in computer graphics and in the present work we make use of the algorithm

described by Choi et al. [28]. A function known as level set was constructed from

the algorithm described in Choi et al. [28]. Level set function (φ) assumes values as

follows,

φ = 0 on ΓIB (2.38)

φ > 0 in ΩFLUID (2.39)

φ < 0 in ΩSOLID. (2.40)

where ΩFLUID indicates the fluid domain, ΩSOLID represents the solid domain and

ΓIB demarcates the fluid domain from the solid domain and serves as the Lagrangian

immersed boundary. To compute the level set function, each Eulerian mesh point

has to be compared with the Lagrangian mesh point and this becomes a slow process

as the number of Eulerian mesh points increase. In order to speed up the level set

computation considerably we make use of kd-tree based searching as described in

Kennel [44]. The search algorithm used in kd-data structure is a generalization of the

binary search tree to higher dimensional spaces. Using kd-tree search algorithm one

can locate the closest neighbor to a chosen vector only in O(logN) time instead of the

linear search that requires O(N) time, with N being the number of degrees of freedom

of the Eulerian mesh. The Fortran95 version of the open source package KDTREE2

developed by Kennel [44] is used in the present work and the same is available for

download from [44]. The immersed body was meshed with triangular elements by

using the commercial mesh generation package GAMBIT(developed and marketed

by ANSYS Inc.). Then this surface mesh description was read by the WenoHemo
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solver, to compute the level set function. As described in Chaudhuri et al. [43], a

mapping function is defined based on the values of the level set function as follows,

ζijk = 0 ifφ < 0 (2.41)

ζijk = 1 ifφ ≥ 0. (2.42)

Next step is the identification of the ghost points (GP), boundary points(BP), and

image points (IP), surrounding the immersed boundary points. Both the mapping

function, as well as GP, BP, IP are identified for each velocity component on the

staggered grid. Let Γ be the set consisting of GP, BP, and IP. Ghost points are defined

as the points in the solid region (ΩSOLID that have at least one fluid neighbor or

next neighbor. This is identification to include next neighbor points is required by

the WENO scheme stencil, so that at least two ghost point layers are marked inside

the solid region, surrounding the IB. The ghost points are computed along all three

coordinate directions, and stored in the set Γ as follows,

Γgp = (xi, yj, zk) ∈ ΩSOLID if ∃ (xl, ym, kn) ∈ ΩFLUID for (2.43)

l = i− 2, ..., i+ 2, (2.44)

m = j − 2, ..., j + 2, (2.45)

n = k − 2, ..., k + 2. (2.46)

Once the GP are marked, their corresponding BP, and IP need to be identified. The

BP are located on the IB, and IP are located in the fluid region being a mirror image

of the GP about the Lagrangian mesh face normal. The GPs are always located on the

Eulerian mesh, but the IPs may or may not be located on the Eulerian mesh. Hence,

the primitive variables at the IPs are interpolated from the neighboring bounding

box that is identified. A tri-linear interpolation is performed to obtain the staggered
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velocity values in each direction at the IP. The metrics that are dependent on the

grid are computed once and stored as follows,

α =
(xi+1 − IPx)

(xi+1 − xi)
(2.47)

β =
(yj+1 − IPy)

(yj+1 − yj)
(2.48)

γ =
(zk+1 − IPz)

(zk+1 − zk)
, (2.49)

where IPx, IPy, IPz are the Cartesian coordinates of the IP. The staggered velocity

in the x-direction at the IP can then be assigned at every time step as follows,

uip = αβγ ui,j,k

+(1− α)βγ ui+1,j,k

+α(1− β)γ ui,j+1,k

+αβ(1− γ) ui,j,k+1

+(1− α)(1− β)γ ui+1,j+1,k

+(1− α)β(1− γ) ui+1,j,k+1

+α(1− β)(1− γ) ui,j+1,k+1

+(1− α)(1− β)(1− γ) ui+1,j+1,k+1. (2.50)

Staggered velocity values at each GP are then assigned before calling the predictor

step, as follows,

ugp = 2 ubp − uip, (2.51)

where ubp is the target value of velocity on the IB, and uip was computed in equa-

tion 2.50. After the predictor step the velocities predicted in the solid region are

nullified before feeding the velocity field to the pressure Poisson solver as described

in Mark et al. [42], so as to maintain mass conservation, and homogeneous Neumann

pressure boundary condition across the IB. GP-IBM is very robust when compared

with the other two IBM methods discussed above in a sense that the coupling of the

Lagrangian mesh and the Eulerian meshes is eliminated once the ghost points are

identified. This makes GP-IBM suitable candidate for high Re simulations.
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x1

x2

x3

xf

n̂

BP

IP

GP

Figure 2.2. Schematic of the ghost point immersed boundary method;
x1,x2, and x3 are the coordinates of the vertices of the triangles that
make up the Lagrangian surface mesh. xf is the face centroid, and
n̂ is the face normal vector of the triangle, that always points in the
direction of the fluid. IP , BP , and GP are respectively the image
points, boundary point and the ghost point.
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2.6 Multiblock Methodology

In the present work, equal blocks with uniform mesh size are utilized thus making

the block interface to be conformal and no special interpolation have to be performed

at the block-interfaces. These equal sized blocks are used to cover the simulation

domain based on the immersed boundary geometry as the input. Special care was

taken for the blocks which have inlet or outlet faces ending on them, so that they have

one of the block faces to be perfectly aligned with the inlet and outlet faces of the

immersed boundary. As many blocks as needed are arranged such that they entirely

enclose the given immersed body. Each block is assigned to one parallel processor. In

the present simulations the block sizes and positions are determined manually and fed

to the code. Efforts are under progress to automate the process of block discretization

for any given immersed boundary so that WenoHemo tool can be used quickly for

other bio-medical flow applications. The superiority of the multiblock approach over

the single block approach can be explained by referring to Figure 2.3. A schematic

of TAA is shown in Figure 2.3. The Inlet face labeled in Figure 2.3 is where aortic

valve is located through which blood is pumped by heart to the ascending aorta. The

three outlets labeled as O1, O2, and O3 are the brachiocephalic artery, left common

carotid artery and left subclavian artery respectively that carry oxygenated blood to

arms and to brain. The main outlet marked as O4 carries blood to the abdomen. As

can be seen from Figure 2.3(a), single block representation of the flow domain cannot

be used to simulate this problem without altering the geometry. Since the faces Inlet

and O4 do not terminate at one of the faces of the bounding box, they have to be

either extended or truncated in order to be able to simulate using a single block grid.

The results obtained from such an altered geometry may not be a true representation

of the results that would be obtained by simulating the original geometry. Hence, the

solver has to be augmented such that it does not alter the geometry of the complex

arteries in order to solve for the fluid flow. The multiblock approach as shown in

Figure 2.3(b) can handle all the inlet and outlet faces without altering them. This
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(a) (b)

(c) (d)

Figure 2.3. Geometry of the thoracic aortic aneurysm enclosed in a
(a) single block domain (SB) (b) multiblock decomposition with 31
blocks (MB1). (c) A multiblock decomposition with 100 blocks (MB2)
(d) A multiblock decomposition with 325 blocks (MB3). The sur-
face Inlet indicates inflow to the domain and the surfaces O1, O2, O3
and O4 indicate the outlets to brachiocephalic artery, left common
carotid artery, left subclavian artery and to abdominal aorta respec-
tively. ΩFLUID and ΩSOLID represent the fluid and the solid regions
respectively.
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Table 2.2. Description of several block arrangements and the corre-
sponding Volume Ratio (VR) values that maintains the same grid size
in each direction by enclosing the entire fluid domain to be simulated.

Case SB MB1 MB2 MB3

No. of blocks 1 31 100 325

Grid points/block 400× 800× 80 80× 80× 80 40× 40× 80 20× 20× 80

Total grid points 25, 600, 000 15, 872, 000 12, 800, 000 10, 400, 000

Volume Ratio (VR) 100% 62% 50% 40%

approach reduces the amount of wasted grid points (that is those mesh points lying

in the ΩSOLID region). Clearly, from Figure 2.3 we can note that

[ΩSOLID]singleblock >

nb
∑

k=1

[ΩSOLID]k (2.52)

where nb is the number of blocks in the multiblock case shown in Figure 2.3(b).

Frames (c) and (d) denote multiblock decomposition with 100 and 325 processors re-

spectively. In addition, the multiblock approach does not alter the original geometry

to be simulated, thus it makes an attractive method to simulate internal fluid flows

in complex geometries. In the present work only two-dimensional block/domain de-

composition is used owing to the symmetry of the problems considered about one of

the axis, but the methodology presented here can be extended to three-dimensional

domain decomposition without any computational difficulty.

To further establish the superiority of multiblock simulation methodology over a

single block simulation we consider using several multiblock arrangements that enclose

the entire fluid domain to be simulated as shown in Figure 2.3. We consider a single

block case (SB) as shown in frame (a) of the figure and three multiblock cases, MB1,

MB2 and MB3 which utilize respectively 31, 100 and 325 blocks to enclose the fluid

domain of interest. We then compute the number of mesh points required per block in

order to maintain the same grid spacing in each direction. These values are presented

in Table 2.2. A metric known as Volume Ratio (VR) is defined that computes the
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volume of the multiblock domain to the equivalent single block domain that would be

required to simulate the same problem. VR directly relates to the savings in number

of mesh points. As we can see from this table for the MB1 case we are simulating

on a 62% of the mesh count, whereas for the MB2 case we are working on only 50%

of the mesh size that would be needed for a single block simulation and finally for

the MB3 case with 325 processors the blocks enclose the fluid domain very efficiently

such that only 40% of the single block mesh resolution is sufficient to simulate the

problem at the same grid spacing. Of course, in a limit the minimum VR that could

be obtained would equal the ratio of volume of the fluid domain of interest to the

volume of the single block domain. Hence, by efficiently arranging the blocks around

the fluid domain we can achieve such a locally structured but globally unstructured

mesh that simulates the problem at a reduced computational cost.

2.7 Solution of Poisson Equation

The pressure Poisson equation that results in the fractional time step method

needs be to solved at every time step of the flow simulation. This equation for

pressure can be derived by by forcing the velocity field at the next time level un+1
i to

be divergence free [14] and can be written as follows:

∇2pn+1 =
∇.ui
∆t

(2.53)

where ui is the predicted velocity field from the velocity field at the latest available

time level uni , ∆t is the time step size, and pn+1 is the pressure field to be computed

such that the velocity field at the next time level (u
(n+1)
i ) is divergence free. This

elliptic equation is discretized in the present work using a second order central differ-
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ence operator. Using this the left hand side of the equation (2.53), leaving the over

bar and the time step level for brevity, can be written as follows:

∇2pi,j,k =
∂2p

∂x2
+
∂2p

∂y2
+
∂2p

∂z2
, (2.54)

∂2p

∂x2
=
pi+1,j,k − 2pi,j,k + pi−1,j,k

∆x2
, (2.55)

∂2p

∂y2
=
pi,j+1,k − 2pi,j,k + pi,j−1,k

∆y2
, (2.56)

∂2p

∂z2
=
pi,j,k+1 − 2pi,j,k + pi,j,k−1

∆z2
, (2.57)

and similarly the right hand side of the equation, for brevity leaving the over bar that

denotes filtering operation, can also be written as follows:

∇.ui
∆t

=
1

∆t

(

∂u

∂x
+
∂v

∂y
+
∂w

∂z

)

, (2.58)

∂u

∂x
=
ui+1/2,j,k − ui−1/2,j,k

∆x
, (2.59)

∂v

∂y
=
vi,j+1/2,k − vi,j−1/2,k

∆y
, (2.60)

∂w

∂z
=
wi,j,k+1/2 − wi,j,k−1/2

∆z
(2.61)

where ∆x, ∆y and ∆z are the grid sizes in x, y and z directions respectively. In

the present work, we use the hypre [18, 45] library to solve the Poisson equation

on a multiblock grid in parallel. Preconditioned conjugate gradient (PCG) method

was used with geometric multigrid as the preconditioner for solving the discretized

Poisson equation as described in Ashby et al. [46]. The convergence criterion was

set to a relative tolerance of 1e − 12 and 3 iterations of pre- and post- sweeps are

performed on each multigrid level. The Dirichlet boundary conditions on pressure

were symmetrized in order to form a symmetric matrix that is required for solving

the system using a conjugate gradient method. Symmetrization of a matrix at grid

nodes that have a Dirichlet boundary condition can be explained as follows. Let

a one-dimensional grid be represented as i = 0, 1, ..., N − 1, N , where i = 0 is the

left boundary and i = N is the right boundary. If a Dirichlet boundary condition

is applied at grid node i = N , then symmetrization process transfers all the entries
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of the matrix at the grid node i = N − 1 that have coefficients associated with the

known Dirichlet value at i = N to the right hand side vector of the linear system.

2.8 Parallelization Strategy

PN

PN+1

Interior mesh points

Ghost mesh points

Figure 2.4. Two dimensional schematic showing the 1D decomposi-
tion of the domain in parallel solver. The horizontal arrows indicate
the location where u velocity values are stored, vertical arrows indi-
cate the location where v velocity values are stored and the circles
indicate the location of pressure (p) points. A sample of three ghost
layers of the grid is shown. Labels PN and PN+1 indicate nth and
(n+ 1)th processors respectively in a parallel decomposition.

The WenoHemo solver is parallelized using the message passing interface (MPI).

MPI allows the code to be run on a distributed memory cluster which is apt for

large scale computing. A sample one-dimensional decomposition of a two-dimensional

domain is shown schematically in Figure 2.4. The horizontal and vertical arrows

in Figure 2.4 represent the location where u and v velocity components are stored

respectively. In the figure, filled circles indicate the location where pressure is stored.
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Each processor has a ghost layer of grid points, which store the values from the

neighboring process. The ghost layers on each processor are shown by dotted lines

in the Figure 2.4. After data exchange the ghost layers are populated with the latest

values from the neighboring processor. The interior mesh points on the processorN+1

and the ghost mesh points on the processor N are also marked in the Figure 2.4, which

corresponds to one pair of data exchange between PN and PN+1 processors. In order

Processor count

S
p

ee
d

 u
p

500 1000

10

20

30
7 million
16 million
55 million
Ideal speed up

Figure 2.5. Parallel performance of the WenoHemo solver.

to evaluate the parallel performance of the solver, we select a test problem of mixing

layer on a cubic domain and a sample of 100 time steps are simulated. Three different

grid sizes of approximately 7, 16 and 55 million points are used for estimating the

speed up of the WenoHemo solver. Processors ranging from 32 to 256 are used for

testing the cases of of 7 and 16 million grid points whereas up to 1024 processors is

used for testing the 55 million grid points case. The time taken by the 32 processors

simulation is taken as the base line simulation to calculate the speed up. The parallel
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performance of the WenoHemo solver is shown plotted in Figure 2.5. Together with

the three grid sizes the figure also shows the ideal speed up curve. As we can see from

this figure, linear speed up is obtained for grid sizes of 7 and 16 million grid points

up to a processor count of 128, beyond which they deviate from the ideal speed up

curve. At a processor count of 256 the higher grid size case of 16 million points shows

better speedup than the lower grid size case of 7 million points. This behavior could

be due to more computations involved per processor in the former case owing to a

larger grid size. Based on the same reasoning the results obtained from the largest

grid size considered could also be explained. The largest grid size case of 55 million

grid points shows super linear speed up till a processor count of 512, beyond which it

drops to sub linear speed up. The cluster on which these simulations were performed

contains Intel Xeon x5650 CPUs with 12 cores per node and 48 GB of RAM per node.

The CPUs are connected through a quad data rate (QDR) InfiniBand interconnect.

2.9 Statistical Averaging of Simulation Data

In the present study both steady and pulsatile inlet flow conditions are used,

and the averaging operations used in order to gain insight into the turbulent flow

quantities are described here for both the types.

In a steady inflow condition case, one can define a time-averaged mean flow quan-

tity 〈f(x, y, z, t)〉, for any filtered flow variable f(x, y, z, t) as follows

〈f(x, y, z, t)〉 =
1

Tf

∫ t0+Tf

t0

f(x, y, z, t) dt (2.62)

where, Tf is flow time over which the averaging is accomplished and t0 is the time

after the start of the simulation at which the averaging process is initiated. In a

turbulent flow since the flow field is quickly changing, one can define a fluctuation of

a flow variable as the its deviation from its time-averaged value as follows,

f ′(x, y, z, t) = f(x, y, z, t)− 〈f(x, y, z, t)〉 (2.63)
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Further, root mean square (r.m.s) quantity of the fluctuation variable can be com-

puted as,

f ′

r.m.s(x, y, z, t) =
√

〈f ′(x, y, z, t)2〉 (2.64)

In an unsteady flow, various averaging operations can be defined and used similar to

the time-averaged mean flow defined above in equation 2.62. Whereas in a pulsatile

flow, which is used in the present case there is a specific periodicity of inlet flow which

induces a time scale on the problem under study. Because of this periodicity of the

problem, using an ensemble-average or a phase-average is more appropriate than a

time average. The ensemble average or phase average operation that represents the

time varying response to the pulsation can be defined over N time period cycles as

follows,

〈f(x, y, z, t)〉p =
1

N

N−1
∑

n=0

f(x, y, z, t+ nT ) (2.65)

To identify the fluctuation of the flow field with respect to the pulsating inlet, the

fluctuation quantity is defined as follows,

f ′′(x, y, z, t) = f(x, y, z, t)− 〈f(x, y, z, t)〉p (2.66)

The r.m.s quantity of the phase averaged fluctuation quantity is computed as follows,

f ′′

r.m.s(x, y, z, t) =

√

〈f ′′(x, y, z, t)2〉p. (2.67)

Additionally, the averaging in the spanwise direction is denoted by the operator 〈〉z.
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3. VALIDATION OF WENOHEMO SOLVER

In this chapter, we first test the overall order of accuracy of the WenoHemo solver

using a Taylor Green vortex problem in a periodic domain with a sphere placed at the

center of the domain. Then the IBM, and the multiblock approach are the additional

numerics that were added to the code over and above the basic fluid flow solver which

was validated in Shetty et al. [14]. So, in order to be confident about the results that

are produced with the present solver, we first validate these two new implementations

one by one in the present chapter. The solver, as a whole consisting of both the

methods is validated in the next chapter in the AAA simulations and comparisons are

made to the experimental results. In order to validate the IBM, we chose the flow over

a sphere case, and to validate the multiblock approach. Since, pulsatile simulations

will be performed to study blood flow in thoracic aorta and in a model aorta fitted

with a bi-leaflet mechanical heart valve, it is critical that validation of pulsatile flow

be performed in order to gain confidence in the results obtained. To accomplish this,

a model stenosis problem that was previously studied in the literature is simulated

using the present solver and a comparison is made to the results reported in the

literature. The present solver will also be applied to study cavitation potential in a

mechanical heart valve in future. Motivated by this, preliminary validation studies

are performed with existing cavitating and non-cavitating mixing layer experimental

results available in the literature.

