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ABSTRACT

Dong, Lin Ph.D., Purdue University, December 2013. Non-Silicon MOSFETs and
Circuits with Atomic Layer Deposited Higher-κ Dielectrics. Major Professor: Peide
Ye.

The quest for technologies beyond 14 nm node complementary metal-oxide-semico-

nductor (CMOS) devices has now called for research on higher-κ gate dielectrics in-

tegration with high mobility channel materials such as III-V semiconductors and

germanium. Ternary oxides, such as La2−xYxO3 and LaAlO3, have been considered

as strong candidates due to their high dielectric constants and good thermal sta-

bility. Meanwhile, the unique abilities of delivering large area uniform thin film,

excellent controlling of composition and thickness to an atomic level, which are keys

to ultra-scaled devices, have made atomic layer deposition (ALD) technique an ex-

cellent choice. In this thesis, we systematically study the atomic layer epitaxy (ALE)

process realized by ALD, ALE higher-k dielectric integration, GaAs nMOSFETs and

pMOSFETs on (111)A substrates, and their related CMOS digital logic gate circuits

as well as ring oscillators. A record high drain current of 376 mA/mm and a small

SS of 74 mV/dec are obtained from planar GaAs nMOSFETs with 1µm gate length.

La2−xYxO3/GaAs(111)A interfaces are systematically investigated in both material

and electrical aspects. The work has expanded the near 50 years GaAs MOSFETs re-

search to an unprecedented level. Following the GaAs work, Ge n- and p-MOSFETs

with epitaxial interfaces are also fabricated and studied. Beyond the conventional

semiconductors, the complex oxide channel material SrTiO3 is also explored. Well-
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behaved LaAlO3/SrTiO3 nMOSFETs with a conducting channel at insulating ALD

amorphous LaAlO3 - insulating crystalline SrTiO3 interface are also demonstrated.
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1. INTRODUCTION

1.1 CMOS scaling down and novel techonologies

The Si CMOS has begun its journey of the seemingly endless scaling in pursuit of

higher speed and less power consumption following the later proposed Moores Law

by Gordon Moore ever since the first pointed-contacted transistor was invented back

in 1947. In the past few decades, the number of transistors integrated in one sin-

gle chip kept growing in an astonishing speed, which is caused by the continuous

device size shrinking and non-stopping introduction of innovative technologies. The

continuous device miniaturization (or device scaling down) leads to device perfor-

mance and production improvement in all aspects: function, speed, power dissipa-

tion, reliability, cost and productivity. However, more and more challenges emerged

while the scaling of the Silicon CMOS is finally approaching its fundamental lim-

its. By looking at the International Technology Roadmap for Semiconductors (ITRS,

http://www.itrs.net/Links/2012ITRS/Home2012.htm), some of the novel technolo-

gies to address the challenges are:

1. High carrier mobility substrates. Fig. 1.1 shows the novel technologies that

will be potentially applied in the future device applications. III-V materials

generally possess higher electron mobility (µe), lower effective mass (m⋆), and

smaller bandgap (Eg) than Si, while Ge has much higher hole mobility (µh) than

Si as shown in Table Table 1.1. This makes III-V/Ge promising for high-speed

low-power logic applications.



2

Fig. 1.1. 2011 ITRS equivalent scaling process technologies includ-
ing high mobility channel materials, high-κ gate dielectrics and novel
device structures.

Table 1.1
Carrier transport properties and energy bandgaps of semiconductor
materials of interest under room temperature.

2. The integration of higher dielectric constant dielectrics. The dielectrics in the

future should have proper κ value, thermodynamical stability and the ability

of forming high quality oxide-semiconductor interfaces on high mobility sub-

strates. SiO2 gate dielectric oxide layer is reaching its physical limit (0.7 nm

or 2 monolayers) with continuous scaling down. In order to reduce the gate
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leakage current, high dielectric constant oxides are widely studied. With high-

κ gate dielectric layer the equivalent oxide hickness (EOT) can be lower than

the fundamental physical thickness limitation of SiO2 while maintaining much

higher physical thickness, as can be seen from the equation below:

EOT =
κSiO2

κhigh−κ

thigh−κ + tlow−κIL (1.1)

where κ is the dielectric constant and t stands for the film thickness. Numerous

dielectrics have been extensively investigated by researchers like binary oxides

Al2O3 [1–3], HfO2 [4, 5] and ZrO2 [6, 7], however, some of them have relative

low dielectric constant (κAl2O3
∼ 9), and some suffer from low crystallization

temperature (Tcrystallization < 500 ◦C for HfO2 and ZrO2), which make them

unsuitable for future CMOS application.

3. Novel device structures. Multigate and gate-all-around structures are to be

introduced on III-V/Ge technology similar to its Si counterpart to meet the

requirement of channel electrostatic control at 14 nm technology node. The

natural advantages of most III-V semiconductors like smaller bandgap, larger

permittivity and smaller effective mass make them promising candidates to

replace silicon for short channel devices. Some previous results have shown that

the scaling of planar InGaAs MOSFETs has stopped below 150 nm due to severe

short channel effects. [8, 9] Therefore the novel structures will be significant in

the ultimate III-V technology. Evolution of InGaAs multi-gate device structures

from bulk planar to fully gate-all-around structure greatly improved control of

short channel effect over planar and thin-body devices.
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1.2 High-κ dielectrics and Atomic Layer Deposition

The oxide with high-κ dielectric constants, such as LaAlO3, LaLuO3, LaYO3

and so on, have been considered as strong candidates to replace SiO2, mainly due

to their high dielectric constant, better thermodynamic stability than binary high-k

oxides and reasonable band offsets with semiconductors. Encouraging progresses have

been made by different groups previously [10–12], showing a very promising future of

complex oxide application in CMOS industry.

Atomic Layer Deposition (ALD) or Atomic Layer Epitaxy (ALE) is an ultrathin-

film deposition technique based on sequences of self-limiting surface reactions, which

enables thickness control on the atomic scale. Its unique advantages such as excellent

conformality, accurate and simple thickness control and large area uniformity make

ALD an indispensable technique tool in CMOS manufacture.

A ALD process is a gas phase deposition process employing sequential gas pulses

containing chemical reagents called precursors. In most deposition processes two

precursors are involved and alternating precursor sequences are sent into the reactor

chamber. To better describe the ALD process, an example below illustrates the depo-

sition of aluminum oxide (Al2O3 or alumina) on semiconductor surface with hydroxyl

(-OH) termination. The ALD cycle starts with the injection of trimethylalumina

(TMA, Al(CH3)3) precursor into the ALD reactor. The gas precursor carries out

self-limiting chemical reactions at the target surface, in this case a hydroxylated sur-

face. As described in the first three steps in fig. 1.2, the surface is saturated with

O-Al(CH3)2 termination when reaction with TMA is complete. Following the first

precursor pulse is a nitrogen (N2) purge step designated to remove the remaining

TMA and methane gas. After the purge step a second precursor, gas phase H2O

(water vapor), is sent into the reactor to continue the oxidation of aluminum atoms

(Al) until the methyl termination is replaced completely by hydroxyl termination.
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Fig. 1.2. Schematics of aluminum oxide deposition by ALD technique.

At the end of the cycle on the last step, the surface is covered by one mono-layer

of aluminum oxide with the same hydroxylated surface as in the beginning of the

ALD cycle. After another nitrogen purge, the cycle is then repeated again to deposit

another oxide layer on the surface of the target sample. The number of ALD cycles

usually gives an accurate estimate of the deposited mono-layers and hence the film

thickness. There are several advantages of the ALD technique which make it the

primary choice for depositing high-k gate oxide on semiconductor substrates. ALD

films are highly conformal and pinhole free. Uniform films can be grown on steep

trenches and various surface contours. Secondly, the number of ALD cycles reflects

the number of mono-layers deposited, enabling precise control of film thickness down

to a fraction of an angstrom. And since the mono-layers are chemically bonded to each

other and the substrate, ALD films are very robust both electrically and mechanically.

The ALD technique was introduced to the 45 nm CMOS technology since 2007 firstly

by Intel. The success of ALD high-k oxide on silicon provides an encouraging baseline
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for integrating high quality, high-k dielectric on III-V semiconductors and opens new

possibilities for compound semiconductor device research.

1.3 Thesis outline

The thesis starts with the study of La-based higher-κ oxide on high mobility sub-

strates with Atomic Layer Deposition (ALD) in chapter 2, most of the work are fo-

cused on the material and electrical characterizations of the La2−xYxO3/GaAs(111)A

epitaxial interfaces, where x varies from 0 to 0.9. The density of traps at the epi-

taxial interface is extracted and compared using the room temperature conductance

method, and thermal stability of the epitaxial La2−xYxO3/GaAs(111)A interface is

systematically studied.

In chapter 3, epitaxial La-based higher-κ oxide integration in the GaAs enhanceme

nt-mode MOSFETs are carefully investigated with the experimental demonstration

of GaAs(111)A n- and p-MOSFETs devices. Two types of La-base gate dielectrics,

La1.8Y0.2O3 and La2O3 epitaxial oxides are employed in the MOSFETs fabrication.

GaAs CMOS circuits including inverters, NAND and NOR logic gates and five-stage

ring oscillators are also demonstrated. The GaAs devices and circuits are systemati-

cally studied with the electrical characterization and analysis.

In chapter 4, Ge nMOSFETs and pMOSFETs with epitaxial La2O3/Ge(111) in-

terfaces are experimentally demonstrated. By the analysis of the electrical properties

of the Ge devices, process fabrication optimizations are also discussed.

In chapter 5, Well-behaved LaAlO3/SrTiO3 nMOSFETs with a conducting chan-

nel at insulating ALD amorphous LaAlO3 - insulating crystalline SrTiO3 interface are

demonstrated. Four types of interfaces are investigated by the comparison of SrTiO3

transistors electrical properties. At last Metal-Insulator-Transition phenomenon is

presented and corresponding mechanism is also discussed.
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In the summary and outlook chapter, the entire research in this thesis are briefly

summarized and some possible further works are discussed.
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2. STUDY OF LA-BASED HIGHER-κ OXIDE ON HIGH

MOBILITY SUBSTRATES WITH ATOMIC LAYER

DEPOSITION

2.1 Introduction

High-mobility GaAs and InGaAs MOSFETs have shown promising performance

compared to Si-based devices for high-speed complementary MOS (CMOS) logic ap-

plications. However, GaAs MOS devices suffer from Fermi-level pinning, which is

mainly due to the high trap density of states at the oxide/GaAs interface [13, 14].

In this section, the deposited epitaxial layer of higher-k dielectric oxide La2O3 and

La2−xYxO3, on GaAs(111)A, are systematically studied in both material and electri-

cal aspects.

Usually, the dielectric oxide is either amorphous or polycrystalline, and therefore

a high density of dangling bonds exists at the oxide/GaAs interface. These dangling

bonds form interface states in the midgap [15], which trap carriers and produce a large

frequency dispersion of capacitance and Fermi-level pinning. Growing an epitaxial

oxide dielectric layer on GaAs to form the MOS devices with a heteroepitaxial struc-

ture is a good approach to reduce the density of the interface dangling bonds, since

a perfect epitaxial interface is supposed to have no dangling bonds, and therefore

the interface trap density of states Dit should be small. Also, contrary to polycrys-

talline oxides, a perfect epitaxial oxide should contain no grain boundaries [16], which

preserves the desired features of the low leakage current and uniformity. However,

growing epitaxial oxides on GaAs is rather challenging, since GaAs is neither chem-

ically stable nor thermally stable: GaAs can be oxidized easily to form low quality
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surface oxides that compromise the interface quality [17]; and GaAs starts to lose As

over 400◦C [18]. Hong et al [19,20]. have demonstrated a method of using in-situ elec-

tron beam evaporation to grow epitaxial (Ga,Gd)2O3 or Gd2O3 layers on GaAs(100)

with the epitaxial relationships (110)Gd2O3//(100)GaAs, [001]Gd2O3//[011]GaAs,

and [-110]Gd2O3//[01-1]GaAs. Their capacitance-voltage measurements do show a

significant decrease in Dit [20], which suggests the importance of epitaxy in reducing

interfacial defects [21]. However, the frequency dispersion of the capacitance was still

fairly large [20], and the transistor characteristics of the inversion-mode MOSFETs

made from (Ga,Gd)2O3/GaAs were not very impressive [22]. This may be due to the

relatively large in-plane mismatch between Gd2O3 and GaAs (1.9 % and -3.9% in the

[011] and [01-1] directions of GaAs, respectively). Getting MOSFETs even of this

quality also requires that there is no air-break between growth of the GaAs and the

oxide, so that complex multi-chamber MBE systems are necessary. Several follow-up

structural analyses of Gd2O3/GaAs(100) [23–25] revealed that perfect strained epi-

taxy only occurs in the first few layers. When the oxide film thickness exceeds 3

nm, the Gd2O3 film starts to relax by generating misfit dislocations, so that the film

is no longer perfectly epitaxial [20]. Unfortunately, simply substituting Gd2O3 with

other lanthanide sesquioxides cannot accommodate the mismatch simultaneously in

two orthogonal in-plane directions, since the in-plane lattice spacing of Gd2O3 GaAs

is greater than GaAs in one direction but smaller in the other. Very recently, epi-

taxial growth of cubic high-k oxide, LaLuO3, on GaAs(111)A has been achieved by

an ex-situ atomic layer deposition (ALD) process in our group. The heteroepitaxy

relationship was found to be (111)LaLuO3//(111)GaAs (αLaLuO3 ≈ 2αGaAs) with

a relaxed interface [26]. Since the (111) plane has a three-fold symmetry, the in-plane

mismatch between oxide and GaAs can be simultaneously engineered with lanthanide

sesquioxides that have appropriate cation sizes. Initial electrical characterizations
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showed quite promising results, as the MOS capacitors made from epitaxial ALD

LaLuO3/GaAs showed an order of magnitude reduction in interface trap density (Dit

∼ 7×1011 cm−2 eV−1) compared with amorphous ALD Al2O3/GaAs ( 8×1012 cm−2

eV−1). But, still LaLuO3 has a fairly large lattice mismatch with respect to GaAs

(-3.8%), and another concern is that Lu is one of the rarest elements on earth, which

would be problematic for large scale fabrication.

2.2 Atomic Layer Deposition experimental process and methods

La2O3 and La2−xYxO3 films were grown by ALD from precursors including lan-

thanum tris(N,N-diisopropylformamidinate), yttrium tris(N,N-diisopropylacetamidin-

ate) and H2O in a home-built tube reactor. The pure La2O3 films were deposited by

alternately supplying the La precursor vapor and water at a deposition temperature

of 385 ◦C, and the ternary La2−xYxO3 oxides were deposited by repeatedly growing

one or multiple cycles of La2O3 followed by one or multiple cycles of Y2O3 at 300
◦C.

