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ABSTRACT 

Dri, Fernando Luis. Ph.D., Purdue University, December 2013. Multiscale Modeling of 
the Hierarchical Structure of Cellulose Nanocrystals. Major Professor: Pablo D. 

Zavattieri. 
 

 

 
Cellulose constitutes the most abundant renewable polymeric resource available today. It 

considered an almost inexhaustible source of raw material, and holds great promise in 

meeting increasing demands for environmentally friendly and biocompatible products. 

Key future applications are currently under development for the automotive, aerospace 

and textile industries. When cellulose fibers are subjected to acid hydrolysis, the fibers 

yield rod-like, highly crystalline residues called cellulose nanocrystals (CNCs). These 

particles show remarkable mechanical and chemical properties (e.g. Young Modulus 

~200 GPa) within the range of other synthetically-developed reinforcement materials. 

Critical to the design of these materials are fundamental material properties, many of 

which are unavailable in the existing literature. A multiscale framework has been 

developed to predict and describe the thermo-mechanical characteristics of cellulose 

nanocrystals using state-of-the-art computational tools capable of connecting atomistic 

based simulations to experiments through continuum based modeling techniques.  
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First-principle density functional theory and molecular dynamic simulations were utilized 

at the atomistic level. Longstanding issues regarding the elastic and thermal expansion 

anisotropies for crystalline cellulose have been studied in terms of the single-crystal 

elasticity tensor and the thermal expansion tensor components.  

First-principles phonon calculations via Van der Waals density functionals as well as 

reverse non-equilibrium molecular dynamics simulations were used to gain a 

fundamental understanding of defect-free, crystalline cellulose thermo-mechanical 

properties. Entropy, enthalpy, constant pressure heat capacity, thermal expansion tensor, 

thermal conductivity, Young’s modulus, and Poisson’s ratio, were computed over a wide 

range of temperatures (0 to 500 K). A comprehensive study of the hydrogen bond 

structure that characterizes crystalline cellulose has been conducted in an attempt to 

ascertain the roles that inter- and intra- molecular hydrogen bonds play in determining the 

mechanical properties of CNCs. Five different force fields/parameter sets were compared 

with experimental results and first-principles simulations in terms of their ability to 

predict the following properties: lattice parameters and angles, linear elasticity tensor and 

linear thermal expansion tensor. Continuum based modeling techniques were used to 

answer fundamental questions regarding the role of hydrogen bonding in the mechanical 

response of CNCs. A variety of finite element-based continuum models were specifically 

developed for cellulose chains and non-bonding interactions (van der Waals, Coulomb 

and hydrogen bonds). As a result, a complete multiscale framework capable of 

reproducing the mechanical behavior of cellulose nanocrystals has been developed. 
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CHAPTER 1. INTRODUCTION 

There is an increase awareness of the urgent need to build a sustainable future. 

Consumers, industries, and governments are increasingly demanding products made from 

renewable and sustainable resources that are biodegradable, non-petroleum based, carbon 

neutral, and pose low environmental, animal/human health and safety risks [1]. Cellulose 

constitutes the most abundant renewable polymer resource available today. As a chemical 

raw material, it has been used in the form of fibers or derivatives for nearly 150 years for 

a wide spectrum of products and materials in daily life, such as food, paper production, 

biomaterials and pharmaceuticals [2, 3]. Representing about 1.5x10
12

 tons of the total 

annual biomass production [4], it is considered an almost inexhaustible source of raw 

material for the increasing demand for environmentally friendly and biocompatible 

products. 

When cellulose fibers are subjected to acid hydrolysis, the fibers yield rod-like crystalline 

residues called cellulose nanocrystals (CNCs). The geometrical characteristic of CNCs 

showed a high variability depending on the cellulose source and the technique used for 

the extraction [2]. Cross sectional dimensions of CNCs are in the order of a few 

nanometers but the length spans from tens of nanometers to several micrometers [1, 2].  
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These particles show remarkable mechanical and chemical properties within the range of 

other humanly-developed reinforcement materials. Surface functionalization allows the 

tailoring of particle surface chemistry to facilitate self-assembly, controlled dispersion 

within a wide range of matrix polymers, and control of both the particle-particle and 

particle-matrix bond strength [3]. CNC composites produced to date can be, transparent, 

have tensile strengths greater than cast iron, and have very low thermal expansion 

coefficients (CTE) [1]. 

Some of the potential applications of CNCs are: barrier films, antimicrobial films, 

transparent films, flexible displays, reinforcing fillers for polymers, biomedical implants, 

pharmaceuticals, drug delivery, fibers and textiles, templates for electronic components, 

separation membranes, batteries, supercapacitors, electroactive polymers, and many 

others [1-3, 5-7]. 

 The advent of cellulose nanomaterials (CN) has spurred new research aimed at 

understanding the structure and properties of these materials and how to exploit their 

unique properties in new technologies [1, 7, 8]. 

 

1.1 Objectives of the thesis 

The research goal of this project is to develop a multiscale framework capable of 

predicting the mechanical and thermophysical properties of cellulose nanocrystals and 

that can be extended to any material with similar characteristics such as other 

polysaccharides (e.g. α-chitin, amylose). In turn, this will help unveiling the internal 

mechanical behavior of CNC, analyze the CNC/CNC and CNC/substrate interaction and 
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study the interaction between CNCs and the surrounding media for future CN-based 

material design. 

The objectives of this thesis are: 

1. Investigation of the key mechanisms that define the mechanical response of CNCs. 

2. Quantification of the role of each of those mechanisms and the interaction between 

them. 

3. Development of a continuum-based model capable of reproducing the mechanical 

behavior of a single CNC in vacuum. 

 

Atomistic modeling based on first-principles density functional theory (QM-DFT) and 

molecular dynamic simulations (MD) are going to be used to study the overall thermo-

mechanical properties of CNCs. The role of bonded interactions (covalent bonds) and 

non-bonded interaction (van der Waals, Hydrogen bonds, Coulomb) is key to 

understanding the elastic and thermal expansion anisotropies of cellulose. A 

comprehensive study of the hydrogen bond (H bond) structure is necessary to elucidate 

the roles of inter- and intra- molecular H bonds in the mechanical response of CNCs. 

Traditional continuum modeling techniques at the macroscale level cannot be directly 

applied to represent the behavior of CNCs. On the other hand, full scale atomistic 

simulations exceed current technological capabilities. Multiscale modeling allows to 

tackle the problem bridging several time and length scales. A continuum based multiscale 

model will be constructed based on the hypothesis that bonded and non-bonded 

interactions can be decoupled. Bonded interactions determine the cellulose chain 

mechanical behavior whereas non-bonded interactions define inter-chain mechanical 
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behavior (i.e., size of the crystal and lattice parameters). The response of the crystal as a 

whole arises from the mutual work of these two mechanisms. This hypothesis can be 

extended into two statements: 

1. The structural behavior of the cellulose chain is first decoupled from the non-bonded 

interaction and can be described by structural elements. 

2. Non-bonded interaction will be regarded as external forces to these structural elements 

in a continuous or discrete manner. 

 

To quantify bonded interactions several tasks need to be performed: 1. A comprehensive 

study on the response of a single cellulose chain under several mechanical and thermal 

deformations; 2. the effects of intra-chain H bonds (H bonds being formed by atoms that 

belong to the same cellulose chains) on the overall deformation of the chain; 3. the 

existence of size effects in the response of the system (mechanical response with respect 

to the number of glucose rings involved) and; 4. the contribution of end effects 

(termination of the cellulose chain). 

Understanding the non-bonded interaction will require specific simulations of thought-

experiments that resemble commonly used fracture mechanics tests (i.e., Double 

cantilever beam, peel off test, pull out test). Special attention will be given to the 

response of inter-chain H bonds (H bonds being formed by atoms that belong to different 

cellulose chains). The existence of size effects in the response of the system also needs to 

be taken into account. 
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Numerical simulations will be used to prove the initial hypothesis and will allow to 

progress in the path towards a complete understanding of the physic involved in the 

behavior of cellulose nanocrystals.  

 

1.2 Organization of the thesis  

Chapter two provides a comprehensive introduction to cellulose nanocrystals known 

geometrical and thermo-mechanical properties. Reported values for lattice parameters, 

morphology and dimensions, coefficient of thermal expansion and thermal conductivity 

are introduced. Longstanding issues regarding the elastic and thermal properties of 

cellulose are discussed. 

The third chapter provides an introduction to multiscale modeling focusing on different 

simulation techniques from first-principles density functional theory to continuum 

modeling. The internal hierarchical structure of cellulose is presented and a multiscale 

approach to CNCs modeling is introduced. The rest of the thesis is divided in three 

sections, each of them focused in one specific simulation technique: QM-DFT, MD and 

continuum modeling. 

Chapters four and five present a comprehensive study of the elastic and thermal 

expansion anisotropies for crystalline cellulose in terms of the single-crystal elasticity 

tensor and the thermal expansion tensor components. First-principles phonon calculations 

via Van der Waals density functionals as well as reverse non-equilibrium molecular 

dynamics simulations are used to gain a fundamental understanding of defect-free, 

crystalline cellulose thermo-mechanical properties. Entropy, enthalpy, constant pressure 
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heat capacity, thermal expansion tensor, thermal conductivity, Young’s modulus, and 

Poisson’s ratio, are computed over a wide range of temperatures (0 to 500 K). 

Chapters six, seven and eight focus their attention on bonded and non-bonded 

interactions. A comprehensive study of the hydrogen bond structure that characterizes 

crystalline cellulose is conducted in an attempt to ascertain the roles of inter- and intra- 

molecular H bonds in the mechanical properties of CNCs. Five different force 

fields/parameters are compared with experimental results and quantum mechanics 

simulations in terms of their ability to predict three different properties: lattice parameters, 

elastic constants and thermal expansion. 

Chapter nine presents continuum based modeling techniques used to answer fundamental 

questions regarding the role of hydrogen bonding in the longitudinal mechanical response 

of CNCs and chapter ten introduces a variety of finite element-based continuum models 

specifically developed for cellulose chains and non-bonding interactions (van der Waals, 

Coulomb and hydrogen bonds).  

Finally, chapter eleven summarizes the novel findings and relevant conclusions of this 

thesis. 
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CHAPTER 2.  BACKGROUND 

Cellulose is a linear chain of ringed glucose molecules with a repeat unit comprised of 

two anhydroglucose rings ( (C6H10O5)n; n=10,000 to 15,000) linked together through 

glycosidic oxygen bridges (i.e., β 1-4 glucosidic bond) [7]. It is produced by trees, plants, 

algae, bacteria, and is found in the dermis of certain marine creatures (tunicates) [1]. 

 

(a) 

 

(b) 

 
(c) 

Figure 2-1 Schematics of (a) single cellulose chain repeat unit, (b) idealized cellulose 
microfibril showing one of the suggested configurations of the crystalline and amorphous 

regions, and (c) cellulose nanocrystals after acid hydrolysis dissolved the disordered 

regions. Adapted from [1]. 
 

During biosynthesis, multiple cellulose chains form bundles, called cellulose fibrils, 

which have regions where the cellulose chains arrange with a high degree of order 

(crystalline-like), and regions that are disordered (amorphous-like). The most basic 

classification method divides crystalline cellulose types into 4 basic polymorphs that are 

identified as I, II, III or IV, each one having its own subtype [3]. 
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Cellulose I, also called native cellulose, has a mix of two polymorphs, viz., cellulose Iα, 

which has a triclinic P1 (#1) structure, and Iβ, which has a monoclinic P21 (#4) structure, 

that coexist in various proportions depending on the source of the CNC [9, 10]. The Iα 

structure is the dominant polymorph in most algae and bacteria, whereas Iβ is the 

dominant polymorph for higher plant cell wall cellulose and in tunicates [1, 11].  

 
                (a)                                     (b)                             (c)                         (d) 

Figure 2-2 Schematic of the unit cells for cellulose Iα (triclinic, dashed line) and Iβ 

(monoclinic, solid line). (a) projection along the chain direction with the Iα and Iβ unit 

cells superimposed on the cellulose I crystal lattice (b) relative configuration of Iα with 
respect to Iβ unit cell and the displacement of the hydrogen bonding sheets for (c) Iα of 

+c/4, and for (d) Iβ alternating +c/4 and –c/4. Adapted from [1]. 
 

 

A further classification of cellulose I can be based on the hydrogen bond network patterns, 

A and B, proposed by Nishiyama [9]. The relative occupancies of the two networks are 

different according to the polymorph: network A occupies ~70-80% of all the chain 

positions in Iβ, but only ~55% in Iα [10, 12]. 

This study focuses on cellulose Iβ with network A since it is the most commonly 

occurring polymorph in higher plant cell wall cellulose and in tunicates [1, 13, 14].  

The fundamental thermo-mechanical properties of cellulose Iβ (i.e., elasticity tensor, 

thermal expansion tensor, thermal conductivity, among others) are not completely 

understood or quantified. This is partially due to difficulties in experimental testing, 
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propagation of uncertainties in these experimental tests [15], and intrinsic material 

variability in crystalline cellulose being tested (e.g. different crystal structures, defects, 

percent crystallinity, etc.) [1]. Recent theoretical efforts to predict cellulose properties, 

such as the Young’s modulus, have shown substantial differences in values which are 

likely due to differences in model parameters, simulation method, configuration of the 

modeled structure, and incorporation of hydrogen bonding [14] and Van der Waals 

interactions [1, 16]. 

 

2.1 Morphology and dimensions of cellulose nanocrystals 

A wide variety of cellulose nanoparticles can be obtained from different natural sources, 

ranging from woods and animals to bacteria [1, 2, 17-19]. Different biosynthesis 

processes generate different particle morphologies and crystalline structures. Moreover, 

the extraction process (mechanical or chemical) also contributes modifying the final 

characteristics of the cellulose particles [1, 2]. 

The segregation of cellulose particles from the cellulose source materials can be divided 

in two stages [1]. The first step is a purification and pre-treatment of the source material 

which depends on the cellulose origin. The second step involves separation of the 

crystalline components from the purified cellulose. The three basic separation approaches 

are: mechanical treatment, acid hydrolysis, and enzymatic hydrolysis [1, 2, 17]. 

Acid hydrolysis is the main process used to produce cellulose nanocrystals [3]. Native 

cellulose consists of a mix of amorphous and crystalline regions. When cellulose fibers 

are subjected to a harsh acid treatment, the amorphous regions break up, liberating the 

crystalline regions [17]. The final characteristics of the crystal depend on many 
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parameters; for example, longer reaction times lead to shorter nanocrystals [20]. Different 

acids also affect the suspension properties: hydrochloric acid hydrolysis yields cellulose 

rods with minimal surface charge, whereas the use of sulfuric acid provides highly stable 

aqueous suspensions [20]. 

Cellulose nanocrystals size, dimensions and shape are also determined to a certain extent 

by the nature of the cellulose source [1, 20]. Figure 2-3 provides a graphic representation 

of the different crystalline sizes and shapes whereas Table 2-1 provides morphology 

information including approximate number of chains and atoms in the crystal. Wood 

CNCs are 3-5 nm in width and 100-300 nm in length [1, 3, 20], while those for Valonia, a 

species of algae found in oceans, are reported to be 20 nm in width and 1000-2000 nm in 

length [1, 3, 20]. Likewise, cotton gives CNCs 5-10 nm in width and 100-350 nm long, 

and Tunicate, a sea animal, gives a 10-20 nm in width and 500-2000 nm long. The aspect 

ratio, defined as the length-to-width (L/w), spans a broad range and can vary from 10 to 

30 for cotton and up to 100 for tunicate [3].  

 

Table 2-1 Examples of the length, width and aspect ratio from various CNC sources [1, 3, 

18-20]. Number of cellulose chains and atoms in the system (in Millions) computed 

based on idealized cellulose particle cross-sections [1]. 

Source 
Length (L) 

[nm] 
Width (W) 

[nm] 
Aspect ratio 

(L/W) 
Cellulose 

chains 
Number of 

atoms 

Wood 
100 

3 - 5 10 - 20 36 
0.3 M 

300 0.4 M 

Tunicate 
500 

10 - 20 25 - 200 488 
20 M 

2000 80 M 

AC Valonia 
1000 

10 - 20 50 - 200 1170 
95 M 

2000 190 M 

 

 



11 

 

   

(a) (b) (c) 

Figure 2-3 Schematics of idealized cellulose particle cross-sections for (a) wood CNC, (b) 

tunicate CNC and (c) AC Micrasterias. Adapted from [1]. 
 

2.2 Cellulose Iβ: lattice parameters 

The lattice parameters for cellulose have been measured by several authors [9, 10, 12, 21-

27] using different experimental techniques and crystal sources. For the cellulose Iβ 

network A structure, Nishiyama et al. [9] reported: a = 7.784 Å, b = 8.201 Å, 

c = 10.380 Å, α = 90°, β = 90°, γ = 96.55°, with a  658.3 Å
3
 volume at 293 K. Most of the 

measured lattice parameters exhibit variations around 1% over a wide range of 

temperatures and crystalline sources, except for the lattice parameter a. As cellulose Iβ is 

cooled or heated, the lattice remains remarkably constant in the directions within the 

hydrogen bonded planes containing the chains (i.e., b and c); the same is not true along 

the a axis direction where the contractions or expansions are controlled by weak van der 

Waals interactions and interplanar hydrogen bonding [21, 28]. Nishiyama et al. 2008 [12] 

reported a change from 7.64 to 7.76 Å in the a lattice parameter when the temperature 

was raised from 15 K to 295 K. Langan et al. [21] reported a value of 7.83 Å for the same 

parameter at 298 K. Although hydrogen bond interactions are present along the stacking 

direction (a-axis), they apparently do not prevent thermal expansion at temperatures up to 

the transition to a high-temperature phase at ~200 °C [29]. Experimental lattice parameter 

and cell volume values are summarized in Table 2-2.  
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Table 2-2 Experimental lattice parameters (a, b, c, and γ) for cellulose Iβ from different sources. 

The temperature at which each experiment was performed is reported in the last column. The 

symbol “-” means that the temperature was not reported.  

Ref Methodology Type of 
cellulose 

a 
[Å] 

b 
[Å] 

c 

[Å] 
γ 

[Deg] 
Volume 

[Å3] 
Temp 

[K] 

[24] 

X-Ray 

Diffraction 

(XRD) 

Bleached 

ramie 

(cellulose I) 

7.9 8.35 10.3 96 675.7 1 - 

[26] 
Electron 

Diffraction 
Green alga 8.01 8.17 10.36 97.3 672.5 1 293 

[27] XRD 
Valonia 

(cellulose Iβ) 

7.85 8.27 10.38 96.3 669.8 1 - 

7.82 8.16 10.32 97.5 652.9 1 - 

[9] 

XRD and 

Neutron Fiber 

Diffraction 

(NFD) 

Tunicate 

(cellulose Iβ) 
7.784 8.201 10.38 96.5 658.3 293 

[21] XRD 
Tunicate 

(cellulose Iβ) 

7.76 8.19 10.38 96.51 655.4 100 

7.83 8.19 10.38 96.55 661.3 298 

[12] 
XRD and 

NFD 

Tunicate 

(cellulose Iβ) 

7.64 8.18 10.37 96.54 643.9 15 

7.76 8.20 10.37 96.62 655.5 295 

1 Not reported, computed based on the lattice parameters 

 

2.3 Cellulose Iβ: mechanical properties 

Mechanical properties of cellulose nanocrystals are difficult to experimentally 

characterize owing largely to extreme anisotropy and uncertainties about the structure of 

these materials. For example, reported experimental values for the Young modulus of 

cellulose Iβ show a wide variation that is hard to explain considering the defect-free 

crystalline structure typically observed in CNCs [23-25, 30-35]. Unfortunately, there is 

no standardization of the coordinate system and nomenclature used to measure the elastic 

moduli making quantitative comparisons of the elastic behavior between experiments and 

theory rather difficult. Most authors agree on defining both an axial or longitudinal 

Young modulus, EA, which is aligned with the longitudinal axis of the cellulose Iβ unit 

cell, and an additional Young modulus, perpendicular to the longitudinal axis, usually 

reported as the transverse modulus, ET. Early studies using x-ray diffraction [23-25, 30, 
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31] measured values of EA ranging from 90 to 138 GPa.  Recently, Diddens et al. [32] 

reported values of EA = 220 ± 50 GPa and ET = 15 ± 1 GPa using inelastic x-ray 

scattering (IXS). Diddens and coworkers [32] claimed that IXS was not affected by the 

amorphous zones occurring in natural cellulose, and the elastic behavior was mostly 

related to the highly crystalline regions. Alternatively, larger uncertainties have been 

reported from atomic force microscopy (AFM) measurements of cellulose Iβ elastic 

properties. For example, Lahiji et al. [35] and Wagner et al. [33] reported ET = 8.1 GPa 

with a 95% confidence, which translates into an interval ranging from 2.7 to 20 GPa.  

Relating experimental measurements to a specific crystallographic orientation is 

challenging since it is difficult to estimate the alignment of the CNC with respect to the 

substrate [35]. Moreover, with no additional information on the direction assigned to ET, 

it may not be possible to properly interpret the experimental data and, therefore, any 

attempt to compare experiments with computational predictions is difficult. Uncertainties 

about the shape of the CNC after sample preparation and the determination of the 

crystallographic planes during the experiments contribute to this important challenge.  

Table 2-3 Summary of Young’s modulus and Poisson’s ratio values from different crystalline 

sources and authors. The symbol “-” means that the corresponding value was not reported. 

Ref Methodology Type of 
cellulose 

EA 
[GPa] 

ET 
[GPa] 

νt 
Temp 

[K] 
[23-25, 

30, 31] 

X-Ray Diffraction 

(XRD) 

Ramie 

(cellulose I) 
90 to 138 - - - 

[36] XRD 
Ramie fiber 

(cellulose Iβ) 
- - 

ν[200]/[004] = 0.377 ± 0.041 
1
 

ν[110]/[004] = 0.639 ± 0.338 
1
 

Room 

 Temp 

[32] Inelastic X-Ray (IXR) 
Flax fibers 

(cellulose Iβ) 
220 ± 50 14.8 ± 0.8 - - 

[33] 
Atomic force
 

microscope (AFM) 
Tunicate CNC - 2.7 to 20 - - 

[34] 
AFM+Finite 

Elements 

Wood CNC 
- 

24.8 ± 7.0 
- - 

Cotton CNC 17.7 ± 5.0 
1
 Upper limit of the standard deviation. 
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2.4 Cellulose Iβ: coefficient of thermal expansion 

The experimentally measured thermal expansion coefficients (TECs) of cellulose Iβ are 

also scattered [37-40]. The range of reported TECs along the a, b, and c-axes of the Iβ 

structure are as follows: 9.8-13.6×10
-5

 K
-1

, 0.5-4.6×10
-5

 K
-1

, and 0.6×10
-5

 K
-1

, 

respectively. Additionally, at temperatures approaching 475-500K, the Iβ structure 

transitions to a high-temperature phase that shows a different TEC response. Compared 

with other organic compounds, these previous studies suggest a relatively high elastic and 

low thermal expansion behavior of cellulose Iβ and also indicate extreme property 

anisotropies as a result of the bonding character in cellulose Iβ.  

