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ABSTRACT 
 

 

Bobinski, Thomas Paul. Purdue University, December 2013. Osmium Catalyzed 
Dihydroxylation and Oxidative Cleavage of Vinyl Sulfone and Elucidation of the 
Vinylsulfone Polypropionate Methodology for the Synthesis of the C32 des-Methyl C28-
C34 Actin Binding Tail of Aplyronine A. Major Professor: Philip L. Fuchs. 

 

A general methodology for the generation of dipropionate functionalities 

using cyclic 7-membered vinylsulfones has been devised for the purpose of 

synthesizing polyketide natural products such as aplyronine A. Final oxidative 

cleavage via ozonolysis has been shown to be difficult providing variable yields. 

Furthermore, elegant synthesis of the C28-C34 segment of the aplyronine A actin 

binding tail has proved elusive. Utilization of OsO4 and catalytic citric acid has led 

to a methodology whereby harsh ozonolysis procedures can be mostly avoided. 

A reengineering of the vinylsulfone polypropionate methodology in conjunction 

with osmylation has been found to provide the actin binding tail under mild high 

yielding conditions. These discoveries will be key  in developing a methodology 

for providing highly complex large scale substrates for the synthesis of 

asymmetric natural products. 
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CHAPTER 1: RATIONALE 

 

1.1: Biological Basis for Total Synthesis of Aplyronine 

Regulative intervention of the mitotic process is experiencing intense 

study. The cytoskeleton must sustain a large number of chemically driven 

changes to successfully divide. Success in cancer chemotherapy using paclitaxel 

(Taxol™) to stabilize microtubules has elevated all three major polymeric 

constituents of the cytoskeleton (microfilaments, microtubules, and intermediate 

filaments) to be crucial targets for aggressive research. During cell division, the 

microtubule cytoskeleton forms a spindle apparatus between two microtubule-

organizing centers, called centrosomes. During mitosis, chromosomes attach to 

microtubules and subsequently move to the spindle poles. A multiprotein 

complex called a kinetochore links chromosomes to microtubules and powers 

poleward movements.10,11,17,18 During cytokinesis, the actin cytoskeleton and 

myosin motor molecules generate a contractile ring that cleaves the cytoplasm, 

forming two daughter cells. At the beginning of the 21st century the importance of 

centrosome amplification, aneuploidy and chromosomal instability were often 

heralded as causes for tumorigenic invasion and metastasis and are 

unquestionable markers of unfavorable treatment outcome. These observations 

strongly indicate the need for a more thorough understanding of the major 
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biochemical events that lead to disregulation of the centrosome. While cancer 

chemotherapy that targets DNA synthesis (with attendant interference of DNA 

metabolism) often leads to drug-resistant cells and secondary tumors, a 

treatment regime that effects regulation of the centrosome might eliminate 

proliferating cells while avoiding the issue of chromosomal instability.17,22-27There 

are similarities between DNA and centrosome duplication (initiated at G1, 

regulated by many of the same protein complexes).28However, while the 

mechanism of DNA replication is well known, understanding the detailed 

operation of the centrosome is a subject of tremendous interest. Both the 

microtubule and actin cytoskeleton are critical for proper cell division and are 

affected during tumorigenesis. The actin cytoskeleton regulates a number of 

cellular processes, including cytokinesis, cell migration, cell polarity, membrane 

trafficking and apoptosis. Monomeric or globular (G)-actin undergoes 

polymerization into filamentous (F)-actin (Fig. 1.3 and 1.4)11,29-32 and represents 

the building block for a number of different F-actin subpopulations such as the 

contractile ring, filopodial bundles and lamellipodial networks. Actin organization 

and dynamics are regulated by a large number of actin binding proteins (ABPs).16 

Besides the microtubules, the actin cytoskeleton has become an interesting 

target for anti-cancer therapeutics,33 since several actin-dependent processes 

become out of control during tumorigenesis, including proper alignment of the 

mitotic spindle.34 An actin-dependent cell cycle checkpoint at the G2/M transition 

controls mitosis in primary mammalian cells, and the regulated polymerization of 
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a dendritic network of short filaments near the plasma membrane drives cell 

migration in normal and metastatic cells.35-37 

Various marine organisms such as sponges and nudibranchs as well as 

fungi, algae and bacteria are known to produce natural products with high 

specificity to the actin cytoskeleton,2,33,38,39 Several of these products, including 

cytochalasin B and D, phalloidin, and latrunculin A, (Figure 1.1) have emerged as 

essential tools for cell biologists to study the organization, dynamics and function 

of the actin cytoskeleton. Since actin is involved in numerous cellular processes 

that are affected during tumorigenesis, including cytokinesis, cell polarity, cell 

migration and apoptosis, these agents are of potential interest as anticancer 

drugs. Aplyronine A 1.6 is an exceptionally scarce macrolide originally isolated 

from the sea hare Aplysia kurodai.7 It has actin binding and depolymerizing 

properties3-5,7,40 as well as potent in vivo antitumor activity4,5 However, the 

molecular and cellular mechanisms of how aplyronine A 1.6 mediates its actin 

depolymerizing, anti-tumor and cytotoxic activities are poorly understood. 
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COS7 cells were treated with 50µM -(-)Blebbistatin (A) (not shown), control
medium or 0.4µM Cytochalsin D (B) overnight. The cells were then fixed with 4%
PFA and stained with phalloidin-FITC (green) to visualize the actin cytoskeleton
and Hoechst (blue) for nuclei. Both Blebbistatin and Cytochalsin D caused
drastic changes to the actin cytoskeleton as was expected.  

Scale bar = 70µm, 40X Images shown. Images courtesy of Genentech. 

Figure 1.1: Chromophoric Bio-Visualization Substrates 
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reidispongolide A1,2 1.4, sphinxolide B 1.545,46 and aplyronine A3-5 1.6. A second 

set includes the “double-tailed” bis-lactones rhizopodin 1.8,9-11 misakinolide A (= 

bistheonellide A)12-15,19,40,47,48 1.9, and swinholide A20 1.10 that bind monomers 

and sometimes sever filaments. Notably missing in this collection is the currently 

unknown aplyronine A bis-lactone 1.11, an advanced  target in this investigation 

(Fig. 1.2). 

 

  Figure 1.2: Natural Product Inhibitors Of Actin Polymerization. 
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Dimeric bis-lactones such as rhizopodin 1.8 sequester G-actin by forming 

an irreversible 2:1 actin-substrate complex (Fig. 1.3),9-11 whereas monolactones 

bind G-actin with 1:1 stoichiometry inhibiting polymerization and accelerating 

depolymerization. It has also been inferred that aplyronine A 1.6 is able to sever 

actin filaments (Fig. 1.4).40 In his 1996 study, Saito first postulated that 

aplyronine A 1.6 and mycalolide A 1.2 form their 1:1 complexes with actin by 

binding to the side chain.40 Understanding the interaction of actin with the above 

agents at the molecular level has been substantially aided by Ivan Rayment who 

has46,49 used drug•actin x-ray structures to provide an in silico model of actin with 

many of the above macrocyclic mono-and bis-lactones.21 The most significant 

general conclusion is that the binding of macrocyclic mono-lactones with a 

stereorich side chain that terminates in an enamide or oxazolidine heavily 

depends upon the side chain while accommodating the macrocyclic ring in a very 

forgiving fashion. C2 symmetric bis-lactones bearing a pair of sidechains bind 

two monomers in an antiparallel orientation; the macrocyclic ring serves as a 

backbone that allows the sidechain arms to snugly embrace identical binding 

sites on the individual actin units.  
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1.2: Retrosynthetic Analysis of Aplyronine Macrolactone Core 

Aplyronine A is a 24-membered macrolactone with the lactone formed 

between carbonyl C1 and C23-OH. It has 34 carbons in the main skeleton, bears 

5 olefins, 7 chiral centers (1.6), and two -aminoesters on the 7-OH and 29-OH 

groups. The stereocenters are comprised mainly of polypropionate, stereotetrads 

(alternating methyl and hydroxyl groups). Those polypropionates are C7-C10, 

C23-C26, and C29-C32 tetrads. The rest of the stereocenters include stereodiad 

C17-C19, an isolated stereocenter at C13, and the two -aminoesters on 

hydroxyls 7 and 29 (Figure 1.6). After disconnection of the two -aminoesters 

and replacing them with the appropriate aplyronine A analog esters, target 

molecule 1.7 is revealed as the desired aplyronine A core (Figure 1.6).  

 

Table 1.1:  Natural Product Inhibitors of Actin Polymerization. 
 

Drug (X-ray +Actin 
Y/N)# 

Inhibits 
actin polym

Actin inhibitor mech IC50 ILS** refs 

Reidispongiolide A 1.4 (Y) 50nM Cap&Sever F-actin 
 G-actin binding 

30nM (HT29) NA 1,2 

Aplyronine A 1.6 (Y) 31M Sever F-actin (?),  
1:1 complex G-actin 

0.4nM (HeLa) 545% P388 3-8 

Rhizopodin 1.8 (Y) 100nM 2:1 G-actin/1.8 complex 5nM  NA 9-11 
Misakinolide A 1.9 (N) 10nM (+) dimer cap; no sever 15nM (L1210) 140% P388 12-16 
Swinholide A* 1.10 (Y) .4nM-1µM Sequester dimer; sever 20nM (12 lines) 115% P388 19,20 

*The swinholide 22-membered ring monomeric lactone is devoid of antitumor activity; **ILS = 
Increase in lifespan (T/C) in cancer-bearing mice relative to untreated control; #actin-drug X-ray 
modeled in silico as small molecule mimics of gelsolin.10,18 
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Disconnection of aplyronine A analog 1.7 reveals 3 major stereotetrads as the 

potential aplyronine A precursors (Figure 1.7). The core lactone is formed via 

Yamaguchi macrolactonization between C1 and C23-OH while the trans-olefin 

between C4-C5 was formed via Horner-Wadsworth-Emmons (HWE) olefination. 

The C11-C12 bond is formed between a primary iodide on C11 and the -

position to a C13 carbonyl. The C11-C12 connection was presumed to take place 

via SN2 attack of C12 anion on C11, which will be followed by Corey-Bakshi-

Shibata (CBS) reduction of carbonyl C13 and subsequent methylation of the 

resultant 13-OH group. The 14E olefin between C14-C15 was to be constructed 

via Massamune-Roush (HWE)50 procedure. 20E trans-olefin could be 

constructed via Julia-Kocienski olefination. The C27-C28 bond was to be formed 

Figure 1.5: Retrosynthetic Analysis Of Aplyronine Core 
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with a Julia-Kocienski or Wittig olefination followed by a Crabtree regioselective 

hydrogenation directed by the C29-OH.  Finally 33E olefin could be constructed 

employing Wittig olefination followed by iodine-equilibration in order to obtain the 

trans-olefin. 

 

The next level of synthetic specificity that must be addressed is the 

construction of the stereotetrads in Figure 1.7. A convergent strategy leading to 

the aplyronine core will require the use of tetrads i-iii. These stereotetrads require 

differentiated termini. Each stereotetrad has two hydroxyl groups that also must 

be set apart. C21-C27 fragment (ii) and C28-C34 fragment (iii) possess 

enantiomeric stereotetrads offset by one carbon. The position of the red and 

green stereotetrads on their respective backbones will be an important 

component of this investigation. 

  

Figure 1.6: Aplyronine A Core Stereotetrads 
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1.3: Polypropionate Generating Methodologies 

The construction of polypropionates in organic synthesis has been a 

challenge that has been met with a growing number of methodologies through 

the years.51-53 The Fuchs group has sought to add to, and improve the utility and 

scalability of polypropionate production.54 

 

A key structural feature of polyketides in general, such as the macrolides 

aplyronine A 1.6  or misakinolide A 1.9  are the polypropionate segments. They are 

characterized by sequences of methyl- and hydroxy-bearing stereogenic centers, 

enabling large numbers of possible stereochemical permutations.51 

Figure 1.7: Polypropionate Methodologies 
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Biosynthetically, these are derived by iterative condensations of propionyl 

subunits and subsequent reduction of the derived -keto esters. Mimicking this 

biosynthetic pathway, the aldol reaction presents the most important method 

available for the stereocontrolled formation of propionates and many variants for 

regio-, stereo-, and enantioselective carbon–carbon bond formation have been 

reported.55-58 Furthermore, alternative strategies are of increasingly high 

importance. To gain perspective as to the effectiveness of the vinylsulfone 

methodology, a survey of well-established as well as more recently developed 

methods for the stereoselective assembly of polypropionates is required, 

including propionate aldol reactions,55 thiopyran reductions,59-61 crotylations,62-64 

allenylations,65-67 allylsilane addition,68-72 silicon tethers,73 epoxide openings,74,75 

rearrangements76,77 and Diels-Alder cycloaddition78-80   (Figure 1.7). 

 

 

 

The aldol addition reaction continues to be a highly versatile and widely 

used method for selective polypropionate synthesis.55-57 The addition reaction 

involves the condensation of ethyl ketones (1.12), esters, or amides with 

aldehydes (1.13) to generate the required chiral -hydroxycarbonyl adducts 

(1.14) in a direct fashion (Figure 1.8). 

Figure 1.8: Aldol Condensation 
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The relative configuration of the aldol adduct is usually determined by the 

geometry of the enolate intermediate, with Z-enolates (1.15) giving syn products 

(1.21) and E-enolates (1.16) anti products (1.22). As shown in Figure 1.9, this 

result has been rationalized by Zimmerman–Traxler transition states. 

Minimization of 1,3-diaxial interactions between R1 and R2 in the chair-like 

transition states 1.17 versus 1.18 and 1.19 versus 1.20 leads to the observed 

stereochemical outcome (Scheme 3).81 

Figure 1.9: Aldol Condensation (Evans) 
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One of the most widely used methods of auxiliary-controlled 

diastereoselective aldol reactions employs the class of oxazolidinones58 (Figure 

1.10), inititally developed by the Evans group for syn-aldol couplings.55 The syn-

aldol adducts are typically isolated in high diastereoisomeric purity (>250:1 dr) 

and yield. Enolization with dialkylboron triflates selectively affords Z-enolates 

(1.30). The model proposed by Evans to account for the asymmetric induction of 

these chiral oxazolidinones is presented in Figure 1.10. It is based on 

minimization of carbonyl–carbonyl dipole interactions between the imide carbonyl 

and the aldehyde. For aldehyde addition, the reactive form 1.25 of enolate 1.30 

has to be considered and two diastereomeric conformations (1.26 and 1.27) of 

the cyclic intermediate have to be taken into account. Due to steric interactions of 

the ligands on the boron and the chiral auxiliary, transition state 1.26 is favored, 

Figure 1.10: Evans Oxazolidinone Auxiliary 
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consequently giving rise to ‘Evans syn’ product 1.28, as opposed to 1.29. Since 

its inception many permutations of this methodology have been developed.82-88 

 

 

 

Asymmetric crotylation reactions have been studied extensively and used 

for the stereocontrolled assembly of polypropionates. One of the most intriguing 

features of these reactions is the predictable relationship between the 

configuration of the product and the geometry of the starting alkene. According to 

Denmark’s analysis,89 they may be classified into three mechanistically distinct 

types. Type I reactions proceed via a rigid chair-like transition state 1.31 (Figure 

1.11) which is characterized by coordination of the carbonyl to the metal atom. 

Consequently, the syn/anti diastereoselectivity of the product 1.33 reflects the 

Z/E ratio of the starting olefin geometry. Boron reagents are the most prominent 

representative of this type.63,90-93 Type II reagents (1.32), exemplified by 

trialkylsilanes and stannanes usually proceed via an open transition state and 

require Lewis acid activation.68-71,94-97 Type III reactants, not illustrated in Figure 

1.11, also proceed via an open transition state. They provide the same 

diastereomeric product, independent of the starting double bond configuration. 

Figure 1.11: Crotylation (Brown, Denmark, Roush, Corey) 
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Crotylation reactions may also be classified into stoichiometric and catalytic 

variants. The most widely used stoichiometric crotylation reactions belong to type 

I reactions, with Z-crotyl reagents giving syn isomers, and E-isomers the anti 

products. This simple stereoselectivity may be readily explained by Zimmerman–

Traxler transition states.  

 

 

Chiral borane reagents have been developed by Hoffmann, Brown, Roush 

and others.63,91,98,99 Hoffmann and Zeiss have shown that the reaction of (E)- or 

(Z)-crotylboronates with aldehydes results in the formation of anti- or syn-

methyl homoallylic alcohols,100 which may be explained by chairlike transitions 

states. Use of crotyl(diisopinocampheyl) boranes 1.33 and 1.36 was developed 

by Brown63,91 (Figure 1.12). Owing to the good performance and commercial 

Figure 1.12: Crotylboration (Brown) 



18 
 

availability of the chiral auxiliary, these have become the standard method for 

asymmetric crotylation. The high stereospecificity of these reactions may be 

explained by closed chair-like transition states 1.34 and 1.37, where the boron is 

coordinated to the carbonyl oxygen. The aldehyde is oriented in such a manner 

that the R group is placed in an equatorial position of the chair to minimize steric 

interactions between the Ipc group on boron and the allyl unit. 

 

 

 

In general, the addition of allylic silanes to electrophiles has been 

established to be a stepwise process.101 Thus, initial addition of an allylic silane 

to an activated aldehyde forms a carbocation, which is stabilized by 

hyperconjugative overlap with the carbon-silicon bond (Figure. 1.14). Cleavage of 

the silyl electrofuge then provides the homoallylic alcohol product. 

Figure 1.13:  Crotylsilane Mechanism 
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Chiral Lewis acids have been widely employed as catalysts in the addition 

of crotyl organometallic reagents (1.39, Figure 1.14), mainly derived from Si, Sn 

and B. Usually, these reactions may be classified as type II reactions and 

predominantly the syn diastereomers 1.35 are obtained. Enantioselective Lewis 

acid catalyzed additions have been reported by Yamamoto,102 Mikami,103 

Nishiyama,104 Evans,105 and Hall.106,107 

Figure 1.14: Chiral Lewis Acid Crotylation 
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In a mechanistic investigation on the addition of allyltrimethylsilane to 

aldehydes catalyzed by Lewis acids such as [Ti(Cp)2(OTf)2], Ph3C+OTf-, and 

Ph3C+ClO4
-, it was found that the reactive species is actually the electrofugal 

trimethylsilyl cation.108 This possibility was first discussed and eliminated in the 

Lewis acid-catalyzed aldol reaction with trialkylsilyl enolates.109,110 In the former 

study,108 a trace amount of water in the reaction was shown to hydrolyze the 

Lewis acid to generate a Brønsted acid. The Brønsted acid then reacts with 

allyltrimethylsilane to produce Me3SiOTf or Me3Si-ClO4, both of which are 

powerful catalysts for allylation. Furthermore, dehydration of the solvent or 

addition of a hindered base to quench the acid does not necessarily prevent the 

formation of these silyl catalysts. In the case of [Ti(Cp)2(OTf)2], upon activation of 

the aldehyde and addition of ii, the metal alkoxide i and Me3SiOTf are produced 

Figure 1.15:  Catalytic Cycle of Lewis Acid Catalyzed Crotylation 
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(Figure 1.15). To achieve a catalytic process, the metal must dissociate from the 

complex assisted by the silylation of the adduct. However, the silylation does not 

occur, and instead Me3SiOTf functions as highly reactive catalyst for the 

allylation. Thus, the reaction is actually a metal initiated, silyl cation-catalyzed 

process. 

 

 

Stereoselective epoxide-opening reactions have been recognized as an 

important transformation in organic synthesis and are widely used as key steps in 

natural product syntheses.111 Nucleophilic substitution reactions of trans or cis-

configured epoxy-ols 1.36 and 1.41 with organometallic reagents, including 

organocuprates and organoaluminum complexes, provide an efficient method for 

the stereoselective construction of propionate frameworks.111 Regioselective 

openings with lithium dimethyl cuprate112 or trimethylaluminum and butyllithium113 

Figure 1.16:  Epoxide Opening  (Posner, Lipshutz, Trost, Kishi, Miyashita) 
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preferentially lead to 2-methyl-1,3-diols 1.38 and 1.40, while trimethylaluminum114 

reacts at C3 to give the 3-methyl-1,2-diols 1.37 and 1.39 (Figure 1.16). 

 

[2,3]-Sigmatropic rearrangements constitute a versatile type of bond 

reorganization with many applications in organic synthesis. This reaction may be 

generalized as shown in Figure 1.17 for structures 1.42 and 1.43. It is defined as 

a thermal isomerization that proceeds through a six-electron, five-membered 

cyclic transition state.76,77 Mikami and Nakai have studied the diastereoselectivity 

of a broad range of [2,3]-Wittig rearrangements and proposed transition states 

1.45, 1.46, 1.49 and 1.50 to explain the results (Figure 1.17). In general, E-

configured substrates (1.44) give anti products (1.47) while the Z-congeners 

(1.51) give syn isomers (1.48). This may be explained in terms of pseudo-1,3-

Figure 1.17: [2,3]-Wittig Rearrangement (Mikami and Nakai) 



23 
 

diaxial interactions of R with H in 1.46 and 1.49. Accordingly, 1.50 should be 

sterically favored, thus leading to syn-selectivity. The order of selectivity is 

correlated with an increase in 1,3-repulsion. A marked dependence of the anti-

selectivity on the size of the substituent R is best explained by additional steric 

gauche interactions between R and Me in the preferred transition state 1.45, 

hence the anti selectivity decreases with an increase of this gauche interaction.77 

 

 

Application of the [2,3]-Wittig rearrangement reactions of (Z)-allylic ether 

1.52, a cyclohexanecarboxaldehyde-derived intermediate for the synthesis of syn 

stereodiad 1.53, was described by Parker (Figure 1.18 ).115,116 This product was 

converted into (syn,anti)-polypropionate building blocks.115 

Figure 1.18: Wittig Rearrangement 
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Silacyclopropanes such as 1.56 are strained silanes that undergo carbon–

carbon bond-forming reactions with various carbonyl compounds.117 Carbonyl 

insertions proceed with high stereo-, regio-, and chemoselectivity to afford 

oxasilacyclopentane adducts (1.57) under mild, metal catalyzed conditions 

(Figure 1.20 ).118 Woerpel has developed a silver-catalyzed silylene transfer as a 

mild and efficient method for the synthesis of silacyclopropanes 1.56;117-123 the 

process uses a stereospecific silylene transfer from cyclohexene 

silacyclopropane 1.55 to alkene 1.54 (Figure 1.1). Treatment of intermediate 1.56 

in situ with N-methyl-N-benzylformamide and catalytic amounts of copper iodide 

resulted in an N,O-acetal, which may be hydrolyzed and acetylated to provide 

oxasilacyclopentane 1.57 in high yield. Nucleophilic substitution with silyl enol 

ether 1.58 produced ketone 1.59 in high yield and diastereoselectivity. Wittig 

Figure 1.19: Silicon Tether (Phillips) 
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methylenation followed by carbon–silicon bond oxidation afforded diol 1.60, a key 

fragment for the synthesis of 1‘-epi-stegobinone.124 

 

 

 

The cycloaddition of Danishefsky's diene to aldehydes corresponds to an 

aldol addition. The Cram product 1.63 (Figure 1.20) was formed with a normal 

diastereoselectivity of 4.3 : 1 and, after refunctionalization, gave the carboxylic 

acid 1.64 (stereotriad C).80 Upon changing the solvent stereotriad A could be 

obtained with a selectivity of up to 10 : 1.78,80 It remains to be clarified whether or 

not high diastereoselectivities can be generally obtained with reagent 1.61 on 

addition to chiral aldehydes. 