3.1 Test of Order of Accuracy

The spatial order of accuracy of the present LES solver without the IBM has

been previously calculated and it was shown to be 5th order on a periodic domain

for a Taylor-Green Vortex (TGV) solution in Shetty et al. [14]. The spatial order of
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Figure 3.1. (a) Contours of u-velocity component on z = 0 plane for
the grid size of 2563 (b) Variation of L2 error norm of the u-component
of velocity as a function of the grid size depicting the spatial order of
accuracy of the present solver.
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accuracy of the IBM was also previously evaluated by Mark et al. [42] by simulating

laminar flow over a sphere and by further computing it’s drag coefficient. They

showed that mirroring IBM method is second order accurate from these simulations.

For the sake of completeness, here we perform test of spatial order of accuracy for

the developed WenoHemo solver using the three-dimensional TGV that evolves from

an initially two-dimensional velocity and pressure fields given by:

u(x, y, z, t) = − cos(kx) sin(ky) exp(−2k2t/Re), (3.1)

v(x, y, z, t) = + sin(kx) cos(ky) exp(−2k2t/Re), (3.2)

p(x, y, z, t) = −
1

4
(cos(kx) + cos(ky)) exp(−4k2t/Re); (3.3)

is considered. A domain of size [−π,+π]3 is considered with k = 1, Re = 100 and

a time step of ∆t = 0.001. In order to bring in the effect of the IBM on this flow

field, a stationary sphere is placed at the origin. All the simulations are run for 100

time steps at an equal time step on grids of sizes 83, 163, 323, 643, 1283. The result

obtained on a grid size of 2563 is considered as the base line result for calculating the

error estimates. The contours of u-velocity component on the z = 0 plane are shown

plotted in Figure 3.1(a). The L2 norm of the error in the u-velocity component is

shown plotted in Figure 3.1(b). As we can see from this figure the present solver

shows second order accuracy in space owing to the inclusion of the IBM method.

3.2 Steady Inflow over a Sphere

To validate the IBM that was implemented into the code, we performed simula-

tions of flow over a sphere at various Re numbers. We compared the results to the

the experimental results of Johnson et al. [47]. The definition of various quantities

such as the length of the re-circulation region, the coordinates of the center of the

eddies (XC, Y C) is shown in the schematic Figure 3.3. Flow over bluff bodies is of

interest in many areas, to understand the wake dynamics, and the flow forces induced

by them which further get transmitted to the structure they are attached to. Flow

over a sphere forms a simple fluid dynamics problem in this area. Up to Re = 300
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the flow behind a sphere exhibits attached eddies, and at Re = 300, the flow becomes

unsteady, with periodic vortex shedding although the upstream flow is still steady.

The simulation domain used in the present study, and the triangulated surface

mesh on the sphere are shown plotted in Figure 3.2. The diameter of the sphere (d)

is taken as the length scale and the inlet velocity (U = 1) is taken as the velocity

scale. The domain extends 25 in the x direction, and 8D in the y, and z directions.

The mesh size was set as 385 grid points in the x direction, and 129 points in each of

y and z directions, making a total resolution of 6.4 million points.

The length of the re-circulation region, and the eddy center are shown compared in

Figure 3.4, as the Re is increased from 50 to 200 all the measured quantities increase,

agreeing very well with the experimental results. The out-of-plane vorticity contours

are shown plotted in Figure 3.5, which shows as the Re is increased, the effect of

the wake behind the sphere increases by more and more vorticity production in the

wake region. Also, in frames (b), (c), and (d) of Figure 3.5, we notice that there are

small attached vorticity regions just behind the sphere in addition to the large scale

vorticity regions that are observed. For all the simulations in the Re range of 50 to

200 the simulation remains steady, with attached eddies behind the sphere. As the

Re is increased to a value of 300, instability sets up and the sphere starts shedding

the eddies in an alternating fashion giving rise to a Von-Karman vortex street. The

vortex shedding is visualized by plotting the iso-surfaces of λ2 = −0.5 and colored by

y-vorticity as shown in Figures 3.7, 3.6. As we can see from Figure 3.7, the eddies

that are shed are quite symmetric in the xy plane, and they grow as they convect

downstream. The positive and negative rotations of the eddies can be identified with

the help of the y-vorticity color.
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(a) Computational domain (b) Triangulated

surface mesh

Figure 3.2. Schematic showing the (a) computational domain used
for the simulation of flow over a sphere and the (b) Lagrangian surface
mesh on the sphere.

D L

(XC, YC)

Figure 3.3. Schematic showing the definition of the center of the
bubble (XC, Y C), with the center of the sphere at the origin (0, 0),
and the length of the separation bubble (L).
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YC/D

Figure 3.4. Comparison of the separation bubble parameters to ex-
perimental results of Johnson et al. [47]; lines denote the present com-
putations with WenoHemo solver, symbols denote the simulation re-
sults obtained by Johnson et al. [47].



41

(a) Re = 50

(b) Re = 100

(c) Re = 150

(d) Re = 200

Figure 3.5. Contours of out-of-plane vorticity for indicated Re;
20 equidistant contours ranging between −5 (blue) to +5 (red) are
shown.
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Figure 3.6. Vortex shedding behind the sphere at a Re = 300, col-
ors indicate the y-component of vorticity; 20 equally spaced contours
between −1/2 (blue) and 1/2 (red) are shown.

Figure 3.7. Iso-metric view, see Figure 3.6 for caption.
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3.3 Steady Inflow over a Backward Facing Step

In order to validate the multiblock solver as it is with out the immersed boundary

method, we performed simulations of flow over a backward facing step and compared

the results to those obtained by the experiments conducted by Tylli et al. [48].

Flow over backward facing step is a standard benchmark problem for numerical

methods. The geometry considered here is same as that of the one used by Tylli et

al. [48] in their experiments, and the schematic together with the multiblock decom-

position into 35 equal sized blocks is shown in Figure 3.8. The backward facing step

considered here has an expansion ratio of 2 and a downstream aspect ratio of 20. The

inlet channel height was chosen as the length scale and a curve fit for the laminar

flow in a plane channel was used as the velocity profile at the inlet. The domain

extents in the non-dimensional units are −1 to 34 in the x-direction, −0.5 to +0.5 in

the y-direction in the step region, and −1.5 to +0.5 in the y-direction in the channel

region, and −20 to +20 in the z-direction. Dirichlet velocity boundary condition was

used on the inlet with a parabolic velocity profile given by,

u =

[

1− exp

(

−z − 20

0.35

)]

×

[

1− exp

(

z − 20

0.35

)]

× [1− 4y2]. (3.4)

No-slip, impermeable wall boundary condition was used on the walls in the y and z-

direction. Outflow boundary condition employing homogeneous Neumann boundary

condition on all components of the velocity is used at the outlet of the domain. The

simulation used 29, 29 and 241 mesh points in x, y, and z direction respectively in

each block, giving a total of about 7.1 million mesh points. Two simulations were

considered here to compare the results with the experiments and they have Re = 300

and 648. Both the cases showed steady flow in the experiments [48] and hence they

can be compared to steady flow simulation results as was done here. In fact, from the

experiments [48], the flow was noted to be steady, for Re up to approximately 700.

The first case with Re = 300 is a low Re case, and only 2D simulation could have

been employed as the side wall effects does not effect the flow on the central plane
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(z = 0). But we resort to 3D simulations in both the Re cases. In the Re = 648

case, three-dimensional effects are noted and hence the results obtained from a two-

dimensional simulation would not match those obtained with the three-dimensional

experiments or simulation results.

X

Y

Z
Inlet

Outlet

Figure 3.8. Schematic of the backward facing step geometry used in
the present calculations. The decomposition of the domain into 35
equal sized blocks to create the step and and outlet geometry is also
depicted.

Re = 300

Here, we compare the axial velocity profiles sampled at various x locations along

the length of the channel as a function of the y coordinate. The comparison is shown

in Figure 3.9. As we can see from Figure 3.9, the computed solution matches very well

with the experimental data until 0 ≤ x ≤ 4 and after 8 ≤ x ≤ 16. At locations x = 5

and x = 6, the match is not exact but the lower region (−1.5 ≤ y ≤ −0.5) seems to

be matching better when compared to values in the upper region (−0.5 ≤ y ≤ +0.5).
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The contours of velocity magnitude on the central plane (z = 0) are shown plotted

in Figure 3.10. The re-circulation zone, forming immediately after the step and

above the bottom wall, can be seen in the Figure 3.10. This primary re-circulation

zone is a manifestation of the coanda effect [49, 50]. In addition to this primary

re-circulation zone, a secondary re-circulation zone can be seen on attached to the

top wall. Streamlines shown plotted in Figure 3.11 depict the direction of rotation

of the fluid in both the re-circulation regions. In the primary re-circulation zone,

the fluid moves in clockwise direction, whereas in the secondary re-circulation region,

fluid moves in counter-clockwise direction. The contours of out-of-plane (z) vorticity

shown overlapped on the streamlines in Figure 3.11 explain the direction of rotation

of the fluid in these re-circulation regions.

x

y

0 5 10 15
-1.5

-1

-0.5

0

0.5

Present simulation with WenoHemo
Experimental results of Tylli et al.

u = 1

Figure 3.9. Re = 300: u-velocity profiles vs y coordinate, at a
number of stream-wise cross sections, for z = 0 plane, for experiment
and simulation.
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u: -0.15 0.05 0.25 0.45 0.65 0.85

Figure 3.10. Contours of u-velocity on z = 0 plane at a Reynolds number of 300.

Z Vorticity: -3.00 -1.20 0.60 2.40

Figure 3.11. Contours of out-of-plane vorticity together with the
streamlines on z = 0 plane at a Reynolds number of 300.
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Re = 648

When we increase the Re from 300 to 648, the flow is still steady and laminar

but three-dimensional effects get introduced into the problem. First, we compute

the u-velocity profiles as a function of the channel height (y) at various stream-wise

cross sections. Figure 3.12, shows the comparison between present simulations and

experimentally measured values of Tylli et al. [48] on the central (z = 0) plane. From

Figure 3.12, we see that the results match very well in the range 0 < x < 12, but slight

deviations are observed towards the outlet of the domain the range 12 < x < 20, both

in the lower and upper regions of the channel height. Similar behavior in the match

is observed on the plane z = 10, as shown in Figure 3.13, which is located half way

between the channel side wall and the center of the channel. Another comparison in

results is made on the plane z = 18 which is very close the side wall of the channel.

The comparison is shown plotted in Figure 3.14. Despite the proximity of the plane

to the side wall a very good agreement in results is obtained in the range 0 < x < 8

and the match is relatively not good in the range 8 < x < 20. But unlike the previous

z planes that were plotted the results deviate from the experiments in the lower part

of the channel height when considering the range 8 < x < 20. The contours of u-

velocity profiles are shown plotted in Figure 3.15, from which we can visually notice

a longer primary and secondary re-circulation zones compared to the Re = 300 case

shown in Figure 3.10. Having compared the u-velocity profiles, we turn our attention

to look at the three-dimensional effects of the backward facing step problem. In

Figures 3.16(a)-(c), the w-velocity profiles are shown plotted on the yz-plane at three

x locations (x = 4, 8, 12). As was observed in the previous studies [48], we see the

presence of a wall-jet close to the lower wall of the channel that is directed towards the

mid-plane of the channel. Only half of z planes are shown plotted in Figure 3.16(a)-

(c), owing to the symmetry of the wall jet about the mid-plane. In order to further

understand the wall jet formation, a number of w-velocity profiles are extracted and

plotted a function of y on the yz-plane at the indicated x locations in the left column
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of the Figure 3.17 (frames (a),(c), and (e)). An interesting observation noted by Tylli

et al. [48], is that, as the wall-jet develops along the span wise direction, the w-velocity

profiles become self similar. The self similar velocity profiles are shown plotted in the

right column of the Figure 3.17 (frames (b), (d) and (f)). The w-velocity components

were normalized by the maximum w velocity of the profile (wmax) and the channel

height was normalized using the half width (yhalf , which equals the distance from the

wall where the w velocity becomes half of the wmax velocity on the decreasing part of

the profile). The ywall used in the normalization equals −0.15 in the present case. As

we can see from the right column of the Figure 3.17 the velocity profiles overlap in

accordance with the self similar nature. However, on the x = 12 plane there seems to

be a reverse flow in the jet close to the wall which do not overlap. This discrepancy

needs to be further analyzed as to whether it is related to the mesh resolution of the

simulation.
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Experimental results of Tylli et al.

u = 1

Figure 3.12. Re = 648: u-velocity profiles vs y coordinate, at a
number of stream-wise cross sections, for z = 0 plane, for experiment
and simulation. The x and y scales are not the same and the u scale
is same as shown in Figure 3.9.
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Figure 3.13. Re = 648: u-velocity profiles vs y coordinate, at a
number of stream-wise cross sections, for z = 10 plane, for experiment
and simulation. The x and y scales are not the same and the u scale
is same as shown in Figure 3.9.
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Figure 3.14. Re = 648: u-velocity profiles vs y coordinate, at a
number of stream-wise cross sections, for z = 18 plane, for experiment
and simulation. The x and y scales are not the same and the u scale
is same as shown in Figure 3.9.
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Figure 3.15. Contours of u-velocity on z = 0 plane at a Reynolds number of 648.
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(a) x = 4

(b) x = 8

(c) x = 12

Figure 3.16. Re = 648: contours of w velocity for a number of
yz-planes at indicated x locations. The y and z scales are not the
same.
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Figure 3.17. Re = 648: w-velocity profiles: original (left column)
and normalized (right column); plotted as a function of y-coordinate
at indicated z locations, and x planes.
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3.4 LES of Pulsatile Inflow in a Model Stenosed Channel

All the previous cases are validated only for steady inflow conditions . As the

focus of the present work is pulsatile flow it is critical that a comparison of the results

obtained from WenoHemo solver be made to the existing results in the literature. In

order to this, we choose the model stenosis problem first studied by Mittal et al. [51]

and recently used as validation problem in Molla et al. [52]. This model stenosis

problem serves as a good candidate for validation owing to its simple geometrical

configuration and a sinusoidal pulsating inlet velocity profile. The geometry of the

model stenosis problem consists of a channel with a height h = 1 extending −5 to 15

in the x direction, with a semi circular constriction at x = 0 location. The domain

extends −2 to +2 in the span wise or z direction. At the inlet to the domain a

time varying parabolic inflow profile u(y, t) = 2Umax(y/h)(1 − y/h) + (Umax/4)(1 −

cos(2πt/T )) is imposed. At the outlet of the domain simple homogeneous Neumann

boundary condition on velocity is applied. A no-slip boundary condition is applied

on the lower and upper walls. A free slip boundary condition on velocities is applied

on the front and back planes in the z direction. The Reynolds number for the present

validation study is defined as Re = Umaxh/ν based on the maximum velocity Umax

as the velocity scale and the height of the channel h as the length scale. Consistent

with the previous works [51, 52] the simulation was conducted for Re = 2000 to be

able to make comparisons. The grid system used consisted of 15× 30× 64 per block

and with 40 × 3 × 1 block in each of the x, y and z directions respectively, making

a total grid points of 600 × 90 × 64. The grid resolution used are higher than those

used in the previous studies [51, 52], this is justified because the present simulations

are based on an IBM solver, whereas the previous studies used a body fitted mesh. A

bulk velocity scale U is used instead of the maximum velocity Umax to perform post

processing of the data similar to the previous studies [51, 52].

A comparison of normalized time averaged axial velocity profiles from the present

simulations obtained using Vreman SGS stress model, and the results obtained by
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Figure 3.18. Comparison of normalized time averaged axial velocity
profiles between the present results (lines) and the simulation results
of Molla et al. [52] (solid dots) at several locations (a) x/h = 0 (b)
x/h = 1 (c) x/h = 2 (d) x/h = 3 (e) x/h = 4 (f) x/h = 5 (g) x/h = 6
(h) x/h = 8 (i) x/h = 10 (j) x/h = 12 (k) x/h = 15. The dashed
lines at each location indicate local zero value for axial velocity.

Molla et al. [52] using dynamic SGS stress model are shown plotted in Fig. 3.18 at

indicated locations along the axis of the channel. As can be seen from this figure

the axial velocity profiles match closely at the throat (x/h = 0) and immediate next

probe location (x/h = 1), however, as we move along further downstream there are

differences between the results obtained from the present solver and those obtained

by Molla et al. [52]. There is a back flow that is detected by the present simulations

at the lower wall that is noticed at x/h = 3 and x/h = 4, however, such a back flow

region is absent in the results of Molla et al. [52]. Also on the top wall the back flow

region seems to be extending from x/h = 1 till beyond x/h = 2, whereas back flow

region is only limited between x/h = 1 and x/h = 2 in the results of Molla et al. [52].

As we move further downstream a fully developed turbulent profile is noticed and

both results seem to overlap. These discrepancies are thought to be arising because

of different SGS stress models used in the studies under consideration.

Wall shear stresses play an important role in the formation of atherosclerosis le-

sions. The calculation of wall shear stresses is an important step in any hemodynamics

calculations. Since, in the present study the wall shear stresses occurring in the tho-

racic aorta are going to be computed, we first validate the wall shear stresses obtained

from the present WenoHemo solver with those reported by Mittal et al. [51] and Molla

et al. [52]. A skin friction coefficient is defined as, Cf = 2τw/ρU
2
, where τw is the
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(b) Upper wall

Figure 3.19. A comparison of skin friction coefficient on the lower
and upper walls between the present simulation and the previous LES
simulations of Mittal et al. [51] and Molla et al. [52].

wall shear stress. The variation of skin friction coefficient along the axial direction on

the lower and upper walls is shown plotted in frames (a) and (b) of Fig. 3.19. As we

can see from this figure the peak values of the skin coefficient match closely with the

other results reported in the literature, however, there are discrepancies that exist at

other locations.