 

2.5 Cellulose Iβ: thermal conductivity 

There is currently a dearth of information on thermal conductivity (k) values for cellulose 

Iβ both in the experimental and the theoretical literature. Shimazaki et al. [41] produced 

Nano Fibrillated Cellulose (NFC) (58 wt%)-epoxy matrix reinforced composite films that 

had thermal conductivity of 1.1 W m
-1

 K
-1

 in the in-plane direction and 0.23 W m
-1

 K
-1

 in 

the thickness direction. These values have been experimentally measured at room 

temperature using calorimetry and thermal wave analysis. Results showed that there is a 

7-8 times increase in the in-plane direction of the film and 1-2 in the thickness direction 

compared to the neat epoxy matrix. The increased thermal conductivity of the composites 

provides the capability to dissipate more heat for a given input heat flux, which lowers 

the composite temperature and thus improves the thermal stability preventing chemical 

and mechanical degradation [1]. 
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CHAPTER 3. MULTISCALE MODELING 

3.1 Introduction to multiscale modeling 

Given a specific problem, engineers usually focus on a particular scale, disregarding 

physical phenomena happening beyond the analyzed size and time frame. If our interest 

is the macroscopic behavior, we model microstructural effects by constitutive equations 

and well know approximations (e.g., plasticity models). On the other hand, in the study of 

solid state physics, the interest lies at the atomic or electronic level, often assuming that 

all processes in larger scales are homogenous [42]. 

This dichotomy can lead to serious complications when analyzing some of the physical 

phenomena occurring in nature. Empirically obtained macroscopic models are usually 

very efficient but are often not accurate enough or fail to reproduce a specific behavior. 

Micromechanical and atomistic models may offer better accuracy but they are often too 

expensive to be used in model systems of real interest. 

In order to overcome these barriers researchers in different areas began investigating 

multiscale modeling strategies to connect the different length and time scales. 
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The philosophy of multiscale modeling is based on the viewpoint that: 

1. Any system of interest can be analyzed as a hierarchy of models with different levels 

of complexity. When a coarse model is not detailed enough to represent a given 

phenomenon it can be substituted by a finer model. This particular characteristic allows 

better representations of fundamental physical phenomena without an unnecessary 

increase in the model complexity. 

2. Coarse grained models can be coupled with detailed models that are active only in 

certain regions. These small regions may contain singularities, cracks, defects, or some 

other interesting events that could be crucial for the correct evolution of the model. 

Coupling models of different complexity in different regions allows developing modeling 

strategies that have efficiency comparable to coarse grained models with accuracy 

comparable to detailed models. 

 

This particular approach has the advantage that is not only useful for a few isolated 

problems, but can be applied in many areas of science and engineering [42]. Multiscale 

modeling techniques are becoming increasingly necessary given the growing interest in 

nano-composite materials. These materials present macroscale behavior that is direct 

influenced by effects occurring at the atomic level. Controlling these small-scale 

properties can be the key to tuning the properties of these materials and opens up a 

myriad potential applications. Traditional modeling techniques at the macroscale level 

are not detailed enough to accurate represent the behavior of nano-composite materials. 

On the other hand, full scale atomistic simulations turn to be impractical for modeling 

large systems, usually requiring simulation times and computational resources that 
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exceed current hardware. Multiscale modeling allows to tackle the problem bridging 

several time and length scales. 

Atomistic models used to accurately represent the physical system must be simplified (or 

coarse-grained) preserving only the relevant degrees of freedom. A series of steps need to 

be applied to transfer the relevant information from the atomistic models to the coarse 

grained system. Those steps consist of defining the right parameters (selection or 

development of the coarse-graining method), systematically determining the values for 

those parameters from atomistic simulations, and clearly specifying the range of validity 

of those methods and parameters [43]. 

Among some of the problems related to this approach it is found that a connection 

between scales is usually hard to find and, for many applications, the defined parameters 

are not general and can only be expected to work in certain conditions. That is assuming 

that the right set of parameters exists and can be transfer to a higher scale, which is not 

always true. Regardless of the difficulties inherent of the process, the multiscale approach 

provides a natural mechanism for modeling systems otherwise impossible to analyze [44]. 

For additional information on successful implementations of multiscale modeling in 

biological and non-biological materials refer to [45-52]. 

Today super computers and state-of-the-art parallelized software allows for solving many 

non-linear problems directly without using any mathematical approximation. This 

powerful tool provides a bridge between analytic theory and experiment, allowing 

controlled computer experiments that can be used for exploration beyond traditional 

methods [53]. Computers can be used to analyze any time or length scale, from atoms to 
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solar systems. Coupled with the multiscale approach, computer simulations can be used 

to open countless possibilities for researchers. 

An efficient modeling strategy requires special simulation techniques appropriate to the 

respective relevant length and timescales under investigation. The following paragraphs 

provide a short overview of the hierarchy of length scales common in materials science 

and present some of the simulation software currently available. 

 

3.1.1 Electronic/Atomistic scale 

It is known that electrons moving in atoms and molecules do not obey classical Newton 

equations of motion. People long ago tried to treat electronic motion classically, only to 

find out that experimental measurements were not consistent with such a treatment [54]. 

It was not until scientists developed a new set of laws, those of quantum mechanics, that 

laboratory observation could be reconcile with analytical models. The mathematical 

formulations of quantum mechanics are abstract and generally involve solving the 

Schrödinger equation approximately based on the Born-Oppenheimer approximation. A 

mathematical function, known as the wavefunction, provides information about the 

probability amplitude of position, momentum, and other physical properties of a particle 

inside the system. Modeling on this scale requires taking into account the degrees of 

freedom of the electrons explicitly [53] which remarkably increase the computational 

cost of the simulation. With ab-initio methods, the only information that has to be 

provided is the atom types and their positions within the system. In contrast, semi-

empirical or empirical approaches require a model of the interactions between the atoms 

to be supplied. There are many well-known software packages used in materials science 
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and quantum chemistry such as QUANTUM ESPRESSO, VASP and GAUSSIAN to 

name a few. The majority of the simulation packages are based on density-functional 

theory, plane waves, and pseudopotentials. The results of quantum mechanical 

calculations are often used in the design of classical molecular force fields, providing a 

connection to the next scale [53, 55].  

 

3.1.2 Atomistic/Microscopic scale 

Atomistic simulations models materials at the level of atoms without explicitly 

considering electronic interactions [56]. Simulations performed at this level allow more 

flexibility than those typical of quantum mechanics and a wide range of properties of 

solids and fluids can be calculated [53]. As a result, a variety of researches in different 

fields (e.g. physics, chemistry, chemical engineering, molecular biology, biochemistry or 

even geochemistry) actively use atomistic simulations. 

Systems analyzed at the atomistic scale are mainly governed by their energy; hence the 

motion of electrons can be neglected. As a consequence, individual atoms or even 

clusters of atoms can be described with methods based on classical interaction potentials 

[53]. 

In the case of Molecular Dynamics (MD), the actual motion of the atoms is simulated by 

evolving the atomic configuration in time according to Newton's equation of motion 

(F = m a) [56]. The MD method is simple in concept and easy to implement but is not 

hassle free. The simulation starts with a set of atomic coordinates and an associated atom 

type (e.g. Carbon, Oxygen, Hydrogen). Other parameters may also be needed depending 

on the type of simulation and complexity of the interactions that are being modeled. The 
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force acting over each atom is computed employing a force field obtained either 

empirically or based on quantum mechanics simulations. The forces are converted in 

accelerations, and using numerical time step algorithms, the atomic velocities and/or 

accelerations are updated to predict the position of each atom after a small time interval 

(time step). The result of this process is the evolution of the atom positions through time. 

The process outlined above is very simple but very powerful. It is possible to compute 

experimentally measurable phenomena and to run simulations of setups that are 

impractical (or impossible) to reproduce in normal laboratory conditions. The most 

common type of analyses includes equilibration of the system at a given temperature, 

pressure and /or volume or calculating the time evolution of the ensemble when it is 

reacting to a specific disturbance. Recent developments have led to methods to compute 

additional properties such as diffusion constants or thermal conductivity [55]. 

Limitations of the molecular dynamic method are related mostly to the force field 

representation being used. The results of a simulation will be realistic only if the potential 

energy functions described in the force field mimics the forces experienced by real atoms 

in a given configuration. At the same time, a force field needs to use simple functional 

forms to speed up the mathematical evaluation of forces and interactions within the 

system. Designing a good force field is a challenging task! [57]. Additional problems 

arise when quantum effects start playing an important role in the evolution of the system. 

Dynamical events involving quantum effects such as tunneling of protons or electrons 

cannot be represented using standard force fields. This situations extends to other 

phenomena that have a partially quantum mechanical nature such as hydrogen bonds [58]. 

Modern force fields usually describe hydrogen bonds as Coulomb interactions of atomic 
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point charges. This is a crude approximation that can lead to inaccurate simulation results 

in systems that are governed by this type of interaction. 

State-of-the-art MD simulations can be performed on systems containing millions of 

atoms and for simulation times close to a microsecond. While these numbers are certainly 

impressive, it may be possible to run into conditions where time and/or size limitations 

become important [59]. The time limitation is the most severe problem in MD 

simulations. Relevant time scales for biologically important processes extend over many 

orders of magnitude [57]. It is imperative to define the total time duration of the 

simulation to be long enough to be relevant to the time scales of the natural processes 

being studied.  

For computer simulations using semi-empirical or classical force fields, there are several 

software packages available such as: CHARMM, GROMACS, AMBER, NAMD and 

LAMMPS [53]. Different software have different features and their own merits. The vast 

majority of simulation packages are capable of simulating soft materials (biomolecules, 

polymers), solid-state materials (metals, semiconductors) and coarse-grained or 

mesoscopic systems. They can be used to model atoms running on single processors or in 

parallel supercomputers and are being extended to comply with GPU accelerated 

computing. 

 

3.1.3 Mesoscopic/Macroscopic scale 

Continuum mechanics treats any system of interest as a continuum media rather than a 

collection of atoms and their interactions [42]. This assumption implies that the matter in 

the body is continuously distributed and fills the entire region of space it occupies. 
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Moreover, a continuum is a body that can be continually sub-divided into infinitesimal 

elements with properties being those of the bulk material. 

Continuum theories can be branched in to two related fields: statics and dynamics. Statics 

models usually take the form of variational principles, for example, the static 

configuration of a material minimizes the total free energy of the system taking into 

account the work done by external forces [42]. On the other hand, dynamic models are 

generally written in the form of conservation laws (mass, momentum and energy). 

The advantage of continuum models is that the number of relevant equations is reduced 

considerably. Constitutive relations are used to reproduce material macroscopic behavior 

based on an intrinsic microscopic phenomenon ( i.e., the atoms that make up the system). 

This is where most of the empirical modeling in continuum theory comes in. For simple 

systems, linear constitutive relations have been remarkably successful [42]. For example, 

the Young modulus and the Poisson’s ratio parameters can be used to effectively 

represent the elastic behavior of an entire family of materials. 

Most practical design calculations involve complicated three dimensional geometries and 

a variety of nonlinear phenomena such as viscoelasticity, plasticity, large shape changes 

and contact. Most of these problems cannot be tackled using classical methods with 

closed form solutions, and hence they require the use of computer simulations. The finite 

element method (FEM) is by far the most widely used and versatile technique for 

simulating deformable solids [60]. 

The most distinctive characteristic of the finite element method is that a given domain is 

divided into a set of simple subdomains called finite elements [61]. By doing so, the 

original problem is replaced by a simpler one, therefore, only an approximate solution is 
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reachable. It is possible to improve or refine the solution by increasing the amount of 

elements used to represent the system at the cost of computational effort.  

One of the most common applications for the FEM is the prediction of deformation and 

stress fields within solids subjected to external forces. When a solid is subjected to 

loading every point moves as the load is applied producing a deformation that can be 

measured. The displacement field specifies the motion that a particular point in the 

undeformed solid has experienced. Once the displacement field is known, the strain and 

stress fields in the solid can be deduced from solid mechanics relations. In most cases, the 

system of interest is in static equilibrium, this means that both external and internal forces 

acting on the solid sum to zero. Dynamic behavior of solids can also be studied with the 

FEM; examples include modeling vibrations in structures, problems involving wave 

propagation, explosive loading and crash analysis [60]. In addition, special finite element 

procedures are available to calculate buckling loads and their modes, as well as natural 

frequencies of vibration and the corresponding mode shapes for a deformable solid. 

Many commercial and free codes implementing methods based on continuum theory are 

available for structural and coupled fluid-structural simulations in engineering 

applications [53]. A short reference list must include: ABAQUS, LS-DYNA, ANSYS, 

CalculiX, Code Aster and FEAP.  

 

3.2 Multiscale modeling applied to cellulose nanocrystals 

Nature has created efficient strategies to make materials with hierarchical internal 

structure that often exhibit exceptional mechanical properties. One such example is found 

in cellulose. These natural materials achieve a high order of functionality and mechanical 
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properties through a well-designed hierarchical structure with an exceptional control from 

the atomic level all the way to the macroscopic level. For engineering purposes, 

cellulose-based materials have been used for thousands of years essentially for their great 

qualities in many fields. However, nature has used cellulose for very specific and highly 

specialized purposes (e.g. structural support in plants, trees, etc.) based on its particular 

mechanical properties. 

 

Figure 3-1 Schematic representation of the tree hierarchical structure. Note the different 
configuration defined at each structural level: Growth ring, earlywood and latewood, 

cellular structure, layer structure of cell wall, fibril-matrix structure, and the 

structure/configuration of the main polymer components (cellulose, hemicelluse, and 
lignin). Adapted from [1]. 

 

The native hierarchical structure shown in Figure 3-1 provides the perfect ground for 

multiscale modeling. It is easy to imagine the use of different modeling strategies based 
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on the structural level being analyzed, from the single cellulose chain to the fibril-matrix 

composite or even wood itself. Determining the right simulation strategy requires a deep 

understanding of the physical process involved in each of the characteristic scales.  

Numerical simulations were used to prove the initial assumptions outlined in chapter 2 

and were used to progress in the path towards understanding the mechanical behavior of a 

cellulose nanocrystal. Multiple modeling techniques were used depending on the time 

and length scale of interest. For the femtoseconds – nanometers scale the use of quantum 

mechanics techniques provided the model of atomic interactions in the most 

comprehensive form available today. Invaluable information of crystalline cellulose 

thermo-mechanical behavior was obtained at the most fundamental level but results were 

restricted by the system size that was possible to simulate. It is important to keep in mind 

that given any type of simulation, with any available tool, the restrictions will always be 

imposed by the size of the system (generally related to accessible memory) and the total 

time simulation time (generally related to the available computational power). The 

resources needed to run quantum mechanics simulations of an entire CNC crystal are 

beyond the capabilities of today most powerful computers. 

Molecular dynamics provided the tools needed to reach larger time and length scales 

without incurring in prohibited simulation times. Whereas quantum mechanics 

simulations are limited to a hundred of atoms in a picosecond timescale, MD is capable 

of times up to microsecond with millions of atom involved (state-of-the-art simulations). 
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Figure 3-2 Commonly used models of physics at different scales. In red: techniques that 
take into account atoms explicitly. In blue: “continuum” theories. 

 

Increasing the size and time length of the system does not come without restrictions. The 

increase is achieved by reducing the details involved in each atomic interaction and the 

results are highly dependable on the force field parameterization being used to run the 

simulations. Keeping in mind those limitations, MD has the advantage of simulating large 

systems that are far beyond the reach of QM.  It was possible to simulate an entire CNC 

crystal for several nano-seconds using molecular dynamics computational tools. 

Interaction between large CNCs or the behavior of the crystal as reinforcement material 

is still out of the reach of current molecular dynamics simulations. Continuum theories 

are the right tool for systems that range seconds to years in the time scale and millimeters 
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to kilometers in the length scale. Continuum models do not consider atomic interactions 

in the same way as QM or MD because the entire system is viewed as a whole and not as 

a group of individual atoms interacting between each other. A continuum representation 

of cellulose crystals was developed based on the finite element method. Each individual 

cellulose chain inside the cellulose crystal was coarse grained into an element specifically 

designed. Non-bonded interactions such as hydrogen bonds, Coulomb and van der Walls 

were also taken into account with specially designed finite elements. 

It is common to divide multiscale modeling into two different types: hierarchical 

multiscale and on-the-fly concurrent multiscale methods.  Concurrent multiscale methods 

divide the computational domain into different regions where different simulation 

methods are applied. This approach is particularly useful for systems where atomistic 

interactions in a small region can affect the macroscopic properties of a material (e.g. 

fracture). In the case of hierarchical multiscale, a set of different computational tools are 

used in sequence following a bottom up approach. First the most accurate method (e.g. 

quantum mechanics) is used to determine parameters for the next computational approach 

(e.g. via force field fitting to generate interatomic potentials). Molecular dynamics 

simulations are then used to determine constitutive equations which are utilized as inputs 

in finite element approaches. The systematic integration of models that range from 

quantum mechanics to macroscopic scales allows to make quantitative predictions of 

complex phenomena with few (or without) empirical parameters. Quantitative predictions 

are enabled via the validation of key properties, which then enables to extrapolate and 

predict the behavior of systems not included in the initial set of parameters used to 
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develop the model. As a result, the need for data fitting to match experimental results is 

considerably reduced or completely eliminated. 

A hierarchical multiscale technique with a bottom-up approach was used in this study. 

The analysis was started conducting QM-DFT simulations of crystalline cellulose at 0K. 

A single simulation cell was initially relaxed and then subjected to several deformation 

states. As a result, groundbreaking information regarding the extreme anisotropies of 

crystalline cellulose was obtained. Temperature effects over mechanical properties, 

coefficient of thermal expansion, thermal conductivity and heat capacity were also 

computed with QM-DFT simulations.  

The next natural step was to move to MD simulations allowing a substantial increase in 

the time and size scale of the system. At this point, the thermo-mechanical properties 

provided by QM-DFT simulation proved to be invaluable. Several force field 

parameterizations were systematically tested and compared with QM-DFT simulations. 

Molecular dynamics simulations of single chains and entire crystals were conducted to 

characterize the intrinsic mechanical behavior CNCs and define the role of non-bonded 

interactions. 

Finally, a continuum model was developed capable of representing an entire CNC crystal 

in vacuum. A significant reduction in the number of degrees of freedom needed to 

represent a cellulose crystal was achieved by introducing continuum approximations. The 

resulting speedup was of several orders of magnitude, allowing simulations that would 

have taken months with MD to run in a couple of minutes with FEM. 

 



29 

 

CHAPTER 4. ANISOTROPY OF THE ELASTIC PROPERTIES OF CRYSTALLINE 

CELLULOSE FROM FIRST PRINCIPLES 

4.1 Introduction 

In spite of the significant potential of cellulose nanocrystals (CNCs) as functional 

nanoparticles for numerous applications, a fundamental understanding of the mechanical 

properties of defect-free, crystalline cellulose is still lacking. Mechanical properties of 

CNCs are difficult to experimentally characterize owing largely to extreme anisotropy 

and uncertainties about the structure of these materials. For example, reported 

experimental values for the Young modulus of cellulose Iβ show a wide variation that is 

hard to explain considering the defect-free crystalline structure typically observed in 

CNCs [23-25, 30-35]. Unfortunately, there is no standardization of the coordinate system 

and nomenclature used to measure the elastic moduli making quantitative comparisons of 

the elastic behavior between experiments and theory rather difficult. Most authors agree 

on defining both an axial or longitudinal Young modulus, EA, which is aligned with the 

longitudinal axis of the cellulose Iβ unit cell, and an additional Young modulus, 

perpendicular to the longitudinal axis, usually reported as the transverse modulus, ET. 

Early studies using x-ray diffraction [23-25, 30, 31] measured values of EA ranging from 

90 to 138 GPa.  Recently, Diddens et al. [32] reported values of EA = 220 ± 50 GPa and 

ET = 15 ± 1 GPa using inelastic x-ray scattering (IXS).  
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Diddens and coworkers [32] claimed that IXS was not affected by the amorphous zones 

occurring in natural cellulose, and the elastic behavior was mostly related to the highly 

crystalline regions.  

 
(a) 

 
(b) 

Figure 4-1 (a) Atomic force microscope topography image of a tunicate CNC showing its rod-like 

shape (on a mica substrate) [33]. The blue cross near the bottom of the figure denotes a location 

for AFM tip indentation. (b) Schematic of a CNC particle during AFM indentation for illustration 

purposes. Here, the cellulose chains are represented by straight ribbons, and the crystallographic 

directions indicated as a, b and c.  The inset shows details of the layered cellulose structure where 

red spheres denote oxygen ions, gray spheres represent carbon ions and white spheres represent 

hydrogen ions. The red dotted lines indicate the repeating unit cell. 
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Alternatively, larger uncertainties have been reported from atomic force microscopy 

(AFM) measurements of cellulose Iβ elastic properties. For example, Lahiji et al. [35] and 

Wagner et al. [33] reported ET = 8.1 GPa with a 95% confidence, which translates into an 

interval ranging from 2.7 to 20 GPa. A typical AFM indentation test of a CNC particle on 

a hard substrate is shown in Figure 4-1a. As described by Lahiji et al. [9], this test is used 

to measure ET. Figure 4-1b shows schematics of the direction of the load with respect to 

the expected crystallographic directions (a, b, and c). Relating these experimental 

measurements to a specific crystallographic orientation is challenging since it is difficult 

to estimate the alignment of the CNC with respect to the substrate [35]. Moreover, with 

no additional information on the direction assigned to ET, it may not be possible to 

properly interpret the experimental data and, therefore, any attempt to compare 

experiments with computational predictions is difficult. Uncertainties about the shape of 

the CNC after sample preparation and the determination of the crystallographic planes 

during the experiments contribute to this important challenge.  

In the present study, the anisotropy of the Young’s modulus and Poisson’s ratio of 

monoclinic cellulose Iβ was quantified using ab initio first principles density functional 

theory (DFT) [62] with a semi-empirical correction for van der Waals interactions [63]. 

The least squares fitting method of Le Page and Saxe [64] is used to compute all unique 

components of the stiffness and compliance matrices using the VASP code [65-68] as the 

DFT computational engine. This information enables analysis of the variations of the 

Young’s modulus and Poisson’s ratio with crystallographic orientation. These variations 

are displayed as surfaces which are color contours showing crystallographic dependence 

of these properties. Polar plots, which show the Young’s modulus and Poisson’s ratio 
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variation with angular orientation in a given plane within the cellulose Iβ crystal structure, 

are used to: (i) explain the substantial variability in the literature experimental data on the 

Young’s modulus for cellulose, and (ii) understand the Poisson’s effect in selected planes.  

 

4.2 Background 

The crystal structure and the hydrogen bond system in cellulose Iβ have been 

characterized by Nishiyama and co-workers [9, 10, 12, 21, 22]. Here, the atomic 

coordinates for the cellulose Iβ network A reported by Nishiyama et al. [9] were adopted. 

Symmetry and antisymmetry operations provided by the crystallographic space group, 

commonly accepted to be monoclinic P21 [26], were used to account for the atomic 

positions inside the unit cell. Each unit cell contains two molecular chains with a total of 

42 ions per chain (84 ions per unit cell). Note that the formula unit (f.u.) for this structure 

is C6O5H10; there are two f.u.’s in the primitive cell and four in the crystallographic cell. 