Figure 1.20:  Diels-Alder (Danishefsky) 
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One of the most intriguing non-traditional methodologies for obtaining 

polypropionates is by way of thiopyrans. An exhaustive review by Ward59 

elucidates the flexibility of this methodology. By way of example Fujisawa et al.125 

employed enantioselective reduction of 1.66 as the key step in a synthesis of 

sitophilure (1.68), an aggregation pheromone of Sitophilus weevils (Figure 

1.21).126 The preparation of 1.66 involved alkylation of 1.64 with 1.65 followed by  

intramolecular Claisen reaction to yield the 1,3-diketone 1.66 in moderate yield. 

Baker’s yeast reduction of 1.66 gave 1.67 with excellent stereoselectivity. 

Although the reaction was not completely regioselective, the ketol products 

resulting from reduction of the exocyclic ketone were lost during the work up, 

presumably due to decomposition via a retro-aldol reaction. Raney™ nickel 

desulfurization of 1.67 gave sitophilure (1.68) in moderate yield. 

Figure 1.21:  Thiopyran Reduction (Fujisawa) 
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The goal of this project is to better characterize the effects of aplyronine A 

1.6 on both the actin cytoskeleton and other potential cellular targets. In pursuit 

of this goal, a greater understanding of the vinylsulfone polypropionate strategy is 

sought. This knowledge is essential for potential future application of aplyronine 

A-type compounds as anticancer drugs. Since the proposed experiments would 

require unobtainable amounts of Aplysia in order to purify significant quantities of 

aplyronine A 1.6 it was decided to synthesize a highly similar aplyronine analog 

1.7, mono-lactone and bis-lactone aplyronine A analog 1.11 which is intended for 

use in collaborative biochemical and cellular studies. (Figure 1.2) 
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CHAPTER 2: THE VINYL SULFONE MOIETY AS A POLYPROPIONATE 
FACILITATOR 

 

2.1: Use of Carbocyclic Scaffold in the Vinylsulfone Polypropionate Strategy 

Work accomplished by Saddler and Donaldson in the Fuchs group1 

utilized application of the vinylsulfone moiety as a facilitator of asymmetry in the 

total synthesis of I-(-)-Prostaglandin E2 (Scheme 2.1). I-(-)Prostaglandin E2 has a 

-hydroxy cyclopentanone core containing three contiguous chiral centers 

consisting of a cis-fatty acid, trans-allyl alcohol, and the keto-cyclopentanol. 

Treatment of the racemic cyclopentene epoxide (2.1) with thiophenol yields 2.2 & 

2.3. Racemic sulfide alcohols (2.2 & 2.3) were resolved on the mole scale by 

treatment with 1 equivalent of S-(-)-(-methylbenzyl)isocyanate (2.4) to give a 

mixture of diastereomeric urethanes 2.5 and 2.6. Crystallization of this mixture 

from methanol gives pure 2.5. Cleavage of urethane 2.5 with trichlorosilane 

allows for greater than 90% recovery of chiral 2.4 for recycle. The resulting silyl 

ether 2.6 is then hydrolyzed (without isolation) with dilute aqueous hydrofluoric 

acid to optically active sulfide 2.2 (92% ee). Reaction of 2.2 with 2 equivalents of 

peracetic acid gives hydroxysulfone (not shown), which is generally not purified, 

but directly treated with 1.1 equivalents of m-chloroperoxybenzoic acid (MCPBA) 

to produce highly crystalline epoxysulfone (2.7) 88%, 97% de. On small scale it 

was convenient to simply use 3 equivalents of MCPBA to directly obtain 
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epoxysulfone (2.7) (97% de). Purification of the mother liquors (plug on silica gel) 

afforded 3% of the relatively unstable epoxy sulfone diastereomer epi-2.7. 

Treatment of epoxysulfone (2.7) with catalytic DBU (to produce the dihydroxy 

vinylsulfone 2.8) followed by in situ silylation of less hindered alcohol with t-

BuMe2SiCl and imidazole in THF; (use of less bulky chlorosilanes, e.g., i-

PrMe2SiCl, gives no selectivity between C-9 and C-11) gives crystalline monosilyl 

ether, (79%). 
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Purification of the mother liquors gives 9% disilyl ether which can be 

hydrolyzed to diol 2.8 (CF3CO2H, THF, H2O) in near quantitative yield and 

recycled in the silylation step. Treatment of 2.8 with mesylchloride and 

Scheme 2.1: Prostaglandin-E2 Via Vinylsulfone Polypropionate Strategy 
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triethylamine in methylene chloride results in the formation of the sensitive 

mesylate (94%), which is not routinely isolated but rather treated directly with 

dimethylamine at -20 ⁰C (<5min) to give amino vinylsulfone (95%). An expedient 

preparation of 2.9 from aminovinylsulfone involves quaternization of the amine 

with methylfluorosulfonate (1.1 equivalents, CH2Cl2, 25 ⁰C, 2 h) to give the 

crystalline ammonium salt 2.9, which is not normally isolated but rather directly 

treated with dimethylamine at -20 ⁰C (5 min) to give 2.10 (95%). Treatment of 

amino vinyl sulfone 2.10 with optically active vinyllithium reagent 2.11 

(THF/hexane, -60 ⁰C; the reaction is slow below -70 ⁰C) followed by quenching 

with water provides a separable 92%:5% mixture of the cis : trans adducts 2.13 

and epi-2.13 (not shown). The treatment of 2.13 with 2,2,2-

trichloroethylchloroformate (2 equivalents, neat, 25 ⁰C, 72 h) in the presence of 

solid sodium bicarbonate to give urethane (96%) as an oil after excess 2,2,2-

trichloroethylchloroformate, is removed with a silica gel plug. Treatment of 

urethane with activated zinc in THF at reflux for 6 h affords a 92% yield of 

desired secondary amine. These reactions have been easily run on ~40g scale. 

Ester hydrolysis of with sodium hydroxide (3 equivalents) in 2% aqueous 

methanol (48 h) yields the carboxylic acid (99%), which is oxidized with 40% 

peracetic acid (6 equivalents) in wet methanol containing solid sodium carbonate 

(15 equivalents) and a catalytic amount of sodium tungstate (0.1 equivalent) to 

deliver oxime (2.14). Desulfonylation of oximino acid 2.14 is accomplished by 

treatment with sodium methoxide and sodium borohydride in methanol to give 
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91% of the oxime. Hydrolysis of this oxime (boron trifluoride, paraformaldehyde, 

aqueous acetone) furnishes l-(-)-PGE2 (83%).  

The I-(-)-PGE2 was obtained as an oil (6.69 g, 80%) after column 

chromatography on silica gel to remove a small amount of PGA2. The efficacy of 

the cyclic 5-membered vinylsulfone is demonstrated in Scheme 2.1.2-5 
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A utilization of the six membered vinylsulfone by Chen, Y.; Evarts, J. B., 

Jr. & Torres, E. was employed in efforts to assemble the C21-C26 fragment of 

Apoptolidine (Figure 2.1). Starting from dienylsulfone (2.15) Jacobsen 

asymmetric epoxidation yields the enantiopure epoxide 2.16 (94%). Addition of 

1.1 equiv of LiHMDS to the epoxy vinylsulfone to furnish oxido diene 2.17 

followed by 2.5 equiv of MeLi generates dianion 2.18. Further addition of (PhS)2 

results in regiospecific capture of the allyl sulfonyl anion to produce vinyl sulfide 

Figure 2.1: Apoptolidine 
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2.20 (isolated as the alcohol) in 82% yield after stirring for 8 h at 25 °C. As has 

been shown in the 7-membered ring series, formation of intermediate 2.19 

proceeds via conjugate addition of methyllithium followed by -sulfenylation. The 

unusual -regiochemistry of this process appears to result from the interplay of 

the weak sulfenylation reagent in concert with the high steric demand imposed by 

the proximally methylated R-sulfonyl center. TMS triflate-promoted, lone-pair 

assisted elimination of the crude diastereomeric mixture 2.19 and 2.20 to dienyl 

sulfide 2.22 was readily accomplished in 94% yield by heating 2.21 with 5.0 

equivalents of TMSOTf  

 

 

Scheme 2.2: Apoptolidine C21-C26 Via Vinylsulfone Polypropionate Strategy 
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and 6.0 equivalents of Et3N in methylene chloride at reflux for 4 h. The reaction 

mixture was cooled to 0 °C, and 2.5 equivalents of m-CPBA was added in 

portions; the mixture was stirred for 6 h at 25 °C to afford dienylsulfone 2.23 

(Scheme 2.2). 

Directed catalytic epoxidation of alcohol 2.23 with Mo(CO)6 (5 mol %) and 

TBHP in benzene at reflux for 1 h smoothly gave 2.24 as a single diastereomer in 

94% yield. Treatment of alcohol 2.24 with trimethylaluminum in the presence of a 

catalytic amount of methylcopper affords 2.25 in 91% yield. The nucleophilic 

methylation reaction has the potential of both 1,2- and 1,4-addition modes. In this 

instance, any competitive 1,2-trans-addition results in formation of the 

enantiomer of 2.25, an especially serious consequence. Fortunately, chiral HPLC 

demonstrates that the enantiomeric excess of 2.25 is >98%, which indicates a 

1,4-/1,2-selectivity ratio of >49:1 in the methylation process. The allylic hydroxyl 

of diol 2.25 can be selectively inverted using the Mitsunobu reaction to give 2.26 

in 95% yield.  
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Scheme 2.3: C21- C26 Apoptolidine Fragment Assembly
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Sequential treatment of 2.26 with excess tert-butyldimethylsilyl chloride, followed 

by cleavage of the less hindered silyl ether with 1 equivalent of TBAF delivers 

2.27 in 84% yield. Finally, ozonolysis of 2.27 in methylene chloride gives 

aldehyde 2.28. For long-term storage, 2.28 is reduced with LiAlH(O-t-Bu)3 to 

afford alcohol 2.29 in 50% overall yield from 2.28 (Scheme 2.3). 

With the previous exploration of the synthetic utility of the 5 and 6- 

membered vinylsulfone rings having been suitably illustrated, the strategic 

implications of this moiety will be addressed in the following sections. Much of 

the chemistry discussed up to this point applies to the 5, 6 and 7- membered 

dienylsulfone rings. In the following examination, the chemistry that applies to the 
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cycloheptadienyl sulfone ring, a key Aplyronine A intermediate, will be 

highlighted. 

 

2.2: Dienylsulfone Asymmetry 

 

The implicit asymmetry of the vinylsulfone functional group contributes 

greatly to its ability to facilitate asymmetric epoxidation adjacent olefinic 

stereocenters.6-8 As is shown in Figure 2.2 the interaction between the adjacent 

Z-olefin of the dienylsulfone ring and the salen ligand defines alignment of the 

sulfone moiety and the equatorial side of the salen ligand, where the catalyst and 

substrate interact in an exo-manner. Such steric interactions allow the oxygen to 

be delivered selectively to only one side of the olefin adjacent to the vinylsulfone 

moiety (Figure 2.2). 
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2.3: Epoxide Directed Asymmetry 

 

 

 

The enantiopure epoxyvinylsulfone (2.30) has directs further asymmetry 

on the molecule via the Lawton strategy.9 The basicity of the epoxide oxygen 

allows for coordination with Lewis acidic metals bearing nucleophiles to be either 

delivered to the vinylsulfone in a syn manner (2.31), or directly to the epoxide in 

anti fashion. As can be seen in Figure 2.3 the Grignard reagent coordinates to 

the epoxide, forcing addition to the vinylsulfone cis to the epoxide (2.31). The 

strong inductive property of the sulfone in combination with the ability of the 

epoxide to be cleaved by olefin activation yields two chiral centers proximal to the 

vinylsulfone (2.32). 10-12  
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The Lawton strategy can be used in an iterant manner to assemble the 

syn-diad. As can be seen in Figure 2.4 the pyrazole N-H coordinates with the 

epoxide, facilitating cis addition to the epoxy vinylsulfone (2.33). With the syn 

motif established between the alcohol and the 3,5-dimethylpyrazole moieties, the 

Lewis acidic coordinated Grignard reagent directs syn Sn2’ addition (2.34) to 

deliver the syn diad (2.35).  

 

 

 

 

 

 

Figure 2.4: Syn Nucleophilic Addition to Epoxyvinylsulfones 
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2.4: Aluminoxane as a Nucleophilic Methylation Species 

 

 

Trimethylaluminoxane (Figure 2.5 is a sterically hindered aggregated 

species with the ability to activate carbonyls and epoxides via a bidendate 

coordination of two aluminum atoms to the oxygen (2.36).13 Maruoka and 

coworkers showed that the methyl cleaves the epoxide proximal to the olefin on 

,-epoxy acrylates. A methyl nucleophile from either a second equivalent of 

aluminoxane or the aggregate associated with the epoxide then undergoes 

addition to the activated epoxide in an anti-manner to deliver the anti-diad (2.37). 

(Figure 2.6)  
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2.5: Differentiation of Termini Post Oxidative Cleavage 

 

 

The sulfone moiety also differentiates the two terminal carbons upon 

oxidative cleavage of the vinylsulfone. Addition across the vinyl sulfone olefin by 

Figure 2.7:  Cleavage of Vinylsulfone via Ozonolysis 

Figure 2.6: Epoxide Directed Methylation via Aluminoxane Species 
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the nucleophilic ozone forms the highly reactive molzonide (2.39). Decomposition 

of the molzonide (2.39) delivers a species with an acylsulfone end and a carbonyl 

oxide terminus (2.40). Alcohol attacks the acylsulfone to form the terminal ester 

(2.43). The additional advantage of this methodology is that the sulfone is 

disposed of in the oxidative process, as very few desirable biologically active 

target molecules possess the sulfone functionality (Figure 2.7). 

 

2.6: Formation of the , -Unsaturated Sulfone 

 

Due to vinylogy, the -position of the sulfone is highly acidic and when 

treated with base (2.44) easily forms the allyl anion (2.45). The allyl anion when 

quenched with a proton source yields allylsulfone (2.47). This reactive property of 
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the vinylsulfone can be used with great utility to form the electron rich vinylsulfide 

(2.46) from quenching the anion with diphenyl disulfide. The vinylsulfide formed 

will be the platform from which greater intricacy can be introduced (Figure 2.8).  

 

2.7: 1,4-Elimination of Sulfone with Trimethylaluminum 

 

 

 

 

Sulfenylation product (2.46), has the perfect electronic motif for activation 

of the sulfone by a Lewis acid and subsequent elimination of sulfinic acid. The 

desulfonylation takes place through binding of trimethylaluminum to the sulfone 

oxygen(s), and the free –OH groups (if present) to create aluminate complex 

(2.48). Subsequent elimination of trimethylaluminumsulfinate  occurs with the aid 

of the Hünig’s base in a vinylogous E2 elimination (2.49). Alternatively, the 

 
Figure 2.9: 1,4- Elimination of Sulfinic Acid with AlMe3 
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weakening of the C-S bond leads to complete expulsion of the trimethylaluminum 

sulfinate (with the assistance of the sulfur lone pair) to create thionium ion (2.50). 

Further abstraction of the -proton by the base leads to desired dienylsuflide 

(2.51) in an E1-like fashion (Figure 2.9).8,14 
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CHAPTER 3: DEVELOPMENT AND APPLICATION OF THE 
VINYLSULFONE POLYPROPIONATE METHODOLOGY 

3.1: Large Scale Generation of Dienylsulfone 

 

 

With the synthetic versatility of the vinylsulfone functional group being 

apparent, an efficient strategy for polypropionate assembly was devised. 

Efficacious methodologies employ large quantities of affordable and robust 

starting materials. The 7-membered cross-conjugated dienylsulfone (3.5) is 

obtained by a process requiring no purification. Cycloheptanone (3.1) and 

Scheme 3.1: Large Scale Generation of Dienylsulfone 
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thiophenol are treated with the acidic clay Montmorillonite using a Dean-Stark 

trap1,2 to afford the vinyl sulfide (3.2). Oxidation of vinylsulfide  (3.2) by the in situ 

generation of Br2 from Sodium Bromide, H2O2
3,4 and buffered Sodium Tungstate  

provides access to 3.3 without the danger of manipulating 10 moles of liquid Br2. 

The sulfide is oxidized to the sulfone using economic Noyori conditions5,6 H2O2, 

methyltrioctylammonium hydrogen sulfate as a phase transfer catalyst (PTC), 

Na2WO4 & H2PO3Ph buffer (this would be the first example of using a 1% 

catalytic buffer—Phosphinic acid provides a ligand on the tungstate that gives 

better solubility and therefore reactivity). Treatment of the resulting bromo 

sulfone with stoichiometric pyridine  provides the pyridinium bromide salt (3.4) 

precipitate  which is isolated by  vacuum filtration.  The filter-cake is suspended 

in diethyl ether and recollected via vacuum filtration to give a flocculent solid of 

extremely high purity. 1,4 elim starting with the gamma allylic hydrogen. of the 

pyridinium salt using 1,4-diazabicyclo[2.2.2]octane (DABCO), in aqueous 

conditions yields the desired 7-membered cross-conjugated dienylsulfone (3.5) 

precipitate (>98% pure) collected via vacuum filtration and air dried to furnish 

65% yield over 5 steps.4 With the starting material obtainable in Kg amounts with 

relative ease of operation, a polypropionate strategy based on the 7-membered 

dienylsulfone is well positioned to exert a high degree of synthetic utility. 
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3.2: VinylsulfonePolypropionate Algorithm 

 

 

When developing a polypropionate synthetic strategy, it is essential to 

have an iterative process for generating the contiguous chiral centers. Much of 

the fundamental chemistry had been established on the 5 and 6 membered 

vinylsulfone scaffolds.7-9 Exploiting the prochiral nature of the dienylsulfone (3.5), 

the Jacobsen Salen catalyst affords the chiral epoxide (3.6) in high enantiomeric 

excess.10,11 Epoxyvinylsulfone (3.6) is directly methylated via nucleophilic attack 

or indirectly by Lawton SN2’ 12,13 substitution to give the dipropionate (3.7). Base 

generates the dianion. Quenching of the dianion with diphenyl disulfide gives the 

sulfenylated allylsulfone (3.8) which bears extremely favorable electronics for 

1,4-elimination via activation of the sulfone with Lewis acid to afford the 

Scheme 3.2: Vinylsulfone Polypropionate Algorithm 
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dienylsulfide diad (3.9).11 The acid labile dienylsulfide diad is immediately 

oxidized to dienylsulfone diad (3.10). Asymmetric Jacobsen epoxidation begins 

the second application of the algorithm. Direct or indirect cleavage of the chiral 

epoxide (3.11) with methyl anion will depend on whether syn or anti configuration 

is desired. The final epoxide substitution yields the vinylsulfone stereotetrad 

(3.12), comprising the vinylsulfone polypropionate strategy. 

3.3: Application of Vinylsulfone Polypropionate Methodology.  
The C5-C11 syn, anti, syn Blue Fragment (3.13)  

The first introduction of asymmetry on the target was achieved using 

methodology developed by Du Jardin, by the 

Jacobsen epoxidation using Salen catalyst with 

hydrogen peroxide, ammonium tetrafluoroborate, 

and sodium phosphate.14-21   

Hong utilized Lawton SN2’ addition to the 

epoxyvinylsulfone (3.14) by 3,5-dimethylpyrazole       

    (3,5-DMP) to afford the allyl alcohol (3.15).12,13,22 

The pyrazole and hydroxy moieties direct the methyl Grignard in a second 

irreversible SN2’ addition to the vinylsulfone to form the vinylsulfone 

monopropionate (3.16) with a syn landscape. From this point Noshi-optimized 

methodology, allowed multigram quantities of the stereotetrad to be obtained with 

relative ease. Sodium hexamethyldisilazide (3.3 eq.) forms the dianion which is 

quenched with diphenyldisulfide to give an allylsulfone protected with TES-Cl & 

imidazole in methylene chloride to furnish (3.17).23 3.17 is eliminated with 

Figure 3.1:  C5-C11 
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trimethylaluminum and Hünig’s base to provide the dienylsulfide11 which is 

oxidized under Noyori conditions to the dienylsulfone diad (3.18).24 The 

dienylsulfone is then epoxidzed using the achiral reagent dimethyldioxirane 

(DMDO)25,26 to provide the asymmetric epoxide (3.19) 20 : 1 de in a trans 

relationship to the methyl group. SN2’ addition by 3,5-dimethylpyrazole to the 

epoxy vinylsulfone forms 3,5-DMP adduct (3.20).11,13 Pyrazole-alcohol directed 

methyl Grignard addition to the vinylsulfone and subsequent 3,5- 

dimethylpyrazole (3,5-DMP) displacement provides the 7-membered vinylsulfone 

dipropionate. t-Butyl dimethylsilyl (TBDMS) ether formation using TBDMS triflate 

gives the disilyl ether. (+)-Camphor sulfonic acid selectively cleaved the less 

hindered, more labile triethylsilyl ether (TES) to give 3.21.27-31 With the cyclic 

vinylsulfone stereotetrad (3.21) now in hand, oxidative cleavage of the 

vinylsulfone olefin was examined to determine the most efficacious way to obtain 

the termini-differentiated dipropionate fragment. 
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Scheme 3.3: Vinylsulfone Polypropionate Strategy C5-C11 (Noshi, Hong) 
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3.4: Application of Vinylsulfone Polypropionate Methodology C21-C27 Red, C28-
C34 Green Fragments syn, anti, syn 

 
Since a syn, syn, anti relationship was required for 

aplyronine A fragments C21-C27 and C28-C34, a 

methodology providing the anti-monopropionate 

relationship via epoxide modification was required. 