In this model stenosis problem, the flow breaks down into small scale turbulence

in the post stenotic region. The unsteady jet that gets issued from the stenotic region

can be identified by looking at the contours of nondimensional vorticity magnitude

|ω|h/U as shown in frame (a) of Fig. 3.20. The coherent structures that are present

in the post stenotic region are educed using the λ2 criterion and are shown plotted

in frame (b) of Fig. 3.20. From these figures the shear layer instabilities and the

introduction of three dimensional effects beyond x/h = 4 are observed.
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(a)

(b)

Figure 3.20. (a) Instantaneous contours of normalized vorticity mag-
nitude on the central z = 0 plane. (b) Instantaneous iso-surfaces
of λ2 colored by normalized axial velocity, visualizing the coherent
structures in the post stenotic region.

3.5 LES of Non-Cavitating and Cavitating Mixing Layer

3.5.1 Motivation

Another objective of the present study is to simulate and look for possible evidence

of cavitation in the case of blood flow occurring in BMHV. A cavitation model will

be implemented in to the code and it will be first validated with the available data.

The experiments on cavitating and non-cavitating mixing layer were conducted by

Aeschlimann et al. [53], and we would use this data to validate the WenoHemo solver

together with the cavitation model. In the present chapter, we provide quantitative

validations for the non-cavitating mixing layer case with the experimental results and

only qualitative validation for the cavitating mixing layer case.
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3.5.2 Introduction

A mixing layer is one of the classical free shear layer problems that was studied in

experimental and computational fluid mechanics. A shear layer is characterized by a

velocity discontinuity between two fluids. When fluid is issued from either side of the

splitting plate at different velocities (U1 on the upper side is taken to be larger than

the U2 on the lower side of the plate) Kelvin-Helmholtz instabilities develop at the

interface of the fluid streams and creates eddies as shown schematically in Figure 3.21.

This region where eddies get formed and grow as they convect downstream where

vorticity production takes place is terms as the mixing layer. When these eddies

become large enough they interact with the neighbors forming pairing and thereby

creating a larger eddy [54]. A shear layer can be characterized by its growth rate

δ′ω, which stays constant along the longitudinal direction (x) when the flow becomes

self-similar, as,

δ′ω =
dδω
dx

, (3.5)

where δω is the vorticity thickness, defined as follows

δω =
∆U

dU
dy
|max

, (3.6)

where ∆U = U1 − U2, U1, and U2 are the velocities of the fluid on the upper and

lower side of the splitting plate as shown in Figure 3.21. The tip of the splitter plate

is located at x = 0 and y = 0 and the computational domain starts this location.

Aeschlimann et al. [53,55] performed non-cavitating and cavitating mixing layer sim-

ulations using X-ray attenuation measurements. In the present work, simulations of

non-cavitating mixing layer are performed and compared the computed results with

the experimental results of Aeschlimann et al. [55]. The details of the domain and the

operating conditions were taken to be same as the experiments [55], are, as follows.

The thickness of the splitting plate (h) is 6mm, the velocities on the upper and lower

side of the splitter plate are U1 = 15.8m/s, and U2 = 3.5m/s, giving the difference in

velocities to be ∆U = 12.3m/s. The boundary layer thickness on the upper and lower

sides of the splitting plate are, δ1 = 7mm, and δ2 = 4mm respectively. The length
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and velocity scales for the simulation are taken as, the thickness of the splitting plate

(h), and the velocity difference (∆U). However, the results are presented with a mix

of dimensional and non-dimensional quantities so as to be able to compare them to

the experimentally measured curves. The length scale could also be taken as the vor-

ticity thickness as was done in other studies, but in the present study, δω was taken

as length scale only during presenting the results. The Re is 73, 800 calculated based

on h and ∆U , and by taking the kinematic viscosity of water as νwater = 1.0e− 06

The simulation domain extends 60×40×10 non-dimensional units in the x, y, and

z respectively. Blasius boundary profile was with the exact boundary layer thickness

as in the experiments on the upper (y ≥ 0) and lower (y < 0) regions of the inlet. At

the exit of the domain in x-direction at x = xmax a simple homogeneous Neumann

boundary condition on all components of velocity were used. In the lateral direction,

on the planes y = ymin and y = ymax, a impermeable, slip condition was used. In

the z direction free slip boundary condition was used on all the velocity components.

Homogeneous Neumann boundary condition on pressure was used on all the boundary

planes except at the exit of the domain (x = xmax), where a Dirichlet boundary

condition with p = 0 was used. Random velocity perturbations were imposed at the

inflow plane in the boundary layer region only on the v-component of velocity, so that,

the flow breaks down into turbulence within the simulation domain considered. The

maximum value of the perturbation velocity was chosen as 0.05 the mean velocity. The

simulation domain was discretized into 6 by 5 blocks in x, and y direction respectively.

Within each block the mesh size was chosen as 60×41× 50 in the x, y, and z directions

amounting to a total resolution of 3.69 million grid points. The time step was taken

as 0.01 and the simulation was run till a non-dimensional time of 500 of which the

last 200 time steps was used to collect the turbulent statistics defined in section 2.9.
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Figure 3.21. Schematic of the mixing layer, showing the higher and
lower velocities issuing from either side of the splitter plate.
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3.5.3 LES of Non-Cavitating Mixing Layer

First we compare the evolution of the vorticity thickness, between the present

simulations and the experiments [55]. The evolution of the vorticity thickness (δω)

is shown plotted in Figure 3.22. The vorticity growth rate obtained from the ex-

periments is δ′ω = 0.123, which is very close to the growth rate obtained from the

present simulations, which is 0.098. The location where the mixing layer becomes

self-similar is strongly dependent on the inlet turbulence levels and the effect of the

wake of the splitting plate. Hence, the location where the vorticity thickness (δω)

grows at a constant rate is not the same between experiments and the simulation,

and that is acceptable as long as the vorticity growth rate is predicted accurately.

With properly chosen non-dimensional length and velocity scales, the time averaged

longitudinal velocity profiles at various x locations become self-similar. To verify

this fact, we plotted the time and span-wise averaged longitudinal velocity profiles

non-dimensionalized using the vorticity thickness (δω(x)) as the length scale and ∆U

as the velocity scale, in Figure 3.23. The yref in Figure 3.23, is the location where

〈u〉z =
(U1+U2)

2
. As we can see from Figure 3.23, various velocity profiles collapse onto

one single curve demonstrating the self-similar nature. Further, we compare the

averaged longitudinal velocity profiles with the experiment in Figure 3.24. Frame (a)

of the Figure 3.24 shows the velocity vectors, and contours of averaged longitudinal

velocity obtained from experiments [55], and (b) shows those obtained from Weno-

Hemo. This comparison presents a qualitative comparison between the two, which

nonetheless helps in assessing the simulation results with in visual limits. Next we

turn our focus to look at the second order statistics. First, we compare the z-averaged

r.m.s longitudinal velocity fluctuations plotted along y in Figure 3.25. As we can see

from this figure a very good agreement is obtained with the experiments [55]. Both

the trend as well as the peak value of the variation of longitudinal velocity fluctuations

is captured very closely by the present simulation. The lateral velocity fluctuations,

as well as the turbulent diffusion, also show profiles similar to the longitudinal veloc-
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Figure 3.22. Comparison of vorticity thickness (δω(x)) evolution be-
tween present simulations and experimental results of Aeschlimann et
al. [55].
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Figure 3.23. Self similar solution of the time-averaged non-
dimensional axial velocity at indicated axial locations.
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(a)

(b)

Figure 3.24. Comparison of mean velocity profiles between (a) experi-
mental results of Aeschlimann et al. [55] and (b) present computations
using WenoHemo.
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ity fluctuations. The profiles, attain a maximum value at the center of the mixing

layer, decreasing to zero outside the mixing area. Hence, further comparisons between

experiments and simulations were only made, by comparing the variation of the max-

imum fluctuation values (obtained at y = 0) along the longitudinal direction (x). The
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Figure 3.25. Comparison of longitudinal velocity fluctuations be-
tween present simulations and experimental results of Aeschlimann et
al. [55], at x− x0 = 120 mm.

longitudinal velocity fluctuations are shown plotted in Figure 3.26 as a function of x.

As we can see from Figure 3.26, the fluctuations stabilize to a constant value in the

self similar region. The same behavior is observed both from the experiments [55],

as well from the present simulations. The lateral velocity fluctuations also show a

similar behavior, as can be noted from Figure 3.27. Next, we compare evolution of

turbulent diffusion along the longitudinal axis. The turbulent diffusion (u′v′), was

negative in the mixing layer region, reaching a maximum absolute value at the center

of the mixing layer, and null outside the mixing layer region. The evolution of tur-

bulent diffusion is compared in Figure 3.28, and as can be seen excellent agreement

is reached between the present simulations and the experiments [55].
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Further, we notice that the longitudinal fluctuations have a greater amplitude,

than the transverse ones, a tendency that was also observed in shear flows. Having

compared several quantities to the experiments, we now look at the instantaneous

vortical structures produced in the flow. The iso-surfaces of λ2 = −0.01 criterion of

Jeong & Hussain [56] are shown plotted in Figure 3.29. The intense mixing and the

three-dimensionality of the flow can be clearly noticed from these Figures. In order

to visualize the vortex pairing in the mixing layer region, we plot the instantaneous

z-vorticity contours on the mid plane (z = 0) in Figure 3.30. The core of these

vortical regions or eddies are the regions of low pressure. These low pressure regions

are sources of cavitation formation. In Figure 3.31, we plot the iso-surface of pressure

(p = −0.11) overlapped on the z-vorticity contours on the mid-plane. We can see

from Figure 3.31, the low pressure regions occurring at the core of the eddies.
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Figure 3.26. Comparison of maximum longitudinal velocity fluctu-
ations (〈u′rms/∆U〉z) between present simulations and experimental
results of Aeschlimann et al. [55], along the longitudinal direction
(x− x0) at y = 0.

3.5.4 Cavitation Modeling

Introduction

Cavitation is evaporation of the fluid when the local fluid pressure falls below

the vapor pressure of the fluid. Evaporation of liquid can happen either because
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Figure 3.27. Comparison of maximum lateral velocity fluctuations
(〈v′rms/∆U〉z) between present simulations and experimental results
of Aeschlimann et al. [55], along the longitudinal direction (x−x0) at
y = 0.
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Figure 3.28. Comparison of maximum turbulent diffusion
(〈
√

−u′v′/∆U2〉z) between present simulations and experimental re-
sults of Aeschlimann et al. [55], along the longitudinal direction
(x− x0) at y = 0.
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(a) xy plane

(b) xz plane

Figure 3.29. Instantaneous vortical structures in the spatially devel-
oping mixing layer visualized by plotting iso surfaces of λ2 = −0.01,
colored by non-dimensional velocity magnitude shown on two different
planes.

Figure 3.30. Instantaneous z-vorticity contours plotted on the mid plane, z = 0.
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Figure 3.31. Instantaneous iso-baric surface of p = −0.11 shown
together with the z-vorticity contours on the mid plane, z = 0.
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of boiling or cavitation. Boiling occurs when the local temperature is greater than

the boiling point of the liquid. Whereas, in cavitation although the temperature is

much below the boiling point of the liquid the reduction in pressure below the vapor

pressure of the liquid causes the liquid to evaporate. The phase change from liquid

to vapor makes the local speed of sound to drop by a factor of 1000 making the flow

in the two-phase flow occurring in the mixing region to be supersonic. Cavitation

can be simulated by two different approaches. The direct and most straight forward

approach is to integrating the compressible Navier Stokes equations, together with a

homogeneous equilibrium model, as was done in studies performed by Shin et al. [57]

and Dittakavi et al. [58], and many other studies not listed here. The other approach

is to use the incompressible Navier-Stokes formulation and solve a separate scalar

transport equation for describing the evolution of the liquid fraction equation. This

approach was used in a number of studies [59–62]. In the present study, we take the

latter route to cavitation modeling and specifically work with the model described in

Senocak et al. [59] with the phase transformation rates taken from Kunz et al. [63].

The governing equations are presented in the next section for solving the multi-phase

flow arising in the mixing layer region in the cavitating case.

Governing Equations

The governing equations for the cavitating mixing layer simulation are the incom-

pressible mixture fraction equations together with a separate scalar equation for the

liquid fraction as shown below,

∂ρm
∂t

+
∂

∂xj
(ρm uj) = 0 (3.7)

∂(ρmui)

∂t
+

∂

∂xj
(ρmuiuj) = −

∂p

∂xi
+

∂

∂xj

(

µm

(

∂ui
∂xj

+
∂uj
∂xi

−
2

3

∂uk
∂xk

δij

))

(3.8)

∂αl

∂t
+
∂(αluj)

∂xj
= (ṁ− + ṁ+) (3.9)
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The mixture density ρm and the mixture viscosity µm are defined as follows:

ρm = ρlαl + ρv(1− αl) (3.10)

µm = µlαl + ρv(1− αl) (3.11)

where ρl is the liquid density, ρv is the density of the vapor, uj is the mixture velocity

vector, p is the mixture pressure, αl is the liquid fraction, ṁ−, and ṁ+ are the source

terms modeling the evaporation and condensation respectively. Using the continuity

equation 3.7, the momentum equation 3.8 can be simplified as follows,

ρm

(

∂ui
∂t

+ uj
∂ui
∂xj

)

= −
∂p

∂xj
+

∂

∂xj

(

µm

(

∂ui
∂xj

+
∂uj
∂xi

−
2

3

∂uk
∂xk

δij

))

. (3.12)

We can further modify the Eq. 3.12, by defining the following nondimensionalization

ui = Uu∗i , ρm = ρlρ
∗

m, t = l
U
t∗, µm = µlµ

∗

m, Re = ρllU/µl. The above momentum

equation can be re-written, after dropping the asterisk in the superscript and noting

that all the terms are now in dimensionless form, as follows,

ρm

(

∂ui
∂t

+ uj
∂ui
∂xj

)

= −
∂p

∂xi
+

1

Re

∂

∂xj

(

µm

(

∂ui
∂xj

+
∂uj
∂xi

−
2

3

∂uk
∂xk

δij

))

. (3.13)

The momentum equation is further filtered and results in a SGS stress tensor that

needs to be modeled. In the present work, we use Vreman [20] model to compute this

tensor. The filtered equations are written as follows,

ρm

(

∂ui
∂t

+ uj
∂ui
∂xj

)

= −
∂p

∂xi
+

1

Re

∂

∂xj

(

µm

(

∂ui
∂xj

+
∂uj
∂xi

−
2

3

∂uk
∂xk

δij

))

+ ρm
∂τij
∂xj

.

(3.14)

Like before, the SGS stress tensor τij only contains the anisotropic part and the

isotropic part is absorbed into the filtered pressure field. The expression for the

anisotropic SGS stress tensor is written as follows,

τij = uiuj − uiuj −
1

3
(uiuj − uiuj). (3.15)

The source terms ṁ− and ṁ+ that represent condensation and evaporation processes

are taken from Senocak [59] and are given as follows,

ṁ− =
CdestρvαlMIN(0, p− pv)

ρl (1/2ρlU0) t0
(3.16)

ṁ+ =
Cprodρvα

2
l (1− αl)

ρlt0
(3.17)
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where t0 is the time scale which is the ratio of characteristic length scale l to the ref-

erence velocity (l/U0) and Cdest and Cprod are empirical constants taken from Senocak

et al. [59] as 9 × 105 and 3 × 104 respectively. The ratio of liquid to vapor densities

ρl/ρv is taken equal to 1000.

3.5.5 LES of Cavitating Mixing Layer

The simulations are performed for the same back pressure setting as in case 3 of

the experiments of Aeschlimann et al. [55]. The simulations are started from a non-

cavitating case that was previously run and the cavitation model is switched on then

on. A qualitative comparison of the contours of liquid fraction obtained are shown in

Figure 3.32. Frame (a) depicts the instantaneous results from the experiments [55],

whereas frame (b) denotes the instantaneous values obtained from the present sim-

ulation. The experimental values indicate a maximum vapor fraction of 30% for the

darkest contours whereas only as high as 10% vapor fraction is achieved in the present

simulations. This indicates that the model parameters may have to tuned in order

to match the experimental results accurately for at least one of the cases and then

these should hold good for the other cases to be studied. The variation of vapor

fraction profiles along y direction when plotted with proper nondimensionalization

should result in a self similar profile. In order to verify this fact, void fraction profile

are extracted at three locations along the axis of the mixing layer and are shown in

Figure 3.33. As we can see from this figure a perfect self similarity of the profiles is not

attained and the deviations are more in the lower speed side of the mixing layer than

on the upper side which is located in the high speed stream. The results obtained

from the present simulations can only be considered to be qualitatively validated as a

perfect match with the experimentally measured values was not obtained rather only

a similar trend is observed.
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(a)

(b)

Figure 3.32. Qualitative comparison of experimental and numerical
simulations obtained for the liquid fraction. (a) Instantaneous con-
tours of liquid fraction on the central plane z = 0 from experiments of
Aeschlimann et al. [55]. (b) Instantaneous contours of liquid fraction
on the central plane z = 0 from simulation.
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Figure 3.33. Variation of void fraction along the y axis at indicated axial locations.
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3.5.6 Summary

In summary, we performed non-cavitating and cavitating mixing layer simulations

with the WenoHemo solver and compared the results to the experiments [55]. A very

good agreement in results is obtained validating the numerical methodology used in

WenoHemo solver for the non-cavitating mixing layer case. However, only qualitative

validation of the cavitating mixing layer case is obtained and future work should focus

on performing quantitative validation of the results.
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4. LARGE EDDY SIMULATION OF BLOOD FLOW IN AORTA

4.1 Introduction

4.1.1 Anatomy of Aorta

The aorta is the largest artery in the human body. It originates from the left

ventricle of the heart and extends down to abdomen where it separates into two

smaller arteries known as the common iliacs. The oxygenated blood from heart

is carried by the aorta and supplied to the body through systemic circulation. A

schematic of the aorta is shown in Figure 4.1(a), which shows its relative location

with respect to the heart. Normally the aorta is left sided and in very rare cases

right sided aortas were found. The left and right references in this entire chapter are

with respect to the subject in discussion. The aorta can be divided into four distinct

segments as follows

• Ascending aorta

• Aortic arch

• Descending aorta

• Abdominal aorta

The various segments are shown marked in Figure 4.1(b). Oxygenated blood is

pumped by heart into the ascending aorta during systole through the opening and

closing of the aortic valve. Aortic valve is a tri-cuspid valve that operates based on

the pressure differential between the left ventricle and the aorta. Aortic arch is a U

shaped lumen that divides into three smaller arteries namely, brachiocephalic artery,

left common carotid artery, and left subclavian artery. The brachiocephalic artery

further bifurcates into right subclavian and right common carotid arteries. Only a
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small portion of the blood is carried by these four arteries and a major portion of

oxygenated blood enters the descending aorta and further into the abdominal aorta.