A schematic illustration of the Atomic Layer Epitaxy can be found in Fig. 2.1.

The exposures of the La and Y precursors were estimated to be 0.003 Torr s

and the exposure of H2O was 0.06 Torr s in each cycle. After each H2O pulse, the

chamber was purged under nitrogen flowing for 80 s to minimize the amount of water

and/or hydroxyl groups trapped in the oxide films, as they considerably degrade the

crystallinity and permittivity and cause large frequency dispersion. By controlling

the cycle ratio of La2O3 and Y2O3, the elemental composition of the ternary oxide

La2−xYxO3 (i.e. x) can be tuned. In this letter, two cycle ratios of (La:Y)cyc = 1:3

and 3:1 were used, and their compositional ratios, which were determined by Ruther-

ford backscattering spectroscopy, were (La:Y)comp = 1.1:0.9 and 1.8:0.2, respectively.

Before depositing La2−xYxO3 on the GaAs(111)A substrates, all the GaAs substrates

were first dipped into a 3M HCl solution to remove the native oxide and then soaked in
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Fig. 2.1. Schematic illustration of the Atomic Layer Epitaxy process.
The epitaxial La2−xYxO3 oxide film is deposited at 385 ◦C while the
amorphous Al2O3 oxide encapsulation layer is grown at 300 ◦C. The
relative long time purging during the process is the key to realize
uniform and single crystalline oxide structure. The base pressure of
the deposition is maintained at around 0.3 Torr.

a 10% (NH4)2S solution for 20 min for sulfur-passivation. Cross-sectional TEM images

were taken with JEOL 2100. HRXRD spectra were taken by a Bruker D8 HRXRD

with the incident beam Cu K1 being monochromated by a Ge (022)× 4 asymmet-

ric monochromator. Due to the hygroscopic nature of La2−xYxO3, all the films for

HRXRD analysis were capped by a 6 nm in-situ ALD Al2O3 layer before being taken

out from the deposition chamber. For characterizing the electrical properties, n-type

and p-type GaAs(111)A wafers with doping concentration of 5-7×1017cm−3 were used

as the substrates. To fabricate MOS capacitors, either 7.5 nm La2−xYxO3 (for x =

0.9 and 0.2) or 9 nm La2O3 was first deposited on the GaAs substrates, and then an

in-situ ALD layer of 6.5 nm Al2O3 was deposited on top to prevent the hygroscopic

La2−xYxO3 from being exposed to air. All the La2−xYxO3/GaAs capacitors were sub-

jected to rapid thermal annealing (RTA) at 800 ◦C for 30 s in N2 ambient. Capacitors

with amorphous ALD Al2O3 as the dielectric material (Ni/8nm Al2O3/GaAs(111)A)

were fabricated for comparison. The Al2O3/GaAs(111)A capacitors were subjected to
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RTA at 600 ◦C for 30 s in N2 ambient. Ni/Au circular electrodes for MOS capacitors

were patterned by a lift-off process with a diameter of 150 µm. The capacitance-

voltage/conductance-voltage measurements were carried out at room temperature by

using an HP4284A precision LCR meter with frequency varying from 1kHz to 1MHz.

2.3 GaAs/oxide epitaxial atomic structures

Fig. 2.2. (a) A typical GaAs zincblende lattice unit cell with (100)
surface. The purple and brown balls represent Ga and As atoms,
respectively (b) A GaAs super lattice with 4×4×4 GaAs unit cell.
(c) Illustration of GaAs(111)A surface with Ga termination.

The GaAs, as a typical III-V semiconductor, has a zincblende structure, as shown

in Fig. 2.2 (a). It can be described as two interpenetrating fcc (Face-centered cu-

bic) lattices, that is, a Ga fcc lattice is displaced along the one-quarter of the body

diagonal direction relative to an As fcc lattice. In fact the zincblende structure is
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essentially identical to the diamond structure (like Silicon), except that lattice sites

are apportioned equally between Ga and As atoms. [27] The GaAs(111)A surface (Ga

atom terminated surface) is exhibiting quite different properties with respect to the

GaAs(100) surface. For example, the GaAs(111)A tends to be hydrophilic due to its

Ga-As dipoles at the very top layer while the GaAs(100) surface favors hydrophobicity

immediately after HCl wet etching. [28]

Fig. 2.3. (a) An atomic structural view of a La2O3 cubic cell. The
light blue and red balls represent La and Oxygen atoms, respectively
(b) A La2O3 super lattice with 2×2×2 La2O3 unit cell. (c) Illustration
of La2O3(111) surface with Oxygen termination.

Similarly, we may construct the La2O3 super lattice with the single cubic La2O3

cell, as illustrated in Fig. 2.2. Here a 2×2×2 La2O3 structure is employed for good

lattice match with GaAs due to the lattice constant relationship of αLa2O3 ≈ 2αGaAs.
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By cleaving the supper lattices along the (111) surface and proper aligning them

together, the La2O3/GaAs epitaxial interface structures are illustrated in Fig. 2.4.

The hexagonal structure can be clearly observed through the (111) plane and atoms

of upper La2O3 and GaAs in the lower level are well aligned, from the top view of

the epitaxial interface structure in Fig. 2.4(c). The chemical bonds formed between

oxygen and gallium atoms right at the interface are strong, and the well aligned

epitaxial structure can effectively reduce dangling bond at the interface, leading to a

robust and high quality GaAs-La2O3 interface.

Fig. 2.4. (a) and (b) Atomic structural views of the epitaxial interface
between La2O3 and GaAs. (c) A top view of the stacked atomic struc-
ture of epitaxial interface between La2O3 and GaAs, the hexagonal
structures can be clearly observed.
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2.4 Atomic Layer Epitaxial (ALE) interface material and electrical prop-

erty study

Fig. 2.5. (a) Cross-sectional TEM image of La1.8Y0.2O3/GaAs(111)A
interface, and (b) the corresponding electron diffraction patter with
the electron beam aligned along the [011] direction of GaAs.

In this section, we report an ALD process for depositing another high-k oxide,

La2−xYxO3, epitaxially on GaAs(111)A. The k value of La2−xYxO3 was reported as

high as 27, and the terrestrial elemental abundance of Y is much higher than Lu in

the Earth. The ternary oxide, La2−xYxO3, can be considered as a mixture of La2O3

and Y2O3. The lattice constant of cubic La2O3 is very slightly larger than 2 times

the GaAs lattice constant, while the lattice constant of cubic Y2O3 is ∼6% smaller

than that of La2O3. Therefore, we can adjust the lattice constant of the ternary

compound, La2−xYxO3, to study the effect of mismatch by varying the ratio of La

and Y. As an ALD process grows films in a layer-by-layer manner, the composi-

tional ratio of these two cations can be tuned by varying the cycle ratio of growing
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La2O3 and Y2O3. A high-resolution X-ray structural analysis indicates a high-quality

heteroepitaxy of La2−xYxO3 on GaAs(111)A, and electrical measurements on MOS

capacitors show a promisingly small frequency dispersion of capacitance and a low

Dit ∼2×1011 cm−2eV−1 in the GaAs bandgap close to the conduction band edge. In

addition, our process tolerates an air-break between growth of the GaAs and ALD

of the epitaxial oxide. ALD is known to produce uniform films over large areas with

good reproducibility [29], so we believe that this process is very promising for large

scale manufacturing.

La2−xYxO3 films were grown by ALD from precursors including lanthanum tris(N,N-

diisopropylformamidinate), yttrium tris(N,N-diisopropylacetamidinate) and H2O in a

home-built tube reactor. In particular, pure La2O3 or pure Y2O3 films can be made

by using the corresponding single metal precursor source. When films were deposited

on amorphous SiNx substrates, the as-deposited pure La2O3 and pure Y2O3 films

were polycrystalline in their cubic phases, respectively. But alloying these two oxides

did not form a polycrystalline film on amorphous SiNx, on which the La1.1Y0.9O3

film was almost amorphous. However, when La2−xYxO3 films were grown on GaAs

(111)A, the as-deposited films, including La2O3, La1.8Y0.2O3, and La1.1Y0.9O3, were

all well crystallized and, in fact, they were highly epitaxial due to induction by the sub-

strates. Cross-sectional transmission electron microscopy (TEM) of La2−xYxO3/GaAs

interfaces indicates a cube-on-cube epitaxy with a twin boundary relation at the

interface, and the interface is flat and sharp. A representative TEM image of a

La1.8Y0.2O3/GaAs(111)A sample is shown in Fig. 2.5(a). The twin boundary relation

at the oxide/GaAs was also confirmed by the selective area electron diffraction pat-

tern as shown in Fig. 2.5(b), where the two sets of diffraction patterns belonging to

cubic-phase La1.8Y0.2O3 and GaAs are well aligned vertically. Especially, the diffrac-

tion spot of GaAs (111) overlaps with the La1.8Y0.2O3 (222) spot, suggesting that the
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cubic lattice constant of La1.8Y0.2O3 is very close to twice that of GaAs. However,

TEM does not have enough resolution to determine precisely the small difference be-

tween their lattice constants. Therefore, high-resolution X-ray diffraction (HRXRD)

was used to investigate the detailed epitaxial structure.

Coupled 2 θ - ω HRXRD scans were performed for the oxide/GaAs(111)A sam-

ples. The peaks from the GaAs substrate were used as the internal references, and

the oxide/GaAs lattice mismatch, which is defined as (αoxide - 2αGaAs)/2αGaAs,

was calculated from the relative shift of the oxide peak with respect to the GaAs

peak, assuming a fully relaxed heteroepitaxy relation at the interface.11 For the

La1.1Y0.9O3/GaAs sample, the coupled 2 θ - ω scan clearly shows both peaks of

the GaAs(111) and La1.1Y0.9O3(222) reflections, as shown in Fig. 2.6(a). The cor-

responding ω rocking curves of GaAs(111) and La1.1Y0.9O3(222) reflections have a

similar shape with the same full width at half maximum of ∼32. This indicates

a high quality heteroepitaxy of La1.1Y0.9O3/GaAs over a large area (several mm2).

The 2 θ angle of the La1.1Y0.9O3 (222) peak was found to be 0.958◦ greater than

that of the GaAs(111) peak, which corresponds to a lattice mismatch of -3.32% for

La1.1Y0.9O3 with respect to GaAs. For the La1.8Y0.2O3/GaAs sample, the 2 θ - ω

scan (Fig. 2.6(b)) shows that the peaks of GaAs(111) and La1.8Y0.2O3(222) are much

closer, indicating La1.8Y0.2O3 has a smaller lattice mismatch to GaAs. Thus, we per-

formed a 2 θ - ∆ω reciprocal space mapping (RSM) on this sample, and the RSM

contour is plotted in the inset of Fig. 2.6(b), where the contour levels are chosen

to highlight the peaks. The 2 θ angle of the La1.8Y0.2O3 (222) peak was found to

shift by +0.18 ◦ from the GaAs(111) peak, indicating a lattice mismatch of -0.64%

for La1.8Y0.2O3 with respect to GaAs. As for the La2O3/GaAs sample, the peaks of

GaAs(111) and La2O3(222) in the 2 θ - ω scan were found to be entirely overlapping

with each other, as shown in Fig. 2.7. Therefore, we performed another 2 θ - ω scan
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Fig. 2.6. HRXRD couples 2θ-ω scans of (a) La1.1Y0.9O3, (b)
La1.8Y0.2O3, and (c) La2O3 on GaAs(111)A. The scans of (a) and
(b) were performed around the GaAs(111) reflection, and the scan of
(c) was performed around the GaAs(333) reflection. The inset of (b)
shows the 2θ-∆ω reciprocal space map around the GaAs(111) peak
for the La1.8Y0.2O3/GaAs sample.
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around the GaAs(333) reflection to determine the mismatch with greater sensitivity.

As shown in Fig. 2.6(c), the 2θ angle of the La2O3(222) peak was only 0.046 ◦ smaller

than that of the GaAs(333) peak, suggesting a much smaller lattice mismatch of only

+0.04% for La2O3 with respect to GaAs.

Fig. 2.7. (a) HRXRD coupled 2 θ - ω scan of a 90 nm La2O3 film
grown on GaAs(111)A, compared with a simulated diffraction curve
from LEPTOS (Bruker). (Lattice mismatch used in simulation was
+0.037% for La2O3/GaAs.) The good matching of the Laue oscil-
lations indicates that the main peak of La2O3 (222) is indeed over-
lapping with GaAs (111). (b) By the comparing the 2 θ - ω curves
measured on two La2O3/GaAs samples with different thickness (70 nm
and 90 nm), we noticed that all of the side-band peaks shifted, sug-
gesting that these side-band peaks all belong to the thickness fringes
(Laue oscillations) of the La2O3 (222) main peak. This again indi-
cates that the La2O3 (222) main peak is overlapping with GaAs (111)
peak.

In summary of the above structural analysis, both of the TEM and HRXRD results

suggested a high-quality heteroepitaxy relation of La2−xYxO3/GaAs(111)A (x = 0,

0.2 and 0.9) with smaller lattice mismatch for higher La-content oxide. The measured

lattice mismatch approximately follows Vegards law Fig. 2.8.
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Fig. 2.8. Vegards law plot of the lattice parameters of La2−xYxO3.
The Y concentration was determined by Rutherford backscattering
spectroscopy. The obtained lattice constants of La2O3 and Y2O3 are
comparable with the reference values.

In addition, we also found that pure Y2O3 on GaAs(111)A is also epitaxial. There-

fore we believe that epitaxy can be achieved for mixed La2−xYxO3 oxides with any

La:Y ratio. This epitaxial relation is quite similar to the LaLuO3/GaAs(111)A case.

