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ABSTRACT 

Boley, Jonathan D. Ph.D., Purdue University, December 2013. Effects of Hearing Aid 
Amplification on Robust Speech Coding. Major Professor: Michael Heinz. 

 
 
Hearing aids are able to restore some hearing abilities for people with auditory 

impairments, but background noise remains a significant problem.  Unfortunately, we 

know very little about how speech is encoded in the auditory system, particularly in 

impaired systems with prosthetic amplifiers.  There is growing evidence that relative 

timing in the neural signals (known as spatiotemporal coding) is important for speech 

perception, but there is little research that relates spatiotemporal coding and hearing 

aid amplification.  

This research used a combination of computational modeling and neurophysiological 

experiments to characterize how hearing aids affect vowel coding in noise at the level of 

the auditory nerve.  The results indicate that sensorineural hearing impairment 

degrades the temporal cues transmitted from the ear to the brain.  Two hearing aid 

strategies (linear gain and wide dynamic-range compression) were used to amplify the 

acoustic signal.  Although appropriate gain was shown to improve temporal coding for 

individual auditory nerve fibers, neither strategy improved spatiotemporal cues.  

Previous work has attempted to correct the relative timing by adding frequency-
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dependent delays to the acoustic signal (e.g., within a hearing aid).  We show that, 

although this strategy can affect the timing of individual auditory nerve responses, there 

is a fundamental limitation in the ability of this approach to improve the relative across-

fiber timing (spatiotemporal coding) as intended. 

We have shown that existing hearing aid technologies do not improve some of the 

neural cues that we think are important for perception, but it is important to 

understand these limitations.  Our hope is that this knowledge can be used to develop 

new technologies to improve auditory perception in difficult acoustic environments. 
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CHAPTER 1. INTRODUCTION 

The World Health Organization estimates that 360 million people have a disabling 

hearing loss (Stevens and Flaxman, 2013).  These impairments can severely limit 

communication, and have been shown to reduce quality of life (Mulrow et al., 1990).  

However, experts suggest that regular use of a prescribed hearing aid can significantly 

reduce depression in addition to improving communication, cognitive function, and 

social and emotional well-being (Mulrow et al., 1992). 

Despite the benefits, approximately half of hearing aid users still have difficulty 

listening in noisy environments (Edwards, 2007).  In fact, listening in noise can be a very 

complex task and the best prosthetic hearing instruments today cannot restore a 

patient's listening abilities to normal.  The research described here seeks to better 

understand some of the physiological reasons why hearing aids remain limited in their 

ability to restore normal speech perception in noise.  We have used a combined 

computational and neurophysiological approach to address this issue, and have 

developed some computational modeling techniques for evaluating and fitting hearing 

aids in a quantitative manner. 
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1.1 Background 

1.1.1 The Auditory System 

The mammalian auditory system can be roughly divided into two interdependent 

systems: the peripheral and central systems.  The peripheral auditory system includes 

everything from the outer ear to the auditory nerve, whereas the central auditory 

system includes all the brain structures that process auditory information. 

The peripheral auditory system converts acoustic energy to electrical energy and can 

handle a surprisingly wide range of sound levels.  For example, the loudest sound a 

human can hear without pain is approximately one million times the pressure of the 

softest audible sound (a range of 120 dB). 

1.1.1.1 Gain Control 

The auditory system uses a complex system of gain controls to operate over such a 

large dynamic range.  An acoustic reflex controls the transmission of sounds through the 

middle ear (Møller, 1964), but another set of control systems modulates gain within the 

cochlea.  In this physiological “algorithm”, there are three primary sources of active 

cochlear gain adjustment, as shown in Figure 1.1.  The outer hair cells (OHC) provide the 

first stage of gain control, reacting to the acoustic stimulus by changing length, thus 

amplifying the vibration of the organ of Corti (Brownell et al., 1985; Liberman et al., 

2002).  As Rhode (1971) showed in his seminal work, the gain of the cochlear amplifier is 

compressive (less gain for high input sound levels).  The gain provided by the outer hair 

cells is also frequency dependent – it may be as high as 60 dB at the base of the cochlea 
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(in response to low-level high frequency stimuli), with little to no gain at the apex for 

low-frequency stimuli (Ruggero et al., 1997).  Recio and colleagues (Recio et al., 1998) 

showed that compression could be seen in as little as 100 µs.  Compression this fast 

would normally introduce severe distortion but, because the gain is applied to only a 

very localized region, any distortion is band-limited by cochlear filtering and would most 

likely be imperceptible.   

 

Figure 1.1 Physiological gain structure and time constants 
Three primary gain control mechanisms (LOC – Lateral Olivo-Cochlear efferents, 
MOC – Medial Olivo-Cochlear efferents, OHC – Outer Hair Cells) are shown along with 
their respective time constants.  [Adapted with permission from Lippincott Williams and 
Wilkins/Wolters Kluwer Health: Ear & Hearing (Guinan, 2006) , copyright 2006] 

 

The second source of cochlear gain control is the Medial Olivo-Cochlear (MOC) 

system  (see Figure 1.1).  Cells near the medial superior olive in the brainstem project 

axons back into the cochlea and innervate the outer hair cells.  This reflex is controlled 

by both ears (Guinan, 2006) and is known to have two distinct time courses.  The fast 
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effect has a time constant of 30-60 ms, while the slow effect has a time constant closer 

to 10-50 seconds (Cooper and Guinan Jr., 2003).  This moderately fast gain control 

mechanism appears to be, in part, a protective mechanism for high-intensity sounds 

(Maison and Liberman, 2000), and some scientists have suggested that the MOC system 

may serve to increase the signal-to-noise ratio in noisy conditions (Hienz et al., 1998).  

However, the strength of the MOC reflex appears to vary substantially from person to 

person, even among those with normal hearing (Backus and Guinan  Jr., 2007). 

A third and slower gain control system, the Lateral Olivo-Cochlear (LOC) system, uses 

a set of efferent fibers that come from the lateral superior olive.  These cells receive 

signals from both ears and innervate the ipsilateral auditory nerve fibers.  LOC efferents 

appear to be useful for slowly (τ ~10 min) balancing the output of the two ears, based 

on interaural level differences (Darrow et al., 2006; Groff and Liberman, 2003).  There 

may also be some efferent control from higher-level brain structures (Mulders and 

Robertson, 2002), but little is known about such pathways. 

1.1.1.2 Spectral Decomposition 

As alluded to in the previous section, outer hair cells actively control basilar 

membrane vibration over a limited frequency range (Ruggero and Rich, 1991).  In fact, 

the outer hair cells increase the frequency-dependent vibration that occurs in the 

cochlea due to the mechanical properties of the basilar membrane (Békésy and Bekesy, 

1952).  Even in a passive (dead or badly injured) cochlea, the basilar membrane 

resonates to high frequencies at the base and low frequencies at the apex.  Inner hair 
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cells at various locations along the length of the cochlea therefore tend to transduce 

energy within a narrow frequency range.  Information within auditory nerve fibers 

therefore reflects this tonotopicity. 

 

1.1.2 Hearing Impairment 

Hearing loss is often characterized by an inability to hear low intensity sounds.  The 

audiogram is often used to describe the hearing loss, quantified as the behavioral 

threshold shift (relative to normal young subjects) for tones at various frequencies.  

Unfortunately, hearing impairment is not always as simple as an inability to detect low-

intensity sounds, but the audiogram is the most common tool for diagnosing impaired 

hearing.  (In this dissertation, "hearing loss" will refer to a simple audiometric threshold 

shift, whereas "hearing impairment" is meant to be more general.  It is theoretically 

possible for two people to have identical audiograms, but different degrees of 

impairment.) 

Hearing impairment can affect several auditory percepts, including loudness, pitch, 

localization, and speech perception (for a review, see Moore, 2007).  One important 

aspect of hearing impairment is broadened tuning.  Spectral tuning can be measured 

behaviorally with psychophysical tuning curves (PTCs), which are measured by holding a 

target sound at a low level (e.g., 10dB above threshold) and determining the level and 

frequency of a masker signal needed to mask the target (Zwicker, 1974).  With normal 

hearing, the PTC usually has the shape of a narrow 'V', but at frequencies with increased 
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thresholds, this sharp tuning is absent (Leshowitz, 1975, 1976).  This indicates that the 

frequency resolution of the auditory system is degraded with impairment. 

Spectral tuning can also be measured physiologically in experimental animals by 

measuring the threshold of an auditory nerve fiber at different frequencies.  The 

frequency which the fiber is most sensitive to is called the best frequency (BF), but this 

can change with level and/or impairment so we often refer to the characteristic 

frequency (CF), which is equivalent to the BF for a normal system at low levels.  The CF 

does not change with level or impairment.  Similar to PTCs, the bandwidth of a neural 

tuning curve is often characterized by the bandwidth 10dB above threshold.  The 

bandwidth can be normalized by the BF to obtain a "quality factor", referred to as Q10. 

Liberman and Dodds (1984a) showed that damaged outer hair cells are associated 

with broad neural tuning curves and elevated thresholds, while damaged inner hair cells 

are associated with only elevated auditory nerve thresholds (i.e., without broadened 

tuning).  Hearing loss associated with impaired hair cells (often due to noise exposure 

and/or aging) is referred to as sensorineural hearing loss (SNHL).  The typical perceptual 

model of SNHL assumes that most of the impairment is due to damaged outer hair cells 

that normally amplify low intensity sounds but apply less gain to sounds that are already 

high intensity (Moore and Glasberg, 2004).  Note, however, that this model may 

underestimate the contribution of inner hair cell dysfunction to behavioral threshold 

shifts (Moore and Glasberg, 2004; Schuknecht, 1993). 

Damage to the cochlea results in several changes to the auditory nerve responses, 

including increased threshold, shifted best frequency, reduced spontaneous rate, 
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broadened tuning, and abnormal rate-level functions (Heinz and Young, 2004; Kiang et 

al., 1976; Liberman and Dodds, 1984a; Liberman and Kiang, 1984; Wang et al., 1997).  

Although within-fiber phase locking to tones has been reported to be degraded 

following sensorineural hearing loss (Woolf et al., 1981), most evidence suggests phase 

locking remains strong to tones in quiet (Harrison and Evans, 1979; Heinz et al., 2010; 

Miller et al., 1997) and only degrades in the presence of background noise (Henry and 

Heinz, 2012). 

Sounds may be encoded in several ways.  The relative firing rates across different 

cochlear positions (rate-place coding) can provide information about auditory stimuli.  

Similarly, differences in the strength and/or frequency of phase locking across different 

cochlear positions (temporal-place coding) can provide different information about 

auditory stimuli.  Differences in the phase of phase locking can also encode information, 

and this has been referred to as spatiotemporal coding. 

Rate-place coding in normal-hearing animals has been shown to be sufficient for 

vowel identification in quiet (May et al., 1996), but temporal-place coding is more 

robust to increased levels and background noise (Delgutte and Kiang, 1984; Geisler and 

Gamble, 1989; Sachs et al., 1983; Silkes and Geisler, 1991; Young, 2008). Noise-induced 

hearing loss (NIHL) degrades both rate-place and temporal-place representations of 

vowels, although temporal-place coding remains in some conditions for which rate-

place coding is lost (Geisler, 1989; Miller et al., 1999a; Palmer and Moorjani, 1993).   

Some research suggests that spatiotemporal coding may be important for speech (Deng 

and Geisler, 1987; Heinz, 2007; Shamma, 1985a) as well as for pitch, intensity, 
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localization, and masking (Carney et al., 2002; Heinz et al., 2001a; Joris et al., 2006b; 

Larsen et al., 2008; Shamma and Klein, 2000). Monaural coincidence neurons, similar to 

the binaural units found in the medial superior olive (Goldberg and Brown, 1969), could 

theoretically decode temporal-place and spatiotemporal cues by comparing responses 

of fibers with similar (but not identical) characteristic frequencies.  In fact, evidence 

suggests that neurons in the ventral cochlear nucleus show enhanced temporal coding 

(Joris et al., 1994a, 1994b; Rothman et al., 1993) and globular bushy cells in particular 

appear to perform this cross-frequency monaural coincidence detection (Carney, 1990; 

Wang and Delgutte, 2012). 

1.1.3 Hearing Aid Design 

1.1.3.1 General Design Principles 

Modern digital hearing aids have numerous algorithms available, which can be split 

into three categories: modeling, cleaning, and managing.  Modeling algorithms make up 

for some of the hearing loss by applying frequency-dependent gain to the signal.  

Cleaning algorithms try to improve the signal-to-noise ratio (e.g., directional 

microphones and noise reduction).  Managing algorithms reduce any artifacts caused by 

other algorithms (e.g., feedback reduction when too much gain is applied). 

The most fundamental function of a hearing aid is to amplify sound.  Whether the 

goal is simply to restore audibility (Scollie et al., 2005), equalize loudness (Moore, 2000; 

Moore et al., 1999a), or to improve speech intelligibility (Byrne et al., 2001; Dillon, 2001), 

the gain of most modern hearing aids is nonlinear.  Just as a normal (nonlinear) cochlea 
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would, a hearing aid can apply substantial gain to low intensity sounds and less gain to 

sounds that are already of high intensity.  As shown in Figure 1.2, the slope of the 

input/output function of a nonlinear hearing aid is less than unity.  The gain in this 

example is decreased as the input level increases, thus compressing the dynamic range 

of the sound presented to the ear.  Hearing impaired listeners often have steeper than 

normal loudness growth (known as loudness recruitment; see for example Moore, 2007) 

but perceive loud sounds normally.  Therefore, the compressive gain of a hearing aid is 

designed to restore nonlinearity by amplifying soft sounds but minimally affecting more 

intense sounds. 

 

Figure 1.2.  Static gain curve showing wide dynamic-range compression 
Low level inputs are amplified by a constant gain, but above a given threshold the gain is 
reduced, resulting in a compressed range of output levels  (Gain is shown in gray; input-
output function is shown in black) 
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To automatically control the gain electronically, the incoming sound level is detected 

and the gain changed accordingly (Kates, 2005).  As shown in Figure 1.3, a hearing aid 

typically splits the signal into at least two frequency bands, detects the incoming level, 

and applies the appropriate amount of gain. 

 

Figure 1.3.  Simplified hearing aid block diagram 
The input is filtered into 2 or more frequency bands, the input level is determined, and 
the gain for each frequency band is adjusted 

 

However, this gain adjustment does not occur instantaneously.  Because a single 

sample does not accurately represent the intensity of the signal, the level must be 

detected over some time interval.  Additionally, the gain is often controlled to change 

somewhat slowly over time and thus to minimize distortion (Souza, 2002).  For example, 

fast amplitude modulation can result in spectral components that may not otherwise 

exist.  Typically, the change in amplitude is described by the exponential function, 

     
  

 

  , where y is the amplitude with initial condition y0, t is the post-onset time, 

and τ is a time constant that is chosen by the designer (ANSI, 2003; Moore, 2008a).   

Figure 1.4 shows some examples of fast and slow compression.  When the signal 

level rises above the threshold, the gain is reduced as a function of time.  For fast time 
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constants, the gain is reduced over a short period of time.  As implemented in many 

hearing aids, this time constant is often on the order of 100 milliseconds, which 

corresponds to the approximate length of a syllable.  For slow time constants, the gain is 

 

Figure 1.4.  Dynamic gain curves 
Sounds above the threshold are compressed over time.  Fast compression results in 
faster gain adjustments than does slow compression 

 

changed slowly, taking many seconds in some designs (Moore, 2008b).  One advantage 

of a fast compression system is that short, quiet syllables will be boosted to levels near 

those of nearby syllables.  However, in addition to the desired signal, noise is also 

boosted, often resulting in an objectionable pumping or breathing sound (Moore and 

Glasberg, 1988).  Slow compression systems do not suffer from noise pumping, but any 

quiet sounds that follow a period of intense sounds may not be returned to audible 

levels (Moore, 2008a, 2008b).  It has also been pointed out that relatively slow time 



12 

constants may be desired to preserve the slowly varying envelope of the signal (Plomp, 

1988).  However, an ‘optimal’ time constant will balance the needs for both audibility 

and minimal distortion. 

In a 'cocktail party' situation, in which many people are speaking at once, hearing 

impaired listeners often have trouble segregating the voice of the person directly in 

front of them from all the other voices.  Unfortunately, this is a very difficult problem to 

solve.  Hearing aid manufacturers have tried to minimize background sounds with 

directional microphones (Dillon, 2001), adaptive digital noise reduction (Bentler and 

Chiou, 2006), and use of binaural hearing aids to improve localization (Bruce, 2006).  

Many of these techniques are used in modern digital hearing aids, but, unfortunately, 

only about 50% of patients are satisfied with the performance of their hearing aids in 

noisy situations (Edwards, 2007).  Perhaps one reason for this dissatisfaction is that 

computational algorithms are not currently able to decide what information is 

important to preserve and what is background noise.  The only technology that has been 

shown to improve speech intelligibility is microphone directionality, though this often 

assumes the sound source of interest is directly in front of the patient (Dillon, 2001).   

One reason for the difficulty with noise reduction is the fact that the physiological 

mechanisms (and neural coding) of hearing impairment and subsequent hearing aid 

amplification are not well understood.  Although a vast amount of research has gone 

into the behavioral results of hearing aid design and fitting strategies (Moore et al., 

1999b; Peters et al., 1998; Souza and Tremblay, 2006; Souza, 2002), little is known 

about the underlying neurophysiology of hearing aid use.  Knowledge of such 
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neurophysiology may be beneficial and may offer new insights into the design of 

auditory prostheses. 

1.1.3.2 Biologically-Inspired Designs 

Biondi (1978) suggested that, by comparing neural coding in normal ears and 

impaired ears (with amplification), a hearing aid might be designed that minimizes the 

difference.  Several scientists have used computational models of auditory physiology to 

implement such a system (Bondy et al., 2004; Chen et al., 2005; Kates, 1993; Shi et al., 

2006).   

One set of algorithms designed to restore cochlear patterns may collectively be 

called spectral contrast enhancement algorithms (Baer et al., 1993; Kates, 1994; 

Simpson et al., 1990; Yang et al., 2003).  The motivating theory is that broadened 

auditory tuning degrades the signal-to-noise ratio within any particular spectral channel 

(Henry and Heinz, 2012).  These algorithms attempt to increase the contrast between 

spectral peaks and valleys.  Miller and colleagues (1999b) showed that contrast 

enhancement can improve the neural representation of vowel formants. 

Bondy and colleagues (Bondy et al., 2004; Haykin et al., 2006) developed a system 

they called a 'neurocompensator', which attempted to restore the instantaneous firing 

rate of auditory nerve (AN) fibers.  As the authors noted, however, the accuracy of the 

model is unknown for important auditory features like transients or phenomena like 

forward masking.  It is also important to note that any imperfect restoration of the 

neural code could potentially result in audible artifacts.  A system like this would benefit 
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from knowledge about what aspects of the neural code are most important to restore.  

The authors have since published work, developing a prediction of speech intelligibility 

based on neural information (Bondy et al., 2003; Zilany and Bruce, 2007a) that might be 

useful in combination with the neurocompensator algorithm. 