The left and right common carotid arteries supply the blood to the head and neck,

whereas the left, and right sub-clavian arteries supply the blood to the left, and right

hand respectively.

(a) Schematic of the aorta showing

the three main branches emanating

from the aortic arch

(b) Schematic of the thoracic aorta

depicting its various segments and

branches

Figure 4.1. Schematic of the human aorta. Source: Wikipedia.

The aortic walls are made up of three layers, and are contracting and expanding as

blood is pumped through them. As a result the middle layer is prone to thinning and

can cause potential rupture. The thinning of the aortic walls leads to a pathological

condition known as an aneurysm which is further described in the next section.
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4.1.2 Aortic Aneurysm

Aneurysm is a permanent dilatation or ballooning of the aorta. Aneurysms pose

a danger as they can potentially rupture and cause severe bleeding. The thinning of

the aortic walls leads to the ballooning effect and they can be broadly classified into

two categories depending on their structure, as follows,

1. Saccular Aneurysm

2. Fusiform Aneurysm

The saccular aneurysm looks more like a sac/bag, whereas the fusiform aneurysm is a

local dilatation which looks similar to a elongated, spindle like swelling. The aneurysm

we will be dealing with in this thesis is fusiform aneurysm. Further depending on the

location where an aneurysm occurs in the aorta it can be classified as follows,

• Ascending thoracic aortic aneurysm

• Aortic arch thoracic aneurysm

• Descending thoracic aortic aneurysm

In the present work, we focus on descending thoracic aortic aneurysm and here after

refer to that by just thoracic aortic aneurysm (TAA).

4.1.3 Aortic Aneurysm Repair

Aneurysms whose diameter is more than 1.5 times the normal diameter of the

aorta have to be surgically repaired as they can potentially rupture causing bleeding.

The two common types of aneurysm repair are the following,

• Thoracic aortic aneurysm open repair

• Endovascular aneurysm repair (EVAR)
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The thoracic aortic aneurysm open repair procedure involves making a large inci-

sion and allows the surgeon to visualize the aorta directly to repair the aneurysm

by replacing the walls of the aneurysm with a synthetic graft. In the EVAR proce-

dure, only a small incision needs to be made and guided through X-ray imaging and

specifically designed instruments a tube known as stent-graft is inserted and secured

in place through barbs and hooks. The stent-graft acts like a new lumen allowing

the blood to pass through it and the aneurysm region will be completely concealed

thereby not allowing it to grow or burst in future.

4.1.4 Objectives of the Present Study

We study the blood flow in AAA and thoracic aortic aneurysm (TAA). Further

we investigate the resulting difference in hemodynamics in a thoracic aorta with

the introduction of the stent graft (TASG). We perform a comparison of the results

obtained with the present solver with the experimental results of Asbury et al. [6].

The time averaged axial velocity profiles and axial variation of turbulence intensity

in the case of steady inflow to AAA at two different Reynolds numbers are used to

make the comparisons.

4.2 Steady Inflow in Abdominal Aortic Aneurysm (AAA)

The geometry of the AAA, used in the simulations is shown in Figure 4.2, which

is obtained from the article by Asbury et al. [6]. The diameter ratio (D/d), where D

is the diameter of the aneurysm, and d is the diameter of the undilated portion of the

artery equals 2.75. A steady velocity was imposed with parabolic profile at the inlet

of the geometry. Two different Re configurations were simulated. The Re = 500 case

is a laminar case, and the Re = 2600 case is a turbulent case. The domain extended

from −8d to +10d in the x-direction and 1.2D in both y and z directions. A total of

22 blocks were used to discretize the domain with 40 × 50 × 80 grid points in each
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of the x, y, and z directions in each block amounting to a total of 3.52 million grid

points.

We simulate steady inflow in AAA for which experimental results are available

in the literature. The blood flow through the arterial network is remarkably stable

and the arterial walls withstand the repetitive wall stress. Unfortunately, in some

cases, due to disease or other complex processes, the arterial wall becomes weak and

bulges out permanently forming an aneurysm [64]. Although, there are many sites at

which aneurysms can form in the arterial tree, the most common are thoracic aortic

aneurysms, abdominal aortic aneurysms and cerebral aneurysms. In the present

section, we focus on steady inflow simulations in AAA and comparing them to the

experimental results of Asbury et al. [6]. The walls of the aorta are assumed to be

rigid.

The geometry of the AAA considered in the present work is taken from the ex-

periments of Asbury et al. [6] and is shown in Figure 4.2(a). The inlet and outlet to

the aorta have the same diameter (d = 2ri), whereas the diameter of the aneurysm

is denoted by D. The diameter ratio of the aneurysm D/d = 2.75 is considered in

the present work. Two different Reynolds numbers 500 and 2600 are considered. The

diameter of the inlet (d) and the average velocity at the inlet section (U) are used as

the length scale and the velocity scale respectively to define the Reynolds number. A

parabolic inlet velocity profile is applied at the inlet of the domain, and a homoge-

neous Neumann boundary condition is applied to all the velocity components at the

outlet of the domain. A Dirichlet boundary condition on the pressure is applied at the

outlet of the domain and a homogeneous Neumann boundary condition for pressure

is set on all other boundaries. Figure 4.2(b) shows the multiblock decomposition of

the AAA geometry into 81 equal sized blocks used for the simulation. The length of

the domain from inlet to outlet measures 18d. Each block has a mesh of 24× 24× 80

making it a total mesh resolution of 3.7 million points.
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(a)

(b)

Figure 4.2. (a) Geometry of AAA reconstructed from the experiments
of Asbury et al. [6]. (b) Multiblock decomposition of AAA into 81
equal sized blocks.
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4.2.1 Re = 500

The profiles of mean axial velocity < u > /U are shown in Figure 4.3(a), at

indicated locations along the streamwise direction of the aorta on the xy-plane, at

z = 0, at a Reynolds number of 500. The operator <> denotes time average or mean

quantity. A good match between the present simulation results and the experimental

results of Asbury et al. [6] is seen from the figure. The parabolic shape of the velocity

profiles is maintained similar to the experimental results throughout the abdominal

aorta. The streamlines on the xy-plane at z = 0 are shown in Figure 4.3(b). From

Figure 4.3(b) the recirculating fluid in the aneurysm can be clearly noticed. The

recirculating region has a center measured in the xy-plane at (2.25ri, 1.55ri).

4.2.2 Re = 2600

Next, we compare the results obtained for a Reynolds number of 2600. The profiles

of mean axial velocity (< u > /U) are shown in Figure 4.4(a) at several locations

along the axis of the aorta in the xy-plane at z = 0. Compared to the 500 Reynolds

number case, a clear recirculation zone is noticed from the Figure 4.4(a). A perfect

match with the experimental results could not be obtained, but until x/ri = 4, the

peak and the qualitative behavior of the profiles is captured by the simulations. The

experimental results are not quite symmetric about the y = 0 line. The streamlines

in the xy-plane at z = 0 are shown in Figure 4.4(b). The recirculating eddy seems to

be more elongated and pushed towards the distal end of the aorta in this case when

compared with the Reynolds number of 500 case. The center of the recirculating

fluid, when measured in the xy-plane has a center at (3.74ri, 1.16ri), which is nearer

to the distal end by a value of 1.5ri units and closer to the axis of the aorta by 0.4ri

when compared with the Reynolds number of 500 case.

The variation of turbulence intensity of the axial component of velocity, defined as

Iu = u′r.m.s/ < u >, is compared next between the present simulations and the experi-

ment for 2600 Reynolds number case. The axial variation of turbulence intensity Iu is
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Figure 4.3. (a) Comparison of mean axial velocity profiles between
present simulations and the experimental results of Asbury et al. [6]
for a Reynolds number of 500. Arrow indicates sample location of
retrograde flow close to the wall in the aneurysm region. (b) Stream-
lines on the xy-plane at z = 0, depicting the recirculating zone in the
aneurysm region.
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Figure 4.4. (a) Comparison of mean axial velocity profiles between
present simulations and the experimental results of Asbury et al. [6]
for a Reynolds number of 2600. Arrow indicates sample location of
retrograde flow close to the wall in the aneurysm region. (b) Stream-
lines in the xy-plane at z = 0, depicting the recirculating zone in the
aneurysm region.
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shown in Figure 4.5. As we can see from this figure the turbulence intensity increases

in the distal portion of the AAA. Towards the distal end both the experimental and

present simulations show a match with a value of 14% turbulence intensity, how-

ever, in the range 2 ≤ x/ri ≤ 10 only the upward trend is captured. This deviation

could be due to differences in inlet turbulence levels between the experiments and the

simulations.

x/ri

I u

-10 -8 -6 -4 -2 0 2 4 6 8 10-0.1

0

0.1

0.2
Present simulation result with WenoHemo
Experimental results of Asbury et al.

Figure 4.5. Comparison of variation of turbulence intensity along
the center line of the AAA at a Re = 2600 between simulation and
experiment.

4.3 Steady Inflow in a Thoracic Aortic Aneurysm (TAA)

In this section, first investigate steady inflow in TAA. The geometry of TAA to-

gether with a multiblock decomposition into 100 blocks is shown in Figure 4.6(a). The

particular geometry considered here has an additional 90◦ bend towards the distal end

when compared with typical TAA geometries that are studied in the literature [11].

The motivation behind such an additional bend is that it is supposed to create a

worst case scenario with maximum loading imparted on a stent graft placed in this

geometry. A bisecting plane cut of the geometry on the xy-plane at z = 0 is shown

in Figure 4.6(b). In the figure, the surface marked Inlet is the inflow surface to the

domain, through which the blood pumped by heart enters the aorta. The surfaces

O1, O2, O3 and O4 indicate outlets leading to brachiocephalic artery, left common
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carotid artery, left subclavian artery and to abdominal aorta respectively. The di-

ameter of aorta at the outlet O4 is same as at the inlet and equal to d. The outlets

O1, O2 and O3 have a diameter of d/4, d/5 and 3d/10 respectively. Several point

probes P1 through P5 and line probes S1 through S10 are also shown marked on the

central xy -plane, which enables analysis of mean and turbulent quantities.

A uniform velocity profile is applied at the inlet of the domain. The diameter at

the inlet, d and the average velocity at the inlet, V , are used as the length scale and

the velocity scale to define the Reynolds number. An average Reynolds number of

910 and a peak Reynolds number of 3727 are identified for the present geometry, by

considering the physiological wave form used by Lantz et al. [11]. At all the outlets

O1 through O4 homogeneous Neumann boundary condition for velocity is applied.

Pressure level is set to a Dirichlet value on the front and back faces of the bounding box

in z direction and a homogeneous Neumann pressure boundary condition is applied

on all other boundaries.

4.3.1 Re = 910

A multiblock domain with 100 blocks as shown in Figure 4.6(a) is used for the

steady inflow simulations at a Reynolds number of 910. As each block is assigned

to one processor, the simulations are run on 100 processors. Each block consists of

21×21×81 mesh points, making a total resolution of 3.6 million points. The contours

of normalized vorticity magnitude (|ω|d/V ) are shown in Figure 4.6(c) on the central

xy-plane, at z = 0. As the flow turns clockwise from the inlet into the aortic arch

and into the aneurysm region, the inner wall boundary layer detached from the wall,

whereas the outer wall boundary layer follows the outer contour without permanent

separation from the wall. The outer wall boundary layer, however, slightly moves

inwards at each of the 90 degrees bends in the aneurysm and descending aorta regions.

A steady and laminar flow field is observed in the entire domain under steady inflow

conditions at a Reynolds number of 910.



83

The mean velocity profiles (< u > /V on lines S1 and S2 and − < v > /V on lines

S3 through S10) are shown in Figure 4.7 on several lines indicated in Figure 4.6(b).

An almost flat velocity profile is seen at the location S1, whereas reverse flow can be

seen at the stations S2 through S4. The lines S3, S4 are in the aneurysm region and

they have reverse flow extending to 50% of the local diameter at the location as can

be seen from this figure. The peak value of the retrograde velocities at locations S3

and S4 is 20% of V , whereas at the location S5, the retrograde velocity is less than

5% of V marking the onset of zero retrograde flow. All the sections downstream of

S5 do not have any retrograde velocities and profiles at the locations S8, S9 and S10

seem to have attained a close to a fully developed flow profile.

Next, we computed wall shear stress (WSS) on the surface of the TAA at this

Reynolds number, to analyze the effect of the slow moving blood flow in the recir-

culation regions on the wall shear stress. The methodology presented by Mark et

al. [42] is used to interpolate and compute the values onto the surface mesh from the

Eulerian mesh. Figure 4.8 shows the normalized mean WSS plotted on the surface of

the TAA in two different views in frames (a) and (b). Average value obtained from

the circumferential average at the inlet of the domain is used for normalizing the WSS

throughout the TAA. We can see from this figure that, a peak WSS of 2.0 is noted in

regions on the three separating arteries from the aortic arch. The WSS values drop

to less than 50% on the inner and outer walls of the aneurysm region.

4.3.2 Re = 3727

The same 100 block configuration as shown in Figure 4.6(a) is used for the peak

Reynolds number simulation as well, but with a refined mesh in each block with

25 × 25 × 85 points, making it a total resolution of 5.3 million mesh points. The

simulation is run on 100 processors, for a non-dimensional time of 200 and turbulent

statistics are collected over the last 100. A steady inflow is applied at the inlet of the

domain, but unlike the average Reynolds number case, the flow is found to be unsteady
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Figure 4.6. (a) Decomposition of the TAA into 100 multiblocks.
(b) Schematic of TAA on the bisecting xy-plane at z = 0 depicting
the sampling lines S1 through S10 and sampling points P1 through
P5 in the aneurysm and descending aorta regions where data is col-
lected. The coordinates of indicated points are O(0, 0), P1(2.2d, 0.9d),
P2(2.6d, 0.9d), P3(3.1d, 0.9d), P4(2.2d,−2.1d) and P5(2.6d,−2.1d).
(c) Contours of non-dimensional vorticity magnitude (|ω|d/V ) on the
bisecting xy-plane at z = 0, for steady inflow in the TAA at a
Reynolds number of 910.
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Figure 4.7. Mean axial velocity profiles (locations S1 and S2 show
< u > /V , all other locations show − < v > /V ) on indicated lines
S1 through S10 for steady inflow in the TAA at a Reynolds number
of 910.
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(a) (b)

Figure 4.8. Contours of normalized mean WSS for a steady inflow at
a Reynolds number of 910. The average WSS at the inlet is used for
normalization. Frames (a) and (b) show the plot from two different
views.
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in the aneurysm and descending aorta regions. The time history of normalized y-

component of velocity fluctuations (v′/V ) at five different probe locations P1 through

P5 noted in Figure 4.6(b), is shown in Figure 4.9(a), which indicates the unsteady

flow field in the descending aorta region. The time history of normalized vrms values

at the probe locations is shown in Figure 4.9(b), which clearly shows the convergence

of the root mean square (rms) quantities over the simulation time considered.
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Figure 4.9. (a) Time history of v′/V at locations P1 through P5.
The v′/V value at each station is offset by 1 unit. (b) Time history
of vrms/V at locations P1 through P5. The vrms/V value at each
location is offset by 0.2 units.
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In order to identify the disturbed flow field occurring in the aneurysm region

and extending through the descending aorta, we plot the normalized mean vorticity

magnitude contours on the central xy-plane at z = 0 in Figure 4.10(a). From this

figure, we can see that, the wall boundary layer at the outer wall rolls up similar to a

mixing layer and curves down in the aneurysm region. The wall boundary layer at the

inner wall, separates similar to the average Reynolds number case, but in this case

additionally produces a disturbed flow field in the aneurysm and descending aorta

regions as observed from the figure. To visualize the coherent structures forming in

this disturbed flow field, the iso-surfaces of λ2 [56] corresponding to a value of −2.0,

colored by normalized mean vorticity magnitude are plotted in Figure 4.10(b). Long

vortical structures emanating from the aneurysm and extending towards the distal

end with length of the order of 3d are noted from this figure. The clinical significance

of these long vortical structures needs to be understood yet.

The mean velocity and turbulent statistics in the TAA are analyzed here, similar

to the average Reynolds number case by considering the data extracted on the lines

S1 through S10. The normalized mean velocity profiles are shown in Figure 4.11(a)

at the indicated locations. The u/V velocity at the locations S1 shows a flat profiles

with no re-circulation, whereas at the location S2 a small retrograde flow is found

from the profile. Similar to the average Reynolds number case, the profiles at the

stations S3, S4 and S5 capture a retrograde flow, extending close to 50% of the local

diameter at the stations S3 and S4, while at S5 the retrograde velocity is only over

25% of the local diameter. The peak values of the retrograde velocity at S3 and S4

are approximately 25% of V , whereas at the station S5 the retrograde velocity has a

peak of 11% of V , which is twice more than the value found in the average Reynolds

number case. Further downstream, beginning with the location S6, no retrograde flow

is found in the profiles extracted. The turbulent statistics, urms/V , vrms/V , wrms/V

and normalized turbulent kinetic energy (k/V
2
) are shown at indicated locations

in Figure 4.11(b), (c), (d) and (e) respectively. The unsteady and the turbulence

levels are not present upstream of the aneurysm, in the regions of aortic arch as seen
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(a) (b)

Figure 4.10. (a) Instantaneous contours of non-dimensional vorticity
magnitude on the bisecting xy-plane, at z = 0. (b) Instantaneous iso-
surface of λ2 = −2.0 colored by non-dimensional vorticity magnitude.
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from the locations S1 and S2 for any of the turbulent statistics. From the extracted

profiles, urms/V values show a peak value of 30% at the location S3 and decreasing as

we move downstream, reaching a value close to 25% at the locations S4 through S7

and further to 20% at the locations S8 through S10. The vrms/V profiles also show

a similar pattern with peak values reaching close to 25% at the locations S3 and S4

and decreasing as we move downstream to values close to 15% at the locations S5

through S10. The wrms/V profiles show close to constant values with peak values

reaching to 14% at the location S3 and decreasing only to 12% at the location S10.