Figure 4-2 depicts the crystalline structure reported by Nishiyama et al. [9] after the 

symmetry operations are applied to the atomic coordinates. The represented structure was 

constructed using the Crystalline cellulose – atomistic toolkit [69]. Intra- and inter-

molecular hydrogen bonds are depicted in Figure 4-2b following the hydrogen bond 

network A pattern reported in [12, 70]. Cellulose chains are organized in hydrogen 

bonded planes (in the b-c plane) that are stacked together and held in position primarily 

by weak vdW interactions. Out-of-plane intermolecular hydrogen bonds, connecting 

cellulose chains in different planes, has also been reported [71]. Lattice parameters and 

crystallographic directions are superimposed in Figure 4-2a and b for reference purposes.  
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(a) 

 

 (b) 

 Figure 4-2 Expanded views of the P21 unit cell structure of the cellulose Iβ network A showing 

the characteristic layered conformation [69].  Experimental (room temperature) lattice parameters 

a, b, c, from Nishiyama et al. [9] are shown. Red spheres denote oxygen ions, gray spheres 

represent carbon ions and white spheres represent hydrogen ions. Dotted blue lines denote the 

unit cell. (a) View along the c-axis (in of the page).  Layers of Iβ are stacked along the a-axis. (b) 

View along the a-axis direction. Atomic coordinates were obtained after applying symmetry 

operations to the original structure reported by Nishiyama et al. [9]. Intra- and inter molecular 

hydrogen bonds are depicted in green and orange respectively, according to the hydrogen bond 

network A pattern reported in Refs. [12, 70]. The symbol // in this figure means “parallel to.” For 

example, a//[001]//1 means that the crystallographic direction a, with Miller indices [001], is 

parallel to the Cartesian axis 1.  
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To facilitate the predictions of the anisotropy of the Young’s modulus and Poisson’s ratio 

of monoclinic cellulose Iβ, a Cartesian system of coordinates 1, 2 and 3 was defined. 

Direction 1 is chosen to be parallel to a ([001]), and direction 3 is parallel to c ([001]). 

For the monoclinic P21 structure, b is not orthogonal to a. Therefore, direction 2 is chosen 

such that it is orthogonal to directions 1 and 3 as shown in Figure 4-2a and b.  

The lattice parameters for cellulose have been measured by several authors [9, 10, 12, 21-

27] using different experimental techniques and crystal sources. For the cellulose Iβ 

network A structure, Nishiyama et al. [9] reported: a = 7.784 Å, b = 8.201 Å, 

c = 10.380 Å, α = 90°, β = 90°, γ = 96.55°, with a  658.3 Å
3
 volume at 293 K. Most of the 

measured lattice parameters exhibit variations around 1% over a wide range of 

temperatures and crystalline sources, except for the lattice parameter a. As cellulose Iβ is 

cooled or heated, the lattice remains remarkably constant in the directions within the 

hydrogen bonded planes containing the chains (i.e., b and c); the same is not true along 

the a axis direction where the contractions or expansions are controlled by weak vdW 

interactions and interplanar hydrogen bonding [21, 28]. Nishiyama et al. 2008 [12] 

reported a change from 7.64 to 7.76 Å in the a lattice parameter when the temperature 

was raised from 15 K to 295 K. Langan et al. [21] reported a value of 7.83 Å for the same 

parameter at 298 K. Although hydrogen bond interactions are present along the stacking 

direction (a-axis), they apparently do not prevent thermal expansion at temperatures up to 

the transition to a high-temperature phase at ~200 °C [29]. This thermal sensitivity of the 

lattice parameter a should be kept in mind when comparing 0 K ab initio calculations 

with experimental values acquired at temperatures above zero K. Experimental lattice 
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parameter and cell volume values, as well as ab initio simulation results, are summarized 

in Table 4-1.  

Table 4-1 Ab-initio and experimental lattice parameters (a, b, c, and γ) of cellulose Iβ 

from different sources are listed. The double lines separate experimental results from 

simulations. Exchange-correlation functionals used in the ab initio simulations are: LDA 
(local density approximation), PBE (the generalized gradient approximation of Perdew–

Burke–Ernzerhof or GGA-PBE) [72]; PBE-D and PBE-D2 (GGA-PBE with van der 
Waals corrections) [65-67]. See section 4.4 for additional details.  The temperature at 

which each experiment was performed is reported in the last column. The symbol “-” 

means that the temperature was not reported.  

Ref Methodology 
Type of 
cellulose 

a 
[Å] 

b 
[Å] 

c 

[Å] 
γ 

[Deg] 
Volume 

[Å3] 
Temp 

[K] 

[24] 

X-Ray 

Diffraction 

(XRD) 

Bleached 

ramie 

(cellulose I) 

7.9 8.35 10.3 96 675.7 1 - 

[26] 
Electron 

Diffraction 
Green alga 8.01 8.17 10.36 97.3 672.5 1 293 

[27] XRD 
Valonia 

(cellulose Iβ) 

7.85 8.27 10.38 96.3 669.8 1 - 

7.82 8.16 10.32 97.5 652.9 1 - 

[9] 

XRD and 

Neutron Fiber 

Diffraction 

(NFD) 

Tunicate 

(cellulose Iβ) 
7.784 8.201 10.38 96.5 658.3 293 

[21] XRD 
Tunicate 

(cellulose Iβ) 

7.76 8.19 10.38 96.51 655.4 100 

7.83 8.19 10.38 96.55 661.3 298 

[12] 
XRD and 

NFD 

Tunicate 

(cellulose Iβ) 

7.64 8.18 10.37 96.54 643.9 15 

7.76 8.20 10.37 96.62 655.5 295 

[63] 
PBE 

Cellulose Iβ 
8.70 8.23 10.46 95.5 744.9 

0 
PBE-D2 7.65 8.14 10.39 96.8 642.5 

[73] 

PBE Cellulose Iβ 

network A 

8.37 8.23 10.45 96.0 716 

0 
PBE-D2 7.57 8.14 10.39 96.5 636 

PBE-D2 
Cellulose Iβ 

network B 
7.51 8.55 10.30 98.2 655 

[74] 

LDA 

Cellulose Iβ 

7.41 7.94 10.24 96.2 599.0 1 

0 PBE 
Not 

binding 
8.27 10.54 94.7 - 

PBE-D 7.85 8.18 10.47 96.6 667.9 1 

This 

study PBE-D2 
Cellulose Iβ 

network A 
7.56 8.13 10.39 96.7 635 0 

1
 Not reported, computed based on the lattice parameters 
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4.3 Elastic stiffness matrix Cij and compliance matrix Sij for crystalline cellulose Iβ  

Materials that exhibit directional independence of their mechanical properties are referred 

to as isotropic. They have the advantage that their elastic response is characterized by 

only two parameters: the Young modulus (E) and the Poisson’s ratio (ν). In addition, the 

stress-strain tensile behavior will be completely independent of the relative orientation of 

the specimen with respect to the loading direction. Anisotropic materials, however, 

exhibit variations in their mechanical properties with respect to an intrinsic direction 

within the material. One of the most common examples of a naturally-occurring 

anisotropic material is wood, were the grain is oriented along a particular direction.  This 

significantly affects the mechanical response of the material. Hence, it is necessary to 

define a more general stress-strain relation for anisotropic solids that will account for 

mechanical property variations with direction within the material. The most general linear 

stress- strain relation for anisotropic materials is Hooke’s Law, which has the form: 

σij = Cijkl εkl, where σij and εkl represent the components of the second-order stress and 

strain tensors, respectively, and Cijkl are the components of the fourth-order elasticity 

tensor with 81 components [60]. The inverse relation can also be written as εij = Sijkl σkl, 

where Sijkl are the components of the elastic compliance tensor. These relationships can 

be converted to a matrix form based upon symmetries in Cijkl and Sijkl, leading to a 

stiffness matrix with components Cij and a compliance matrix with components Sij, both 

with 21 independent components [60]. 

The monoclinic space group of cellulose Iβ dictates that the unit cell has a symmetry 

plane that is defined by the c-axis. The presence of a symmetry plane has a direct 

consequence over the Cij and Sij in that it reduces the number of components necessary to 
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represent the system. This leaves only 13 independent constants in each of Cij and Sij. 

Lastly, the matrix representation of the stress-strain relation must follow a coordinate 

system that allows a direct relationship between the matrix components and the cellulose 

Iβ structure. Figure 4-3a shows a schematic representation of the main directions 

associated with the cellulose Iβ unit cell and Sij associated with the Cartesian system of 

coordinates denoted by axes 1, 2 and 3.  

 
(a) 

 
(b) 

Figure 4-3 (a) Schematic representation of the cellulose Iβ monoclinic (P21) unit cell aligned with 

the Cartesian coordinate system used in this study (red solid lines). A rectangular prism cell 

(black dashed lines) is used to help visualize the orthogonally between the a-c and b-c axes, 

highlighting the non-orthogonal relationship between a and b. (b) Relationship between the strain 

and stress vectors via Sij [75] (εij = Sijkl σkl) for the P21 cellulose Iβ unit cell. Eii is the Young’s 

modulus in the i-direction, Gij is the shear modulus in the i-j plane, νij is the Poisson’s ratio which 

quantifies the contraction in the j-direction due to uniaxial loading in the i-direction, ηij,k are the 

coefficients of mutual influence of the first kind which characterize normal strain in the k-

direction due to shear stress in the i-j plane, and µij,kl are Chentsov’s coefficients which 

characterize shear strain in the k-l plane due to shear stress in the i-j plane. 
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Figure 4-3b shows Sij in terms of the Young’s Modulus and Poisson’s ratio in each 

direction for the P21 cellulose Iβ unit cell (also appropriate for any monoclinic space 

group) [75]. With this information, three-dimensional surfaces can be constructed that are 

color contours of the Young’s Modulus and Poisson’s ratio. These contours follow 

variations of these properties with crystallographic direction. Additionally, 2D polar plots 

of the Young’s Modulus and Poisson’s ratio can be construct which enable analyzes of 

the variations of the Young’s Modulus and Poisson’s ratio with respect to a particular 

orientation angle within a given plane in the cellulose Iβ unit cell.  

Several relevant directions are depicted in Figure 4-3a. For instance, E11, E22 and E33 are 

the Young’s moduli with respect to the directions 1, 2 and 3, respectively. It is important 

to note that E11 and E33 are the Young’s moduli defined as the slope of the normal stress - 

normal strain curve produced in simple tension when the load is applied parallel to axes 

along a and c, respectively. Alternatively, E22 is defined along a direction determined by 

the cross product between the a and c-axes (i.e., a-c plane) (see Figure 4-2 and Figure 

4-3a). In the a-b plane, two additional values of interest are defined, viz., E[110] and E[010], 

in which the subscripted indices represent the crystallographic direction defined by the 

Miller indices. Note that E[110] is along the axis that runs through the center chain in the 

unit cell (see Figure 4-2a), whereas E[010] is aligned with the b-axis. The Poisson’s ratio is 

also reported using a similar nomenclature; for example, ν12 is the Poisson’s ratio for the 

contraction in the 2-direction due to uniaxial loading in the 1-direction. It is common to 

report an average value of the Poisson’s ratio using the two perpendicular directions with 

respect to the loading direction. Hence, only one index is needed. For the direction 1, this 

is defined as:  
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1
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ν ν
ν

+
=    (1) 

 

4.4 Computational methodology 

All calculations in this study were conducted with the Vienna Ab Initio Simulation 

Package (VASP), a plane wave DFT code [65-68]. The electron–ion interactions were 

described by the full potential projector augmented wave (PAW) method [76]. Exchange-

correlation was treated within the generalized gradient approximation of Perdew, Burke 

and Ernzerhof (GGA-PBE) [72]. Standard density functionals within the GGA or LDA 

cannot correctly describe vdW interactions resulting from dynamical correlations 

between fluctuating charge distributions [63]. This makes them intrinsically unsuitable 

for computing structural parameters of cellulose Iβ. Using PBE functionals, Bučko et al. 

[63, 73] reported a value of a that is overestimated by ~15% compared to experimental 

results at 15 K [12]. Li et al. [74] found that cellulose fails to retain its crystalline 

structure when using PBE functionals (see Table 4-1 for more information). In order to 

circumvent this problem, a semi-empirical correction for the vdW interactions (now 

incorporated as PBE-D and PBE-D2 in VASP [65-67]) was proposed by Grimme et al. 

[77, 78]. Using this dispersion-corrected DFT method (PBE-D2), Bučko et al. [63, 73], Li 

et al. [74] and Parthasarathi et al. [11] showed that vdW and hydrogen bonding 

interactions play an equally important role in defining the final shape of the cellulose Iβ 

monoclinic (P21) structure and hence they cannot be neglected. Therefore, all calculations 

in this study are conducted using the dispersion corrected PBE-D2 in VASP [63, 73].  
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Structural parameters and mechanical property calculations were computed by 

simultaneously minimizing all atomic forces and stress tensor components via a 

conjugate gradient method. Three successive full-cell optimizations were conducted 

(adapting basis vectors and computational grids to the cell parameters) to ensure 

convergence of cell energies and structural parameters. Total energies were calculated for 

the relaxed cellulose Iβ structure by integrating over a Monkhorst-Pack mesh of k-points 

in the Brillouin zone with the linear tetrahedron method with Blöchl corrections. The 

plane wave cutoff energy for all calculations was 500 eV. The total energy was 

converged to 10
−7

 eV/cell and the force components were relaxed to at least 10
−4

 eV/Å. 

For all calculations (i.e., structural and elastic properties), a 7×7×7 k-point mesh, 

corresponding to a k-point spacing of 0.110 × 0.086 × 0.110 per Angstrom, was used.  

Components of the stiffness matrix, Cij, were computed from the first derivatives of the 

stresses computed in VASP, rather than from the second derivatives of the total energy 

with respect to strain, using the least squares method of Le Page and Saxe et al. [64]. This 

method avoids the numerical difficulties often encountered with evaluations of the latter 

and reduces the number of required VASP calculations. All Cij values were computed 

simultaneously rather than as independent sums. The Cij are sensitive to the k-point mesh, 

and this required a series of ancillary calculations to test k-point convergence of each of 

the 13 unique Cij for monoclinic cellulose Iβ structure. In addition, it was determined that 

the application of four successive strains, viz., 0.05%, 1.0% 1.5%, and 2.0% was 

adequate to obtain ≤ 1.0% statistical error in each Cij. The quality of the least squares fit, 

as gauged by the computed least squares residual, was ≤1.0% for all calculations. The 

small residuals are consistent with negligible anharmonic effects in the computed Cij due 
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to the applied strains. Note that the Le Page and Saxe method for computing elastic 

properties with DFT has been successfully used to compute elastic properties for a wide 

variety of materials, including hydrides [79-81], batteries [82, 83], ceramics [84, 85], 

metals [86, 87] and defects [88] Once the stiffness matrix was computed, it was then 

inverted to obtain the compliance matrix, Sij. As explained in the previous section, the Cij 

and the Sij depend on the definition of the coordinate system used in the simulations. 

Rotation techniques, such as those detailed in Ref. [60], a to convert the computed 

compliance matrix to any desired orientation. The basis change follows from: 

 ( ) ( )1 2 3 1 2 3 1T
S K S K

′ ′ ′ − −=   (2) 

For the particular case of rotation through an angle θ in a counterclockwise sense about 

the 1, 2 and 3 axes, respectively, the rotation matrix K reduces to  

2 2 2 2

2 2 2 2

2 2 2 2

2 2

2 2

2 2
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0 0 0 0 0 0 0 0 0 0 0
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

 
 
 
 
 
 
 

  (3) 

where c = cos(θ) and s = sin(θ). Clearly, applying the three rotations successively can 

produce an arbitrary orientation change. This provides the basis to construct the 3D 

surface contour plots and polar plots.  

 

4.5 Results and discussion 

Results from VASP calculations with the semi-empirical correction for the vdW 

interactions were used to generate the surface contour plot of the Young’s modulus 

variation with crystallographic direction shown in Figure 4-4a. This is based upon 
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Equations (2) and (3) and the Sij computed from application of 1.0% strain in the Le Page 

and Saxe method [64]. ). A post processing software package, the Anisotropy Calculator - 

3D Visualization Toolkit, was specifically developed to generate the surface contour plot 

of the Young’s modulus based on Sij and is now publically available [89]. Each point on 

the surface represents the magnitude of Young’s modulus in the direction of a vector 

from the origin of the surface (i.e., at the intersection of the 1, 2, and 3 axes in the interior 

of the surface) to a given point on the surface. The shape of this surface is indicative of 

the anisotropy of cellulose Iβ.  For instance, the computed Young modulus surface for a 

linearly elastic isotropic material would be a perfect sphere with the same value in any 

direction. However, the cellulose Iβ surface in Figure 4-4a exhibits extreme variations in 

the Young’s modulus, as denoted by the accentuated contour lobe along the 3-axis (i.e., 

along the cellulose chains) relative to the smaller lobes along the 1 and 2 directions. The 

largest values (red contours) are along the 3-axis, with the smallest values along the 

1-axis. The greatest value of the Young’s modulus is 206 GPa, which is comparable to 

that of steel (~207 GPa) [90]. Figure 4-4b, c and d show side views of the same surface in 

Figure 4-4a to put differences in Young’s moduli for directions lying on the  1-2, 1-3 and  

2-3 planes in better perspective.  

Polar plots of the angular variation of the Young modulus within a given crystallographic 

plane of the monoclinic cellulose Iβ crystal structure are shown in Figure 4-5 and 10. 

These plots can be used to help provide insight into the variability in the reported 

experimental values (ranging from 90 to 220 GPa) of the Young’s modulus. Figure 4-5 

shows the angular variation of the Young’s modulus along the 1-3 plane (as shown by the 

gray plane in the inset on the upper left of the figure). 
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Figure 4-4 (a) Surfaces showing contours of computed Young’s modulus values for 

cellulose Iβ based on an Sij from application of a 1% strain in the Le Page and Saxe 

method [64]. Each point on the surface represents the magnitude of Young’s modulus in 

the direction of a vector from the origin of the surface to that point. The color contours 

help to identify the Young modulus variation of cellulose Iβ and emphasizes its extreme 

anisotropy (note the significant elongation of the surface along axis 3). Side views of the 

same surface are shown for the (b) 1-2 plane, (c) 1-3 plane, (d) 2-3 plane. Note that axis 2 

is not seen in these additional view.  

 

Three axes are considered: direction 1 (which is the vertical axis), direction 3 (the 

horizontal axis) and the semi-circular line showing the angle with respect to the origin.  

The scale of the vertical axis denotes the magnitude of E11, whereas the scale of the 

horizontal axis denotes the magnitude of E33. The inset in the bottom semi-circular part 

shows the orientation of the directions 1 and 3 with respect to the cellulose Iβ unit cell. 

Here, θ  is the angle between the 3'-direction, along which the load is applied, and the 

3-direction (in the 1-3 plane). The plot is generated by computing Sij for different angles 

using Equations (2) and (3), and extracting the Young modulus value in the 3'-direction 

from the rotated compliance matrix. Components of the Sij, computed in the Cartesian 

coordinate system shown in Figure 4-3a were obtained following the Le Page and Saxe 

(a) (b) 

(c) 

(d) 
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method [64] for three values of applied strains, viz. 1.0% 1.5%, and 2.0%. A change of 

only 10° in the longitudinal alignment (c-axis) reduces the DFT-predicted Young 

modulus from 206 GPa to ~70 GPa. This considerable reduction is related to the 

deformation mechanism in which the cellulose Iβ structure is under simple tension in each 

of the 1, 2, 3 directions. For instance, imposing a deformation perfectly aligned with the 

c-direction presumably implies a stretching of the covalent bonds between carbon and 

oxygen ions that form the cellulose chain (shown as the ball and stick features Figure 

4-2). This results in the highest value of the Young modulus (206 GPa) along the c-

direction (the 3-direction). In the a-direction (which corresponds to the 1-direction), 

hydrogen bonded planes are stacked together and held in position primarily by weak vdW 

interactions. Any deviation of the stretching direction in the 1-3 plane will produce a 

rapid decrease in the Young’s modulus due to sliding between adjacent planes. In the 

b-direction, the intermolecular hydrogen bonds (See Figure 4-2b) provide additional 

reinforcement to keep the cellulose chains from sliding. As a consequence, the effects of 

misalignments in the 2-3 plane are less severe compared with those in the 1-3 plane. Note 

that deviations between the curves from the applied strains, viz. 1.0% 1.5%, and 2.0% are 

very minimal. 
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Figure 4-5 Angular variation of longitudinal Young’s modulus (EA) within the 1-3 plane 

for applied strains of 1.0%, 1.5%, and 2.0%. The 2-axis (pointing in the page) is 

considered to be the rotation axis; the value of the longitudinal moduli for a given 

direction can be read directly from the figure by defining a straight line from the origin to 

the desired angle. It is important to notice how small misalignments between the cellulose 

Iβ c-axis and the 3-direction will produce an important reduction in the interpretation of 

EA during experimental characterization. The inset in the bottom semi-circular part 

shows the orientation of 1 and 3 directions with respect to the cellulose Iβ unit cell.  

 

Upon comparing DFT-computed results with experimental data (Table 4-2), E33 can be 

regarded as the axial Young’s modulus (EA). However, the experimental value of ET can 

be interpreted as any of the Young’s moduli in any of the directions lying in the 1-2 plane. 

Figure 4-6 is polar plot that shows the variation of the Young’s modulus with angular 

orientation within the 1-2 plane. Here, θ  is the angle between the 1'-direction, at which 

the load is applied, and the 1-direction (in the 1-2 plane). The plot is generated by 

computing Sij for different angles using Equations (2) and (3) and extracting the Young 
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modulus value in the 1'-direction from the rotated Sij. Stretching in the b-direction implies 

separating chains in the hydrogen bonded planes which explains why E[010] has the 

highest value for ET (98 GPa).  

 

Figure 4-6 Angular variation of the ET at applied strains of 1.0%, 1.5%, and 2.0%. The 3-

axis (pointing in of the page) is considered to be the rotation axis; the value of ET for a 

given direction can be read directly from the figure by defining a straight line from the 

origin to the desire angle. The intersection between the straight line and the curves for 

different strains provides the value of ET. Three critical directions (// to b, through the 

center chain and ⊥ to b) are marked for reference using Miller indices; the direction 
parallel to the a-axis coincides with the vertical axis of the figure. The superposition of 

the three strain curves allows to concluded that the crystal behaves linearly for strains up 

to 2%. The inset in the bottom semi-circular part shows the orientation of the 1 and 2 
directions with respect to the cellulose Iβ unit cell.  

 

Perpendicular to the b-direction (marked as ┴[010] in Figure 4-6), the weak vdW forces 

have to be overcome to increase the distance between adjacent planes, producing a 

relative maximum (19 GPa) in the Young’s modulus. Another observation is that ET 
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reaches its minimum (13 GPa) between the b-direction and the direction perpendicular to 

the b-direction (~30° in the plot). This could be caused by the relative sliding between 

hydrogen bonded planes. Based on Figure 4-6, it can be estimated that there is a 65% 

probability of measuring ET under 20 GPa during experimental measurements; 

misalignments in the c-direction could increase this probability. Simulations at 0 K (this 

work) yielded values from 13 to 98 GPa, in good agreement with reported experimental 

results [32-35] and numerical simulations [25, 91, 92]. A summary is shown in Table 4-2. 