Carney and colleagues developed an algorithm that was designed to introduce delay 

into the auditory signal where the phase response was predicted to be abnormal 

(Calandruccio et al., 2007; Carney, 2008; Shi et al., 2006).  The motivating theory is that 

broadened auditory filters have a shallower phase response, and thus less group delay, 

than normal.  The algorithm uses two parallel paths to estimate delay and to add 

frequency-dependent delay to the auditory signal.  In the control path, an auditory 

model is used to estimate the group delay introduced by healthy nonlinear filters.  In the 

main path, the signal is decomposed into frequency channels, a delay is added, and the 

channels are re-combined after passing through a synthesis filterbank.  The merits and 

limitations of this approach are discussed further in Chapter 6. 

1.2 Research Approach 

To better understand how hearing aids affect the ability to listen in complex 

situations, we can learn from neurophysiology.  The auditory nerve offers an excellent 

source of information about the peripheral auditory system.  All information from the 

ear travels to the brain through the auditory nerve, and any peripheral hearing 

impairment will result in changes to the signals within the auditory nerve. 

By modeling and measuring physiological responses to complex auditory stimuli, we 

can gain insights into the effects of impairment and subsequent amplification.  The 
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research presented here uses both a computational model and an animal model to 

investigate how speech is encoded in the mammalian auditory nerve.  Computer models 

allow us to examine how neurons are likely to respond, but they are limited in their 

ability to replicate all the details of a biological system.  An animal model can give us a 

more accurate picture of the biological system, but requires much more time and effort 

(and often animals' lives) to collect that data. 

1.2.1 Computational Model 

Several models of the mammalian peripheral auditory system have been developed 

over recent years (reviewed by Heinz, 2010; Lopez‐Poveda, 2005).  We used a 

phenomenological model of cochlear physiology (Zilany and Bruce, 2006, 2007b; Zilany 

et al., 2009) that is an extension of several previous models (Bruce et al., 2003; Carney, 

1994; Heinz et al., 2001b; Zhang et al., 2001).  This particular model was chosen because 

 

 

Figure 1.5.  Auditory nerve model 
The input is any acoustic waveform, and the output is a set of times at which auditory 
nerve spikes are predicted to occur.  Reprinted with permission from (Zilany and Bruce, 
2006).  Copyright 2006, Acoustical Society of America. 
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it has been compared with auditory nerve data obtained with cats (Miller et al., 1997; 

Wong et al., 1998) and was found to match the physiological data for vowel responses 

quite well across a wide range of sound levels (Zilany and Bruce, 2007b).  The model also 

provides control of both inner and outer hair cell functionality. 

A schematic diagram of the auditory nerve model is shown in Figure 1.5.  It is 

important to note that this model is not designed to accurately represent the biophysics 

of cochlear mechanisms, but is a phenomenological model that produces outputs similar 

to what can be measured in animals.  The input to the model is an arbitrary acoustic 

waveform and the output is a series of times indicating when auditory nerve spikes are 

predicted to occur.  Hearing loss is controlled by adjusting the values of COHC and CIHC, 

which control the amount of dysfunction associated with the outer and inner hair cells, 

respectively.  Total threshold shift for a single fiber is modeled as a combination of 

contributions from both types of hair cells.  The desired audiometric hearing loss can 

thus be set for each characteristic frequency such that the total hearing loss (HL), in dB, 

at a specific frequency is represented by the equation, HLtotal = HLOHC + HLIHC.  We 

generally set the model such that two-thirds of the threshold shift is due to outer hair 

cell dysfunction and one-third due to inner hair cell dysfunction, which is consistent with 

average results for both human perception (Lopez-Poveda and Johannesen, 2012; 

Moore and Glasberg, 1997; Plack et al., 2004) and animal physiology (Bruce et al., 2003; 

Harding and Bohne, 2007, 2009).  

Note that the synapse model for the Zilany and Bruce auditory nerve model was 

updated in 2009.  Each section of this dissertation that utilizes the model also specifies 
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which version was used.  Generally, work started after the 2009 update used the newer 

version.  When using the updated synapse model (with longer adaptation time 

constants), we increased the inter-stimulus interval from 50 ms (of silence) to 1 sec. 

Although this model was fit to cat data, the primary difference between different 

mammals is the size.  The position along the length of the cochlea can be compared 

across species using the function   
 

 
      

 

 
   , where x is the distance from the 

base of the cochlea, F is the frequency, and the constants a, A, and k depend on the 

species (Greenwood, 1990).  Although the frequency tuning in humans may be sharper 

than in many laboratory mammals (Shera et al., 2002), this remains a topic of some 

controversy (Joris et al., 2011; Lopez-Poveda and Eustaquio-Martin, 2013; Ruggero and 

Temchin, 2005).  Additionally, the consistent trend in all species tested (including 

humans) is that tuning gets sharper at high frequencies.  Any within-species 

comparisons of normal versus impaired hearing would then be expected to show similar 

trends in other species. 

1.2.2 Animal Model 

The present work also involves acute surgical and experimental procedures to 

record responses directly from individual auditory nerve fibers in chinchillas.  Chinchillas 

were chosen for several reasons.  A large body of anatomical, physiological, and 

behavioral data exists on the auditory system for chinchillas (Morest et al., 1990; 

Ruggero et al., 1997; Ruggero and Rich, 1987; Shofner, 1999).  Chinchillas have low-

frequency hearing, similar to humans, and are thus a good model for studies such as 
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these that focus on clinically relevant issues related to the neural correlates of human 

auditory perception (especially percepts that are thought to require phase locking).  The 

long experiments (18-36 hours) that can be performed with chinchillas also produce 

high yields of data, thereby reducing the total number of animals required. 

All procedures were approved by the Purdue Animal Care and Use Committee.  Male 

animals were usually obtained at around 6 months of age, weighing approximately 400-

500g.  Some animals were used as models of normal hearing, while others were 

exposed to noise to induce sensorineural hearing loss. 

The acoustic trauma procedure for inducing sensorineural hearing loss was similar to 

the one used previously with cats (Heinz and Young, 2004; Heinz et al., 2005) and 

chinchillas (e.g., Kale and Heinz, 2010).  Noise over-exposure typically results in mixed 

inner and outer hair cell dysfunction, which is likely to be common in many hearing 

impaired patients (Liberman and Dodds, 1984a).  The animal was anesthetized using a 

combination of xylazine (1-1.5mg/kg im) and ketamine (50-65mg/kg im) and its head 

was restrained.  Atropine (0.1mg/kg im) was given to control mucus secretions and eye 

ointment was used to prevent drying of the eyes.  Prior to exposure, auditory brainstem 

response (ABR) thresholds and distortion product otoacoustic emissions (DPOAE) were 

measured to establish a baseline.  ABR thresholds were measured with tone bursts at 

0.5, 1, 2, 4, and 8 kHz using insert earphones. 

Noise was presented from a loudspeaker approximately 30cm above the animal's 

head in a sound-attenuating chamber.  The noise used for over-exposure was one 

octave wide, centered at 500 Hz, and was presented at 116dB SPL for 2 continuous 
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hours.  After the exposure, animals were kept warm and monitored until recovery from 

anesthesia was complete.  The animal was then allowed to recover for at least 4 weeks 

to allow temporary threshold shifts to dissipate (Nordmann et al., 2000).  Prior to acute 

experiments on noise-exposed animals, hearing loss was confirmed (by verifying that 

ABR thresholds had shifted by at least 20dB at 2 kHz; Ngan and May, 2001) while under 

anesthesia.  

 

Figure 1.6.  Auditory nerve thresholds and tuning sharpness 
Fibers from normal-hearing animals are indicated by a gray dot; those from noise-
exposed animals are indicated by an open red circle.  Lines in the upper panel show 
population thresholds.  Lines in the lower panel indicate 5th and 95th percentiles from 
Kale and Heinz (2010). 
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  If more than 25% of the tuning curves for any non-exposed animal were broader 

than the 95th percentile of the normal chinchilla data from (Kale and Heinz, 2010), the 

data from that animal were discarded.  As shown in Figure 1.6, this exposure results in a 

mild flat hearing loss (approximately 15-20dB HL) over a broad frequency range, 

consistent with previous studies (e.g., Harding and Bohne, 2009).  Population thresholds 

in the auditory nerve (solid lines in upper panel) were calculated by evaluating the 

minimum threshold in one-half octave bands.  Average thresholds (dashed lines) are 

also shown for comparison.  (Data shown here are from all animals in our lab that were 

over-exposed to this noise.  Vowel data presented in the following chapters were 

recorded from a subset of these units.) 

Standard neurophysiological procedures were used to record from the auditory 

nerve (Heinz and Young, 2004; Liberman and Dodds, 1984b).  Chinchillas were initially 

anesthetized with xylazine (1-1.5mg/kg im) followed by ketamine (50-65mg/kg im). 

Atropine (0.1mg/kg im) was given every 24 hours to control mucus, and eye ointment 

applied to prevent drying of the eyes.  A catheter was placed in the cephalic vein to 

administer intravenous fluids.  Barbiturate anesthesia (sodium pentobarbital, 

7.5mg/kg/hour iv) was used to maintain an areflexic state throughout the duration of 

the experiment, typically every 90-120 minutes.  (For a few animals, the intravenous 

catheter could not be properly inserted, so supplemental doses of sodium pentobarbital 

were administered into the intra-peritoneal cavity.)  Saline and lactated Ringer's 

solution were administered at a rate of 2.5mL per hour to prevent dehydration.  A 

tracheotomy was performed to create a low-resistance airway.  Rectal temperature was 
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maintained near 37°C with a heating pad.  With the head in a stereotaxic headholder, a 

craniotomy was performed to create an opening in the posterior fossa and the 

cerebellum was minimally aspirated to expose the auditory nerve. 

 The bulla was vented to equalize the middle ear pressure, and recordings were 

made in a sound-attenuating chamber.  A glass micropipette (10-30 MΩ, filled with 3M 

NaCl) was inserted into the auditory nerve under visual control.  Computer controlled 

stimuli were presented via a calibrated closed-field acoustic system using a hollow ear 

bar.  (Calibrations were performed for each animal with a probe microphone placed 

within 3mm of the tympanic membrane.) 

Single AN fibers were isolated by searching with a broadband noise.  Each fiber was 

characterized by using an automated tuning curve algorithm (Chintanpalli and Heinz, 

2007; Liberman, 1978), and the fiber CF, threshold and Q10 (ratio of CF to bandwidth 

10dB above threshold) are estimated.  As suggested by Liberman (1984), CFs for 

impaired fibers were chosen by hand near the high-frequency slope to estimate the 

original CF prior to impairment.  This is based on Liberman's labeling study, which 

showed that the high-frequency slope of the tuning curve can be used as an indicator of 

where that fiber innervates along the length of the cochlea.  Fibers were also classified 

as high spontaneous rate ( ≥ 18 spikes/sec), medium spontaneous rate (0.5 < SR ≤ 18 

spikes/sec), and low spontaneous rate (≤ 0.5 spikes/sec) as suggested by Liberman 

(1978).  Spontaneous rate was estimated from a 20sec period of silence, then a peri-

stimulus time histogram was measured to verify AN (rather than cochlear nucleus) 

responses based on the histogram shape, latency, and a monopolar spike waveform.   
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1.2.3 Data Analysis Techniques 

1.2.3.1 Classical Neural Metrics 

The simplest way to characterize a single-fiber neural response is to quantify the 

firing rate, or the number of spikes in response to a sound.  However, because rate-

based measures often fail to account for basic perceptual phenomena, such as speech 

perception (Sachs and Young, 1979) or pitch coding (Cedolin and Delgutte, 2005), 

temporal-based measures have been explored in depth as well (e.g., Larsen et al., 2008; 

Young and Sachs, 1979).  Characterization of the temporal properties of single-fiber 

neural responses has historically been based on simple periodic stimuli such as pure 

tones or other periodic stimuli.  Although simple metrics such as vector strength or 

synchronization index (Goldberg and Brown, 1969; Johnson, 1980) provide useful 

information, they do not apply to complex stimuli such as running speech.  A metric 

based on autocorrelation of actual nerve spikes, such as those based on the interspike 

interval histogram (Cariani and Delgutte, 1996), is likely more physiologically realistic 

and generalizable in that it can be used across a variety of auditory stimuli. 
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1.2.3.2 Shuffled Correlation Metrics 

Joris and colleagues (2003; 2006a) recently extended the neural analysis work of 

Perkel (1967) by using a “shuffled” autocorrelation (SAC) function1 to characterize 

temporal coding of single-fiber responses in the auditory system.  The SAC is calculated 

by building a histogram of interspike interval durations across (but not within) several 

repetitions of a stimulus, such that the SAC is the set of time intervals from each spike to 

 

Figure 1.7  All-Order Interval Histogram (A,B)  
& Shuffled Autocorrelation Function (C,D)  

[graphs A,C reprinted with permission from Joris et al (2006a); graphs B&D reprinted 
with permission from Louage et al (2004)] 

 

all subsequent spikes in all the other repetitions.  Unlike the often used all-order 

interspike interval histogram which simply measures timing between spikes within each 

                                                      
 

 

1
 Joris and others have referred to the correlation function as a "correlogram", but this is a misnomer.  In 

this dissertation, any reference to a correlogram will refer to a collection of correlation functions 
comprising a three dimensional plot of correlation as a function of both lag and frequency.  (see, for 
example, Figure 4.5) 
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repetition (as shown in Figure 1.7, A-B), the SAC is not limited by the refractory period of 

the neural responses within a single repetition (Figure 1.7, C-D).  This can be seen by 

comparing panels B&D at delays less than 1 ms.  Also note that, because the histogram 

is based on roughly N2 comparisons for N spikes, the SAC is a smoother function than 

the all-order interval histogram. 

Shuffled autocorrelation functions can also be used to study how the envelope 

(slowly varying time structure) and the temporal fine structure (faster oscillations) of the 

signal are coded.  The envelope (ENV) and temporal fine structure (TFS) are thought to 

contribute to perception differently.  The details of this are discussed in more detail in 

Chapter 2. 

1.2.3.3 Spectro-Temporal Manipulation Procedure 

To study the relative timing across multiple fibers, we would like to study the 

responses of several closely-spaced fibers in each animal.  However, this is very difficult 

in practice because the spacing of CFs found during an experiment can be quite sparse, 

and even estimates of CF are somewhat variable (Chintanpalli and Heinz, 2007). 

The spectro-temporal manipulation procedure (STMP; Heinz, 2007; Larsen et al., 

2008) was used in the present work to study predicted spatiotemporal patterns based 

on the responses of a single fiber to several stimuli. In a manner similar to the spectrum 

manipulation procedure for predicting rate responses (LePrell et al., 1996; May et al., 

1996), the sampling rate of the stimulus was modified to shift the spectral content and 

predict the response of a nearby CF to the same stimulus. The STMP, however, uses a 
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subsequent step of scaling the recorded spike times to accurately predict both rate and 

temporal responses of nearby CFs (i.e., to correct for the temporal scaling that results 

from changing the sample rate). 

As an illustrative example, using the STMP, we can predict the response of two fibers, 

A and B, to a single stimulus using the response of a single fiber (at CF0) to two stimuli, A 

and B (as illustrated in Figure 1.8). For example, to predict the response of the fiber 

corresponding to CFA in Figure 1.8 (blue curve, upper panel), we would play the vowel at 

CF0/CFA times the original sample rate, thus shifting the spectrum up (as shown in the 

lower panel, blue curve). The recorded spike times would then also be scaled up by a  

 

Figure 1.8  Spectro-Temporal Manipulation Procedure (STMP) 
The STMP can be used to predict responses of multiple fibers to a single stimulus (A) 
from a single fiber responding to multiple frequency-shifted stimuli (B).  Figure 
reproduced with permission from (Heinz, 2005). 

factor of CF0/CFA to accurately predict the temporal response to the original stimulus 

(illustrated here as a vowel with a formant centered at CF0).  Similarly, we could predict 
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the response of a fiber at CFB by shifting the playing the stimulus at a low rate (thus 

shifting the spectrum down), then scaling the spike times down. 

A computational model has been used to test this technique by comparing the 

spatiotemporal patterns obtained with the STMP (i.e., temporal pattern across 

predicted CFs) and those obtained through the modeled CFs directly (i.e., temporal 

pattern across actual CFs) (Larsen et al., 2008). The benefit of this technique is that it 

allows analysis of neurophysiological data of closely and accurately spaced CFs, which is 

quite difficult to do with conventional population studies. 

 

1.3 Overview of This Dissertation 

Chapter 2 presents a modeling study that evaluates the optimal hearing aid gain for 

different configurations of hearing loss.  This work demonstrates a quantitative 

approach to factoring in the physiological effects of SNHL to hearing aid fittings.  It 

builds upon the work of Bruce and colleagues (Bruce et al., 2007), but quantifies the 

strength of envelope and temporal fine structure coding with a set of neural metrics 

that have been used in other studies (Heinz and Swaminathan, 2009).  This study also 

explores the idea that the optimal gain may in fact differ from individual to individual, 

depending on the proportion of outer and inner hair cell dysfunction.  However, while 

Chapter 2 focuses on neural coding within individual auditory nerve fibers, the rest of 

this dissertation focuses on across-fiber coding.  

Chapter 3 presents a small initial study in which we evaluated spatiotemporal coding 

in the auditory nerve.  We presented broadband noise and a speech sentence to one 
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chinchilla with normal hearing and another with noise-induced hearing loss.  Using the 

STMP approach combined with shuffled correlation metrics, we calculated estimates of 

the cross-fiber correlation and delay, and demonstrated increased cross-CF correlation 

and decreased delays in noise-exposed fibers compared with normal-hearing fibers.  

This work provides a foundation to build upon in the next chapter, which narrows the 

focus to the study of vowel coding. 

Chapter 4 extends the work presented in Chapter 3 by evaluating spatiotemporal 

patterns for vowels in noise.  This allows us to investigate questions about 

spatiotemporal coding, while also keeping us grounded by comparing our results with 

previously published data on vowel coding.  Consistent with our earlier results, the data 

indicate that impairment reduces cross-fiber delays.  The data also indicate that the 

spatiotemporal code is robust in the presence of noise, consistent with previous 

research.  These data can be used as a baseline for evaluating the ability of hearing aids 

to restore neural coding, which is the topic of the next chapter. 

Chapter 5 presents our investigation into the effects of hearing aid amplification on 

spatiotemporal coding of vowels in noise.  We evaluated the neural responses when the 

stimuli were amplified with a linear gain prescription (NAL-R) and a wide dynamic-range 

prescription (DSL[i/o]).  As we hypothesized, neither hearing aid prescription improved 

the spatiotemporal coding of the signal.  Although this was not necessarily surprising, 

before evaluating proposed hearing aid algorithms to improve spatiotemporal coding (in 

Chapter 6), it was critical for us to document the effect of existing hearing aids on 

spatiotemporal coding. 
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Chapter 6 includes our investigation of the general approach used in the 

spatiotemporal pattern correction scheme proposed by Carney and colleagues (Carney, 

2008; Shi et al., 2006).  Rather than directly evaluate that one algorithm, we 

investigated the more general issue of the underlying assumption that across-fiber 

delays can be controlled by introducing frequency-dependent delays into the stimulus.  