Epoxidation of the starting cross-conjugated 

dienylsulfone (3.5) was effected under established DuJardin  Jacobsen 

conditions.14,32-34 All subsequent operations optimized by Noshi were used.  The 

epoxide (2.15) was cleaved using the trimethylaluminum-aluminoxane complex 

to provide the anti-monopropionate (3.22).11,24 The dianion formed with sodium 

hexamethyldisilazide was quenched with diphenyldisulfide to give the allylsulfonyl 

vinylsulfide (3.23).11,35-39 The free hydroxyl was silylated with TES-Cl to provide 

the silylether (3.24). 1,4-Elimination11,36 via trimethylaluminum and Hünig’s base 

yielded the cross-conjugated dienylsulfide (3.25) that is immediately oxidized to 

sulfone (3.26) with hydrogen peroxide, PTC & sodium tungstate.5,6,40 The 

dienylsulfone diad was epoxidized using the (S,S)-Mn-Salen catalyst, 4-(3-

phenylpropyl)pyridine N-oxide (P3NO) and sodium hypochlorite to give the cis-

epoxide (3.27).41,42 SN2’ addition to the vinylsulfone functionalizes the epoxide in 

a 1,4-fashion to give the DMP adduct.11 Directed Grignard13 methylation delivers 

the syn, syn, anti landscape. TBDMS triflate forms the more robust silylether at 

C23 to give the diprotected stereotetrad 
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 that was selectively deprotected by using (+)-CSA28-31,43 to cleave the triethylsilyl 

ether at what will become C25. The original plan for the green fragment (C28-

C34) utilized the enantiomer of the red fragment (C21-C27), therefore employing 

identical chemistry. The standard polypropionate algorithm intended for 

producing the green fragment, while sufficient in yielding the desired chiral motif, 

was incapable of giving the desired spacing on the carbon backbone. An 

alternate variant of the vinylsulfone polypropionate methodology was explored to 

obviate this issue. Finding a solution to the difficulties presented by the green 

fragment, C28-C34 is central this thesis as will be made clear in the ensuing 

chapter.  
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CHAPTER 4: IN DEPTH EXAMINATION OF THE APLYRONINE  
ACTIN BINDING TAIL REGION 

 

4.1: Introduction 

 

 

 

As can be seen in Figure 4.1, the structure of the actin binding tail (C24-

C34) is conserved in aplyronines A-C. An effective route to deliver the C24-C34 

architecture would make these rare polyketide molecules more available for 

further study. The current synthetic strategy for assemblage of the C21-C27 

stereotetrad has been previously reviewed (Chapter 3, Scheme 3.4). The 

“vinylsulfone polypropionate strategy” has proven its effectiveness with fragments 

C5-C11 and C21-C27.1-3 The actin binding tail C28-C34 of aplyronine A proved 

very resistant to the vinylsulfone polypropionate methodology. As will be seen, a 

Figure 4.1: The Actin Binding Tail Region C23-C34 
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key to this methodology is having the vinylsulfone properly substituted pre-

oxidative cleavage (O3, OsO4) as shown in Figure 2.7. To better gain an 

understanding of the synthetic challenges the actin binding tail presents, efforts 

by other synthetic groups will be surveyed. 

Calter and Guo used a strategy based on derivatives of asymmetric 

ketene dimers constructed from cinchona alkaloid catalysis4 to assemble the 

C28-C34 aplyronine A fragment. 

 

 

Calter and Guo began with the aldol adduct 4.2 prepared by the reaction of the 

enolate derived from ketene dimer 4.1 with α-(p-methoxybenzyloxy) 

acetaldehyde (Figure 4.2) as an inseparable mixture of diastereomers in a 6:1 

Figure 4.2: Synthesis of the C28-C34 Fragment (Calter) 
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ratio. After silylation of the mixture, the diastereomers were still inseparable. 

Treatment of this mixture of diastereomers with lithium triethylborohydride 

(LiBEt3H) reduced the major diastereomer without affecting the minor compound, 

allowing isolation of 4.3 as a diastereomerically pure compound. Protection of the 

C31-hydroxyl as a benzyloxymethyl (BOM) ether afforded 4.4. Homologation was 

required to fully elaborate the C28-C34 fragment. Reduction of 4.4 to the 

aldehyde, followed by Wittig reaction yielded monosubstituted olefin 4.5. 

Hydroboration gave primary alcohol 4.6 which was silylated followed by removal 

of the PMB group. Dess–Martin oxidation yielded aldehyde 4.7. It is worthy of 

note that a homologation was required to realize the C28-C34 fragment.  

 

 

Marshall and co-workers developed a strategy focusing on the central 

stereotriads and using the chiral alcohol moieties as points of coupling (Figure 

4.3). Using a very well developed methodology5-10 involving enantioselective 

additions of chiral allenylindium reagents to chiral aldehydes, the Marshall group 

was able to effect a number of complex natural product syntheses.10 

The Marshall Stereotriad Strategy 
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Figure 4.3 highlights the allenylindium (4.10, 4.11) formation from the 

chiral propargyl mesylates (4.8, 4.9). Though indium is shown here, a number of 

different metals have been successfully utilized.10 Chiral aldehyde 4.12 was 

obtained using the Roush variant of the Brown crotylboration.11The synthesis of 

the C29-C34 fragment (Scheme 4.4) begins with attack by lithium acetylide on 

acetaldehyde to deliver propargyl alcohol (4.16). MnO2 oxidation of the alcohol 

gives 4-TIPS-3-butyn-2-one (4.17). The reduction of 4-TIPS-3-butyn-2-one (4.17) 

with ca. 1 mol % of the Noyori chiral Ru catalyst (4.18) in isopropyl alcohol 

proceeds rapidly to afford (S)-TIPS-3-butyn-2-ol (4.19) in >95% yield and >95% 

enantiomeric purity. The corresponding mesylate (4.21) is converted in situ to 

chiral allenylindium reagent, which reacts with aldehyde (4.22)11 to form 

homopropargylic alcohol (4.23) with high diastereo- and enantioselectivity. 

Hydroboration-oxidation of the derived alkyne 4.24 led to a separable 85:15 

mixture of aldehyde 4.25 and alcohol 4.26. 

Figure 4.3: Allenyl Indium Generation of Stereotriads 
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Aldehyde 4.25 was reduced with DIBAL-H, and the combined alcohol 

product 4.26 was protected as PMB ether 4.27. The use of dicyclohexylborane in 

DME for this hydroboration gave a significantly higher yield of the 

aldehyde/alcohol mixture than BH3•THF or catecholborane. The formation of the 

Figure 4.4: Synthesis Of The C29- C34 Fragment (Marshall) 
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alcohol byproduct 4.26 may result from in situ reduction of the intermediate 

aldehyde by borohydride species, R2B+(H)OH-, produced during the basic 

oxidation procedure. However, in the case at hand, this side reaction is of no 

consequence. TBS ether cleavage of 4.27 and oxidation of the alcohol 4.28 gave 

the aldehyde 4.29 representing C29-C34 of the targeted subunit. 

Kigoshi, Suenaga and co-workers assembled the C28-C34 stereotetrad by 

utilizing an asymmetric aldol strategy. The synthesis of C29–C35 segment 4.36 is 

shown in Figure 4.5.  

 

  

Figure 4.5: C28-C34 via Asymmetric Aldol Coupling (Kigoshi). 
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Compound 4.36, with four contiguous syn, anti, anti-stereocenters, was 

previously prepared by using the Evans aldol reaction and Sharpless epoxidation 

as the key steps,12,13 the improved synthesis of 4.36 used the Paterson aldol 

reaction14,15 as the key step. Thus, the Paterson aldol reaction between ethyl 

ketone 4.31 and crotonaldehyde 4.30 gave the hydroxy ketone 4.32. 

Stereoselective reduction of 4.32 with tetramethylammonium 

triacetoxyborohydride afforded an anti-1,3-diol, which was transformed into 

acetonide 4.33. Conversion of 4.33 into the aldehyde 4.34 was effected by a 

four-step sequence of reactions. Aldehyde 4.34 was treated with pyridinium p-

toluenesulfonate (PPTS) in methanol to provide a separable mixture of 

diastereomeric acetals, 4.35a and 4.35b, and the dimethyl acetal 4.35c. The 

stereochemistry at C34 of acetals 4.35a and 4.35b was not determined. After 

chromatographic separation, two minor products, 4.35b and 4.35c, were 

subjected to equilibration (PPTS in methanol) to afford a mixture of 4.35a, 4.35b, 

and 4.35c, from which the major acetal 4.35a was again obtained. By repeating 

this procedure, 4.35b and 4.35c could be transformed into 4.35a. Protection of 

the hydroxy group in 4.35a followed by oxidative cleavage of the double bond 

provided the C29–C35 segment 4.36 (48% from 4.31). 

As can be seen, while the above examples are elegant, they each suffer 

drawbacks. The Calter ketene dimer methodology gives low yields and mixtures 

of diastereomers that must be carried multiple steps before they can be 

separated. These drawbacks waste reagents making large-scale endeavors 

costly. The Marshall allenylinduim strategy has great potential. The main 
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drawback being that the triisopropylsilyl acetylene is needed for greatest facial 

selectivity and the price makes large-scale projects less attractive. The Kigoshi 

aldol strategy is excellent in that it produces the full stereotetrad. It doesn’t suffer 

from the need for a stoichiometric amount of chiral auxiliary like the traditional 

Evans methodology. The main drawback is equilibration of the lactols and 

dimethyl ketal. On a large scale (> 250 g) a re-equilibration can prove onerous. It 

was the hope of the Fuchs lab that many of the limitations inherent in other 

methodologies could be remedied with the vinylsulfone polypropionate 

methodology. 
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4.2: C28-C34 Green Fragment Backbone Strategy 1st Generation 

 

 

 

The first attempt by El-Awa to solve the structural deficiencies of tetrad 

4.46 involved a desperate oxidative cleavage of a carbon at one terminus and 

subsequent installation of the methylformamide via the Wittig olefination at the 

Scheme  4.1: Original Fuchs group approach to C28-C34 
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opposite end. Ozonolysis of 4.46 with NaHCO3, methylene chloride and reductive 

work-up with Me2S, and t-BuNH2 gave the stereotetrad lactone core ethyl alcohol 

(4.49). Selenylation of the terminal alcohol with ArSeCN, Bu3P and H2O2, 

followed by oxidative elimination affords terminal olefin (4.50), which is then 

amputated by ozonolysis and reductive work-up (Me2S, t-BuNH2•BH3) to provide 

the terminal alcohol 4.51, which is then protected as the TBDMS silyl ether 

(4.52). The magnesium methoxymethyl amide cleaves the lactone to produce the 

terminal Weinreb amide 4.53 while the free hydroxyl was protected as the BOM 

ether 4.54. It was at this point that El-Awa stopped the sequence. The plan was 

to effect reduction of the Weinreb amide to aldehyde 4.55 with DIBAL-H, with 

subsequent olefination by the dimethyl formamide ylide 4.56, then I2 catalyzed 

olefin isomerization16 to 4.57. Deprotecton of the C28 TBDMS-silylether (4.58) 

followed by a Dess-Martin oxidation would supposedly give the properly 

functionalized green fragment 4.59 in roughly 13 operations post oxidative 

cleavage of the 7-membered vinylsulfone tetrad (4.46). The inelegance of this 

synthetic strategy ultimately led to a cessation of inquiry into the cleavage 

strategy (Scheme 4.1) for furnishing C28-C34 aplyronine A polypropionate 

fragment. 
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4.3: C28-C34 Green Fragment Backbone Strategy 2nd Generation 

 

 

 

The above synthesis of the green segment deletes then later reintroduces 

a carbon atom to the backbone (Section 4.2), a tactic that is conceptually 

avoidable. The intention was to subject dihydroxy vinylsulfone 4.60 (or its mono 

and diprotected variants) to the various reagents (phosphazene bases, Li, Na, K 

amide anions) known to effect thermodynamic isomerization17 to the more stable 

allyl sulfones 4.64-4.66 via intermediate allylic anions 4.61-4.63 (Fig. 4.6). The 

Z1O group in the –position is equatorial, which should provide a measure of 

protection from –elimination, even with the prized azidopivalate ester 4.63. As 

can be appreciated, while the concept is easily stated, the number of 

Figure 4.6: A Proposed Improved Route to Green Segment 4.36   
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experimental variants is potentially large. For example, treatment of 4.60 with 

DBU in various solvents returns the starting material.17 It now appears that 

polyanion experiments involving 4.61 and 4.62 followed by kinetic quench in the 

α–position will be required. Once having obtained 4.66, ozonolysis to hydroxy 

dialdehyde 4.67 can be undertaken. In such a case direct double bond 

differentiation would likely be sacrificed as the sulfinic acid leaving group would 

no longer be part in the oxidative cleavage. This pseudo-symmetrical 

intermediate can provide lactol products from alcohol attack at either aldehyde. 

While the α–sulfonylaldehyde should be more reactive18 and 5-ring –

pivaloxyaldehydes may suffer ring opening,19 to allow thermodynamic 

equilibration of the two lactols to a mixture rich in 4.68. Desulfonylation prior to 

ozonolysis and adjusting the timing of azidopivalate addition are additional 

options. In the final analysis, the brevity of this approach to C28-C34 underwent 

careful evaluation. Ultimate introduction of the N-formyl enamine moiety was to 

directly follow the Yamada precedent using the 5-ring methoxyacetal, which has 

since been improved by other syntheses18,20-23 introducing this important 

recognition element from a terminal aldehyde. Since the goal is to provide 

aplyronine A analogs and biotools, the plan will exploit the successes by Yamada 

and Paterson in their syntheses.12,24 

Subsequent experimentation illustrated the inefficacy of such an 

approach. Isomerization and equilibration of the vinylsulfone to the allylsulfone 

cannot be executed, possibly due to the steric encumbrances imposed by the 

four stereocenters on the tetrad.25 It is necessary for the orbitals on the α, β and 
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γ–sulfone carbons to align in the same plane to deliver the allylsulfone from the 

vinylsulfone. The impasse for the vinyl to allyl sulfone equilibration effectively 

eliminates this strategy as a viable option. 
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4.4: Surrogate Methodologies En Route to the C28-C34 Fragment 

 

 

 

Due to the apparent inability of the stereotetrad to form the allylanion, an 

allyl radical pathway was investigated (Figure 4.7).  The initial strategy attempted 

entails an oxidation at the –position on 4.46. Many conditions to effect an allylic 

oxidation were examined.25 Treating 4.46 CCl4, azobisisobutyronitrile (AIBN), and 

N-Bromosuccinimide (NBS) gives yields of bromide (4.69) ranging from 50% to 

65%, while alternate conditions26 enabled no improvement.  

The free radical bromination yielded multiple spots on chromatography 

plates. The reaction generates a stoichiometric amount of HBr, which is 

problematic for silyl ethers. This fact coupled with the apparent ketone (iii) 

formation due to hydrogen abstraction during the course of the reaction made for 

an inefficient conversion (Figure 4.8). Due to lack of viable alternatives, the allyl 

bromide (4.69) was further utilized. 

Figure 4.7:  Isomerization via Allylic Oxidation 
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Bromide 4.69 was treated with sodium phenylmercaptide (3-10 eq.) to 

provide 4.70. With vinylsulfide 4.70 in hand the electronic configuration favorable 

to elimination of the sulfone was established. Unfortunately the previously used 

1,4-elimination was ineffecive (Figure 2.9).  Due to limited supply of 4.46 model 

studies were undertaken; 4.38 was deemed an acceptable proxy for 4.46.  

Figure 4.8: Radical Bromination Ketone Formation 
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Reductive cleavage of the allylsulfone with Raney nickel27 at reflux in 

ethanol returned starting material. Sodium-Mercury amalgam with phosphate 

buffer was successful but deemed substandard for anticipated large-scale 

operations. Attempted reductive cleavage of the allylsulfone by tributyltin hydride 

and AIBN28  also returned of starting material. A continuation of the reductive 

cleavage concept making use of lithuim metal and naphthalene29 likewise 

returned starting material. A more effective electron transfer reagent samarium 

iodide, DMPU, methanol, and THF30 again yielded starting material. Indium31 

likewise led to fruitless results. Such observations brought into doubt the efficacy 

of the established polypropionate strategy for use in the assembly of the C28-

C34 green fragment. Success with White conditions  

Figure 4.9: Desulfonylation Ventures 
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Pd(OAc)2, DMSO, and 1,3-Bis(diphenylphosphino)propane32 met on the 

dipropionate model but coupled with the fact that green tetrad was limited and 

the bottleneck caused by considerable degradation in yield of the n-

bromosuccinimide (NBS) oxidation this methodology was abandoned.  

  

Figure 4.10: White Conditions 
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4.5:The Stork-Sophia Strategy 

 

 

 

Dimethylamine is well established in the Fuchs group as an excellent SN2’ 

Lawton nucleophile for epoxyvinylsulfone 4.42.1 Hoffmann conditions33 on 4.42 

would furnish dienylsulfone 4.73 with the ,–olefin at C28-C34.  

Bromomethyldimethylchlorosilane, and excess triethylamine delivers silylether 

4.74. Radical initiation with azobisisobutylonitrile (AIBN), heat or light with tri-n-

butyltin hydride provides siloxane 34-40 4.76 which would be hydrolyzed to 4.7741 

Figure 4.11: Stork Sophia Route to Green Tetrad 
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(Figure 4.11).This synthetic scheme would allow exploration of the chemistry 

proposed in Figure 4.7. 

 

 

Entry Conditions (c) Result 

1 t-BuLi, THF, -78 °C Deprotecton 

2 tris(pyridin-2-ylmethyl)amine 
AIBN, Bu3SnH, Bz, 80 °C Bromine Reduction 

3 tris(pyridin-2-ylmethyl)amine, 
AIBN, Cu(II)Br, tol. 110°C Bromine Reduction 

4 In, THF:H2O (5:2) 
25 °C, 24 hrs. 

Recovery of 
Starting Material 

5 
1-Naphthylamine, 

N,N-dimethyl-, 
Li, THF, -55 → -40 °C 

Recovery of 
Starting Material 

 
Figure 4.12: Stork Sophia on Vinylsulfone 

 

Due to the scarcity and value of epoxide 4.42 and lack of precedent of this 

methodology on –hydroxy vinylsulfones, 4.79 was utilized as the model 

substrate. Unfortunately silylether 4.79 proved extremely acid labile and storage 

in a Teflon vessel was necessary. Metallation of the bromomethyl moiety with t-
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butyllithium led to deprotection (Entry 1). Unfortunately attempts at forming the 

radical with AIBN under any conditions (Entries 2 and 3) simply afforded the 

direct reduction product, the TMS ether. Reduction by single electron transfer 

using Indium, or Lithium metals (Entries 4 and 5) led to recovery of starting 

material, and deprotecton of the silylether respectively. 

The Stork-Sophia free radical cyclization is a methodology that has been 

long anticipated as becoming a facet of the vinylsulfone polypropionate 

methodology and it was therefore necessary to review the group literature to see 

if any insights could be gleaned from past exploration.  

A reexamination of the work of Inchul Kim42 proved to have exceptional 

value. In an effort to expand the scope of the vinylsulfone polypropionate 

strategy, Kim investigated intra/ inter-molecular, SN2’ Lawton anionic cyclization  

 

 

O OH

PhO2S

HO
OH

PhO2S

O O

PhO2S
Si

I

Si

HO
O

PhO2S

O O

SO2Ph
Sia

b

c

d

(a) t-BuLi (b) 2 eq. MeLi (c) Me2CH2SiCl, Et3N (d) t-BuLi

4.81 4.82

4.834.84 4.85

 Figure 4.13: Syn Methylation Lawton Strategy (Kim) 
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The construction of syn-relationship was tried previously with 6-epoxy-3-

hydroxy-vinylsulfone 4.81 by using the hydroxyl group as a silicon tether. A trial 

with methyllithium expecting a directing effect of lithium alkoxy group did not 

afford any syn-addition product 4.82. Treatment of 4.83 with tert-butyllithium did 

not give siloxane 4.84 but only give the protonated compound 4.85 (Figure 4.13). 

  

 

 

The diad 4.86 was converted to bromomethyldimethylsilyl ether 4.87. 

Intramolecular alkylation of this material was effected by low temperature 

treatment of LiHMDS, which provided annulated siloxane 4.88. While the 

literature has several examples of anionic cyclizations that occur via initial intra-

molecular attack at the silyl moiety followed by rearrangement,43 this is 

Figure 4.14: Kim  Probe of Stork-Sophia Photocyclization 
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apparently the first example of anionic formation of a siloxane from the familiar 

Stork halomethylsilyl ether functionality.36 The success of this reaction with the 

avoidance of 1,3-elimination presumably is partially due to the delocalized soft 

nature of the sulfone stabilized pentadienyl anion. For the siloxane cleavage, 

protiodesilylation was attempted using the Hoveyda method.44 However, even 

though TBAF in DMF seemed to effect partial cleavage of the siloxane, the 

fluoride anion was basic enough to deprotonate the allylic proton of the 

desilylated 4.88 resulting in small amounts of vinyl sulfone 4.90 together with 

unknown side products. Aqueous workup afforded the siloxane-opened silanol 

4.91, which was also subjected to the above condition. However, it only yielded a 

fluorinated mixture. The Kumada-Fleming-Tamao oxidation was also applied to 

siloxane 4.88 anticipating conversion to hydroxymethyl compound 4.89. Under 

these conditions, the olefin in the starting material was reactive enough to result 

in multiple side products (Figure 4.14). 

From the data provided by this work some key insights could be 

extrapolated. Operating on the homoallylic alcohol rather than the allyl alcohol is 

far more effective. Finding a way to alter current methodology to allow 

exploitation of the homoallyl rather than allyl alcohol had to be deduced. Pursuit 

of a design alteration allowing for utilization of the homoallylic alcohol paved the 

way for a profound increased understanding of the capability and versatility of the 

vinylsulfone polyproprionate methodology. 
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4.6: C28-C34 Green Fragment via a “Pivot Strategy”  

 

Pursuant to obtaining the C28-C34 stereotetrad with the transposed 

vinylsulfone (4.70) a new perspective was sought. Rotating Fragment (4.60) on 

the y-axis through the x,z-plane gives the perspective of inverted chiral centers 

(4.69-rot). Transposition of the vinylsulfone from C33-C34 to C34-C28 furnishes 

4.70, a target that meets strategic structural needs (Figure 4.15).   