The calculated Young’s moduli in selected directions are reported for different total 

strains (applied in the Le Page and Saxe method [64]) in Table 4-3. 

Table 4-2 Summary of Young’s modulus and Poisson’s ratio values from different 
crystalline sources and authors. The double line in the table separates experimental from 

theoretical results. The symbol “-” means that the corresponding value was not reported. 

Ref Methodology Type of 
cellulose 

EA 
[GPa] 

ET 
[GPa] 

νt 
Temp 

[K] 
[23-25, 

30, 31] 

X-Ray Diffraction 

(XRD) 

Ramie 

(cellulose I) 
90 to 138 - - - 

[36] XRD 
Ramie fiber 

(cellulose Iβ) 
- - 

ν[200]/[004] = 0.377 ± 0.041 
2
 

ν[110]/[004] = 0.639 ± 0.338 
2
 

Room 

 Temp 

[32] Inelastic X-Ray (IXR) 
Flax fibers 

(cellulose Iβ) 
220 ± 50 14.8 ± 0.8 - - 

[33] 
Atomic force
 

microscope (AFM) 
Tunicate CNC - 2.7 to 20 - - 

[34] 
AFM+Finite 

Elements 

Wood CNC 
- 

24.8 ± 7.0 
- - 

Cotton CNC 17.7 ± 5.0 

[25] 
Theoretical 

derivation 
Cellulose I 167.5 

Et1 = 50.2 
1
 

Et2 = 10.6 
1
 

ν = 0.42 
1
 - 

[91] 

Molecular 

mechanics (MM) 

[COMPASS] 

Cellulose Iβ - 

Nishiyama 
149 

Et1 =46.8 
1
 

Et2 =18.9  
1
 

ν = 0.439  
1
 

Min 3
 

Cellulose Iβ - 

Finkenstadt 
116 

Et1 = 50.9 
1
 

Et2 = 11.9 
1
 

ν = 0.86 
1
 

[92] 

Molecular 

dynamics (MD) 

[ReaxFF] 

Cellulose Iβ 139.5 ± 3.5 
Et1 = 28.8 ± 2.9 

Et2 = 7.0 ± 1.7 
- 300 K 

1
 Not reported, computed based on reported Sij or Cij 

2
 Upper limit of the standard deviation. 

3
 The authors perform energy minimization without specifying any temperature.  
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Table 4-3 Young’s moduli as a function of orientation for applied strains of 1.0%, 1.5%, 

and 2.0%. This table summarized the results shown in Figure 4-6. Young modulus 
measured in GPa, computed at 0K using DFT with van der Waals interactions (this work). 

Young’s 
modulus 

Total strain 
Average 

1.0% 1.5% 2.0% 
E33 206.7 206.7 206.2 206.5 

E11 19.3 19.7 18.5 19.1 

E
┴[010] 19.6 19.4 18.9 19.3 

E[110] 14.8 16.3 15.0 15.3 

E[010] 98.7 97.9 96.7 97.8 

E22 75.4 79.2 76.4 77.0 

 

The variation of 
'1ν  with respect to the crystallographic orientation was computed from 

the Sij by applying Equation (1) to the rotated compliance matrix obtained using 

Equations (2) and (3) . Here the 1'-direction indicates the orientation of the load (which is 

the orientation that is being evaluated).  Figure 4-7a shows one view of the computed ν1'  

surfaces. Figure 4-7b, 7c, and 7d show views of the same surface in the 1-2, 1-3, and 2-3 

planes, respectively. Figure 4-8 shows a polar plot of ν1'2', ν1'3 and ν1  using the c-axis as 

the rotation axis, in which variations of these quantities are examined over the 1-2 plane 

(where θ  is the angle between the 1'-direction, at which the load is applied, and the 1-

direction in the 1-2 plane). In order to quantify lateral expansion, a local Cartesian system 

1'-2' that rotates with respect to the 1 and 2 directions and remains in the 1-2 plane was 

defined. First, ν1'2' provides the lateral deformation in the 2'-direction as uniaxial stress is 

applied along the 1'-direction. It is important to remember that the 2'-direction rotates 

perpendicular to the 1'-direction in the 1-2 plane in Figure 4-8.  
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Figure 4-7 Average Poisson’s ratio ν1'  surfaces for cellulose Iβ computed using Eq. 1 
based on Sij for 1% of total deformation in the Le Page and Saxe method [64]. Each point 

on the surface represents the magnitude of Poisson’s ratio in the direction of a vector 
from the origin to that point. The color contours help to identify the Poisson’s ratio 

variation and emphasizes the extreme anisotropy of the system. Side views of the same 

surface are shown for the (b) 1-2 plane, (c) 1-3 plane, (d) 2-3 plane. Note that axis 2 is 
not seen from this view. 

 

The smallest value of ν1'2' ≈ 0.1 is found when the 1'-direction is aligned with the 

direction marked as ┴[010] in the plot. This happens to be the direction perpendicular to 

the hydrogen bonded planes which contain the cellulose chains. This small value is 

expected since increasing the separation between hydrogen bonded planes, held together 

by weak vdW interactions, has little effect over the arrangement of the cellulose chains 

inside the plane. The next local minimum is found to be in the [010]-direction where the 

opposite effect is observed. Trying to separate cellulose chains from each other has little 

effect over the arrangement of hydrogen bonded planes. The axial deformation of the 

system shows a different behavior. Here, ν1'3 measures the contraction in the 3-direction 

(a) (b) 

(c) 

(d) 
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as uniaxial stress is applied in the 1'-direction (since the 1' and the 2' directions remain in 

the 1-2 plane, the 3'-direction coincides with the 3 direction).  

 

Figure 4-8 Poisson’s ratio as a function of the rotation angle for 1% of total strain. The 

inset in the upper-left corner depicts the surface of the average Poisson ratio as shown in 

Figure 4-7 and the selected plane in which the polar plot lies. The 3-axis (pointing inside 
the page) is considered to be the rotation axis; the value of the Poisson’s ratio for a given 

direction can be read directly from the figure by defining a straight line from the origin to 
the desire angle. The intersection between the straight line and the curves will provide the 

values of ν1'2', ν1'3 and the average of them ( ν1' ) for that direction. Three critical 

directions (// to b, through the center chain and ⊥ to b) are marked for reference using 
Miller indices; the direction parallel to the a-axis coincides with the vertical axis of the 
figure. 

 

In Figure 4-8, the 3-direction coincides with the rotation axis (perpendicular to the plane 

of the plot), meaning that this direction is always coincident with the cellulose chain 

regardless of the orientation angle. The small values of ν1'3 for all directions (ranging 

from 0 to 0.05) can be easily justified by the covalent bonds between carbon and oxygen 
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ions that govern the mechanical response in the c-direction: these are largely unaffected 

by deformation in other directions. When the cellulose Iβ is deformed along a direction 

that passes near the center chain (around 45° in the plot), practically no Poisson effect (no 

lateral expansion in the 3-direction) is observed in the axial direction. 

The extreme anisotropies observed in cellulose Iβ can be once again evidenced in the high 

variations of the Poisson’s ratio. Depending on the selected direction, the material will 

range from almost 0 to a relatively high (0.71) value of Poisson’s ratio. Comparison with 

previous publications [25, 36, 91] shows results that are in good agreement with the 

values reported in this study. Finally, computed Cij and Sij, based on the Cartesian system 

shown in Figure 4-2, are reported for each applied strain.  

 
Figure 4-9 Elastic compliance (S) and stiffness (C) matrices for cellulose Iβ based upon 

the Nishiyama et al. initial structure [9] with respect to the Cartesian system of 
coordinates shown in Figure 4-3a. All components were computed using the Le Page and 

Saxe method with with the dispersion-corrected DFT method (PBE-D2) in VASP for 

three different total strains (1.0, 1.5 and 2.0%). Values of S are given in [1/GPa]x1000, 
and those for C are in [GPa]. 
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Table 4-4 Computed Poisson’s ratio components or values, as a function of the 

orientation with respect to the Cartesian system of coordinates 1-2-3, for different total 
strains. This table summarizes the results shown in Figure 4-8. 

Poisson’s 
ratio 

Total strain Applied in the 
Le Page and Saxe Method 

[34] 
Average over 

strains 
1.0% 1.5% 2.0% 

 0.143 0.130 0.148 0.140 ± 0.010 

 0.042 0.042 0.039 0.041 ± 0.002 

 0.092 0.086 0.094 0.091 ± 0.005 

 0.107 0.111 0.114 0.111 ± 0.003 

 0.048 0.046 0.044 0.046 ± 0.002 

 0.077 0.078 0.079 0.078 ± 0.001 

 0.715 0.714 0.683 0.704 ± 0.021 

 0.004 0.003 0.004 0.004 ± 0.001 

 0.360 0.359 0.344 0.354 ± 0.010 

 0.537 0.558 0.586 0.560 ± 0.026 

 0.024 0.025 0.026 0.025 ± 0.001 

 0.280 0.291 0.306 0.292 ± 0.014 

 

4.6 Conclusion 

The full elasticity tensor was computed for cellulose Iβ network A using DFT with van 

der Waals correction using a least squares fitting method with VASP as the 

computational engine. Results show a good agreement with previous experimental work, 

in particular, a remarkable agreement is found with the IXS experiments conducted by 

Diddens et al. [32]. Three dimensional surfaces, which are color contours showing the 

crytstallographic dependence of the Young modulus and Poisson’s ratio, were computed 

to examine the extreme anisotropy of these important elastic properties. A clear 

correlation between the stiffness of the crystal and the different deformation mechanisms 

12
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was noted. The largest Young’s modulus (206 GPa) was found to be aligned with the c-

axis were covalent bonds determine the mechanical response of the crystal. Perpendicular 

to the cellulose chain axis, the b-direction shows the next greatest value for the Young 

modulus (98 GPa); this can be explained by the presence of the hydrogen bond network 

linking the cellulose chains. Finally a value for the Young modulus of only 19 GPa was 

computed along the direction perpendicular to the previous two, where only weak vdW 

forces play a role in the mechanical response of the material. Based on 0 K  simulations 

with dispersion-corrected DFT in VASP, the transverse Young Modulus for crystalline 

cellulose can be defined in the range between 13 to 98 GPa, in good agreement with 

reported experimental results [32-35] and other numerical simulations [25, 91, 92]. 
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CHAPTER 5. TEMPERATURE DEPENDENCE OF MECHANICAL AND 

THERMODYNAMIC PROPERTIES OF CRYSTALLINE CELLULOSE FROM 
FIRST PRINCIPLES 

5.1 Introduction 

Understanding the structure and properties of crystalline cellulose (Iβ) and how these 

relates to the properties of cellulose nanoparticles (CNs) at a fundamental level can 

facilitate development of CN composites as well as broaden the general knowledge of 

CN behavior as a nanomaterial. 

The fundamental thermo-mechanical properties of cellulose Iβ are not completely 

understood or quantified. This is partially due to difficulties in experimental testing, 

propagation of uncertainties in these experimental tests [15], and intrinsic material 

variability in the crystalline cellulose being tested (e.g. different crystal structures, defects, 

percent crystallinity, etc.) [1]. Recent theoretical efforts to predict cellulose properties, 

such as the Young’s modulus, have shown substantial differences in values which are 

likely due to differences in model parameters, simulation method, configuration of the 

modeled structure, and incorporation of hydrogen bonding [14] and Van der Waals 

interactions [1, 16]. On the other hand, experimental values of Young’s modulus obtained 

from X-Ray Diffraction were reported to range from 90 to 138 GPa [23-25, 30, 31]. 

Recently, Diddens et al. [32] reported an axial elastic modulus  of 220 ± 50 GPa and 

transverse elastic modulus of 15 ± 1 GPa using Inelastic X-ray Scattering (IXR).  
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Lahiji et al. [35] and Wagner et al. [33] have measured a transverse elastic modulus of 

8.1 GPa through  nanoindentation using an atomic force microscopy (AFM). 

Unfortunately, this technique can only offer a 95% confidence interval of 2.7-20 GPa. 

Similarly, the experimentally measured thermal expansion coefficients (TEC’s) of 

cellulose Iβ are also scattered [37-40]. The range of reported TEC along a, b, and c-axis 

of the crystalline cellulose (Iβ) are as follows: 9.8-13.6×10
-5

 K
-1

, 0.5-4.6×10
-5

 K
-1

, and 

0.6×10
-5

 K
-1

, respectively. Additionally, at temperatures approaching 475-500 K, the Iβ 

structure transitions to a high-temperature phase that shows a different TEC response. To 

the author knowledge there has only been one study of TEC of crystalline cellulose [93] 

reporting TEC of 7.3×10
-5

 K
-1

, and 1.5×10
-5

 K
-1

, in the a and b-axis, respectively. The 

studies listed above suggest high elastic and low thermal expansion behavior of Iβ and 

also indicate extreme property anisotropies as a result of the unique bonding nature 

within Iβ. 

There is currently a dearth of information on thermal conductivity (k) values for cellulose 

Iβ both in the experimental and the theoretical literature. Shimazaki et al. [41] produced 

Nano Fibrillated Cellulose (58 wt%)-epoxy matrix reinforced composite that had thermal 

conductivity of 1.1 W m
-1

 K
-1

 in the in-plane direction and 0.23 W m
-1

 K
-1

 in the 

thickness direction. Results showed that there is a 7-8 times increase in the thermal 

conductivity in the in-plane direction and 1-2 times in the thickness direction compared 

to the neat epoxy matrix.  

The present work aims to probe the extreme anisotropies of elasticity, thermal 

conductivity and thermal expansion at finite temperatures as well as their origins for 

cellulose Iβ with the help of first-principles phonon calculations and molecular dynamic 
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simulations. To these ends, first-principles Van der Waals density functionals [77] were 

employed to compute phonon properties, finite temperature thermodynamic properties 

(entropy, enthalpy, and constant pressure heat capacity via the quasiharmoic approach) 

[94-97], thermal expansion tensor components, ξi, and elasticity tensor components, Cij, 

of the monoclinic cellulose Iβ structure. Reverse non-equilibrium molecular dynamics 

(RNEMD) simulations are used for the first time to compute the thermal conductivity of 

the monoclinic cellulose Iβ. The temperature dependences of ξi and Cij are studied via a 

quasistatic approach proposed recently with the main input being the predicted 

strain/elasticity-volume-temperature relationships [98, 99]. Variations of the Young 

Modulus and Poisson’s ratio with respect to the crystallographic orientation are computed 

based on the elasticity tensor at different temperatures. 

 

5.2 Structural information 

The structure of cellulose Iβ has a monoclinic lattice with space group P21 [100] 

including two functional unites of C6H10O5 in the primitive cell and four in the 

crystallographic cell. The initial lattice parameters are defined as: a = 7.784 Å, 

b = 8.201 Å, c = 10.380 Å, α = 90°, β = 90°, and γ = 96.55° [100]. Figure 5-1 illustrates 

the projected structures of cellulose Iβ along a-axis and b-axis directions. Within the 

a-b plane (Figure 5-1b) the energetically favorable hydrogen-bond pattern A [13] 

determined by Nishiyama et al. [100] using X-ray and neutron fiber diffraction is adopted 

herein. The layer structure of Iβ perpendicular to a-axis, is where the Van der Waals 

forces dominant the stacking interactions [13]. Within the b-c plane, the bonding along 
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c-axis direction is stronger than those along b-axis direction according to the bond 

lengths.  

    

Figure 5-1 Projected structures of cellulose Iβ (space group P21) along b-axis direction (a) 

and along a-axis direction (b), showing obvious layered structure of Iβ along the a-axis 

direction, and weaker bonding along the b-axis direction with respect to that of c-axis 
direction. The change gains calculated with PBE-D2 are also shown, illustrated in the 

change density difference (∆ρ/Å
3
, the yellow colors) isosurfaces, where the reference 

density is the initial charge density calculated in one electronic step. The rectangles in (a) 

and (b) indicate the lattices of Iβ. 
 

5.3  First-principles calculations: total energy, elasticity and phonon  

All density functional theory (DFT) based first-principles calculations in the present work 

are performed with the VASP 5.2 code [66, 67]. The Kohn-Sham equations have been 

solved in a plane-wave basis set using the projector augmented wave (PAW) method 

[101] and the exchange-correlation energy is described by the generalized gradient 

approximation of Perdew-Burke-Ernzerhof (GGA-PBE) [72]. For C, four electrons 

(2s
2
2p

2
) are treated as valence, one for H (1s

1
), and six for O (2s

2
2p

4
). To account for 

London dispersion interactions, the PBE-D2 correction scheme proposed by Grimme [77] 



58 

 

has been used together with the standard set of parameters as implemented in VASP 

[102]. Compared to the standard DFT functionals, which fail to describe the Van der 

Waals forces, the D2 scheme as employed in the present work can describe correctly the 

three-dimensional lattice structure of cellulose as demonstrated by Bucko et al. [13].  

Regarding first-principles phonon calculations to estimate temperature-dependent 

properties, the supercell approach using the PHONON code was adopted as implemented 

in the MedeA environment [103, 104] with VASP as the computational engine. The 

longitudinal and transverse optical (LO-TO) zone center splittings were ignored for the 

infrared active modes in cellulose Iβ, since the LO-TO splitting has a negligible effect on 

thermodynamic properties as has been clearly demonstrated in the literature [95, 96]. 

Force constants, i.e., the Hessian matrix, are calculated in real space using the 

crystallographic cells of cellulose Iβ including 84 atoms. The atomic displacements of 

±0.02 Å are employed in the present work for the ions positioned at symmetry-unique 

sites in the lattice. More details about phonon calculations using PHONON code as 

implemented in MedeA can be found in e.g. references [96, 105, 106]. 

First-principles calculations of elasticity tensor components, Cij, are also calculated 

within the MedeA environment using the strain-stress method as developed by Le Page 

and Saxe [64, 107]. Strains of ±0.5% and the crystallographic cells of cellulose Iβ are 

used. More details about the elastic calculations using the Le Page and Saxe method as 

implemented in MedeA can be found in e.g. references [96, 105, 106, 108-110].  

During VASP calculations performed on the crystallographic cells of cellulose Iβ, the 

tetrahedron method with Blöchl corrections [111], a Γ-centered 2×2×2 k-point mesh, and 
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a 800 eV plane wave energy cutoff are employed for structural relaxations and final static 

calculations of energy, stress and electronic structure. Electronic degrees of freedom are 

converged to 10
-7

 eV/cell, while the Hellman-Feynman force components are relaxed to 

at least 2×10
-3

 eV/Å. Concerning the calculations of elasticity tensor components, a 

7×7×7 k-point mesh and a 520 eV plane wave cutoff energy are employed. 

 

5.4  First-principles thermodynamics  

First-principles thermodynamics at finite temperatures can be calculated using the 

quasiharmonic approach with the Helmholtz energy, F(V,T), at volume V and temperature 

T given by [94-97]: 

 ( , ) ( ) ( , ) ( , )
el vib

F V T E V F V T F V T= + +   (4) 

Here, Fel(V,T) represents the thermal electronic contribution evaluated from the electronic 

density of states (DOS). This term, which is important for metals with non-zero 

electronic density at the Fermi level, is ignored since cellulose Iβ is an insulator. The 

vibrational contribution to F(V,T), which is obtained from the total phonon DOS at six 

volumes in the present study, is Fvib(V, T). Note that Fvib at 0 K contains a zero-point 

vibrational energy (ZPE) contribution due to quantum fluctuations at the ground state, 

which can be estimated from the phonon DOS [112]. The static energy at 0 K without the 

ZPE in Equation (4) is E(V): this term can be determined by fitting the first-principles 

energy vs. volume (E-V) data points according to a four-parameter Birch-Murnaghan 

equation of state (EOS) [94]: 

 2/3 4/3 2

1 2 3 4
( )E V k k V k V k V

− − −= + × + × + ×   (5) 
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where 
1

k ,
2

k , 
3

k  and 
4

k  are fitting parameters. The equilibrium properties estimated from 

this EOS include the volume (V0), energy (E0), bulk modulus (B0) and its pressure 

derivative (B0’). Seven E-V data points are used for EOS fitting. In the present work the 

quasiharmonic method as shown in Equation (4) is used to compute the entropy, enthalpy, 

isobaric heat capacity, CP, equilibrium volume as a function of temperature, and the 

(average) linear thermal expansion coefficient (TEC), see detailed methodologies in 

references [94, 97].  

 

5.5  Elasticity tensor and thermal expansion components at finite temperatures 

Most, but not all, polycrystalline materials have identical values of their mechanical 

properties in all directions; therefore, a stress-strain tensile behavior will be completely 

independent of the relative orientation of the specimen with respect to the loading 

direction. Such materials are call isotropic and have the advantage that, if they present a 

linear elastic response, they can be easily characterized by only two parameters, the 

Young modulus (E) and the Poisson’s ratio (ν).  

As opposed to isotropic materials, single crystals or textured materials present anisotropic 

properties with respect to an intrinsic direction in the material. The most general linear 

stress-strain relation to characterize the mechanical behavior of a material has the form: 

σij = Cijkl εkl (Einstein notation) whereas σij and εkl represent the second order stress and 

strain tensor, respectively, and Cijkl is a fourth order stiffness tensor with 81 components 

[60]. The existence of symmetries in the stiffness tensor allows a matrix representation 

with only 36 components using Voigt’s notation. Furthermore, if the stress-strain relation 

is derived from a strain energy density functional, the arbitrariness of the order of 
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differentiation implies that the matrix representation must be symmetric resulting in only 

21 independent constants [60]. 

The monoclinic structure of cellulose Iβ implies that the unit cell has a symmetry plane 

that is defined by the c-axis. The presence of a symmetry plane has a direct consequence 

over the stiffness matrix in that it reduces the number of coefficients necessary to 

represent the system to only 13 independent constants. The strains and stresses and hence 

Cij are defined in a Cartesian coordinate system related to the original crystalline structure. 

Using the computed stiffness matrix at different temperatures and knowing the 

crystallographic orientation of the unit cell with respect to a global coordinate system it 

was possible to compute the resulting Young’s Modulus and Poisson’s ratio in any 

direction. 3D representations of their values can be constructed to enable understanding 

of their variations with the crystalline coordination. Additionally, 2D projections over the 

most important planes are used to analyze in detail variations with respect of a particular 

orientation angle and temperature. All orientations are univocally defined by Miller 

indices in conjunction with a reference Cartesian system of coordinates. For detailed 

methodologies see Chapter 4 and Dri et al. [113]. 

With increasing temperature, six independent linear thermal expansion coefficients 

(TEC’s), ξi, can be derived at a given pressure, P,  

 
( )i

i

P

T

T

ε
ξ

∂ 
=  

∂ 
  (6) 

After first-principles calculations at a series of volumes and 0 K, strains as a function of 

volume, εi(V), with respect to a given volume (e.g., the equilibrium volume), can be 

estimated using the relaxed lattice vectors at different volumes. Meanwhile, the volume-
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temperature relation, V(T), or inversely the T(V) relation, can be predicted according to 

the quasiharmonic approach of Equation (4). By employing a quasistatic approach 

without considering the kinetic energy and the fluctuation of microscopic stress tensors at 

high temperatures, i.e., by combining εi(V) and T(V) merely, the temperature-dependent 

strains, viz., the TEC’s ξi, are functional of V, ξi(T) = εi(T(V)).  