The turbulent kinetic energy profiles shown in Figure 4.11(e), also shows a decreasing

trend as we traverse from S3 towards the distal end at S10. The peak turbulent

kinetic energy 〈k/V
2
〉 at the location S3 reaches a value of 8%, decreasing to a value

of 3% at the location S10.

In order to characterize the flow in TAA, the energy spectrum of the of the

y−component of the velocity fluctuations (v′) is computed at several points (P1

through P5, shown in Figure 4.6(b)) in the aneurysm and in the descending aorta

regions. The energy spectra obtained are shown in Figure 4.12. The frequency spec-

tra E22(S) are computed by using Welch’s method [65], with no overlap. The energy

spectra are plotted as a function of the Strouhal number S = fd/V where f is the

frequency of eddy motions at the probe location. The lines corresponding to S−5/3

and S−7 have also been shown in the figure. In turbulent flows, the S−5/3 variation

in the energy spectrum is associated with the energy transfer from low wave number

to high wave numbers and is dominated by inertial transfer [66]. This region is also

known as inertial subrange and the process of transfer of energy is known as spec-

tral energy cascade. The variation of S−7 is a characteristic of dissipation range in

which viscous forces dominate [67]. From Figure 4.12, we can see that points P1, P2,

P4 and P5 seem to have a broader range of frequencies when compared with probe

P3, for inertial subrange, whereas at higher frequencies all the probes record viscous

dissipation.
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Figure 4.11. Steady inflow in the TAA at a Reynolds number of 3727.
(a) Mean axial velocity profiles (locations S1 and S2 show < u > /V ,
all other locations show − < v > /V ) (b) urms/V profiles (c) vrms/V
profiles (d) wrms/V profiles (e) Normalized turbulent kinetic energy

〈k/V
2
〉 profiles on indicated lines S1 through S10.
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Figure 4.12. Frequency spectra corresponding to the velocity fluc-
tuations (v′). The letter adjacent to each of the curves identifies the
point where the signal is measured. The solid and the dashed straight
lines correspond to S−5/3 and S−7 respectively as marked. (a) Spectra
at location P1 (b) Spectra at location P2 (c) Spectra at location P3
(d) Spectra at locations P4 and P5. The locations of the points P1
through P5 are shown in Figure 4.6(b).
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Finally, we compute the normalized WSS similar to the average Reynolds number

case and is shown in Figure 4.13 in two different views in frames (a) and (b). As

we can see from this figure, the maximum WSS is 6 times the average inlet value

and occurs in the distal end of the aorta. The inner and outer walls of the aneurysm

region and few portions of descending aorta continue to show smaller values of WSS

of the order of 0.5, similar to the average Reynolds number case, but the peak value

of WSS obtained in this case is 3 times larger than the one obtained in the average

Reynolds number case.

(a) (b)

Figure 4.13. Contours of normalized mean wall shear stress (WSS)
for a steady inflow at a Reynolds number of 3727. The average wall
shear stress at the inlet is used for normalization. Frames (a) and (b)
show the plot from two different views.

4.4 Pulsatile Inflow in a Thoracic Aorta

4.4.1 Geometry and Boundary Conditions

The geometry of the TAA and the thoracic aorta with a stent graft (TASG) used

in the present study are shown together with their multiblock decomposition into 325
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and 330 uniform blocks respectively in Figure 4.14. The inlets and outlets to the

aorta are also shown marked in both the frames. From frame (a) of this figure we

can note that post aortic arch there is an aneurysm that formed whereas in frame (b)

this aneurysm is totally excluded by making use of a stent graft. The TAA geometry

is decomposed into 325 uniform mesh blocks with a grid size of 15 × 15 × 90 in x,

y, and z directions respectively, in each block making a total of 6.58 million mesh

points, whereas the TASG geometry is decomposed into 330 uniform mesh blocks

with a mesh size of 16 × 16 × 85 with a total mesh resolution of 7.18 million mesh

points. Several lines and point probes are extracted on the z = 0 plane to study the

flow dynamics evolving in the TAA and TASG geometries. These are identified in

frames (a) and (b) of Figure 4.15 for TAA and TASG respectively.

The velocity profiles used at the Inlet and the three supra-outlets are taken from

the measured values used by Lantz et al. [11] in their work and is shown in Figure 4.16.

This figure also depicts the corresponding acceleration curve to make it easy to locate

the several sampling points (P1 through P6) which are used for ensemble averag-

ing or a phase locked averaging of the quantities. At the outlet of the domain a

homogeneous Neumann boundary condition on the velocity is used. Homogeneous

Neumann boundary condition on the pressure is applied at all the inlets and outlets

and a Dirichlet value is set on the front and back faces in z direction of the bounding

box where the geometry under consideration is in the interior so that the level of the

pressure is fixed. The bulk velocity at the inlet V is used as the velocity scale and

the inlet diameter d is used as the length scale to define a peak Reynolds number as

Re = V d/ν. The peak Reynolds number is equal to 3727 in the present work.

4.4.2 Assumptions

There are certain assumptions made in the present study and a summary of these

together with justifications where applicable are presented. The fluid is assumed

to be Newtonian with a constant value of viscosity as blood flow in large arteries
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(a) (b)

Figure 4.14. Geometries of the TAA and TASG used in the present
study. The inlet to the thoracic aorta, the outlets O1, O2 and O3
carrying blood to brachiocephalic artery, left common carotid artery,
and left subclavian artery, respectively and the largest outletO4 which
carries blood to abdominal portion of the aorta are shown marked.
The aneurysm region and the stent graft that totally excludes blood
flow to the aneurysm region are also shown marked in the frames.
(a) Decomposition of the TAA geometry into 325 uniform blocks (b)
Decomposition of the TASG geometry into 330 uniform blocks.
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Figure 4.15. (a) Spatial sampling locations for the TAA ge-
ometry. Several point probes R1 through R12, and lines S1
through S10 are extracted on the central z = 0 plane to in-
vestigate the flow dynamics. The locations of the point probes
are R1 (−3.6d, 1.36d), R2 (−3.1d, 1.36d), R3 (−2.7d, 1.36d),
R4 (−2.2d, 1.36d), R5 (−2.0d, 1.18d), R6 (−2.0d, 0.80d), R7
(−2.0d, 0.43d), R8 (−2.0d, 0.06d), R9 (−2.0d,−0.32d), R10
(−2.0d,−0.70d), R11 (−2.0d,−1.1d) and R12 (−2.0d,−1.44d).
(b) Spatial sampling locations for the TASG geometry. Several point
probes R1 through R12, and lines S1 through S10 are extracted on the
central z = 0 plane to investigate the flow dynamics. The locations
of the point probes are R1 (−3.7d, 1.38d), R2 (−3.3d, 1.38d),
R3 (−2.85d, 1.38d), R4 (−2.45d, 1.38d), R5 (−2.0d, 1.38d),
R6 (−1.6d, 1.38d), R7 (−1.6d, 1.0d), R8 (−1.6d, 0.60d), R9
(−1.6d, 0.20d), R10 (−1.6d,−0.30d), R11 (−1.6d,−0.70d) and
R12 (−1.6d,−1.1d).
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corresponding acceleration profile for the pulsating inflow considered.
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is previously shown to be having negligible non-Newtonian effects [3]. The walls of

the arteries are modeled as rigid walls and with a no-slip, impermeable boundary

condition. The rigid assumption of the walls is justified as they become stiff in the

case of formation of an aneurysm and the stent grafts can be considered rigid from

their present application point of view. Further, it is assumed that the when stent

graft is used to exclude the aneurysm region it totally excludes blood flow access to

the aneurysm region thereby creating a perfect seal between the walls of the aorta

and the stent graft. The thickness of the stent graft is not modeled in the present

simulations therefore it is assumed that the internal diameter of the aorta and the

stent graft are equal. The geometries used in the present study are generated from

patient specific image scan data after a clean up of the raw data. The distal end

of both the geometries (TAA and TASG) show an additional bend to the left, this

artificial bend introduced is supposed to create a worse case scenario in terms of forces

acting on the stent graft.

4.4.3 Pulsatile Inflow in a Thoracic Aortic Aneurysm (TAA)

In this section, pulsatile inflow in TAA is investigated. Several point probes are

used along the aortic geometry to record instantaneous time histories as the simulation

advanced. Time histories of normalized axial velocity (u/V or v/V ) are monitored

and are shown in frame (a) of Figure 4.17. In the present work the first 20 cycles

are considered as the initial flow through time and are discarded from the point of

view of statistical collection. Only the last 35 pulsatile cycles are used for collecting

mean and turbulent statistics. The total number of pulsatile flow cycles simulated is

in line with previous LES simulations in the literature [11], however, in the present

case the first 20 cycles are discarded owing to the flow development over the entire

aortic geometry whereas only first 5 cycles are discarded in Lantz et al. [11]. In frame

(b) of Figure 4.17 the corresponding phase averaged velocity profiles are shown over

one pulsatile cycle. From frame (b), we note that the flow at these probe location
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undergoes flow reversal at locations R1 and R2, whereas locations R3 through R12

show no evidence of axial flow reversal. Low frequency oscillations with a time period

of O(10T ) can be noticed in frame (a) at several probe locations, these are thought

of as cycle-to-cycle variation. Part of the flow that is entering the aorta through

the inlet, leaves the domain through the supra-arteries, brachiocephalic trunk, left

common carotid artery and left subclavian arteries situated at the top of the aortic

arch. This is the reason for the decrease in magnitude of peak axial velocities in the

distal portions of the aorta as recorded by probes R7 through R12.
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Figure 4.17. (a) Time history of 55 cycles of normalized axial velocity
(R1 through R6 displaying u/V , whereas R7 through R12 displaying
v/V ), at several locations R1 through R12 for pulsatile flow through
the TAA geometry. (b) Normalized ensemble-averaged axial velocity
(R1 through R6 displaying 〈u/V 〉p, whereas R7 through R12 display-
ing 〈v/V 〉p), at indicated locations.
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Mean and Turbulence Profiles
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Figure 4.18. Sequence of ensemble-averaged normalized axial velocity
profiles (locations S1 and S2 show 〈u/V 〉p, all other locations show
−〈v/V 〉p) at the indicated time instants, for pulsatile inflow through
the TAA geometry.

The phase averaged normalized axial velocity profiles for pulsatile inflow in TAA

are shown in Figure 4.18 at several locations (R1 through R12) along the aorta and

at the indicated phase instants. The profiles are extracted on vertical lines on the

central plane z = 0 in the ascending aorta (S1 and S2), and on the horizontal lines

on the central plane z = 0 in the descending aorta (S3 through S10). Accordingly

to best represent the axial velocities on the central plane, 〈u/V 〉p are plotted at
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locations S1 and S2 whereas −〈v/V 〉p are plotted at all other locations. As we can

see from this figure during acceleration phase as indicated by samples at P1 and P2

forward axial flow can be noticed at all the locations. At P3 which is the maximum

deceleration point in the pulsatile flow cycle we notice reverse flow almost at all of the

locations with varying extents depending on the location. At other sampling points

on the pulsatile profile we see similar reverse flow patterns, however, with decreased

intensity and are not shown here.

To investigate the overall turbulence levels in the phase averaging sense as defined

before, we extracted turbulent kinetic energy profiles (which sums up the collective

contribution of all of the root mean square quantities) at the same spatial locations

and time instants as was considered in the mean axial velocities before. The variation

of normalized phase averaged turbulent kinetic energy (tke) profiles are shown in Fig-

ure 4.19 at the indicated spatial and temporal samples. Interestingly, the maximum

tke values are obtained at the maximum deceleration time instant P3. The peak val-

ues in tke at the maximum velocity point P2 are smaller than those obtained at the

maximum acceleration and those obtained at maximum deceleration. Peak values of

tke decrease as one travels along the aorta towards the distal end. Maximum values

in tke are observed in the aortic arch region at any given time instant. A maximum

of around 1% peak values for tke are observed.

Coherent Structures

The flow shows in Figure 4.18 several recirculation zones as observed before from

the mean axial velocity profiles at the maximum deceleration point P3. In order to

visualize these secondary recirculation patterns together with the associated coherent

vortical structures we used the λ2 criterion coined by Jeong & Hussain [56]. The

vorticity magnitude contours on the central z = 0 plane are also used to further un-

derstand the complex blood flow dynamics arising in the aorta. The nondimensional

vorticity magnitude contours are shown in Figure 4.20 at the indicated instants. We
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Figure 4.19. Sequence of ensemble-averaged normalized turbulent

kinetic energy 〈k〉p/V
2
profiles at the indicated time instants, for pul-

satile inflow through the TAA geometry.
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(a) P1 (b) P2 (c) P3

(d) P4 (e) P5 (f) P6

Figure 4.20. Sequence of ensemble-averaged contours of vorticity
magnitude, normalized by V /d, for pulsatile inflow through the TAA
geometry.
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note from this figure that peak vorticity values are present in the ascending aorta,

aortic arch and in the supra-arteries. During the acceleration phase vorticity pro-

duction takes place and two distinct high vorticity regions can be located close to

the inner wall in the aortic arch and also shear layer type vorticity regions can be

located in the supra-arteries at time instant P2. During the deceleration phase and

further into the diastole stroke the the vorticity regions form into three distinct re-

gions and separate away from the inner wall, first one traveling towards the inlet

of the domain, the second one traveling towards the brachiocephalic trunk and the

last one traveling towards center of the aortic arch below the left subclavian artery.

To further understand the complex flow dynamics, we educe the vortical structures

using the λ2 criterion [56] as shown in Figure 4.21. From this figure we can note that

ring like vortical structures are present in the ascending and aortic arch regions at

instants P1 and P2. Further, the aneurysm region is composed of elongated vortical

structures that originate close to the inner wall of the aortic arch and extend towards

the outer wall of the aneurysm region. Interestingly the vortical structures are less

populated towards the inner wall region in the aneurysm region. Because of the low

velocity during the diastole the vortical structures are hard to differentiate between

time instants P3 to P6.

Turbulence Energy Spectra

The pulsatile flow in TAA is identified in the previous sections to be composed

of coherent structures and disturbed flow. To further quantify the range of scales

occurring in these types of flows we used single point frequency spectra. The turbulent

energy spectra obtained from the fluctuations quantities are shown in Figure 4.22.

Frames (a) and (b) denote Eu′′,u′′ at locations R1 and R3, whereas frames (c) and

(D) denote Ev′′,v′′ at locations R9 and R12. The frequency spectra Eu′′,u′′ and Ev′′,v′′

are computed using the method of Welch [65]. The data sampling is performed at

a rate of 1kHz which corresponds to a Nyquist frequency of 500Hz. Along with the
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(a) P1 (b) P2 (c) P3

(d) P4 (e) P5 (f) P6

Figure 4.21. Sequence of instantaneous iso-surfaces of λ2 = −0.1, col-
ored by normalized velocity magnitude (umag/V ), for pulsatile inflow
through the TAA geometry.
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spectra, the lines corresponding to S−5/3, S−10/3 and S−7 are also shown, where S is

the frequency. In turbulence theory the line S−5/3 corresponds to inertial subrange

where the eddy motions are determined by inertial effects and viscous effects are

negligible [68]. A wide band of inertial subrange in the frequency spectra points

to the presence of a turbulent flow in the flow under consideration [66]. The line

corresponding to S−7 indicates frequencies that are in dissipation range, it means in

this the turbulence energy decays because of viscous dissipation. Further, motivated

by previous studies [13, 52, 69, 70] in which roll off of spectrum from −5/3 to −10/3

was observed at a particular frequency that was attributed to arterial murmur in

stenotic flows is also shown to enable identification any such behavior. We note from

frame (a) that the only a very small range of frequencies can be found that are parallel

to S−5/3 line, whereas a major portion after S = 1 becomes parallel to the viscous

dissipation range identified by S−7. However, in frame (b) for point R3 a clearly

noticeable range of frequencies from S = 0.1 to S = 2 can be seen to be parallel to

S−5/3 and energy values at higher frequencies become parallel to the dissipation range

S−7 similar to those obtained at point probe R1. The energy in the inertial subrange

decreases further as we move down the descending aorta to locations R9 and R12 as

indicated by very narrow range of bands parallel to S−5/3 and most of the energy falls

in the dissipation range S−7. A narrow band of frequencies can be identified to be

having energy content parallel to S−103 at locations R3 and R9 where the turbulent

energy content shifts from the inertial subrange to the dissipation range.

Wall Shear Stress

Now we turn our attention to look at wall shear stresses which is an important

parameter in the study of hemodynamics. Ensemble averaged, normalized wall shear

stress, referred as skin friction coefficient (Cf = 2τw/ρV
2
), is shown in Figure 4.23.

Maximum values of skin friction coefficient are observed close to inlet to the aorta

and the values decay along the aorta as one travels from the inlet towards the distal
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Figure 4.22. Energy spectrum associated with the stream-wise fluc-
tuations (u′′ for R1 and R3 and v′′ for R9 and R12 for pulsatile inflow
through TAA geometry at the indicated locations. Lines with slopes
−5/3, −10/3 and −7 are also shown.
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(a) P1 (b) P2 (c) P3

(d) P4 (e) P5 (f) P6

Figure 4.23. Sequence of ensemble-averaged contours of skin friction
coefficient for pulsatile inflow through the TAA geometry. Note the
contour levels shown are not the same for all frames.
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end. The values in the supra-arteries are at the middle of the spectrum at any phase

considered. The skin friction values seem to be closely correlated to the variation

of inlet velocity profile. For example, maximum velocity point P2 also coincides

with maximum skin friction values and there after the point P1 with next maximum

velocity attaining the second peak values for skin friction coefficient and so on. At

any given phase, the distal portion of the aorta is subjected middle to low values of

the spectrum considered.

Magnitude of Spatial Wall Shear Stress Gradient (SWSSG)

Further to identify the regions that are susceptible for aneurysm formation we

investigate the magnitude of spatial wall shear stress gradient (SWSSG). The contours

of ensemble averaged SWSSG are shown at indicated phase instants in Figure 4.24.

The minimum and maximum values of SWSSG are shown in the upper right corner

in each of the frames and the contour levels are only plotted in a small range of the

total range to enable easy location of the regions where the SWSSG is maximum.

As we can see large values of SWSSG are obtained during the acceleration phase as

noted at instants P1 and P2. Spatial distribution of large values of SWSSG is mainly

concentrate in the ascending aorta region as well a small portion just ahead of the

aneurysm. This small portion is consistently seen to attain locally large values at any

given instant. Previous studies found that the location of high value of SWSSG can

make the region predisposed for formation of an aneurysm. In this case, however,

the aneurysm has already been formed but an understanding of SWSSG can provide

insights into areas that are susceptible for an aneurysm formation.