Since epitaxial La2−xYxO3/GaAs structures are expected to provide a better in-

terface quality with a lower interface trap density for electrical devices, we fabricated

the corresponding La2−xYxO3/GaAs MOS capacitors to examine the electrical prop-

erties. Both p-type and n-type MOS capacitors of La2−xYxO3/GaAs(111)A (x =

0, 0.2 and 0.9) were fabricated and characterized by capacitance-voltage (C-V) and

conductance-voltage (G-V) methods [2]. Due to the hygroscopic nature of La2−xYxO3,

an in-situ ALD capping layer of 6.5 nm Al2O3 was deposited right after the deposition

of La2−xYxO3 on GaAs(111)A. Capacitors with only amorphous ALD Al2O3 as the
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Fig. 2.9. C-V characteristics of p-type GaAs MOS capacitors
with stacks of (a) Ni/8nm Al2O3/GaAs(111)A, (b) Ni/6.5 nm
Al2O33/7.5 nm La1.1Y0.9O3/GaAs(111)A, (c) Ni/6.5 nm Al2O3

/7.5 nm La1.8Y0.2O3/GaAs(111)A, and (d) Ni/6.5 nm Al2O3/9 nm
La2O3/GaAs(111)A, respectively.

dielectric material (Al2O3/GaAs(111)A) were also fabricated for comparison. The

C-V response was measured at room temperature with the frequency of the small AC

signal ranging from 1 kHz to 1 MHz. Fig. 2.9 and Fig. 2.10 shows the normalized C-V

curves measured on these capacitors. A general trend for the frequency dispersion

is that the capacitors with amorphous Al2O3 dielectric show the largest frequency

dispersions compared with the capacitors with epitaxial La2−xYxO3 dielectric, and,
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Fig. 2.10. C-V characteristics of n-type GaAs MOS capaci-
tors with stacks of (a) Ni/8nm Al2O3/GaAs(111)A, (b) Ni/6.5
nm Al2O3/7.5 nm La1.1Y0.9O3/GaAs(111)A, (c) Ni/6.5 nm Al2O3

/7.5 nm La1.8Y0.2O3/GaAs(111)A, and (d) Ni/6.5 nm Al2O3/9 nm
La2O3/GaAs(111)A, respectively.

among these La2−xYxO3 capacitors, those with smaller lattice-mismatch La2−xYxO3

(higher La content) show smaller frequency dispersion. For p-type GaAs MOS ca-

pacitors, the frequency dispersion in the accumulation region (∆C/Cmax) is reduced

from 7.6% to 2 4% by replacing the amorphous Al2O3 with epitaxial La2−xYxO3 as the

dielectric 2.5%, 1.9% and 1.7% for x = 0.9, 0.2 and 0, respectively), and with a better

lattice-matched oxide, La2O3, the dispersion in the depletion region (VG 0) is further
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reduced. A similar trend was also observed for the n-type GaAs MOS capacitors:

Al2O3 shows the largest frequency dispersion of 19.0% in the accumulation region,

and La1.1Y0.9O3, La1.8Y0.2O3, and La2O3 show decreasing frequency dispersions of

18.6%, 15.6%, and 9.9%, respectively.

Fig. 2.11. Frequency-dependent conductance-voltage (Gp/ω Vg f)
plots measured on p-type and n-type (a, e) Al2O3/GaAs, (b, f)
La1.1Y0.9O3/GaAs, (c, g) La1.8Y0.2O3/GaAs, and (d, h) La2O3/GaAs
MOS capacitors.

We also measured the Dit by the conductance-voltage method. The distribution

of Dit within the GaAs band gap is plotted in Fig. 2.12. Consistent with the C-V re-

sults, the interface of the amorphous Al2O3/GaAs showed much larger interface trap

density compared to the epitaxial La2−xYxO3/GaAs cases. Among these epitaxial

La2−xYxO3/GaAs cases, the La2O3/GaAs capacitor with a lattice-almost-matched

interface showed the smallest Dit on the order of 1011 cm−2 eV−1, and in particular,

the interface trap density in the upper half of the band gap is below 3×1011 cm−2

eV−1 in the whole region measured. Notice that typically the Dit close to the con-

duction band edge is quite high for other oxides on GaAs, and those traps severely

pin the Fermi level. The traps hinder the Fermi level from moving away from the

center of the bandgap up to the conduction band edge, preventing the realization of

high-performance inversion-mode GaAs MOSFETs. With a lattice-matched La2O3
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dielectric layer, a very good interface with low trap density was achieved. The decreas-

ing trend of Dit with smaller lattice mismatch indicates the importance of matching

the lattice constant of oxide with GaAs. In addition, the k values of La1.1Y0.9O3,

La1.8Y0.2O3, and La2O3 were estimated from the capacitance to be 20, 22, and 16, re-

spectively. The above excellent electrical results show that the epitaxial La2−xYxO3 is

a very promising gate dielectric candidate material for future high-performance GaAs

MOS devices [30].

2.5 Summary

To Conclude, in this chapter, we demonstrated an ex-situ ALD process of growing

epitaxial La2−xYxO3 on GaAs(111)A. High-quality epitaxy of La2−xYxO3/GaAs(111)A

was achieved for x = 0 (i.e. pure La2O3), 0.2 and 0.9. GaAs MOS capacitors made

from this epitaxial structure showed very good interface quality with small frequency

dispersion and low interface trap densities. In particular, the La2O3/GaAs interface,

which has a lattice mismatch of only 0.04%, showed very low Dit in the GaAs bandgap

of below 3×1011 cm−2eV−1 near the conduction band edge. The La2O3/GaAs capac-

itors also showed the lowest frequency dispersion of any dielectric on GaAs. This is

the first achievement of such low trap densities for oxides on GaAs. We believe that

these new results will expand the nearly 50-year research on the oxide/GaAs interface

to an unprecedented level.
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Fig. 2.12. Dit distribution in GaAs band gap obtained on both (a) p-
type and (b) n-type MOS capacitors with Al2O3/GaAs(111)A,
La1.1Y0.9O3/GaAs(111)A, La1.8Y0.2O3/GaAs(111)A and
La2O3/GaAs(111)A as the interfaces, respectively.



26

3. DEMONSTRATION OF HIGH PERFORMANCE GAAS

CMOS DEVICES AND CIRCUITS ENABLED BY

LA-BASED HIGHER-κ EPITAXIAL DIELECTRICS

3.1 GaAs(111)A MOSFETs nMOSFETs and pMOSFETs with La1.8Y0.2O3/

GaAs(111)A epitaxial interface

3.1.1 Introduction

As we have discussed in the introduction, along with the device scaling and perfor-

mance improving continues, silicon CMOS technology is approaching its fundamental

physical limits. Meanwhile, III-V semiconductors have gained more and more at-

tention, as they are promising candidates for replacing silicon owing to their high

electron mobility and high saturation velocity [14].

GaAs inversion-mode MOSFET is a historically difficult problem since its first

publication in 1965 [31]. In order to achieve a thermodynamically stable dielectric

on GaAs with a low interface trap density [32], tremendous efforts have been made

by different passivation techniques [33–36]. We previously demonstrated superior

device performance of GaAs(111)A over GaAs(100) surface [37]. A higher mobility

on InGaAs(111)A surface was also reported [38]. In this chapter, using atomic layer

expitaxy (ALE) for the first time [26], we demonstrated high performance GaAs

inversion-mode NMOSFETs with a single crystalline semiconductor-single crystalline

oxide interface. The maximum drain current reaches 326 mA/mm for 0.5µm gate

length device with a low subthreshold swing (SS ) of 97mV/dec. Systematic study of

C-V and G-V characteristics confirms that this novel epitaxy has excellent quality of
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interface, and it is thermally stable for the fabrication process of the inversion-mode

GaAs NMOSFETs.

3.1.2 La1.8Y0.2O3/GaAs(111)A Epitaxial Structure Study

Fig. 3.1. (a) High-resolution cross-section TEM picture of a
La1.8Y0.2O3/GaAs(111)A epitaxial interface. A flat and sharp inter-
face (denoted by red and blue dots) can be observed. (b) The electron
diffraction pattern taken from the same cross-sectional TEM sample
along the (110) zone axis.

High-resolution cross-section TEM picture taken from the La1.8Y0.2O3/GaAs(111)A

single crystalline-single crystalline epitaxial interface is shown in Fig. 3.1. It can be

observed that a clear and sharp semiconductor-oxide interface is formed, indicating

a well lattice-matched epitaxial structure. The figure on the left of Fig. 3.1 is the

electron diffraction pattern taken from the same TEM sample along the (110) zone
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axis. The diffraction patter clearly shows the crystalline structure of the cubic phase

La1.8Y0.2O3 oxide on top of the GaAs(111)A substrate.

Fig. 3.2. High-resolution X-ray omega-two theta coupled scan for
(a) LaYO3 and (b) La1.8Y0.2O3 on GaAs(111)A. The partial overlap
of GaAs(111) and La1.8Y0.2O3(222) peaks indicates they are lattice-
matched better than GaAs (111) and LaYO3 .

The epitaxy structure is further confirmed by High resolution X-Ray Diffraction

results shown in Fig. 3.2, The coupled 2θ − ω scans performed on the samples with

40 nm LaxYyO3 on GaAs(111)A (Fig. 3.2) suggest that the lattice mismatches of

LaxYyO3 on GaAs(111)A are -3.32% and -0.67% for LaYO3 and La1.8Y0.2O3, respec-

tively, if relaxed epitaxy is assumed.
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Fig. 3.3. Schematic view of an inversion-mode NMOSFET on a semi-
insulating GaAs(111)A substrate with ALE La1.8Y0.2O3 as gate di-
electric.

3.1.3 Epitaxial La1.8Y0.2O3/GaAs(111)A interface enabled high perfor-

mance GaAs nMOSFETs study

GaAs(111)A Inversion Mode NMOSFETs Device Structure and Fabrica-

tion

Figure 3.3 shows the schematic view of a GaAs(111)A NMOSFET fabricated

in this work. The device fabrication started with semi-insulating (SI) GaAs(111)A

substrates. The samples were degreased by acetone, methanol and isopropanol se-

quentially, then diluted hydrochloride acid (HCl : H2O = 1 : 3) was used to etch

away the surface native oxide, which is well known to cause high density of states at

the semiconductor-oxide interface. After etching, the samples were dipped in (NH4)2S

solution (10% (NH4)2S) for 20 minutes so that the surface dangling bonds can be passi-

vated, and they were quickly transferred into ALD chamber within 2 minutes. The de-

position involves precursors including lanthanum tris(N,N-diisopropylformamidinate),
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yttrium tris(N,N-diisopropyl-acetamidinate) and H2O at 300◦C. Uniform epitaxial

layers were grown by the employment of long purging times (40s∼80s).

Table 3.1
Process sequence for the fabrication of GaAs(111)A NMOSFETs.
7.5nm LaYO3 or La1.8Y0.2O3 was epitaxially grown by ALE, form-
ing a single crystalline oxide-single crystalline semiconductor inter-
face, whose electrical quality could be further improved by a high
temperature annealing.

We studied the epitaxial high-k gate dielectric LaxYyO3 with two atomic ratios

here, x:y = 1:1 and x:y = 1.8:0.2. Al2O3 6.5nm thick was deposited as a capping layer

to prevent any reaction between LaYO3 and air, the Al2O3 growth was completed

using trimethylaluminum and water as Al and O precursors also at 300◦C. With

photolithography, the samples were patterned and sent out for ion-implantation. In

order to reduce contact resistance, optimized 2-step Si ion-implantation (1×1014cm−2

at 30keV and 1× 1014cm−2 at 80keV) was performed. Dopant activation was done in

a Minipulse RTA system, samples were annealed for 15 secs at 860◦C in N2 ambient.

Source and drain areas were then patterned by photolithography and GeNi/Au was

evaporated as contact metal to form Ohmic contact. A contact annealing at 420◦C

in N2 for 30 seconds process was followed. Finally gate region was patterned, Ni/Au
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evaporation was done in a CHA metal evaporation system following by a lift-off

process. The complete process flow is also depicted in Table 3.1.

GaAs(111)A nMOSFET Devices characterization

A well behaved output characteristic of a 0.5µm-gate-length inversion-mode

GaAs(111)A NMOSFET with La1.8Y0.2O3/Al2O3 gate dielectric is demonstrated in

Fig. 3.8, exhibiting a maximum drain current of 326 mA/mm with VDS = 2V and VGS

= 5V. The device on-current drivability is better than the GaAs(100) devices with

silicon interfacial layer passivation [39], silane + ammonia surface passivation [40] and

Gd2O3(Ga2O3) oxide passivation [41] due to the lattice matching epitaxial interface.
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Fig. 3.4. Output characteristic (IDS∼VDS) for a LG=0.5µm
GaAs(111)A NMOSFET with Al2O3/La1.8Y0.2O3 as gate dielectric.

The transfer characteristics and gate leakage current from the same GaAs(111)A

NMOSFET are plotted in Fig. 3.5. A SS of∼97mV/dec is obtained with an EOT∼4.5

nm at VDS = 50mV, indicating a low mid-gap interface trap density. The on-off ratio
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is as high as 107 owing to the high on-current and low reverse junction leakage. The

gate leakage current starts to increase when gate bias is larger than 1V because the

high temperature annealing employed in the fabrication process (860◦C for 15 sec-

onds in N2) resulted in the partial crystallization of the 6.5nm Al2O3 capping layer

on top, however, the leakage current density at high VGS bias (∼10−3 A/cm2) is

much smaller than the requirements in the ITRS roadmap. The extrinsic peak Gm is

about 140 mS/mm, and the intrinsic Gm is about 210 mS/mm after correction with

the series resistance obtained from Fig. 3.7. The RSD extracted from Channel resis-

tance (RCH) versus gate length (LG) under different gate biases (VGS) in the linear

region (VDS=10mV) on GaAs(111)A NMOSFETs with different LG. The relative

large RSD (2.5Ω·mm) can be further improved by optimization of ion implantation

and Source/Drain metal engineering. The ∆L comes from the over exposure error

induced in photolithography process and dopant diffusion into channel area after high

temperature activation. Linear scaling is obtained as expected.

The effective mobility depicted in Fig. 3.8 is extracted from a 20µm gate length

device, the mobility at high inversion carrier density is about twice of that from

GaAs(111)A NMOSFET with Al2O3 gate dielectric [37]. The peak electron effective

mobility is not as high as that of devices with Si or silane + ammonia passivation

at low inversion carrier density region, one possible reason is that the coulomb scat-

tering induced by lattice defects. The split C-V curve in Fig. 3.9 exhibits very small

frequency dispersion (∆C/Cmax ∼7%), indicating low interface trap density even in

the upper band gap.

The inset figure in Fig. 3.9 shows the measurement setup for split-CV. The source

and drain areas are connected together with ground, the inversion carriers (electrons

in NMOSFET) can be provided under channel region through contact part. With

higher gate bias, the Fermi level in under the channel region will rise into upper
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band gap and approaching Conduction Band Edge (CBE), the high trap density will

significantly affect the small AC signal of capacitance voltage measurement and the

C-V curve will show frequency dispersion due to the carrier trapping-detrapping in

the trap energy levels. However, in the epitaxial oxide on semiconductor system the

Dit is greatly suppressed thanks to the lattice matching crystalline structure and the

improvement of high temperature annealing process. Thus the frequency dispersion

is much smaller comparing to most passivation techniques.