Based on the Kim success with the allylanion of 4.87 a stepwise 

retrosynthetic analysis was designed that utilized the siloxane annulation. SN2’ 

on epoxide 4.72 with sodium borohydride should yield tetrad 4.71. Epoxidation 

with dimethyldioxirane (DMDO) from stereotriad 4.73 should furnish the 

penultimate epoxide 4.72. Treatment of 4.74 with  Bu4N+•F–, SiO2, in DMF 

provides 4.73.41  Intramolecular annulation of sulfone 4.75 allylanion with 

LiHMDS should provide the fused siloxane ring 4.74. Bromomethylsilylether 4.75 

is obtained from dienyl alcohol 4.76.36 Noyori conditions on sulfide 4.77 delivers 

Figure 4.15: Vinylsulfone Transposition Strategy 
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sulfone 4.76. Activation of sulfone 4.78 followed by 1,4-elimination using 

trimethylaluminum and Hünig’s base affords the acid sensitive dienylsulfide 4.77. 

 

 

 

Scheme 4.2: Retrosynthesis of the Vinylsulfone Transposition Target 
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Dianion formation with phenyldisulfide quench of 3.16 affords 4.78. 

Retrosynthetic steps i-k are identical to methodology in Scheme 3.3 steps 1-4. All 

of the chemistry in this analysis has been well established-save that of the 

siloxane ring formation and subsequent oxidation, so steps c and d in Scheme 

4.2 provide the most compelling points of investigation. 

Fortunately previous to his departure, Wan Pyo Hong, provided a 

significant amount (~40 g) of Blue allylsulfone intermediate 4.78 triethylsilyl ether.  

 

Entry Conditions Result 

1 LDA, THF, 0.1 M, െ78 °C⟶ 
െ20 °C, 30 m 

Decomposed on 
Silica 

2 n-BuLi, THF, 0.1 M, 
െ78 °C⟶ െ20 °C, 30 m 

TMS Ether 
Recovery 

3 
LDA, THF, 0.1 M, HMPA, 
െ78 °C⟶ െ20 °C, 30 m 

 

                 Figure 4.16: Anionic 5-exo-tet Siloxane Cyclization 

 

Unfortunately other than concept, Kim left little in the way of spectra (one 

very crude NMR) or detailed methodology with which to work with. This did 

however present the opportunity to re-explore the cyclization methodology 



93 
 

virtually from scratch. A brief cross-section of reaction attempts is shown in the 

above table. Traditional LDA conditions provided a repeatedly non-isolable spot 

on TLC (Entry 1). N-Butyllithuim in THF allowed for recovery of TMS ether (Entry 

2) but HMPA, in standard LDA conditions gave the triene 4.79 in quantitative 

yield.  

 

 

Formation of triene 4.79 starts with proton abstraction of 4.75 to furnish 

the allylanion. Nucleophilic attack of the allylanion on the bromomethyl silyl ether 

moiety delivers siloxane 4.80. Additional base induces -elimination causing an 

opening of the siloxane ring to afford triene 4.81. Tetrabutyl ammonium fluoride 

(TBAF) gives 4.79 in quantitative yields. 

Scheme 4.3: Triene 4.79 Formation Mechanism 
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1.7 C32 des-Me Target
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Time constraints dictated that the siloxane formation step be delayed until 

a later time. This development facilitated C32 des-methyl of aplyronine A 

analog 1.7 as the new target. Fragment 4.80 would be the working target for this 

new synthetic investigation. Stereotriad 4.81 is the ultimate cyclic vinylsulfone 

target for the C28-C34 fragment (Scheme 4.4). 

 

Scheme 4.4: C32 des-Methyl Aplyronine A Analogue Target 
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Fortunately the new scheme was implemented with little difficulty. 

Allylsulfone 3.17 smoothly converts to dienylsulfide 4.86 upon treatment with 

trimethylaluminium and Hunig’s base. Noyori Oxidation of 3.17-sulfide delivers 

sulfone 3.18. Jacobsen Epoxidation of diene 3.18 with the anhydrous H2O2 

source urea hydrogen peroxide, provides epoxide 3.19. Sodium borohydride 

reduction of 3.19 provides alcohol 4.82 in acceptable yield. Azido acid 4.83 forms 

the in situ acid chloride with oxalyl chloride, dimethylformamide (DMF), 

dimethylaminopyridine (DMAP), and triethylamine (TEA). Esterification of 4.82 to 

Scheme 4.5: Green Triad Transposed Vinylsulfone 
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azido ester 4.84 occurs smoothly. Cleavage of the silylether on 4.84 with 

camphorsulfonic acid or cerium chloride yields target 4.85. With the Green Triad 

in hand oxidative cleavage of the vinylsulfone was next explored.  
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CHAPTER 5: OXIDATIVE CLEAVAGE OF CYCLIC VINYLSULFONES 
 
 
 

5.1: Oxidative Cleavage of Cyclic Vinylsulfone Stereotetrads 

Oxidative cleavage of cyclic vinylsulfone stereotetrads via ozonolysis has 

been investigated extensively by Noshi.1,2 Subsequent exploration of the 

ozonolysis methodology by Hong3,4 has established sound methodology for the 

C5-C11 & C21-C27 linear fragments. An encapsulation of the methodology 

achived by Noshi & Hong starts with an examination of the C5-C11 fragment. 

 

Ozonolysis of 3.21 provided lactone 5.2 via intermediate 5.1 in good yield 

(70%). Protection of the alcohol 5.2 as TBS ether 5.3, followed by lithium 

Scheme 5.1: Synthesis of the C5-C11 Segment (Noshi, Hong) 
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borohydride (LiBH4) induced lactone cleavage, afforded the linear fragment 5.4. 

5.4 was converted to triol 5.5 and then protected as p-methoxybenzylidene acetal 

5.6 as a single diastereomer. Tosylation of primary alcohol 5.6 followed by 

iodination furnished fragment 5.7 (Scheme 5.1).  

It is advantageous to open lactones with methoxymethylamine anion to 

give Weinreb amides5-7 as termini-differentiated linear fragments. Exploration by 

Noshi elucidates the lactone opening by metallated amides on the C5-C11 

fragment. 

Opening of lactone 5.3 via Weinreb amine HCl/ i-PrMgCl is not successful 

even when 10 equivalents of nucleophile were added at 25 C instead of -10 C. 

In all attempts, starting 5.3 was recovered quantitatively without any linear 

fragment 5.8 in evidence. Lactone 5.3 however was smoothly opened employing 

dimethylamine HCl/i-PrMgCl on scales 3-4 g to afford dimethyl amide 5.91 

(Scheme 5.2). Ultimately, as can be seen in Scheme 5.1, LiBH4 was ultimately 

chosen for opening of lactone 5.3 to diol 5.4. 
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As will be seen, control of the termini differentiation of the C21-C27 

fragment is absolutely critical to the attainment of the aplyronine A analog. 

Inquiry by Noshi and elucidation by Hong established a solid foundation for the 

acquisition of the linear C21-C27 fragment. 

 

 

The synthesis of C21-C27 intermediate 5.19 commences with ozonolysis 

of 3.29 followed by reduction to afford lactone-alcohol 5.12 via intermediate 5.11. 

DCAD (5.13) Mitsunobu coupling of 5.12 delivers 5.14 followed by lactone 

opening generated Weinreb amide5 5.15. Treatment of 5.15 with t-
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butyldimethylsilyl triflate (TBSOTf) gives disilylether 5.16, which was transformed 

to terminal alcohol 5.17 via the intermediate aldehyde. TIPS protection was 

successful using TIPSOTf/2,6-lutidine at -78°C giving 5.18 in 88% yield. 

Oxidation with m-chloroperoxybenzoic acid (MCPBA) provided the C21-C27 

linear Julia-Kocienski8,9 sulfone intermediate 5.19.  

The studies of Noshi & Hong on linear fragments C5-C11 & C21-C27 

gives clear vision as to how the C32 des-methyl cyclic stereotriad 4.85 can be 

utilized. 
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5.2: Oxidative Cleavage of the Vinyl Sulfone – Ozonolysis 

 
 

 
 

 

Ozonolysis of C28-C34 stereotriad 4.85 has considerations beyond those 

of stereotetrads 3.21 & 3.29. Ozonolysis of 4.85 in methylene chloride / methanol 

(4:1) likely passes through molozonide 5.20. Decomposition of 5.20 presumably 

exclusively yields Criegee zwitterion 5.21 due to the instability of 5.22. Secondary 

ozonide formation is arrested by an intramolecular attack (5.21). The free alcohol 

of 5.21 is five atoms away from both electron-deficient terminii. C31 alcohol could 

either add to the acylsulfone delivering 5.24 (Pathway B) or add to the carbonyl 

Figure 5.1:  Ozonolysis of Green Vinylsulfone Stereotriad 

(a) O3, NaHCO3, -78 °C, DCM: MeOH (5:1); (b) Me2S 
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oxide to give lactol 5.23 (Pathway A) shown in Figure 5.1. Unlike the C5-C11 

fragment (3.21) and C21-C27 fragment (3.29), which have a free hydroxyl 

positioned 4 atoms from the carbonyl oxide and 6 atoms from the acylsulfone. 

This arrangement leads stereotetrads 3.21 & 3.29 exclusively forming 6-

membered lactones upon ozonolysis.  The reactivity of the carbonyl oxide 

however is greater than that of the acylsulfone, and 5-membered lactol 5.23 was 

furnished as a ~3:1 NMR ratio of the two possible diastereomers. The 5-

membered lactol was however very resistant to coupling efforts.  

 

Expectations of lactol 5.23 were initially very optimistic. Deprotonation of 

lactol 5.23 would, under ideal circumstances lead to an equilibrium with –alkoxy 

aldehyde 5.25. An irreversible olefination (Wittig or Julia-Kocienski) would trap 

the aldehyde driving equilibrium to completion. For example, Boger condensed a 

similar lactol with the Still-Gennari phosphonate ((CF3CH2O)2P(O)CH2CO2Me, 

Figure 5.2: In Situ Aldehyde Generation From Lactol 
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KHMDS, 18-crown-6, THF, -78 °C) to afford the first cis olefin of a sensitive 

Z,Z,E-triene (88%, Z:E 29:1) in his total synthesis of fostriecin (CI-920).10 

Fernandez de la Pradilla examined the Wittig reaction on a similar unprotected 

lactol that cleanly led to an unsaturated ester (67:33, E/Z mixture) and the 

smooth base-catalyzed cyclization of led to a 75:25 mixture of epimers that are 

key intermediates in the formal synthesis of kumausyne and kumausallene.11 

After olefination, the δെalkoxide would be either quenched on work up delivering 

linear ester or form a cyclic 5-membered lactone Figure 5.2.  

 

 

Entry Conditions Nucleophile Result

1 
LiHMDS (1.2 eq), 
THF: HMPA (5:1), 
-78→0 °C, 30 min 

 

N/R 

2 

LiHMDS (1.2 eq), 
THF:DMF:HMPA 

(3:9:1) 
-78→0 °C, 30 min 

5.29 N/R 

3 
NaH (50 eq), THF 
-78→0 °C, 30 min 

5.29 N/R 

4 
n-BuLi, THF, 

- 42 °C→25 °C 
20 hr  

N/R 

 

Scheme 5.4: Julia-Kocienski Coupling C21-C27 

S

OO

PMP

OTBS

O O
N

N
NN

Ph
5.29

Conditions: LiHMDS (1.2 eq), THF: HMPA (5:1), ̶ 78 0 °C, 30 min 22% 
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Entry Conditions Nucleophile Result

5 
DBU, THF 

-40 °C→25 °C 
30 min 

5.30 N/R 

6 
NaHMDS, THF 

0 °C→25 °C, 45 min
5.30  N/R 

         
       Scheme 5.4, contd. 

 

 

Lithium hexamethyldisilazide with HMPA and THF at -78- 0 °C, with 3 eq 

of 5.27 effected olefination at the C21 end of the red fragment (5.28) in low but 

promising yield (Scheme 5.4). Ultimately using either of the information-rich 

polypropionate segments in excess would be an inefficient and untenable 

strategy. Pursuing a 1:1 substrate ratio with the rare C21-C23 p-

methoxybenzylidine 5.29 under the same conditions shows the lactol to possess 

robustness beyond expectations, returning starting material. LiHMDS (1.2 eq), 

THF:DMF:HMPA (3:9:1), -78→0 °C, 30 min, similarly returned starting material. 

Using the stronger irreversible base NaH (50 eq), THF, -78→0 °C, 30 min, 

returned a faint light blue spot upon para-anisaldehyde staining. NMR of the 

crude material revealed no signals in the olefinic region possessing the requisite 

AB splitting patterns. n-BuLi, THF, -42 →25 °C, 20 hr, with commercially 

available 5.30, likewise furnished no desired product. In an attempt to see what 

an amidine base could achieve, 5.30 was treated with DBU, THF, -40 °C→25 °C, 

30 min but to no avail. As a last-ditch effort, NaHMDS, THF, 0 °C→25 °C, 45 min, 

was attempted on substrate 5.30 but the weaker base did not affect the desired 

transformation. It was readily apparent that the lactol functionality was not 
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synthetically compliant. Revisiting past efforts in the Fuchs group revealed a 

possibly more promising methodology for obtaining desired lactone 5.24. 

Dihydroxylation of the vinylsulfone was next explored. 
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 5.3: Dihydroxylation Via Established Methodology 

 

 

 

 

Reproducible dihydroxylation of vinylsulfones has been an elusive 

methodology for oxidative cleavage of cyclic vinylsulfones.  Ideally 

dihydroxylation via osmylation (Figure 5.3) would have osmium (VIII) oxide add 

to vinylsulfone 5.24 to provide osmate 5.31.  Hydrolysis of osmate 5.31 ejects the 

sulfinic acid to deliver acyloin 5.32. Intramolecular addition by the free alcohol 

gives -hydroxy lactol 5.33. Cleavage of diol 5.33 by lead (IV) acetate would 

furnish lactone 5.24 via intermediate 5.34.  

Previous work by Jiang12 focused primarily on the ability of Os(Vlll) and 

Ru(Vlll) species to effect dihydroxylation of the electron deficient vinylsulfones. 

While limited success with osmylation was indeed achieved using Bäckvall 
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methodology,13 satisfactory results over a diverse cross section of multi-

functional vinylsulfones was lacking. 

 

Jiang employed the Bäckvall methodology for the conversion of vinyl 

sulfone substrates to -hydroxyketones. Only one of several substrates (5.35) 

gave a high yield of the desired -hydroxyketone (5.36 in RXN 1). The rest of the 

cases examined gave either low yields or low conversion (Figure 5.4).  

It was theorized that the low yield/conversion was due to steric hindrance 

in vinylsulfones 5.35-epi, 5.37, 5.39 & 5.39-epi. This problem was addressed by 

using Sharpless methodology by treatment with catalytic ruthenium dioxide and 

sodium periodate.14  
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Treatment of vinylsulfone 5.39-epi with 0.03 equivalents of ruthenium 

dioxide and 2 equivalents of sodium periodate added in 3 portions was shown to 

avoid or minimize the -hydroxyketone cleavage reaction. Treatment of 5.40-epi 

with lead tetraacetate in methanol provided aldehyde-methyl ester 5.41-Me in 

94% yield. Alternatively, use of 3 equiv. of sodium periodate in the ruthenium 

dioxide reaction of oxabicyclic sulfone 5.39-epi directly gave aldehyde-carboxylic 

acid 5.41 in 89% yield. Esterification of carboxylic acid 5.41 with methylisourea or 

in situ diazomethane delivered aldehyde-methyl ester 5.41-Me (Scheme 5.5). 

Oxidative cleavage of 5.36 with sodium periodate followed by esterification 

of carboxylic acid 5.42 with methylisourea or in situ diazomethane gave 

aldehyde-methyl ester 5.42-Me without difficulty. Application of the lead 

tetraacetate/ methanol procedure again obviated the necessity to isolate 

carboxylic acid 5.42 (Scheme 5.6). 
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Based on the work of Kim15 exploration of the osmium dihydroxylation 

methodology was investigated. Stereotriad 4.85 was treated with NMO (N-Methyl 

morpholine N-oxide), followed by an aqueous solution of osmium tetroxide (4 

wt% in water) in a mixture of acetone and water and stirred at 0 °C25 ⁰C for 6 

hours returned starting material (method a, Figure 5.5).  
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The solvent was changed to THF:water (method b) likewise returning 

starting material.  Switching to osmium tetroxide 2.5 wt% in t-BuOH, 4-methyl 

morpholine N-oxide in t-BuOH:THF:water (method c) showed no reaction after 18 

hours. Changing to the Kim conditions (method d) of Scheme 5.4 showed no 

reaction, which apparently eliminated osmylation as an option for oxidative 

cleavage of stereotriad 4.85 (Figure 5.5). 

 

 

 

Initially ruthenium catalyzed oxidative cleavage of the vinylsulfone using 

sodium periodate was avoided, due to the need to esterify the terminal carboxylic 

acid (Scheme 5.4). The ineffectiveness of osmium methodologies however 
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necessitated investigation of the ruthenium approach. It is worthy of note that 

none of the Kim substrates 5.35, 5.37, or 5.39 possessed any free alcohols. 

Treatment of free alcohol 4.85 with catalytic RuCl3•H2O and stoichiometric NalO4 

in CCI4:CH3CN:H2O (1:1:1.5), phosphate buffer pH 5, provided ketone 5.43 in 

roughly 50% yield (Figure 5.6). Lack of literature precedent for the preservation 

of the secondary alcohol under these conditions demanded examination of 

silylether 4.84. Application of the aforementioned conditions but with a biphasic 

solvent system returned starting material (a). Changing back to the single solvent 

system (b) also yielded starting material. Kim conditions of RuO2, NalO4 in 

CCI4:CH3CN:H2O (1:1:1.5), pH 5 (c) similarly returned starting material (Figure 

5.6). At this point it seemed ozonolysis with both hydroxyl groups protected was 

the only remaining option. 
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5.4: Citric Acid Catalyzed Dihydroxylation 

 

 

 

The proposed mechanism of osmium tetroxide (OsO4) dihydroxylation 

(Figure 5.7) suggested that the rate is sacrificed if (mono)glycosylate ii is 

hydrolyzed to regenerate diol and osmium tetroxide perpetuating the First 

Cycle.16 The Second Cycle is favored over the First Cycle all things being equal. 

Since the rate of hydrolysis (h1) is much slower than the reduction (r3), the 

osmium(VI) bis(glycolate) iii builds up as the reaction progresses, generating diol 

via hydrolysis of (bis)glycolate iii. To exploit the Second Cycle when using chiral 

ligand, a slow addition technique was recommended to suppress the second 

cycle pathway during asymmetric dihydroxylation (AD).16 However, if high 

reactivity is required, the second cycle gives a clear advantage over the first 
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cycle. Citric acid improves the rates and the yields of cis-dihydroxylations of 

various electron-deficient alkenes. In addition to acting as a pH buffer thereby 

preventing formation of insoluble Os(VIII) dioxoosmate iv, a species, that inhibits 

the second cycle, citric acid strongly binds to OsO4 and maintains the reaction in 

the second cycle.17  

Addition of citric acid to improve the catalytic asymmetric osmylation 

system led to a greater understanding of the catalytic cycle that the vinylsulfone 

substrate undergoes. During the course of Sharpless’ investigation to improve 

upon the Upjohn protocol, it was found that the osmylation catalytic cycle can, as 

has already been stated, progress via two alternate avenues where the rate 

limiting step is hydrolysis of the monoglycolate (i) in the case of the first cycle 

and bisglycolate (ii) in the case of the faster second cycle Figure 5.7. When the 

osmylation is undertaken in homogeneous conditions the co-oxidant (NMO) has 

access to the intermediates over the entire catalytic cycle. Since the Second 

Cycle is faster, the reaction gets locked into the second cycle (bis)glycolate (ii) 

hydrolysis furnishes Os(VI) species iii. The Sharpless group postulated that 

acids assist catalyst turnover by preventing formation of the catalytically dormant 

dioxoosmate dianion species iv, which is formed upon deprotonation of the 

hydrated (bis)glycolate iii at higher pH.  
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The strong electron withdrawing ability of the sulfone contributes to the 

acidity of the hydrated bis(glycolate) species iii•H2O thus increasing the 

concentration of the dioxoosmate iv and crippling the cycle. The Sharpless group 

then discovered, based on the aforementioned hypotheses that the dioxoosmate 

iv is especially stable and resistant to substitutions of any kind under basic 

conditions including hydrolysis irrespective of the presence co-oxidant. According 

to Sharpless, all acidic mixtures remain green indicating the presence of neutral 

bis(glycolate) (ii) whereas basic mixtures took on a reddish brown color 

indicating the presence of dioxoosmate dianion species iv. Adding citric acid 

however arrests the formation of osmium tetroxide (OsO4) in favor of species iii 

thereby impeding the First Cycle (Figure 5.8). With proximal acidic moieties 

acting as a buffer in hydrated (bis)glycolate iii•H2O and dioxoosmate iv the 

Figure 5.8: Citric Acid Catalyzed cis-Dihydroxyltion of  Vinylsulfones 



118 
 

equilibrium leans strongly in favor of bis(glycolate) ii which can then be 

hydrolyzed back to species i so the cycle may continue (Figure 5.8).  

Methodology elucidated by Sharpless,18-20 involving dihydroxylation of 

election deficient olefins by osmium, catalyzed by citric acid was explored on 

green stereotriad 4.85. Rationale for the efficacy of the osmium/citric acid 

methodology is derived from the proposed catalytic cycle in Figure 5.8.  

It is noteworthy that olefins such as diethyl maleate show the greatest 

benefit from performing the dihydroxylation at lower pH.18 The hydrated 

osmium(VI) bis(glycolates) like species iii•H2O formed from such electron-poor 

olefins would be expected to be much more acidic and correspondingly more 

likely to get trapped as the unwanted dioxoosmate dianion iv, even in the 

presence of a relatively weak base like 4-methylmorpholine. Citric acid however 

not only coordinates to the osmium, but coordinates the acidic moieties proximal 

to the oxygens of the hydrated (bis)glycolate iii so buildup of dioxoosmate iv will 

not terminate the catalytic cycle.    

 

 

 

 

Figure 5.9: Citric Acid Catalyzed Osmylation of Green Stereotriad C28-C34 
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With a sound rationale for catalytic dihydroxylation of the electron deficient 

vinylsulfone, further inquiry was made into the efficacy of this new osmylation 

methodology on the vinylsulfone stereotriad. Under these conditions, the 

osmylation smoothly provided -hydroxy lactol (83%; ~3:1 epimeric NMR ratio)   

(Figure 5.9). 

 Lead tetraacetate instantaneously cleaves both -hydroxy lactol epimers 

to the lactone-aldehyde (Figure 5.10).  

 

 

 

With the proper C28-C34 chiral motif in hand, it is now possible to couple 

the green fragment. Due to the ester at C29, the olefin coupling must entail the 

aldehyde being attacked by the nucleophile rather than the nucleophile being on 

C28 as the danger of beta elimination is too great. 