Similarly to the TEC’s estimated by ξi(T) = εi(T(V)), the isothermal elasticity tensor 

components Cij(T) can be estimated using the obtained Cij as a function of volume, Cij(V), 

and the T(V) relation as mentioned above, viz., Cij(T) = Cij(T(V)), see more details in 

references [98, 99]. Note that the measured elasticity tensor components at high 

temperatures (e.g. using the resonance method) are usually isentropic since the system is 

adiabatic due to the faster speed of elastic waves relative to heat diffusion [98]. The 

thermodynamic relations between the isothermal and isentropic elasticity tensors were 

given by Davies [114], see also reference [98]. 

 

5.6  Molecular dynamics calculations: thermal conductivity 

The thermal conductivity, λ, is the proportionality constant that relates the heat flux, j, to 

the driving force of a temperature difference, dT/dz: 

 z

dT
j

dz
λ= −   (7) 

where the z direction is arbitrarily taken for convenience. The obvious way to implement 

this in a molecular dynamics code is to produce the temperature profile across a slab of 

the material by coupling one side to a cold temperature bath and the other to a hot one, 

measuring the heat flux. This, however, creates issues with the conservation of energy in 
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the system since it is coupled to two heat baths which are adding and removing energy, 

so the details of the coupling to the heat baths affects the calculations.  

Müller-Plathe [115] realized that there was an elegant solution to this issue: rather than 

drive the temperature of the system as one would do in a physical system, in the 

computational experiment one can produce a heat flux by exchanging the momenta of 

particles in the cold region with those in the hot region, and then measure the resulting 

temperature profile. This is the reverse non-equilibrium molecular dynamics (RNEMD) 

approach to transport, which neatly circumvents the issues of conservation of energy. In 

practice, the simulation is performed on a sample of material elongated in, e.g., the z-

direction, which is conceptual divided into a number of layers – typically about 30 – in 

that direction. Every so often, the momentum of the hottest particle in the cold layer is 

swapped with that of the coldest particle in the hot layer. This has the effect of producing 

a heat flux, which is measured, from the cold layer to the hot layer. In response, the 

system develops a temperature gradient between the hot and cold layers, which can be 

measured through the average temperature in each of the layers between the hot and cold 

layers. The rate of momentum transfer is adjusted to provide a reasonable ramp in the 

temperature. If the system is driven too hard, the temperature profile will not be linear, 

but if driven too gently the natural fluctuations of the temperature in a small sample will 

reduce the accuracy of the measured temperature ramp. 
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5.7 Results and discussion 

5.7.1  Bonding strength 

Phonon calculations enable quantitative analysis of the bond strengths between atomic 

pairs using force constants [106]. Force constants quantify the extent of interaction or 

bonding between the atoms. A large positive force constant suggests bonding, while a 

negative force constant suggests that the two atoms in question would prefer to move 

apart. A zero or near-zero force constant indicates that the interactions between two 

atoms are negligible [96, 106, 112]. Figure 5-2 shows the key stretching force constants 

of cellulose Iβ at its theoretical equilibrium volume at 0 K (see Table 5-1). 

As expected, the strongest bond strength (~ 36 eV/ Å
2
) belongs to the O-H atomic pairs 

with the minimal bond lengths (~ 1 Å), followed by the second strongest C-H atomic 

pairs (~ 27 eV/ Å
2
 with bond lengths ~ 1.1 Å). The strongest hydrogen bond (H bond) 

indicates its critical role to stabilize cellulose. Besides H bond, the C-O and C-C atomic 

pairs also possess quite large bond strength as shown in Figure 5-2. Additionally, the 

strong bondings between O-H, C-H, C-O, and C-C atomic pairs are also clearly shown in 

the isosurfaces of the charge density difference contours (∆ρ/Å
3
) of Figure 5-1, where the 

reference (or non-interacting) charge density is calculated from one electronic step. It is 

seen that the charge gains are mainly between these atomic pairs, indicating the strong 

bondings between them. The charge gains in Figure 5-1 also show the apparent bond 

directivities between atomic pairs of O-H, C-H, C-O, and C-C, implying the covalent 

nature between them. In addition, the charge gains between atoms as well as the bond 

lengths between them point out the strong bonding is along c-axis direction, and the weak 
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one along a-axis direction. Predicted properties of elasticity and thermal expansion as 

shown below confirm further these observations.  

 

Figure 5-2 Key stretching force constants of cellulose Iβ according to phonon calculations.  
 

5.7.2  Structural properties  

Table 5-1 summarizes the predicted structural properties for cellulose Iβ based on the 

PBE-D2 method, including the lattice parameters and angle γ for the crystallographic cell, 

and the equilibrium properties V0, B0, and B0’ estimated using the EOS of Equation (5). It 

is found that the structural properties of Iβ are in good agreement with experimental data 

[116, 117] and other PBE-D2 predictions [13, 102, 118]. For example, the present 

predictions of lattice parameter a = 7.618 or 7.752 Å at 0 K (without and with the ZPE 

effects, respectively) agree with the measured 7.64 Å at 15 K [116]; the present b = 8.139 
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or 8.153 Å at 0 K (without and with the ZPE effects, respectively) versus the measured 

8.18 Å at 15 K [116]; and the present c = 10.399 or 10.409 Å at 0 K (without and with 

the ZPE effects, respectively) versus the measured 10.37 Å at 15 K [116], see Table 5-1 

for more detailed comparisons. 

 
Table 5-1 First-principles calculated (using the PBE-D2 method) and experimental 

properties of cellulose Iβ, including the lattice parameters a, b, c, angle γ, equilibrium 
volume (V0), bulk modulus B0 and its pressure directive (B0’). 

Method a (Å) b (Å) c (Å) γγγγ (°°°°) V0 (Å
3) B0 (GPa) B0’ 

PBE-D2, this work, 0 K
a
 7.618 8.139 10.399 96.59 640.57 16.1 6.69 

PBE-D2, this work, 0 K
b
      17.4 7.46 

PBE-D2, this work, 0 K
c
 7.752 8.153 10.409 96.40 653.80 13.9  

PBE-D2, this work, 295 K
c
 7.896 8.167 10.418 96.12 667.92 10.0  

PBE-D2, other work, 0 K 7.57
d
 8.14

d
 10.39

d
 96.5

d
 636

d
 16

e
  

PBE-D2, other work, 0 K
f
 7.85 8.18 10.47 96.5 668   

Expt., 15 K
g
 7.64 8.18 10.37 96.54 643.9   

Expt., room temperature 7.76
g
 8.20

g
 10.37

g
 96.62

g
 655.5

g
 19.8±2.9

h
 27.6±6.2

h
 

Expt., room temperature
i
 7.82 8.26 10.40 96.3    

a Calculated results without ZPE based on the energy-volume EOS, i.e., Equation (5) 
b Calculated results without ZPE based on the pressure-volume EOS based on  Equation (5)  
c Calculated with ZPE based on the quasiharmonic approach, see Equation (4) 
d Calculated without ZPE [13]. 
e Fitted using first-principles data points and Murnaghan’s EOS [102].  
f Calculated by ESPRESSO using norm-conserving pseudopotentials [118]. 
g Measured by neutron diffraction [116]. 
h Fitted using the Birch-Murnaghan EOS based on the measured pressure-volume data points, but these 

data points are scattered [117]. 
i Measured by X-ray [117]. 

 

Besides the equilibrium volume V0, another key parameters of bulk modulus B0 and its 

pressure derivative B0’ can be used to (i) judge the quality of first-principles calculations 

in comparison with experimental data; (ii) re-build EOS (Equation (5)) used in the 

quasiharmonic approach of Equation (4); and (iii) indicate qualitatively the extent of 

thermal expansion [94]. As for bulk modulus, the present prediction of 16.1 GPa (using 

the E-V EOS of Equation (5)) or 17.4 GPa (using the P-V EOS derived from Equation (5)) 

is in good agreement with a previous PBE-D2 prediction (16 GPa) [102] and the 
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measured data (19.8±2.9 GPa) [117]. Concerning the pressure derivative of bulk modulus, 

B0’, the present study gives a reasonable value of 6.69 (based on the E-V EOS of 

Equation (5)) or 7.46 (based on the P-V EOS derived from Equation (5)), however, the 

measured one is too large (27.6±6.2 according to the scattered P-V data points [117]) 

compared with the common values around 3~6 for most materials [119]. The good 

agreement between predictions and experiments as shown in Table 5-1 indicates that the 

Van der Waals forces existed in cellulose Iβ can be described satisfactorily by the PBE-

D2 method.  

 

5.7.3  Thermodynamic properties  

Figure 5-3 illustrates the predicted thermodynamic properties of cellulose Iβ up to 500 K 

under external pressure P = 0 GPa using the quasiharmonic approach of Equation (4), 

including enthalpy, entropy, and heat capacity at constant pressure. Here, (i) the reference 

state of enthalpy is set to zero at 0 K, and (ii) the temperature of 500 K is close to the 

phase transition temperature of Iβ to a high temperature phase [39, 40]. Figure 5-3 shows 

that the present predictions of enthalpy, entropy, and heat capacity at constant pressure 

agree well with experimental data measured using cotton microcrystalline cellulose with 

the degree of crystallinity of 90% as well as the extrapolated data at high temperatures 

(>300 K) [120]. Figure 5-3 also indicates that the present predictions are slightly lower 

than the measurements, especially at high temperatures (>300 K). Based on the 

quasiharmonic approach of Equation (4) as well as the quasistatic approach as mentioned 
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above, the predicted lattice parameters a, b, c, angle γ of cellulose Iβ are shown in Figure 

5-3 as a function of temperature.  

 

                                 (a)                                                                   (b) 

Figure 5-3 (a) Thermodynamic properties of cellulose Iβ including enthalpy H, entropy S, 
and heat capacity at constant pressure CP. Note that (i) enthalpy at 0 K, H0, is the 

reference state of H, and (ii) the experimental data are measured using cotton 
microcrystalline with the degree of crystallinity of 90% [120], (b) Predicted lattice 

parameters a, b, c, angle γ of cellulose Iβ  compared with experimental data measured by 
Hidaka et al. using wood cellulose [37], by Hori using wood cellulose [38], by Wada 

(2002) using tunicate (halocynthia) [39], and by Wada et al (2010) using green algae [40].  

 

The present predictions agree reasonably well with the scattered data measured by 

Hidaka and coworkers using wood cellulose [37], by Hori using wood cellulose [38], by 

Wada using tunicate (halocynthia) [39], and by Wada et al. using green algae [40]. 

Lattice parameter a increases quickly with increasing temperature compared to lattice 
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parameters b and c due to the weak bonding along a-axis direction (see Figure 5-1 and 

the discussion above). As for the angle γ, the present work predicts a decrease trend, 

while the measured values show a constant or an increasing trend with increasing 

temperature. Variations of lattice parameters and angles with respect to temperature can 

be re-plotted as the linear thermal expansion tensor components, ξi. 

 

Figure 5-4 Predicted thermal expansion tensors (TEC’s, 10
-5

 K
-1

) and the mean TEC of 

cellulose Iβ. Experimental TEC’s along a-axis (ξ1) are shown in open symbols with 

dashed lines (measured by Hidaka et al. using wood cellulose [37], by Hori using wood 
cellulose [38], by Wada 2002 using tunicate [39], and by Wada et al. 2010 using green 

alga [40]), and the TEC along a-axis (ξ1) predicted by molecular dynamics simulation [93] 
is shown in filled square. 

 

Figure 5-4 shows that ξ1 (along a-axis direction) agree reasonably with the rough 

estimations from measurements [37-40] and molecular dynamics simulations [93]. In 

addition, ξ1 is quite larger compared with the smaller ξ2 (roughly along b-axis direction) 

and ξ3 (along c-axis direction), agreeing with measurements [37-40]. It is worth 
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mentioning that the present TEC’s (e.g., ξ1) are larger than the measured data (Figure 

5-4), but the other thermodynamic properties predicted in the present work are smaller 

than the measurements (see Figure 5-3), implying (i) the uncertainties of measurements 

and (ii) the reasonable predictions in the present work. 

 

5.7.4 

 
Elastic properties 

 

Figure 5-5 Predicted isothermal and isentropic elastic constants Cij of cellulose Iβ based 

on the quasistatic approach. 
 

At finite temperatures, Figure 5-5 shows the predicted isothermal and isentropic elastic 

constants Cij using the quasistatic approach. The isothermal Cij are greater than (or equal 
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to) the isentropic ones due to the positive thermal expansion tensor components (see 

Figure 5-5) [98, 114]. With increasing temperature, these Cij decrease expect for C16 and 

C36, which are close to zero. In addition, the largest decrease with increasing temperature 

is C11, followed by C12, C13, and C23, etc, caused by the extremely large TEC ξ1 along a-

axis direction (see Figure 5-5). 

Table 5-2 Elastic properties (in GPa) of cellulose Iβ at T = 0 K without the effects of ZPE, 
including elasticity tensor components (Cij) and material properties of bulk modulus (B), 

Young’s modulus (E) and Poisson’s ratio (ν). Note that Young’s modulus as a function of 
direction is shown in Figure 5-6 and the Cij at high temperatures predicted by quasistatic 

approach are shown in Figure 5-5. 
Cij [GPa] B [GPa] E [GPa] ν 

























−

9.5

01.3

04.21.17

1.1003.213

7.9003.109.98

7.0002.95.111.22

 

19.8±2.9
a
 145, 150

b
 

120-135
c 

134,
d 

143
e
 

15, 220
f 

100-160
g 

12-27
h
 

0.377
i
 

0.639
 i
 

0.442
i
 

a 
Fitted using the Birch-Murnaghan EOS based on the measured pressure-volume data points, but these data 

points are scattered.[117] 
b
 Measured by atomic force microscopy using tunicate microfibrils.[121]   

c
 Measured by X-ray using microfibers.[122] 

d
 Measured by X-ray using microfibers.[123] 

e
 Measured by Raman spectroscopy using tunicate whiskers.[124]  

f
 Measured by inelastic X-ray scattering with 15 GPa perpendicular to the fiber direction and 220 GPa 

parallel to it.[125]  
g
 Typical values by measurements for highly crystalline cellulose types.[126] 

h
 Typical values measured under tensile stress conditions.[117]  

i
 Measured by X-ray on ramie for tension along [004] direction and negative strain along [200] direction, 

i.e., 0.377 for [200]/[004], 0.639 for [110]/[004], and 0.442 for ]011[ /[004].[127] 

 

Table 5-2 summarizes the predicted elastic properties of cellulose Iβ (space group P21 

with the unique c-axis setting) under the theoretical equilibrium volume, T = 0 K, and 

without the effects of ZPE. The predicted elasticity tensor components indicate that the 

largest C33 = 213 GPa, which is comparable to the values of 3d transition metals of Fe, Ni, 
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and Cu, etc. [128, 129] However, the other Cij are quite small, e.g., the second largest one 

C22 = 99 GPa and the third largest one C11 = 22 GPa. The trend of C33 >> C22 > C11 is 

consistent with the TEC trend of ξ1 >> ξ2 > ξ3 (see Figure 5-4) as well as the (relative) 

charge density distribution as shown in Figure 5-1, indicating the strong bonding along c-

axis direction but the weak one along a-axis direction as discussed above. The large 

difference between different Cij is also a signal of extremely elastic anisotropy, see details 

below.  The extreme anisotropies encountered in the analysis of the elastic constants (Cij) 

can be better understood by considering the variation of Young’s modulus with the 

crystallographic orientation. Figure 5-6 gives a 3D representation of the Young modulus 

for crystalline cellulose computed at 300 K. Each point on the given surface represents 

the magnitude of Young’s modulus in the direction of a vector from the origin to the 

point; the color map helps identifying the Young modulus variation and emphasizes the 

extreme anisotropy of the system. 

Two-dimensional (2D) polar plots of the variation of the Young modulus with respect to 

the crystallographic orientation and temperature were also generated. Figure 5-7 shows 

the variation of the Young modulus with the orientation angle considering the 2-axis as 

the rotation axis. Three different temperatures (0, 300 and 500 K) are superimposed in the 

same figure to analyze the influence over the Young modulus. The direction defined by 

the 3-axis (c-axis) exhibits the highest value of Young modulus changing from 202 GPa 

at 0 K to 196 GPa at 300 K and down to 190 GPa at 500 K. The small variations of the 

Young modulus (12 GPa at 500 K) could be explained by the strong covalent bonds that 

govern the deformation in the chain direction (c-axis). It is important to note that a 

change of only 10° in the longitudinal alignment (c-axis) will reduce the theoretical 
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Young modulus from ~200 GPa to a mere ~70 GPa. This important reduction in the 

stiffness could be explained by the deformation mechanism involved in the cellulose 

crystal (see Chapter 4 and Dri et al. [113] for a comprehensive explanation).  

A similar analysis can be performed on Figure 5-8, where the variation of Young 

modulus is analyzed over the 1-2 plane. The [010] directions (b-axis) shows the highest 

value of Young modulus in the plane with values of 91 GPa at 0 K, 87 GPa at 300 K and 

83 GPa at 500 K. The moderate high value of the Young modulus in the [010] direction 

could be explained by the H bond network present in-between cellulose chains. 

Stretching in the [010] direction implies increasing the in-plane separation of the chains 

which has direct impact over the inter-chain hydrogen bonds. A second relative 

maximum is found in the direction marked as ┴[010] in Figure 5-8; weak van der Waals 

forces govern the response of the system in this direction. The lowest values of Young 

modulus are found to be 12 GPa at 0 K, 9 GPa at 300 K and 7 GPa at 500 K. Results are 

consistent with reported experimental values [23-25, 30-35] and other numerical 

simulations [25, 91, 92, 113]. 
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Figure 5-6 Young’s modulus surfaces for cellulose Iβ computed at 300 K. Each point on 
the given surface represents the magnitude of Young’s modulus in the direction of a 

vector from the origin to the point; the color map helps identifying the Young modulus 
variation and emphasizes the extreme anisotropy of the system. 

 

 

Figure 5-7 Young’s modulus as a function of the rotation angle for different temperatures. 
The 2-axis (pointing inside the page) is considered to be the rotation axis; the value of the 

Young modulus for a given direction can be read directly from the figure by defining a 

straight line from the origin to the desire angle.  

(a) (b) 

(c) 

(d) 
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Figure 5-8 Young’s modulus as a function of the rotation angle for different temperatures. 
The 3-axis (pointing inside the page) is considered to be the rotation axis; the value of the 

Young modulus for a given direction can be read directly from the figure by defining a 

straight line from the origin to the desire angle. 
 

 Variations of the Poisson’s ratio with respect to the crystalline orientation were 

computed applying the same procedure as that for the Young modulus. Since the 

Poisson’s ratio is the negative ratio of transverse to axial strain, its interpretation is not as 

straight forward as the Young modulus. Figure 5-9 shows the average Poisson’s ratio 

[113] as a function of the crystallographic orientation computed at 300 K. The extreme 

anisotropies observed in crystalline cellulose can be once again evidenced in the high 

variations of the average Poisson’s ratio. It can be observed in Figure 5-9 that the three 

main crystallographic directions exhibit the lowest values for the average Poisson’s ratio 

(~0.1) whereas other directions present values up to 0.4. Figure 5-10 analyzes the 

variation of the average Poisson’s ratio over the 1-2 plane for different temperatures. The 
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first relative minimum can be found in the [010] direction (b-axis). As the temperature 

increases, the Poisson effect is less evident (decreasing value of the Poisson’s ratio) 

suggesting a reduction in the effects of separating cellulose chains over the final shape of 

the crystal. A similar behavior is found in the direction marked as ┴[010], where weak 

van der Waals interaction govern the response of the system. For direction [110], 

temperature appears to have no effect over the Poisson’s ratio. Comparison with previous 

publications [25, 36, 91, 113] showed results that are in good agreement with the values 

reported in this work. 

 

 

Figure 5-9 Average Poisson’s ratio surfaces for cellulose Iβ computed at 300 K. Each 

point on the given surface represents the magnitude of Poisson’s ratio in the direction of a 

vector from the origin to the point; the color map helps identifying the Poisson’s ratio 
variation and emphasizes the extreme anisotropy of the system. 
 

(a) (b) 

(c) 

(d) 
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Figure 5-10 Average Poisson’s ratio as a function of the rotation angle for different 
temperatures. The 3-axis (pointing inside the page) is considered to be the rotation axis; 

the value of the Poisson’s ratio for a given direction can be read directly from the figure 

by defining a straight line from the origin to the desire angle.  
 

5.7.5  Thermal conductivity 

Table 5-3 summarizes the predicted thermal conductivity of cellulose Iβ. These results 

were obtained in terms of the RNEMD simulations with the pcff+[130] force field, using  

the molecular dynamics simulation code LAMMPS [131] within the MedeA framework 

[132].  

 

Table 5-3 Calculated thermal conductivity of cellulose Iβ obtained using reverse non-
equilibrium molecular dynamics (RNEMD) with the pcff+ forcefield. 

Method 
x 

[W/m.K] 
y 

[W/m.K] 
z 

[W/m.K] 

pcff+, RNEMD, this work 0.22 ± 0.02 0.52 ± 0.05 0.90 ± 0.06 
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Due to a limitation in the LAMMPS code, it was convenient to perform these calculations 

based on an orthorhombic cell. This was achieved using a simulation cell with 8 times the 

volume of the conventional unit cell. Inspection of the lattice shows that the following 

transformation yields an almost exactly orthorhombic cell: 

 8

a a

b a b

c c

′ =

′ = − +

′ =

  (8) 

where a, b and c are the original lattice vectors and a’, b’ and c’ are the lattice vectors of 

the orthorhombic cell. Adjusting the resulting cell to be perfectly orthorhombic 

effectively fixes the cell angle γ at 96.67°, which is within a fraction of a degree of that 

found in this work and from experiment, as shown in Table 5-1. The lattice used for these 

calculations, which came from initial DFT calculations, was a = 7.563 Å, b = 8.133 Å, 

c = 10.395 Å, α = β = 90° and γ = 96.67°, resulting in an orthorhombic cell with 

a’ = 7.563 Å, b’ = 64.621 Å and c’ = 10.395 Å. 

As mentioned previously, the simulation cell for RNEMD needs to be reasonably large in 

the direction of the measurement because it must be subdivided into layers for the 

measurement of the temperature profile. For each of the three Cartesian directions, a 

supercell of the orthorhombic cell with a dimension in the direction of interest between 

60 and 70 Å was constructed and used for the RNEMD calculations. For the x-direction, 

a 9×1×1 supercell with an extent in x of 68.068 Å, containing 6,048 atoms was used. In 

the y-direction, the original orthorhombic cell, with an extent of 64.621 Å and 672 atoms 

was used. In the z-direction, a 1×1×6 supercell with an extent of 62.371 Å and 4,032 

atoms was used. For each simulation, the system was thermally equilibrated using NVT 
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(N: number of particles, V: volume, and T: temperature) dynamics for 50 ps, and then 

constant energy (NVE) dynamics was applied, during which the RNEMD was carried out 

by swapping momenta of one pair of particles every 600 steps for the x-direction, 250 

steps for the y-direction and 200 steps for the z-direction. For the x- and z-directions, a 

total time of 2 ns was simulated during this phase, using a 1 fs time step. The simulation 

in the y-direction was more sensitive, perhaps because of the small system size, so was 

simulated for 1 ns using a 0.5 fs time step. The cell was divided into 30 layers in the 

direction of the heat flow for the measurement of the temperature. The temperature of the 

hot and cold layers and the two adjacent layers were not used to fit the temperature 

profile, since non-linear effects are often observed close to where the system is being 

driven. This left 24 layers for which the temperature was measured, from which the slope 

was obtained using a linear least-squares fit. The error bars were obtained from a 

statistical analysis of the points, and reflect a 95% level of certainty. 