Although we can indeed detect these time delays in modeled single-fiber auditory nerve 

responses, we found that neither our correlation metrics nor a simple model of a 

coincidence detector neuron were affected by these delays.  This general result suggests 

that correcting the spatiotemporal code may not be as theoretically simple as adding 

acoustic frequency-dependent delays, and future hearing aid technologies are likely to 

require more complexity and/or ingenuity than the simple approaches proposed to date. 

The final chapter discusses some of the limitations of the work presented here, as 

well as what the present work suggests about the potential roles of modeling, 

physiology, and psychophysics for the future of hearing aid design.  Some potential 

opportunities for future research are also presented. 
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CHAPTER 2. PHYSIOLOGY-BASED HEARING AID FITTING 

This work was presented as the following conference poster: 

Boley, J. and M. Heinz, Quantifying the Effects of Hearing Aid Dynamics on Temporal 
Coding in the Auditory Nerve, First International Symposium on Audible Acoustics in 
Medicine and Physiology, September 2008. 

 

A hearing aid often attempts to restore the impaired ear's missing gain, compressing 

the dynamic range to make soft sounds audible while keeping loud sounds comfortable.  

Although hearing aids have been tremendously successful in many situations, patients 

still have an abnormal degree of difficulty in acoustically complex environments 

(Gatehouse et al., 2003).  

People with normal hearing have a remarkable ability, commonly known as the 

'cocktail party effect' (Cherry, 1953), to understand a single person in a room full of 

other people speaking simultaneously.  Hearing impaired listeners often complain of an 

inability to perform such tasks, even when all the sounds are individually audible.  

Duquesnoy (1983) pointed out that people may in fact "listen in the dips” of the 

background noise to extract information about important sounds from a complex 

mixture.  Normal hearing listeners seem to be able to use the small amount of auditory 

information in short, relatively quiet intervals, but hearing impaired listeners have 

trouble hearing in these situations. Moore (2003) suggested that the temporal fine 
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structure (TFS) of the acoustic waveform is important for understanding speech in 

complex acoustic environments and Lorenzi and colleagues (2006) showed that the 

ability to listen in the presence of modulated noise is correlated with the suprathreshold 

ability to utilize TFS.   

 

2.1 Background 

Bondy and colleagues (Bondy et al., 2004; Haykin et al., 2006) attempted to 

minimize the difference between normal and impaired coding by optimizing parameters 

of an amplification algorithm.  However, the authors considered only the rate-place 

encoding of the auditory signals and did not calculate any measure of phase locking, 

where phase locking refers to the fact that auditory neurons tend to fire in sync with a 

particular phase of the stimulus waveform.  More recently, Bruce and colleagues (Bruce 

et al., 2007) claim to have calculated neural information based on both average 

discharge rate and spike timing.  Their results suggested that more than the prescribed 

gain was generally needed to optimize the slowly varying rate, whereas less gain 

(especially at high levels) was needed to optimize timing information.  However, the 

only difference between these two measures was the length of the averaging window; 

the authors used a very short window size to evaluate temporal coding.   Bruce 

averaged spike counts using a Hamming window length of 256μs, which has the effect 

of attenuating fluctuations faster than approximately 2.5 kHz.  This metric might 

therefore measure timing (e.g. phase locking) in response to low frequencies, but it may 

not be sufficient because synchronous timing can be measured up to at least 5 kHz in 
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the auditory nerve of some mammals (Johnson, 1980; Weiss and Rose, 1988).  Because 

precise timing may be important for hearing in complex situations (Gilbert and Lorenzi, 

2006; Hopkins and Moore, 2007; Hopkins et al., 2008; Lorenzi et al., 2006), future 

physiologically-based designs should consider metrics that include both long-term rate 

and precise temporal coding. 

 

2.2 Experimental Methods 

To evaluate the effect of a hearing aid on neural coding, we compared the predicted 

neural signals from three systems, as illustrated in Figure 2.1.  Using an auditory nerve 

model (Zilany and Bruce, 2006, 2007b), we predicted spiking patterns from a normal-

hearing auditory system and an impaired auditory system.  For the impaired system, we 

also calculated the output of the model preceded by a hearing aid amplification 

algorithm. 

 

Figure 2.1 Schematic diagram of experimental conditions 
 

2.2.1 Computational Model of Hearing Impairment 

A population of 30 auditory nerve fibers was modeled to represent center 

frequencies ranging from 250 Hz to 8 kHz.  For impaired hearing simulations, the 
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coefficients COHC and CIHC were chosen to result in a mild hearing loss, as shown in Figure 

2.2.  The coefficients were adjusted to achieve the desired hearing loss using three 

scenarios: only IHC dysfunction, 2/3 of threshold shift (in dB) due to OHC dysfunction 

(1/3 due to IHC dysfunction), and nearly all OHC dysfunction.  A hearing aid gain profile 

(Figure 2.3) was fit to this audiogram, based on the NAL-R prescription  (Byrne et al., 

1990).  A speech stimulus was then run through the AN model for three separate 

scenarios: a normal-hearing case, an impaired case, and an impaired case with a hearing 

aid.  The speech stimulus was a single word in quiet, and the level was adjusted from 

60dB SPL to 100dB SPL in 10dB steps.  The resulting neural spike patterns were then 

analyzed for comparisons across these three cases to quantify the ability of the hearing 

aid to restore normal temporal coding.  The shape of the frequency-gain curve was set 

to the NAL-R prescription, then the overall level was adjusted (-40 to +40dB) to 

determine if the optimal overall gain differed from the prescribed overall gain. 

 

 

Figure 2.2  Audiogram showing mixtures of OHC and IHC dysfunction 
Total modeled threshold shift (black) was accomplished via three configurations: nearly 
all OHC dyfunction (blue), all IHC dysfunction (green) and a mixture (red).  Blue, green 
and red lines indicate the threshold shift due to outer hair cells. 
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Figure 2.3  NAL-R prescriptive gain for the audiogram shown in Figure 2.2. 
The overall level of this curve was adjusted to determine optimal gains. 

 

2.2.2 Measuring Envelope and Fine Structure 

Joris and colleagues (2006a) applied the shuffled autocorrelation function (SAC, see 

section 1.2.3.2) to a strategic set of signals in order to determine what part of the 

temporal code was responding to the envelope and which part was due to the temporal 

fine structure.  They presented a stimulus, A+, recorded the resulting neural pattern, 

and calculated the SAC (Figure 2.4A).  They then presented an inverted polarity version 

of the same stimulus, A-, again recorded the spikes, and calculated the SAC (Figure 2.4B) 

which matches the first SAC (except for some scaling due to adaptation).  By analyzing 

the spikes from A+ in reference to A-, a cross-stimulus autocorrelation (XAC) function 

was then calculated (Figure 2.4C).  Heinz and Swaminathan (2009) have referred to this 

correlation between A- and A+ as a shuffled cross-polarity correlation, or SCC(A+,A-) 

because the two signals are not identical and the function is therefore not an 

autocorrelation.  The SCC(A+,A-) was calculated in a manner similar to the SAC (as 

described in section 1.2.3.2) but the intervals are based on the times between each 
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spike in A+ and subsequent spikes in A-.  The envelope of the signal is the same for both 

A+ and A-, and anything that is common between the SAC and SCC(A+,A-) is taken as a 

measure of the envelope.  The average of the SAC and SCC(A+,A-) (labeled SUMCOR in 

Figure 2.4D) therefore estimates the autocorrelation function based on the neural 

envelope (ENV) response.  The difference between the SAC and SCC(A+,A-) (DIFCOR; 

Figure 2.4E) estimates the autocorrelation function based on the neural temporal fine 

structure (TFS) response.  The peak heights of the SUMCOR and DIFCOR functions can 

then be used to represent the amount of envelope and fine-structure temporal 

encoding, respectively. 

 

 

Figure 2.4.  Shuffled correlation functions 
A&B) SACs of polarity-inverted versions of the stimulus; C) shuffled cross-polarity 
correlation (SCC); D) SUMCOR is the average of SAC and SCC, and represents enveleope 
coding; E) DIFCOR is the difference between SAC and SCC, and represents temporal fine 
structure coding [reprinted with permission from Joris et al (2006a), copyright 2006, 
Acoustical Society of America] 

 

Unfortunately, because these metrics measure responses at the level of the auditory 

nerve, they measure the ear's response to a stimulus, which may have a different ENV & 

TFS than the original acoustic signal.  As Ghitza (2001) pointed out, the narrow-band 
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filtering of the cochlea can change the relative amount of ENV and TFS available to the 

auditory nerve.  The narrow filters of the cochlea are in fact able to generate a 

“recovered envelope” from the broadband fine-structure (as depicted in Figure 2.5).   

 

 

  

Figure 2.5.  Theoretical framework illustrating recovered envelopes 
(Waveforms illustrate a signal before and after narrowband cochlear filtering).  
Reprinted, with permission, from Heinz and Swaminathan (2009). 

 

Heinz and Swaminathan (2009) extended the SAC and SCC metrics by calculating 

neural ENV and TFS correlation coefficients based on two separate measurements of 

SUMCOR or DIFCOR (ρenv and ρtfs, respectively).  These metrics, as calculated below, are 

used to evaluate the similarity in ENV or TFS coding between two different sets of 

neural spike trains.  ρtfs and ρenv are defined as: 

      
        

                
 

Equation 1 
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Equation 2 

 

These metrics are similar to the well-known Pearson correlation coefficient, which is 

simply the covariance divided by the standard deviations of the two random variables.  

Similarly, these neural cross-correlation metrics range from 0 to 1, where 0 indicates no 

correlation and a value of 1 indicates excellent correlation.  These neural cross-

correlation metrics have general applicability, because conditions A and B can be 

responses to two different stimuli measured from the same neuron (e.g., to quantify 

recovered envelopes, as in Heinz and Swaminathan, 2009), or the same stimulus applied 

to two different neurons.  For example, these metrics could be applied to one normal-

hearing and one aided+impaired at the same characteristic frequency, as in the present 

chapter, or two different CFs, and in Chapters 3-6. 

Figure 2.6 illustrates how the correlation metrics can be applied to compare two 

conditions.  Panel A shows the shuffled autocorrelation function for condition A 

[SAC(A+); thick line] and the shuffled cross-polarity correlation function [SCC(A+/A-); 

thin line], whereas panel B shows the same for condition B.  Panel C shows the shuffled 

cross-condition correlation function [SCC(A+,B+); thick line] and the shuffled cross-

polarity/cross-condition correlation function [SCC(A+,B-); thin line].  DifCors for A-C are 

shown in panels D-F, and SumCors for A-C are shown in panels G-I.  The correlation 

coefficients, ρenv and ρtfs, are calculated based on these correlation functions according 

to equations 1-2. 
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Figure 2.6  Example of comparison between normal and impaired envelope coding 
The first column represents correlation analyses of one condition; the second column 
represents correlation analyses of another condition.  The third column represents 
cross-condition correlation analyses.  Reprinted, with permission, from Heinz and 
Swaminathan (2009). 

 

The neural firing rate, ρtfs, and ρenv were compared across the normal and 

aided+impaired cases (where the hearing aid applied a simple linear gain to a word in 

quiet). Each of these metrics was averaged across the 30 model AN fibers.  The optimal 

gain for each input level was the one which most closely restored the coding to normal, 

as indicated by the smallest difference in rate or by a cross-correlation coefficient 

(either ρtfs, or ρenv) closest to a value of 1.  (Although rate was a function of time, the 

gain which optimized rate was defined here as the gain which minimized the average 

difference between normal and aided+impaired conditions.) 
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2.3 Results 

We calculated the average (long-term) and short-term firing rates as in the study by 

Bruce and colleagues (2007) and found very similar results - gains above NAL-R were 

typically required to optimize average discharge rates (Figure 2.7A) while lower, 

compressive gains (less gain for higher input levels) were required to optimize short-

term discharge rates (Figure 2.7B).  When we optimized the gain for envelope coding, 

however, the results differed from those for average discharge rates (i.e., with an 8 ms 

time window, as used by Bruce and colleagues).  The general trend for envelope 

optimization appeared to be a gain above NAL-R at moderate levels that decreased for 

higher input levels (Figure 2.7C).  Optimization of temporal fine structure required less 

gain than any other metric used, as shown in Figure 2.7D.  So, overall we see a 

consistent trend similar to the results of Bruce and colleagues (2007), where slow 

temporal information requires higher gain and faster temporal information lower gain.  

However, there are some specific differences that highlight the importance of explicitly 

evaluating ENV and TFS information. 

This indicates that a prescription lower than NAL-R may be preferred for encoding 

fine structure information.  However, more gain is needed for encoding envelope 

information than is provided by the prescription.  In fact, one gain setting could work 

well for speech in quiet, where envelope information is important, and a lower gain 

setting might work better in noisy conditions where temporal fine structure is thought 

to be important.  Compression, or gain that decreases as level increases, may be 

preferred for encoding both envelope and fine structure information.  This is consistent 
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with what we know about the physiology of a normal-functioning auditory system in 

which the cochlear amplifier provides less gain for high-intensity sounds.  It also appears 

that the NAL-R prescription balances the needs for both envelope and fine-structure 

coding when there is a mixture of both inner and outer hair cell dysfunction. 

 

Figure 2.7  Optimal gains for mixed hair cell dysfunction.   
A-B: optimization of average and short-term discharge rate, as in Bruce et al (2007).  C-D:  
optimization of envelope and fine structure coding  (Results were similar for OHC 
dysfunction.) Lines indicate the top 10% of optimal gains. 

 

We used a similar approach to evaluate the effects of selective inner hair cell (IHC) 

dysfunction.  As discussed in section 1.1.2, IHC dysfunction is known to result in 

elevated thresholds without a loss of tuning, whereas OHC dysfunction results in both 

elevated thresholds and degraded tuning (Liberman and Dodds, 1984a). 
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Using the frequency dependent gain of the NAL-R prescription as a baseline for a 

mild hearing loss, the optimal gains were very similar to the case of mixed hair cell 

dysfunction when optimizing for average discharge rate, short-term rate, or fine 

structure coding (Figure 2.8A,B,D).  However, when optimizing to achieve near-normal 

envelope coding (Figure 2.8C), we found that the optimal gains differed substantially 

from those for mixed OHC and IHC  damage.  

 

 

Figure 2.8  Optimal gains for inner hair cell dysfunction. 
A-B: optimization of average and short-term discharge rate, as in Bruce et al (2007).  C-D:  
optimization of envelope and fine structure coding.  Lines indicate the top 10% of 
optimal gains.   

 

Bruce (2010) recently showed that when the gain was optimized for restoring the 

average discharge rate, the result was a large spread of synchrony to vowel formants.  
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He showed that this spread of synchrony at optimal gain only occurred for simulations 

of IHC dysfunction, and not for simulations of OHC dysfunction.  This suggests that it is 

important to consider responses to the envelope and fine structure separately, 

especially when considering IHC dysfunction. 

To better understand why the optimal gains for envelope coding were so different, 

we looked at the neural metrics in detail for a 70dB SPL stimulus (Figure 2.9).  The top 

row shows SumCors for both IHC and mixed dysfunction when +20dB of gain (re NAL-R) 

is applied; the bottom row shows the same plots when -20dB of gain is applied.  The 

first column (A,D) shows the SumCor for within-fiber envelope coding with normal 

hearing.  The second column (B,E) shows the SumCors for within-fiber envelope coding 

for both the IHC dysfunction and the mixed dysfunction models.  The third column (C,F) 

shows the across-condition envelope coding, comparing envelope coding in normal to 

either IHC dysfunction or mixed dysfunction. 

The SumCors for the impaired systems with gain 20dB below NAL are shown in 

Figure 2.9E.  Notice that the peak of the IHC curve has lowered substantially, as 

compared to Figure 2.9B, to be much closer to normal envelope coding (see Figure 

2.9A,D).  Also notice that the SumCor of the cross-correlation (Figure 2.9C,F)  is reduced 

as the gain is reduced for the mixed dysfunction case (lower SumCor peak, ρenv, 

indicating envelope coding further from normal), but the SumCor has increased as the  

 

A B 

C D 



42 

  

Figure 2.9  SumCors for normal (A,D) and impaired (B,E) conditions 
20dB gain (A-C) or -20dB gain (D-F) relative to NAL-R.  C&F show the SumCor for the 
cross-correlation of normal and each impaired condition.  Whereas the first two 
columns (A,D,B,E) show within-fiber envelope coding, the third column (C&F) shows the 
similarity between normal envelope coding and aided-impaired envelope coding.  Note 
that NAL-R+20dB was optimal for mixed hair cell dysfunction, whereas NAL-R-20dB was 
optimal for inner hair cell dysfunction. 

 

gain is reduced for the case with only IHC dysfunction (higher SumCor peak, ρenv, 

indicating  envelope coding closer to normal).   Therefore, we see here that the optimal 

gain setting is not necessarily the one that enhances envelope coding, but the one which 

best restores envelope coding to normal. 

At the optimal gain for each stimulus level, the average correlation coefficients 

(across CF) were higher for envelope than TFS, as shown in Figure 2.10.  This suggests 

that amplification is able to restore envelope coding more than TFS coding.  Similarly, 

the average correlation at the optimal gain was higher (more similar to normal) when 

the hearing loss was due to inner, rather than mixed, hair cell dysfunction.  This 
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indicates that hearing impairment due to inner hair cell dysfunction can be corrected 

more than impairment that involves outer hair cells. 

 

 

Figure 2.10  Average correlation at optimal gain 
 

2.4 Discussion 

These results suggest that hearing aid users may benefit from prescriptive gain 

settings that take into consideration their underlying physiology.  If scientists are able to 

predict the degree of outer and inner hair cell impairment (Lopez-Poveda and 

Johannesen, 2012; Moore et al., 1999c), it may be beneficial to adjust the gain 

accordingly.  In fact, this may reduce the inter-subject variability in performance that 

often occurs even among patients with very similar audiograms. 

It is interesting to note that compression is needed to preserve timing information, 

in terms of both short-term rate and temporal fine structure (as calculated using the 
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correlation metrics).  Little or no compression seems to be necessary for preserving rate 

information <100 Hz (given an 8 ms Hamming window), but it appears that some 

compression may in fact be necessary for envelope coding (which was only limited by 

the bandwidth of each nerve fiber). 

Of particular interest is the result suggesting that the optimal gain for preserving 

envelope in a patient with primarily OHC dysfunction is drastically higher than the gain 

for a patient with primarily IHC dysfunction.  If this is in fact true, then it would be 

beneficial to clinically assess a patient’s OHC/IHC dysfunction before fitting a hearing aid.  

Given some information about the underlying physiology, a hearing aid could be better 

fit for the individual patient.  For example, a computational model could be used to 

match the patient’s behavioral performance by adjusting the relative OHC vs IHC 

dysfunction, then the hearing aid parameters could be adjusted to improve 

performance of the model.  These optimized parameters could then be tested on the 

patient, thus minimizing the patient’s time in the clinic but potentially maximizing 

performance. 

The work presented in this chapter assumes that improving the neural coding within 

each auditory nerve fiber will translate directly to a perceptual improvement.  If we 

could succeed at making all of the auditory nerve responses within an impaired system 

look exactly like the responses of a normal system, and if we can safely assume that all 

the impairment is peripheral, perhaps perception would return to normal.  However, it 

is theoretically impossible to fully restore the response of every neural fiber to normal if 

there is any OHC dysfunction, even if we were reasonably sure of the model accuracy 



45 

(Giguère and Smoorenburg, 1999; Heinz, 2010).  This limitation is illustrated in Figure 

2.10, where the largest correlation coefficients (i.e., the degree to which coding can be 

restored to normal) were lower for mixed OHC/IHC loss than for IHC dysfunction alone. 