 

 
 
 
 
 

Figure 5.10: Pb(OAc)4 Glycolytic Cleavage 
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CHAPTER 6: C28-C34 STEREOTRIAD SYNTHETIC RAMIFICATIONS 
 
 
 

6.1: Assembly of Aplyronine A Backbone 
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With an iterative way to access polypropionate motifs from cyclic 

vinylsulfones,1 a working, sequential and convergent strategy was devised to 

assemble an aplyronine core. 

Previous work done in the Fuchs group by El-Awa, Noshi and Hong 

achieved synthesis of the C1-C27 segment of aplyronine A.2-4 Macrocyclic 

lactone 6.1 (C1-C27 segment) was desired as a key fragment of the aplyronines. 

As outlined in Figure 6.1, the synthetic approach is based on disconnection of 

macrocyclic core 6.1. Core 6.1 is accessed from building blocks 6.6, 6.9 and 6.7. 

Fragments 6.2, 6.4 and 6.5 are derived by vinylsulfone strategies creating 

stereodefined polypropionate fragments.  Side Chain 6.11 was originally to be 

constructed as previously described in Schemes 4.2 & 4.3. Ozonolysis was the 

designated methodology to access the desired acyclic segments. Fragment 6.2, 

possessing the stereotetrad, (C7-C10 dipropionate portion) can be obtained from 

cyclic vinylsulfone 3.21. Similarly, fragment 6.5 with a C23-C26 dipropionate 

portion can be prepared from cyclic vinylsulfone 3.29. Fragment 6.4 was chosen 

to introduce the C15-C20 array.3,5 As reported,6 β-ketophosphonate 6.3 was 

adopted for connecting iodide 6.2 and aldehyde 6.7. Macrolactone 6.10 was to 

have been joined to lactone 6.11 via a Julia-

Kocienski olefination followed by deprotection.  

Selective reduction with Crabtree’s catalyst at the 

C27-C28 position would deliver aplyronine A core 

Ir
N

Cy3P

Crabtree's Catalyst

PF6
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6.1. The anticipated use of Crabtree’s catalyst to selectively reduce the C27-C28 

allylic alcohol from coupling of 6.10 to 6.11 is key to the plan proposed in Figure 

6.1. 

 

 Scheme 6.1: Assembly of Aplyronine Macrolactone Core (Hong) 

(a) NaH, BuLi 88%; (b) (i) LiHMDS (1M THF), DMF/ HMPA (4:1) 60% (83% brsm) 12:1 (ii) 
DIBAL-H, PhMe, -78 °C, 45 min; (c) (i) Ba(OH)2, THF:H2O (40:1), rt, 36 h, 84% (d) (R)-MeCBS, 
BH3 SMe2, THF, -10 °C; NaH, MeI, THF, rt, 84%; (e) DIBAL, PhMe, 88%  (f) pyridine, Dess-
Martin periodinane, rt, 80%; (g) (EtO)2P(O)CH2CH=CHCO2Et, LiHMDS, THF, 72%; (h) 1N KOH, 
EtOH, THF, 88%; (i) CSA (0.2 eq), MeOH, 74%; (j) 2,4,6-trichlorobenzoyl chloride, DMAP, Et3N, 
PhMe, rt, 36 h, 66% 
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Preparation of 6.4 was elaborated by Noshi3,5 and 6.5 (Scheme 5.3), was 

discussed in Chapter 5. Substrates 6.4 and 6.5 were linked using a Julia-

Kocienski olefination,7-9 where Jacobsen’s solvent combination (DMF/HMPA)10,11 

gave the best selectivity (E:Z = 12:1) in 60% yield, 83% based upon recovered 

starting material. Epimerization of C19 methoxy group was not observed in the 

crude product unless the base was added to the mixture of 6.4 and 6.5. 

Reduction of C15 methyl ester with DIBAL-H afforded the desired aldehyde 6.7. 

Addition of the dianion of β-ketophosphonate 6.3 to iodide 6.2 furnished a 1:1 

mixture of diastereomeric C14 methyl groups in fragment 6.6. A Ba(OH)2 

mediated Horner-Wadsworth-Emmons olefination between C5−C14 -

ketophosphonate 6.6 and the C15−C27 aldehyde 6.7 supplied the desired C5-

C27 segment 6.12 (70% yield) as an inseparable 12:1 mixture of (14E, 20E) and 

(14E, 20Z), resulting from Julia-Kocienski product 6.7. The minor product (14E, 

20Z) could be separated at a later stage of the synthesis.12 Chemo- and 

stereoselective reduction of enone 6.12 gave the secondary alcohol in 84% yield, 

which was treated with methyl iodide to afford methyl ether 6.13. The 

regioselective ring opening of the p-methoxybenzylidene acetal with DIBAL-H at 

0 ⁰C afforded intermediate 6.14 which was oxidized using Dess-Martin Periodane 

to give aldehyde 6.8, which was immediately used in crude form for the next 

reaction.  Horner-Wadsworth-Emmons conditions coupled 6.8 with 

(EtO)2P(O)CH2CH=CHCO2Et 6.9 delivers dienoate 6.15 in 72% yield. Treatment 

of dienoate 6.15 with 1N KOH gave carboxylic acid 6.16 in 88% yield. Selective 

deprotection with 0.2 equivalents of (1S)-(+)-10-Camphorsulfonic acid exclusively 
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furnished 6.17 (74%). The seco-acid 6.17 was then subjected to 

macrolactonization by using the Yamaguchi procedure to provide macrolactone 

6.18. 
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The sequence elucidated in Scheme 6.1 was devised to prepare the C28-

C34 fragment. The working hypothesis (Scheme 6.2), however, required 

deprotection of the primary triisopropylsilyl ether at C27 of macrolactone 6.18 to 

primary alcohol 6.19. Mitsunobu reaction followed by oxidation would likely 

furnish phenyltetrazole sulfone 6.10. A Julia-Kocienski olefination between 

sulfone 6.10 and lactone 6.11 would afford triene 6.20. Selective deprotection to 

allyl alcohol 6.21 followed by hydrogenation in the presence of Crabtree’s 

catalyst13 would deliver aplyronine core 6.1. It should be emphasized that 

Scheme 6.2 could not be explored due to a lack of a substrate possessing the 

C28-C34 landscape. The strategy illustrated in Scheme 6.2, as will be seen, had 

deep implications for the unification of lactone triad 5.48. 
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6.2: Implications of C32 des-Methyl Stereotriad 

The synthetic sequence elucidated in Scheme 6.2 hinges on formation of 

allylic alcohol 6.21. This key intermediate (6.21) contains olefins at 14E, 20E & 

27E. Crabtree’s catalyst allows for selective reduction of 27E while leaving 14E & 

20E intact. Coupling of stereotriad 5.48 to macrolactone 6.10 would afford triene 

6.22. Triene 6.22 has an azidopivalate ester at the C29 position. The 

azidopivalate is the precursor to the desired dimethylamino pivalate 6.23. 

Unfortunately the presence of the azido ester eliminates the option of selective 

hydrogenation with Crabtree’s catalyst. These facts eliminate Scheme 6.1 as a 

viable option.  

 

 

 

Figure 6.2: Repercussions of C29 Azidopivalate Stereotriad. 
Constructing the C21-C34 Fragment 
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As previously discussed, the fulcrum of synthetic rationale for the entire 

coupling order of the aplyronine core target hinged upon there being an alcohol 

available at the allylic position (C29) to allow for a directed iridium catalyzed 

Crabtree hydrogenation in the presence of olefins at 14E & 20E to furnish the 

single bond at C27-C28 without disturbing the spectator olefins (6.22). Previously 

discussed limitations with the green C28-C34 fragment ultimately didn’t allow for 

the Crabtree favorable landscape to be put into place. The most expedient 

remedy would involve coupling red C21-C27 fragment 6.24 to C28-C34 green 

stereotriad 5.48 by way of traditional olefination methodologies followed by 

hydrogenation of the resulting olefin 6.26. 

 

 

Utilization of the vinylsulfone polypropionate methodology to assemble the 

aplyronine core reveals the importance of red C21-C27 fragment 6.24 as the key 

to accessing macrolactone 6.1-des. Fragment 6.24 is undefined at C21 and the 

 Figure 6.3:  Constructing the C21-C34 Fragment 
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C23 oxygen. To complete construction of the aplyronine core the C21 & C23 

positions of 6.24 must be defined in such a way so as to allow 

olefination/reduction at the C27 position prior to installation of the C21 olefin. The 

prevailing methodology used to construct the linear red stereotetrad 5.19 

(Schemes 3.4 & 6.3) does not allow this (Figure 6.3). 

 

 

 

Scheme 6.3 (= 5.3): Synthesis of the C21-C27 Segment 

(a)  (i) O3, NaHCO3, EtOAc (ii) BH3, t-BuNH2 65%, 2 steps;  (b) DCAD, PPh3,1-phenyltetrazole-5-
thiol 84%; (c) MeONHMe,  iPrMgCl, 80%;  (d) TESOTf, quant; (e) (i) DIBAL (ii) BH3 t-BuNH2

90%;  (f) TIPSOTf, 2,6-lutidine 88%; (g) MCPBA, NaHCO3 71% 
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A cursory examination of 5.19 shows that the nature of the functional 

groups on C21 & C27 must be inverted to allow the C27-C28 olefin to be formed 

(6.25) and reduced (6.26) prior to construction of the aplyronine core.. 

Compounds 3.29, 5.12, & 5.17 can be important intermediates for the 

achievement of a fully functionalized 6.24 fragment. An analysis and exploration 

of efforts to construct a favorable linear C21-C27 fragment follows. 

 
 

6.3: A Reexamination of the C21-C27 Fragment 

Re-examination of the red fragment began with consideration of the 

existing inventory of red stereotetrad linear intermediates (Figure 6.4). The Hong 

archive contained intermediates directed towards linear stereotetrad 5.19. The 

available compounds offered flexibility with respect to the construction of 6.24. 
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The structures shown in Figure 6.4 show a definite bias in favor of Julia-

Kocienski precursors. 6.28 and 6.29 contain phenyltetrazole (PT) sulfide and 

phenyltetrazole (PT) sulfone respectively at the favored C27 position. 6.30 and 

6.33 have phenyltetrazole (PT) sulfone functionalities at C21, which is very 

unfavorable. 6.31 and 6.32 have phenyltetrazole (PT) functionalities at C21 

which may act as both olefination activators as well as transient protecting 

groups. C21 and C23 of substrates 6.28, 6.29 and 6.30 are protected as para-

methoxybenzylidine, providing the possibility of differentiation between C21 and 

C23 upon deprotection. C27 of 6.30 and 6.32 are capped with a triisopropyl silyl 

ether, utilized to differentiate existing t-butyldimethyl and triethylsilyl ethers. Initial 

Figure 6.4: Linear C21-C27 Stereotetrad Intermediates 
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investigation explored the efficacy of the intermediates in Figure 6.4 for obtaining 

a practical linear C21-C27 stereotetrad. 

The value of the compounds of Figure 6.4 is self-evident.  Therefore the 

first probe into procuring a useable C21-C27 linear section (Scheme 6.3) made 

use of the most abundant compound of the inventory, 6.30. A model Julia-

Kocienski reaction with benzaldehyde delivered styrene 6.34. Global 

deprotection with catalytic p-toluenesulfonic acid (p-TsOH) afforded triol 6.35. 

The crude triol was selectively tosylated at the C27 primary alcohol with 1.1 

equivalents of tosyl chloride (6.36). Treatment of 6.36 with p-TsOH in acetone 

delivers acetonide 6.37 in quantitative yield. Reaction of 6.37 with 1-phenyl-5-

mercaptotetrazole in acetone at reflux delivered PT sulfide 6.38 in quantitative 

yield. Multiple attempts at oxidation of sulfide 6.38 with ammonium molybdate 

simply returned starting material. Time constraints, the small quantity of 6.30, 

and possible need for optimization, contributed to the abandonment of this 

pathway. Compound 6.39 was to be oxidized to sulfone 6.40, and after treatment 

with p-TsOH to give diol 6.40. Ozonolysis of 6.40 would likely have delivered 

lactol 6.41. Formation of ketal 6.42, should be effected with catalytic sulfuric acid 

in methanol followed by silylether formation to have given 6.43.  
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Compound 6.28 was a promising intermediate for the stated goals. C27 

possesses the desired sulfide, and C21 is incorporated in the benzylidine. 

Cerium ammonium nitrate (CAN) gives triol 6.46. Acetone with p-TsOH would 

deliver acetonide 6.47. Ammonium molybdate oxidation should afford sulfone 

Scheme 6.4: Transmutation of C21 Phenyltetrazole Sulfide 6.30 

(a) PhCHO, NaHMDS, -78 °C,THF, 4hr, 71.7 %;  (b) p-toluenesulfonic acid, MeOH, 86%;  (c)
tosyl chloride (1.1 eq), pyr, 18 hrs, rt, 87%; (d) p-toluenesulfonic acid, Acetone, 100%;  (e)  1-
Phenyl-5-mercaptotetrazole, K2CO3, acetone, reflux , 100%;  (f)  (NH4)6Mo7O24,  H2O2, EtOH, rt;
(g) p-toluenesulfonic acid (2 eq), 4h, THF: H2O, reflux; (h) O3, DCM, MeOH, NaHCO3, -78 °C; (i)
H2SO4 (0.01%), MeOH; (j) R3Si, 1H-Imidizole, DMAP (cat),  DMF, rt0  °C 
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6.48 followed by silylether formation (6.49) to protect the C25 hydroxyl. 

Unfortunately there was only 230 mg of 6.28 remaining in inventory and 

subjecting such a small amount of valuable material to a 4-step sequence was 

deemed impractical due to time constraints (Scheme 6.4). 

 

 

 

Sulfide 6.32 (Figure 6.6) offers a unique opportunity to achieve a viable 

C21-C27 linear vinylsulfone fragment. The phenyltetrazole sulfide may act as a 

dormant functional group while the C27 can be transformed into a useable cross-

coupling moiety. It is also a natural intermediate with respect to the prevailing 

methodology (Schemes 3.4 and 5.3) so examination would provide valuable 

information. It is worthy of note that triisopropylsilyl (TIPS) ether was very 

resilient to cleavage. A global deprotection to triol (6.50) was required to remove 

it, thus its use would have to be avoided in the future. Selective tosylation of 1° 

alcohol at the C27 position would afford 6.51. Acetone and p-TsOH should yield 

Figure 6.5: Expediency of Sulfide 6.28 

(a) (NH4)2Ce(NO3)6, MeCN:H2O (9:1), rt; (b) MePhSO3H, Acetone (c) (NH4)6Mo7O24, H2O2, EtOH, 
rt; (d) R3SiCl, NR3, DCM, rt 
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acetonide 6.52. Finkelstein conditions would produce iodide 6.53. Phosphonium 

iodide 6.54 can then undergo the Wittig olefination with 5.48 to obtain a C21-C34 

27Z olefin.  

 

 

 

While the highly intricate fragments provided by Hong were not 

themselves utilized to provide the desired C21-C27 motif, they provided direction 

to future investigation, and proffered information as to the limitations of the 

prevailing methodology. 

 

Figure 6.6:  Versatility of Sulfide 6.32 

(a) p-TsOH, MeOH;  (b)  tosyl chloride , C5H5N;  (c)  acetone, p-TsOH;  (d) NaI,  acetone, reflux 
 rt;  (e) NaHCO3, MeCN, PPh3, 8 h, reflux 
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6.4: Further Evaluation Of C21-C27 Strategies 
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The Hong archive contained 14 grams of dienyl diad 3.26. Cyclic 

vinylsulfone stereotetrad 6.55 was prepared as described in Scheme 3.4 without 

treatment with t-butyldimethylsilyl triflate and camphor sulfonic acid in the final 

Scheme 6.5:  Protecting Group Inversion Strategy 

(a) (S, S)-Jacobsen, 4-PPPy, NaClO3, NaH2PO3, pH=9; (b) 3,5-DMP, 50 -60 °C, PhMe, 1hr; (c) 
MeMgBr, Tol. 50 °C 52 °C;  (d) O3, NaHCO3, DCM, MeOH, -78 °C, 10 m;  (e) KHMDS, 18-
Crown-6, MeI, THF, -78°C; (f) LiAlH4, Et2O or DiBAL-H; (g) TsCl, pyr., rt, 24 hrs;  (h) PTS, K2CO3, 
Me2CO, reflux;  (i) Ox, TBA (j) NaHMDS, THF 



138 
 

steps. Ozonolysis of 6.55 would produce lactone 6.56 and on subsequent 

treatment with potassium hexamethyldisilazide and methyl iodide generate ketal 

6.57. The methyl ester of 6.57 can be reduced to alcohol 6.58 and upon 

treatment with tosyl chloride in pyridine provide tosylate 6.59. Displacement of 

the 6.59 tosylate with phenyltetrazole thione affords sulfide 6.60; oxidation to 

sulfone would give sulfone 6.61. Finally a Julia-Kocienski olefination between 

6.61 and 5.48 would give the valuable C21-C34 olefin 6.62. The overall strategy 

illustrated in Scheme 6.5 has become a working foundation for obtaining the 

C21-C34 fragment. 

 

 

 

A variant of the traditional route could involve the innovation by 

Schreiber14,15 of using acetic anhydride in the workup of the termini differentiated 

ozonolysis intermediates. Decomposition of the molozide of 6.55 delivers 

Figure 6.7: Schreiber Ozonolysis Strategy 



139 
 

Criegee zwitterion16 6.63 which is reduced to hydroperoxide 6.64. Treatment of 

6.64 with acetic anhydride affords lactone 6.66 via perester 6.65. This tactic 

would install the functionality at C27 needed to enable the coupling of C21-C27 

and C28-C34 fragments. 

 

  

 

A little explored strategy, is ozonolysis of the diprotected cyclic 

vinylsulfone stereotetrads. From a strategic standpoint, the C23 and C25 hydroxy 

groups must be differentiated so the desired macrolactone core can be 

constructed. Under established methodology 5.19 achieved differentiation with a 

triethylsilyl ether on C23 and t-butyldimethylsilyl ether on C25, 5.19 is formed via 

lactone 5.12. Protection of C23 as the benzylester (6.67), methoxymethyl ether 

(6.68), or THP (6.69) should prevent interference of the multifunctional substrate 

Figure 6.8: Ozonolysis Of Diprotected Cyclic Vinylsulfone 
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with the ozonolysis. Work-up with BH3•t–BuNH2 procures alcohols 6.72, 6.73, 

and 6.77. Dimethylsulfide work-up, should give aldehydes 6.70, 6.74, and 6.75. 

Treatment of these aldehydes with p-TsOH, in methanol would deliver ketals 

6.71, 6.76 and 6.78. These post-ozonolysis termini differentiated fragments could 

provide a solid foundation from which to achieve coupling of C21-C27 and C28-

C34 fragments that allow differentiation between the C23 and C25 alcohols. 
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Transposition of the vinylsulfone to the vinyphosphonate was optimized by 

Noshi,3,5 and ozonolysis of the vinyphosphonate explored by DuJardin.17 The 

diprotected cyclic stereotetrad 6.67 is subjected to NaHMDS, ((EtO)2HPO), THF 

Figure 6.8:  Transposed Vinyl Phosphate Strategy 

(a) NaHMDS, ((EtO)2HPO), THF; (b) NH3, MeOH, 24 hr, rt; (c)  (i) O3, 
AcOEt, NaHCO3; (ii) MeOH; (iii) Me2S. 
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to obtain transposed vinyphosphonate 6.79. Cleavage of the benzylester using a 

solution of methanol saturated with ammonia,18 would give alcohol 6.80. 

Ozonolysis of 6.80 can then furnish desired lactone 6.81. 

 

 

 

Diprotected cyclic vinylsulfone 6.67 could also be subjected to Sharpless 

osmylation conditions.19 Acyloin 6.82 can then undergo oxidative cleavage on 

Figure 6.10: Osmylation And Acyloin Cleavage Strategy 

(a) NMO, 1.1 eq.,OsO4 cat., H2O/t-BuOH, 1:1,citric acid, 25 mol %;  (b)  (i)
Pb(OAc)4, MeOH  (ii) NaHCO3, Me2CO, 14 h, reflux;  (c) DiBAL-H; (d) TsCl,
pyr., rt, 24 hrs;  (e) PhTezSH, K2CO3, Me2CO, reflux;  (f) Oxone, MeOH, 2 d, rt;
(g)  5.48, NaHMDS, THF 
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exposure to lead (IV) acetate in methanol to potentially furnish linear termini 

differentiated C21-C27 fragment 6.83.  

Reduction of 6.83 to terminal alcohol 6.84 followed by tosylation to 6.85 

allows installation of terminal phenyltetrazole sulfide 6.86. Oxidation of 6.86 to 

sulfone 6.8720 now allows for coupling via Julia-Kocienski conditions8 to afford 

C21-C34 27Z olefin 6.88. 

Of great interest was the concept of a self-immolating protecting group. 

The azidopivalate utilized as a precursor for the dimethylamino ester at C32 

shows potential self-immolative potential. 
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This concept was initially explored on indane azidopivalate ester 6.89 

(Figure 6.11). Using Staudinger conditions with diethylphosphite, rather than the 

traditional triphenylphosphine. Reduction of azide 6.89 by diethylphosphite leads 

to intermediate 6.91 via 6.90. Cyclic intermediate 6.91 decomposes to nitrogen 

and 6.92. The tautomer of 6.92 (6.92-taut) undergoes addition with n-butylamine 

to afford 6.96; via 6.93, 6.94 and 6.95. Tautomerization of 6.96 to 6.96-taut 

would be expected to decompose to alcohol 6.96 and 6.97.  

 

Figure 6.11: Azidopivalate As A Self-Immolating Protecting Group 

Conditions: CH3P(O)(OC2H5)2, PhMe,  rt;   n-BuNH2,  PhMe, rt;  Base 
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The self-immolative potential of the C32 azidopivalate moiety could be 

exploited so as to allow utilization of the original aplyronine core assembly 

strategy (Scheme 6.1). Coupling fragments 6.4 and 6.5 with Julia-Kocienski 

conditions was shown by Hong4 to give olefin 6.98. Selective deprotection21 of 

the primary triisopropylsilyl ether may furnish primary alcohol 6.99. Tosylation 

(6.100), sulfide formation (6.101), then oxidation would give sulfone 6.102. A 

Figure 6.12: Self-Immolative Azidopivalate Ester Strategy 

(a) LiHMDS (1M THF), DMF/ HMPA (4:1) 60% (83% brsm) 12:1; (b) Bu4N
+ •F-, THF, AcOH  (c)

TsCl, pyr., rt, 24 hrs;  (d)  PhTezSH, K2CO3, Me2CO, reflux;  (e) Oxone, MeOH, 2 d, rt; (f)
NaHMDS, THF (g) HP(OEt)2, n-BuNH2, base (h) [Ir(cod)(PCy3)(py)]PF6, H2, CH2Cl2, 18 h, rt; (i)
4.83, (COCl)2, DMF, DMAP,TEA 
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second Julia-Kocienski coupling with 5.48 can deliver C15-C34 diolefin fragment 

6.103 which could undergo self-immolation at the C32 azidopivalate to give allylic 

alcohol 6.104. Regioselective hydrogenation using Crabtree’s 

[Ir(cod)(PCy3)(py)]PF6 catalyst would give mono-olefin 6.105. Re-esterification of 

6.105 with the in situ acid chloride of azido acid would produce the target olefin 

azidopivalate 6.106. 