4.4.4 Pulsatile Inflow in a Thoracic Aorta with Stent Graft (TASG)

Next, we investigate blood flow dynamics in a TAA with a stent graft implanted

in it, a thoracic aorta with stent graft (TASG). Similar to the TAA simulation sev-

eral point probes are used to monitor the evolution of the instantaneous velocities.
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(a) P1 (b) P2 (c) P3

(d) P4 (e) P5 (f) P6

Figure 4.24. Sequence of ensemble averaged contours of spatial wall
shear stress gradient for pulsatile inflow through the TAA geometry.
Note the contour levels shown are not the same for all frames and the
maximum and minimum values are shown on the upper right corner
with only a small range of values used for the contour levels indicated.
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Instantaneous normalized axial velocity profiles (u/V at locations S1 through S6 and

v/V at locations S7 through S12) and their corresponding phase averaged profiles are

shown in frames (a) and (b) respectively in Figure 4.25. From the profiles recorded

by S1, S7 and S10 it can be clearly noticed that the time dependent profiles tend

towards an asymptotic pattern and by end of t/T = 20 they seem to have attained

a completely periodic state. This justifies our statistical averaging procedure to rely

on only the last 35 periodic cycles discarding the first 20 cycles. From frame (b) of

this figure it is observed that at points S7 and S8 the time dependent velocity profiles

are more responsive to the diastole at the inlet showing time dependent reverse flow.

Only locations S1, S7 and S8 show such a behavior, whereas locations R1 and R2

only showed such a behavior in the case of TAA.

Mean and Turbulence Profiles

The normalized phase averaged axial velocity profiles on the z = 0 plane are

shown in Figure 4.26 at several locations at the indicated phase instants. From these

profiles few observations similar to the flow in TAA can be made. For example, during

the acceleration phase (P1 and P2) all the locations show forward flow. During the

deceleration phase (P3) locations S1, S2, S4 and S5 show reverse flow as opposed to

reverse flow occurring at most of the locations at the same time instant in a TAA.

Interestingly, in the present case many locations in the distal end (S7 through S10)

show forward flow at P3 time instant. The magnitude of axial velocities seem to be

slightly higher at distal locations (S5 through S10) at time instant P2 when compared

with TAA. This is attributed to the presence of stent graft providing a close to uniform

cross sectional area thus restoring a healthy artery situation. The normalized phase

averaged tke profiles are shown in Figure 4.27 at the indicated phase instants and on

several locations. Similar to tke profiles in TAA, in the present case also tke decreases

its magnitude as one travels from aortic arch towards descending aorta. The peak

values of tke reached during P1 and P2 phases is only 0.5% unlike TAA in which the
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Figure 4.25. (a) Time history of 55 cycles of normalized axial velocity
(S1 through S6 displaying u/V , whereas S7 through S12 displaying
v/V ), at several locations S1 through S12 for pulsatile flow through
the TASG geometry. (b) Normalized ensemble-averaged axial velocity
(S1 through S6 displaying 〈u/V 〉p, whereas S7 through S12 displaying
〈v/V 〉p), at indicated locations.
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Figure 4.26. Sequence of ensemble-averaged normalized axial velocity
profiles (locations S1 and S2 show 〈u/V 〉p, all other locations show
−〈v/V 〉p) at the indicated time instants, for pulsatile inflow through
the TASG geometry.
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peak values are 1%. The peak values of tke reached during the deceleration phase at

P3 are however are around 1% which are lower by a value of 5% compared to those

obtained in TAA case at location S1.
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Figure 4.27. Sequence of ensemble-averaged normalized turbulent

kinetic energy 〈k〉p/V
2
profiles at the indicated time instants, for pul-

satile inflow through the TASG geometry.

Coherent Structures

To visualize and further understand the complex flow dynamics occurring in the

TASG geometry, we make use of vorticity magnitude and λ2 criterion similar to the

TAA case. The nondimensional contours of vorticity magnitude on the z = 0 plane



114

are shown in Figure 4.28 at the indicated time instants. From this figure we note that

during the systolic phase shear layer gets developed at two locations on the inner wall

of the aortic arch and also in all the supra-arteries. As the inflow enters diastolic

phase these shear layers get separated from the inner wall and move towards the

center of the aortic arch. The initial two shear layers identified separate into three

shear layers in the diastolic phase similar to the TAA case. However, the shear layers

in the present case are more sharp and simple than those observed in the case of

TAA, which has multiple concentrated vorticity regions within the three main shear

layers identified. The vorticity production in the supra-arteries seems to be similar

between the TASG and the TAA cases with high values obtained at P3 and P4 phase

instants.

Further, the iso surfaces of instantaneous λ2 = −0.1 are shown in Figure 4.29 at

the indicated phases colored by nondimensional velocity magnitude. These iso sur-

faces of λ2 obtained are different than those obtained in the TAA case. Longitudinal

vortical structures seem to be present in the distal end of the aorta. Ring like vortical

structures are identified in the ascending aorta and arch regions similar to the TAA

case. However, vortical structures observed in the TAA case such as those originating

from the aortic arch and extending towards the outer wall in the aneurysm region are

absent in the present case. This can be understood given the absence of the aneurysm

itself in the TASG case. The stent graft acting to provide a uniform cross sectional

area enhances the flow and the pulsatile inflow nature can be observed farther down

in the descending aorta with packets of vortical structures convecting downstream.

These coherent packets of vortical structures seem to be slowly convecting down-

stream the descending aorta as one moves from the phase instants P3 through P6.

Similar to the TAA case the vortical structures observed at phase instants P4 through

P6 are hard to distinguish owing to the smaller inlet flow velocity.
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(a) P1 (b) P2 (c) P3

(d) P4 (e) P5 (f) P6

Figure 4.28. Sequence of ensemble-averaged contours of vorticity
magnitude, normalized by V /d, for pulsatile inflow through the TASG
geometry.
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(a) P1 (b) P2 (c) P3

(d) P4 (e) P5 (f) P6

Figure 4.29. Sequence of instantaneous iso-surfaces of λ2 = −0.1, col-
ored by normalized velocity magnitude (umag/V ), for pulsatile inflow
through the TASG geometry.
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Turbulence Energy Spectra

To further understand the range of scales obtained in the present case, we calculate

frequency spectra at several probe locations. The spectra Eu′′,u′′ for points R1 and R3

are shown in frame (a) and Ev′′,v′′ obtained for points R9 and R12 are shown in frame

(b) of Figure 4.30. Unlike the frequency spectra obtained for the TAA case, here we

notice distinct peaks. Spectra at R1 shows a quickly decaying energy by S = 0.1

followed by distinct peaks of large amplitude. The first two peaks after S = 0.1 are

identified corresponding to S = 0.135 and S = 0.27. These peaks with approximately

at the same frequency are also seen at point R3. A clear turbulent spectrum either

parallel to the inertial subrange or dissipation range cannot be noticed from frames

(a) and (b) of the figure. The spectra at locations R9 shows similar trend with the

corresponding peaks slightly shifted to values of S = 0.139 and S = 0.273. These

frequencies slightly change further at location R12 to S = 0.143 and S = 0.265. At

location R9 the spectrum seems to be parallel to the inertial subrange S−5/3 over a

small range of frequencies between S = 0.1 to S = 1. The spectra at any of the

locations considered also do not show a clear range of frequencies in which they are

parallel to the S−10/3 line.

Wall Shear Stress

To evaluate the effect of stent graft on the wall shear stress we further compute

the phase averaged wall shear stress. The variation of nondimensional wall shear

stress is shown in Figure 4.31 at the indicated time instants. The peak values of skin

friction coefficient are of the same order of magnitude as those obtained for the case

of TAA, however, slightly lower peak values are observed consistently at any given

phase instant in the case of TASG as compared to TAA. At peak velocity point and

maximum deceleration point the skin friction values in the ascending aorta are in the

upper to middle range of the spectrum considered. At the other phases a mixture of

values is obtained over the entire surface of the aorta.
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Figure 4.30. Energy spectrum associated with the stream-wise fluc-
tuations (u′′ for R1 and R3 and v′′ for R9 and R12 for pulsatile inflow
through TASG geometry at the indicated locations. Lines with slopes
−5/3, −10/3 and −7 are also shown.
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(a) P1 (b) P2 (c) P3

(d) P4 (e) P5 (f) P6

Figure 4.31. Sequence of ensemble-averaged contours of skin friction
coefficient for pulsatile inflow through the TASG geometry.
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Magnitude of Spatial Wall Shear Stress Gradient (SWSSG)

Similar to the TAA case, here we study the regions that are susceptible for possible

formation of aneurysm in a TASG geometry. The contours of ensemble averaged

SWSSG are shown at indicated phase instants in Figure 4.32. Similar to the case

of TAA we see large values of SWSSG are obtained during the acceleration phase as

noted at instants P1 and P2. Spatial distribution of large values of SWSSG is mainly

concentrate in the ascending aorta region unlike in the regions in the aortic arch like

in the case of TAA. This shows that the ascending aorta region is subjected higher

values of SWSSG and may be susceptible for aneurysm formation.

4.4.5 Discussion and Conclusions

The focus of the present study is to compare the changes brought about to blood

flow in an endovascular treated thoracic aortic aneurysm. In order to evaluate the

same, two different geometries one corresponding to the patient specific pathological

aorta, TAA, and the other one corresponding to the medical device solution, TASG,

are studied for same inflow and outflow boundary conditions. A scale resolving tur-

bulence model such as LES is used with Vreman SGS stress turbulence model with

a motivation to capture and quantify the transitional, turbulent flow behavior that

exists in this types of flows. A large number of pulsation cycles amounting to 55 are

considered, which is consistent with the previous LES studies [11], however, only the

last 35 cycles are used for data reduction purposes discarding the first 20 cycles as

it was observed from the temporal evolution of the velocity a visually periodic state

is only reached by then. Since, the cycle to cycle variations contribute directly to

the turbulence energy levels, by definition in pulsatile flows, the statistics collection

undertaken in the present work is thought to be justified.

Overall, the enhanced blood flow rate in the descending aorta is observed in the

TASG geometry when compared with TAA. This could be attributed to the presence

of aneurysm in the TAA geometry which poses higher resistance to the flow thereby
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(a) P1 (b) P2 (c) P3

(d) P4 (e) P5 (f) P6

Figure 4.32. Sequence of ensemble-averaged contours of spatial wall
shear stress gradient for pulsatile inflow through the TASG geometry.
Note the contour levels shown are not the same for all frames and the
maximum and minimum values are shown on the upper right corner
with only a small range of values used for the contour levels indicated.
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decreasing the blood flow rate downstream. Further lower levels of turbulence kinetic

energy are found in the aortic arch region in TASG geometry in comparison to the

TAA geometry. TAA is characterized with vortical structures dominated in the aortic

arch and aneurysm region whereas in TASG the vortical structures are identified

as corresponding to the vortex shedding that is taking place because of the more

uniform cross sectional area of the TASG geometry from inlet to outlet. A comparison

of vorticity magnitude indicates several small shear layers present within the three

main shear layer roll-up in the aortic arch region in the TAA geometry, whereas the

TASG geometry shows presence of three distinct shear layers rolling up in the arch

region as the flow decelerates during diastole. Nondimensional wall shear stress are

compared by means of skin friction coefficient values. Overall slightly lower skin

friction coefficients are observed at any phase in TASG compared to TAA, however,

these differences are too small to make definitive conclusion on the lowering of wall

shear stress values because of a medical device solution. Investigation of turbulence

energy spectra indicate well developed inertial subrange at certain location in aortic

arch in the TAA geometry, whereas TASG shows distinct peaks in the spectrum

corresponding to the vortex shedding frequency of the shear layers.

There are several limitations of the present study, which result from the many

assumptions made in the simulation as described in the section 4.4.2, as a consequence,

the results obtained cannot be directly transferred to clinically relevant data. But

it is thought that the flow dynamics observed and the conclusions drawn hold good

under the assumptions made for the geometries considered providing insights into

reducing post repair complications.
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5. LARGE EDDY SIMULATION OF A BI-LEAFLET MECHANICAL HEART

VALVE

5.1 Introduction

During the systolic phase the aortic valve opens and blood flow takes places out

of the contracting ventricle into the aorta. The Mitral valve serves a similar purpose

in transmitting blood between the atrium and ventricle on the left side of the heart.

In most of the population the aortic valve is a tri-cuspid valve; however, in 1% of the

population it is found to be bi-cuspid, whereas the Mitral valve is a bi-cuspid valve.

Natural heart valves are thin, flexible leaflets that open and close under the action of

blood pressure allowing it to pass through ensuring blood circulation throughout the

body. Heart valves are prone to plaque formation eventually leading to a stenosed

or a modified configuration which becomes leaky. Leaky heart valves cannot hold

the blood during diastolic phase of the ventricle and as a result the blood pumping

capacity of heart during systolic phase becomes weak thereby disrupting the physio-

logical function of the heart. This condition is considered pathological and a surgeon

would consider replacing it with prosthetic heart valve depending on the severity and

urgency of the need. These artificial heart valves can be of one of 50 mechanical

heart valve designs that are in use or they can be a tissue or a biological valve. The

number of leaflets, valve material and type of passive (operated by blood pressure

alone) oscillating mechanism for opening and closing constitute the main differences

between several existing valve designs.

5.2 Previous Studies

In this section, we review previous experimental and numerical studies on pros-

thetic heart valves. Existing types of mechanical heart valves, fluid mechanics and
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simulation modeling approaches applied to them are reviewed by Yoganathan et

al. [71]. As described in this review article [71] three major types of prosthetic heart

valve designs are in use, they are caged ball, tilting disc and bi-leaflet heart valves.

The focus of the present study is only limited to evaluating a bi-leaflet mechanical

heart valve (BMHV) placed in a model aorta. A quick survey of few major artificial

heart valves can also be found in Dasi et al. [72] who discussed the fluid mechan-

ics and how advances in experimental and computational techniques are shaping the

artificial heart valve designs.

There have been several experimental studies using particle image velocimetry

with a motivation to understand the flow field characteristics and blood flow compli-

cations that occur with the use of medical devices [73–77]. Leo et al. [78] performed

experimental investigations of a polymeric heart valve that forms the latest heart

valve design which emulates a natural aortic valve. However, the BMHV design is

the most widely used heart valve design to date.

Krafczyk [79] et al. studied a stationary mechanical configuration at two opening

angles of 40 deg and 12 deg with pulsatile inflow conditions using lattice Boltzmann

methods. Although, it is not consistent to keep the valve leaflets fixed and apply

a pulsatile inflow conditions it served as one of first approximation studies to gain

insight into the flow dynamics and fluid shear stresses in the model artery fitted with

a mechanical heart valve. Grigioni et al. [80] also considered static leaflets in fully

open position and simulated the flow field for the peak velocity. They used a tri-fold

symmetric aortic root geometry which is more realistic but their assumptions of lami-

nar flow field at a peak Reynolds number of 3350 made a mismatch of the numerically

computed results with the accompanying in vitro observed mixing downstream of

the leaflets. De Tullio et al. [81] performed DNS studies on pulsatile flow through a

BMHV placed in a realistic aortic root geometry. They employed a fluid structure

interaction algorithm together with IBM to compute the forces acting on the valve

leaflets and update their kinematics. They compare the leaflet dynamics and veloc-

ity profiles obtained from phase averaging 10 simulated flow cycles to experimental
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results obtained for a similar geometry. They conclude that viscous and turbulent

shear stresses attain comparable magnitudes in different flow regions pointing to the

need to consider them in hemolysis and platelet activation studies. They, however,

suggest need for further improvement in these simulations by using a greater number

of simulated flow cycles to get converged root mean square quantities. In a similar

study to compare the numerically simulated leaflet dynamics with the experimentally

obtained results Dasi et al. [82] imposed experimentally measured leaflet kinematics

in the numerical simulations and studied the evolution of vorticity and coherent struc-

tures in an impulsively started simulation. In spite of many simplifications employed

in the numerical simulations, such as plug flow velocity inlet profile, cycle-to-cycle

asymmetries in the motion of the leaflets, inlet disturbances etc., they found the sim-

ulated vorticity dynamics to be in good overall agreement with the measurements.

Motivated by the effect of viscous stresses levels on the red blood cells and platelet

activation, Ge et al. [83] performed numerical simulations in an axisymmetric aortic

geometry with a BMHV in tandem with 2D high resolution particle image velocime-

try measurements. The numerical algorithm in their simulations utilized a curvilinear

immersed boundary method and the leaflet kinematics are imposed as a boundary

condition. Through both their simulations and experiments they conclude that the

viscous stresses in the downstream region of the leaflets could potentially damage

platelets, however, stresses obtained are too low to effect red blood cells.

While the aforementioned numerical studies employed IBM as the main method-

ology for valve leaflet modeling, Nguyen et al. [84] employed arbitrary Lagrangian

Eulerian (ALE) formulation in a finite volume method in their numerical solver.

They used RANS equations together with two turbulence models, namely, Spalart-

Allmaras (SA) and k−ǫ models. Their study was motivated by the validation of their

numerical solver with the experimentally obtained results from PIV measurements at

three different Reynolds numbers of 350, 750 and 1000. Like most the previous nu-

merical studies the leaflet kinematics are prescribed accompanied by pulsatile inflow

boundary conditions on velocity. Cheng et al. [85] also used ALE formulation for nu-
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merical simulations on a one quarter model of the leaflet and the aorta model. Their

study showed that large negative pressure transients could occur close to the leaflet

edges during closing and rebound phases. Using similar numerical methodology using

a commercial fluid dynamics software FLUENT, together with a fully implicit fluid

structure interaction coupling procedure available with in that software, Dumont et

al. [86] compared the performance of two commercially available bi-leaflet mechanical

heart valves, namely, the ATS Open Pivot Valve and the St. Jude Regent Valve.

Their study focused on evaluating hemodynamic and thrombogenic performance of

these two bi-leaflet heart valve designs which differed mostly in the hinge mechanism

used for mounting the leaflets. They conclude that the two designs lead to different

potential for platelet activation, especially during the regurgitation phase.