Although restoring the temporal coding within each fiber may be beneficial, 

research suggests that within-fiber coding does not account for performance on some 

psychoacoustic tasks (e.g., Cedolin and Delgutte, 2005).  Rather than focusing on the 

restoration of neural codes within each nerve fiber, it may be beneficial to use 

knowledge of how the brain uses this information and focus on restoring population 

codes as well.  For example, evidence has been mounting that relative temporal coding 

(e.g., across multiple auditory nerve fibers) may be important perceptually (e.g., Carney, 

1994; Cedolin and Delgutte, 2007; Shamma, 1985a), and decoding this information may 

be one of the first things the brain does when it receives information from the ear 

(Carney and Friedman, 1998; Carney, 1990; Wang and Delgutte, 2012).  The remainder 

of this dissertation focuses on this relative temporal coding across CFs, commonly 

known as spatiotemporal coding. 
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CHAPTER 3. SPATIOTEMPORAL CODING IN THE AUDITORY NERVE 

The work presented in this chapter was also published as the following book chapter 

(reprinted at the end of this document): 

Heinz, M., Swaminathan, J., Boley, J., & Kale, S. (2010). Across-Fiber Coding of Temporal 
Fine-Structure: Effects of Noise-Induced Hearing Loss on Auditory-Nerve Responses. 
In E. A. Lopez-Poveda, R. Meddis, & A. R. Palmer (Eds.), The Neurophysiological Bases 
of Auditory Perception (pp. 621–630). New York: Springer. 

All figures in this chapter were reproduced with kind permission from Springer Science 

and Business Media. 

3.1 Background 

Listening in a "cocktail-party situation" (i.e., with multiple competing sounds) is a 

complex task (Bregman, 1990), and peripheral hearing impairment hinders our ability to 

organize these auditory scenes (for a review, see Shinn-Cunningham and Best, 2008).  

The perceptual cues used to segregate sounds in a complex mixture have been well 

studied, but the neural codes are not as well understood.  We know that temporal 

codes are more robust to noise than rate-based codes (Delgutte and Kiang, 1984; Sachs 

et al., 1983; Young and Sachs, 1979) and several researchers have proposed 

mechanisms for decoding temporal codes as a function of cochlear place (Carney, 1990, 

1992; Carney et al., 2002; Deng and Geisler, 1987; Shamma, 1985b; Wang and Delgutte, 

2012).  In fact, these temporal-place (or 'spatiotemporal') cues are thought to be 
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important for several psychoacoustic phenomena, including speech perception, pitch, 

and intensity coding as well as tone-in-noise masking and interaural timing differences 

(Carney et al., 2002; Cedolin and Delgutte, 2007; Heinz, 2007; Joris et al., 2006b; Larsen 

et al., 2008; Shamma, 1985a; Shamma and Klein, 2000). 

Shamma (1985a, 1985b) proposed that rapid phase shifts across fibers with different 

CFs may encode important information about auditory stimuli (for example, vowel 

formants).  Evidence suggests that neurons in the brainstem (specifically, globular bushy 

cells in the cochlear nucleus) are sensitive to the phase slope of certain stimuli (Carney, 

1990; Wang and Delgutte, 2012).   

If the phase of the neural signals are at least partially determined by the phase of 

the auditory filters, we expect that impairment (with broad auditory filters and shallow 

phase responses) will decrease the slope of the neural phase shifts across CF.  The goal 

of this study was to quantify the relative timing of auditory nerve responses across 

nearby CFs, and determine if spatiotemporal coding changes with hearing impairment.  

3.2 Methods 

In this study, we measured auditory nerve responses to broadband noise and 

sentence-level speech.  The recordings were performed in two anesthetized chinchillas, 

using standard procedures (Heinz and Young, 2004; Kale and Heinz, 2010).  Hearing 

impairment was induced in one animal by presenting a 50 Hz-wide noise band centered 

at 2 kHz for 4 hours at 115 dB SPL, after which the animal was allowed to recover for 6 

weeks.  Consistent with previous studies (Heinz and Young, 2004; Liberman, 1984), this 

resulted in increased thresholds, by approximately 30-50dB, and broadened tuning for 
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all fibers.  For each fiber, the characteristic frequency (CF) was chosen by hand near the 

high-frequency slope of the tuning curve to approximate the CF prior to impairment 

(Liberman, 1984). 

For each AN fiber, the STMP (presented in section 1.2.3.3) was used to predict the 

responses of nearby fibers with CFs within ± 0.5 octaves of the actual CF.  Spikes within 

the first 1 ms of each response were assumed to be spontaneous activity, and these 

spike times were not scaled. 

The methodological techniques used for across-CF correlations are described in 

section 1.2.3.2 and in a number of related publications (Heinz and Swaminathan, 2009; 

Joris, 2003; Joris et al., 2006a, 2006b; Louage et al., 2004).  Briefly, a shuffled cross-

correlation function (SCC) between the responses of two fibers with different CFs is 

calculated. The peak height of the SCC, relative to the geometric mean of the SAC peak 

heights for each CF (see Equations 1-2), determines the correlation coefficient (ρ), a 

metric that represents the similarity (normalized from 0 to 1) between temporal 

responses of the two fibers.  Based on the difference between the SAC and SCC (derived 

from the responses to positive and negative polarity stimuli, see Section 2.2.2), we can 

calculate a correlation coefficient for the temporal fine structure (ρtfs).  Because of the 

traveling wave, the peak of the cross-correlation function (SCC) between the two CFs 

will occur at a non-zero delay, which we call the characteristic delay (CD). The CD 

represents the traveling wave propagation time between these two CFs, which is 

expected to increase as ΔCF increases.  Figure 3.1 illustrates how these cross-correlation 

metrics can be calculated from the within- and across-fiber correlation functions. 
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Figure 3.1  Temporal coding based on shuffled correlation functions. 
A&B: Shuffled AutoCorrelation (SAC; thick line) function and Cross-Polarity 
AutoCorrelation (XPAC; thin line) function for two CFs separated by 0.5 octaves. C: 
Shuffled Cross-CF-Correlation (SCC; thick line) function and Cross-Polarity Cross-
Correlation (XPCC; thin line) function. D-F: Difcors calculated as the difference between 
auto- and cross-correlation functions shown in A-C, respectively.  F: The relative peak 
height of the cross-fiber difcor indicates the correlation coefficient (ρtfs). The SCCS peak 
is shifted by the characteristic delay (CD).  [Figure reproduced, with permission, from 
Heinz et al (2010)] 

 

3.3 Results 

Figure 3.2 shows the cross-CF analysis for a normal and an impaired auditory nerve 

fiber with similar CF, responding to a broadband noise stimulus. This is representative of 

the data collected from 17 normal and 19 impaired fibers.  Panel A shows the tuning 

curves for a normal-hearing animal (dashed line) and a hearing-impaired animal (solid 

line).  Based on similar high-frequency edges of the tuning curves (Liberman, 1984), the 

CF of the impaired fiber is approximated to be the same as the CF of the normal fiber, or 

1.3 kHz.  The correlation (ρTFS) and characteristic delay (Figure 3.2 B&C, respectively) are 

plotted as a function of ∆CF for every combination of effective CFs tested (based on the 
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Figure 3.2  Normal-vs-impaired spatiotemporal coding based on individual fibers 
The STMP was used to predict a population of effective CFs, and spatiotemporal coding 
was quantified using shuffled across-CF correlation analyses.  Open squares represent 
data from a normal-hearing animal; closed triangles represent data from a hearing-
impaired animal.  A) Tuning Curves for a normal and an impaired auditory nerve fiber; B) 
Predicted across-CF correlation strength as a function of effective CF separation; C) 
Predicted across-CF characteristic delay as a function of effective CF separation.  [Figure 
reproduced, with permission, from Heinz et al (2010)] 

 

STMP).  The variation in ρTFS was fit with a fourth order polynomial constrained such 

that the value at a CF separation of 0 octaves was equal to 1.0.  The variation in 

characteristic delay was fit with a line constrained such that the value at a CF separation 

of 0 octaves was equal to 0.  The spread of correlated activity (ρ0.6) is quantified by 

measuring the CF separation at which the correlation falls to a value of 0.6, and the 

characteristic delay (CD0.5) was quantified by the time delay between the CFs separated 

by 0.5 octaves.  For the normal fiber shown in Figure 3.2, ρ0.6 was 0.34 octaves, whereas 



51 

for the impaired fiber, ρ0.6 was 0.81 octaves (as shown in panel B).  For the normal fiber, 

CD0.5 was 0.96 CF cycles, whereas for the impaired fiber, CD0.5 was 0.81 CF cycles (as 

shown in panel C).  These results suggest that noise-induced hearing loss tends to 

reduce traveling wave delay and increase the spread of correlated activity across the 

cochlea. 

Population responses to both broadband noise and a speech sentence are shown in 

Figure 3.3.  The left column shows the strength of within fiber TFS coding (panel A), and 

across-CF coding (panels C,E) in response to broadband noise.  The right column shows 

similar data for the speech stimulus.  The CF region near 1 kHz contains data for both 

normal and impaired AN fibers.  Although within-fiber coding of fine structure does not 

appear to be degraded by impairment (Figure 3.3A,B), cross-CF correlations were 

affected by impairment (Figure 3.3C,D).  After impairment, the width of correlated 

activity (across a range of basilar membrane locations) was increased.  The increased 

width of correlated activity appears to be greater for speech than for noise. 

The characteristic delay between effective CFs that were half of an octave apart 

decreased by approximately 0.25 cycles after impairment (Figure 3.3E,F).  The size of 

this phase shift is consistent with level-dependent phase shifts seen in guinea pigs 

(Palmer and Shackleton, 2009).  For pure tones, the relative phase for a half-octave 

region can vary by approximately 0.25 to 0.5 cycles over a 40-50 dB range of levels.  This 

effect is thought to be related to nonlinear cochlear tuning that is seen with normal 

outer hair cell function.  If impairment alters the phase by 0.25 cycles (e.g., from in-



52 

phase to uncorrelated), this could have a significant impact on any neural mechanism 

that depends on this delay, such as cross-fiber coincidence detection. 

 

Figure 3.3  Comparison of normal and impaired spatiotemporal coding 
Spatiotemporal coding of temporal fine structure based on the population of auditory 
nerve fibers responding to broadband noise (left column) and a speech sentence (right 
column).  A-B: Within-fiber TFS coding strength is represented by difcor peak heights.  C-
D: The smallest CF separation at which ρtfs dropped to a value of 0.6 represents the 
width of correlated activity.  E-F: The characteristic delay at 0.5 octaves of CF separation 
estimates the phase delay (in CF cycles) between the two locations on the basilar 
membrane.  The lines represent moving averages using a 0.7 octave wide triangular 
window.  Figure reproduced, with permission, from Heinz et al (2010). 
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3.4 Discussion 

We have shown that across-CF coding of temporal fine structure is altered by 

sensorineural hearing loss.  We found that impairment resulted in broader regions of 

correlated activity, which might be expected due to broadened tuning.  This broadened 

tuning may be perceptually relevant for listening in complex conditions because the 

number of independent neural channels of information would be reduced, potentially 

making some listening tasks more difficult. 

We also found a reduction in estimated traveling wave delay following SNHL.  This 

increase in propagation speed would increase the coincidence of temporal information 

across a population of fibers with different CFs, thus altering the normal spatiotemporal 

patterns that have been hypothesized to include robust neural cues for pitch, speech, 

and intensity coding (Carney, 1994; Cedolin and Delgutte, 2007; Shamma, 1985a).   

By better understanding the effects of SNHL on spatiotemporal coding, we may be 

able to indentify some ways to improve the design of auditory prostheses like hearing 

aids and cochlear implants.  The next chapter investigates how SNHL affects 

spatiotemporal coding of vowels, both in quiet and in the presence of background noise. 
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CHAPTER 4. SPATIOTEMPORAL CODING OF VOWELS IN NOISE 

Portions of this work were presented in the following conference posters: 

Boley, J. and M. Heinz, Predicted Effects of Amplification on Spatiotemporal Coding of 
Vowels in Noise, International Hearing Aid Research Conference, August 2010. 

Boley, J. and M. Heinz, Impaired Spatiotemporal Coding of Vowels in Noise, International 
Hearing Aid Research Conference, August 2012. 

 

In the previous chapter (and Heinz et al., 2010; see appendix), we showed that 

across-fiber coding of temporal information is altered by sensorineural hearing loss.  We 

found that impairment resulted in broader regions of correlated activity, which is 

expected due to broadened tuning.  This broadened tuning may be perceptually 

relevant for listening in complex conditions because the number of independent neural 

channels of information would be reduced, potentially making some listening tasks 

more difficult.  We also found a reduction in the estimated traveling wave delay 

between different places along the length of the cochlea.  This increase in propagation 

speed should increase the coincidence of temporal information across a population of 

fibers, thus altering the normal spatiotemporal patterns. 

4.1 Background 

Miller and colleagues (1997) showed that NIHL degrades phase locking to vowel 

features - following NIHL, fibers with characteristic frequencies (CFs) near the formants 
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tend to phase-lock to many individual harmonics rather than the formant. They also 

showed that responses of fibers with CFs in the spectral trough of a vowel (between F1 

and F2) are not suppressed as they are in normal-hearing animals, thus degrading the 

contrast between the formant peak and the trough. 

A subsequent study (Schilling et al., 1998) showed that impairment caused an 

upward spread of F1 synchrony and that precisely aligned frequency-shaped 

amplification can limit this spread, thus improving the representation of higher formants. 

However, the researchers found strong phase-locking to harmonics in the trough, thus 

degrading the spectral contrast. They also demonstrated that the frequency-shaped 

amplification did not prevent upward spread of higher formant synchrony (i.e., to F2 

and F3). 

The work presented here extends previous studies by more thoroughly quantifying 

the effects of NIHL on vowel coding in noise.  Specifically, this expands upon the work of 

Heinz (2007), which evaluated spatiotemporal coding of the first formant and trough of 

the vowel /ε/ in noise. This work adds to this previous research by quantifying impaired 

rate-place, temporal-place, and spatiotemporal coding of the first two formants in noise. 

The work presented here also expands upon the cross-CF coincidence model (Deng and 

Geisler, 1987; Heinz, 2007) by calculating the cross-correlation of adjacent CFs using 

novel neural metrics recently developed in our lab, as discussed in Heinz and 

Swaminathan (2009). These correlation metrics are used to calculate the characteristic 

delay (an estimate of the traveling wave delay) between two CFs.  This will enable us to 

better understand how impairment affects cross-CF coding of vowels. We expected that 
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impaired spatiotemporal coding would be characterized by a decrease in traveling wave 

delay and a spread of correlation across CF (Heinz et al., 2010). 

4.2 Methods 

The noise exposure and surgical procedures are discussed in section 1.2.2.  Nine 

chinchillas with normal hearing and eight noise-exposed chinchillas were presented with 

the vowel /ε/ in quiet and in noise.  AN tuning thresholds and bandwidths for these 

animals are shown in Figure 4.1.   Responses to the vowel were measured in conditions 

for which rate-place coding was expected to be poor – at moderately high levels and in 

the presence of background noise.  Vowels were synthesized with a cascade formant 

synthesizer (Klatt, 1980). A fundamental frequency of 100 Hz was used, with formant 

frequencies of 500, 1700, 2500, and 3300 Hz (as in Miller et al., 1997; Schilling et al., 

1998; Young, 2008).  The presentation level was adjusted according to the rate-level 

function measured when the second formant was centered on the fiber CF.  The 

measured rate-level function was fit with a model (Sachs et al., 1989) and the 

presentation level was chosen as the level which produced a rate two-thirds of the way 

from the spontaneous rate to the saturation rate. 
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Figure 4.1  Auditory nerve tuning thresholds and sharpness for this experiment 
 

Background noise was a frozen waveform of speech-shaped noise (Byrne et al., 

1994). When noise was included in the stimulus, it was presented at two levels: one at 

the same sound pressure level as the vowel (0dB signal-to-noise ratio, or SNR) and one 

which elicits the same firing rate as the vowel (approximating equal sensation level).  

For each condition, both vowel and noise stimuli were 2sec in duration, with 10 ms 

rise/fall ramps.  (After adjusting the sampling rate using the STMP (described in section 

1.2.3.3), the stimuli durations ranged from 1.4sec to 2.8sec.)  Stimuli were repeated 

once every 3sec until 2000 spikes were recorded, based on our observation that this 

number of spikes ensures consistent quantitative metrics (Heinz and Swaminathan, 

2009). 
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4.2.1 Quantifying the Strength of Temporal Coding 

The methodological techniques used for across-CF correlations are described in 

sections 1.2.3.2, 1.2.3.3, and 3.2.  Briefly,   the STMP was used to predict responses of 

nearby fibers with effective CFs placed at -0.75, -0.50, -0.25, -0.15, -0.05, 0, 0.05, 0.15, 

0.25, 0.35, and 0.50 octaves from the actual CF.  In contrast to the method used for data 

analysis in the previous chapter (which assumed 1 ms of spontaneous activity at the 

beginning of each spike train), we used a frequency-dependent time function fit to the 

response latency of a 0.1 ms condensation click at 50dB SPL (as in Wang and Delgutte, 

2012).  The following quadratic function was fit to the latency predicted by a 

computational model of normal hearing (Zilany and Bruce, 2006; Zilany et al., 2009): 

 λ = 0.005228*x2 - 0.01203*x + 0.008404 Equation 3 

where λ is the approximated neural conduction delay (in seconds) and x is the 

proportion of the cochlear length.  The proportional position for a given frequency can 

be calculated according to the equation given by Greenwood (1990): 

             Equation 4 

where F is the frequency (in Hz) corresponding to that position, x is the proportional 

length of the cochlea, and constants A=163.5, k=0.85, and a=2.1 were used for 

chinchillas.  

The frequency-dependent delay represents the travelling wave delay, and is 

approximately 1.5 ms at the base of the cochlea and 8.5 ms at the apex.  By not scaling 

any spikes before this conduction delay, we expect to obtain a better approximation of 

the temporal firing patterns.  If we were to use the constant 1 ms delay used for the 



59 

SMTP in Chapter 3, we would see a similar pattern of characteristic delay as a function 

of CF (shown in  Figure 4.2).  However, the results presented in Chapters 4 and 5 use the 

frequency-dependent neural conduction delay, so patterns look different. 

 

Figure 4.2  Characteristic Delay based on STMP with assumed 1 ms conduction delay 
(All conditions pooled.)  Filled black symbols represent data from normal-hearing 
animals; open red symbols represent data from hearing-impaired animals.  Lines 
indicate a moving average over 0.7 octaves.  The values are qualitatively similar to those 
in Figure 3.3 (E,F). 