Application of the vinylsulfone polypropionate methodology to the 

construction of the aplyronine defined its limitations. An illustration of this is 

shown in the osmylation of the vinylsulfone. The addition of citric acid to the 

Upjohn osmylation conditions, increased the versatility of vinylsulfone 

methodology. The structure of the aplyronine core allows the question of 

synthetic strategy to be answered. This was illustrated in the difficulty of dealing 

with the order of coupling between the C15-C20, C21-C27 and C28-C34 linear 

fragments. The structural requirements of the aplyronine core, lend themselves 

to a number of synthetic strategies for assembling the C15-C34 fragment. The 

richly-functionalized nature of the desired fragments forces analysis from multiple 

angles, as seen with C28-C34 stereotriad 5.48 and illustrated in Figure 4.5. 

Exploration of vinylsulfone chemistry was begun by the Fuchs research group in 

197822-25 and after 35 years of investigation, vinylsulfone methodologies continue 

to evolve. 
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Appendix A: Experimental 

General Procedures 

All reagents purchased were used as received. Tetrahydrofuran (THF) and 

diethyl ether were distilled from benzophenone ketyl. Benzene, toluene, and 

methylene chloride (CH2Cl2) were distilled from calcium hydride. Acetonitrile 

(CH3CN) and methanol were spectra-grade. Sodium sulfate (Na2SO4) was 

anhydrous. All recrystallization, chromatographic, and workup solvents were 

reagent grade. Progress of reactions was monitored by thin layer 

chromatography (TLC) using silica gel 60 F-254 plates (EM reagents, 0.25 mm). 

The TLC plates were visualized with a UV lamp (254 nm) and/or with TLC 

visualizing solutions activated with heat. The two commonly employed TLC 

visualizing solutions were: (i) p-anisaldehyde solution (1350 mL absolute ethanol, 

50 mL concentrated H2SO4, 37 mL p-anisaldehyde), and (ii) permanganate 

solution (weight percents of 1% KMnO4 and 2% Na2CO3 in water). 1H NMR and 

13C NMR spectra were recorded on Varian Inova 300 (300 MHz), Bruker DRX 

500 (500 MHz), Varian Inova 600 (600 MHz), Bruker AV 800 (800 MHz). NMR 

spectra were determined in chloroform-d1 (CDCl3), dimethylsulfoxide (DMSO-d6),  

benzene-d6 (C6D6) or acetone-d6 solution and reported in parts per million (ppm) 

from the residual chloroform (7.27 ppm and 77.0 ppm), DMSO (2.50ppm and 

39.52ppm), benzene (7.16 ppm and 128.0 ppm) and acetone (2.05 ppm and 

29.9/ 206.7 ppm) standard respectively. Peak multiplicities in 1H-NMR spectra, 

when reported, are abbreviated as s (singlet), d (doublet), t (triplet), q (quartet), p 
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(quintet), m (multiplet), ap (apparent), and br (broad). Mass spectra were 

determined by the Purdue University campus wide mass spectrometry facility. 

 To a cooled 0 °C solution of  2-(phenylsulfonyl)cyclohepta-1,3-diene 

3.5 (40 g, 171 mmol), Ammonium acetate (2.63 g, 34.1 mmol), and (R,R)-(-)-

N,N'-Bis(3,5-di-tert-butylsalicylidene)-1,2-cyclohexanediaminomanganese(III) 

chloride (1.627 g, 2.56 mmol) in MeOH (Ratio: 1.000, Volume: 285 mL) : DCM 

(Ratio: 1.000, Volume: 285 mL) was added pre-cooled aqueous hydrogen 

peroxide 30% (17.44 mL, 171 mmol) in four portions during 40 minutes. The 

mixture was stirred at 0 ºC and the reaction was monitored by TLC. After the 

reaction had reached completion, the mixture was diluted with ether and extra 

H2O2 was added to decompose any remaining catalyst, and transferred into a 

separatory funnel containing water. The organic layer was washed with water 

and brine. The organic layer was separated, dried over Na2SO4, and 

concentrated. The crude material was used in the next step w/o further 

purification. The residue was analyzed by 1H NMR and found to be highly pure, 

yielding (1S,7S)-2-(phenylsulfonyl)-8-oxabicyclo[5.1.0]oct-2-ene (38.0 g, 152 

mmol, 89 % yield). 1H NMR (500 MHz, Chloroform-d)  7.93 – 7.86 (m, 2H), 7.64 

– 7.55 (m, 1H), 7.55 – 7.49 (m, 2H), 7.37 (ddd, J = 7.5, 3.3, 1.3 Hz, 1H), 3.67 (dd, 
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J = 4.4, 1.3 Hz, 1H), 3.41 (td, J = 4.3, 2.6 Hz, 1H), 2.58 – 2.47 (m, 1H), 2.24 (ddt, 

J = 19.0, 9.4, 3.7 Hz, 1H), 2.15 – 1.97 (m, 2H), 1.67 – 1.54 (m, 2H). 

 

2-(Phenylsulfonyl)-1,3-cycloheptadiene (2.2): To a 12-L 3-neck 

round bottom flask equipped with a mechanical stirrer, heating mantle, 

Dean-Stark trap and condenser, were added cycloheptanone (1.0 kg, 

8.92 mol), 1.05 equivalents benzenethiol (1.06 kg), and 10 wt% 

Montmorillonite KSF (100 g) in toluene (2.2 L) and refluxed for 24 hours. After the 

reaction, the resulting vinyl sulfide mixture was cooled to room temperature and 

then filtered through a Celite® (100 g) pad and the pad was washed with toluene 

(2.2 L). A sample of the toluene mixture was dried via spin-evaporation to an 

amber syrup. 1H NMR (600 MHz, Chloroform-d)  7.33 (dd, J = 8.2, 1.5 Hz, 2H), 

7.30 (dd, J = 8.6, 6.7 Hz, 2H), 7.22 – 7.19 (m, 1H), 6.17 (t, J = 6.6 Hz, 1H), 2.39 

– 2.34 (m, 3H), 2.24 – 2.18 (m, 3H), 1.79 – 1.72 (m, 3H), 1.59 – 1.53 (m, 6H). 

 

The solution was transferred to a 22-L 3-neck round bottom flask 

equipped with a mechanical stirrer, addition funnel, thermometer, and 

water bath, 1.0 equiv sodium bromide (918 g), 1.0 equiv 2 M H3PO4 

solution (4.46 L), 0.01 equiv 1M aqueous Na2WO4·2H2O (89 mL), and 

0.01 equiv 1M aqueous PhPO(OH)2 (89 mL) were added and stirred in 

the water bath for 30 minutes. With vigorous stirring, 1.0 equiv 30 wt% H2O2 (857 

mL) was slowly added with the addition funnel for 3 hours. The reaction 

temperature was below 25 °C and the bath temperature was in the range of 15 to 

S
Br

3.3
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18 °C. After one more hour of stirring, the aqueous layer was removed, and the 

organic layer was washed with 2 M Na2SO3 (1 L) and 2 M H3PO4 (1 L) to give a 

crude mixture of 3.3. To the solution of 3.3 was added 0.01 equiv 1M aqueous 

Na2WO4·2H2O (89 mL), 0.01 equiv 1M aqueous PhPO(OH)2 (89 mL), 0.01equiv 

PTC (0.5M solution in toluene, 180 mL) and stirred in the water bath for 30 

minutes. 2.0 equiv 30 wt% H2O2 (1.7 L) was added slowly with an addition funnel 

for 2.5 hours. After stirring vigorously in the water bath for 15 hours, brine (1 L) 

was added and stirred for 1 minute. The aqueous layer was removed. 1H NMR 

(600 MHz, Chloroform-d)  7.49 (dd, J = 7.5, 1.6 Hz, 1H), 7.34 (d, J = 7.4 Hz, 

3H), 7.30 (td, J = 7.5, 5.6 Hz, 3H), 7.22 (td, J = 7.0, 1.9 Hz, 1H), 6.42 (ddd, J = 

8.2, 5.0, 1.2 Hz, 1H), 4.77 – 4.71 (m, 1H), 2.53 – 2.43 (m, 1H), 2.37 (dtd, J = 

17.7, 7.7, 2.4 Hz, 1H), 2.29 (dddd, J = 16.1, 11.4, 4.9, 2.5 Hz, 1H), 2.17 – 2.06 

(m, 2H), 1.97 (ddq, J = 13.1, 6.5, 3.2 Hz, 1H), 1.87 (ddd, J = 13.9, 6.8, 3.5 Hz, 

1H), 1.82 (ddt, J = 14.8, 12.1, 3.0 Hz, 1H), 1.71 (qd, J = 5.7, 4.8, 1.9 Hz, 1H), 

1.48 (dtt, J = 13.5, 10.8, 2.6 Hz, 1H). 

To the toluene solution of 3.3 were added 0.8 equivalents 

pyridine (580 mL) and water (8.92 L) and with stirring, heated 

from room temperature to 60 °C for 2 hours. After removal of 

the organic layer, the aqueous layer was washed with ethyl 

acetate (2 x 1 L) and then hexane (1 L) while the solution temperature 

maintained about 60 °C. To remove the insoluble solid, the warm aqueous layer 

was filtered through a small glass filter into a 22-L 3-neck round bottom flask, 

equipped with a mechanical stirrer. Cooling to room temperature gave a white 

S

N

Br

O

O

3.4
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solid suspension of 3.4. 1H NMR (600 MHz, Chloroform-d)  9.50 (d, J = 6.1 Hz, 

2H), 8.40 (t, J = 7.7 Hz, 1H), 8.05 (t, J = 7.0 Hz, 2H), 7.91 (dd, J = 7.4, 5.4 Hz, 

1H), 7.87 – 7.82 (m, 2H), 2.91 (ddt, J = 15.3, 10.0, 4.9 Hz, 1H), 2.84 – 2.70 (m, 

2H), 2.28 (ddt, J = 14.7, 11.3, 3.4 Hz, 1H), 1.85 (dq, J = 12.7, 6.9, 5.6 Hz, 1H), 

1.80 – 1.64 (m, 2H), 1.45 (ddd, J = 19.6, 8.7, 5.3 Hz, 1H). 

 

 

To the white solid suspension of 3.4 were added 0.1 wt% of seed 

crystals of 3.5 (1 g) and 0.7 equiv 1,4-diazabicyclo[2.2.2]octane 

(DabcoTM, 701 g). After stirring for 36 hours at room temperature, 2 N 

HCl (4.0 L) was added, filtered through a large glass filter and rinsed 

with water (5 L). It was dried to content weight in a dying oven under vacuum at 

40 °C  to give a pure and white solid (3.5, 1.11 kg, 53% yield over 5 steps from 

cycloheptanone, 98% purity by HPLC). mp: 61-62 °C (lit. 57-58 °C); 1H NMR (600 

MHz, Chloroform-d)  7.92 – 7.87 (m, 2H), 7.66 – 7.60 (m, 1H), 7.55 (td, J = 7.7, 

7.3, 1.4 Hz, 2H), 7.33 – 7.30 (m, 1H), 6.10 – 6.02 (m, 2H), 2.62 – 2.57 (m, 2H), 

2.35 (qd, J = 5.1, 2.3 Hz, 2H), 1.92 – 1.85 (m, 2H). 

 

S
O

O

3.5
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 To a cooled 0 °C solution of  2-(phenylsulfonyl)cyclohepta-1,3-diene 

3.5 (58 g, 248 mmol), Ammonium acetate (3.82 g, 49.5 mmol), and (S,S)-(+)-

N,N'-Bis(3,5-di-tert-butylsalicylidene)-1,2-cyclohexanediaminomanganese(III) 

chloride (3.93 g, 6.19 mmol) in MeOH (Ratio: 1.000, Volume: 413 mL) : DCM 

(Ratio: 1.000, Volume: 413 mL) was added pre-cooled aqueous hydrogen 

peroxide 30% (25.3 mL, 248 mmol) in four portions during 40 minutes. The 

mixture was stirred at 0 ºC and the reaction was monitored by TLC. After the 

reaction had reached completion, the mixture was diluted with DCM (Ratio: 

1.000, Volume: 413 mL) and transferred into a separatory funnel containing 

water. The organic layer was washed with water and brine. The organic layer 

was separated, dried over Na2SO4, and concentrated. The crude material was 

used in the next step without further purification. The residue was analyzed by 1H 

NMR and  found to be highly pure, yielding (1R,7R)-2-(phenylsulfonyl)-8-

oxabicyclo[5.1.0]oct-2-ene (62.0 g, 248 mmol, 100 % yield) 1H NMR (600 MHz, 

Chloroform-d) δ 7.93 – 7.88 (m, 2H), 7.62 (t, J = 7.4 Hz, 3H), 7.54 (t, J = 7.7 Hz, 

2H), 7.41 – 7.37 (m, 1H), 4.10 (q, J = 7.1 Hz, 1H), 3.69 (d, J = 4.3 Hz, 1H), 3.43 

(td, J = 4.3, 2.4 Hz, 1H), 2.59 – 2.49 (m, 1H), 2.26 (ddt, J = 18.9, 9.9, 3.6 Hz, 

1H), 2.12 (dddd, J = 14.9, 6.7, 4.1, 1.8 Hz, 3H), 2.08 – 2.00 (m, 2H), 1.61 (dtt, J = 

14.7, 10.7, 3.6 Hz, 2H), 1.24 (t, J = 7.1 Hz, 1H). 
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A solution of crude triethyl((1R,2S)-2-methyl-5-(phenylthio)cyclohepta-3,5-

dienyloxy)silane (5.38 g, 15.52 mmol) in toluene, (155 mL) was stirred under air 

to give a brown solution. Sequential addition of Sodium tungstate dihydrate 

(0.310 mL, 0.310 mmol), phenylphosphonic acid (0.31 0 mL, 0.310 mmol), 

methyltrioctylammonium hydrogen sulfate (0.621 mL, 0.310 mmol), and 

hydrogen peroxide 30% (3.17 mL, 31.0 mmol), was followed by vigorous stirring 

at  25 °C. After 4 hr the reaction was judged complete by TLC and the mixture 

was transferred to a separatory funnel, brine (200 mL) was added. The aqueous 

layer was extracted with ether (2×100 mL) and the combined organic layers were 

washed with saturated Na
2
SO

3 solution, dried over Na
2
SO

4
 and concentrated via 

rotary evaporation to give triethyl((1R,2S)-2-methyl-5-(phenylsulfonyl)cyclohepta-

3,5-dienyloxy)silane (4.93 g, 13.0 mmol, 84 % yield) as a light yellow viscous oil 

Use appropriate number of sig figs throughout. This material was used in the 

next step w/o further purification. 1H NMR (600 MHz, Chloroform-d)  7.85 – 7.82 

(m, 2H), 7.60 – 7.56 (m, 1H), 7.50 (dd, J = 8.4, 7.1 Hz, 2H), 7.07 (ddd, J = 6.4, 

4.9, 1.4 Hz, 1H), 6.00 (d, J = 11.8 Hz, 1H), 5.90 (dd, J = 11.8, 6.5 Hz, 1H), 4.05 

(ddd, J = 8.8, 4.3, 3.1 Hz, 1H), 3.40 (dt, J = 11.0, 3.3 Hz, 0H), 2.69 – 2.55 (m, 

3H), 2.42 (qd, J = 7.9, 5.5 Hz, 1H), 0.96 (d, J = 7.1 Hz, 3H), 0.91 (t, J = 8.0 Hz, 

9H), 0.55 (q, J = 7.9 Hz, 6H). 
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 A solution of trimethylaluminum 25% in hexanes (40.3 mL, 101 

mmol) in dry methylene chloride (105 mL) was cooled to -20 oC for 30 minutes 

then water (0.311 mL, 17.28 mmol) was very carefully added dropwise over 30 

minutes. The dry ice bath was removed and the reaction stirred for 1h. Solid 

(1S,7S)-2-(phenylsulfonyl)-8-oxabicyclo[5.1.0]oct-2-ene (2.5) (7.21 g, 28.8 mmol) 

was added in portions and the reaction was stirred at 25 °C for 40 minutes. 

Reaction was checked for completion using TLC (50% ethyl acetate/hexanes) 

then the reaction mixture was cooled again to -40 °C for 30 minutes. Upon 

completion the contents were carefully poured into excess HCl (aq)/ crushed ice 

mixture and allowed to warm to room temperature. The organic phase was 

separated, washed with brine (1 L), dried over Na2SO4, and then was 

concentrated via rotary evaporation to afford crude yellowish oil (dr 10:1). 

Purification by flash column chromatography (20% ethyl acetate/hexanes) 

afforded (1S,2R)-2-methyl-3-(phenylsulfonyl)cyclohept-3-enol (7.59 g, 27.1 

mmol, 94 % yield) as a colorless oil. 1H NMR (500 MHz, Chloroform-d)  7.90 – 

7.84 (m, 2H), 7.62 – 7.57 (m, 1H), 7.55 – 7.49 (m, 2H), 7.34 (ddd, J = 9.6, 4.1, 

1.3 Hz, 1H), 3.79 (qd, J = 4.9, 1.9 Hz, 1H), 2.94 – 2.84 (m, 1H), 2.50 – 2.40 (m, 

1H), 2.24 (dddd, J = 15.7, 12.8, 4.2, 2.7 Hz, 1H), 1.98 – 1.91 (m, 1H), 1.87 – 1.78 

(m, 1H), 1.75 – 1.65 (m, 1H), 1.57 – 1.46 (m, 2H), 1.22 (d, J = 13.8 Hz, 1H), 0.88 
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(d, J = 7.3 Hz, 3H); 13C NMR (126 MHz, CDCl3)  143.96, 142.26, 138.70, 

133.18, 128.99, 128.33, 69.38, 39.70, 31.33, 27.33, 18.20, 15.37. 

show stereo of sulfone below 

 

A solution of (1S,2R)-2-methyl-3-(phenylsulfonyl)cyclohept-

3-enol (10.07 g, 37.8 mmol) in THF (95 mL)  was cooled to -78 °C  for 30 min 

then sodium bis(trimethylsilyl)amide, (60.5 mL, 121 mmol) was added dropwise 

over 10 minutes to give a clear yellow solution that eventually turns into deep red 

clear solution. The dry ice bath was removed and the mixture was stirred at 25 

°C for 4 hr to give a bright orange suspension. Reaction is checked for complete 

dianion formation using TLC (50% ethyl acetate/hexane). Phenyl disulfide (8.25 

g, 37.8 mmol) was added as a solid at 25 °C to the reaction mixture where the 

orange suspension dissolves and reforms immediately. After stirring for 1 hr, 

reaction was quenched with aqueous hydrochloric acid (182 mL, 250 mmol) and 

diluted with ether (182 mL, 1750 mmol). After discarding aqueous phase, 

hydrochloric acid (182 mL, 250 mmol) was added and the mixture was stirred for 

1 hr. After discarding aqueous phase the organic phase was separated, washed 

with brine, and dried over Na2SO4 for 2h. Concentration of the organic phase via 

rotary evaporation afforded (1S,2R)-2-methyl-3-(phenylsulfonyl)-5-
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(phenylthio)cyclohept-4-enol (14.16 g, 37.8 mmol, 100 % yield) as a brown  oil. 

1H NMR (600 MHz, Chloroform-d)  7.68 (d, J = 7.7 Hz, 2H), 7.61 (t, J = 7.5 Hz, 

1H), 7.48 (t, J = 7.7 Hz, 2H), 7.34 (dd, J = 5.1, 2.0 Hz, 3H), 7.27 (dd, J = 6.7, 2.7 

Hz, 2H), 5.31 (d, J = 6.1 Hz, 1H), 4.52 (d, J = 6.1 Hz, 1H), 3.93 (q, J = 3.6 Hz, 

1H), 2.77 (dd, J = 15.8, 12.8 Hz, 1H), 2.69 – 2.61 (m, 1H), 1.78 – 1.69 (m, 2H), 

1.59 (dt, J = 14.9, 5.0 Hz, 1H), 1.04 (d, J = 7.0 Hz, 3H). 13C NMR (126 MHz, 

CDCl3)  142.79, 138.64, 133.81, 133.42, 131.66, 129.30, 129.00, 128.56, 

128.42, 116.68, 72.49, 62.45, 35.59, 26.52, 26.29, 12.75. 

 

stereo of sulfone? 