There are several studies which focused on 2D BMHV simulations. Bluestein et

al. [87] performed RANS based simulations using k− ǫ turbulence model in commer-

cial fluid dynamics software FIDAP for 2D BMHV configuration under fully open

condition. Their observations from numerical results were also verified by digital par-

ticle image velocity (DPIV) measurements. They postulated that the vortex shedding

that takes places from the leaflets under unsteady pulsatile inflow conditions provides

conducive atmosphere for the generation of cerebrovascular microemboli that carry

cardioembolic stroke risk. They hypothesize that vortex shedding from the leaflets

promotes free emboli formation and the convection of these downstream through

vortex shedding can further cause systemic emboli. Platelet activation is further in-

vestigated by Krishnan et al. [88] using highly resolved, adaptive mesh technique in a

2D simulation. They used Lagrangian particle tracking method to incorporate hemo-

dynamic forces on the particles. The motion of the leaflets is computed using a fluid

structure interaction algorithm. They conclude that the interaction between the shear

layers that get developed downstream of the leaflets create a region of rotating flow

with high shear stress and high particle residence times which may lead to platelet

activation. Govindarajan et al [89] further extended these simulations to study flow

and platelet dynamics in the hinge region of the leaflets. With the insights gained



127

from the 2D rectangular leaflet simulation they further modify the leaflet geometry

to a more streamlined elliptical configuration. Results obtained for this geometry did

not change the plate activation parameter, however, the number of particles trapped

in vortex roll up got reduced. They point out a need to perform parametric design

optimization studies to come up with a leaflet design that reduces platelet activation

and thrombus formation. Alemu et al. [90] did pursue this idea of design modifica-

tions. They optimize the ATS valve thrombogenic performance, by modifying several

design features of the valve, such as, leaflet - housing gap, effective maximum opening

angle of the valve, streamlining the gap between leaflet stops of the valve. Through

this test case they demonstrate that the Device Thrombogenicity Emulator (DTE)

optimization methodology can be used as a test bed for medical device development

to achieve significant improvements in thrombogenic performance. In a related study,

Fogelson & Guy [91] developed a model to describe the formation of platelet thrombi

in coronary-artery sized blood vessels. By using two spatial scales, one representing

the microscale of the platelets and the other one representing the macroscale of the

blood vessel, they demonstrate that the proposed model produces thrombi growth

and occlude the blood vessel and their geometrical shapes get effected by the fluid

shear-stresses.

Mechanical heart valve implants pose a risk of blood damage, thromboembolic

events, blood coagulation, hemolysis and material failure of the device. Some of

these events are believed to be caused because of non-physiological blood flow pat-

terns created by the implanted device. There have been cases of mechanical heart

valve failure in the past where a particular heart valve design was withdrawn from the

market after it was observed that the valve material got deteriorated and one of the

leaflets escaped causing severe valve insufficiency and embolism [92–99]. Klepetco et

al. [100] further investigated two cases of this valve failure from two patients follow-

ing complications that arose at 36 and 38 months after implantation. The embolized

leaflet parts are detected in the iliac artery region using a computed tomographic

scan and removed. Evaluation of these parts showed crack growth which is indica-
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tive of fatigue failure. Scanning electron microscope examination revealed areas of

pitting and erosion on the recovered parts. They point out that the exact mechan-

ical disruption is speculative; however, the material used for the leaflets which is

pyrolytic carbon could be susceptible to fatigue fracture as well as erosion damage.

This type of erosion damage resembled the damages caused by cavitation, which is

also observed in other engineering machinery such as steel turbines, ship propellers,

journal bearings, and impellers [101–104]. Cavitation occurring in mechanical heart

valve erosion damage is first pointed out in 1976 by Zubarev et al. [105]. They also

suggested that thrombogenesis is qualitatively related to the turbulence of the blood

stream on the prosthesis. They observed structural changes on the surfaces of the

material to a depth of 0.05 mm. This observed erosion damage is presumed to be

related to saturation of the material of the surfaces with the gases released as a result

of cavitation in the close vicinity of prosthesis. A review of cavitation in mechan-

ical heart valves is presented by Johansen [106]. Kafesjian et al. [107] documented

cavitation erosion damage for over a hundred BMHV designs collected from simu-

lators and animal studies. They reported location, type and severity of cavitation

damage on the observed in vitro. Most of the fractures they studied have a focal pit

indicating pitting as the primary damage mechanism. They suggest that the leaflets

made of pyrolytic carbon components be highly polished with fewer micro-pores so

that cavitation nucleation sites are drastically reduced and the leaflets may be able to

withstand cavitation forces. Graf et al. [108] performed in vitro studies to investigate

causes and formation of cavitation in BMHV. They found that cavitation is produced

primarily because of the deceleration of the closing leaflet of the valve which they

measured to be a very high value of 900g. Such a high value of deceleration falls in

the range of cavitation induced material erosion. They conclude that future BMHV

designs need to reduce unsteadiness in the back flow during the valve closure phase.

In a related study [109], they performed in vitro studies on ten different types of com-

mercially available heart valves to detect cavitation thresholds for temporal pressure

gradients. They measured cavitation bubbles with a diameter of up to 1.8 mm and
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with a collapse time of 0.1 ms in all most all the models considered and the temporal

pressure gradient threshold to be sometimes within the physiological range of 2000

mm Hg/s. Lee et al. [110] have also performed in vitro studies on Medtronic tilting

disc valve to understand the cavitation effect during the valve closure. They found

surprisingly low threshold values for pressure loading rate in the range of 300 to 400

mm Hg/s. There are several in vitro studies [111–113] which focused on visualizing

the cavitation bubble in the inlet region of the valve. Wu et al. [113] specifically point

out that the mounting compliance plays a significant role in cavitation inception and

subsequent bubble growth. They also suggest the possibility of detecting cavitation

by using a high frequency pressure transducer placed in the atrial chamber. While

most of the cavitation detection experiments discussed above focused on visualizing

the cavitation bubble and making qualitative comparisons, Garrison et al. [114] de-

veloped a quantitative measure to determine cavitation level. Their proposed method

is based on measuring high frequency pressure fluctuations downstream of the valve

leaflets. They have also shown that hemolysis increases with increase in cavitation

level.

5.3 Present Study

There are several in vitro experimental efforts towards predicting, understanding

and reducing initiation of cavitation in BMHV as discussed in Section 5.2, and further

there are several efforts also towards numerically simulating the blood flow dynamics

in the BMHV. However, numerical simulations towards understanding and predicting

cavitation are still lacking. The difficulty to detect cavitation in vivo provides a strong

motivation to pursue numerical or in vitro studies towards designing BMHV and

understanding the associated blood flow dynamics. In the following, we first study

a stationary BMHV configuration at the peak velocity and corresponding maximum

opening of the leaflets, followed by an oscillating BMHV configuration with imposed
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kinematics of the leaflets. However, the study of predicting and simulating cavitation

that may form is not accomplished in the present work.

5.4 Geometry and Boundary Conditions

The geometry of the BMHV considered in the present study is shown in frames

(a) and (b) of Figure 5.1 in two views. Both the leaflets are at the maximum opening

configuration and the inflow velocity corresponds to peak velocity. The diameter of

each of the valves (d) is taken to be the length scale and the maximum velocity (U)

at the inflow is taken as the velocity scale. The peak Reynolds number defined based

on this length and velocity scales is taken to be 3727, which is equal to the peak

Reynolds number considered in the earlier studies on TAA and TASG. The model

aorta used in the present study is a pipe with uniform diameter equal to 1.2d and a

length equal to 5d. The leaflets are placed at the origin located 1d from the inlet of

the aorta to account for the back flow that takes place during the deceleration phase

of the pulsation. A uniform velocity inlet boundary condition is applied with a steady

value corresponding to u/U = 1 in the case of static leaflets case whereas a model

time dependent velocity profile as shown in Figure 5.2 is used in the case of dynamic

leaflets case. As can be seen from Figure 5.2, flow accelerates and decelerates during

systolic phase (0 < t/T < 0.5) which occupies a period of t/T = 0.5 and during the

rest of the time period no flow occurs through the inlet and the leaflets are in closed

position making right angle with y/d = 0 plane. The leaflets begin from a fully closed

position at t/T = 0 and start rotating at constant angular velocity of 2π rad/sec. The

top leaflet (identified as the one in y/d > 0 region) starts rotating clockwise about

z axis whereas the bottom leaflet (identified as the one in y/d < 0 region) starts

rotating counter clockwise about z axis. At the end of the time period of t/T = 0.25

both leaflets attain fully open or horizontal position and they reverse their respective

rotation directions keeping axis of rotation the same so as to reach a fully closed

position by a time of t/T = 0.5. During the diastolic phase (0.5 <= t/T <= 1.0)
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during which no inlet flow takes places as shown in Figure 5.2 both the valves remain

stationary in the fully closed position. In both static and dynamic valve simulations

a homogeneous Neumann boundary condition on velocity components (∂ui

∂x
= 0) is

applied together with a Dirichlet boundary condition on pressure. A no-slip boundary

condition is imposed on the walls of the model aorta. The velocity boundary condition

the valve leaflets is also a no-slip boundary condition, as follows:

ui =
∂Xi

∂t
(5.1)

whereXi is the instantaneous location of the valve leaflets, which is a constant value in

the static valve case leading to a zero fluid velocity boundary condition on the leaflets,

whereas it is computed based on the leaflet rotations during opening and closing

phases in the dynamic valve case. The leaflets rotate about locations y/d = ±0.05

when measured in the fully open phase. These locations are supposed to the places

where the leaflets are mounted on hinges in reality. The leaflets only occupy an area

corresponding to a diameter d whereas the model artery fluid flow cross sectional area

corresponds to a diameter of 1.2d which gives a blockage diameter ratio of 0.833 for

the flow to pass through. This blockage ratio will be close a value of 1 in the real

BMHV geometry with allowances for placing the mechanical hinges. Also, in the real

BMHV configuration the opening and closing of the leaflets is achieved only over a

rotation angle close to 55 degrees unlike a rotation angle of 90 degrees considered in

the present study.

5.5 Stationary Bi-leaflet Mechanical Heart Valve (BMHV)

A stationary BMHV simulation corresponding to maximum opening of leaflets and

maximum inflow velocity (corresponding to Q2 point in Figure 5.2) is considered in

the present section. This flow configuration corresponds to a peak Reynolds number of

3727. The geometry and boundary conditions are applied as discussed in Section 5.4.

This flow setting corresponds to the configuration depicted in Figure 5.1. A mesh

resolution of 15 × 20 × 120 is used with 30 × 6 × 1 blocks in each of the x, y and z
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(a)

(b)

Figure 5.1. Schematic of the bi-leaflet mechanical heart valve placed
in a model artery. Each of the leaflets is at the maximum opening
phase.

t/T

u
/

U

0 0.2 0.4 0.6 0.8 1
0

0.5

1

Q1

Q2
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Figure 5.2. Model pulsating inlet velocity profile together with five
selected temporal locations (Q1 through Q5) for phase averaging of
the flow field.
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directions respectively, amounting to a total resolution of 6.48 million mesh points.

A time step of 1e− 03 is used to advance the simulation and the turbulent statistics

are collected over a period of 20 nondimensional time which equals 4 flow through

time. Time averaged nondimensional axial velocity profiles are shown in Figure 5.3

at indicated x/d locations along the axis of the model aorta on two central planes.

Frames (a) and (c) denote the orientation of the leaflets which are located at x/d = 0,

but shown separately for clarity. The z = 0 plane passes right through the leaflets

whereas the plane y = 0 does not interest with the leaflets. From frames (b) and (d) of

this figure we note that the velocity profile at x/d = −0.5 which is located upstream

of the leaflets is a profile that can be expected in a pipe flow and the similarity of

these profiles at this location in both the planes confirms the axisymmetric nature

of the flow at this location. As we move downstream, the leaflets cause the flow to

stick to them through along their surface causing the flow to split into three separate

regions, one between the leaflets and one each between the leaflet and the walls of the

model aorta. The no-slip boundary condition on the leaflets can be perceived from

the velocity profiles at locations x/d = 0.0 and at x/d = 0.5. At the same location

in frame (d) we see the velocity profile formed in the central jet region. As we move

downstream, we note from frame (b) that the velocity boundary layers from both

the leaflets merge with the central jet region causing the velocity profile to return

to a profile similar to the one noted upstream of the leaflets. However, as we see

from frame (d) the velocity profiles on y = 0 plane does not return to a similar

profile as the undisturbed profile noted at x/d = −0.5. As as result the flow field

downstream of the leaflets even at x/d = 4.0 is not axisymmetric but it seems to

be having symmetric profiles about lines y = 0 and z = 0 in the xz and xy central

planes respectively. Next, we turn to look at the turbulence kinetic energy (tke)

profiles. The time averaged normalized tke profiles are shown in Figure 5.4. Frames

(a) and (c) indicate the orientation of the leaflets whereas frames (b) and (d) show

the variation of tke profiles at indicated axial locations along the axis of the model

aorta. As we can see from frames (b) and (d) the tke starts to develop downstream
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Figure 5.3. (a) Orientation of the leaflets as seen from z = plane.
(b) Time averaged axial velocity profiles on z = 0 plane, at indicated
locations in the steady inflow to the BMHV at the maximum opening
phase in a model aorta. (c) Orientation of leaflets as seen from y = 0
plane. (d) Time averaged axial velocity profiles on y = 0 plane, at
indicated locations in the steady inflow to the BMHV at the maxi-
mum opening phase in a model aorta. The corresponding phase of
the leaflets is shown to the left of the profiles for clarity which are
otherwise located at x/d = 0. Note the scale on the x and y axes is
not the same.
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at a location x/d = 1.0 which is 0.5d downstream of the location from the trailing

end of the leaflets. This is an interesting phenomenon showing the interaction of the

top and bottom shear layers with the central shear layer only happens downstream of

the leaflets. From this figure we can see that a maximum of around 5% tke is noted

at a location x/d = 1.5. The tke production starts to increase as we move away from

the leaflets at location x/d = 0.5 reaching a maximum value at x/d = 1.5 and then it

starts decreasing as we move further towards the distal end of the model aorta. The

profiles start of similar to a Gaussian profile in the z = 0 plane but slowly decays

into a profile with three peaks towards the distal end. The profiles in the y = 0

plane also begin as one resembling Gaussian profile but very quickly a double peak

structure followed by a four peak structure and then diffuses into a close to a two

peak structure by x/d = 4.0. The tke production is essentially zero from the inlet of

the domain until x/d = 0.5. Similar to the mean axial velocity profiles noted above,

the tke profiles seem to be symmetric in each of the planes considered, but they are

not axisymmetric at any of the locations where they are non-zero.

The interaction of the two shear layers with the central jet region can be further

appreciated by looking at the vorticity magnitude contours. Instantaneous nondimen-

sional contours of vorticity magnitude are shown in Figure 5.5 on two perpendicular

planes z = 0 and y = 0 in frames (a) and (b) respectively. Equally spaced 20 contour

levels ranging from 0 to 20 are used for depicting the vorticity distribution in these

figures. We can see the two shear layers on the upper and lower sides of each of the

leaflets interacting in frame (a). Alternate vortex shedding takes places similar to

von Karman vortex street as if the two leaflets act as a single body. The interaction

shows a intense vorticity distribution on the plane y = 0 in frame (b) of the figure.

The intensity of vorticity seems to be large close to the production region which hap-

pens to be on the surfaces of the leaflets and decreases as we move away from them.

Vorticity production from the walls of the model aorta is also seen which seems to be

interacting with the shed vortices from the leaflets at downstream locations as far as

x/d = 3.
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Figure 5.4. (a) Time averaged normalized turbulent kinetic energy

(< k > /U
2
) profiles on z = 0 plane, at indicated locations in the

steady inflow to the BMHV at the maximum opening phase in a
model aorta. (b) Time averaged normalized turbulent kinetic energy

(< k > /U
2
) profiles on y = 0 plane, at indicated locations in the

steady inflow to the BMHV at the maximum opening phase in a
model aorta. The corresponding phase of the leaflets is shown to the
left of the profiles for clarity which are otherwise located at x/d = 0.
Note the scale on the x and y axes is not the same.
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To further illustrate the interaction of the shear layers we educe the vortical struc-

tures using iso-surfaces of λ2 introduced by Jeong & Hussain [56]. The iso-surfaces of

λ2 = −2 are shown in Figure 5.6 in two different views as seen from planes z = 0 and

y = 0 in frames (a) and (b) respectively. The colors indicate nondimensional instan-

taneous velocity. Alternate vortex shedding from each of the leaflets can be seen from

frame (a) of this figure. Also long vortical structures emanating from the sides of each

of the leaflets can be seen in both the views. The vortex structures grow linearly in

size as we move downstream and they also interact with the long coherent structures.

Complex interaction of these coherent structures is noted downstream of the leaflets.

The configuration studied in the present case under stationary BMHV produces quite

a different flow field compared to the physiologically relevant oscillating BMHV case

as we will further investigate in the next section.

5.6 Oscillating Bi-leaflet Mechanical Heart Valve (BMHV)

In this section, we imposed the motion of the leaflets and also apply pulsatile

inflow boundary conditions to be consistent with it. The pulsatile inflow profile is

shown and discussed before in Figure 5.2. Five sampling points Q1 through Q5 are

marked on this figure for the purpose of phase averaging the data. As the leaflets move

during the simulation a further refined mesh is employed for the present simulations.

A mesh size of 15× 14× 140 is used with 30× 10× 1 blocks in each of the x, y and z

directions, making an overall resolution of 8.82 million mesh points. The simulation

was run for a total of 35 nondimensional time which corresponds to 35 pulsatile cycles

and only the last 15 cycles were used for statistics collection.

The phase averaged normalized axial velocity profiles are shown in Figure 5.7 at

the indicated axial locations along the model aorta. The corresponding orientation of

the leaflets is shown to the frames in the left column, for clarity, which are otherwise

located at x/d = 0. From this figure, we note that axial velocities as high as 3U are

reached in the central jet region during mid acceleration at point t/T = Q1. The
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(a) z = 0 plane

(b) y = 0 plane

Figure 5.5. Instantaneous contours of normalized vorticity magnitude
shown on (a) z = 0 plane (b) y = 0 plane, in the steady inflow to the
BMHV at the maximum opening phase in a model aorta.
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(a) z = 0 plane

(b) y = 0 plane

Figure 5.6. Instantaneous iso-surfaces of λ2 = −2 with axial velocity
as color code shown in different views (a) z = 0 plane (b) y = 0 plane,
in the steady inflow to the BMHV at the maximum opening phase in
a model aorta.
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peak velocity in the central jet region reduced to 2U at peak velocity point Q2 and a

reverse flow velocity as high as −1.6U are noted in the same region at the end of the

systole. The average velocity and the profiles towards the distal end at x/d = 4.0 look

very similar to those observed at locations before the leaflets at x/d = −0.5 at any

given phase. The axial velocity profiles on y = 0 are shown in Figure 5.8 at the same

phases. Similar to the previous observations, we note that the peak velocity occurs

at point Q1 and the distal end velocity profiles look very similar to the ones before

the leaflet location. All the velocity profiles on y = 0 plane at phases Q2 and Q3

show forward velocity whereas at other phase instants reverse flow is observed mainly

towards the trailing edge of the leaflets at location x/d = 0.5 and in the immediate

downstream at location x/d = 1.0.