 

A shuffled auto-correlation function (SAC) was calculated for each effective CF 

(based on the STMP) and a shuffled cross-correlation function (SCC) between pairs of 

effective CFs was calculated. The peak height of the SCC, relative to the geometrics 

mean of the SAC peak heights for each CF, indicates the correlation coefficient (ρ; see 

Equation 1 and Equation 2). This SCC peak occurs at a non-zero delay, which we refer to 

as the characteristic delay (CD). The CD represents the estimated traveling wave 

propagation time between these two CFs, the absolute value of which is expected to 

increase as ΔCF increases. 
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Figure 4.3 illustrates that the correlation patterns are qualitatively similar whether 

measuring a large population of fibers or predicting those responses using the STMP.  

These curves were generated by analyzing the output of a computational model of the 

auditory periphery (Zilany and Bruce, 2007b) in response to the vowel stimulus shifted 

such that the second formant (F2) was at six different frequencies (from 425 Hz to 2.4 

kHz, in 0.5 octave steps).  Each of these six stimuli were analyzed for actual model CFs 

spanning a range of ±1 octave (solid line in Figure 4.3), and also for a single model CF 

(centered on F2) and using the STMP to predict the responses of nearby effective CFs 

spanning the same ±1 octave range. 

 

Figure 4.3.  Model comparison of STMP vs. actual CFs 
Correlation coefficients (ρ) for a range of CFs spanning a ±1 octave range relative to the 
CF corresponding to the vowel formant F2.  Curves for six different F2 frequencies are 
shown. 

4.2.2 Data Analysis 

Figure 4.4 illustrates several ways in which we can quantify neural coding of vowels.  

The spectrum of the vowel was shifted to center either F1 or F2 (the first or second 

vowel formant) on the fiber CF, then the STMP was applied to obtain responses for 

nearby effective CFs.  The first column of Figure 4.4 shows the F0-period histograms 
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(short-term rate versus time) for the range of effective CFs; the second column shows 

the average rate as a function of effective CF; the third column shows the degree of 

synchrony to the vowel fundamental frequency (F0); the fourth column shows the cross-

CF correlation (ρ) relative to the CF centered on the vowel feature; and the last column 

shows the characteristic delay relative to the response for the CF at the vowel feature.  

The top row shows coding relative to the first formant (F1), and the bottom row shows 

coding relative to the second formant (F2).  

The collected data was analyzed for rate-place, temporal-place, and spatiotemporal 

coding robustness (i.e., consistent spectral coding as the signal-to-noise ratio decreases).  

Rate-place coding was calculated by averaging the firing rate of each neuron over the 

duration of the stimulus.  We calculated firing rate as a function of CF (actual or 

effective by STMP) for each stimulus condition.   

Temporal-place coding was quantified with the average localized synchronized rate 

(ALSR; Young and Sachs, 1979). For each neuron, the synchronized rate to each 

harmonic was computed based on the Fourier transform of the period histogram. For 

each harmonic frequency, ALSR is the synchronized rate to the harmonic averaged 

across all CFs within ±0.5 octaves of the harmonic. ALSR was calculated as a function of 

harmonic number for all stimulus conditions. 
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Spatiotemporal coding was characterized by the cross-CF correlation coefficient (ρ) 

and the characteristic delay (CD), as discussed in previous papers (Heinz and 

Swaminathan, 2009; Heinz et al., 2010).  For each effective CF, correlations were 

calculated relative to the CF centered on each formant.  As illustrated in Figure 4.5, the 

peak of each SCC was picked manually, starting at CF (no delay; thick curve) and moving 

outward, so as to minimize the time difference between adjacent channels.  

 

Figure 4.5.  Example shuffled cross-correlogram. 
Each SCC is calculated relative to the fiber's responses when the formant (F2) was 
centered at actual fiber CF (4.62 kHz in this example). 

 

As in the previous chapter, the spread of correlated activity (ρ0.6) was quantified by 

measuring the CF separation at which the correlation falls to a value of 0.6, and the 
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characteristic delay (CD0.5) was characterized by the time delay between the CF 

centered on the formant peak and a CF 0.5 octaves lower (more apical). 

4.3 Results 

4.3.1 Synchrony 

 

Figure 4.6.  Synchrony to individual harmonics for an example unit 
(Normal hearing; CF=2.1 kHz)  The size of each dot at a particular CF indicates the vector 
strength for the frequency of a vowel harmonic.  Responses along the diagonal indicate 
tonotopic responses (synchronized to CF).  The upper row represents the condition in 
which F1 was centerd on the fiber CF, and the bottom row represents F2 at CF.  Lines 
indicate formant frequencies.  Gray boxes indicate boundaries for calculating average 
localized synchronized rate (ALSR) for formant and trough freqeuncies. 

 

Figure 4.6 illustrates how we quantified synchrony to individual harmonics of the 

stimulus.  For each harmonic of the stimulus (plotted along the abscissa), we calculated 

the vector strength at that frequency for each effective CF (plotted along the ordinate).  
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The size of the dots indicate vector strength.  In this example, we can see that a wide 

range of effective CFs are synchronized to the harmonic nearest to F1 at all noise levels 

(top row).  (Note that the formant frequency does not necessarily correspond to the 

frequency of a harmonic.)  In quiet, CFs above F1 (in the spectral trough between F1 and 

F2) respond to individual harmonics, but the synchrony is reduced at higher noise levels 

(see upper left panel).  In the bottom row, we can see that the response to F2 is 

localized to the fibers in that CF region (near 2.1 kHz). 

 

Figure 4.7  Synchrony to each formant vs. SNR for different CF regions. 
Solid black lines represent normal-hearing conditions, whereas dashed red lines indicate 
hearing impaired conditions.  'X' indicates conditions for which F2 is centered at CF; 
otherwise F1 is centered at CF.  Noise levels are 'in quiet', 'equal SNR', and 'equal 
sensation level' (SL).  Error bars indicate standard error. 

 

Figure 4.7 shows the synchrony to F0, F1, and F2 as a function of SNR for different CF 

regions (including both actual and effective CFs, by STMP).  Here we can see that, for 
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low frequency CFs, impairment (dashed lines) tends to increase the synchrony to both 

F0 and F1 (panels A,D).  The synchrony to F2 is only increased when F2 is centered on CF 

(panel G).  When F1 is centered at CF, the response of impaired fibers is dominated by 

synchrony to F0 and F1 (as shown in panels A,D) and not to F2 (see panel G).  At mid 

frequency CFs, we see that impairment slightly increases synchrony to F1 (panel E) but 

not to other features (panels B,H).  This is consistent with the "synchrony capture" that 

Miller and colleagues (1997) discussed - that is, impairment causes an increased 

response to F1 (as seen in panel E) and individual harmonics, and a reduced response to 

F2 (as seen in panel H).  At higher frequency CFs (panels C,F,I), impairment tends to 

reduce synchrony to all of these features. 

4.3.2 Rate and ALSR 

The strength of rate coding was quantified as the firing rate for a CF at the vowel 

formant relative to the rate for a CF in the spectral trough between that formant and 

the next highest (e.g., F1 relative to the trough between F1 and F2; LePrell et al., 1996).  

The strength of  LSR coding was quan  ed similarly     the average synchronized rate 

near (within 0.25 octaves) the formant relative to the average synchronized rate near 

the trough (regions illustrated by the gray boxes in Figure 4.6).  The strength of ALSR 

coding was therefore the synchrony to the formant frequency relative to synchrony to 

the trough frequency (at their respective CF regions). 

As expected and shown in Figure 4.8, we found that rate coding strength was 

degraded in noise (black circles with solid line), and also with impairment (red circles 

with dashed line).  As shown in Figure 4.8, ALSR coding strength was much more robust 
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to both impairment (comparing black squares with solid line to red squares with dashed 

line) and noise (comparing squares at different noise levels). 

 

Figure 4.8  Rate and ALSR coding (mean ± standard error) 
Data for the first two formants (F1 and F2) and all AN fibers are pooled. 

4.3.3 Spatiotemporal Coding 

The width of the correlated activity patterns are shown in Figure 4.9.  The 

correlation width is quantified as the maximum difference (in octaves) between the 

points at which ρ ≥ 0.6 (as illustrated in Figure 3.2).    Here, we can see that the 

correlation width around F1 does not change much with impairment (upper panel), but 

we see wider areas of correlated activity around F2 with impairment (lower panel).  For 

normal hearing, the correlated regions appear to become more narrow with noise, but 

we did not see this trend in the impaired data. 
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Figure 4.9.  Width of correlated activity region (CF = 1 kHz ± 0.5 octaves) 
Error bars indicate standard error. 

Figure 4.10 shows characteristic delay as a function of CF.  Here, the characteristic 

delay is quantified as the delay at a CF one-half octave away from the formant.  The top 

row shows CD relative to the first formant; the bottom row shows CD relative to the 

second formant.  The columns show CD at each of three noise levels.  Lines indicate the 

median value within a 3/4-octave band.  We can see that, near F2, characteristic delays 

are reduced (i.e., a faster traveling wave) for impaired conditions (shown in red), 

particularly for CFs in the 1-2 kHz region.  A Wilcoxon rank sum test indicated a 

significant difference between normal and impaired, for CFs centered on F2 near 1 kHz 

(± 0.5 octaves; p<0.05).   
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Figure 4.10.  Characteristic delay (CD) as a function of characteristic frequency 
Top row: delay 0.5 octaves from CF for conditions in which F1 was centered at CF; 
Bottom row: delay when F2 was centered at CF.  Lines indicate a median filter with a 
window of 0.75 octaves 

 

4.4 Discussion 

We have shown a measureable difference between normal and impaired 

spatiotemporal coding of a vowel.  We did not observe any effect of noise on 

spatiotemporal coding, suggesting that spatiotemporal coding is robust to noise but not 

to impairment.  This is consistent with previous studies that showed that the average 

localized synchronized rate is also fairly robust to noise (Heinz, 2007; Sachs et al., 1983).   

4.4.1 Limitations of the Correlation Coefficient (ρ) 

In the previous chapter, we showed that, for broadband signals, the correlated 

activity pattern gets wider with impairment.  As shown in Figure 4.11, we found the 
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same widened pattern in this vowel data.  This was previously interpreted as evidence 

of broadened auditory filters, with consequences in terms of the number of 

independent channels of information for the brain.  However, the data presented in this 

chapter suggest that the interpretation may not be so simple for complex sounds with 

spectral structure in the presence of noise.  We found that the correlation patterns 

often get narrower as the noise level is increased (and the vowel level is held constant).  

Because the overall level is actually increasing slightly, we expect the auditory filters to 

get broader, in contrast to the across-CF correlation patterns getting narrower.  This 

effect is likely due to the widespread effects of synchrony capture (in quiet) creating 

wide correlation regions when there are specific spectral features (e.g., formants) that 

engage a wide region of the cochlea.  The addition of noise, however, may act to 

decorrelate the signal, resulting in a narrower correlated region.  

 

Figure 4.11 Correlation width of normal vs. impaired (µ ± σ) 
Population data for 19 normal-hearing units and 22 hearing-impaired units.  The 

difference was statistically significant (Wilcoxon rank sum; p<0.05) 
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4.4.2 Characteristic Delay 

The characteristic delay measurements were performed manually because we were 

unable to design a peak-picking algorithm that would reliably pick realistic peaks in all 

conditions.  It is a difficult problem because the shuffled cross-correlation functions are 

often nearly periodic, with multiple peaks of approximately equal amplitude.  We had a 

rigorous rule for picking these peaks manually (as discussed in section 4.2.2), but this 

may underestimate the actual delay if the signal is periodic (e.g., high SNR).  The STMP 

spacing was wider at shifts furthest away from CF, so errors are most likely near the 

edges.  For a 1 kHz CF, sufficient ringing at this frequency would result in a periodicity of 

1 ms, so any error in picking the SCC peak would be seen as an underestimated CD by 1 

ms.  However, the same peak-picking rule was applied for all data (i.e., for both normal 

hearing and hearing impaired data), so we do not believe this error affected our results 

in any significant way. 

Characteristic delay (in units of cycles at CF) increases with frequency consistent 

with sharper tuning at higher frequencies (Shera et al., 2002), but decreases with 

impairment, consistent with Heinz et al (2010).  Whereas Heinz et al (2010) only 

quantified the effect of impairment for noise and a speech sentence, we see reduced 

delays with impairment for simple vowel sounds as well.  If spatiotemporal coding is 

important for pitch-based segregation (e.g., Larsen et al., 2008), and if pitch is important 

for concurrent vowel identification (e.g., Keilson et al., 1997; Summers and Leek, 1998), 

then any degradation in  spatiotemporal coding for vowels (as shown here) might result 

in a reduced ability to identify concurrent vowels.  This could be detrimental for 
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listening to speech in complex listening situations, such as when multiple people are 

speaking simultaneously.  If this is indeed the case, then we would really like hearing 

aids to restore at least some of the lost spatiotemporal coding.  The next chapter 

quantifies spatiotemporal coding when a hearing aid is added to the impaired system. 
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CHAPTER 5. EFFECTS OF AMPLIFICATION ON SPATIOTEMPORAL CODING  

A portion of this work was presented as the following conference poster: 

Boley, J. and M. Heinz, Impaired Spatiotemporal Coding of Vowels in Noise, International 
Hearing Aid Research Conference, August 2012. 

 

5.1 Rationale 

Schilling et al (1998) analyzed auditory nerve responses to vowels that had been 

amplified with a frequency-dependent gain similar to that used in linear hearing aids. 

They quantified the temporal-place representation of the vowel /ε/ and showed that 

this amplification strategy may improve neural coding of F1, but it does not appear to 

improve coding of higher formants.    (The spread of F1 synchrony was reduced, but not 

the spread of F2 or F3 synchrony.)  However, this can be controlled by applying gain to 

enhance the spectral peaks relative to troughs.  This technique, called spectral contrast 

enhancement, applies gain based on knowledge of the stimulus rather than just 

knowledge of the hearing loss.  Although spectral contrast enhancement techniques 

have been shown to improve both rate and temporal-place representations of the 

second formant (Miller et al., 1999b) and may even benefit from multiband compression 

(Bruce, 2004), similar techniques have had mixed results in perceptual experiments 
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(Baer et al., 1993; DiGiovanni et al., 2005; Franck et al., 1999; Simpson et al., 1990).  A 

thorough analysis of vowel coding with modern amplification algorithms in quiet and in 

noise would be beneficial because it would allow us to see the effects of these strategies 

on spatiotemporal coding. 

There is very little data on the relationship between hearing aid gain and neural 

coding. One of the fundamental characteristics of typical hearing aid amplification (as 

described in section 1.1.3) is a frequency-dependent gain, often boosting high 

frequencies (where the hearing loss is often greater).  Schilling and colleagues (1998) 

showed that this strategy can improve some aspects of neural coding, but can also 

cause undesired distortions (e.g., sharp spectral changes may look like formants).  

Although the authors noted that amplification did not limit spread of F2 synchrony to 

higher CFs, they only characterized the effect in quiet and did not evaluate the effect of 

background noise on coding in this region. The present study was designed to 

characterize the effects of both a simple gain filter and a modern multichannel wide 

dynamic range compression algorithm on neural coding of vowel formants in 

background noise and to specifically characterize the effects of each on spatiotemporal 

coding. 

5.2 Modeling Study 

We used a recent computational model of the auditory nerve (Zilany & Bruce, 2007).  

This model allows selective control over the health of both outer and inner hair cells.  As 

reviewed in section 1.1.2, outer hair cells provide gain and sharp tuning, while inner hair 
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cells transduce the acoustical energy to electrical signals, and thus damage to outer 

versus inner hair cells can have different effects on neural coding. 

For impaired hearing simulations, the coefficients COHC and CIHC were chosen to 

result in a mild hearing loss, as shown here (where 1/3 of the threshold shift in dB is 

modeled as inner hair cell dysfunction, 2/3 as outer hair cell dysfunction). 

 

Figure 5.1  Model audiogram and hearing aid gain prescriptions 
audiogram in left panel; linear (NAL-R; blue) and nonlinear (DSL [i/o]; red) gains (right 
panel) 

 

A hearing aid gain profile was fit to this audiogram, based on the NAL-R linear 

prescription (Dillon, 2001) or the DSL [i/o] nonlinear (compressive) prescription (Scollie 

et al., 2005).  Both prescriptions are used clinically, and are thus important to study.  

DSL[i/o] is a proprietary algorithm, but NAL-R is defined by a simple equation: 

         
            

 
           Equation 5 

where IGi is the insertion gain at a specific frequency, Hi is the audiometric hearing loss 

at a specific frequency (in dB), and ki is a constant (in dB) defined in Table 1. 

Table 1  NAL-R constants 
Freq (Hz) 250 500 1000 2000 3000 4000 6000 

ki (dB) -17 -8 1 -1 -2 -2 -2 
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  DSL [i/o] uses different gains in the presence of background noise, so the algorithm 

was set to use a noise prescription with 2 frequency channels and a cross-over 

frequency of 2.1 kHz, such that F2 (1.7 kHz) and F3 (2.5 kHz) were in different frequency 

channels.  Figure 5.2 shows the gains applied at each formant frequency for the various 

noise levels. 

The vowel /ε/ was then run through the model with 4 separate model and hearing 

aid parameter sets: a normal-hearing case, an impaired case, and an impaired case with 

each hearing aid.  The resulting neural spike patterns were than analyzed for 

comparisons across these four cases to quantify the ability of the hearing aid to restore 

normal temporal coding.  

 

Figure 5.2  Gains applied at the first three formants (F1, F2, F3) of the vowel /ε/ 
[F1 = 0.5 kHz; F2 = 1.7 kHz; F3 = 2.5 kHz] 

 

The same cross-CF correlation analyses were used here as in the previous chapter.  

Figure 5.3 shows the correlation patterns (A) and the characteristic delay (B) relative to 

each formant.  For the normal hearing model (green circles), the correlations tend to 

drop rather quickly as we compare to characteristic frequencies (CFs) both above and 
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below the formant frequency.  As expected for a cochlea with broadened tuning, these 

correlation patterns are much broader for the unaided impaired system (red circles).  

Neither linear (blue solid line) nor nonlinear (blue dashed line) hearing aid prescriptions 

appear to restore these patterns to normal for any of the formants. 

 

Figure 5.3  Spatiotemporal response patterns for the vowel /ε/ in quiet 
Spectral envelope overlaid in gray for reference.  Cross-fiber correlations (A) and 
characteristic delays (B) relative to each formant.  Characteristic delays are plotted in 
cycles relative to the formant frequency of interest (F1, F2, or F3). 

 

Figure 5.4 shows similar patterns for the vowel in noise.  In this case, white noise 

was set to achieve a signal-to-noise ratio of -6dB at CF. 
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Figure 5.4  Spatiotemporal response patterns for the vowel /ε/ 
at -6dB signal-to-noise ratio (spectral envelope overlaid in gray for reference).  Cross-
fiber correlations (A) and characteristic delays (B) relative to each formant.  
Characteristic delays are plotted in cycles relative to the formant frequency of interest 
(F1, F2, or F3). 

 

From these figures, we can see that impairment generally results in a wider spread 

of correlated activity near each formant.  This is particularly apparent for F1 and F2 in 

quiet, and for all 3 formants at -6dB SNR.  Neither linear nor compressive hearing aid 

prescriptions restore the cross-fiber correlations to normal, either in quiet or in noise.   