Scaling Behavior of GaAs(111)A nMOSFETs

Fig. 3.10 is the comparison of scaling characteristics of IDS versus different gate

lengths for GaAs NMOSFET devices with two different gate oxide stacks. The

ION are taken from GaAs(111)A NMOSFETs at VGS = 4V and VDS = 2V. It
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is clear that for devices with all the gate lengths the on-currents of NMOSFETs

with Al2O3/La1.8Y0.2O3 gate stack are much higher (101 ∼ 102) than that of de-

vices with Al2O3/LaYO3 gate stack, showing the advantage of better lattice matched

Al2O3/La1.8Y0.2O3 interface.

The subthreshold swing (or called subthreshold slope) SS is shown in Fig. 3.10.

The red dashed line is denoting the 100mV/dec for eye reference. For all the de-

vices of different gate lengths the SS are around 97mV/dec, indicating an excellent

semiconductor-oxide interface. SS is a good method for estimation of mid gap Dit.

Ignoring the short channel effect, the SS usually can be expressed as

SS = 60mV/decade · (1 +
Cit

Cox

) (3.1)

where Cit = qDit is the interface trap capacitance and Cox is the oxide capacitance.

The mid gap Dit from GaAs(111)A NMOSFETs is around 3× 1012cm−2eV −1, which
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is much lower than the GaAs(111)A device with Al2O3 gate dielectric. Further device

scaling into the submicron regime may give better device performance with novel

device structures.

3.1.4 Epitaxial La1.8Y0.2O3/GaAs(111)A interface enabled high perfor-

mance GaAs pMOSFETs

GaAs(111)A Inversion Mode pMOSFETs Device Structure and Fabrica-

tion

Similar to the nMOSFETs fabrication process described in the previous sec-

tion, the device fabrication also starts from GaAs semi-insulating substrates with

GaAs(111)A surface. The substrates were first degreased by acetone, methanol and
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isopropanol, then dipped in diluted HCl for 30 seconds and soaked in 10% (NH4)2S

solution for 20 minutes for sulfur passivation. Right after the passivation, the sam-

ples were quickly transferred into atomic layer deposition (ALD) chamber, 7.5nm

La1.8Y0.2O3 and 6.5nm Al2O3 were sequentially deposited on the GaAs(111)A sur-

face, and a La1.8Y0.2O3/GaAs epitaxial interface is formed. The purpose of the Al2O3

top layer is to prevent La1.8Y0.2O3 reacting with water in the air. The source/drain

regions were patterned and implanted with a zinc dose of 5×1014 cm−2 and an energy

of 60 keV, and ion activation was achieved by annealing at 800C for 30 seconds in

nitrogen in a rapid thermal process (RTP) system. The GaAs/La1.8Y0.2O3 interface

quality is greatly improved by the relative high temperature treatment, which at the

same time caused dopant diffusion from source/drain into the device channel area.

The oxide stacks at source and drain area were etched away by diluted BOE and HCl

solution, and Pt/Ti/Pt/Au were electron beam evaporated for S/D ohmic contact.

Finally Ni/Au was evaporated for gate electrode. A Keithley 4200 was used for the

GaAs pMOSFETs electrical characterization and an HP4284A precision LCR meter

was used for split-CV measurement at room temperature.

The cross-sectional view of a GaAs pMOSFET fabricated in this work is shown in

Fig. 3.12, and the inset is a HRTEM image taken from the interface of La1.8Y0.2O3/

GaAs(111)A after high temperature annealing. A clear sharp, flat and epitaxial

interface can be observed from the TEM image. The La1.8Y0.2O3 formed cubic phase

on top of GaAs(111)A surface and the epitaxial structure is formed and confirmed by

both TEM and X-ray Diffraction (XRD) analysis, and detail interface studies can be

found in [9]. The Capacitance-Voltage study of the epitaxial MOS structure shows

that higher temperature thermal treatment is helpful to improve interface quality and

reduce interface trap density. The Dit for the 800◦C annealed samples is extracted

to be around 5×1011 cm−2 eV−1 in the band gap position of E = Ev + 0.4 eV, using
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Fig. 3.12. (a) The cross sectional view of a GaAs(111)A pMOS-
FET. (b) High-resolution TEM image of the single epitaxial
GaAs(111)A/La1.8Y0.2O3 interface after 860oC RTA annealing. The
white box is denoting the flat interface for eye reference.

conductance method at room temperature. Therefore, in order to achieve better

semiconductor-oxide interface quality, an optimized annealing of 800◦C was employed

in the pMOSFETs fabrication.
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Fig. 3.13. (a) Current-voltage (I-V) characteristic and (b) extrinsic
transconductance (Gm) and drain current versus gate bias of a 1m-
gate-length GaAs pMOSFET with ALE La1.8Y0.2O3 gate oxide. This
device shows a maximum drain current of 46 mA/mm and a peak
extrinsic transconductance of 12 mS/mm.

GaAs pMOSFETs devices characterization and analysis

Fig. 3.13(a) shows the measured DC output characteristics of a GaAs pMOSFET

with 1µm gate length fabricated in this work. At a gate bias of -5V and a drain

bias of -2V, the maximum drain current is 46 mA/mm, which is among the highest
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Fig. 3.14. Transfer characteristics and gate leakage current density of
a 8µm-gate-length GaAs pMOSFET fabricated in this work.

III-V pMOSFETs reported so far. The current drivability has been greatly improved

over the GaAs pMOSFET with amorphous Al2O3 gate dielectric (two orders of mag-

nitude higher ID). We attribute this to the high quality, low Dit interface epitaxial

La1.8Y0.2O3/GaAs(111)A interface, which is crucial in enhancement mode MOSFETs

realization. The linear output characteristics as well as the transconductance as a

function of gate voltage of the same device are plotted in Fig. 3.13(b). This device

has a threshold voltage of -0.16V, which is suitable for the requirements of the future

short channel CMOS applications with low driving voltage. As a result of the unop-

timized process, relative large contact resistance of around 2.2 Ω·mm is obtained, by

the method of transmission line model. The extrinsic peak transconductance is about

12 mS/mm, which is comparable to the GaSb pMOSFETs with amorphous Al2O3

dielectrics of 4 nm EOT. The transconductance can be further improved by reducing

the equivalent oxide thickness ( 4.5nm in this work) and optimizing the Ohmic contact
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Fig. 3.15. (a) Split C-V characteristics and measurement setup of a Lg
= 8µm GaAs(111)A pMOSFET fabricated in this work (b) effective
hole mobility extracted from the same GaAs(111)A pMOSFET as in
(a), using the split CV results.

at S/D area. The transfer characteristics along with the gate leakage current density

of an 8 µm gate length GaAs pMOSFET are shown in Fig. 3.14. The gate leakage cur-

rent density stays below 10−6 A/cm2 for all measured gate biases, indicating excellent

dielectric thermal stability even after high temperature annealing. At a high drain
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bias of 2 V, the current ION/IOFF of this device is over 2400. The subthreshold slope

obtained is around 280 mV/dec. We ascribe the relative small current on/off ratio to

the dopant fast diffusion from the source and drain into channel area because of the

high temperature annealing process (800◦C 30s). The high off-state current become

more severe when the gate length is lower than 2µm, which is in consistent with the

above explanation. We previously reported the charge neutral level shifting towards

the conduction band on the GaAs(111)A surface, which is favorable for nMOSFETs

realization. However, the epitaxial structure greatly reduced the density of traps at

the interface and thus enabled an unpinned GaAs surface, which is of vital importance

for enhancement-mode MOSFETs. Split-CV characteristic of 10 kHz along with the

capacitance measurement setup are shown in Fig. 3.15(a). The hole effective mobility

is calculated and plotted in Fig. 3.15(b). The hole effective mobility

µeff =
gdL

WQn

(3.2)

where gd is the drain conductance, L and W are the channel length and width of

the device, Qn is the mobile channel inversion charge density, which can be obtained

by integration of the split C-V curve. The peak hole mobility of 148 cm2/V·s is

achieved. Although the pMOSFETs are still constrained by the GaAs hole mobility

by its nature, the high quality epitaxial interface make the GaAs pMOSFET very

promising in future CMOS applications.

3.1.5 La1.8Y0.2O3/GaAS(111)A MOS Capacitance-Voltage Study

In order to investigate the mechanism lying behind the La1.8Y0.2O3/GaAS(111)A

system, Different Al2O3/La1.8Y0.2O3/GaAS(111)A capacitors were also fabricated and

annealed at different temperatures for systematic interface studies.
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MOS Capacitors Fabrication

The MOS capacitors fabrication began with p-type GaAs(111)A substrates of dop-

ing 5-7×1017cm−3 and n-type GaAs(111)A substrates of doping 6-9×1017cm−3, same

surface pretreatment including surface degrease, HCl etching and sulfur passivation

were performed sequentially before Atomic Layer Deposition oxides. The same oxide

stacks 7.5nm La1.8Y0.2O3/LaYO3 and 6.5nm Al2O3 were deposited on the sulfur pas-

sivated surface at 300◦C, while the Al2O3 topping layer serves as encapsulation layer

preventing the reaction between LaxYyO3 and air. The samples were then annealed

in a Jipelec RTA system at different temperatures; the splits include as-deposited,

600◦C for 30 seconds, 700◦C for 30 seconds and 800◦C for 30 seconds. The annealing

ambient was nitrogen. Top-top capacitance structures were employed in the capac-

itor fabrication since only one metallization is needed, which simplified the process.

Ni/Au was evaporated as top metal layer, followed by a loft-off process.

Capacitance-Voltage Comparison Analysis

Table 3.2 summarized the The capacitance frequency dispersion, flat band volt-

age and its shift from 5kHz to 1MHz of p-type capacitors at different annealing

conditions with two oxide layers. The frequency dispersion in the capacitance accu-

mulation region (∆C/Cmax) indicates the density of traps where the Fermi level is

reaching the valence band edge. The capacitors with La1.8Y0.2O3/GaAs(111)A and

LaYO3/GaAs(111)A exhibit similar dispersion and trend after different annealing

conditions. The LaYO3/GaAs(111)A capacitors dispersion dropped from 4.7% to

1% after 800◦C annealing while the La1.8Y0.2O3/GaAs(111)A capacitors dispersion

dropped from 5% to 1.8%. The interface quality improvement also can be observed

from the ∆Vfb from 5kHz to 1MHz, which shows the same tendency with the fre-
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Table 3.2
Comparison of C-V curve frequency dispersion, ∆Vfb from 5kHz to
1MHz and Vfb of p-type Ni/Al2O3/La1.8Y0.2O3/GaAs(111)A and p-
type Ni/Al2O3/LaYO3/GaAs(111)A capacitors under different an-
nealing conditions. The reduction of frequency dispersion suggests
that the interface quality is improved by high temperature annealing.

quency dispersion. One noteworthy point is that although the high thermal budget

can lead to improvement of interface, it will also induce the C-V flat band shift posi-

tively. This shift can be attributed to the negative charged oxygen vacancies residing

in the LaxYyO3 oxide were reduced during the RTA process.

The Equivalent Oxide Thickness (EOT) versus annealing condition on Al2O3-

/LaxYyO3/GaAs(111)A capacitors are plotted in Fig. 3.16. The EOT were calculated

from the accumulation capacitance of C-V curve. The EOT decreased slightly after

higher temperature annealing due to the following two reasons:

1. The oxide film densification resulted from high temperature annealing. The

oxide stacks became thinner and thus the physical thickness is less.

2. Higher dielectric constant is achieved because of the crystalline structure is

improved with high thermal budget.
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The La1.8Y0.2O3 oxide has higher dielectric constant which contributes to the

smaller EOT than LaYO3 oxide at all annealing conditions. The physical oxide

thicknesses in this work (∼7.5nm LaxYyO3 and ∼ 6.5nm Al2O3) were confirmed by

Atomic Force Microscopy (AFM) measurement, performed on the samples etched by

diluted BOE and HCl solution. The higher dielectric constant make La1.8Y0.2O3 more

promising in the application of next generation MOSFETs in terms of scaling down,

let alone much better interface electrical properties. Device integration with EOT as

small as 1.0-1.2nm is achievable by reducing LaxYyO3 and Al2O3 thickness [42].

Fig. 3.17 and 3.18 show the C-V characteristics of n-type and p-type Ni/Al2O3-

/La1.8Y0.2O3/GaAs(111)A capacitors after different annealing temperatures. The fre-

quencies are from 1kHz to 1MHz. Notice the slightly larger accumulation capacitances

are due to the densification effect we discussed earlier. Besides smaller frequency dis-

persion can be clearly observed from the annealed p-type capacitor samples, while
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Fig. 3.17. Capacitance-Voltage characteristics of p-type
Ni/Al2O3/La1.8Y0.2O3/GaAs(111)A capacitors measured from
1kHz to 1MHz at different annealing conditions (a) As-deposited (b)
600◦C annealed and (c) 800◦C annealed in N2 for 30seconds.

Fig. 3.18. Capacitance-Voltage characteristics of n-type
Ni/Al2O3/La1.8Y0.2O3/GaAs(111)A capacitors measured from
1kHz to 1MHz at different annealing conditions (a) As-deposited (b)
600◦C annealed and (c) 800◦C annealed in N2 for 30seconds.
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for n-type C-V the C-V bump caused by the mid-gap Dit is significantly reduced by

high temperature annealing. However, the frequency dispersion remains around the

same level; this may be due to the trap densities close to the conduction band edge

are not suppressed effectively. The C-V results taken at 100 kHz and conductance

spectroscopy of samples with two different interfaces annealed at 800◦C are compared

in Fig. 3.19. The capacitances are normalized to C/Cmax for a fair comparison. The

smaller capacitance in the inversion region of the capacitor La1.8Y0.2O3/GaAs(111)A

is attributed to the larger capacitance in the accumulation region. We can see that

the transition of the La1.8Y0.2O3/GaAs(111)A C-V curve from accumulation to weak

inversion is faster than that of LaYO3/GaAs(111)A C-V, which means the typical

stretched out curve caused by higher Dit existing in the LaYO3/GaAs(111)A inter-

face.

Fig. 3.19. A comparison of p-type 100 kHz C-V characteristics of Ni/
Al2O3/ La1.8Y0.2O3/GaAs(111)A and Ni/Al2O3/LaYO3/GaAs(111)A
annealed at 800◦C. A more stretched-out behavior is observed from
the LaYO3/GaAs(111)A interface.
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C-V Study with Conductance Methods

Fig. 3.20. Conductance spectroscopy in the plane of VG versus fre-
quency from p-type C-V of (a) Ni/Al2O3/LaYO3/GaAs(111)A capac-
itors and (b) Ni/Al2O3/La1.8Y0.2O3/GaAs(111)A capacitors. Both
samples were annealed at 800◦C in N2 for 30 seconds. The Fermi
level traces are denoted by the double red lines.