The results in Table 5-3 are consistent with the results for the thermal expansion 

coefficients and also the bonding patterns in the structure. The thermal conductivity is 

largest in the z direction, which is along the chains. This is the direction of the strongest 

bonding and the lowest thermal expansion. In the y-direction, which is roughly the 

direction of the hydrogen bonded network the thermal conductivity is intermediate, as is 

the thermal expansion, while in the x-direction, which corresponds to the weak van der 

Waals interactions between the sheets of cellulose, the thermal conductivity is quite low 

and the thermal expansion is large. 
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5.8 Conclusion 

In terms of the Van der Waals density functional, i.e., the PBE-D2 method, the extreme 

anisotropies of the thermal expansion and elastic properties have been probed for the 

native cellulose Iβ. It was found that the PBE-D2 method describes satisfactorily the 

three-dimensional structural properties as well as the phonon, thermodynamic, and elastic 

properties of cellulose Iβ. The predicted single-crystal elastic constants indicate that C33 is 

the extremely largest one, followed by a moderate C22, and then a small C11. Other Cij of 

the monoclinic cellulose Iβ are all quite small (< C11). The large difference between Cij 

indicates the extremely elastic anisotropy, represented also by the direction-dependent 

Young’s modulus and Poisson’s ratio plots. At finite temperatures, thermodynamic 

properties predicted via the first-principles quasiharmonic approach are in good 

agreement with available measurements, such as entropy, enthalpy, and constant pressure 

heat capacity. Regarding the thermal expansion tensor components, ξi, it was found that 

ξ1 is an extremely large one, whereas ξ2 and especially ξ3 are quite small. The predicted 

results, such as the large ξ1 and C33, and the quick decrease of C11 with respect to 

temperature, are traceable from the weak Van der Waals force between layers 

perpendicular to a-axis direction and the strong hydrogen bond along c-axis direction. 

These features of cellulose Iβ can be viewed quantitatively by the stretching force 

constants between atomic pairs and qualitatively by the relative change density, i.e., the 

charge gain or loss.  

The calculated thermal conductivity coefficients are consistent with the thermal 

expansion coefficients and the bonding patterns in the structure. The thermal conductivity 
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has its maximum along the z direction (0.90 ± 0.06 W/mK), where the strongest bonds 

are present and its lowest values in the x and y directions.  
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CHAPTER 6. PREDICTION OF THE MECHANICAL AND THERMAL 

PROPERTIES OF CELLULOSE NANOCRYSTAL 

6.1 Introduction 

First principles density functional theory (QM-DFT) as well as molecular dynamics (MD) 

simulations can be used to probe the structure and dynamics of cellulose nanocrystals 

(CNCs). While recent advances enable larger simulation sizes with ab-initio methods, the 

use of classical potential energy functions (force fields) are more appropriate to reach the 

relevant temporal and spatial scales for many questions of interest [71]. 

It is well known that molecular dynamics simulations depend heavily on the force field 

and its parameterization that are used to describe energetic interactions. Researchers have 

been performing molecular dynamics simulations of cellulose for years but still there is 

no force field specially developed for cellulose. A force field (FF) can contain a large 

number of parameters, even if it is intended for calculations on a small set of molecules. 

Parameterization of a FF is not a trivial task. A significant amount of effort is required to 

create a new FF, and even the addition of new parameters to an existing FF in order to 

model a new class of molecules, or to reproduce certain properties, can be complicated 

and time-consuming procedure [133]. Very simple FFs may easily be extended to diverse 

systems but are not expected to yield quantitatively accurate results. On the other hand, 

more complex FFs, while limited in scope, may be better able to provide quantitative 

accounts of molecular geometry and conformation [134]. 
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Five different force fields/parameter sets were compared with experimental results and 

quantum mechanics simulations in terms of their ability to predict three different 

properties: lattice parameters, elastic constants and thermal expansion coefficients. The 

aim of this work is to help deciding which force field will produce the best results 

depending on the objective of the research. 

Three types of FFs were analyzed to assess their ability to accurately represent 

cellulose Iβ under different simulation conditions. COMPASS [135] is a type II force 

field, used previously to compute elastic parameters [91, 136]. GLYCAM [137] is a type 

I force field, used in the literature to compute cellulose crystalline structure and thermal 

expansion [138-140]. Both of these FFs are non-reactive. The third type is a reactive 

force field, ReaxFF [141], which has the ability to simulate bond forming and breaking. 

Unfortunately, none of the available ReaxFF parameterizations were originally generated 

to model crystalline cellulose, limiting their accuracy.  

 

6.2 Background 

The crystal and molecular structure together with the hydrogen bonding system in 

cellulose Iβ has been accurately characterized by Nishiyama and co-workers [9, 10, 12, 21, 

22]. The atomic coordinates for cellulose Iβ network A reported by Nishiyama et al. [9] 

were adopted. Symmetry and antisymmetry operations provided by the crystallographic 

space group were used to account for the atomic positions inside the unit cell. For 

cellulose Iβ the space group is commonly accepted to be P21 [26]. Figure 6-1 depicts the 

crystalline structure reported by Nishiyama et al. [9] after the symmetry operations are 

applied to the original atom coordinates.  
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(a) 

 

(b) 

Figure 6-1 Expanded views of the P21 unit cell structure of cellulose Iβ network A 
showing the characteristic layered conformation [69]. Experimental (room temperature) 

lattice parameters a, b, c, from Nishiyama et al. [9] are shown. Red spheres denote 
oxygen ions, gray spheres represent carbon ions and white spheres represent hydrogen 

ions. Dotted blue lines denote the unit cell. (a) View along the c-axis (in of the page).  

Layers of Iβ are stacked along the a-axis. (b) View along the a-axis direction. Atomic 

coordinates were obtained after applying symmetry operations to the original structure 
reported by Nishiyama et al. [9]. Cartesian system coordinates (1, 2, 3) are superimposed 

on the figure for reference. 

 

An additional structure was generated using Materials Studio commercial software. Two 

glucose rings were bridged by the 1�4 glycosidic bond in a parallel “up” configuration, 

so that the -coordinates of the O5 atom in the chain direction is greater than that of the C5 

atom. The hydroxymethyl conformation was chosen to be tg (i.e., the C6-O6 bond points 
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in the direction of the O2 in the adjoining glucose ring). Cellulose Iβ unit cell was 

generated by arranging two parallel cellulose chains (as opposed to antiparallel), one 

positioned at the corner (origin chain) and the other at the center of the unit cell (center 

chain). The center chain is shifted by c/4 relative to the corner chain in the axial direction. 

Using two different structures, where N refers to the structure reported by Nishiyama et 

al. [13] and MS refers to the structure optimized in Materials Studio, will allow 

determination of the sensitivity of the system to the initial atomic coordinates. 

Previous studies have shown the important role of hydrogen bonding on crystalline 

stability and properties [10, 22, 71, 74, 91, 142]. A hydrogen bond is a short-range, 

angularly dependent interaction between a small electronegative donor atom (such as 

oxygen, nitrogen, or fluorine) that has covalently a bonded hydrogen atom and an 

electronegative acceptor atom. This interaction is mostly polar, but there is a partial 

covalent character that is strongest when the donor-hydrogen—acceptor angle is nearly 

linear (D-H—A = 180°) [143]. Long range interactions are treated differently by each FF; 

COMPASS and GLYCAM use an implicit representation of hydrogen bonds therefore its 

effect is contained in the electrostatic and van der Waals interaction terms. ReaxFF has 

an explicit description of hydrogen bonds with input parameters that define this type of 

interaction. As a result, ReaxFF can provide more information about the intra- and inter- 

chain hydrogen bonding network in the cellulose crystal but the results are susceptible to 

the FF parameterization being used. Figure 6-2 provides a schematic representation of the 

H bond network A reported in [12, 70] for both origin and center chains. 
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(a) (b) 

Figure 6-2 Hydrogen-bonding patterns in cellulose Iβ network A. Intra- and inter- 
molecular hydrogen bonds are depicted in green and orange respectively. (a) Chains at 

the origin of the unit cell and (b) chains at the center of the unit cell as reported in [12, 

70]. 
 

Cellulose structure simulations can be very sensitive to force field parameters and 

treatment of long-range interactions (vdW, coulomb, hydrogen bonds). Differences 

between force field conformational preferences, at the scale of a single cellobiose 

molecule, lead to radically different macroscopic properties [71]. The ability of a FF to 

correctly describe long-range interactions is critical to accurately modeling the Iβ 

structure and properties, and is the focus of the current study. 

 

6.3 Computational methodology 

LAMMPS simulation software [144] and Accerlys Materials Studio commercial package 

were used to compare COMPASS, GLYCAM and ReaxFF force fields and their ability to 
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accurately represent cellulose Iβ nanocrystals under different simulation conditions. All 

the force fields include bonded and non-bonded interactions, such as covalent bonds, 

covalent angles, torsions, van der Waals and Coulomb. Multiple parameterizations exist 

for ReaxFF, regrettably, none of them where originally intended to be used to simulate 

cellulose. Three sets of ReaxFF parameterization (ReaxFF_Mattsson [145], 

ReaxFF_CHO [141] and ReaxFF_Glycine [146]) were used, that combined with the two 

non-reactive force fields, give a total of five different possible options to simulate 

cellulose Iβ. This work was done in collaboration with Xiawa Wu and Ashlie Martini 

[147]. 

Non-bonded interactions are handled differently accordingly to each FF. For the non-

reactive FF (COMPASS and GLYCAM) the non-bonded interaction cutoff distance was 

set to be 10 Å. This limit affects equally vdW, Coulomb and hydrogen bonds. For 

ReaxFF, only the H bonds cutoff distance is required to be defined. Hydrogen bonds are 

usually defined as having the electronegative donor and acceptor atoms less than 3.5 Å 

apart and with a D-H—A angle of greater than 120°. Matthews et al. [143] report D-H—

A angles greater than 100° and distances up to 4 Å for molecular dynamics simulations of 

cellulose Iβ. These results appear to be contradicted by experimental data reported by 

Nishiyama et al. [22] where a hydrogen bond survey on cellulose Iβ reveals angles 

between 108° and 170° and distances between 1.6 and 2.8 Å. 
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Figure 6-3 Hydrogen bond energy surface as a function of the distance and angle for each 

of the ReaxFF parameterizations: ReaxFF_Mattsson [145], ReaxFF_CHO [141] and 

ReaxFF_Glycine [146]. In dark color the surface up to 3.5 Å of cutoff distance. In light 
color the continuation up to 6 Å cutoff distance. The inset in the upper left shows the 

definition of distance and angle for a O-H—O hydrogen bond. All the figures are plotted 
in the same scale; notice the discrepancies in the hydrogen bond energy assigned to the 

interaction by each of the parameterizations. 

 

Figure 6-3 shows the hydrogen bond energy surface for each of the ReaxFF 

parameterizations as a function of the distance and the angle between the hydrogen atom 

and the acceptor atom. Three hydrogen bond cutoff distance values were selected after 

careful examination of the hydrogen bond energy surfaces. A cutoff value of 0.0 Å was 
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used to completely deactivate H bonds interactions in the crystal. A cutoff value of 3.5 Å 

will coincide with standard definition of hydrogen bond interactions [148] and will force 

the numeric simulation to comply with the experimental results reported in [22]. Finally, 

a cutoff value of 6.0 Å was used to obtain a zero or near-zero energy value at the cutoff 

distance, according to the energy surfaces defined in the ReaxFF force field (See Figure 

6-3). The default cutoff distance value for H Bond interactions in LAMMPS simulation 

software is 6.0 Å. It is important to notice that ReaxFF_Glycine [146] parameterization 

produces zero-energy H bond interactions after 3.5 Å, as a result, no differences exist 

between energies predicted with the 3.5 and 6.0 Å cutoff distances. 

The study was focused on three material properties: crystal structure, elastic constants 

and thermal expansion. The following section describes the simulation procedures for 

each case. 

 

6.3.1 Equilibration 

An initial equilibration step precedes all simulations; the procedure is performed to obtain 

the crystal structure of cellulose Iβ. First a unit cell was built based on the experimental 

measurements by Nishiyama et al. [9]. An initial Gaussian velocity distribution was 

imposed over the system to produce an equivalent 300 K temperature. The unit cell was 

expanded 4x4x8 times in the a, b and c directions to create a simulation cell whose 

dimensions are large enough to satisfy the criteria: the cutoff distance is smaller than half 

the length of the simulation cell. The simulation cell was, then, equilibrated in a 

canonical ensemble for 50 ps with a time step 0.25 fs, and coupled with a thermal bath at 

300 K controlled by the Nose-Hoover thermostat. This equilibration process allows 
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relaxing inter-atomic stress without changing the size of the simulation box. The second 

equilibration was conducted in an isothermal–isobaric ensemble at temperature 300 K 

and pressure 1 atm, also controlled by Nose-Hoover thermostat and barostat methods, for 

300 ps with a time step of 0.25 fs. This equilibration process relaxes the simulation box 

as well as the atomic configurations under 1 atm pressure. The dimensions of the 

simulation cell are averaged over the last 10 ps in the second equilibration process in 

order to calculate the lattice parameters of cellulose Iβ. 

 

6.3.2 Elasticity 

Molecular mechanics are used to calculate the elastic matrices of the simulation cell with 

different force fields. After equilibrating the simulation cell in the isothermal–isobaric 

ensemble, it is stretched in one direction through successive small length steps (e.g., 

elongate in the z-direction by 0.2%) while keeping the other two directions fixed. The 

simulation cell then undergoes an energy minimization process using the conjugate 

gradient (CG) method to allow it to reach its minimum energy state. The elongation and 

minimization processes are repeated until the total strain in the extending direction 

reaches 4%. The strain and stress values at each step are recorded and a linear fit of the 

stain-stress relationship provides the stress vectors corresponding to the strain. The same 

procedure is performed in the orthogonal directions, 1, 2 and 3, as well as the shear 

directions, 12, 13 and 23 (see Figure 6-4). After all six simulations are conducted, it is 

possible to obtain the stiffness matrix that relates the strain and stress as following: 

i ij j
Cσ ε=  where σ is stress and ε is strain. The inverse of the matrix Cij is the 

compliance matrix Sij. The elastic moduli in the 1, 2 and 3 directions can be calculated by 
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1/S11, 1/S22 and 1/S33, and are reported in the results section. The elastic matrix is 

calculated for all reactive and non-reactive force fields. In addition, the elastic modulus 

for the reactive force fields with the hydrogen bonds manually turned off (implemented 

by setting the hydrogen bond cutoff distance as 0.0 Å) are also reported to further analyze 

the prediction ability of different force fields.  

  
(a) (b) 

Figure 6-4 (a) Schematic representation of the cellulose Iβ monoclinic unit cell aligned 

with the Cartesian coordinate system used in this work (red solid lines). A cubic cell 
(black dashed lines) is used to help visualizing the orthogonally between axis a-c and b-c, 

highlighting the non-orthogonal relation between a and b. (b) Stiffness matrix relating 
stresses and strains in the monoclinic unit cell [75]. 

 

6.3.3 Thermal expansion 

The thermal expansion of a single cellulose Iβ crystal is calculated with the simulation 

cell equilibrated at different temperatures. The simulation cell lattice parameters are 

analyzed from 200 K to 500 K with a temperature interval of 20 K and a constant 

pressure of 1 atmosphere. The atoms in the simulation cell are assigned with initial 

velocities at the desired temperature, and then equilibrated following the same two step 

procedure as described in the crystal structure section: the simulation cell is first 

equilibrated in the canonical ensemble and then in the isothermal–isobaric ensemble for 
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50 ps and 300 ps, respectively, with controlled temperature and pressure. The lattice 

constants are calculated at each temperature to provide of the structures predicted with 

different force fields over a wide temperature range. 

 

6.4 Results and discussion 

6.4.1 Lattice parameters 

The lattice parameters for cellulose have been measured by several authors [9, 10, 12, 21-

27] using different experimental techniques and crystal sources. For cellulose Iβ network 

A Nishiyama et al. [9] reports: a = 7.784 Å, b = 8.201 Å, c = 10.380 Å, γ = 96.55°, 

Volume = 658.3 Å
3
 at 293 K. Most of the lattice parameters exhibit variations around 1% 

over a wide range of temperatures and crystalline sources, except for the lattice parameter 

a. As cellulose Iβ is cooled or heated, the lattice remains remarkably constant in the 

directions within the hydrogen bonded plane; the same is not true along the a axis 

direction where the contractions or expansions are controlled primarily by weak vdW 

interactions [21, 28]. Nishiyama et al. 2008 [12] reported a change from 7.64 to 7.76 Å in 

the a lattice parameter when the temperature is raised from 15K to 295K. Langan et al. 

[21] reported a value of 7.83 Å for the same parameter at room temperature. Although 

H bonds interactions are present in the stacking direction (a-axis) they apparently do not 

prevent expansion at temperatures up to a transition point at about 200 °C [29].  

Figure 6-5 and Figure 6-6 summarize the comparison of simulation predictions with the 

experimental values reported by Nishishama et al. [9] for cellulose Iβ structure A. Each 

bar represents the difference between the reported experimental value and the simulation 
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result; smaller bars represent better agreement. QM-DFT calculations performed at 300 K 

[149] were also included for reference.  

 

Figure 6-5 Lattice parameters (a, b and c) for Cellulose Iβ accounting for different 
atomistic structures, H bond cutoff distance and simulation parameters. Structures: 

Nishiyama (N) and Material Studio (MS). Cut-off: 3.5 and 6.0 Å. Description: for MD, 
the force field used (this work); for QM-DFT, vibrational energy and temperature [149]. 

Comparison lines defined for Nishishama et al. [9] structure A at 293 K. 
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Figure 6-6 Lattice parameters (α, β and γ) for Cellulose Iβ accounting for different 
atomistic structures, H bond cutoff distance and simulation parameters. Structures: 

Nishiyama (N) and Material Studio (MS). Cut-off: 3.5 and 6.0 Å. Description: for MD, 

the force field used (this work); for QM-DFT, vibrational energy and temperature [149]. 
Comparison lines defined for Nishishama et al. [9] structure A at 293 K. 
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For the non-reactive FF, COMPASS exhibits the best approximation for the lattice 

parameters with a total difference smaller than 0.08 Å (<0.8%) in each value. GLYCAM 

overestimates the a axis by 0.42 Å (5.4%) and the c axis by 0.237 Å (2.3%) while 

underestimating the b axis by 0.32 Å (4.0%). The lattice angles show the opposite 

behavior, COMPASS underestimate the α angle by 1.7° (1.9%), the β angle by 1.3° 

(1.4%) and the γ angle by 4.45° (4.6%) whereas GLYCAM has a negligible deviation in 

the α and β angle but underestimates the γ angle by 2.07° (2.1%). It is important to notice 

that the comparison is conducted for different initial structures; GLYCAM results are 

extracted from the Nishiyama et al. [9] initial structure whereas COMPASS results are 

obtained using the Materials Studio initial structure.  

Each ReaxFF parameterization exhibits a unique behavior which emphasizes the 

importance of this comparison. ReaxFF_Mattsson gives the less accurate approximation 

for the lattice axis, with maximum deviations that exceeds 12.2% in the a-axis, 9.6% in 

the b-axis and 4.2% in the c-axis. The lattice angles show one of the best approximations 

for reactive FFs with α and β angles that exhibit almost no deviation from the Nishiyama 

structure. The γ angle is being overestimated by 3.22° (3.3%) for the same structure. 

ReaxFF_CHO produces results with the highest angular deviation and prove to be very 

sensitive to the initial structure being used. The best approximation is achieved by 

Material Studio’s initial structure with a H bond cutoff distance of 3.5 Å. In this 

particular case, α and β angles exhibit negligible deviations (<0.5%) whereas the γ angle 

is being overestimated by 3.54° (3.9%). The same structure exhibits good agreement in 

the a-axis direction with values comparable to QM-DFT results [149]. Finally, 

ReaxFF_Glycine underestimates both a and b-axis by less than 6% but overestimates the 
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c-axis by roughly 1.7%. The α and β angles exhibit almost no deviation from 

experimental values (less than 1°) whereas the γ angle is being underestimated by 7.98° 

(8.2%) in the Nishiyama structure and 5.24° (5.4%) in the Material Studio structure. It is 

important to remark that for ReaxFF_Glycine, the 6.0 Å cutoff distance yield virtually the 

same results as the 3.5 Å cutoff due to the shape of the H bond energy surface (see Figure 

6-3). 

None of the FF used in this study is capable of representing the experimental lattice 

parameters accurately. Similar limitations were found in previous analyses of three other 

force fields (CHARMM35, GLYCAM06, and Gromos45a4) [71]. However, it is possible 

to achieve a good representation of lattice axes or angles (but not both) by choosing the 

appropriate combination of FF, initial structure and H bonds cutoff distance.  

 

6.4.2 Mechanical properties 

For some applications, the lattice parameters and the final shape of the crystalline 

structure, are not as important as the elastic behavior of the materials. Figure 6-7 

compares the Young’s modulus in the three principal directions according to the 

Cartesian coordinate system defined in Figure 6-4. For the 3-direction (coincident with 

the c-axis) all the FF produce results in good agreement with experimental values 

reported in [23-25, 30-32]. Most of the results are below ~130GPa, with relatively small 

influence of the H bonds on the Young’s modulus value. This could be appropriately 

explained by the weak force produced by H bonds interactions compared to the covalent 

bonds that govern the mechanical response in the c-axis direction. ReaxFF_Glycine is the 

only parameterization that produces results in the order of 200 GPa. Diddens et al. [32] 
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reported values of 220 ± 50 GPa for the 3-direction  using Inelastic X-ray Scattering 

(IXR). Diddens and coworkers [32] claimed that IXS was not affected by the amorphous 

zones occurring in natural cellulose, and the elastic behavior was mostly related to the 

highly crystalline region. Recently, Dri et al. [113, 149] reported QM-DFT simulations 

for crystalline cellulose in the range of 200 GPa. 

The transverse directions, both 1 and 2 (Figure 6-7), exhibit a similar trend. 