Also note that the characteristic delay functions are generally shallower around the 

formant (vertical gray line) with impairment, suggesting that impairment speeds up the 
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traveling wave within the cochlea.  This is a bit difficult to see in the figure, but a 

measurement of the slope indicates a difference (as shown in Figure 5.5).  Neither linear 

nor compressive amplification restore these phase responses to normal. 

Figure 5.5 shows a quantitative analysis of both the width of correlated activity and 

the slope of the characteristic delay function.  The width was calculated as the number 

of octaves over which the correlation drops to 80% of the peak value.  The slope was 

quantified over the center 0.1-octave range surrounding each formant.  Here, we see 

that the width is greatly increased with impairment.  Amplification does not appear to 

improve the spatiotemporal coding in quiet, but linear gain appears to help (at least 

somewhat) in noise.  The spatiotemporal response (as quantified by both ρ and CD) to 

compression was equivalent to linear gain only for the 2nd formant, implying that 

compression can improve F2 coding.  The slope of the phase response is reduced with 

impairment, and neither amplification scheme restored the slope to normal for any of 

the tested conditions.  
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Figure 5.5  Width and slope of the spatiotemporal response patterns. 
Correlated activity width and characteristic delay slopes at 4 noise levels for normal 
hearing (green), SNHL (red), SNHL with linear gain (blue solid lines), and nonlinear gain 
(blue dashed lines).  Width was quantified as the bandwidth over which the neural 
activity was correlated to the activity at the formant (ρ>0.8).  Note that all SNHL data for 
CD lie on top of one another. 

 

Of particular interest here is the shift in CD seen with impairment.  Consistent with 

Heinz and colleagues (2010), we see an increase in CD shift with increasing CF for this 

simple vowel.  At F1 the shift is 0.22 cycles per half octave (half of 0.44 cycles per 

octave); at F2 the shift is 0.76 cycles per half octave; at F3 the shift is 1.13 cycles per half 

octave. 
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5.3 Animal Study 

5.3.1 Prescriptive Fitting of Hearing Aids 

Using pooled data from 19 animals in our lab with noise-induced hearing loss (using 

the same noise exposure protocol, see section 1.2.2) and 67 animals with normal 

hearing, we calculated an average “audiogram” based on the minimum auditory-nerve 

thresholds of these animals.  Some of the AN threshold data were discarded as outliers 

and not included in the estimate of threshold shift.  Any data from an unexposed animal 

for which at least 25% of the tuning curves were abnormally broad were classified as 

outliers.  That is, where Q10 was less than the 5th percentile for the normal data in (Kale 

and Heinz, 2010).  None of the animals from which we collected vowel coding data for 

this experiment fit this criterion.  Thresholds for normal AN fibers ranged from 0dB to 

35dB SPL, and thresholds for impaired fibers ranged from 27dB to 49dB SPL. 

This threshold shift serves as a model of the expected hearing impairment for the 

animals in this study, and was used to calculate hearing aid prescriptions.  Figure 5.6 

shows the individual auditory nerve tuning thresholds (upper panel) and tuning 

sharpness (Q10; lower panel).  Data from normal-hearing animals are indicated by gray 

filled symbols, whereas data from noise-exposed animals are indicated by red open 

symbols.  Solid lines connect the lowest threshold within each 1-octave band, and 

dashed lines connect the average threshold within each band. 
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Figure 5.6.  Auditory nerve thresholds (dB SPL) and tuning sharpness (Q10). 
Data from 45 non-exposed (filled gray symbols) & 19 noise-exposed animals (open red 
symbols).  In upper panel, solid lines connect the lowest threshold within each 1-octave 
band, and dashed lines connect the average threshold within each band.  In lower panel, 
lines indicate 5th and 95th percentiles of normal Q10 values found in Kale and Heinz 
(2010) 

 

We also collected auditory brainstem responses from several of the noise-exposed 

animals, both before and several weeks after exposure.  The ABR threshold shifts (see 

methods in Henry et al., 2011) and AN threshold shifts are shown in Figure 5.7. 
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Figure 5.7.  Threshold shifts of auditory nerve fibers and auditory brainstem responses 

(error bars indicate standard deviations for ABR threshold shifts) 
 

Based on the combined AN and ABR data, we assumed an average audiogram of 16, 

18, 20, 9, and 9dB at 0.5, 1, 2, 4, 6 kHz respectively, as shown in Figure 5.7 (solid black 

line).  This audiogram represents the expected average audiogram for a noise-exposed  

chinchilla using our protocol, and was used for all animals due to the difficulty of 

estimating individual audiograms prior to completion of the acute AN experiment.  This 

audiogram was used for determining hearing aid prescriptions.  Note that this estimated 

audiogram is a conservative estimate, as the measured threshold shift is somewhat 

greater at some frequencies.  The resulting hearing aid prescriptive gains will therefore 

be conservative as well (less gain than would otherwise be prescribed).   
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5.3.2 Experimental Procedures 

The experimental procedures are identical to those described in chapter 4, but 

stimuli were amplified by one of two gain functions. Four chinchillas that has been 

exposed to noise were presented with amplified vowels in noise.  The NAL-R formula 

(Dillon, 2001) was used to calculate a frequency-dependent insertion gain that was 

implemented as a symmetric (linear phase) 32 tap FIR filter in Matlab. (Note that linear 

phase filters have a constant delay as a function of frequency.)  The DSL [i/o] fitting 

algorithm (Scollie et al., 2005) was used to calculate the prescriptive gain settings that 

would be used in a wide-dynamic-range compression (WDRC) hearing aid.  This gain was 

also implemented as a symmetric FIR filter in Matlab, which is equivalent to assuming 

that we have an algorithm with fast time constants such that the exact target gain will 

be applied throughout the steady state vowel.  Both algorithms were fit to the average 

threshold shift for chinchillas with noise-induced hearing loss (the audiogram shown in 

Figure 5.7).  The DSL prescriptive gains were calculated for a 2-channel algorithm with a 

cutoff frequency of 922 Hz, such that the first two vowel formants would be in separate 

compression channels.  (Note that this cutoff frequency was placed between F2 and F3 

for the modeling study in section 5.2, but was placed between F1 and F2 for the animal 

study.)  A complete set of DSL[i/o] filters was designed, corresponding to prescribed 

gains for input levels ranging from 0dB SPL to 100dB SPL, and the appropriate filter was 

used for each stimulus condition.  The acoustic system was calibrated for each 

experiment, so the target levels are real-ear levels. 
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Figure 5.8  Example vowel spectra 

(no gain, NAL linear gain, and DSL nonlinear gain) 
 

Examples of the amplified vowel spectra are shown in Figure 5.8.  The NAL (linear) 

gain prescription actually reduces the level below the first formant, but increases gain 

somewhat at higher frequencies.  The DSL (nonlinear) gain prescription only increases 

gain above the first formant, applying more gain than the linear prescription for this 

particular input level.  The amount of nonlinear gain depends on the presentation level 

and, as illustrated in Figure 5.9, the nonlinear prescription resulted in more gain at the 

second formant than the linear prescription for all conditions tested. 

 

Figure 5.9  Hearing aid gains (at second formant) 
Symbol indicates the mean; error bars indicate range [minimum,maximum] 
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5.4 Results 

Tuning thresholds and sharpness for AN fibers used in this study are shown in Figure 

5.10.  The broad CF region around 1 kHz (±1.25 octaves) contains 15 normal-hearing AN 

fibers, 13 impaired, 5 impaired with linear amplification, and 6 impaired with nonlinear 

amplification. 

 

Figure 5.10  AN tuning thresholds and sharpness 
AN fibers used for collecting vowel STMP data.  Normal (gray dots); Impaired (red open 
circles); Impaired + linear amplification (magenta triangles); Impaired + nonlinear 
amplification (green diamonds) 

 

As in the previous chapter, we used STMP with each AN fiber to predict a range of 

effective CFs, from which spatiotemporal coding could be quantified for each of the 

amplified conditions.  We measured the width of correlated regions (at ρ=0.6) for the 
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two formant conditions and three noise conditions used in the previous chapter.  Figure 

5.12 shows the widths of correlated activity measured for normal, impaired, impaired 

with NAL (linear amplification), and impaired with DSL (nonlinear amplification).   

 

Figure 5.11 Width of correlated activity region (CF = 1 kHz ± 1.25 octaves) 
Upper panel: correlation width near F1; lower panel: correlation width near F2.  Error 
bars indicate standard error. 

Nonlinear amplification resulted in wider regions of correlated activity than any of 

the other conditions.  This was not surprising, as the greater gain is expected to result in 

wider auditory filters. 

We measured characteristic delays at 0.5 octaves from CF for the two formant 

conditions and three noise conditions used in the previous chapter.  Figure 5.12 shows 

the characteristic delays measured for normal, impaired, impaired with NAL (linear 

amplification), and impaired with DSL (nonlinear amplification).  Lines indicate trends 
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using an octave-wide median filter.  CD in the 1-2 kHz region is higher for F2 than F1, 

suggesting sharper cochlear tuning for F2. 

 
Figure 5.12.  Characteristic delay (CD) as a function of CF for several conditions 

Top row: CD at 0.5 octaves from F1; bottom row: CD at 0.5 octaves from F2.  Columns 
represent the vowel in quiet, with noise at equal SPL (0dB SNR), and noise at equal 
"sensation level" (SL). 
 

 
When we calculate the average characteristic delay for the population of CFs in the 

500Hz to 2 kHz range (for both F1 and F2 combined), we find the values shown in Figure 

5.13.  A Wilcoxon rank sum test indicated a significant difference between normal and 

impaired in noise (both noise conditions combined; p<0.001), but no significant 

differences between impaired and either aided condition.  In quiet and in noise, 

nonlinear gain resulted in significantly less cross-CF delay than linear gain (p<0.05). 
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Figure 5.13.  Mean characteristic delay (± standard error) 

CD is quantified at 0.5 octaves from the formant for different conditions (CF=0.5-2 kHz).  
Upper lines indicate significant differences (Wilcoxon rank sum p<0.05) 

 

5.5 Discussion 

We have shown that hearing aid amplification does not improve spatiotemporal 

coding.  In fact, the nonlinear prescription resulted in both more gain (p<0.001) and less 

characteristic delay than the linear prescription.  This is consistent with the idea that 

increased sound levels result in broader auditory filters, which have less phase delay 

and group delay.  It also implies that hearing aids may not improve any aspect of 

perception that depends on spatiotemporal coding.  For example, people with hearing 

impairment have difficulty segregating multiple sources of speech even when 

amplification is used to ensure audibility (Rossi-Katz and Arehart, 2005; Summers and 

Leek, 1998). 
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5.5.1 Estimated Audiogram 

Pickles (1988, p. 84) showed that normal behavioral hearing thresholds tend to be 

close to the lowest AN thresholds, but ABR thresholds have been shown to change less 

than AN thresholds with SNHL (Henry et al., 2011; Ngan and May, 2001).  Additionally, 

although we chose a reasonable criterion for defining outliers in the AN threshold data, 

this procedure may have resulted in an overestimated average difference between 

normal and impaired thresholds.  In other words, an audiogram based on average AN 

thresholds may also slightly underestimate hearing loss as measured by minimum AN 

thresholds.   However, we did not depend on the average AN thresholds alone, but also 

the minimum thresholds across the population to quantify threshold shifts.   

Because our estimated audiogram (used for determining target hearing aid gain) was 

based on a combination of both AN and ABR threshold shifts, we may not have used the 

exact same gains that would have been prescribed to these animals based on behavioral 

threshold shifts.  It is possible that greater gain may have had a larger impact, but it 

would likely only degrade the spatiotemporal coding as the auditory filter would get 

broader with increased sound levels. 

Interestingly, although we saw threshold shifts extending to near 6 kHz, some AN 

tuning curve bandwidths were in the normal range as low as 3 kHz.  This suggests outer 

hair cell dysfunction occurred primarily in the range of 1.5-3 kHz (where Q10 was 

reduced, as shown in Figure 5.6), and perhaps not in surrounding regions, where the 

threshold shift appears to have occurred due to primarily inner hair cell dysfunction 

(where Q10 was normal).  This inferred pattern of inner and outer hair cell dysfunction 
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is consistent with a previous study (Liberman and Kiang, 1984) which found a broader 

region of IHC damage than OHC damage following noise exposure. 

 

5.5.2 Compression Speed 

The stimuli used here were based on a static gain adjustment, not a time-varying 

gain as found in most modern hearing aids.  This basically assumes that we have an 

algorithm with fast time constants such that the target gain will be applied effectively 

throughout the entire steady state vowel.  In reality, research suggests that the optimal 

choice for time constants depends on several factors, and each hearing aid 

manufacturer may use different values (Moore, 2008a, 2008b).   

5.6 Conclusion 

Although there is growing evidence that spatiotemporal coding is important (Carney, 

1994; Cedolin and Delgutte, 2007, 2010; Heinz, 2007; Larsen et al., 2008; Loeb et al., 

1983; Shamma, 1985a), there has been no research into the effects of hearing aids on 

spatiotemporal coding of speech.  Basic filter theory tells us that the group delay of a 

filter generally decreases as the transition bandwidth increases, so we should expect 

less delay in an impaired auditory system and perhaps even less with subsequent 

amplification.  However, this had not been measured before. 

We have shown that spatiotemporal coding (as measured by cross-CF delay) is 

indeed degraded with noise-induced hearing impairment, but is not improved with 

amplification.  In fact, spatiotemporal pattern correction has not been a design goal for 
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most hearing aid research.  However, a few researchers have attempted to design a 

hearing aid algorithm to do just this, and this is the topic of the next chapter. 
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CHAPTER 6. LIMITATIONS OF SPATIOTEMPORAL PATTERN CORRECTION 

6.1 Introduction 

According to basic filter theory, broad auditory filters (e.g., as a result of hearing 

impairment) are expected to have less associated delay than comparable narrow 

auditory filters.  As illustrated in Figure 6.1, a broad filter generally has a shallower 

phase response and less delay than a narrow filter.  Hearing impairment has therefore 

been expected to affect the spatiotemporal patterns by decreasing the relative delay  

 

Figure 6.1  Example filter responses 
Top-left: magnitude responses of a narrow (blue) and broad (green) filter;  Top-right: 
phase responses of the same filters; Bottom-left: group delays; Bottom-right: phase 
delays 
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across CF.  Empirical data presented in Chapters 3-4 confirm that cross-CF delay is 

reduced with impairment, and data presented in Chapter 5 show that hearing aids do 

not restore the cross-CF delay.  The logical next step is to design a hearing aid that 

intentionally restores these delays.  It has been hypothesized that by delaying specific 

frequencies more than others in the acoustic signal, the resulting neural patterns can be 

restored to near-normal. 

Carney and colleagues developed an algorithm that was designed to introduce delay 

into the auditory signal where the phase was predicted to be abnormal (Calandruccio et 

al., 2007; Carney, 2008; Shi et al., 2006).  The algorithm uses two parallel signal-

processing paths to estimate the decrease in delay due to SNHL and to then add a 

compensatory frequency-dependent delay to the auditory signal prior to presentation 

to the ear (as shown in Figure 6.2).  In the control path, an auditory model is used to 

estimate the difference in group delay introduced by healthy nonlinear filters and 

broader impaired filters.  In the main path, the signal is decomposed into frequency 

channels, the missing delay is added, and the channels are re-combined after passing 

through a synthesis filterbank. 
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Figure 6.2  Schematic diagram of spatiotemporal pattern correction system 
 The amount of compensatory delay is calculated in the control pathways (left) and 
applied within the analysis/synthesis filterbank (right)  [reproduced, with permission, 
from Shi et al (2006)] 

 

Although the fundamental idea seems reasonable and appeared promising at first 

(Shi et al., 2006), the processing strategy did not significantly improve speech 

perception (Calandruccio et al., 2007). The algorithm was designed to introduce an 

integer number of samples worth of delay in each analysis band, but this could 

potentially result in undesired artifacts like comb-filtering (where two analysis filters 

overlap) and abnormal phase transitions at the edges of a band.  Unfortunately, the 

authors of these papers did not analyze the ability of their approach to restore normal 

spatiotemporal coding in the auditory nerve, either experimentally or with an AN model.  
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The goal of the present study was to fill this gap by quantifying the ability to modify the 

spatiotemporal coding of a stimulus with frequency-dependent delay. 

6.2 Methods 

Carney and colleagues (Calandruccio et al., 2007; Carney, 2008; Shi et al., 2006) used 

a filter bank to introduce frequency-dependent delays within the auditory signal, but 

the frequency resolution was restricted by the filter bank design. In fact, the phase 

transitions introduced by the Carney algorithm would be at the edge of each band, not 

the center.  An alternative approach that would introduce a specific phase offset 

precisely at a particular frequency would be to design an all-pass filter.  An all-pass filter 

applies equal gain at all frequencies, but the phase at each frequency can be controlled.  

Deshmukh et al (2007) used all-pass filters of this type to detect the harmonics of 

vowels; however, the goal of their work was not to modify the phase of the auditory 

signal. 

Cho et al (1989) designed an adaptive notch filter that provides a foundation for an 

adaptive all-pass filter.  The benefit of this design is that it can control a narrow 

frequency range and can be used with a variety of adaptation algorithms.  (However, we 

will only use a static implementation here.)  The notch filter is implemented with a 

lattice structure and each second-order section has the transfer function  

      
           

      
  

           
      

  
 Equation 6 
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where        and       (assuming α is close to a value of 1).  The value of k0 

determines the frequency of the notch such that ω=cos-1(-k0), k1 determines the 

bandwidth, and α determines the depth of the notch. 

Equation 6 can be generalized to the form: 

      
              

      
  

              
      

  
 Equation 7 

By building on this notch filter, we can modify it to have unity gain and a phase 

transition at a specified frequency.  An all-pass filter with a non-zero phase response has 

the form 

      
      

      
  

      
      

  
 Equation 8 

where Ai=Bi.  To follow convention, we can normalize the coefficients such that A2=1.  

Therefore, B2=1. 

It can be shown that the maximum group delay (defined by the slope of the phase 

response) of a 1st order all-pass filter is defined by the equation 

        
 

  
 
 

 Equation 9 

where p is the filter pole2 and Dmax is given in samples.  Solving for p, we get 

                                                      
 

 

2
 The pole of a 1st order filter, defined by the transfer function      

      
  

      
  , is the value of z such 

that the denominator equals zero.  Similarly, the (complex) poles of a second order filter are the values of 
z such that the denominator of the transfer function equals zero. 
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 Equation 10 

 

For the 2nd order filter in Equation 7, we can set 

 
   

 

  
 

  
    
 

 
      

      
 

Equation 11 

A second-order filter stage can thus be designed to apply equal gain (e.g., 0dB) to all 

frequencies, but to alter the phase such that some frequencies are delayed more than 

others.  The transfer function for such a filter is given in Equation 7, where the 

coefficients are set such that: 

 

      
      

      
 

          
   

  
 

        

Equation 12 

where f is the center frequency (in Hz) of the phase transition, and Fs is the sample rate.  