Fig. 3.20 compares the conductance spectroscopy of samples with two different in-

terfaces annealed at 800◦C. Using conductance method, Fermi level moving efficiency

can be compared by the equation [43]:

f =
σvtN

2πexp(∆E/kT )
(3.3)

Where Where ∆E (Ec-Et or Et-Ev) is the difference between the energy level of

the trap state and the majority carrier band edge, is the trap state interaction cross

section, vt is the thermal velocity of the carrier and N is the density of state of the

majority carrier band. The measurement frequency f is equal to 1/2πτ , where τ is

the characteristic trapping time who describes the time needed for a free charge to

be captured or trapped by a trapping state at energy level Et. A typical frequency

range for CV measurement goes from 1kHz to 1MHz which corresponds to 0.28 eV
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- 0.47 eV above the valence band for holes and 1.01 eV - 1.19 eV above the valence

band for electrons in GaAs at room temperature, as illustrated in Fig. 3.21.
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Fig. 3.21. Charge trapping characteristics for GaAs at room temperature (300K).

Therefore, it can be calculated from Fig. 3.20 that For the capacitor of Al2O3/

La1.8Y0.2O3/GaAs(111)A, the Fermi level moves more than 0.2 eV in the GaAs

bandgap within ∼0.5 V gate bias, and the modulation efficiency is about twice that

of Al2O3/LaYO3/GaAs(111)A capacitor. The much higher Fermi level moving effi-

ciency [44] of La1.8Y0.2O3/ GaAs(111)A interface than LaYO3/GaAs(111)A suggests

that much smaller density of traps (Dit)is achieved in former structure since more

gate induced charges are effectively responsible for Fermi level moving instead of

filling interface traps.

The Dit extracted from conductance method is plotted in Fig. 3.22 and Fig. 3.23.

High temperature annealing effectively suppressed the Dit (from 3×1012 cm−2eV−1

down to 5×1011 cm−2eV−1) at the La1.8Y0.2O3/ GaAs(111)A interface while it is less
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better interface is shown than the Dit in Fig. 3.23.

effective for the LaYO3/GaAs(111)A interface due to the lattice mismatch induced

defects.

3.1.6 Summary

In this section, high performance inversion-mode GaAs(111)A NMOSFETs with

ALE LaxYyO3 as gate dielectric are experimentally demonstrated and characterized.

The maximum drain current reaches 326 mA/mm for 0.5µm gate length device with

a low subthreshold swing (SS ) of 97mV/dec. High temperature dopant activation

annealing further improved interface quality, which enabled GaAs high performance

inversion mode NMOSFETs. The low Dit crystalline interface is promising for III-V

MOSFET applications thanks to its low density of traps and good thermostability.
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3.2 Epitaxial La2O3/GaAs (111)A interface enabled high performance

GaAs CMOS devices

3.2.1 Introduction

The electrical results of GaAs MOSFETs with La1.8Y0.2O3/GaAs(111)A interface

in the last section showed great potential of the application of GaAs devices. The low

density of traps in the GaAs bandgap solved the Fermi level pinning problem which

make high performance inversion-type MOSFETs possible. However, there are still

some questions worth exploring:

1. The lattice matching of the La-based oxide and the GaAs substrate below is of

great importance. While the lattice mismatch of the La1.8Y0.2O3 with respect to

the GaAs is 0.64%, will the device performance and interface quality be further
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enhanced if a better lattice matching single crystalline oxide file is applied as

the gate dielectrics?

2. Is it possible to deposit a thin film that we would be able to control the film

crystallinity, ultra thin thickness and chemistry property at the same time to

meet our need?

3. What about the scaling ability of this single crystal oxide film? The scalability

of the oxide thickness will be a key feature in the future device application due

to the ever-shrinking device sizes.

In order to address these questions, a systematic study of the La-based oxides

deposited with Atomic Layer Deposition on GaAs(111)A substrates, along with high

performance GaAs devices and basic digital circuits experimental demonstration, are

presented in this part.

In the last section we presented the demonstration of high performance GaAs

nMOSFETs and pMOSFETs with La1.8Y0.2O3 epitaxial dielectrics. The lattice match-

ing of the single crystalline oxide film and the GaAs(111)A interface provides enor-

mous potential for future device applications, since the number of dangling bonds at

the interface will be greatly reduced because of the well matched lattice structure.

According to the previous section we can see that with the incorporation of different

concentration of Y or other elements, we are able to tune the lattice constant of the

La-based single crystalline oxide (see Fig. 2.8). In this chapter, we demonstrate, for

the first time, high-performance GaAs devices (nMOSFETs and pMOSFETs) that

are integrated into CMOS circuits (inverters, NAND and NOR logic gates, and five-

stage ring oscillators). These devices were enabled by the high-quality interface of

single-crystalline La2O3 grown on GaAs(111)A by atomic layer epitaxy. The lattice
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mismatch between La2O3 and GaAs is just 0.04%, which make devices with even

better performance possible.

3.2.2 GaAs CMOS devices and circuits fabrication process

Fig. 3.24. Schematic view of a GaAs pMOSFET and an nMOSFET
in the GaAs CMOS integrated circuits fabricated here. GeNiAu alloy
is employed as S/D Ohmic contact metal for nMOSFETs and PtTi
alloy is employed for pMOSFETs..

Fig. 3.24 shows the schematic view of nMOSFET and pMOSFET fabricated

in this work on a common semi-insulating GaAs (111)A substrate with a common
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ALE high-k dielectric. The detailed process flow is depicted in Table 3.3. The

GaAs CMOS circuits fabrication began with semi-insulating GaAs substrates with

(111)A surface (Ga-terminated). The substrates were sequentially first cleaned by

acetone, methanol and isopropanol for degrease purpose, then diluted HCl solution

(1:3) was employed to strip the native oxide on top of GaAs surfaces. After the oxide

removal, the substrates were soaked in 10% ammonia sulfide ((NH4)2S) solution for

surface sulfur passivation. The sulfur passivation is am important step in process

since it can effectively protect the surface from re-oxidation caused by the exposure

with air, for a relative short time though. The substrates were loaded into ALD

chamber quickly after the sulfur passivation, then 4nm La2O3 and 4nm Al2O3 were

deposited on the GaAs(111)A surface. The epitaxial La2O3 thin films employed here

were deposited from the precursors lanthanum tris(N,N-diisopropylformamidinate)

and H2O at 385◦C, while the amor-phous Al2O3 oxide capping layer was deposited

with precursors of trimethylalumnum (TMA) and H2O at 300◦C. Uniform epi-taxial

layers were grown by the employment of long purging times (40s∼80s). The purpose

of Al2O3 capping layer is to pre-vent the reaction between La2O3 and air.

After the film deposition, S/D active regions for nMOSFETs were defined by pho-

tolithography and a two-step ion implantation with a Si dose of 1 × 1014 cm−2 at

30 keV and 1 × 1014 cm−2 at 80 keV was performed to create N+ areas. N+ im-

plantation activation was achieved by rapid thermal anneal (RTA) at 860 ◦C for 15

seconds in N2 ambient. Then the S/D area were again defined by photolithography

and an ion implantation of Zn with a dose of 5 × 1014 cm−2 at 60 keV was performed

to form P+ regions, followed by another ion activation annealing at 780 ◦C for 30

seconds or 800 ◦C for 15 seconds, in nitrogen ambient and in an RTA system. The

source and drain areas of GaAs nMOSFETs were then formed by photolithography

and AuGe/Ni/Au metal stacks were evaporated to form ohmic contacts with N+ re-
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Table 3.3
Process sequence for the fabrication of GaAs (111)A CMOS circuits.
The epitaxial interface is formed by ALE 4nm single crystalline La2O3,
followed by 4nm ALD amorphous Al2O3 as an encapsulation layer. Si
and Zn were used for N+ region and P+ region ion implantation,
respectively..

gions, and for P+ regions the alloy metal of PtTi was chosen to form Ohmic contact.

After lift-off processes, the samples were annealed by RTA at 420 ◦C for 30 seconds

in N2. The gate electrodes for GaAs nMOSFETs was formed by e-beam evapora-

tion of Ti/Au and for GaAs pMOSFETs was formed by Ni/Au deposition. At this

point, the fabrication of both nMOSFETs and pMOSFETs are completed. For the

CMOS circuits fabrication, a connection metal layer of Ti/Au was done by e-beam

evaporation after photolithography, followed by a lift-off process.
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Fig. 3.25. A birds view of the sample with fabricated GaAs CMOS
devices and circuits. The alignment marks are on the left part of the
picture, which was used for alignment during the photolithography
process for each layer. GaAs CMOS inverters are on the top right of
the picture, and 1-µm-gate-length and 4-µm-gate-length pMOSFETs
and nMOSFETs devices with different gate width ratios can be ob-
served. Ring oscillators are at the bottom right part, and a complete
3-stage ring GaAs CMOS oscillator, with devices gate length of 2µm
and gate width ratio of 1:3 (nMOSFETs to pMOSFETs), is shown.

3.2.3 Electrical characterizations and analysis of GaAs CMOS devices

The fabricated GaAs MOSFETs in the integrated circuits have a nominal gate

length varying from 1µm to 8µm, and the gate width ratios of nMOSFETs to pMOS-
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FETs in GaAs CMOS inverters vary from 1:3 to 1:10. An optical micrograph view of

the sample of with fabricated devices can be seen in Fig. 3.25.

Fig. 3.26. Output characteristics (IDS ∼ VDS) for a LG = 1µm
GaAs(111)A nMOSFET with GaAs/La2O3 epitaxial interface. The
maximum drain current can reach ∼376 mA/mm with a gate bias of
3.5 V and a drain bias of 2 V.

For the purpose of a systematic study, we first look at the electrical performance

of GaAs(111)A nMOSFETs and pMOSFETs independently. A well-behaved output

characteristic of a 1µm-gate-length inversion enhancement-mode GaAs(111)A nMOS-

FET with La2O3/Al2O3 is plotted in Fig. 3.26, exhibiting a maximum drain current

of 376 mA/mm with VDS = 2V and VGS = 3.5V, and the on-state driving current is

comparable to that of the previous InGaAs devices. The transfer characteristics from

the same nMOSFET are plotted in Fig. 3.27. A small SS of ∼ 74 mV/dec is obtained

with an EOT of ∼ 3nm, indicating a very low mid-gap interface trap density (Dit) of

2×1011 cm−2 eV−1. The subthreshold slope obtained from the GaAs nMOSFETs in

this work is the smallest of all the III-V planar MOSFETs to date, to the author’s

best knowledge for now. Most III-V MOSFETs suffers from relative large subthresh-
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Fig. 3.27. Transfer characteristics (IDS ∼ VGS) for the same device
shown in Fig. 3.26. A low subthreshold (SS) of 74 mV/dec is obtained
from the transfer curve measured with VDS = 0.05 V. The current
on/off ratio is ∼ 107, showing the advantage of relative wide band
gap of GaAs comparing to the narrower band gap semiconductors
like InGaAs.

old slope due to the high density of traps at the oxide-semiconductor interface, which

is critical for inversion layer formation. Besides the high current drivability and fast

switching speed, the current ON/OFF ratio of the GaAs nMOSFETs is ∼ 107, and

this can be ascribed to the relative large band gap (∼ 1.42 eV) for GaAs, comparing

to narrower band gap semiconductors like InGaAs and InAs. The semi-insulating

substrates, not available in silicon, contributes to the excellent off-state properties

and is also necessary to reduce cross talk between high speed signal lines in dense

GaAs circuits [45].

Fig. 3.28 shows the linear transfer characteristics as well as the extrinsic transcon-

ductance of a 1µm-gate-length GaAs enhancement-mode nMOSFET. The peak transcon-

ductance obtained from the curve with VDS = 2V is around 190 mS/mm. The effective
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Fig. 3.28. Linear transfer characteristics and extrinsic transconduc-
tance (gm) versus VGS for the same device of Fig. 3.26.

Fig. 3.29. Effective electron mobility extracted from a LG = 8 µm
GaAs(111)A nMOSFET with GaAs/La2O3 epitaxial interface. The
peak mobility reaches 1150 cm2/V·s.
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electron mobility is depicted in Fig. 3.29. The peak electron mobility is about 1150

cm2/V·s, which is much higher than the GaAs nMOSFETs with La1.8Y0.2O3 epitaxial

dielectric we presented in the previous section, showing an excellent interface quality

enhancement due to better crystalline lattice matching.

Fig. 3.30. Output characteristics (IDS ∼ VDS) for LG = 1µm
GaAs(111)A pMOSFETs with GaAs/La2O3 epitaxial interface an-
nealed with P+ ion activation at 780 ◦C for 30s and 800 ◦C for 15s.
The maximum drain current is ∼30 mA/mm with a gate bias of -3.5
V and a drain bias of -2 V from the pMOSFET device with 800 ◦C
annealing.

The output and transfer characteristics of a 1 µm-gate-length enhancement-mode

GaAs(111)A pMOSFETs with 780 ◦C and 800 ◦C ion activation annealing are plotted

and compared in Fig. 3.30 and Fig. 3.31, respectively. The maximum drain current

obtained is ∼ 30 mA/mm for the GaAs pMOSFET annealed at 800 ◦C and ∼ 15

mA/mm for the pMOSFET annealed at 780 ◦C. Higher annealing temperature leads

to larger drain current but also decreased the current ON/OFF ratio of GaAs pMOS-

FETs ( 104) comparing to nMOSFETs ( 107), and this can be ascribed to the fast
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Fig. 3.31. Transfer characteristics (IDS ∼ VGS) for the same devices
shown in Fig. 3.30. A subthreshold (SS) of 270 mV/dec is obtained
from the transfer curve measured with VDS = 0.05 V, for the GaAs
pMOSFET with 780 ◦C ion activation annealing.

Zn dopant diffusion in GaAs under high-temperature conditions. Consequently, a

better SS of ∼ 270 mV/dec for the device annealed at 780◦C is observed, compared

with the devices annealed at higher temperature. Apparently the off-state current of

the GaAs pMOSFETs are greatly compromised by the high thermal budget induced

by the annealing process, therefore the ion activation of the S/D regions needs to

be further optimized in the future to accommodate to ultra-scaled devices with low

stand-by power consumption.

The linear transfer characteristics, along with the extrinsic transconductance of

the 1 µm-gate-length enhancement-mode GaAs(111)A pMOSFETs are shown in Fig.

3.32. Similarly, with the help of split-CV method we can also plot the effective

hole mobility of GaAs pMOSFETs in Fig. 3.33. The peak hole mobility is about

180 cm2/V·s, which is obtained at low Ninv region. The relative low hole mobility
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Fig. 3.32. Linear transfer characteristics and extrinsic transconduc-
tance (gm) versus VGS for the same device annealed at 780 ◦C for 30s
of Fig. 3.30.