ReaxFF_Mattsson generates the smallest values of Young’s modulus barely exceeding 

the lower limit reported by Wagner et al. [33]. ReaxFF_CHO produces values in good 

agreement with QM-DFT simulations for the 1-direction but yields lower values in the 

2-direction. ReaxFF_Glycine produces a value of Young's modulus in the 1-direction 

which almost double the value of Young's modulus reported with QM-DFT. On the other 

hand, for the 2-direction, this parameterization presents the only value that exceeds the 

50 GPa when H bonds are turned off (0.0 cutoff distance) and the highest reported value 

in this work, 38.1 GPa, when the H bonds are on (3.5 cutoff distance). Diddens and 

coworkers [32] reported a value of Young modulus in the 1-2 plane (uncertain direction) 

of 15 ± 1 GPa. Lahiji et al. [35] and Wagner et al. [33] reported a mean value of 8.1 GPa 

and a 95% confidence interval of 2.7-20 GPa. For a more comprehensive discussion 

please see Dri et al. [113]. 
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(a) 

 
(b) 

Figure 6-7 Young’s modulus computed in three principal directions for molecular 

dynamics (this work) and QM-DFT [149]. Upper and lower limits for experimental 
results were extracted from [31-33, 35] and are represented as a shaded region in the 

background. Cellulose Iβ structure A is used as the initial structure accounting for 

different H bond cutoff distance (3.5 and 6.0 Å) and simulation parameters (force field 
and temperature). (Continued) 
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(c) 

 

Figure 6-7 Young’s modulus computed in three principal directions for molecular 
dynamics (this work) and QM-DFT [149]. Upper and lower limits for experimental 

results were extracted from [31-33, 35] and are represented as a shaded region in the 

background. Cellulose Iβ structure A is used as the initial structure accounting for 
different H bond cutoff distance (3.5 and 6.0 Å) and simulation parameters (force field 

and temperature). 
 

Additional mechanical information can be extracted from the computed compliance 

matrix by generating surface contour plot of the Young’s modulus variation with 

crystallographic direction. A post processing software, Anisotropy Calculator - 3D 

Visualization  Toolkit [89], was used for this purpose. Each point on the surface 

represents the magnitude of Young’s modulus in the direction of a vector from the origin 

(i.e., at the intersection of the 1, 2, and 3 axes in the interior of the surface) to a given 

point on the surface. The shape of this surface is indicative of the anisotropy of cellulose 

Iβ.  For instance, the computed Young’s modulus surface would be a perfect sphere with 
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the same value in any direction for a linearly elastic isotropic material. However, the 

cellulose Iβ surfaces in Figure 6-8 through 18 exhibit extreme variations in the Young’s 

modulus, as denoted by the accentuated contour lobe along the 3-axis (i.e., along the 

cellulose chains) relative to the smaller lobes along the 1 and 2 directions.  

Figure 6-8 reports the variation of the Young’s modulus with respect to the 

crystallographic direction computed based on QM-DFT results at 300 K [149]. This 

figure is presented as a reference for comparison to MD simulation results. All the 

remaining Young’s modulus surfaces (Figure 6-9 through 18) were plotted maintaining 

the same view angle and color contour levels to facilitate comparisons between results. 

The largest values (red contours) are along the 3-axis, with the smallest values in the 1-2 

plane. It is important to remark that the deformation along the 3-direction is governed by 

covalent bonds that form the cellulose chains whereas the mechanical behavior in the 1-2 

plane is governed by non-bonded interactions. The shape of the surfaces predicted by the 

various FFs is analyzed. The role of the non-bonded interactions will be examined by 

focusing on the mechanical response in the 1-2 plane.  

Figure 6-9 shows the Young’s modulus variation with crystallographic direction based on 

MD results with ReaxFF_Mattsson parameterization. The surface shown in Figure 6-9a is 

obtained without considering H bonds, whereas Figure 6-9b was computed using a 3.5 Å 

cutoff distance for H bonds interactions. The presence of H bonds in the system has a 

small impact over the 3-direction but widens the Young’s modulus surface in the 1-2 

plane. Figure 6-10 shows the opposite behavior for the results computed using 

ReaxFF_Glycine parameterization. The presence of H bonds (Figure 6-10b) appears to 

reduce the anisotropy of the system compared to results without H bonds (Figure 6-10a). 
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This result contradicts the standard belief that hydrogen bonds help to stabilize the 

system; a plausible explanation for this behavior is given in the next chapter (Chapter 7). 

In the 3-direction, ReaxFF_Glycine parameterization is the only one that produces results 

close to the reported by QM-DFT [149]. Figure 6-11a was computed for the non-reactive 

FF, GLYCAM. The general shape of the Young’s modulus surface resembles the one 

presented in Figure 6-8 but exhibit softer transitions between directions. Figure 6-11b 

was computed based on ReaxFF_CHO parameterization with 3.5 Å cutoff distance. 

Results without H bonds interaction (0.0 cutoff distance) produce an unstructured surface 

and is not reported. Finally, Figure 6-12 reports the variation of the Young’s modulus 

with respect to the crystallographic direction computed based on COMPASS results from 

Ref. [91]. The presence of H bonds (Figure 6-10b) appears to completely modify the 

anisotropy of the system, yielding results that are remarkable different when compared to 

the same FF without H bonds (Figure 6-10a) or other simulations (Figure 6-8 through 17).  

 

Figure 6-8 Surfaces showing contours of Young’s modulus for cellulose Iβ from Ref. 

[149] (computed with QM-DFT at 300K). Each point on the surface represents the 

magnitude of Young’s modulus in the direction of a vector from the origin to that point. 
The color contours help to identify the Young modulus variation of cellulose Iβ and 

emphasize its extreme anisotropy. 
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(a) (b) 

Figure 6-9 Surfaces showing contours of Young’s modulus for cellulose Iβ computed 
using ReaxFF_Mattsson parameterization. (a) H bonds turned off (b) H bonds turned on 

with 3.5 Å cutoff distance. 
 

 
(a) (b) 

Figure 6-10 Surfaces showing contours of Young’s modulus for cellulose Iβ computed 

using ReaxFF_Glycine parameterization. (a) H bonds turned off (b) H bonds turned on 

with 3.5 Å cutoff distance.  
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(a) (b) 

Figure 6-11 Surfaces showing contours of Young’s modulus for cellulose Iβ. (a) 
Computed using GLYCAM (b) computed using ReaxFF_CHO parameterization with 3.5 

Å cutoff distance for H bonds.  

 

 
(a) (b) 

Figure 6-12 Surfaces showing contours of Young’s modulus for cellulose Iβ from Ref. 
[91] (computed with COMPASS). (a) H bonds turned off (b) H bonds turned on. The 

Cartesian coordinate system used to define the stiffness matrix was not explicitly reported 
in the reference.  The 3-direction and 1-2 plane positions were estimated. 

 

Variations of the Young’s Modulus within a given crystallographic direction in the 1-2 

plane are shown in Figure 6-13 and Figure 6-14. Only non-bonded interaction are present 

in the 1-2 plane (see Figure 6-1a), making it an ideal plane to analyze how vdW, 

Coulomb and hydrogen bonds interactions affect the mechanical behavior representation 
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for each FF. Experimental [15] as well as QM-DFT [149] results are superimposed on 

both figures for reference. 

 

Figure 6-13 Variation of the transverse Young’s modulus (1-2 plane) for different FF 

parameterizations with H bonds on (3.5 Å cutoff distance for ReaxFF and 10 Å cutoff distance 

for GLYCAM). QM-DFT results at 300K [149] and experimental results (in grey) [15] added for 

reference. The inset in the upper left corner shows the orientation between the original input 

structure and the Cartesian system of coordinates. The final structure (after analysis) may not be 

aligned as shown in the inset figure. 

 

Figure 6-13 shows the variation of the transverse Young’s modulus (1-2 plane) when 

non-bonded interactions are being considered in the simulation. The non-bonded 

interaction cutoff distance was set to 10 Å for the GLYCAM force field and the H bond 

cutoff distance was defined as 3.5 Å for each of the three ReaxFF parameterizations. The 

four MD simulations produced values within the limits of experimental characterizations 

[15]. Most of the curves present an oblong shape with smooth variations with orientation. 
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ReaxFF_Matsson is the only parameterization that produces a curve resembling QM-DFT 

results [149] but with a different size (smaller) and orientation. 

 

Figure 6-14 Variation of the transverse Young’s modulus (1-2 plane) for different FF 

parameterizations with H bonds off (0.0 Å cutoff distance). QM-DFT results at 300K [149] and 

experimental results (in grey) [15] added for reference. The inset in the upper left corner shows 

the orientation between the original input structure and the Cartesian system of coordinates. The 

final structure (after analysis) may not be aligned as shown in the figure.   

 

Figure 6-14 shows the variation of the transverse Young’s modulus (1-2 plane) when H 

bond interactions are not being considered in the simulation. When H bonds are turned 

off, ReaxFF_Mattson shows shrinkage in the Young’s modulus curve and a slight change 

in orientation (closer to QM-DFT results). Both relative maximum peaks became sharper, 

but are still within the values defined by the curve where H bonds were considered. 

ReaxFF_Glycine parameterization exhibits the opposite behavior: when H bonds are 

turned off the Young’s modulus curve expands and the anisotropy of the system increases 
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as compared to the curve shown in Figure 6-13 for the same FF and with QM-DFT 

results [149]. It is important to note that when H bonds were turned off, the 

ReaxFF_CHO parameterization produced unphysical results and no clear trend could be 

identified. 

 

6.4.3 Thermal expansion 

The ability of a given FF to predict the lattice variations with temperate is of remarkabe 

importance when computing thermal expansion coefficients (TEC). Figure 6-15 shows 

predicted lattice parameters a, b, c and angle γ of the cellulose Iβ network A as functions 

of temperature for the reactive and non-reactive FFs studied in this work. QM-DFT [149] 

and experimental values [37-40] were also added for comparison. It is important to 

understand that the actual values of the lattice parameters are not as important as the 

trend (slope) of the results needed to compute the thermal expansion coefficients. The 

lattice structures of the simulation cell were study for temperatures from 200 K to 500 K 

with an interval of 20 K. The analysis was limited to the interval 250 K to 350 K due to 

the high variability of the simulation data. Even within this reduced range, GLYCAM 

and ReaxFF_CHO results are too scattered to produce consistent values. In all cases the 

coefficient of thermal expansion was computed using the equilibrated structure at 300K 

as a reference. A linear regression line, fitted by least squares method with 6 simulation 

points, was used to extract the TEC value. 
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Figure 6-15 Predicted lattice parameters a, b, c, angle γ of cellulose Iβ network A 

compared with QM-DFT [149] and  experimental data measured by Hidaka et al. using 
wood cellulose [37], by Hori using wood cellulose [38], by Wada (2002) using tunicate 

(halocynthia) [39], and by Wada et al. (2010) using green algae [40]. 
 

For the a-axis, a TEC value of 5.05×10
-5

 K
-1

 was computed with ReaxFF_Mattson 

whereas ReaxFF_Glycine yields a higher 13.9×10
-5

 K
-1

 showing remarkably good 

agreement with experimental results. Hori [38] reported a value of 13.6×10
-5

 K
-1

 using 

wood cellulose while Wada et al. [40] reported a value of 19.3×10
-5

 K
-1

 using green alga. 

For the b-axis, the computed values were 9.25×10
-5

 K
-1

 for ReaxFF_Mattson and 
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19.2×10
-5

 K
-1

 for ReaxFF_Glycine. For this particular axis, the computed TEC values 

were an order of magnitude larger than the 0.5×10
-5

 K
-1

 reported in [29] and the 0.3×10
-5

 

K
-1

 value reported in [40]. In the c-axis direction a TEC value of 2.08×10
-5

 K
-1

 was 

computed using ReaxFF_Mattson whereas ReaxFF_Glycine yields a higher 5.88×10
-5

 K
-1

. 

Hori [38] reported a value of 0.6×10
-5

 K
-1

 while Wada et al. [40] reported -1.9×10
-5

 K
-1

. 

The variability in the experimental results makes comparison rather difficult.  

 

6.5 Conclusion 

Three reactive and two non-reactive force fields were tested to analyze how accurately 

they can reproduce cellulose Iβ crystalline structure and the response of that structure to 

thermal and mechanical stress. Not surprisingly, none of the tested force fields yield 

results in perfect agreement with experimental data for all predicted properties. It is 

possible to select a particular force field that will give moderately good results for a given 

case but the same force field may fail miserably when used for some other case. This 

situation makes analyzing combined cases (i.e., mechanical response and thermal 

expansion) rather difficult.  

However, a specific property can be predicted quite accurately if an appropriate force 

field is chosen. This chapter provides the information researchers need to choose the best 

FF and parameterization based on the focus of their study. Most significantly, in 

highlighting the limitation of current force fields, this work encourages development of a 

force field parameterized and optimized for cellulose that can support extensive future 

research on CNCs using molecular dynamics simulation. 
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CHAPTER 7. EXPLICIT QUANTIFICATION OF HYDROGEN BOND STRENGTH 

USING REACTIVE FORCE FIELDS 

7.1 Introduction 

Hydrogen bonding is one of the most important forms of intermolecular interaction; it is a 

critical component of biomolecular structure, molecular recognition, and protic solvent 

effects to name a few [150]. Previous studies have shown the important role of hydrogen 

bonding on crystalline stability and properties of cellulose Iβ [10, 22, 71, 74, 91, 142]. 

However, a complete understanding of the intrinsic behavior of hydrogen bonds is still an 

active topic of research. 

The special considerations required to model hydrogen bonds impose addition challenges 

in the development of empirical force-fields. Since hydrogen bonds have a relatively long 

range coulombic component, electrostatic terms needs to be added to account for some of 

the observed effects. Within the electrostatic model, the added complications of exchange 

repulsion, penetration effects and covalent bonding interactions are lumped together into 

coulombic and Van der Waals terms [151]. Highly parameterized empirical potential 

functions are required to adequately represent hydrogen bonding. Cellulose structure 

simulations can be very sensitive to force field parameters and treatment of long-range 

interactions (vdW, coulomb, hydrogen bonds). Differences between force field 

conformational preferences, at the scale of a single cellobiose molecule, lead to radically 

different macroscopic properties [71].  
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A comprehensive analysis over hydrogen bond behavior in cellulose Iβ was conducted 

using ReaxFF reactive force field. ReaxFF has an explicit description of hydrogen bond 

interactions; providing detailed information of each hydrogen bond accounted in the 

model. 

 
(a) 

Hydrogen bonded plane – origin  Hydrogen bonded plane – center  

  
(b)  (c) 

Figure 7-1 Expanded views of the P21 unit cell structure of the cellulose Iβ network A 
showing the characteristic layered conformation [9]. (a) Projected structure along the c-

axis direction showing obvious layered structure of Iβ along a-axis direction, and weaker 
bonding along b-axis direction with respect to that of c-axis direction. (b) and (c) 

Hydrogen-bonding patterns, intra- and inter- molecular hydrogen bonds are depicted in 
green and orange respectively. (a) Chains at the origin of the unit cell and (b) chains at 

the center of the unit cell as reported in [12, 70]. 
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The crystalline structure of cellulose Iβ as well as its hydrogen bond pattern has been 

extensible study [9, 12, 70]. Nishiyama et al. [9] reported a monoclinic lattice with space 

group P21 including two functional unites of C6H10O5 in the primitive cell and four in the 

crystallographic cell. Figure 7-1 illustrates the projected structures of cellulose Iβ along 

the a-axis and c-axis directions. Within the a-b plane (Figure 7-1b and c), the 

energetically favorable hydrogen-bond pattern A [13] determined by Nishiyama et al. [9] 

using X-ray and neutron fiber diffraction is adopted herein. The layer structure of Iβ 

perpendicular to a-axis, is where Van der Waals forces dominate the stacking behavior [9, 

13, 29, 152, 153].  

 

7.2 Computational methodology 

A modified version of LAMMPS simulation software [144] (details in appendix C) was 

used to compare three different ReaxFF parameterization (ReaxFF_Mattsson [145], 

ReaxFF_CHO [141] and ReaxFF_Glycine [146]) and their ability to represent cellulose Iβ 

hydrogen bonds patterns.  

Long range interactions are treated differently by each FF; ReaxFF has an explicit 

description of hydrogen bonds with input parameters that define its behavior. As a result, 

ReaxFF can provide more information about the intra- and inter- chain hydrogen bonding 

network in the cellulose crystal but the results are susceptible to the FF parameterization 

being used. Equation (9) provides the potential energy contribution for each hydrogen 

bond as it is computed by ReaxFF [154]. 
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Parameters Phb1, Phb2, Phb3 and R0 are inputs that depend exclusively on the 

parameterization being used whereas BO (Bond Order), R (distance between donor and 

acceptor – marked as distance in Figure 7-2) and θ (hydrogen bond angle) depend upon 

the geometry configuration.  

The derivative of the potential energy with respect to the interatomic distance between 

donor and acceptor (R) can be consider as the local force that the hydrogen bond is 

applying over the affected atoms. Equation (10) provides the analytical description of this 

force: 
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The second derivative of the potential energy with respect to the interatomic distance 

between donor and acceptor (R) will resemble the stiffness of the hydrogen bond and will 

provide an idea of the force need to change the current geometrical configuration.  

 
2

2

H BondU
stiffness

R

−∂
=

∂
  (11) 

The definition stated in Equation (11) does not include any possible angular variation. 

Since all the calculations are performed locally, it is assumed that this limitation will 

have minor impact over the computed values of force and stiffness. 

Values of energy, first and second derivatives are computed at each time step for each 

hydrogen bond in the system. The modified version of LAMMPS keeps track of all the 

information during the totality of the simulation, providing a remarkably powerful tool to 

analyze hydrogen bonds interactions. 
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Figure 7-2 shows the hydrogen bond force surface for each of the ReaxFF 

parameterizations as a function of the distance and the angle between the hydrogen atom 

and the acceptor atom. The surface representation has been limited to interatomic 

distances up to 3.5 Å, coincident with standard definition of hydrogen bond interactions 

[148]. ReaxFF_Glycine force surface assign a value of zero force at the cutoff distance, 

vanishing all forces regardless of the angular configuration. ReaxFF_Mattsson and 

ReaxFF_CHO exhibit a different behavior, the value of the forces at the cutoff distance 

are different from zero and depend on the angular orientation. This could be considered 

as a very dangerous practice from the numerical stability point of view due to the 

artificial nature of cutoff distances. When the hydrogen bond cutoff distance is exceeded, 

the interaction will suddenly disappear. Since the force being applied by the interaction is 

not zero, the affected atoms will suffer from a sudden change in momentum. The same 

problem will occur in the opposite direction, two atoms that are getting close enough 

(close to the cutoff distance) will suddenly experience an abrupt change in the applied 

force. It is important to remark that this situation could be completely avoided by 

appropriately setting the cutoff distance value, at the cost of computational efficiency. 
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Figure 7-2 Hydrogen bond force surface as a function of the distance and angle for each 

of the ReaxFF parameterizations: ReaxFF_Mattsson [145], ReaxFF_CHO [141] and 
ReaxFF_Glycine [146]. The inset in the upper left shows the definition of distance and 

angle for a O-H—O hydrogen bond. All the figures are plotted in the same scale; notice 
the discrepancies in the hydrogen bond force assigned to the interaction by each of the 

parameterizations. 
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The shape of the hydrogen bond force surface (Figure 7-2) is directly influenced by the 

parameterization being used. ReaxFF_Mattsson and ReaxFF_CHO have a similar overall 

shape with different values for the peak forces. On the other hand, ReaxFF_Glycine 

exhibit sharper peaks with an abrupt change from repulsion (negative values) to attraction 

(positive values). It is expected to observe higher stiffness values for hydrogen bond 

being represented by ReaxFF_Glycine parameterization. Figure 7-3 shows hydrogen 

bond force as a function of the distance for a fixed angle (180 degrees) allowing direct 

visualization of the differences in stiffness for each parameterization. 

 

Figure 7-3 Hydrogen bond force surface as a function of the distance for each of the 
ReaxFF parameterizations: ReaxFF_Mattsson [145], ReaxFF_CHO [141] and 

ReaxFF_Glycine [146]. Angle fixed to 180° according to the hydrogen bond angle (θ) 
definition presented in the inset of Figure 7-2.  
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 Special post-processing tools have been developed to super-impose each hydrogen bond 

in the simulated system over the surfaces represented in Figure 7-2. Tracking hydrogen 

bonds over the force surfaces will allow determining the overall behavior of the 

interaction. Moreover, it will allow recognizing any hydrogen bond interaction that is 

dangerously close to the cutoff distance. 

 

7.2.1 Simulation cell 

Two simulation cells were constructed to analyze the effects of each ReaxFF 

parameterization over the hydrogen bond structure in cellulose. The first cellulose Iβ 

crystal was constructed by arranging four origin chains and one center chain (see Figure 

7-4) according to the geometrical definition provided by Nishiyama et al. [9]. A total of 

64 glucose rings were used to construct each cellulose chain using the crystal-building 

facilities provided by Crystalline cellulose – atomistic toolkit [69], This particular 

configuration provides the smallest possible crystalline cross-section that can be 

simulated without the use of periodic boundary conditions. As a result, all the atomic 

interactions occur between atoms that are explicitly modeled inside the simulation cell, 

facilitating the quantification of hydrogen bonds. The use of a small cross-section also 

reduces the number of interactions present in the system, simplifying the analysis. 
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(a) (b) 

Figure 7-4 Atomistic cellulose Iβ model consisting in four origin chains and one center 
chain (SMALL model). (a) View along the c-axis (perpendicular to the page). (b) View 

along the a-axis direction. Note that only a fraction of the total length is being showed. 
Atomic coordinates were obtained after applying symmetry operations to the original 

structure reported by Nishiyama et al. [9]. 
 

A second cellulose Iβ crystal was constructed by expanding the crystallographic cell 

reported by Nishiyama et al. [9] by five times in the a and b directions and 32 times in the 

c direction (64 glucose ring per chain). A snapshot of the simulation cell illustrating these 

dimensions is given in Figure 7-5. The 61 cellulose chains contained in the second 

simulation cell will allow analyzing the effect of the initial chain type (origin or center) in 

the hydrogen bond pattern, providing several hydrogen bond planes (see Figure 7-1) and 

reducing size effects. 

These two crystals will hereafter be referred to as the SMALL and BIG crystals.  
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(a) (b) 

Figure 7-5 Atomistic cellulose Iβ model obtained by expanding the crystallographic cell 
reported by Nishiyama et al. [9] by five times in the a and b directions and 32 times in the 

c direction (BIG model). (a) View along the c-axis (perpendicular to the page). (b) Three 
dimensional view of the simulation model. 

 

7.2.2 Equilibration 

It is impossible to perform standard equilibration procedures to the SMALL simulation 

cell due to the reduced size of the system and the lack of periodic boundary conditions. 

To overcome this limitation, molecular dynamics simulations at extremely low 

temperatures (0.01 K) were performed for a short period of time (5 ps). This initial 

simulation will add randomness to the crystalline structure and will help overcoming any 

initial energy barrier that may exist. A series of deformation steps consisting in energy 

minimization techniques followed by stretching steps were used to move the system into 

a potential energy minimum. Each deformation step stretched the crystal along the 

longitudinal direction (c direction) a factor of 0.01% of the total length (~0.03 Å). This 

infinitesimal deformation is uniformly applied over all the atoms in the system. Energy 

minimization (HFTN algorithm) was performed after each deformation increment. After 

several repetitions of aforementioned procedure, the system is in a local energy minimum 
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achieved without introducing excessive distortions in the cellulose crystal. The same 

procedure was applied to the BIG crystalline structure for comparison purposes. 