Next, we investigate the tke production in the model aorta under pulsatile inflow

conditions with imposed kinematics of the leaflets. The normalized tke profiles are

shown in Figure 5.9 on the z = 0 plane at indicated x/d locations along the axis of

the model aorta. We can see from this figure that the tke profiles reach a maximum

value of around 12.5%. The profiles start increasing beginning at the trailing edge

of the leaflets at x/d = 0.5 reaching a maximum values at the location x/d = 1.0

and there after they start decreasing reaching close to zero values by x/d = 3.0. The

same phenomenon is observed with the profiles plotted on y = 0 plane in Figure 5.10.

This behavior is quite different from that one observed in the case of the stationary

BMHV at the maximum velocity condition. In the stationary case it was noted that

the tke values reached a maximum value at the location x/d = 1.5 with close to 5%

intensity, however they did not decay to zero values even close to the distal end.

To further understand the vorticity dynamics in the model aorta with moving

leaflets. The contours of normalized vorticity magnitude are shown on z = 0 plane

and y = 0 plane in Figure 5.11 and Figure 5.12 respectively. As we can see from phase

Q2 the central jet with two shear layers from each side of the bottom of the leaflets

does not have any undulations. There are two shear layers that get formed from the

trailing edge of the leaflets and these get formed during the acceleration phase as can
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be noticed from phases Q1 and Q2 in the z = 0 plane in Figure 5.11. The same

time frames in Figure 5.12 shows the span wise extent of the vorticity production in

the central jet region. As the leaflets retract back in the deceleration phase small

undulations are noticed in the vorticity contours in the central jet region at time

instant Q3 as seen in the z = 0 plane contours. The shear layers that got formed

from the trailing edge of the leaflets gets shed from the edges and start interacting

with the wall shear layers as seen in frame (f) at phase Q3 in Figure 5.12. This

separation of shear layer is also noticed in the central plane on y = 0 plane at the

same phase as seen in frame (f) in Figure 5.12. As the leaflets return to the fully

closed position at the end of the systole many undulations are seen in both the central

jet vorticity as well in the shear layers that got formed at the trailing edges of the

leaflets. The location of the interaction of the previously shed vortices with the wall

shear layers seems to be stationary between the phases at Q3 and Q4. The same

observation of nearly stationary vorticity distribution is noticed on the y = 0 plane.

Towards mid diastole, we notice that the intensity of vorticity decreases as can be

noticed from frames (j) in both z = 0 and y = 0 planes. However, a small region of

vorticity production is seen ahead of the leaflets in the central jet region in the same

frame in Figure 5.11, this is attributed to the back flow that takes place during the

diastolic phase of the flow. The same can be noticed in the y = 0 plane in frame (j)

with non-zero vorticity values seen to the left of x/d = 0.

The coherent vortical structures that get generated in this flow are visualized

using the λ2 criterion of Jeong & Hussain [56]. The iso-surface of λ2 = −2 are shown

in Figure 5.13 at the indicated phase instants. Unlike the vortical structures noticed

in the stationary BMHV case, here we notice many small scale structures in the

downstream of the leaflets. In the stationary BMHV case, the vortical structures

were a consequence of the vortex shedding and linear growth of large structures is

noted. However, in the physiologically relevant pulsatile case with moving leaflets we

notice that the vortical structures and the tke levels decays quickly by a downstream

location of x/d = 2.0. Vortical structures being separated from the leaflets and
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getting shed can be noticed from frames Q2 and Q3 in this figure. Maximum velocity

is seen in the gaps between the leaflets and model aorta at phase Q2. Further, the

back flow of the central jet during diastole is seen at phase Q5 in this figure.

5.7 Discussion and Conclusions

In the present work, we performed both stationary and moving leaflet simulations

under steady and pulsatile inflow conditions. The stationary simulations correspond

to the peak velocity condition in the pulsatile inflow simulation. It is observed that the

stationary leaflet with steady inflow condition yields strikingly different results when

compared with the same point in the pulsatile inflow conditions. In the stationary

leaflet simulation periodic vortex shedding similar to von Karman vortex street was

observed with both the leaflets acting as a single body. The tke production took place

downstream of the leaflets around x/d = 1.0 reaching a peak value at x/d = 1.5 and

there after they decreased as we move downstream. The tke values did not reach non

zero values even close to the exit of the domain. The educed vortical structures also

showed large vortices shed both from the top and bottom leaflets. There were long

vortical structures that were observed that emanated from the sides of the leaflets.

Downstream these vortices interacted with those that were shed form top and bottom

leaflets.

The pulsatile inflow simulation with imposed kinematics of the leaflets showed high

velocities in the central jet region and the velocity profiles at the distal end represented

close to the corresponding profiles at a location before the leaflets. Reverse flow was

observed in the central jet region at the end of the systolic phase. The tke production

started right from the edges of the leaflets and decayed to zero values by a downstream

location of x/d = 3.0. During deceleration phase undulations in the central jet shear

layers were noted together with the shear layers there were shed from the leaflet edges

interacting with the wall shear layers. Small coherent structures were found in the

immediate downstream of the leaflets and the reverse flow generated from the central
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Figure 5.7. Ensemble averaged axial velocity profiles on z = 0 plane,
at indicated locations and at indicated time instants in the pulsatile
inflow to the BMHV in a model aorta. The corresponding phase of
the leaflets is shown to the left of the profiles for clarity which are
otherwise located at x/d = 0. Note the scale on the x and y axes is
not the same.
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Figure 5.8. Ensemble averaged axial velocity profiles on y = 0 plane,
at indicated locations and at indicated time instants in the pulsatile
inflow to the BMHV in a model aorta. Note the scale on the x and z
axes is not the same.
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Figure 5.9. Ensemble averaged turbulent kinetic energy profiles on
z = 0 plane, at indicated locations and at indicated time instants in
the pulsatile inflow to the BMHV in a model aorta. The corresponding
phase of the leaflets is shown to the left of the profiles for clarity which
are otherwise located at x/d = 0. Note the scale on the x and y axes
is not the same.
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Figure 5.10. Ensemble averaged turbulent kinetic energy profiles on
y = 0 plane, at indicated locations and at indicated time instants in
the pulsatile inflow to the BMHV in a model aorta. The corresponding
phase of the leaflets is shown to the left of the profiles for clarity which
are otherwise located at x/d = 0. Note the scale on the x and z axes
is not the same.
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(a) (b) t/T = Q1

(c) (d) t/T = Q2

(e) (f) t/T = Q3

(g) (h) t/T = Q4

(i) (j) t/T = Q5

Figure 5.11. Contours of normalized and ensemble averaged vorticity
magnitude on z = 0 plane, at indicated time instants in the pulsatile
inflow to the BMHV in a model aorta.
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(a) (b) t/T = Q1

(c) (d) t/T = Q2

(e) (f) t/T = Q3

(g) (h) t/T = Q4

(i) (j) t/T = Q5

Figure 5.12. Contours of normalized and ensemble averaged vorticity
magnitude on y = 0 plane, at indicated time instants in the pulsatile
inflow to the BMHV in a model aorta.
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(a) t/T = Q1

(b) t/T = Q2

(c) t/T = Q3

(d) t/T = Q4

(e) t/T = Q5

Figure 5.13. Iso surfaces of λ2 criterion colored by instantaneous
axial velocity at indicated time instants in the pulsatile inflow to the
BMHV in a model aorta.
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jet region in the diastolic phase resulted in two long vortical structures that move

ahead into the gap between the inlet and leaflets.
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6. CONCLUSIONS AND FUTURE WORK

6.1 Conclusions

The following conclusions can be arrived at from the present research work within

the limits of the assumptions made for each of the simulations performed. The devel-

oped WenoHemo solver is applied to study two clinically relevant bio-fluid dynamics

problems. Results obtained from TAA and TASG indicate that, turbulence levels

are lower in the TASG configuration compared to the pathological TAA configura-

tion. Well developed turbulence is detected from the energy spectrum in the case

of TAA, whereas TASG only shows vortex shedding. Analysis of WSS and SWSSG

indicates that although WSS levels remains almost same between the TAA and TASG

configurations, the SWSSG levels are large in the regions close the inlet and in the

neighborhood of the aneurysm whereas large SWSSG values are noted only in the

inlet region in the case of TASG. This indicates that TAA configuration is more

predisposed to the formation of an aneurysm in the aortic arch region.

The study of blood flow over BMHV configuration placed a model aorta reveals

totally different results between the stationary leaflet configuration and the moving

leaflets configuration. In the case of moving leaflets the kinematics are imposed

and the turbulence levels increase behind the leaflets and quickly damp within one

diameter of the leaflets. Complex vortical structures are produced behind the leaflets

that disintegrate into small scale structures during the deceleration phase that need

to be considered in the design of the mechanical heart valves for reliability and to

reduce post surgical complications.
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6.2 Future Work

6.2.1 Solver Development

The following solver improvements could be undertaken in future.

• The present solver, WenoHemo, currently can only handle uniform mesh sizes.

Future work needs to focus on implementing Adaptive Mesh Refinement (AMR)

using which the mesh can be refined in regions where it is necessary without a

need to refine the mesh everywhere.

• The file input/output is presently supported using PLOT3D format. However,

there is an inherent limitation to use this format with a large number of pro-

cessors. As the file input/output is performed through a serial mode, all the

processors will send their own data to the host process which writes the data

files. This behavior can be improved by using HDF5 file format which allows

for parallel writing of files.

6.2.2 Simulations of TAA/TASG

• A non-Newtonian model could be implemented in the using which the differ-

ences in results obtained between Newtonian and non-Newtonian models can

be delineated.

• The walls of the aorta are considered to be rigid. This is severe restriction at

least in some locations of the aorta which is not pathologically affected. Future

studies can consider implementing a Fluid-Structure Interaction (FSI) model to

incorporate the aortic wall deformations in the simulations.
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6.2.3 Simulations of BMHV

• Fully coupled fluid structured interaction of the valve leaflets with the blood

flow

• Inclusion of non-Newtonian fluid model to evaluate the effect during valve open-

ing and closure phases in which time blood flow takes places through narrow

gaps causing high shear rates.

• Inclusion of sinus region near the valve placement and realistic aorta geometry

instead of the model aorta considered in the present work.
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[39] D. de Zélicourt, L. Ge, C. Wang, F. Sotiropoulos, A. Gilmanov, and A. Yo-
ganathan. Flow simulations in arbitrarily complex cardiovascular anatomies
An unstructured Cartesian grid approach. Computers & Fluids, 38(9):1749–
1762, October 2009.

[40] W. K. Liu, S. Jun, and Y. F. Zhang. Reproducing kernel particle methods. In-
ternational Journal for Numerical Methods in Fluids, 20(8-9):1081–1106, 1995.

[41] A. L. F. Lima E Silva, A. Silveira-Neto, and J. J. R. Damasceno. Numerical
simulation of two-dimensional flows over a circular cylinder using the immersed
boundary method. Journal of Computational Physics, 189(2):351–370, August
2003.

[42] A. Mark and B. Vanwachem. Derivation and validation of a novel implicit
second-order accurate immersed boundary method. Journal of Computational
Physics, 227(13):6660–6680, June 2008.



157

[43] A. Chaudhuri, A. Hadjadj, and A. Chinnayya. On the use of immersed boundary
methods for shock/obstacle interactions. Journal of Computational Physics,
230(5):1731–1748, March 2011.

[44] M. B. Kennel. KDTREE 2: Fortran 95 and C++ software to efficiently search
for near neighbors in a multi-dimensional Euclidean space. Arxiv preprint
physics/0408067, 2004.

[45] R. D. Falgout and J. E. Jones. Multigrid on Massively Parallel Architectures.
In E Dick, K Riemslagh, and J Vierendeels, editors, Multigrid Methods VI,
volume 14 of Lecture Notes in Computational Science and Engineering, pages
101–107. Springer, 2000.

[46] S. F. Ashby and R. D. Falgout. A parallel multigrid preconditioned conju-
gate gradient algorithm for groundwater flow simulations. Nuclear Science and
Engineering, 94551(1):145–159, 1996.

[47] T. A. Johnson and V. C. Patel. Flow past a sphere up to a Reynolds number
of 300. Journal of Fluid Mechanics, 378(-1):19–70, 1999.

[48] N. Tylli, L. Kaiktsis, and B. Ineichen. Sidewall effects in flow over a backward-
facing step: Experiments and numerical simulations. Physics of Fluids,
14(11):3835, 2002.

[49] R. Wille and H. Fernholz. Report on the first European Mechanics Colloquium,
on the Coanda effect. Journal of Fluid Mechanics, 23(4):801–819, 1965.

[50] I. Reba. Applications of the Coanda effect. Scientific American, 214:84–92,
1966.

[51] R. Mittal, S. P. Simmons, and H. S. Udaykumar. Application of large-eddy
simulation to the study of pulsatile flow in a modeled arterial stenosis. Journal
of Biomechanical Engineering, 123(4):325–332, 2001.

[52] M. M. Molla, B.-C. Wang, and D. C. S. Kuhn. Numerical study of pulsatile
channel flows undergoing transition triggered by a modelled stenosis. Physics
of Fluids, 24:121901, 2012.

[53] V. Aeschlimann, S. Barre, and S. Legoupil. X-ray attenuation measurements
in a cavitating mixing layer for instantaneous two-dimensional void ratio deter-
mination. Physics of Fluids, 23(5):055101, 2011.

[54] C. D. Winant and F. K. Browand. Vortex pairing : the mechanism of turbulent
mixing-layer growth at moderate Reynolds number. Journal of Fluid Mechanics,
63(02):237–255, 1974.

[55] V. Aeschlimann, S. Barre, and H. Djeridi. Velocity field analysis in an experi-
mental cavitating mixing layer. Physics of Fluids, 23(5):055105, 2011.

[56] J. Jeong and F. Hussain. On the identification of a vortex. Journal of Fluid
Mechanics, 285(-1):69–94, 1995.

[57] B. R. Shin, S. Yamamoto, and X. Yuan. Application of Preconditioning Method
to Gas-Liquid Two-Phase Flow Computations. Journal of Fluids Engineering,
126(4):605, 2004.



158

[58] N. Dittakavi, A. Chunekar, and S. Frankel. Large Eddy Simulation of Turbulent-
Cavitation Interactions in a Venturi Nozzle. Journal of Fluids Engineering,
132(12):121301, 2010.

[59] I. Senocak and W. Shyy. A Pressure-Based Method for Turbulent Cavitating
Flow Computations. Journal of Computational Physics, 176(2):363–383, 2002.

[60] C. J. Lu, Y. S. He, X. Chen, and Y. Chen. Numerical and Experimental
Research on Cavitating Flows. In Fifth International Conference on Fluid Me-
chanics, pages 45–52. Tsinghua University Press & Springer, 2007.

[61] V. Srinivasan, A. Salazar, and K. Saito. Numerical simulation of cavitation
dynamics using a cavitation-induced-momentum-defect (CIMD) correction ap-
proach. Applied Mathematical Modelling, 33(3):1529–1559, 2009.

[62] R. E. Bensow and G. Bark. Implicit les predictions of the cavitating flow on a
propeller. Journal of fluids engineering, 132(4), 2010.

[63] R. F. Kunz, D. A. Boger, D. R. Stinebring, S. Chyczewski, J. W. Lindau, H. J.
Gibeling, S. Venkateswaran, and T. R. Govindan. A preconditioned Navier-
Stokes method for two-phase flows with application to cavitation prediction.
Computers & Fluids, 29(8):849–875, 2000.

[64] J. C. Lasheras. The Biomechanics of Arterial Aneurysms. Annual Review of
Fluid Mechanics, 39(1):293–319, January 2007.

[65] P. Welch. The use of fast Fourier transform for the estimation of power spectra:
A method based on time averaging over short, modified periodograms. IEEE
Transactions on Audio and Electroacoustics, 15(2):70–73, 1967.

[66] H. Tennekes and J. L. Lumley. A first course in turbulence. MIT press, 1972.

[67] D. C. Wilcox. Turbulence modeling for CFD. DCW Industries, 2nd edition,
2000.

[68] S. B. Pope. Turbulent flows. Cambridge university press, 2000.

[69] B. M. Kim and W. H. Corcoran. Experimental measurements of turbulence
spectra distal to stenoses. Journal of Biomechanics, 7(4):335–342, 1974.

[70] P. C. Lu, D. R. Gross, and N. H. C. Hwang. Intravascular pressure and velocity
fluctuations in pulmonic arterial stenosis. Journal of Biomechanics, 13(3):291–
300, 1980.

[71] A. P. Yoganathan, Z. He, and S. C. Jones. Fluid mechanics of heart valves.
Annu. Rev. Biomed. Eng., 6:331–362, 2004.

[72] L. P. Dasi, H. A. Simon, P. Sucosky, and A. P. Yoganathan. Fluid mechanics of
artificial heart valves. Clinical and Experimental Pharmacology and Physiology,
36(2):225–237, 2009.

[73] K. B. Manning, V. Kini, A. A. Fontaine, S. Deutsch, and J. M. Tarbell. Regur-
gitant flow field characteristics of the st. jude bileaflet mechanical heart valve
under physiologic pulsatile flow using particle image velocimetry. Artificial or-
gans, 27(9):840–846, 2003.



159

[74] H. A. Simon, H.-L. Leo, J. Carberry, and A. P. Yoganathan. Comparison of
the hinge flow fields of two bileaflet mechanical heart valves under aortic and
mitral conditions. Annals of biomedical engineering, 32(12):1607–1617, 2004.

[75] D. Bluestein. Research approaches for studying flow-induced thromboembolic
complications in blood recirculating devices. Expert review of medical devices,
1(1):65–80, 2004.
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