A 3-neck 1 liter flask was flame dried under dry N2 

atmosphere then was charged with a solution of thoroughly dried (1S,2R)-2-

methyl-3-(phenylsulfonyl)-5-(phenylthio)cyclohept-4-enol (11.39 g, 30.4 mmol) in 

anhydrous dichloroethane, (Volume: 76 mL) at 25 °C. The reaction was cooled to 

0 oC then solid imidazole (4.55 mL, 33.5 mmol) was added followed slow stream 

addition of chlorotriethylsilane (5.67 mL, 33.5 mmol) over 10 minutes. After the 

reaction shows yellowish precipitation of imidazolium hydrochloride, stirring was 

continued for 1-2 hours at 0 to 25 oC. The reaction was checked for completion 

by TLC (50% ethyl acetate/hexane) then was filtered over a celite pad under 
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vacuum. The pad was washed with DCE (2 x 100 mL), and the combined organic 

phases were concentrated via rotary evaporation to afford crude triethyl 

(((1S,2R)-2-methyl-3-(phenylsulfonyl)-5-(phenylthio)cyclohept-4-en-1-

yl)oxy)silane (14.56 g, 29.8 mmol, 98 % yield) as an amber oil that did not require 

further purification. An analytical sample was obtained via FCC (10% ethyl 

acetate/hexane) as a clear yellow oil. TLC (50% ethyl acetate/hexane) Rf 0.9; 1H 

NMR (600 MHz, Chloroform-d)  7.72 (d, J = 7.7 Hz, 2H), 7.61 (t, J = 7.5 Hz, 1H), 

7.50 (t, J = 7.6 Hz, 2H), 7.37 – 7.30 (m, 5H), 5.53 (d, J = 6.0 Hz, 1H), 4.57 (d, J = 

6.0 Hz, 1H), 3.87 – 3.79 (m, 1H), 2.82 (dd, J = 15.4, 12.7 Hz, 1H), 2.47 (dt, J = 

11.5, 5.8 Hz, 1H), 2.04 (d, J = 11.6 Hz, 0H), 1.77 – 1.65 (m, 2H), 1.43 (dt, J = 

14.8, 5.5 Hz, 1H), 1.04 (d, J = 7.0 Hz, 3H), 0.89 (t, J = 7.9 Hz, 9H), 0.51 (q, J = 

8.0 Hz, 6H); 13C NMR (CDCl3, 75 MHz)  142.4, 138.8, 133.5, 133.3, 132.1, 

129.3, 129.0, 128.5, 128.3, 117.4, 72.8, 62.6, 36.3, 27.5, 26.4, 12.6, 6.8, 4.7. 

triethyl(((1S,2R)-2-methyl-3-(phenylsulfonyl)-5-

(phenylthio)cyclohept-4-en-1-yl)oxy)silane (14.56 g, 29.8 mmol) and N,N-

diisopropylethylamine (18.21 mL, 104 mmol) was dissolved in dry methylene 

chloride (149 mL) then was transferred to a 3-neck 1 L flask under Ar 

atmosphere. The flask was cooled to -78 °C until the internal temperature 

became at least -72 °C  then was added trimethylaluminum 25% in Hexanes 

(27.4 mL, 68.5 mmol). The acetone/ dry ice bath was removed, and the reaction 

was allowed to warm to 25 ºC then stirring was continued for at least 2 hours. 
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The reaction was checked for completion via TLC (20% ethyl acetate/ hexane) 

then the reaction contents were transferred to a suspension of 5%(aq) HCl (1.3 L, 

10 eq) / crushed ice. The mixture is added to a separatory funnel and washed 

with deionized water. Methylene chloride was removed via spin-evaporation and 

the remaining aqueous mixture was extracted with toluene (150 mL). The wet 

toluene layer was filtered through a celite pad to provide a filtrate of 

triethyl(((1S,2S)-2-methyl-5-(phenylthio)cyclohepta-3,5-dien-1-yl)oxy)silane 

(10.32 g, 29.8 mmol, 100 % yield). The crude filtrate was subjected to the Noyori 

oxidation without further purification. 

 A solution of triethyl(((1S,2S)-2-methyl-5-

(phenylthio)cyclohepta-3,5-dien-1-yl)oxy)silane (10.32 g, 29.8 mmol)  in toluene 

(298 mL), was stirred under air to give a brown solution. The solution was treated 

with sequential addition of aqueous sodium tungstate dihydrate (0.595 mL, 0.595 

mmol), aqueous phenylphosphonic acid (0.595 mL, 0.595 mmol), aqueous 

methyltrioctylammonium hydrogen sulfate (1.191 mL, 0.595 mmol), and 

hydrogen peroxide 30% (6.08 mL, 59.5 mmol), was followed by vigorous stirring 

at 25 °C. After 4 hr the reaction was judged complete by TLC and the mixture 

was transferred to a separatory funnel, brine (200 mL) was added. The aqueous 

layer was extracted with ether (2×100 mL) and the combined organic layers were 

washed with saturated Na2SO3 solution, dried over Na2SO4 and concentrated via 

rotary evaporation to give triethyl(((1S,2S)-2-methyl-5-
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(phenylsulfonyl)cyclohepta-3,5-dien-1-yl)oxy)silane (11.27 g, 29.8 mmol, 100 % 

yield)  as an orange oil  triethyl(((1S,2S)-2-methyl-5-(phenylsulfonyl)cyclohepta-

3,5-dien-1-yl)oxy)silane (11.27 g, 29.8 mmol, 100 % yield) as a light yellow 

viscous oil. 1H NMR (600 MHz, Chloroform-d)  7.89 – 7.85 (m, 2H), 7.62 – 7.57 

(m, 1H), 7.52 (ddd, J = 8.1, 6.7, 1.2 Hz, 2H), 7.21 (ddd, J = 7.0, 5.6, 1.5 Hz, 1H), 

6.05 (dt, J = 11.7, 1.6 Hz, 1H), 5.85 (dd, J = 11.8, 5.2 Hz, 1H), 3.83 (ddd, J = 7.2, 

6.2, 3.2 Hz, 1H), 2.67 – 2.58 (m, 1H), 2.53 (ddd, J = 16.6, 5.7, 3.1 Hz, 1H), 2.34 – 

2.26 (m, 1H), 1.02 (d, J = 7.1 Hz, 3H), 0.93 (t, J = 8.0 Hz, 9H), 0.61 – 0.54 (m, 

6H). This material was used in the next step without further purification. 

A 3-neck 3 L flask was equipped with an overhead 

mechanical stirrer, a thermometer, and an argon inlet triethyl(((1S,2S)-2-methyl-

5-(phenylsulfonyl)cyclohepta-3,5-dien-1-yl)oxy)silane (3.000 g, 7.92 mmol) was 

dissolved in acid-free methylene chloride (60 mL) then was transferred to the 

flask, and cooled to 0 °C, 0.132 M. After stirring for 10 minutes, (S,S)-(+)-N,N'-

bis(3,5-di-tert-butylsalicylidene)-1,2-cyclohexanediaminomanganese(III) chloride 

(0.252 g, 0.400 mmol), 4-(3-Phenylpropyl)pyridine N-oxide (0.510 g, 2.38 mmol)  

were sequentially added. Cold sodium hypochlorite 10.8% (15.49 mL, 20.60 

mmol)  was freshly mixed with cold 0.05 M sodium dihydrogen phosphate(aq) (37 

mL, 1.86 mmol), and the mixture was poured as a slow but continuous stream to 

the cold reaction. After 2 hours at 0 °C, the reaction progress was checked via 
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TLC (30% ethyl acetate/hexane). It is noted that the stirring needs to be stopped 

until phase separation occurs, then the TLC sample must be withdrawn from the 

bottom organic layer via a Pasteur pipette. After completion, hexane (3x 60 mL)  

was added to the reaction, and stirring was continued for 1-2 hours at 25 oC. 

Ideally, Mn-salen catalyst precipitates as brown aggregates leaving a clear pale 

yellow solution above. If necessary, additional 10% aq. NaOCl (0.5 equiv.) is 

added at 25 oC in order to create a minor exotherm thereby destroying the 

residual Mn-salen catalyst, and preparing it for precipitation. Filtration over 

Whatman 1 filter paper provides a clear yellow solution. Removal of solvents via 

rotary evaporation afforded triethyl(((1R,2S,3S,7R)-2-methyl-6-(phenylsulfonyl)-

8-oxabicyclo[5.1.0]oct-5-en-3-yl)oxy)silane (3.2 g, 8.11 mmol, 100 % yield)  as a  

dark brown oil that was sufficiently pure as judged by NMR for the next synthetic 

step. 1H NMR (500 MHz, Chloroform-d) δ 7.91 – 7.88 (m, 2H), 7.66 – 7.61 (m, 

1H), 7.58 – 7.52 (m, 2H), 7.31 (ddd, J = 8.8, 3.8, 1.3 Hz, 1H), 3.69 (dd, J = 4.2, 

1.2 Hz, 1H), 3.33 (td, J = 9.2, 2.0 Hz, 1H), 3.26 (dd, J = 4.2, 2.9 Hz, 1H), 2.56 

(ddd, J = 17.1, 8.8, 2.0 Hz, 1H), 2.44 (ddd, J = 17.2, 9.2, 3.9 Hz, 1H), 2.25 – 2.14 

(m, 1H), 1.15 (d, J = 7.0 Hz, 3H), 0.92 (t, J = 7.9 Hz, 9H), 0.61 – 0.53 (m, 6H). 

13C NMR (126 MHz, CDCl3) δ 141.20, 139.92, 139.37, 133.48, 129.17, 127.96, 

70.83, 60.41, 52.18, 42.13, 38.13, 16.51, 6.74, 4.71. 
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A 3-neck 1L flask was fit with an overhead reflux 

condenser, and two septa. Crude triethyl(((1R,2S,3S,7R)-2-methyl-6-

(phenylsulfonyl)-8-oxabicyclo[5.1.0]oct-5-en-3-yl)oxy)silane (3.27) (7.08 g, 17.94 

mmol)  was dissolved in dry toluene  (90 mL), then was transferred to the 

reaction flask. 3,5-dimethylpyrazole (1.90 g, 19.74 mmol) was added, then the 

reaction was heated at 50-60 oC for 1 hour and/ or until TLC shows consumption 

of starting material. The reaction was cooled to 25 oC then washed with crushed 

ice/ brine (150 mL)/ 5% aqueous HCl (39 mL, 0.8 equiv.). The aqueous phase 

was discarded, and then the organic phase was washed with brine, and dried 

over Na2SO4 for 3 hours. The toluene was removed via spin-evaporation to 

provide a crude semi-solid. The semi-solid was purified by silica-gel 

chromatography (9:1 toluene : tetrahydrofuran) to furnish (1R,4S,6S,7S)-4-(3,5-

dimethyl-1H-pyrazol-1-yl)-7-methyl-3-(phenylsulfonyl)-6-

((triethylsilyl)oxy)cyclohept-2-enol (6.69 g, 13.64 mmol, 76 % yield) 1H NMR (600 

MHz, Chloroform-d)  7.80 (dd, J = 8.7, 0.9 Hz, 1H), 7.58 (dt, J = 8.5, 1.1 Hz, 

2H), 7.48 – 7.44 (m, 1H), 7.33 (tt, J = 7.4, 0.9 Hz, 2H), 7.01 – 6.96 (m, 1H), 5.50 

(s, 1H), 5.37 (dd, J = 5.3, 2.9 Hz, 1H), 4.40 (ddd, J = 10.9, 8.7, 2.0 Hz, 1H), 4.00 

(td, J = 10.5, 2.4 Hz, 1H), 2.36 (t, J = 0.8 Hz, 1H), 2.14 (ddd, J = 14.4, 5.3, 2.5 

Hz, 1H), 2.09 (d, J = 0.8 Hz, 3H), 2.09 – 2.03 (m, 2H), 1.98 (d, J = 0.9 Hz, 3H), 

1.83 – 1.75 (m, 1H), 1.66 (s, 1H), 1.25 (dd, J = 6.9, 0.9 Hz, 3H), 1.02 (td, J = 8.0, 
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0.9 Hz, 2H), 0.82 (td, J = 8.0, 0.9 Hz, 9H), 0.41 (qdd, J = 8.1, 3.6, 1.0 Hz, 6H); 

13C NMR (126 MHz, CDCl3)  146.94, 146.28, 140.07, 138.79, 138.48, 132.83, 

128.43, 126.98, 105.22, 68.71, 67.22, 50.43, 45.80, 44.17, 16.42, 12.71, 10.44, 

6.59, 4.59. 

A dry 100 mL RB flask was charged with a solution of 

(1R,2R,6S,7S)-2,7-dimethyl-3-(phenylsulfonyl)-6-((triethylsilyl)oxy)cyclohept-3-

enol (0.360 g, 0.877 mmol)  in dry  methylene chloride (10 mL), then the solution 

was cooled to  0 °C. After 15 min, 2,6-lutidine (0.102 mL, 0.877 mmol)  was 

added dropwise, then  t-butyldimethylsilyl trifluoromethansulfonate (0.202 mL, 

0.877 mmol) was added dropwise via syringe. The reaction was stirred at 0 oC for 

30-60 minutes, then methanol  (0.177 mL, 4.38 mmol)  was added dropwise, and 

stirring was continued for another 30 minutes. The reaction was diluted with 5% 

HCl(aq), washed, then the aqueous layer was discarded after neutralization. The 

organic layer was transferred to another flask, cooled to 0 oC, and then 

camphorsulfonic acid (0.102 g, 0.438 mmol) was added. After stirring at 0 oC for 

2 hours, the reaction was neutralized carefully with sat aq. NaHCO3, and then 

washed with saturated NaHCO3(aq). The organic layer was then washed with 

brine, and then dried over Na2SO4 for 6 hours. 1H NMR (500 MHz, Chloroform-d) 

 7.88 – 7.83 (m, 2H), 7.62 – 7.57 (m, 1H), 7.56 – 7.49 (m, 3H), 7.13 (t, J = 6.2 
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Hz, 1H), 3.88 (ddd, J = 8.3, 6.5, 2.0 Hz, 1H), 3.76 (dd, J = 5.6, 3.6 Hz, 1H), 2.74 

(ddd, J = 16.8, 6.1, 2.1 Hz, 1H), 2.66 – 2.58 (m, 1H), 2.56 – 2.50 (m, 1H), 2.11 – 

2.02 (m, 1H), 2.00 (d, J = 0.6 Hz, 1H), 1.19 (d, J = 7.5 Hz, 3H), 1.11 (d, J = 7.3 

Hz, 3H), 0.96 (t, J = 8.0 Hz, 2H), 0.78 (s, 9H), 0.63 – 0.55 (m, 2H), -0.20 (s, 3H), -

0.36 (s, 3H). 

 

To a solution of diisopropylamine (0.031 mL, 0.218 mmol) in 

anhydrous tetrahydrofuran and hexamethylphosphoramide (HMPA) (5:2) at - 20 

°C a commercially available n-butyllithium solution (0.091 mL, 0.228 mmol) was 

added under an argon atmosphere at which point the diphenyl-2-pyridylmethane 

indicator turned red remained that way briefly and faded back to pale yellow. 

Additional n-butyllithuim (0.0455 mL, 0.114 mol) was added and the indicator 

remained red. The resulting solution was stirred for ca. 30 min and then a 

solution of (bromomethyl)dimethyl((1R,2S)-2-methyl-5-(phenylsulfonyl) 

cyclohept-3,5-dienyloxy)silane (0.0411 g, 0.099 mmol) in THF (4.12 mL) was 

added with a syringe. An orange color was observed. At -35 °C the indicator 

turned red and a TLC indicated no starting material remaining. The THF was 

removed via spin-evaporation and the HMPA concentrate was partitioned 

between ethyl acetate (100 mL) and aqueous HCl (100 mL). The ethyl acetate 

portion was washed with HCl (2 × 100 mL), deionized water (1×100 mL) and 

brine (1×100 mL). The ethyl acetate was removed by spin evaporation. The 
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crude oil was purified via flash chromatography (4:1 hexanes: ethyl acetate) to 

yield (S)-2,7-dimethyl-4-(phenylsulfonyl)cyclohepta-1,3,5-triene (0.020 g, 

0.077 mmol 78 %) as a white semi-solid. 1H NMR (600 MHz, Chloroform-d)  

7.89 – 7.83 (m, 2H), 7.68 (s, 1H), 7.57 (t, J = 7.4 Hz, 1H), 7.49 (t, J = 7.7 Hz, 2H), 

6.38 (d, J = 9.5 Hz, 1H), 5.31 (dd, J = 9.5, 5.5 Hz, 1H), 5.09 (d, J = 5.3 Hz, 1H), 

1.98 (d, J = 1.5 Hz, 3H), 1.58 (q, J = 6.5 Hz, 1H), 1.23 (d, J = 7.0 Hz, 3H). 

Triethyl((1R,2R)-2-methyl-3-(phenylsulfonyl)-5-

(phenylthio)cyclohept-4-enyloxy)silane (3.77 g, 7.70 mmol)  and  N,N-

diisopropylethylamine (4.71 mL, 26.9 mmol) was dissolved in dry methylene 

chloride (77 mL)  then was transferred to a 3-neck 1 L flask under Ar 

atmosphere. The flask was cooled at -78 °C until the internal temperature 

became at least -72 °C. Trimethylaluminum 25% in Hexanes (7.08 mL, 17.71 

mmol) was added via cannula as a continuous stream over 15 minutes. The 

acetone/ dry ice bath was removed, and the reaction was allowed to warm to 25 

ºC then stirring was continued for at least 2 hours. The mixture is added to a 

separatory funnel and washed with deionized water. Methylene chloride was 

removed via spin-evaporation and the remaining aqueous mixture was extracted 

with toluene (150 mL). The wet toluene layer was filtered through a celite pad to 

provide filtrate with an assumed quantitative yield of triethyl((1R,2S)-2-methyl-5-

(phenylthio)cyclohepta-3,5-dienyloxy)silane (2.67 g, 7.70 mmol, 100 % yield).  
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The crude filtrate was subjected to the Noyori oxidation without further 

purification.  

 A solution of crude triethyl((1R,2S)-2-methyl-5-

(phenylthio)cyclohepta-3,5-dienyloxy)silane (2.670 g, 7.70 mmol) in toluene, 

(35.0 mL) is stirred under air to give a brown solution. Sequential addition of 

sodium tungstate dihydrate (0.154 mL, 0.154 mmol), phenylphosphonic acid 

(0.154 mL, 0.154 mmol),  methyltrioctylammonium hydrogen sulfate (0.308 mL, 

0.154 mmol), and  hydrogen peroxide 30% (1.57 mL, 15.4 mmol), was followed 

by vigorous stirring at  25 °C. After 4 hr the reaction was judged complete by TLC 

and the mixture was transferred to a separatory funnel, brine (200 mL) was 

added. The aqueous layer was extracted with ether (2×100 mL) and the 

combined organic layers were washed with saturated Na2SO3 solution, dried over 

Na
2
SO

4
 and concentrated via rotary evaporation to give triethyl((1R,2S)-2-

methyl-5-(phenylsulfonyl)cyclohepta-3,5-dienyloxy)silane (2.79 g, 7.4 mmol, 96 

% yield)  as an orange oil  TLC (50% ethyl acetate/hexanes) R
f
 0.39. 1H NMR 

(600 MHz, Chloroform-d)  7.85 – 7.82 (m, 2H), 7.60 – 7.56 (m, 1H), 7.51 (dd, J 

= 8.4, 7.1 Hz, 2H), 7.11 – 7.04 (m, 1H), 6.00 (d, J = 11.8 Hz, 1H), 5.91 (dd, J = 

11.8, 6.5 Hz, 1H), 4.08 – 4.01 (m, 1H), 2.71 – 2.55 (m, 2H), 2.43 (ddd, J = 14.7, 

7.2, 3.6 Hz, 1H), 0.96 (d, J = 7.1 Hz, 3H), 0.91 (t, J = 8.0 Hz, 9H), 0.55 (q, J = 7.9 

Hz, 6H).  This material was used in the next step without further purification.  
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 A solution of triethyl((1R,2S)-2-methyl-5-

(phenylsulfonyl)cyclohepta-3,5-dienyloxy)silane (0.106 g, 0.280 mmol) and urea 

hydrogen peroxide (UHP) (0.100 g, 1.021 mmol) in DCM : MeOH (0.470 mL: 

0.466 mL) in the presence of ammonium acetate (4.31 mg, 0.056 mmol) and 

(S,S)-(+)-N,N'-bis(3,5-di-tert-butylsalicylidene)-1,2-

cyclohexanediaminomanganese(III) chloride (8.88 mg, 0.014 mmol) at 0 °C. After 

completion of the reaction, catalyst was destroyed at room temp with hydrogen 

peroxide, turning the reaction mixture from dark brown to golden yellow, the 

method was spun off and the aqueous-layer was diluted with methylene chloride: 

hexanes 1:10 and the mixture was stirred and the layer allowed to settle. The 

catalyst was separated from the epoxide by precipitating it with hexane. 

Enantiomeric excess for the product epoxide was determined NMR integration. 

1H NMR (600 MHz, Chloroform-d)  7.85 (dd, J = 7.6, 1.5 Hz, 2H), 7.63 – 7.57 

(m, 1H), 7.52 (t, J = 7.7 Hz, 2H), 7.15 (dd, J = 3.8, 1.8 Hz, 1H), 4.64 (dd, J = 

10.0, 3.7 Hz, 1H), 3.96 (dt, J = 6.2, 2.1 Hz, 1H), 2.58 (dddt, J = 13.6, 11.9, 2.8, 

1.6 Hz, 1H), 2.22 – 2.14 (m, 1H), 1.77 (dtd, J = 16.5, 6.9, 2.0 Hz, 1H), 1.64 (dtd, J 

= 13.9, 6.7, 1.9 Hz, 1H), 1.31 (ddt, J = 14.4, 12.0, 2.4 Hz, 1H), 1.03 (d, J = 6.9 

Hz, 3H), 0.90 (t, J = 8.0 Hz, 9H), 0.55 (q, J = 8.0 Hz, 6H). 
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To a fire-dried 5 mL 3-neck round-bottom flask under argon 

was added (1R,5S,6S,7S)-6-(tert-butyldimethylsilyloxy)-5,7-dimethyl-4-

(phenylsulfonyl)cyclohept-3-enol (50 mg, 0.122 mmol)  and 2,2'-

Azobisisobutyronitrile (1.000 mg, 6.09 µmol). The solids were dissolved in 

Carbon tetrachloride (1.218 mL) with stirring and the reaction was heated to 50 

°C. The reaction was monitored by TLC (2:1 Hexanes: Ethyl Acetate; p-

anisaldehyde-UV/vis) and when no remaining starting material was observed, the 

reaction was quenched with saturated sodium thiosulfate solution, the organic 

layer dried over sodium sulfate, and the solvent removed via rotary evaporation. 

The crude product was purified by silica gel flash chromatography, 3:1 hexanes: 

ethyl acetate, and the product was dried under high vacuum to yield 

(1S,2S,5S,6S,7S)-2-bromo-6-(tert-butyldimethylsilyloxy)-5,7-dimethyl-4-

(phenylsulfonyl)cyclohept-3-enol (15 mg, 0.031 mmol, 25.2 % yield). 1H NMR 

(600 MHz, Chloroform-d)  7.87 – 7.82 (m, 2H), 7.64 – 7.58 (m, 1H), 7.54 (dd, J 

= 8.5, 7.1 Hz, 2H), 7.22 (d, J = 6.9 Hz, 1H), 5.04 (s, 1H), 3.93 (d, J = 9.5 Hz, 1H), 

3.64 (d, J = 41.3 Hz, 1H), 2.52 (qd, J = 7.4, 3.0 Hz, 1H), 1.53 (d, J = 3.1 Hz, 1H), 

1.31 – 1.24 (m, 3H), 1.24 – 1.13 (m, 3H), 0.75 (s, 9H), -0.20 (s, 3H), -0.43 (s, 

3H). 
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 2-bromo-2-methylpropanoic acid (10 g, 59.9 mmol) and sodium 

azide (5.84 g, 90 mmol) were mixed in dry dimethylformamide  (DMF) (130 mL) 

and stirred at 20 °C. The reaction was monitored after 2 days, then partitioned 

between 5% LiCl solution (2  1L), Washed with 0.1 M HCl solution (2  1L) , 

then brine, dried over MgSO4, filtered, spin-evaporated and dried to constant 

weight (3.212 g, 0.91 mmol, 55 % yield)  under hi-vac. 1H NMR (600 MHz, 

Chloroform-d)  11.12 (s, 1H), 1.52 (s, 6H).  