Fig. 3.33. Effective electron mobility extracted from a LG = 8 µm
GaAs(111)A pMOSFET with GaAs/La2O3 epitaxial interface. The
peak mobility reaches 180 cm2/V·s.
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is mainly throttled by the intrinsic electrical property of GaAs, which has the hole

mobility below 400 cm2/V·s.

Fig. 3.34. Quasistatic and high-frequency Capacitance-Voltage char-
acteristics measured from both p-type and n-type capacitors with
La2O3/GaAs epitaxial interface.

Fig. 3.35. Comparison of Dit distribution of amorphous
Al2O3/GaAs(111)A and epi-taxial La2O3/GaAs(111)A interfaces in
the GaAs band-gap. The values were deter-mined by the conduc-
tance method.
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Both p-type and n-type high frequency and quasi-static CV characteristics are

plotted in Fig. 3.34. The high frequencies CV taken from 1 kHz to 1 MHz show small

frequency dispersion at accumulation regions. Surface potentials were determined

from the quasi-static CV characteristics using Berglunds equation. The surface po-

tential is 0.94 eV at a gate bias of 1.5 V calculated from p-type CV, while from

the n-type CV the surface potential is determined to be 1.06 eV at a gate bias of

-2 V. Both the calculated surface potentials are much larger than half of the GaAs

band gap (∼ 0.71 eV), suggesting that the Fermi level is not pinned at the GaAs mid

gap. The room temperature conductance method was employed to determine Dit [2],

which is greatly reduced compared to the amorphous Al2O3/GaAs(111)A system, as

shown in Fig. 3.35.

Fig. 3.36. Measured temperature dependent transfer characteristics
of a 1 µm-gate-length GaAs nMOSFET with La2O3/GaAs(111)A in-
terface. The drain bias applied is 0.05 V.
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Fig. 3.37. Effective electron mobility versus inversion charge density is
plotted in the 77K to 300K temperature range. The mobility increased
at low temperature due to less phonon scattering.

The temperature-dependent transfer characteristics of a 1 µm-gate-length GaAs

nMOSFET with La2O3/GaAs(111)A interface and corresponding electron effective

mobility is shown in Fig. 3.36 and Fig. 3.37. The slight increase of the mobility in

moderate Ninv is due to less phonon scattering while the decreasing mobility at low

Ninv suggests strong influence of Coulomb scattering at lower temperature.

3.3 First GaAs CMOS digital circuits demonstration

From the early Silicon technology, people realized that low stand-by power dissi-

pation could be achieved by the digital circuits built with p- and n-channel MOSFETs

on the same chip connected in series. This type of circuits is named complementary

MOS transistor (CMOS) circuits. The basic building block of the CMOS digital cir-

cuits is an inverter, whose output is the inverse of its input. Arbitrary complicated

logic circuits can be realized by the suitable connection of numerous inverters.



67

Fig. 3.38. (a) Optical micrograph of a GaAs CMOS inverter. The
devices gate width ratio of nMOSFET to pMOSFET in this inverter
is 1:10. (b) Circuit schematic of a CMOS inverter.

Fig. 3.38 shows the optical micrograph and schematic of a GaAs CMOS inverter

fabricated in this work. The inverter has a width ratio of nMOSFET to pMOSFET

1:10. The threshold voltage of the GaAs nMOSFET is determined to be ∼ 0.7V and

pMOSFET is determined to be ∼ -0.9 V, using the method of linear extrapolation of

the transfer curve at low VDS bias. The inverter voltage transfer characteristics are

plotted in Fig. 3.39, measured at different supply voltages (VDD = 2V, 2.5V and

3V). This transfer characteristics is often employed for the evaluation of the quality

of an logic inverter. The GaAs inverter functions as follows (take power supply VDD

of 2.5 V for example): when the input voltage Vin is 2.5 V (logic state ”1”), the

nMOSFET below is at on-state due to the VGS,nFET = 2.5 V, which means the

channel of nMOSFET is much more conductive than the pMOSFET. As a result,

the output voltage Vout is pulled down to around 0.1 V (logic state ”0”). When the

input voltage Vin is 0 V (logic state ”0”), the pMOSFET above is at on-state due

to the VGS,pFET = -2.5 V, while the nMOSFET is at off-state (VGS,pFET = 0 V). At
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this time channel of pMOSFET is much more conductive than the nMOSFET, and

therefore the output voltage Vout is close to 2.5 V (logic state ”1”). The corresponding

inverter gain determined by the slope of the inverter transfer characteristics is shown

in Fig. 3.40, and a gain of ∼ 12 is obtained with VDD = 3 V. The higher inverter

gain obtained with larger drain bias is ascribed to the higher current drivability of

the GaAs MOSFETs.

Fig. 3.39. Transfer characteristics of a GaAs CMOS inverter, mea-
sured with different supply voltages VDD = 2V, 2.5V and 3V.

The GaAs CMOS logic circuit operation is further demonstrated by NAND and

NOR logic gates. NAND gate stands for Negated AND or NOT AND in digital

circuits. The NAND logic gate produces an output that is false (”0”) only if all

its inputs are true (”1”) (see table). Fig. 3.41 shows the optical micrographs and

schematic illustrations of the NAND logic gate, and we can see the NAND gate

consists of two pMOSFETs connected in parallel and two nMOSFETs connected in

series. The measured corresponding NAND logic gate voltage outputs is plotted in
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Fig. 3.40. GaAs CMOS inverter gain (dVout/dVin) as a function of
input voltage. A gain of ∼ 12 is achieved with VDD = 3V.

Fig. 3.42, and four combinations of input states 1 1, 0 1, 1 0 and 0 0 and corresponding

output states are marked.

Fig. 3.41. (a) Optical micrograph of a GaAs CMOS NAND logic
gate. The devices gate width ratio of nMOSFET to pMOSFET in
this inverter is 1:5. (b) Circuit schematic of a CMOS NAND gate.
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Fig. 3.42. Input Vin and output voltage Vout of the GaAs CMOS
NAND logic gate in Fig. 15. Four combinations of input states 1 1,
0 1, 1 0 and 0 0 and corresponding output states are marked.

The GaAs CMOS NOR logic gates are also fabricated and demonstrated. NOR

is the result of the negation of the OR operator, and it consists of two pMOSFETs

connected in series mode and two nMOSFETs in parallel mode, as illustrated in Fig.

3.43.A HIGH output (”1”) results if both the inputs to the gate are LOW (”0”);

if one or both input is HIGH (”1”), a LOW output (”0”) results. The measured

corresponding NOR logic gate voltage outputs is plotted in Fig. 3.44, and four

combinations of input states 1 1, 0 1, 1 0 and 0 0 and corresponding output states

are highlighted.

The supply voltage VDD used in all the logic gates is 2.5V, and for both input and

output voltages the logic 1 is corresponding to 2.5V while the logic 0 is corresponding

to 0V (GND).With the well behaved GaAs CMOS inverters, five-stage ring oscillators

are also demonstrated. As shown in Fig. 3.45, a five stage ring oscillator was built

by connecting five inverter stages in a close loop chain with an extra inverter stage
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Fig. 3.43. (a) Optical micrograph of a GaAs CMOS NOR logic gate.
The devices gate width ratio of nMOSFET to pMOSFET in this in-
verter is 1:5. (b) Circuit schematic of a CMOS NOR gate.

Fig. 3.44. Input Vin and output voltage Vout of the GaAs CMOS
NOR logic gate in Fig. 15. Four combinations of input states 1 1, 0
1, 1 0 and 0 0 and corresponding output states are marked.
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for the output signal measurement, which was connected to a digitaloscilloscope or a

spectrum analyzer.

Fig. 3.45. (a) Schematic illustration, (b) circuit schematic, (c) optical
micrograph and (d) output characteristics of a GaAs CMOS five-stage
ring oscillator. The dash line denotes the five stage inverters in the
ring oscillator.

Fig. 3.45(a) is a 3D schematic view of the 5-stage ring oscillator while Fig. 3.45(b)

and (c) are the schematic illustration of a 5-stage CMOS ring oscillator and a op-

tical micrograph taken from the fabricated sample, respectively. As shown in Fig.

Fig. 3.45(d), at VDD = 2 V, the fundamental oscillation frequency is at 1.1 MHz,

which is consistent with theoutput signal in its frequency power spectrum as shown

in Fig. 3.46. The fundamentalresonance frequency increases from 0.35 MHz at VDD

= 1 V to 3.87 MHz at VDD = 2.75 V.Also, the signal peak increases from 50 dBm

to -20 dBm as VDD increased from 1V to 2.75V. Both the frequency performance
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and the power performance increased as the drain current of the transistors increases.

At VDD=2.75V, the corresponding propagation delay of each stage can be calculated

using τ = 1/(2nf) = 25.8 ns, where n is the number of stages and f is the fundamental

oscillation frequency.

Fig. 3.46. Measured output power spectrum of a five-stage GaAs
CMOS ring oscillator. The fundamental oscillation frequency in-
creases from 0.35 MHz to 3.87 MHz as VDD increases from 1 V to
2.75 V.

3.4 Summary

Conclusion: By realizing a high-quality epitaxial La2O3/ GaAs(111)A interface,

we demonstrate GaAs CMOS devices and integrated circuits including nMOSFETs,

pMOSFETs, CMOS inverters, NAND and NOR logic gates and a five-stage ring

oscillator. As an exercise of III-V CMOS circuits on a common substrate with a

common gate dielectric, it provides a route to realize ultimate high-mobility CMOS

on Si if long-time expected breakthroughs of III-V epi-growth on Si occur.
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4. GE MOSFETS WITH EPITAXIAL LA2O3/GE(111)

INTERFACES

4.1 Introduction

Germanium, which was originally used as transistor fabrication, is of great interest

as a channel material for future technology nodes, owing to its bulk electron and

hole mobilities that are approximately two and four times higher than those of Si,

respectively. The small hole conductivity effective mass and hence can achieve higher

inversion hole mobility. Also, the high density of states of Ge allows for it to support

channel charge in its higher mobility valleys even with strong quantization attributed

either to the spatial quantum confinement or to the high electric field. This makes

Ge and attractive channel material for future high-performance MOSFETs. However,

the replacement of Si channel by Ge in these devices requires alternative high κ gate

dielectrics that can form a thermodynamically interface with Germanium itself.

Although enormous efforts have been put in the Ge MOSFETs study, The main

hurdle of the Ge application is the lack of a robust gate dielectric oxide. Different

surface passivation techniques like insertion of a thin SiO2/amorphous Si layer [46,47],

and various gate oxides such as ZrO2 [48], LaLuO3 [49] and HfO2 [50] have been used.

The best gate oxide which can form a good oxide-semiconductor interface with low

density of traps to date is GeO2 [51–54], which is the native oxide of Ge. However,

the GeO2 suffers from low dielectric constant which would greatly compromise the

gate oxide film thickness scaling in future high-speed low-power consumption digital

logic devices. Therefore, the search of a thermodynamically stable high-κ dielectric

is significant for the future Ge application.
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An epitaxial interface, Ge(111)/LaYO3 was previously discovered and reported

by our group. The relative higher dielectric constant of La-based oxide (16 ∼ 20) and

excellent thermal stability proved in previous chapters of GaAs MOSFETs make it

great candidate to serve as gate dielectric on Ge.

In this chapter, we present the demonstration of Ge pMOSFETs and nMOSFETs

with the integration of epitaixal La2O3/Ge(111) interface, which is realized by Atomic

Layer Deposition. The Ge MOSFETs show decent drive current and moderate sub-

threshold slopes, which suggest the good quality of the epitaxial interface.

4.2 Ge pMOSFETs and nMOSFETs with La2O3/Ge(111) epitaxial inter-

faces

Fig. 4.1. (a) Cross-sectional TEM image of La2O3/Ge(111)A epitaxial
interface, and (b) the corresponding electron diffraction pattern taken
from the same sample as shown in (a).

Fig. 4.1. shows the cross sectional view of the Ge nMOSFETs fabricated in

this work. The Ge nMOSFETs started from the Ge(111) p-type substrates (Ga

doped) with resistivity of 0.005-0.04 Ω·cm. The substrates were first degreased with

acetone, methanol and isopropanol, then the Ge native oxides were stripped with

cyclic clean (repeatedly diluted HF dip and DI water rinse). 6 nm La2O3 and 6 nm
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Al2O3 encapsulation layer were sequentially deposited on the Ge surface, and the

detail of the ALD process can be found in previous chapters. The epitaxial interface

can be achieved with the La2O3 layer formation, as shown in Fig. 4.2. The picture

shows 10 nm single crystalline La2O3 formed on the Ge(111) substrate, and the inset

is the electron diffraction pattern taken from the same sample, indicating the epitaxial

structure between the substrate and the oxide film above.

Fig. 4.2. (a) Cross-sectional TEM image of La2O3/Ge(111)A epitaxial
interface, and (b) the corresponding electron diffraction pattern taken
from the same sample as shown in (a).

After the gate dielectric film deposition, source and drain area were defined by

photolithography and Phosphorous ion implantation with a dose of 5 × 1015 cm−2

at 30 keV. Then ion activation annealing at 590 ◦C for 30 seconds in N2 ambient

was performed. The S/D regions were again defined by photolithography and the
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oxide stacks above these regions were removed by diluted BOE solution (1:5) and

HCl solution. Ohmic contact was formed by the e-beam evaporation of Al, followed

by a lift-off process. The device fabrication was finally completed by the formation

of Ti/Au gate electrode.

Fig. 4.3. Output characteristics (IDS ∼ VDS) for a LG = 0.5µm
Ge(111) nMOSFET with Ge/La2O3 epitaxial interface. The maxi-
mum drain current is around ∼124 mA/mm with a gate bias of 5 V
and a drain bias of 2 V.

The output characteristics of a LG = 0.5µm Ge(111) nMOSFET with Ge/La2O3

epitaxial interface is shown in Fig. 4.3. A high drain current of 124 mA/mm is

obtained at a gate bias of 5 V. The transfer characteristics of the corresponding

nMOSFET is plotted in Fig. 4.4. Due to the un-optimized fabrication process the

drain current is much larger than the source current because of the junction leakage

when gate voltage is less than 0 V. And the drain current increased with negative gate

bias, which is ascribed to the gate induced drain leakage. The junction performance

can be further investigated by the junction current measurement, as shown in Fig. 4.5.
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Fig. 4.4. Transfer characteristics (ID and IS ∼ VGS) for the same
device shown in Fig. 4.3. A subthreshold (SS) of 255 mV/dec is
obtained from the transfer curve IS ∼ VG measured with VDS = 0.05
V. The difference between drain current and source current is due to
the junction leakage induced by unoptimized fabrication process.