The center frequency, phase and group delay response can be arbitrarily controlled, as 

illustrated in Figure 6.3. 
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Figure 6.3  Example phase and group delay response of an all-pass filter 

 

It is important to note the difference between phase delay and group delay.  Phase 

delay is defined as 
    

 
, where ω is the frequency (in radians/second) and      is the 

phase (in radians) at that frequency.  The phase delay is therefore the time delay (in 

seconds) for each Fourier component frequency.  Group delay is defined as  
 

  
    , 

or the negative derivative of the phase.  For a linear phase system, the group delay is 

equivalent to the phase delay.  For a nonlinear phase system (such as auditory filters), 

the group delay is often interpreted as the delay of the envelope.  However, this 

interpretation is limited to a narrow range of frequencies over which the phase is 

approximately linear (Smith, 2007, p. 163).  It is also interesting to note that when the 

phase response increases with frequency, the result is a negative group delay, which is 

certainly counterintuitive.  Therefore, it can be difficult to interpret group delay, and 

phase delay may serve as a more accurate description of delay as a function of 

frequency. 
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We filtered the vowel /ε/ (in quiet, 65 dB SPL) with a series of second-order all pass 

filter stages, cascaded to increase the phase delay at 1 kHz, as shown in Figure 6.4, 

which was the frequency at which F2 was placed.  These filtered stimuli were used as 

input (at 65dB SPL) to an auditory nerve model (Zilany et al., 2009) of normal hearing. 

 
Figure 6.4  Phase delays for a series of all-pass filters 

 

The resulting auditory nerve spikes were analyzed as in the previous chapters to 

quantify spatiotemporal coding.  Specifically, we calculated the characteristic delay 

between AN fiber CFs surrounding the second formant of the vowel (which was placed 

at 1 kHz for this modeling study).  We expected to see that, as the acoustic phase delay 

was increased by cascading additional all-pass filter stages, the characteristic delay 

would also increase. 

6.3 Results 

We used the reverse correlation (revcor) function (de Boer, 1978; Carney and Yin, 

1988; Eggermont, 1983) to estimate the transfer function of the neural spikes relative to 

the unfiltered vowel, and the resulting spectra for an AN fiber with 1 kHz CF is shown in 
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Figure 6.5.  Thinner lines indicate responses to stimuli with more all-pass filter stages.  

Here, we can see that this fiber is responding to energy near 1 kHz (as indicated by the 

magnitude peak near 1 kHz), and the revcor phase near 1 kHz is altered to a greater 

degree (as expected) with increasing numbers of all-pass filter stages. 

 

Figure 6.5  Revcor magnitude and phase for 1 kHz CF 
 

 
Figure 6.6  Reverse-correlation phase at CF (relative to phase at 1 kHz CF, no filter) 
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We evaluated the revcor phase at CF for 10 CFs covering a range of 1 kHz ± 0.25 

octaves.  Figure 6.6 shows the phase of the reverse-correlation function at each fiber's 

CF, relative to the phase measured from a 1 kHz CF with unfiltered input.  We can 

therefore confirm that the all-pass filters are modifying the stimulus as expected, and 

that this is indeed represented in the neural signals. 

However, any spatiotemporal decoding mechanism in the brain will depend on 

common excitation between two (or more) AN fibers, so a more relevant analysis is to 

evaluate the revcor phase at a single frequency for multiple CFs.  If we look at the phase 

across CFs but at a common frequency (1 kHz), we see that there is a constant phase 

offset for each all-pass filter, but this does not vary across CF (as shown in Figure 6.7). 

 
Figure 6.7  Reverse-correlation phase at 1 kHz (relative to no filter) 

 

The characteristic delays relative to the vowel formant frequency are shown in 

Figure 6.8.  We did not see any effect of the filters on spatiotemporal coding, as 



103 

 

assumed in the spatiotemporal correction algorithms.  In other words, increasing the 

phase delay in the acoustic signal did not affect the relative timing across AN fibers with 

nearby CFs (Figure 6.7), although it did affect the phase response of individual fibers 

(Figure 6.6). 

 
Figure 6.8  Characteristic delay relative to AN fiber with CF at F2 (1 kHz) 

 

 

For completeness, we also implemented a simple model of a monaural across-CF 

coincidence detector neuron (Krips and Furst, 2009; Wang and Delgutte, 2012).  This 

type of neuron has been shown to be sensitive to across-CF differences in phase that are 

relevant for intensity discrimination (Heinz et al., 2001a) and tone detection in noise 

(Carney et al., 2002).  Furthermore, there is evidence that some cell types in the ventral 

cochlear nucleus act in a manner consistent with monaural across-CF coincidence 

detection (Carney, 1990; Wang and Delgutte, 2012).  This modeled neuron had 10 

auditory nerve inputs with CFs spanning a range of 0.5 octaves and fires whenever at 
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least 2 input fibers fire within a short time window of each other.  If the all-pass filter 

were able to alter spatiotemporal coding systematically, then we would expect to see a 

systematic effect in the coincidence neuron firing rate as the number of all-pass filter 

stages were increased.  However, we were unable to find a window size over which the 

firing rate of a coincidence detector would systematically vary as the phase of the 

stimulus is varied (as illustrated in Figure 6.9).  (Note that this model of a coincidence 

detector did not include a refractory period, so the rates seen with a wide window are 

unrealistically high.  However, the relationship between firing rate and all-pass filtering 

is not expected to depend on refractory periods.) 

  
Figure 6.9  Firing rate of a model coincidence detector 

(temporal coincidence windows of 100, 50 and 10µs) 
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well above threshold, this is unlikely the case.  Therefore, we might only expect 

spatiotemporal pattern correction to work when the receptive fields are quite narrow, 

such as with normal hearing and low intensity stimuli.  This is consistent with a recent 

study (Zeyl and Bruce, In Press), which found that the algorithm by Carney and 

colleagues (Calandruccio et al., 2007; Carney, 2008; Shi et al., 2006) is most beneficial 

for low intensity stimuli.  However, when we repeated our experiment at 10dB SPL, we 

did not see any evidence that all-pass filters affect spatiotemporal coding as expected.  

As expected (and as shown in Figure 6.10), the slope of the delay function is increased at 

low stimulus levels, but we did not see any systematic progression of the slope with 

increasing phase delay.  Additional delay should also decrease the coincidence across CF, 

and although the predicted firing rate of a coincidence detector neuron is drastically 

reduced when we reduce the stimulus level, we do not see this effect from the all-pass 

filters (see Figure 6.11). 
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Figure 6.10  Characteristic delays, for stimuli at 10dB SPL 
(data for 65dB stimuli are dotted lines, for reference) 

 

 

Figure 6.11  Firing rate of a model coincidence detector (stimuli at 10dB SPL) 
(temporal windows of 100, 50 and 10µs) 
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6.4 Discussion 

These results show that applying a frequency-dependent delay to a vowel does not 

affect the spatiotemporal coding of the original stimulus as expected (Shi et al., 2006).  

We confirmed that the neural responses (as measured in the revcor phase) were indeed 

altered by the all-pass filters, but the characteristic delays were not affected because 

each fiber is affected the same by the change in acoustic phase.   

Although Wang & Delgutte (2012) found that coincidence detecting cells were 

sensitive to the phase transition sharpness of Huffman stimuli (impulse responses of all-

pass filters), they found that the total firing rate is not a good measure of the 

coincidence detector's sensitivity to phase.  They used metrics like the peak width and 

normalized duration to quantify the responses to click-like stimuli, but these metrics do 

not apply to the steady-state vowel stimulus used here. 

6.4.1 Potential Binaural Artifacts from Spatiotemporal Pattern Correction 

It is important to keep in mind that adding frequency-dependent delay will distort 

the auditory signal.  Interaural timing differences (ITDs) are known to be important for 

localization, and Joris has suggested that the interaction between the acoustic signals 

and cochlear timing disparities are important for decoding ITDs (Joris, 2003; Joris et al., 

2006b).  Adding phase offsets to the acoustic signal may impact localization abilities.  In 

fact, we also know that binaural phase differences can be perceived as pitch (Cramer 

and Huggins, 1958).  Therefore, any algorithm that attempts to correct the phase for 

monaural speech stimuli should also be checked for binaural artifacts. 
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6.4.2 Use of Computational Models 

In contrast to previous chapters, this chapter focused on the use of a computational 

model.  This allowed us to analyze the expected neural patterns in detail before moving 

on to animal experiments, thus reducing the total number of required animal 

experiments.  In fact, because the modeling work identified a fundamental limitation in 

this approach, we chose not to pursue these ideas with animals.  Continued 

development of computational models may further reduce the number of animals 

needed in future experiments. 

6.4.3 Conclusion 

The spatiotemporal patterns that have been hypothesized to be perceptually 

relevant are the relative timing across CFs responding to the same stimulus feature (i.e., 

same frequency).  Using a hearing aid algorithm to change the phase of that single 

frequency can have only one effect on all fibers and, although each fiber is affected by 

the acoustic phase change (Figure 6.6), the effect is the same for all CFs responding to 

that same frequency (Figure 6.7) and thus the relative timing across fibers is unchanged 

(Figure 6.8).  This represents a fundamental limitation to the approach of 

spatiotemporal pattern correction.  An ideal correction algorithm would alter the time 

delay (phase) for one CF more than for another CF, but this is not possible.  This concept 

is similar to the inability to separately control cochlear regions with gain adjustment 

(Giguère and Smoorenburg, 1999; Heinz, 2010). 
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CHAPTER 7. DISCUSSION 

This dissertation has used neurophysiology and computational modeling to evaluate 

the performance of hearing aids.  By using both computational models and physiological 

experiments in animals, we have been able to explore several aspects of neural coding 

following hearing aid amplification, which to date has been a largely unexplored area.  

We have shown that within-fiber temporal coding can be improved with appropriate 

amplification, but that optimal gain may depend significantly on the ratio of inner and 

outer hair cell dysfunction for a given individual.  We have also shown that 

sensorineural hearing loss produces degraded spatiotemporal coding, but that 

amplification from commonly used hearing aid algorithms do not appear to improve 

spatiotemporal coding.  Unfortunately, we have also shown that proposed ideas for 

spatiotemporal pattern correction appear to be ill-fated, at least as proposed to date.  

Our results suggest that applying a frequency-dependent delay may not actually affect 

the spatiotemporal coding as expected. 

The modeling studies presented here allowed us to study a variety a topics related 

to neural coding without the time & resource-consuming process of conducting a series 

of animal experiments (which typically last 24-36 hours with chinchillas).  Of course, the 

model has not been designed/verified for every situation, and investigating new areas of 
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research can easily exceed the validated boundaries of any computational model.  This 

situation is when it is helpful to have the resources and expertise to conduct animal 

experiments.  The goal of incorporating physiological knowledge in hearing aid design 

will require a well-planned and coordinated combination of physiological modeling and 

experiments. 

Computational and physiological approaches let us evaluate very detailed 

information about the sensory system, so they are tremendously valuable, but the 

ultimate goal of this knowledge is to improve human behavior (for example speech 

intelligibility).  Therefore, it is important to learn from each of these three areas and 

combine domain-specific knowledge into one cohesive (and even synergetic) research 

track.  The topic of this dissertation is one example where this is particularly true.  

Temporal and spatiotemporal coding have been receiving a lot of attention recently in 

the psychoacoustics literature.  Spatiotemporal coding has been hypothesized to be very 

important perceptually, but there is still much that we do not understand about how 

temporal coding is used in the auditory system.  By investigating the effects of SNHL and 

hearing aid amplification in spatiotemporal coding using a combined computational and 

experimental approach, we now have a better understanding of some of the critical 

factors that currently limit the ability of hearing aids to improve spatiotemporal coding, 

and perhaps perception.  This knowledge will be useful in future efforts to develop 

novel strategies to improve human speech perception. 
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7.1 Limitations 

7.1.1 Animal Species 

One limitation in studying speech coding in animals is that species differences in 

basilar-membrane length and frequency range of hearing make direct comparison to 

speech coding in humans difficult (Kiefte et al., 2002; Recio et al., 2002). However, this 

limitation is not critical for the studies presented here because we focus on quantitative 

comparisons between temporal coding in normal and impaired cases within the same 

species.  Any comparisons across species of the effects of SNHL must be made with full 

consideration of relevant species differences.   Of particular relevance here is the recent 

finding that the chinchilla cochlea may be “more apical” than the human cochlea (Shera 

et al., 2007, 2008). The CF transition between basal and apical cochlear regions, 

estimated from OAEs, was 4 kHz for chinchilla and 1 kHz for humans. Although this 

discrepancy must be considered in quantitatively relating chinchilla responses to 

humans, it actually provides a benefit here because it makes it easier to study the 

effects of SNHL on the “apical” region of the cochlea, which is most important for the 

low frequencies in speech. 

7.1.2 Cochlear Scaling Invariance 

The STMP assumes cochlear scaling invariance, which is reasonable over our limited 

frequency shifts (≤±0.5 octave shifts). However, some properties are not scaling 

invariant, including roll-off in phase locking, refractoriness, adaptation, and increases in 

Q10 with CF. These effects are predicted to be negligible over our ±0.5 octave range 
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(Larsen et al., 2008); however, all results have been interpreted with these limitations in 

mind. 

7.1.3 Model-Based Fitting Strategies 

Any hearing aid fitting strategy that is based on minimizing the difference between a 

normal and impaired system must accurately model both systems.  To be applicable to 

any particular patient, the model of hearing impairment must accurately reflect that 

person's impairments.  Unfortunately, we do not currently have good noninvasive ways 

to measure many of the physiological aspects of hearing impairment; however people 

are actively working on this important issue (Lopez-Poveda and Barrios, 2013; Lopez-

Poveda and Johannesen, 2012; Moore and Glasberg, 2004; Moore, 2004). 

7.2 Relation to other research 

7.2.1 Speech Coding 

Evidence suggests that vowels are important for both sentence intelligibility (Cole et 

al., 1996; Kewley-Port et al., 2007) and talker identification (Owren and Cardillo, 2006).  

Furthermore, we know that pitch differences are a key feature used to group/segregate 

sounds (Bregman, 1990) and to identify concurrent vowels (Summers and Leek, 1998).  

Therefore, vowels are especially important as we try to understand speech coding in the 

presence of background sounds.  The first two vowel formants are most important for 

speech recognition (Pols et al., 1969; Sakayori et al., 2002), so that is what we have 

focused on here.  However, other features (such as pitch) are certainly also important 

for perception.  We have extended previous research on vowel coding (Heinz, 2007; 

Miller et al., 1997; Sachs and Young, 1979; Sachs et al., 1983; Shamma, 1985a; Young 
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and Sachs, 1979), and shown that hearing aids are currently unable to improve the 

spatiotemporal coding of vowels.  

 

7.2.2 Neural Degeneration 

Recent research has shown that auditory nerves and their synaptic connections to 

hair cells are often impaired, even when thresholds look normal (Furman et al., 2013; 

Kujawa and Liberman, 2009; Lin et al., 2011; Maison et al., 2013; Makary et al., 2011; 

Sergeyenko et al., 2013).  If information is missing among some proportion of the 

auditory nerve fibers, we should expect perception to be affected in some way.  In 

particular, listening in noise is likely to be degraded if the brain relies on any type of 

spatial summation.  For example, any mechanism which decodes spatiotemporal cues 

would receive fewer inputs.  This could affect any of the percepts thought to be 

associated with spatiotemporal coding, including speech perception, pitch, loudness, 

localization, and masking (Carney, 1994; Cedolin and Delgutte, 2007, 2010; Heinz et al., 

2001a; Joris et al., 2006b; Loeb et al., 1983; Shamma, 1985a).  Future research to 

investigate the impact of neural degeneration on spatiotemporal coding and these 

percepts would likely be worthwhile. 

7.3  Opportunities for Future Research 

Chapter 2 presented some results indicating that optimal gain may depend on the 

relative health of inner and outer hair cells.  However, the actual gain applied with a 

hearing aid is dependent on a combination of factors: the input level, the target gain for 

that input level, and the time constants for adapting the gain.  The time constants can 
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have a significant impact on how often the target gain is reached for any particular 

phoneme.  We have started an analysis to explore the effects of slow versus fast time 

constants on neural coding, but this is a very computationally expensive procedure.  

Although we can model many auditory nerve fibers in parallel, the state of the hearing 

aid at any particular time depends on the previous states.  Therefore, to calculate the 

optimal gain over any meaningful length of speech, the optimal settings must be 

calculated for each small time segment before moving on to the next.  This is a very 

computationally expensive process, but new advances in parallel processing may allow 

this important issue to be addressed in future studies. 

It would also be interesting to explore the relationship between spatiotemporal 

coding and listening in cocktail-party types of situations.  Unfortunately, we were unable 

to alter spatiotemporal coding as we hoped, but perhaps other types of stimuli could be 

used to explore the relationship between spatiotemporal coding and speech 

segregation.  For example, it would be interesting to study the interaction between 

electronic filters (e.g., applied to the acoustic signal) and auditory filters.  An approach 

similar to active noise cancellation could potentially be used to reduce undesired 

cochlear activity.  If filters could be designed to alter the receptive field of auditory 

nerve fibers, such filters may be beneficial for speech (and perhaps even music) 

perception. 
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Abstract Recent psychophysical evidence suggests that listeners with sensorineural 
hearing loss (SNHL) have a reduced ability to use temporal fine-structure cues. 
These results have renewed an interest in the effects of SNHL on the neural coding 
of fine structure. The lack of convincing evidence that SNHL affects within-fiber 
phase locking has led to the hypothesis that degraded across-fiber temporal coding 
may underlie this perceptual effect. Spike trains were recorded from auditory-nerve 
(AN) fibers in chinchillas with normal hearing and with noise-induced hearing loss. 
A spectro-temporal manipulation procedure was used to predict spatiotemporal 
patterns for characteristic frequencies (CFs) spanning up to an octave range from 
the responses of individual AN fibers to a stimulus presented with sampling rates 
spanning an octave range. Shuffled cross-correlogram analyses were used to quantify 
across-CF fine-structure coding in terms of both a neural cross-correlation coeffi-
cient and a characteristic delay. Neural cross-correlation for fine-structure decreased 
and the estimated traveling-wave delay increased with increases in CF separation for 
both normal and impaired fibers. However, the range of CF separations over which 
significant correlated activity existed was wider, and the estimated traveling-wave 
delay was less for impaired AN fibers. Both of these effects of SNHL on across-CF 
coding have important implications for spatiotemporal theories of speech coding.

Keywords Auditory nerve • Sensorineural hearing loss • Across-fiber coding 
• Temporal fine structure • Traveling wave delay

M.G. Heinz (*) 
Department of Speech, Language, and Hearing Sciences, Purdue University, West Lafayette,  
IN 47907, USA 
e-mail: mheinz@purdue.edu

Chapter 56
Across-Fiber Coding of Temporal  
Fine-Structure: Effects of Noise-Induced 
Hearing Loss on Auditory-Nerve Responses

Michael G. Heinz, Jayaganesh Swaminathan, Jonathan D. Boley,  
and Sushrut Kale

E.A. Lopez-Poveda et al. (eds.), The Neurophysiological Bases of Auditory Perception, 
DOI 10.1007/978-1-4419-5686-6_56, © Springer Science+Business Media, LLC 2010

Jon
Rectangle

Jon
Typewritten Text

Jon
Typewritten Text
135

Jon
Typewritten Text



622 M.G. Heinz et al.

56.1  Introduction

Recent psychophysical studies suggest that listeners with sensorineural hearing loss 
(SNHL) have a reduced ability to use temporal fine-structure cues, which is corre-
lated with their reduced understanding of speech in complex backgrounds (Lorenzi 
et al. 2006; Hopkins and Moore 2007). These perceptual results have renewed an 
interest in the effects of SNHL on neural coding of temporal fine structure, both 
within single auditory-nerve (AN) fibers and across fibers with different characteristic 
frequencies (CFs). There is conflicting evidence as to whether within-fiber encod-
ing of fine-structure (i.e., phase locking) is degraded following SNHL (Harrison 
and Evans 1979; Woolf et al. 1981; Miller et al. 1997). Thus, it has been hypothe-
sized that degraded across-fiber temporal coding due to broader tuning and associ-
ated shallower phase responses could underlie these perceptual deficits, e.g., as 
implicated in spatiotemporal theories of speech coding (e.g., Shamma 1985). 
However, effects of SNHL on across-CF coding have been difficult to examine 
because of experimental limitations associated with sparse CF sampling in AN 
population studies and variability in CF estimates (Chintanpalli and Heinz 2007).