 

triethyl(((1S,2S,3R,7S)-2-methyl-6-(phenylsulfonyl)-8-

oxabicyclo[5.1.0]oct-5-en-3-yl)oxy)silane (1.205 g, 3.05 mmol)  was stirred in  

MeOH (30.5 mL) cooled to 0 °C  with an ice bath. Powdered sodium borohydride 

(0.127 g, 3.36 mmol) was added and the ice bath removed. After 20 min H2O 

was carefully added and the methanol was removed wide rotary evaporation. 

The remaining aqueous layer was extracted with dichloromethane (2 x 50 mL). 

The crude mixture was purified by flash chromatography. 1H NMR (600 MHz, 

Chloroform-d)  7.87 – 7.84 (m, 2H), 7.62 – 7.57 (m, 1H), 7.52 (t, J = 7.7 Hz, 2H), 

7.15 (dd, J = 3.8, 1.8 Hz, 1H), 4.68 – 4.61 (m, 1H), 3.96 (dt, J = 6.3, 2.1 Hz, 1H), 

2.58 (ddq, J = 15.2, 11.7, 1.7 Hz, 1H), 2.22 – 2.14 (m, 1H), 1.82 – 1.72 (m, 1H), 
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1.68 – 1.58 (m, 1H), 1.31 (ddt, J = 14.1, 11.9, 2.2 Hz, 1H), 1.03 (d, J = 7.0 Hz, 

3H), 0.90 (t, J = 8.0 Hz, 9H), 0.54 (q, J = 7.9 Hz, 6H). 

  

Oxalyl chloride (0.212 mL, 2.420 mmol) was added at 0 

°C to a solution of 2-azido-2-methylpropanoic acid (0.391 g, 3.03 mmol), DMF 

(0.023 mL, 0.303 mmol) in PhCH3, (10 mL). The mixture was stirred for 1 h at 25 

°C. In a separate reaction vessel dimethylaminopyridine DMAP (0.037 g, 0.303 

mmol) was added to a solution of triethylamine (TEA) (0.84 mL, 6.05 mmol) and 

alcohol (1S,6R,7S)-7-methyl-3-(phenylsulfonyl)-6-((triethylsilyl)oxy)cyclohept-2-

enol (0.400 g, 1.009 mmol) in methylene chloride (10.00 mL) at 25 °C. The 

alcohol solution was then transferred to the acid chloride solution at 0 °C and the 

mixture was stirred for 1 hr at 0 °C. Phosphate buffer (3 mL, 0.05 M, pH = 7) was 

added and the aqueous layer was extracted with EtOAc (3 x 3 mL). The 

combined organic extracts were washed with brine (3 mL), dried (Na2SO4), 

filtered, the solvent was removed under reduced pressure, and purified by 

column chromatography (SiO2, 5-10% EtOAc/hexanes) to furnish the 

(1S,6R,7S)-7-methyl-3-(phenylsulfonyl)-6-((triethylsilyl)oxy)cyclohept-2-en-1-yl 2-

azido-2-methylpropanoate (0.461 g, 0.91 mmol, 90 % yield) as a yellow oil. 1H 

NMR (600 MHz, Chloroform-d)  7.86 – 7.83 (m, 2H), 7.64 – 7.60 (m, 1H), 7.54 
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(t, J = 7.7 Hz, 2H), 6.98 – 6.94 (m, 1H), 5.80 (dd, J = 10.1, 4.1 Hz, 1H), 4.00 (dt, 

J = 6.5, 2.1 Hz, 1H), 2.67 – 2.58 (m, 1H), 2.22 – 2.14 (m, 1H), 2.03 (dtd, J = 16.3, 

6.8, 1.9 Hz, 1H), 1.75 – 1.66 (m, 1H), 1.50 (d, J = 7.2 Hz, 6H), 0.97 (d, J = 6.9 

Hz, 3H), 0.91 (t, J = 7.9 Hz, 9H), 0.56 (q, J = 7.9 Hz, 6H). 

 

A dry 250 mL round-bottomed flask was charged with a 

solution of (1S,6R,7S)-7-methyl-3-(phenylsulfonyl)-6-((triethylsilyl)oxy)cyclohept-

2-en-1-yl 2-azido-2-methylpropanoate (0.626 g, 1.23 mmol) in methylene chloride 

(12.3 mL) then the solution was cooled to 0 °C, then (1R,4R)-7,7-dimethyl-2-

oxobicyclo[2.2.1]heptane-1-sulfonic acid (0.32 g, 1.48 mmol) was added. After 24 

hours the reaction was not completely done so additional (1R,4R)-7,7-dimethyl-2-

oxobicyclo[2.2.1]heptane-1-sulfonic acid (0.323 g, 1.480 mmol) was added and 

the reaction was monitored by TLC (35% EtOAc: Hexanes; UV/ PAA vis) there 

was starting material left, so an additional aliquant of (1R,4R)-7,7-dimethyl-2-

oxobicyclo[2.2.1]heptane-1-sulfonic acid (0.323 g, 1.480 mmol) was added TLC 

monitoring (see above) showed. The reaction mixture was washed with sodium 

bicarbonate solution, deionized water, and brine. The isolated organic layer was 

dried over sodium sulfate clarified by gravity filtration, spin-evaporated down to 

oil, and dried to constant weight under hi vac. The crude oil was partitioned 

between acetonitrile and hexanes to remove the silicon oil from the desired 



172 
 

product. The acetonitrile layer was isolated and washed twice more with an equal 

volume of hexanes. 1H NMR (600 MHz, Chloroform-d)  7.86 – 7.82 (m, 2H), 

7.64 – 7.60 (m, 1H), 7.54 (t, J = 7.7 Hz, 2H), 6.97 (dd, J = 4.1, 1.4 Hz, 1H), 5.77 

(dd, J = 10.0, 4.2 Hz, 1H), 4.03 (dt, J = 6.6, 2.5 Hz, 1H), 2.62 (ddd, J = 16.0, 

11.4, 2.0 Hz, 1H), 2.21 (ddd, J = 16.0, 7.7, 2.2 Hz, 1H), 2.16 (s, 1H), 2.14 (s, 1H), 

1.80 – 1.74 (m, 1H), 1.60 – 1.54 (m, 1H), 1.49 (d, J = 3.2 Hz, 6H), 1.03 (d, J = 7.0 

Hz, 3H). 

To a stirred clear colorless solution of (1S,6R,7R)-

6-hydroxy-7-methyl-3-(phenylsulfonyl)cyclohept-2-en-1-yl-2-azido-2-

methylpropanoate (1.0525 g, 2.68 mmol) in methylene chloride (15 ml) and 

methanol (3.75 ml) was added sodium bicarbonate (2.25 g, 0.03 mol) followed by 

cooling to -78 °C and bubbling of  ozone for 15 min followed by addition of 

dimethyl sulfide (2.0 ml, 0.03 mol). The above mixture was stirred at room 

temperature for 4 hr then quenched by addition of 5% HCl (12 mL). The 

quenched reaction mixture was transferred to a separatory funnel and extracted 

with Et2O (2 × 20 mL). The combined organic extracts were washed with brine 

(20 mL), dried over Na2SO4 and concentrated by rotary evaporation to give a 

colorless oil. The crude oil was purified by flash column chromatography 

(Hexanes:EtOAc = 1:1) to give (3S,4R,5R)-2-hydroxy-5-(3-methoxy-3-oxopropyl)-
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4-methyltetrahydrofuran-3-yl 2-azido-2-methylpropanoate (0.700 g, 2.220 mmol, 

83 % yield) as a colorless oil. 

To a solution of (1S,6R,7R)-6-hydroxy-7-methyl-3-

(phenylsulfonyl)cyclohept-2-en-1-yl 2-azido-2-methylpropanoate (0.133 g, 0.338 

mmol) in 1:1 BuOH (2.414 mL) : water (2.414 mL) was added N-

methylmorpholine-N-oxide (NMO) (0.087 g, 0.744 mmol) (50% wt in H2O, 2 eq), 

citric acid (0.016 g, 0.085 mmol), and osmium tetroxide (0.085 mL, 6.76 µmol). 

After 24 h, The TLC (1:1; Hex:EtOAC) indicated disappearance of starting 

material so the reaction mixture was quenched with saturated aqueous Na2S2O3 

and stirred for 30 min. The aqueous layer was separated and extracted with 

Et2O. The combined organic layers were dried over MgSO4, filtered, and 

concentrated to furnish (1S,3S,4R,5R)-1,2-dihydroxy-4-methyl-8-

oxabicyclo[3.2.1]octan-3-yl 2-azido-2-methylpropanoate (80 mg, 0.280 mmol, 83 

% yield) as a clear resin. 1H NMR (600 MHz, Chloroform-d)  5.20 (dt, J = 5.2, 

1.2 Hz, 1H), 4.19 (d, J = 8.1 Hz, 1H), 3.99 (dd, J = 5.3, 2.0 Hz, 1H), 2.65 – 2.57 

(m, 1H), 2.30 (tdd, J = 12.9, 8.1, 4.8 Hz, 1H), 2.02 – 1.94 (m, 1H), 1.88 (q, J = 7.2 

Hz, 1H), 1.61 (tdd, J = 13.1, 4.8, 2.2 Hz, 1H), 1.54 (d, J = 4.3 Hz, 5H), 1.43 (d, J 

= 5.9 Hz, 1H), 1.28 (dd, J = 4.1, 3.0 Hz, 2H), 1.23 (d, J = 7.5 Hz, 3H). 
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 To a stirred solution of the (1S,3S,4R,5R)-1,2-dihydroxy-4-

methyl-8-oxabicyclo[3.2.1]octan-3-yl 2-azido-2-methylpropanoate (0.020 g, 0.070 

mmol) in 1:2 MeOH (0.467 mL) and benzene (0.935 mL) was added lead 

tetraacetate (0.042 g, 0.095 mmol) in portions over a period of 30 min at room 

temperature. After the mixture stirred for the required time, dilute NaHCO3 was 

added and extracted with ethyl acetate. The combined organic layer was washed 

once with brine and dried over anhydrous Na2SO4. Concentration followed by 

silica gel chromatography of the crude yielded (2S,3R)-1-oxo-3-((R)-5-

oxotetrahydrofuran-2-yl)butan-2-yl 2-azido-2-methylpropanoate (17 mg, 0.060 

mmol, 86 % yield).1H NMR (600 MHz, Chloroform-d)  9.56 (d, J = 1.1 Hz, 1H), 

5.51 (t, J = 1.7 Hz, 1H), 4.42 (td, J = 9.2, 6.4 Hz, 1H), 2.65 (ddd, J = 10.1, 5.9, 

1.7 Hz, 3H, 1.61 (d, J = 1.2 Hz, 3H), 1.57 (s, 3H), 1.11 (dd, J = 7.0, 1.9 Hz, 1H), 

1.04 (dd, J = 7.0, 1.1 Hz, 3H). 
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ABSTRACT 

Cyclic asymmetric vinylsulfones and vinyphosphonates have been used towards the synthesis of aplyronine A and 
discodermolide respectively. Oxidative cleavage of these highly deactivated olefins to furnish linear fragments has 
been accomplished under harsh ozonolysis conditions. Osmylation of these substrates can now be accomplished 
with the addition of citric acid. The resulting acyloins and lactols can be smoothly cleaved with lead tetraacetate. 

Catalytic osmylation of olefins is a well-established 
protocol developed by chemists at Upjohn.1 While the 
Sharpless’ group has provided the state-of-the-art 
osmylation in organic synthesis.2345  Highly electron 

                                                      
1 V. Vanrheenen, R. C. Kelly, and D. Y. Cha Tetrahedron Lett. 1976, 

1973-76. 
2 S. G. Hentges and K. B. Sharpless J. Am. Chem. Soc. 1980, 102, 

4263-65. 
3 E. N. Jacobsen et al. J. Am. Chem. Soc. 1988, 110, 1968-70. 

deficient olefins proved to be unreactive to traditional 
osmium catalyzed dihydroxylation procedures. Due to the 
mildness and general application of osmylation 
methodology, it is greatly preferred over ozonolysis.  

                                                                                      

4 C. J. Burns, C. A. Martin, and K. B. Sharpless J. Org. Chem. 1989, 
54, 2826-34. 

5 J. S. M. Wai et al. J. Am. Chem. Soc. 1989, 111, 1123-25. 
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Use of cyclic asymmetric vinylsulfones has formed the 
backbone of a polypropionate strategy developed by the 
Fuchs group.6 This methodology has been used for the 
successful synthesis of L-(-)-prostaglandin E2,78 dl-
morphine,91011 and 19-nor-Vitamin D-3.12 This 
methodology has been used to generate the dipropionate 
fragments C5-C12, C21-C27 and des-methyl C28-C34 of 
aplyronine A.131415 This investigation examines the effects 
of citric acid buffered osmium catalyzed dihydroxylation 
on cyclic vinylsulfones and vinyphosphonates.  
 

 

 

Figure 1. Caption 
 

 
The proposed mechanism of osmium tetroxide (OsO4) 

dihydroxylation (Figure 1) suggested that the rate is 
sacrificed if (mono)glycosylate ii is hydrolyzed to 
regenerate diol and osmium tetroxide perpetuating the 
First Cycle.16 The Second Cycle is favored over the First 
Cycle all things being equal. Since the rate of hydrolysis 
(h1) is much slower than the reduction (r3), the 
osmium(VI) bis(glycolate) iii builds up as the reaction 
progresses, generating diol via hydrolysis of 
(bis)glycolate iii. To exploit the Second Cycle when using 
chiral ligand, a slow addition technique was 
recommended to suppress the second cycle pathway 
during asymmetric dihydroxylation (AD).17 However, if 
high reactivity is required, the second cycle gives a clear 
advantage over the first cycle. Citric acid improves the 
rates and the yields of cis-dihydroxylations of various 

                                                      
6 A. El-Awa et al. Chem. Rev. 2009, 109, 2315-49. 
7 R. E. Donaldson and P. L. Fuchs J. Am. Chem. Soc. 1981, 103, 

2108-10. 
8 R. E. Donaldson et al. J. Org. Chem. 1983, 48, 2167-88. 
9 J. E. Toth and P. L. Fuchs J. Org. Chem. 1987, 52, 473-75. 
10 J. E. Toth, P. R. Hamann, and P. L. Fuchs J. Org. Chem. 1988, 53, 

4694-708. 
11 ——— J. Org. Chem. 1988, 53, 4694-708. 
12 V. Sikervar, J. C. Fleet, and P. L. Fuchs Chem. Commun. 2012, 48, 

9077-79. 
13 A. El-Awa, X. M. du Jourdin, and P. L. Fuchs J. Am. Chem. Soc. 

2007, 129, 9086-93. 
14 M. N. Noshi, A. El-Awa, and P. L. Fuchs J. Org. Chem. 2008, 73, 

3274-77. 
15 W. P. Hong et al. Org. Lett. 2011, 13, 6342-45. 
16 Wai et al. 
17 Ibid. 

electron-deficient alkenes. In addition to acting as a pH 
buffer thereby preventing formation of insoluble Os(VIII) 
dioxoosmate iv, a species, that inhibits the second cycle, 
citric acid strongly binds to OsO4 and maintains the 
reaction in the second cycle.18 
 

 

 

Figure 2. Citric Acid Catalyzed cis-Dihydroxyltion of  
Vinylsulfones 

 
Addition of citric acid to improve the catalytic 

asymmetric osmylation system led to a greater 
understanding of the catalytic cycle that the vinylsulfone 
substrate undergoes (Figure 2). During the course of 
Sharpless’ investigation to improve upon the Upjohn 
protocol, it was found that the osmylation catalytic cycle 
can, as previously stated, progress via two alternate 
avenues where the rate limiting step is hydrolysis of the 
monoglycolate (i) in the case of the first cycle and 
bisglycolate (ii) in the case of the faster second cycle 
Figure 2. When the osmylation is undertaken in 
homogeneous conditions the co-oxidant N- 
methylmorpholine N-oxide (NMO) has access to the 
intermediates over the entire catalytic cycle. Since the 
Second Cycle is faster, with the addition of citric acid, 
the reaction gets locked into the second cycle 
(bis)glycolate (ii) hydrolysis furnishes Os(VI) species iii. 

 The Sharpless group postulated that acids assist 
catalyst turnover by preventing formation of the 
catalytically dormant dioxoosmate dianion species iv, 
which is formed upon deprotonation of the hydrated 
(bis)glycolate iii at higher pH (Figure 3).  

The strong electron withdrawing ability of the 
sulfone contributes to the acidity of the hydrated 
bis(glycolate) species iii•H2O thus increasing the 
concentration of the dioxoosmate iv and crippling the 
cycle. The Sharpless group then discovered, based on the 

                                                      

18 Yun Gao and Young Cheun, "Osmium Tetroxide–N-
Methylmorpholine N-Oxide," in Encyclopedia of Reagents for Organic 
Synthesis (John Wiley & Sons, Ltd, 2001). 
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aforementioned hypotheses that the dioxoosmate iv is 
especially stable and resistant to substitutions of any kind 
under basic conditions including hydrolysis irrespective 
of the presence co-oxidant. According to Sharpless, all 
acidic mixtures remain green indicating the presence of 
neutral bis(glycolate) (ii) whereas basic mixtures took on 
a reddish brown color indicating the presence of 
dioxoosmate dianion species iv. Adding citric acid 
however arrests the formation of osmium tetroxide 
(OsO4) in favor of species iii thereby impeding the First 
Cycle (Figure 2). With proximal acidic moieties acting 
as a buffer in hydrated (bis)glycolate iii•H2O and 
dioxoosmate iv the equilibrium leans strongly in favor of 
bis(glycolate) ii which can then be hydrolyzed back to 
species i so the cycle may continue (Figure 3). 
 

 

 

Figure 3. Effect of Citric Acid on Dioxoosmate Formation 
 

It is noteworthy that olefins such as diethyl maleate 
show the greatest benefit from performing the 
dihydroxylation at lower pH.19 The hydrated osmium(VI) 
bis(glycolates) like species iii•H2O formed from such 
electron-poor olefins would be expected to be much more 
acidic and correspondingly more likely to get trapped as 
the unwanted dioxoosmate dianion iv, even in the 
presence of a relatively weak base like 4-
methylmorpholine. Citric acid however not only 
coordinates to the osmium, but coordinates the acidic 
moieties proximal to the oxygens of the hydrated 
(bis)glycolate iii so buildup of dioxoosmate iv will not 
terminate the catalytic cycle.   

Methodology elucidated by Sharpless,202122 involving 
dihydroxylation of election deficient olefins by osmium, 
catalyzed by citric acid was explored on stereotriad  entry 
13. Rationale for the efficacy of the osmium/citric acid 
methodology is derived from the proposed catalytic cycle 
in Figure 2.  

With a solid foundation for osmium catalyzed 
dihydroxylation of olefin deficient olefins being in 
evidence, investigation of this methodology on advanced 
vinylsulfones and vinyphosphonates was undertaken. 

                                                      
19 Philippe Dupau et al. Adv. Synth. Catal. 2002, 344, 421-33. 
20 Ibid. 
21 Timothy J. Donohoe et al. J. Org. Chem. 2006, 71, 4481-89. 
22 Timothy J Donohoe et al. Angew. Chem. 2008, 120, 2914-17. 

 
Table 1. Osmium Catalyzed Dihydroxylation of Vinyl Sulfones 
and Phosphonates 

Entry Substrate Product Yield 

1 

 

100%a 

2 
 

79%a 

3 

 

100%b 

4 NR a,b 

5 

 

59%b 

6 

 

NRa 

7 

 

NRa,b 

8 

 

NR b 

9 

 

68%b 

10 

 

NRa 

11 

 O

HO OTBS
i-Pr

OH

45%b 

12 

 

62%b 

13 

 

89%b 

a. Conditions: 0.1M, citric acid (20 mol%), NMO (1.5 eq.), K2OsO4 (5 
mol %),  MeCN: H2O (4:1), 50 ºC, 24 hrs b. Conditions: 0.1M, NMO 
(1.5 eq.), K2OsO4 (5 mol %),  MeCN: H2O (4:1), 25 ºC, 24 hrs 
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The data obtained by the examination represented by 
Table 1 indicates that bulky stereotetrads such as those 
represented in entries  1 and 2 required  heating at 50 °C 
to effect dihydroxylation. Entries 3, 5, 9, 12 and 13 
however dihydroxylated smoothly at room temperature. 
Entry 3 is a bulky vinyphosphonate, and entry 9 is an 
unhindered vinyphosphonate. Yields would indicate that 
entry 3 is in a more favorable conformation to form the -
hydroxy lactol than is entry 9. In contrast entry 10 
recovered starting material under the stated conditions. 
Entry 10 does not however have the possibility of 
forming -hydroxy lactol as it is di-protected. Entry 11 
also reacted at room temperature but in low yield 
probably due to the presence of isopropyl and TBS 
moieties.  Entries 4, 6, 7, 8, & 10 did not react under the 
stated conditions.  Entry 4 is a 6-membered ring which 
may have less flexibility.  Entry has a chloro and TBS 
silylether which may contribute negative steric and 
electronic effects. Entries 7 & 10  have the added bulk of  
2 TBS groups. 

 
Table 2. Pb(IV)OAc Cleavage  

Entry Acyloin/ Lactol Cleavage Product Yield 

1 

  

100% 

2 

  

100% 

3 

  

100% 

4 

  

100% 

5 

  

100% 

6 

O

HO OTBS
i-Pr

OH   

100% 

7 

 

100% 

8 

  

89% 

a. Conditions: Pb(OAc)4 (1.5 eq.), dry methanol (0.1M), room 
temperature, 24 hrs. 

 

All acyloins and -hydroxy lactols underwent 
complete conversion to their respective cleavage products 
in ~24 hours under the stated conditions (Table 2).  

Overall, we have described a general mild oxidative 
cleavage methodology for vinylsulfones and 
vinyphosphonates that provides acceptable yields over a 
considerable range of diverse substrates. Our preliminary 
studies have defined (1) a general methodology for the 
osmium catalyzed dihydroxylation of vinylsulfones and 
vinyphosphonates, which are valuable intermediates  in 
the synthesis of polyketide natural products. (2) the 
impact of stereochemistry and  and steric bulk on the 
dihydroxylation process. As such, this method is 
anticipated to greatly facilitate the efficient synthesis of  
linear complex polyketidederived targets from 
vinylsulfone derived polypropionate  substrates. Progress 
along these lines, will be reported in due course. 
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