The current ratio of the N+/P diode is ∼ 103, which needs to be further improved

by careful ion-implantation and activation process.

The contact resistance and the sheet resistance of the ion implanted area can be

determined by the transmission line method (TLM) structure, which is composed of

100µm×100µm squares with 5 ∼ 80µm distance apart. The TLM measurement is

plotted in Fig. 4.6. The contact resistance of the S/D part is 0.57 Ω·mm and the

sheet resistance of the N+ area is extracted 65.7 Ω/�.

Similar to the Ge nMOSFET fabrication, the Ge pMOSFET fabrication started

from n-type Ge(111) substrate (Sb-doped) with resistivity of 0.05-0.5 Ω·cm. The

substrates were cleaned and the same 6 nm La2O3 and 6 nm Al2O3 oxide stacks as

Ge nMOSFETs were deposited as gate dielectrics while a La2O3/Ge(111) epitaxial

interface is formed. Source and drain areas were then defined by photolithography and
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Fig. 4.5. I-V characteristics of the Ge N+-P junctions formed by
phosphorous ion implantation and activation annealing at 590 ◦C for
30 seconds. Relative high junction leakage current and low current
ratio ∼ 103 is obtained due to the un-optimized fabrication process.

Fig. 4.6. The contact resistance Rc of the Ge nMOSFETs and sheet
resistance of the implanted areas (N+) extraction with the transmis-
sion line methods (TLM).
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Fig. 4.7. Schematic view of an Ge(111) inversion-mode pMOSFET
with ALE La2O3 as gate dielectric.

BF2 ion implantation with a dose of 1 × 1015 cm−2 at 10 keV. Then ion activation

was performed by a two-step annealing process in a rapid thermal process (RTP)

system at 350 ◦C for 30 minutes and then at 550 ◦C for 30 seconds in N2. Same

as the nMOSFETs process, the S/D metal Ohmic contacts were formed by e-beam

evaporation of Al and Ni/Au is adopted as the gate electrode. The finished Ge

pMOSFET’s cross-sectional view is depicted in Fig. 4.7.

The ID - VD output characteristics of a LG = 0.5µm Ge(111) pMOSFET with

Ge/La2O3 epitaxial interface is shown in Fig. 4.8. The maximum drain current

is around 63 mA/mm at VG = -5 V. The corresponding transfer characteristics is

plotted in Fig. 4.9. The dopants were effectively activated by the annealing of 350

◦C for 30 minutes and the P+/N diode junction quality was greatly improved due

to the 550 ◦C annealing, as shown in Fig. 4.10. The current ratio is ∼ 104, from

the two terminal DC measurement results of the P+/N diode. Comparing to the Ge

nMOSFETs, the current ID on/off ratio of Ge pMOSFETs is ∼ 103 while for source

current IS is ∼ 105. A threshold slope of 195 mV/dec is achieved, indicating good

interface quality of the epitaxial La2O3/Ge(111) structure.
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Fig. 4.8. Output characteristics (IDS ∼ VDS) for a LG = 0.5µm
Ge(111) pMOSFET with Ge/La2O3 epitaxial interface. The maxi-
mum drain current is around ∼124 mA/mm with a gate bias of 5 V
and a drain bias of 2 V.

The split-CV characteristics were measured from a LG = 8µm Ge(111) pMOSFET

(see Fig. 4.11), and the 1 kHz - 1 MHz CV shows small frequency dispersion, which

suggests low Dit near the valence band edge. With the help of split-CV the effective

hole mobility can be determined, as shown in Fig. 4.12. The peak hole mobility is

270 cm2/V·s, obtained at low inversion charge region (Ninv ∼ 1 × 1012 cm−2).

4.3 Summary

In conclusion, we have demonstrated high performance Ge nMOSFETs and pMOS-

FETs with integration of higher-κ La2O3 gate dielectrics. The maximum drain current

of the nMOSFET is ∼ 124 mA/mm and for the pMOSFET is ∼ 64 mA/mm. Relative

small subthreshold slopes SS of 195 mV/dec is obtained from pMOSFETs and 255

mV/dec from nMOSFETs, benefit from the high quality La2O3/Ge(111) interface.

The measured split-CV characteristics from a 8µm-gate-length Ge pMOSFET shows
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Fig. 4.9. Transfer characteristics (ID and IS ∼ VGS) for the same
device shown in Fig. 4.3. A subthreshold (SS) of 255 mV/dec is
obtained from the transfer curve IS ∼ VG measured with VDS = 0.05
V. The difference between drain current and source current is due to
the junction leakage induced by unoptimized fabrication process.

small frequency dispersion and the peak effective hole mobility is extracted to be

about 270 cm2/V·s. While the epitaxial interface appears to be promising in future

Ge high-speed low-power device applications, more work needs to be done on the

process optimization to further device performance enhancement.
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Fig. 4.10. Rectifying characteristics of the Ge P+-N junctions formed
by phosphorous ion implantation and two-step annealing process.
Better junction performance is obtained comparing to the N+-P junc-
tions.

Fig. 4.11. Split-CV characteristics measure from a LG = 8µm Ge(111)
pMOSFET with Ge/La2O3 epitaxial interface. Small frequency can
be observed from the 1 kHz to 1 MHz CV characteristics, indicating
low density of traps at the Ge/La2O3 interface.



84

Fig. 4.12. Effective electron mobility extracted from a LG = 8µm
Ge(111) pMOSFET with Ge/La2O3 epitaxial interface. The peak
hole mobility is∼270 cm2/V·s, obtained at low inversion charge region
(Ninv ∼ 1 × 1012 cm−2)

Fig. 4.13. The contact resistance Rc of the Ge pMOSFETs and sheet
resistance of the implanted areas (P+) extraction with the transmis-
sion line methods (TLM).
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5. SRTIO3 MOSFETS WITH ALD LAALO3 GATE

DIELECTRICS

5.1 Introduction

The class of transition metal oxide compounds exhibit a broad range of functional

properties, such as high dielectric permittivity, piezoelectricity and ferroelectricity,

superconduc-tivity, spin polarized current, colossal magnetoresistance and ferromag-

netism. Almost all these phenomenology result from strongly correlated electronic

behavior and turned out to be very sensitive to external parameters such as electric

and magnetic fields, internal or external pressure and so on. Polarity discontinuities

at the interfaces between two different crystalline materials or called hetero-interfaces

are believed to the key to lead to nontrivial effects.

In 2004, Ohtomo and Hwang reported a high-mobility electron gas could be

formed at the crystalline LaAlO3/SrTiO3 hetero-interface (as shown in Fig. 5.1) with

the materials grown at ultra-high vacuum and by pulsed laser deposition technique

(PLD). [55, 56] For very long time, it is widely believed that the oxide-oxide inter-

face needs to be atomically engineered by hetero-epitaxial growth in order to achieve

a conducting channel. Later, some research group reported that conducting chan-

nel can be achieved on SrTiO3 with some PLD amorphous dielectrics formed under

high temperature and high vacuum conditions. [57–60] In this chapter, we for the

first time demonstrate that the conducting channel can also be formed at insulating

amorphous LaAlO3/insulating crystalline SrTiO3 (100) interface by low temperature

(300◦C) and low vacuum (0.35Torr) atomic-layer-deposition technique. Well-behaved

LaAlO3/SrTiO3 all oxide field-effect transistors (FETs) are realized with gate dielec-
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Fig. 5.1. Schematic view of crystalline LaAlO3 oxide on Ti-terminated
SrTiO3 substrate. The 2 dimensional electron gas forms at the inter-
face of the two oxide layers [55, 56].

tric stacks of La-first cycle or Al-first cycle LaAlO3, and LaAlO3 with nanometer

thin La2O3 or Al2O3 interfacial layer [61]. The impact of different interfaces (with

AlO/LaO as the initial deposition cycle and with ultrathin Al2O3/La2O3 interfacial

layer) are systematically studied. High resolution transmission electron microscopy

(HRTEM) and temperature dependent MOSFET characterization are used to sys-

tematically study the LaAlO3/SrTiO3 interface.

5.2 Atomic Impact on LaAlO3/SrTiO3 NMOSFETs Interface: Initial Re-

action Study

In order to better investigate the LaAlO3/SrTiO3 interface, two different initial

reactions were employed in this experiment, including AlO as the first reaction cycle
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and LaO as the first reaction cycle. SrTiO3 NMOSFETs are fabricated and charac-

terized.

5.2.1 SrTiO3 Device Structure and Fabrication Process flow

Fig. 5.2. Schematic view of an accumulation-mode NMOSFET on
Ti-terminated SrTiO3 substrate with 2 types of ALD LaAlO3 gate
stacks.

Fig. 5.2 and Table 5.1 show the schematic cross section of an accumulation-mode

LaAlO3/SrTiO3 MOSFET and the device fabrication flow. Simple surface degrease

using acetone, methanol and isopropanol was performed on 2-inch SrTiO3 substrate.

After DI water rinse, wafers were transferred via room ambient into ALD reaction

chamber for gate stack deposition. For a systematical interface study, 2 kinds of high-

k gate dielectric stacks were grown on insulating Ti-terminated SrTiO3 substrates,

which are La-first cycle 8 nm LaAlO3 and Al-first cycle 8 nm LaAlO3. Reactions of

La[N(SiMe3)2]3 + H2O and TMA + H2O at 300◦C were employed for the dielectric

deposition. La-first cycle/Al-first cycle refers to using La[N(SiMe3)2]3/TMA as the

first pulse into the reaction chamber during the ALD process. After the gate dielectric

layer, a layer of Al2O3 was immediately deposited as an encapsulation layer on top to

prevent water adsorption of LaAlO3 film. [62] After S/D pattern by photolithography,
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Table 5.1
Process flow for SrTiO3 NMOSFETs with ALD high-k dielectric. 2
types of LaAlO3 gate stacks were employed. Plasma argon milling
removes LaAlO3 at S/D regions and also generates O vacancies on
SrTiO3 surface to ensure Ti/Au Ohmic contacts to the conducting
channel.

diluted BOE solution (BOE : H2O = 5 : 1) was used to first remove the Al2O3

capping layer and followed by an Argon milling in Plasma Technology RIE 80 for

6-10 minutes. During the milling process, over etch was a necessity to create shallow

trench on SrTiO3 surface where oxygen vacancies were generated and acted as donors

to help to achieve good ohmic contacts on SrTiO3 surface at the source and drain

regions. Ti/Au was deposited as S/D metal by e-beam evaporation and a lift-off

process was followed. Finally, the gate electrode was made by e-beam evaporation of

Ni/Au and a lift-off process. The fabricated MOSFETs have a nomi-nal gate length

varying from 3.5µm to 42.75µm and gate width of 100µm.
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Fig. 5.3. Cross-section High Resolution Transmission Electron Mi-
croscopy (HRTEM) image of ALD LaAlO3/SrTiO3 interface. A sharp
and clean interface is obtained between the top Atomic Layer De-
posited (ALD) amorphous LaAlO3 layer and the bottom single crys-
talline SrTiO3(100) sbustrate.

5.2.2 Device Characterization

The HRTEM image in Fig. 5.3 shows an amorphous layer of LaAlO3 and a very

abrupt LaAlO3/SrTiO3 interface. A Keithley 4200 was used for MOSFETs output

characteristics at room temperature.

Well-behaved I-V characteristics of a 6.75µm-gate-length accumulation-mode SrTiO3

NMOSFET with ALD high-k dielectric of La-first and Al-first LaAlO3 is demon-

strated in Fig. 5.4 and Fig. 5.5, with maximum drain current of 8.5 mA/mm and

gate leakage less than 10-6 A/cm2. Fig. 5.6 and Fig. 5.7 illustrate the transfer char-

acteristics of these LaAlO3/SrTiO3 NMOSFETs discussed above, both showing the

on-off ratio (Ion/Ioff) of 1000 which is much smaller than that reported in [57]. This

low Ion/Ioff ratio is not due to the intrinsic property of this novel material system.

It is because of the lack of device isolation in the current device fabrication process.
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Fig. 5.4. The output characteristics of a SrTiO3 MOSFET with La-
first cycle LaAlO3 as gate dielectric. The gate length of the device is
6.75 µm.

The NMOSFETs with AlO as first deposition reaction have slightly less drive current

(6mA/mm versus 8mA/mm at VGS = 5V and VDS = 2V) and higher Ion/Ioff ratio,

possibly due to the La atoms diffusion at the interface.

In order to study the importance of atomic structures at the interfaces, total

resistance in mobility region vs. different gate length at different gate bias on La-

first and Al-first devices are plotted in Fig. 5.8 and Fig. 5.9, respectively. It can

be seen that sheet resistance for La-first interface at zero bias is 140 kΩ/sq. while

280 kΩ/sq. for Al-first interface. This observation might be correlated with the

discovery reported in [55, 56, 63, 64], where the 2DEG formation is closely related

with La involved interface structures.

The extrinsic peak transconductance Gm at VDS=5V is 2.1 mS/mm and an in-

trinsic value of 2.8 mS/mm can be obtained after subtracting the contact resistance

RSD. The less resistive channel at La-first LaAlO3/SrTiO3 interface than Al-first
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Fig. 5.5. The output characteristics of a SrTiO3 MOSFET with Al-
first cycle LaAlO3 as gate dielectric. The gate length of the device is
6.75 µm.

LaAlO3/SrTiO3 interface is also supported by Fig. 5.10, where the field-effect mobil-

ity of La-first interface (with peak mobility of ∼3.9 cm2/Vs) is higher than that of

Al-first interface (with peak mobility of ∼3.3 cm2/Vs).

5.3 Interfacial Layer Effect Study on SrTiO3 NMOSFETs

5.3.1 Device structure and fabrication

Fig. 5.11 show the schematic cross section of an accumulation-mode LaAlO3/SrTiO3

MOSFET. The process flow is similar to that of Simple surface degrease using ace-

tone, methanol and isopropanol was performed on 2-inch SrTiO3 substrate. After DI

water rinse, wafers were transferred via room ambient into ALD reaction chamber

for gate stack deposition. Two gate stacks, 8 nm LaAlO3 with 1.5 nm La2O3 inter-

facial layer, and LaAlO3 with 1.8 nm Al2O3 interfacial layer were deposited on the
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Fig. 5.6. The transfer characteristics of a SrTiO3 MOSFET with La-
first cycle LaAlO3 as gate dielectric. The gate length of the device is
6.75 µm.

SrTiO3 substrates. After the gate dielectric stacks, a layer of Al2O3 was immediately

deposited as an encapsulation layer on top. After S/D pattern by photolithography,

diluted BOE solution (BOE : H2O ∼ 5:1) was used to first remove the Al2O3 capping

layer and followed by an Argon milling in Plasma Technology RIE 80 for 10 minutes.