The present study compared the effects of noise-induced hearing loss on within- and 
across-fiber coding of temporal fine structure. Across-fiber variability was minimized 
by using responses of individual AN fibers to frequency-shifted stimuli to predict 
responses of a population of AN fibers with differing CFs to a single stimulus. 
Shuffled auto- and cross-correlograms were used to quantify across-CF temporal 
coding in terms of both a neural cross-correlation coefficient and a characteristic 
delay (CD) that estimates the traveling-wave delay between two CFs.

56.2  Methods

56.2.1  Experimental Procedures

All procedures were approved by the Purdue Animal Care and Use Committee. 
Neural recordings were made from AN fibers in two anesthetized chinchillas using 
standard procedures (e.g., Heinz and Young 2004; Chintanpalli and Heinz 2007). 
Spike times were measured with 10-ms resolution. Isolated fibers were character-
ized by an automated tuning-curve algorithm to determine fiber CF, threshold, and Q

10
. 

Impaired-fiber CFs were chosen by hand near the steep high-frequency slope, 
which better estimates the original CF prior to SNHL (Liberman 1984). Spontaneous 
rate was determined over 20 s and PST histograms were measured to verify AN 
responses based on latency. Noise-induced hearing loss was produced in one chin-
chilla by presenting a 50-Hz-wide noise band centered at 2 kHz continuously for 
4 h at 115 dB SPL, after which the animal recovered for 6 weeks. Consistent with 
previous studies in which noise exposure produced mixed outer- and inner-hair cell 
damage (Liberman 1984; Heinz and Young 2004), a moderate hearing loss was 
produced with thresholds elevated by  ~ 30–50 dB and broadened tuning in all fibers 
(Q

10
s below the normal range for chinchillas).
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Neural responses were recorded to both a broadband noise and a speech 
sentence. Both stimuli were 1.7-s in duration at the baseline sampling frequency of 
33 kHz. Positive and negative polarity versions of both stimuli were presented at 7 
or 9 different sampling frequencies spanning a range of up to 1 octave. All stimuli 
were presented in an interleaved manner, with a new stimulus presented every 2.9 s. 
Both stimuli were presented to each AN fiber at 10 or 20 dB above stimulus 
threshold for that fiber, as determined by measured rate-level functions. Stimuli were 
repeated until ~2,000 spikes were recorded for all stimuli, or until the fiber was lost. 
Data are presented from 17 normal-hearing fibers and 19 hearing-impaired fibers.

56.2.2  Predicting Spatiotemporal Patterns from Individual  
AN Fibers

The ability to quantify across-CF temporal coding is significantly limited by sparse 
sampling and across-fiber variability inherent in AN population studies, as well as 
by variability in CF estimates from automated tuning-curve algorithms (Chintanpalli 
and Heinz 2007). These limitations are particularly true with SNHL. To overcome 
these limitations, a spectro-temporal manipulation procedure (STMP) was used to 
predict the spatiotemporal response of a population of AN fibers with a range of 
CFs responding to a single stimulus from responses of a single AN fiber to 
frequency-shifted stimuli (Heinz 2007). The STMP relies on scaling invariance in 
cochlear mechanics and is similar to procedures that have been used to study 
spatiotemporal coding of pitch (Larsen et al. 2008). Although some cochlear prop-
erties are not scaling invariant (e.g., roll-off in phase locking, refractoriness, adapta-
tion), these effects are likely to be negligible in comparisons between normal and 
impaired responses over ±0.5 octaves (Larsen et al. 2008).

56.2.3  Within-CF and Across-CF Temporal Analyses

Shuffled correlogram analyses (Louage et al. 2004; Joris et al. 2006; Heinz and 
Swaminathan 2009) were used to quantify within- and across-CF fine-structure 
coding from single AN-fiber responses to broadband noise and speech. Within-fiber 
temporal coding was evaluated based on normalized shuffled auto correlograms 
(SACs, thick lines, Fig. 56.1a, b), which were computed by comparing spike times 
between all possible pairs of stimulus presentations for a given effective CF from 
the STMP. For each pair, intervals between every spike in the first spike train and 
every spike in the second spike train were tallied with a 50-ms binwidth to create a 
shuffled all-order interval histogram. For each AN fiber, SACs were computed for 
each effective CF from the STMP. Figure 56.1 shows correlogram analyses for two 
effective CFs separated by 0.5 octaves based on spike trains recorded in response 
to broadband noise. Responses to positive and negative polarity versions of each 
stimulus were recorded because polarity inversion inverts stimulus fine-structure 
while not affecting stimulus envelope. Cross-polarity auto correlograms (XpACs, 
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thin lines, Fig. 56.1a, b) were computed by tallying intervals between all spikes in 
response to positive and negative polarity versions of the stimulus. DIFCORs 
computed by subtracting the XpAC from the SAC thus emphasize fine structure 
coding, which was significant for both effective CFs in Fig. 56.1d, e.

Across-CF fine-structure coding was evaluated based on shuffled cross correlo-
grams (SCCs, thick line, Fig. 56.1c) and cross-polarity, cross correlograms (XpCCs, 
thin line, Fig. 56.1c), which were computed by comparing spike trains across a pair 
of effective CFs from the STMP. For each effective CF pair for one AN fiber, the 
cross-correlogram DIFCOR was used to evaluate across-CF fine-structure coding 
with two metrics. A neural cross-correlation coefficient (r

TFS
) was used to represent 

the degree of similarity between two spike-train responses (Heinz and Swaminathan 
2009), and was computed as the ratio of the peak height of the cross-correlogram 
DIFCOR (Fig. 56.1f) to the geometric mean of the auto-correlogram DIFCOR peak 
heights (Fig. 56.1d, e). A significant benefit of this self-normalized similarity 

Fig. 56.1 Within- (cols. 1–2) and across-CF (col. 3) temporal coding based on shuffled correlo-
grams. (a, b) Auto correlograms: SACs (thick line), XpACs (thin line). (c) Cross correlograms: 
SCC (thick line), XpCC (thin line). (d–f) DIFCORs emphasize fine structure by subtracting XpAC 
from SAC (or XpCC from SCC). Auto-correlogram DIFCOR peak heights quantify within-fiber 
fine structure. Across-CF coding was quantified with neural cross-correlation coefficients (r

TFS
), 

computed as the ratio of cross-correlogram DIFCOR peak height (f) to the geometric mean of 
auto-correlogram DIFCOR peak heights (d, e). Characteristic delay (CD) (× in panel f) estimates 
traveling-wave delay between the two effective CFs 0.5 octaves apart. Spike trains recorded from 
one impaired AN fiber responding to a broadband noise with two sampling rates that differed by 
0.5 octaves. STMP was used to predict responses of two effective CFs 0.5-octaves apart. 
CF = 1.36 kHz, thresh. = 49 dB SPL, Q

10
 = 0.9, spont. rate = 64 spikes/s
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62556 Across-Fiber Coding of Temporal Fine-Structure

metric is that the degree of cross correlation is evaluated relative to the strength of 
within-fiber fine-structure coding for each fiber individually, which varies with 
differences in CF, spontaneous rate, and stimulus level (Louage et al. 2004). The 
computed value of r

TFS
 = 0.68 indicates significant common temporal fine-structure 

in these hearing-impaired responses for effective CFs separated by 0.5 octaves. CD 
(× in Fig. 56.1f) of the cross-correlogram DIFCOR provides an estimate of the 
traveling wave delay between the two cochlear locations represented by these CFs 
(Joris et al. 2006). A CD of 850 ms was estimated for the two effective CFs separated 
by 0.5 octaves (Fig. 56.1f).

56.3  Results

Figure 56.2 illustrates the single-fiber analyses performed on each AN fiber. 
A normal-hearing fiber is compared to an impaired fiber with a similar CF (1.3 kHz) 
in terms of their tuning curves (Fig. 56.2a), the predicted effect of CF separation on 
cross-CF correlation (Fig. 56.2b) and CD (Fig. 56.2c). The normal-hearing tuning 
curve represents a low-threshold, high-spontaneous rate fiber with sharp tuning. 
The impaired tuning curve shows broad tuning without a defined tip. This tuning 
curve is representative in shape of all impaired fibers in this study, which had 
thresholds ranging from 40 to 60 dB SPL and CFs ranging from 0.7 to 5 kHz.

The effect of CF separation on cross-CF correlation for broadband noise is 
shown in Fig. 56.2b for both AN fibers. Neural cross-correlation coefficients (r

TFS
) 

were computed for all effective CF pairs derived from the STMP for each AN fiber. 
Seven effective CFs predicted for the normal-hearing fibers produced 21 pairs with 
CF separations ranging from 0.05 to 0.55 octaves. For impaired fibers, 36 pairs 
with CF separations ranging from 0.05 to 1.0 octaves were obtained from nine 
effective CFs. The variation in r

TFS
 with CF separation was fit with fourth-order 

polynomials constrained to equal 1.0 at a CF separation of 0 octaves. Neural cross 
correlation decreased monotonically with increasing CF separation for all normal-
hearing fibers. The example shown in Fig. 56.2b decreased to ~0.3 for the maxi-
mum CF separation of 0.55 octaves. Impaired AN fibers also showed a decrease in 
r

TFS
 as CF separation increased; however, the decrease was often less steep and 

sometimes did not drop below 0.6 for the largest CF separation of 1.0 octaves 
(especially for the speech stimulus). Based on the fitted lines, the width of the cor-
related region was estimated by the smallest CF separation at which r

TFS
 fell below 

0.6. This normal-hearing fiber demonstrated correlated activity above r
TFS

 = 0.6 out 
to a 0.34-octave CF separation, whereas the impaired fiber demonstrated a much 
wider CF-separation range (0.81 octaves) of correlated activity.

The increase in CD with increased CF separation is shown in Fig. 56.2c for the 
same two AN fibers. CD derived from the cross-correlogram DIFCORs is repre-
sented in units of CF cycles and is plotted as a function of CF separation for all 
effective-CF pairs. For all normal-hearing and hearing-impaired fibers, CD 
increased very systematically across the entire range of CF separations and was 
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626 M.G. Heinz et al.

well fit by a linear function constrained to equal 0 for no CF separation. The rate 
of increase in CD as CF separation increased was less for the impaired AN fiber 
than for the normal-hearing fiber (Fig. 56.2c). Thus, for all effective-CF separations 
the traveling-wave delay was predicted to be reduced following SNHL, consistent 
with broader tuning and the associated shallower phase transition. To quantify this 
effect, the CD at a 0.5-octave separation was computed for each AN fiber based on 
the fitted lines. For the examples shown, the CD at a 0.5-octave separation was 1.3 
cycles for the normal-hearing fiber and 0.96 cycles for the impaired fiber, i.e., more 
than a quarter-cycle difference.

The normal-hearing and hearing-impaired populations of AN fibers are com-
pared in Fig. 56.3 in terms of both within- and across-CF coding of temporal fine 
structure for broadband noise and speech responses. Auto-correlogram DIFCOR 

Fig. 56.2 Effect of CF separation on across-CF fine-structure coding for a normal-hearing and a 
hearing-impaired AN fiber with similar CFs. (a) Tuning curves. (b) Neural cross-correlation coef-
ficients (r

TFS
) as a function of CF separation. The smallest CF separation (DCF) at which r

TFS
 

dropped to 0.6 was computed based on a fourth-order polynomial fit. (c) Characteristic delay (CD) 
increased linearly as a function of CF separation. CD was measured (in ms) from cross-correlo-
gram DIFCORs and converted to CF cycles by multiplying by CF in kHz. The CD at a CF separa-
tion of 0.5 octaves was computed based on linear fits. AN fibers: normal (open squares, dashed 
lines): CF = 1.29 kHz, thresh. = 8 dB SPL, Q

10
 = 4.1, spont. rate = 91 spikes/s; impaired (filled tri-

angles, solid lines): CF = 1.36 kHz, thresh. = 49 dB SPL, Q
10

 = 0.9, spont. rate = 64 spikes/s. Noise 
level: 10 dB above threshold for each fiber
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Fig. 56.3 Comparison of fine-structure coding between normal-hearing and hearing-impaired 
AN-fiber populations for broadband noise (left) and speech (right). (a, b) Within-fiber fine-
structure coding represented by DIFCOR peak heights. (c, d) Smallest CF separation (DCF) at 
which r

TFS
 dropped to 0.6 represents the width of correlated activity. (e, f) Characteristic delay 

(CD) at a CF separation of 0.5 octaves estimates phase delay (in CF cycles) across two 
cochlear locations 0.5 octaves apart. Lines are weighted moving averages from a 0.7-octave-
wide triangular window in steps of 0.35 octaves. All stimuli: 10 or 20 dB above stimulus 
threshold for each fiber

peak heights represent the strength of within-fiber fine-structure coding (Fig. 56.3a, 
b) and were not reduced in the hearing-impaired population for either broadband 
noise or speech. In fact, DIFCOR peak heights were slightly higher on average in 
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the impaired population within the CF region from 0.7 to 1.5 kHz, where both nor-
mal and impaired data existed in these limited populations. A few fibers in the 
hearing-impaired population showed much larger DIFCOR peak heights than most 
of the normal-hearing data. All fibers with DIFCOR peak heights above 6 were low-
spontaneous rate fibers, which typically have larger DIFCOR peak heights (Louage 
et al. 2004) and were more prevalent in the impaired population, consistent with 
previous studies (e.g., Heinz and Young 2004). Thus, there was no observed degra-
dation in the strength of within-fiber coding of temporal fine structure, consistent 
with several previous studies (Harrison and Evans 1979; Miller et al. 1997).

Degradations were observed in across-CF coding of temporal fine-structure. The 
range of effective-CF separations over which correlated activity existed above 
r

TFS
 = 0.6 is compared between the normal-hearing and hearing-impaired populations 

in Fig. 56.3c, d. For most normal-hearing AN fibers, correlated activity existed over 
a CF separation range between 0.2 and 0.5 octaves for both broadband noise and 
speech. For impaired fibers with CFs between 0.7 and 1.5 kHz, the width of corre-
lated activity for broadband noise was 0.1–0.2 octaves wider than for the normal-
hearing fibers, as indicated by the trend lines. For speech responses, this degradation 
was more significant, with many impaired fibers showing correlated activity that did 
not drop to r

TFS
 = 0.6 over the entire 1.0-octave range of effective-CF separations.

A decrease in CD between effective CFs was observed in the impaired popula-
tion for both broadband noise and speech responses (Fig. 56.3e, f). CD at a CF 
separation of 0.5 octaves is plotted against fiber CF for both populations. For the 
normal-hearing population, the delay in CF cycles increased systematically from 
0.25 cycles for fiber CFs ~ 150 Hz to more than 1.25 cycles for CFs just above 
1 kHz. This trend is consistent with sharper tuning and increased cochlear delays 
(in cycles) with increased CF as inferred from otoacoustic emissions (Shera et al. 
2002). CDs were reduced by  ~ 0.25 cycles in impaired AN fibers with CFs between 
0.7 and 1.5 kHz. Impaired CD was roughly constant around 1 cycle for CFs from 
0.7 to 2 kHz, and increased at higher CFs. Note that unlike the cross-correlation 
effects (Figs. 56.3c, d), CD effects were remarkably similar between broadband 
noise and speech responses. The reduction in CD with SNHL was smaller for CFs 
below 1 kHz than for those above 1 kHz; however, this CF-dependence may simply 
result from the specific noise-induction procedure used (i.e., 2-kHz exposure 
frequency), which produces the most significant hearing loss above 1 kHz (Heinz 
and Young 2004). Further study is necessary to evaluate SNHL effects at low CFs, 
given that listeners with high-frequency hearing loss and near-normal thresholds at 
low CFs have been shown to have a perceptual TFS deficit for lowpass filtered 
speech (Lorenzi et al. 2009).

It should be noted that the effect of SNHL on cochlear phase delays was not to 
eliminate the traveling-wave delay, but simply to reduce the across-CF delay by 
roughly 0.25-cycles in the present data for a moderate hearing loss. The size of this 
effect is consistent with level-dependent changes in the relative phase above and 
below CF in AN fiber responses (Palmer and Shackleton 2009). The relative phase 
for a 0.5-octave frequency difference around CF can vary by a quarter to a half 
cycle over a 40–50 dB range of tone level, which is presumably related to normal 
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62956 Across-Fiber Coding of Temporal Fine-Structure

outer-hair-cell function associated with nonlinear cochlear tuning. Although the 
size of this effect is small relative to the overall phase delay of ~1 cycle for the 
0.5-octave CF separation considered here, a quarter cycle phase shift (e.g., sine to 
cosine) represents the difference between in-phase and uncorrelated activity. Thus, 
characteristic-delay changes of this size would be significant in terms of any 
mechanism that relied on across-CF correlation at a fixed delay (e.g., cross-CF 
coincidence detection). Note that r

TFS
 represents a different effect, in that it quantifies 

the maximum correlation across all delays (i.e., computed at CD).

56.4  Discussion

The most significant effects of SNHL on fine-structure coding in AN fibers were in 
terms of across-CF coding rather than within-fiber coding, for which no degrada-
tion was observed. Across-CF coding was degraded in terms of both an increase in 
the cross-CF correlation and a decrease in CD between effective CFs. Broadening 
of the CF region over which correlated activity exists with SNHL could be percep-
tually significant for complex sounds because it would reduce the number of available 
independent neural information channels. A reduction in traveling-wave delay 
across CF with SNHL would result in a more coincident representation of temporal 
features across fibers that could degrade normal spatiotemporal response patterns. 
These patterns have been hypothesized to provide robust neural cues for a range of 
perceptual phenomena, including the coding of speech, pitch, and intensity, as well 
as tone detection in noise (Shamma 1985; Heinz et al. 2001; Carney et al. 2002; 
Heinz 2007; Larsen et al. 2008). Changes in across-CF delays would also have 
implications for binaural theories that rely on cochlear disparities as a source for 
interaural delays (Shamma et al. 1989; Joris et al. 2006).

Thus, these preliminary data suggest that the effects of SNHL on across-CF cod-
ing are significant and need to be considered when interpreting the reduced percep-
tual ability of listeners with SNHL to use fine-structure cues (e.g., Lorenzi et al. 
2006; Hopkins and Moore 2007). If these physiological effects were perceptually 
relevant, they would suggest the need for new avenues into improving strategies for 
auditory prostheses, which currently do not attempt to restore normal spatiotemporal 
response patterns.
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