Ti/Au was deposited as S/D metal by e-beam evaporation and a lift-off process was

followed. Finally, the gate electrode was made by e-beam evaporation of Ni/Au and

a lift-off process. The fabricated MOSFETs have a nominal gate length varying from

3.5µm to 42.75 µm and gate width of 100µm. A Keithley 4200 was used for MOS-

FETs output characteristics at room temperature, and a Janis 22C/350C Cryodyne

Refrigerator system along with a Keithley 2612A SYSTEM source meter were used

for low temperature measurement.
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Fig. 5.7. The transfer characteristics of a SrTiO3 MOSFET with Al-
first cycle LaAlO3 as gate dielectric. The gate length of the device is
6.75 µm.

5.3.2 Device Characterization: A Temperature Dependence Study

In order to further verify the importance of atomic structures at the interfaces, we

deliberately designed two gate stack structures with 1.5 nm La2O3 and 1.8 nm Al2O3

as the interfacial layer between 8nm LaAlO3 and SrTiO3 substrates. Similarly, well

behaved I-V characteristics are also obtained on these devices. As shown in Fig. 5.12,

a 3.75µm-gate-length device with 1.5 nm La2O3 interfacial layer has a drain current

of 10 mA/mm.

Fig. 5.13 and Fig. 5.14 show the similar approach to probe the sheet resistance

of different interfacial layers with 320 kΩ/sq. for La2O3 while 800 kΩ/sq. for Al2O3.

The result reconfirms the importance of the atomic structure of La-Ti on SrTiO3

surface to achieve higher conducting channel.
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Fig. 5.8. Channel resistance (Rm) versus designed gate length (LG)
under different gate bias in the linear region on La-first SrTiO3 MOS-
FETs. The S/D series resistance (RSD) and effective gate length can
be obtained at the cross point. La-first interface shows a sheet resis-
tance of ∼140 kΩ/sq. at zero bias.

Fig. 5.15 shows the maximum drain current vs. different gate length on the two

types of MOSFETs with a reasonable scaling behavior. More pronounced differ-

ence in terms of field-effect mobility can be observed in Fig. 5.16. As mentioned

above, La-Ti atomic structure plays a key role to form a better conducting channel

at LaAlO3/SrTiO3 interface, thus explaining the more obvious difference in terms

of mobility than the case between La-first and Al-first as shown in Fig. 5.10. With

different gate lengths, field effect mobility µFE ∼4 cm2/Vs can be obtained on the

devices with 1.5 nm La2O3 interfacial layer, while ∼2.5 cm2/Vs with 1.8 nm Al2O3

interfacial layer. All the data are peak values of field-effect mobility extracted from

different gate-length device transfer characteristics in linear region.

Fig. 5.17 shows the maximum drain current (IDSS) and on-off ration (Ion/Ioff )

vs. measured temperature from 300K down to 10K. The increase of maximum drain
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Fig. 5.10. Comparison of field-effect mobility of La-first and Al-first
LaAlO3/SrTiO3 MOS-FETs, showing La-first interface has higher mo-
bility than Al-first interface.
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Fig. 5.11. Schematic view of an accumulation-mode NMOSFET on
Ti-terminated SrTiO3 substrate with two different interfacial layers
(1.5nm La2O3 or 1.8nm Al2O3).
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Fig. 5.12. The output characteristics of a SrTiO3 MOSFET with 1.5
nm La2O3 as interfacial layer. The gate length of the device is 3.75
µm.

current is expected, because electron-phonon scattering should be suppressed with

decrease of temperature thus increase the mobility. [65] The dramatic increase of

Ion/Ioff ratio from 103 to 107 provides an insight into the possible origin of the elec-
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Fig. 5.14. Rm versus LG under different gate bias in the linear region
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La2O3 devices have larger µFE at the same gate length.
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tron carriers at the LaAlO3/SrTiO3 interface. Ioff is dominated by the fringe current

between source/drain beyond gate controlled area due to the lack of device isolation.

The 4 orders of magnitude decrement indicates that the intrinsic carriers are frozen

out at low temperatures. The majority carriers in the channel are originated from

electrostatic doping or field-effect. The intrinsic carriers at zero bias could be caused

by a combination of the crystal-field effect, pseudo-Jahn-Teller distortion, and inter-

face chemistry. Another possibility is from charge transfer from wider bandgap oxide

into the adjacent narrower gap SrTiO3 layer. [66] This charge transfer, similar to

modulation-doping in III-V semiconductors, could be significantly suppressed at low

temperature. The field-effect mobility vs. temperature for devices with La2O3 and

Al2O3 interficial layers are plotted in Fig. 5.18.

0 5 10 15 20 25 30 35
0

1

2

3

4

5
LG = 3.75 m, VGS from -3V to 5V, step 1V

 

 

I D
S (m

A
/m

m
)

VDS (V)

La-first

Fig. 5.19. High-voltage I-V output characteristics of a representative
device among these SrTiO3 MOSFETs. The device can be operated in
tens of voltages as drain voltage due to the wide bandgap of SrTiO3.

High voltage output performance is characterized (seen in Fig. 5.19) to demon-

strate the potential of this novel material system for all-oxide FETs with applica-

tions in transparent power amplifier/switch area due to its wide bandgap (3.2eV for
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Fig. 5.20. SrTiO3 single crystalline film was grown on 300 mm Si
substrate by MBE as shown in the picture. The length of the ruler in
the picture is 12 inch. The shining SrTiO3 surface reflects the part of
MBE system in which the film was grown.

SrTiO3). A picture of epitaxial single crystalline SrTiO3 film on 300mm Si wafer is

also shown in Fig. 5.20, which demonstrates great potential to integrate the all-oxide

FET technology into Si process platform with the avail-ability of ALD technology on

300mm Si process.

5.4 Metal-Insulator-Transition at LaAlO3-SrTiO3 interface

5.4.1 Introduction

It is widely believed that conducting oxide/oxide interface needs to be atomically

engineered oxide heteroepitaxy in order to achieve conducting channels. Most of this

phenomenology results from strongly correlated electronic behavior and turned out

to be very sensitive to external electric and magnetic fields. Polarity discontinuities
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at the interfaces between two different crystalline materials or called hetero-interfaces

are believed to the key to lead to non-trivial effects.

After the first demonstration that the conducting channel could be formed at

amorphous LaAlO3/crystalline SrTiO3 interface by simply atomic-layer-deposition

(ALD) of LaAlO3 as shown in previous sections, we report the observation of metal-

insulator transition (MIT) of the conducting ALD LaAlO3/SrTiO3 interfaces with

the data focused on the gate stack with ultrathin (1.8nm) Al2O3 interfacial layer.

5.4.2 Metal-Insulator-Transition Observation at LaAlO3/SrTiO3 Inter-

face
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Fig. 5.21. Well-behaved IDS-VDS characteristics of a 3.75µm gate
length LaAlO3/SrTiO3 FET with dielectric gate stacks including
1.8nm Al2O3 interfacial layer.

From the output characteristic (Fig. 5.21) of a FET formed on 8nm LaAlO3/1.8nm

Al2O3/SrTiO3 interface with gate length of 3.75 µm. At VDS=5V and VGS=5V, the

drain current is ∼ 9 mA/mm. The estimated room-temperature field-mobility is 4-5
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Fig. 5.22. Temperature dependent IDS-VGS measurement at VDS=5V
of the same device in Fig. 5.21. A clear crossover is observed at
VGS∼0.2V at VDS=5V and VGS∼0.5V at VDS=0.05V.

cm2/Vs similar to the value reported in [55] where the oxide interface is epitaxially

grown. Another interesting point is that ALD LaAlO3 stack not only provides the

hetero-oxide-interface to induce the conducting channel, it also serves as high-k gate

dielectric for top metal gate to electro-statically control the channel. The channel

current is plotted in Figure 5.22 as a function of the gate bias for temperatures

between 275K and 150K, in 25K step. All curves roughly cross at a single point, at a

gate bias of about 0.2V for VDS=5V and 0.5V for VDS=0.05V. This gate bias value

corresponds to a crossover from an insulating state (dσ/dT<0) to a metallic state

(dσ/dT>0).

Figure 5.23 shows the temperature dependence of the sheet resistance of the device

for various gate bias values. Insulating behavior is seen below the critical gate voltage

of 0.5V, switching to metallic conductance at higher bias. The sheet resistance at the

critical voltage is almost temperature independent. This shows that an apparent MIT

is induced by the field-effect in SrTiO3. The characteristic resistance is 2MΩ/sq. as
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Fig. 5.23. Temperature dependence of the channel resistance as a
function of gate bias. Insulating (VGS<0.5V) and metallic state
(VGS>0.5V) behavior are seen. The sheet resistance is nearly tem-
perature independent at the critical bias.

reported in Ref. [67] much higher than the quantum resistance (∼h/e2) obtained on

Si MOSFETs [68].

5.4.3 Mechanism Investigation of Metal-Insulator-Transition

A schematic energy band diagram is employed here to help with the understanding

of Metal-Insulator-Transition phenomenon (Fig. 5.24). SrTiO3 can be regarded as an

n-type semiconductor with the Fermi level pinned slightly below the conduction band

bottom. We assume an existence of in-gap states in SrTiO3, which provides an ex-

planation for conductivity in an otherwise insulating phase. Such in-gap states were

recently characterized by photoinduced absorption measurements in single-crystal

SrTiO3 [69]. We assume that the mobility edge of SrTiO3 coincides with the conduc-

tion band bottom. When a gate voltage is applied, the induced carriers are trapped in
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Fig. 5.24. In gap states filling model of the Metal-Insulator-Transition
phenomenon. The system experiences the transition from insulating
state with unoccupied states reside in the SrTiO3 band gap to metal-
lic state, where the in gap states are filled with field effect induced
carriers.

vacant in-gap states and the chemical potential moves closer to the conduction band

edge (Insulating state). In the SrTiO3 MOSFET in this work, at a gate bias of ∼0.5V,

the chemical potential of SrTiO3 crossed over the mobility edge into the conduction

band (Metallic state). The critical gate voltage was independent of temperature and

was only determined by the energy difference between the initial Fermi level and the

mobility edge.

For the conduction in the insulating phase, with the help of Arrhenius plots

(Fig. 5.25) of the drain currents, we are able to plot the carrier activation energy

as a function of gate bias. The type of temperature dependence has been shown to

be caused predominantly by a thermal excitation of carriers from shallow trap states

in the channel. The activation energy Ea is suppressed as the gate bias is increased

because the shallow states in the gap are gradually populated by field effect induced

carriers.
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Fig. 5.26. Carrier activation energy vs gate bias in the insulating
state. The activation energy was reduced by the gate field effect
induced carriers in the channel area.

One parameter scaling analysis [68] for the sheet resistance in the temperature

range from 275K to 150K is performed and plotted in Figure 5.26. Density or gate
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bias dependent To falls sharply for both insulating and metallic sides as the gate bias

approaches to the critical gate voltage. As shown in Figure 5.27, all sheet resistance

plots collapse into two curves: an insulating branch for carrier density below the

critical value and a metallic branch for density above the critical value. Nevertheless,

such conducting channel formed at an amorphous/crystalline oxide interface is a big

surprise. Much more studies are needed to understand the physics and potential

device applications for this novel all oxide electronic material.
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Fig. 5.27. Scaling behavior of the sheet resistance for the device, with
To chosen to yield scaling with temperature.

5.5 Summary and Conclusion

We have found a conducting channel at insulating ALD amorphous LaAlO3/

insulating crystalline SrTiO3 interface and demonstrated well-performed LaAlO3/SrTiO3

N-channel MOSFETs. The maximum drain current can exceed 10 mA/mm for a

3.75µm-gate-length device with La2O3 interfa-cial layer at VGS = 5V. Four differ-

ent gate dielectric stacks are designed to investigate the role of atomic structures
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at the interfaces for the channel conductivity, showing La-Ti interface is preferable

for a better conducting channel. Metal-Insulator-Transition was observed from the

device temperature dependent transfer characteristics, an in-gap state theory was

used to explain the MIT phenomenon at the amorphous LaAlO3/crystalline SrTiO3

interface. With the availability of MBE SrTiO3 and ALD LaAlO3 on 300 mm Si

substrates, these all-oxide field-effect transistors have the path for integration onto

the state-of-the-art Si technology platform.
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6. SUMMARY AND OUTLOOK

In summary, in this thesis for the first time, using atomic layer epitaxy (ALE) real-

ized by ALD, with a single crystalline semiconductor-single crystalline oxide interface,

high performance GaAs inversion-mode nMOSFETs, pMOSFETs, CMOS inverters,

NAND and NOR logic gates and 5-stage ring oscillators are demonstrated. The maxi-

mum drain current of 376 mA/mm for a 1µm-gate-length device with a low subthresh-

old swing (SS) of 74mV/dec are achieved for the devices with La2O3/GaAs(111)A

epitaxial interfaces. The single-crystalline La2−xYxO3/single-crystalline GaAs(111)A

interface are systematically studied with High-resolution Transmission Electron Mi-

croscopy (HRTEM), X-ray Diffraction (XRD) and Capacitance-Voltage analysis. This

high quality interface is very promising in future CMOS application. Ge pMOSFETs

and nMOSFETs with La-based epitaxial gate dielectrics are also demonstrated, and

the results show great potential of the epitaxial interface in future Ge digital logic

applications. The complex oxide study also expanded to complex oxide material

SrTiO3, conducting channel is found at the interface of insulating ALD amorphous

LaAlO3/insulating crystalline SrTiO3 interface, and well-behaved LaAlO3/SrTiO3 all

oxide field-effect transistors (FETs) are demonstrated with different gate dielectric

stacks. The interface was closely studied by manipulating the ALD initial reaction cy-

cles and insertion of different interfacial layers, and results show that La-Ti interface

is preferable for a better conducting channel.

In particular, the high quality epitaxial ALD complex oxide layer on GaAs(111)A

substrate give rise to great opportunities of future high mobility MOSFETs appli-

cations. Along the line of the promising interface delivered by ALD, much more
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interesting work could be done on the further exploration of next generation’s device

gate dielectrics. Firstly a detail study of the La-based higher-κ oxide is necessary

for the interface chemistry study, which will lead to an in-depth understanding of

the epitaxial formation and structure. Secondly the epitaxial oxide can be applied to

more III-V semiconductor materials like InP and GaSb, who also have high carrier

mobility and are of great interest in the future device fabrication. In addition, The

integration of epitaxial interfaces in the devices with novel structures like FINFETs

and GAA (Gate All Around) FETs, along with the ultra scaling oxide material and

electrical properties, also need to be investigated.
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