It is important to understand than in this particular study, the final relaxed configuration 

of the cellulose crystal is not a priority. The focus lays on understanding the hydrogen 

bond interactions product of each force field parameterization. Moreover, the initial un-

relaxed structure is also used for comparison.  

 

7.3 Results and discussion 

Two simulation steps are of particular interest in the analysis of hydrogen bond 

interactions. The first step consists in the initial step, where no minimization or 

deformation has been applied. For the initial step, all the simulations have the same 

atomic positions, allowing direct comparison between parameterizations. In other words, 

the first step is key to understand how different each ReaxFF parameterization represents 

hydrogen bonds. The second simulation step of interest is the one at which the energy of 

the system is minimum. This step is different for each parameterization, implying 

different atomic positions, different potential energy and different time step number. This 

step is referred as the step of minimum energy to avoid confusion.  

 

7.3.1 Hydrogen bond pattern 

The first attempt to understand the hydrogen bond pattern produced by each 

parameterization consisted in explicitly representing all the hydrogen bond interactions 

being computed by the force field. ReaxFF only requires a cutoff distance as the user 

input; each parameterization control all other aspects of the hydrogen bond formations. 
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As a consequence, each parameterization produces a different hydrogen bond pattern for 

the same initial structure. 

Figure 7-6 through Figure 7-8 display all the hydrogen bonds being computed for the 

SMALL crystalline structure at the beginning of the simulation. The atomic coordinates 

at this point are the same for the three cases, as it was reported by Nishiyama et al. [9]. 

Ideally, the hydrogen bond pattern show in these figures should coincide with the one 

represented in Figure 7-1. ReaxFF_Glycine and ReaxFF_CHO generated an enormous 

amount of hydrogen bonds between chains that lay on different planes, contradicting the 

experimental results reported in [9, 13, 29, 152, 153]. Moreover, a very intricate and 

unphysical intra-chain hydrogen bond pattern is observed for both parameterizations. 

ReaxFF_Mattsson show promising results, exposing a hydrogen bond pattern that 

resembles experimental results reported in [9, 13, 29, 152, 153]. 

 

ReaxFF_Glycine 

 
 

(a) (b) 

Figure 7-6 Hydrogen bond pattern (represented as continuous cyan lines) for the SMALL 
crystalline struture with ReaxFF_Glycine [146]. Initial simulation step; atomic 

coordinates coincident with Nishiyama et al. [9]. (a) View along the c-axis (perpendicular 

to the page). (b) Reduced view along the a-axis direction for the origin chains in the 
lower hydrogen bond plane of the crystal. Only four glucose ring per chain are being 

shown. 
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ReaxFF_CHO 

  

(a) (b) 
Figure 7-7 Hydrogen bond pattern (represented as continuous cyan lines) for the SMALL 

crystalline struture with ReaxFF_CHO [141]. Initial simulation step. (a) View along the 

c-axis (perpendicular to the page). (b) Reduced view along the a-axis direction. 
 

 

ReaxFF_Mattsson 

 
 

(a) (b) 
Figure 7-8 Hydrogen bond pattern (represented as continuous cyan lines) for the SMALL 

crystalline struture with ReaxFF_Mattsson [145]. Initial simulation step. (a) View along 
the c-axis (perpendicular to the page). (b) Reduced view along the a-axis direction. 

 

Before jumping in conclusion regarding the accuracy of each parameterization, it is 

important to understand that ReaxFF is a bond ordered force field. As a result, each 

interaction inside the system has a weight parameter (the bond order) that controls its 

contribution. In other words, the fact that a given hydrogen bond is being computed 

doesn’t necessary mean that it is influencing the system behavior.  
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7.3.2 Hydrogen bond energy 

Figure 7-9 through Figure 7-11 show the energy contribution of each hydrogen bond 

inside the SMALL crystalline structure at the beginning of the simulation. The atomic 

coordinates at this point are the same for the three cases, as it was reported by Nishiyama 

et al. [9].  

ReaxFF_Glycine 

   
(a)  (b) 

Figure 7-9 Hydrogen bond energy contribution (represented as colored brown lines) for 

the SMALL crystalline struture with ReaxFF_Glycine [146]. Energy values in Kcal/mole. 
Initial simulation step; atomic coordinates coincident with Nishiyama et al. [9]. (a) View 

along the c-axis (perpendicular to the page). (b) Reduced view along the a-axis direction 

for the origin chains in the lower hydrogen bond plane of the crystal. Only four glucose 
ring per chain are being shown. 
 

ReaxFF_CHO 

   

(a)  (b) 
Figure 7-10 Hydrogen bond energy contribution (represented as colored brown lines) for 

the SMALL crystalline struture with ReaxFF_CHO [141]. Energy values in Kcal/mole. 

Initial simulation step (a) View along the c-axis (perpendicular to the page). (b) Reduced 
view along the a-axis direction. 
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ReaxFF_Mattsson 

 

 
 

(a)  (b) 
Figure 7-11 Hydrogen bond energy contribution (represented as colored brown lines) for 

the SMALL crystalline struture with ReaxFF_Mattsson [145]. Energy values in 
Kcal/mole. Initial simulation step (a) View along the c-axis (perpendicular to the page). 

(b) Reduced view along the a-axis direction. 

 

ReaxFF_Glycine, Figure 7-9 indicates a remarkable agreement with experimental values 

reported in [9, 13, 29, 152, 153]. Moreover, Figure 7-9b shows a hydrogen bond pattern 

that perfectly matches the experimental values reported in [12, 70] for the origin chain 

(refer to Figure 7-1). ReaxFF_CHO shows a very similar behavior as it can be observed 

in Figure 7-10. The hydrogen bond pattern experimentally reported (see Figure 7-1 and 

[12, 70]) is also being matched; a higher value of energy is assigned to each hydrogen 

bond when compared with ReaxFF_Glycine. On the other hand, Figure 7-11 shows that 

ReaxFF_Glycine reports hydrogen bonds linking cellulose chains in separate planes and a 

hydrogen bond pattern that is not entirely consistent with experimental reports [12, 70] 

Additional insides can be obtained analyzing the hydrogen bond pattern once the 

crystalline structure has been relaxed (atomic coordinates for the minimum potential 

energy). For example, Figure 7-12 shows that the relaxed structure obtained with 

ReaxFF_Glycine parameterization practically vanish all hydrogen bond interaction. Only 

a few inter-chain hydrogen bond interaction are visible in Figure 7-12a. Moreover, only 
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isolated intra-chain hydrogen bonds are evident in Figure 7-12b. These results appear to 

contradict the common understanding that hydrogen bonds help stabilizing the cellulose 

crystal [10, 22, 71, 74, 91, 142] and generate doubts about the validity of this 

parameterization to model crystalline cellulose. 

Figure 7-13 shows simulation results for ReaxFF_CHO parameterization. A complex 

hydrogen bond network is form between chains belonging to different planes as it can be 

seen in Figure 7-13a. Even more interesting is the fact that the hydrogen bond network 

pattern depicted in Figure 7-13b perfectly matches the one reported for center chains (see 

Figure 7-1). This suggests that at one point during the stabilization procedure, the 

hydrogen bond pattern has changed from the origin chain pattern to center chain pattern. 

Crystal reorganization has been reported in several studies [91, 143, 155, 156] indicating 

that the hydrogen bond structure is not static and can be interchanged. This assumption is 

consistent with the total arbitrariness in the definition of the center and origin chains. The 

capability of interchanging hydrogen bond patterns without user intervention is a clear 

advantage towards the use of ReaxFF_CHO parameterization. 

ReaxFF_Mattsson produces hydrogen bond interactions with the highest energy values of 

the three parameterization analyzed. Figure 7-14a shows an anti-symmetrical hydrogen 

bond arrangement, with high energy valued hydrogen bonds connecting chains in 

different planes. Figure 7-14b presents a hydrogen bond pattern somewhat similar to the 

one reported in [12, 70] for center chains (Figure 7-1) but with some additional inter-

chain hydrogen bonds. 
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ReaxFF_Glycine 

 
  

(a)  (b) 
Figure 7-12 Hydrogen bond energy contribution (represented as colored brown lines) for 

the SMALL crystalline struture with ReaxFF_Glycine [146]. Energy values in Kcal/mole. 
Minimum energy step. (a) View along the c-axis (perpendicular to the page). (b) Reduced 

view along the a-axis direction for the origin chains in the lower hydrogen bond plane of 

the crystal. Only four glucose ring per chain are being shown. 
 

ReaxFF_CHO 

  
 

(a)  (b) 

Figure 7-13 Hydrogen bond energy contribution (represented as colored brown lines) for 
the SMALL crystalline struture with ReaxFF_CHO [141]. Energy values in Kcal/mole. 

Minimum energy step. (a) View along the c-axis (perpendicular to the page). (b) Reduced 
view along the a-axis direction. 
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ReaxFF_Mattsson 

   
(a)  (b) 

Figure 7-14 Hydrogen bond energy contribution (represented as colored brown lines) for 

the SMALL crystalline struture with ReaxFF_Mattsson [145]. Energy values in 
Kcal/mole. Minimum energy step (a) View along the c-axis (perpendicular to the page). 

(b) Reduced view along the a-axis direction. 

 

7.3.3 Hydrogen bond force and stiffness 

The internal energy value for each hydrogen bond is a good parameter to analyze the 

level of activity of each interaction but does not provide any insights regarding the 

mechanical response of the system. The force that each hydrogen bond is exerting over 

the structure and the stiffness of the interaction is analyzed in an attempt to understand 

the effects of hydrogen bond in the mechanical response of crystalline cellulose. 

Figure 7-15 through Figure 7-20 show the force and stiffness values for each hydrogen 

bond inside the SMALL crystalline structure at the beginning of the simulation. The 

atomic coordinates at this point are the same for the three cases, as it was reported by 

Nishiyama et al. [9].  

ReaxFF_Glycine, Figure 7-15 and Figure 7-16, present no force and no stiffness for 

hydrogen bonds connecting chains that lay on different planes, indicating a state of local 

neutral equilibrium. Figure 7-15b shows a negative force value (repulsion) whereas 
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Figure 7-16b indicates a positive stiffness value (stabilization) for hydrogen bond 

interactions between chains belonging to the same hydrogen bond plane. 

ReaxFF_CHO, Figure 7-17 and Figure 7-18, also present no force and no stiffness for 

hydrogen bonds connecting chains that lay on different planes, indicating a state of local 

neutral equilibrium. Figure 7-15b shows almost no force applied by hydrogen bond 

interactions between chains belonging to the same hydrogen bond plane. At the same 

time, Figure 7-18b indicates a positive stiffness value, synonym of stable behavior. 

ReaxFF_Mattsson, Figure 7-19 and Figure 7-20, show positive values of force along 

many of the hydrogen bonds, indicating interactions that are not in local equilibrium. 

Positive stiffness values shown in Figure 7-20 indicate tendencies towards equilibration. 

 

ReaxFF_Glycine 

   
(a)  (b) 

Figure 7-15 Hydrogen bond force contribution (represented as colored lines) for the 

SMALL crystalline struture with ReaxFF_Glycine [146]. Force values in Kcal/mole-Å, 

positive values indicate attration and negative values repulsion. Initial simulation step; 
atomic coordinates coincident with Nishiyama et al. [9]. (a) View along the c-axis 

(perpendicular to the page). (b) Reduced view along the a-axis direction for the origin 
chains in the lower hydrogen bond plane of the crystal. Only four glucose ring per chain 

are being shown. 
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ReaxFF_Glycine 

 
  

(a)  (b) 

Figure 7-16 Hydrogen bond stiffness (represented as colored lines) for the SMALL 
crystalline struture with ReaxFF_Glycine [146]. Stiffness values in Kcal/mole-Å

2
. Initial 

simulation step; atomic coordinates coincident with Nishiyama et al. [9]. (a) View along 
the c-axis (perpendicular to the page). (b) Reduced view along the a-axis direction for the 

origin chains in the lower hydrogen bond plane of the crystal. Only four glucose ring per 

chain are being shown. 
 

ReaxFF_CHO 

   
(a)  (b) 

Figure 7-17 Hydrogen bond force contribution (represented as colored lines) for the 
SMALL crystalline struture with ReaxFF_CHO [141]. Force values in Kcal/mole-Å. (a) 

Initial simulation step. View along the c-axis (perpendicular to the page). (b) Reduced 
view along the a-axis. 
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ReaxFF_CHO 

 
  

(a)  (b) 

Figure 7-18 Hydrogen bond stiffness (represented as colored lines) for the SMALL 

crystalline struture with ReaxFF_CHO [141]. Stiffness values in Kcal/mole-Å
2
. (a) Initial 

simulation step. View along the c-axis (perpendicular to the page). (b) Reduced view 

along the a-axis. 
 

ReaxFF_Mattsson 

 
  

(a)  (b) 

Figure 7-19 Hydrogen bond force contribution (represented as colored lines) for the 

SMALL crystalline struture with ReaxFF_Mattsson [145]. Force values in Kcal/mole-Å. 
Initial simulation step. (a) View along the c-axis (perpendicular to the page). (b) Reduced 

view along the a-axis. 
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ReaxFF_Mattsson 

   

(a)  (b) 
Figure 7-20 Hydrogen bond stiffness (represented as colored lines) for the SMALL 

crystalline struture with ReaxFF_Mattsson [145]. Stiffness values in Kcal/mole-Å
2
. Initial 

simulation step. (a) View along the c-axis (perpendicular to the page). (b) Reduced view 

along the a-axis. 

 

Additional information was obtained by analyzing the hydrogen bond pattern once the 

crystalline structure has been relaxed. ReaxFF_Glycine presents a very particular 

behavior for hydrogen bonds interactions connecting chains that belong to the same plane. 

Figure 7-21 shows hydrogen bonds exerting repulsion forces (negative values in the plot) 

whereas Figure 7-22 reports a negative stiffness value for the same interaction. This 

particular combination could lead to an unstable behavior of the entire cellulose crystal. 

Moreover, it was found that molecular dynamic simulations performed with 

ReaxFF_Glycine and hydrogen bond interactions manually disabled produce values of 

lateral Young’s modulus that are higher than the ones obtained when the interactions are 

being considered (see Chapter 6). It is important to remark that this behavior contradicts 

previously reported molecular dynamic and quantum mechanics results [23-25, 30, 31, 

113, 149]. On the other hand, the study conducted in Chapter 6 showed ReaxFF_Glycine 

as the only parameterization capable of producing longitudinal Young modulus in the 
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order of QM-DFT predictions (192.2 GPa for ReaxFF_Glycine and 196.5 GPa for QM-

DFT). 

 

ReaxFF_Glycine 

 
  

(a)  (b) 

Figure 7-21 Hydrogen bond force contribution (represented as colored lines) for the 
SMALL crystalline struture with ReaxFF_Glycine [146]. Force values in Kcal/mole-Å, 

positive values indicate attration and negative values repulsion. Minimum energy step. (a) 

View along the c-axis (perpendicular to the page). (b) Reduced view along the a-axis 
direction for the origin chains in the lower hydrogen bond plane of the crystal. Only four 

glucose ring per chain are being shown. 
 

ReaxFF_Glycine 

 
  

(a)  (b) 
Figure 7-22 Hydrogen bond stiffness (represented as colored lines) for the SMALL 

crystalline struture with ReaxFF_Glycine [146]. Stiffness values in Kcal/mole-Å
2
. 

Minimum energy step. (a) View along the c-axis (perpendicular to the page). (b) Reduced 

view along the a-axis direction for the origin chains in the lower hydrogen bond plane of 

the crystal. Only four glucose ring per chain are being shown. 
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ReaxFF_CHO 

  
 

(a)  (b) 
Figure 7-23 Hydrogen bond force contribution (represented as colored lines) for the 

SMALL crystalline struture with ReaxFF_CHO [141]. Force values in Kcal/mole-Å. (a) 

Minimum energy step. View along the c-axis (perpendicular to the page). (b) Reduced 
view along the a-axis. 

 

ReaxFF_CHO 

 
  

(a)  (b) 
Figure 7-24 Hydrogen bond stiffness (represented as colored lines) for the SMALL 

crystalline struture with ReaxFF_CHO [141]. Stiffness values in Kcal/mole-Å
2
. (a) 

Minimum energy step. View along the c-axis (perpendicular to the page). (b) Reduced 

view along the a-axis. 
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ReaxFF_Mattsson 

 
 

 
(a)  (b) 

Figure 7-25 Hydrogen bond force contribution (represented as colored lines) for the 

SMALL crystalline struture with ReaxFF_Mattsson [145]. Force values in Kcal/mole-Å. 
Minimum energy step. (a) View along the c-axis (perpendicular to the page). (b) Reduced 

view along the a-axis. 
 

ReaxFF_Mattsson 

 
  

(a)  (b) 

Figure 7-26 Hydrogen bond stiffness (represented as colored lines) for the SMALL 
crystalline struture with ReaxFF_Mattsson [145]. Stiffness values in Kcal/mole-Å

2
. 

Minimum energy step. (a) View along the c-axis (perpendicular to the page). (b) Reduced 

view along the a-axis. 
 

Both, ReaxFF_CHO and ReaxFF_Mattsson, Figure 7-23 and Figure 7-25, show positive 

values of force along many of the hydrogen bonds indicating interactions that are not in 

local equilibrium. Positive stiffness values shown in Figure 7-24 and Figure 7-26 indicate 

tendencies towards equilibration. 
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7.3.4 Size effects 

This section summarizes results for the BIG cellulose model in the initial and minimized 

configurations. ReaxFF_CHO provides the most promising results based on previous 

analyses, producing the best outcomes for energy, force and stiffness of the three 

analyzed force fields. As a consequence, only simulations results for this particular 

parameterization are going to be presented in this section. 

Figure 7-27 and Figure 7-28 analyze the hydrogen bond pattern for the initial undeformed 

structure (atomic coordinates coincident with Nishiyama et al. [9]) and the relaxed 

structure. The total amount of hydrogen bond interactions in the system increases as a 

direct consequence of increasing the cross-sectional area of the simulation cell. 

Additional hydrogen bond planes (center-chain planes) lead to interactions that were not 

possible in the reduced simulation cell.  

A complex hydrogen bond network is form between chains belonging to different planes 

as it can be seen in Figure 7-28a. Evidence of crystal reorganization is now clear; the 

hydrogen bond network associated to origin chains at the beginning of the simulation 

(Figure 7-27b) is found in the center chains at the minimization step (Figure 7-28c). The 

opposite effect occurs to the pattern associated to center chains at the beginning of the 

simulation (Figure 7-27b to Figure 7-28b). It is worth notice that this particular 

configuration increases the number of hydrogen bonds contributing to the axial stiffness 

of the crystal by changing their alignment. It is possible to theorize that the hydrogen 

bond pattern interchange occurs to maximize the capabilities of the crystal to withstand 

axial deformation as the stretching process occurs. 
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Figure 7-29 and Figure 7-30 show positive values of forces and stiffness for all the inter-

chain hydrogen bonds. Based on this result, it is possible to assume that hydrogen bonds 

play a role in keeping the different hydrogen planes in position. Previously conducted 

studies using different force fields and simulation software have encountered similar 

results [91, 143, 156]. 

 
 

(a) 

  
Origin chains Center chains 

(b) (c) 
Figure 7-27 Hydrogen bond energy contribution (represented as colored brown lines) for 
the BIG crystalline struture with ReaxFF_CHO [141]. Energy values in Kcal/mole. Initial 

simulation step, atomic coordinates coincident with Nishiyama et al. [9].  (a) View along 
the c-axis (perpendicular to the page). (b) Reduced view along the a-axis direction for 

cellulose chains originally labeled as origin chains according to their geometrical position 

[12, 70]. (c) Reduced view along the a-axis direction for cellulose chains originally 
labeled as center chains according to their geometrical position [12, 70]. 
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(a) 

  
Origin chains Center chains 

(b) (c) 

Figure 7-28 Hydrogen bond energy contribution (represented as colored brown lines) for 

the BIG crystalline struture with ReaxFF_CHO [141]. Energy values in Kcal/mole. 
Minimum energy step. (a) View along the c-axis (perpendicular to the page). (b) Reduced 

view along the a-axis direction for cellulose chains originally labeled as origin chains 
according to their geometrical position [12, 70]. (c) Reduced view along the a-axis 

direction for cellulose chains originally labeled as center chains according to their 

geometrical position [12, 70]. 
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(a) 

  
Origin chains Center chains 

(b) (c) 
Figure 7-29 Hydrogen bond force contribution (represented as colored lines) for the BIG 

crystalline struture with ReaxFF_CHO [141]. Force values in Kcal/mole-Å. Minimum 
energy step. (a) View along the c-axis (perpendicular to the page). (b) Reduced view 

along the a-axis direction for cellulose chains originally labeled as origin chains 

according to their geometrical position [12, 70]. (c) Reduced view along the a-axis 
direction for cellulose chains originally labeled as center chains according to their 

geometrical position [12, 70]. 
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(a) 

  
Origin chains Center chains 

(b) (c) 

Figure 7-30 Hydrogen bond stiffness (represented as colored lines) for the BIG 
crystalline struture with ReaxFF_CHO [141]. Stiffness values in Kcal/mole-Å

2
. Minimum 

energy step. (a) View along the c-axis (perpendicular to the page). (b) Reduced view 

along the a-axis direction for cellulose chains originally labeled as origin chains 
according to their geometrical position [12, 70]. (c) Reduced view along the a-axis 

direction for cellulose chains originally labeled as center chains according to their 
geometrical position [12, 70]. 

 

7.4 Conclusion 

A comprehensive analysis over hydrogen bond behavior in cellulose Iβ was conducted. 

Three force field parameterizations were study to assess their ability to represent energy, 

force and stiffness of individual hydrogen bonds. As expected, none of the tested 

parameterization yield results in perfect agreement with experimental data.  
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ReaxFF_CHO [141] provides the most promising results based on previous analyses, 

showing the capability of interchanging hydrogen bond patterns on-the-fly and producing 

consistent results through the entire analysis. It is important to remember that hydrogen 

bond interactions are not the only interactions defined by the force field parameterization. 

The apparently good results show in this section also needs to be compared with 

relatively poor performance of ReaxFF_CHO in predicting mechanical properties. 

ReaxFF_Glycine [146] shows the exact opposite behavior, performing remarkably well 

in predicting longitudinal mechanical properties (compared with QM-DFT) but failing in 

maintaining a stable hydrogen bond configuration. It is worth notice that this behavior 

was already evidenced in the previous chapter (Chapter 6) when computing transverse 

Young modulus values. ReaxFF_Glycine predicted a reduction in lateral stiffness when 

hydrogen bonds where activated in the simulations. The detailed analysis conducted in 

this chapter allowed a complete understanding on the reasons for this behavior. 

It is important to emphasize that this analysis does not solve the “parameterization 

problem” but provides invaluable information on the intrinsic behavior of hydrogen 

bonds and explains many of the results obtained in previous chapters.  
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CHAPTER 8. ANALYSIS OF THE MECHANICAL RESPONSE OF A SINGLE 

CELLULOSE CHAIN USING REACTIVE FORCE FIELDS 

8.1 Introduction 

The remarkable mechanical properties of cellulose nanocrystals are a result of its specific 

structural configuration. As a first approximation, cellulose Iβ can be described by a 

monoclinic unit cell which contains two cellulose chains in a parallel orientation [9]. 

Further investigation will reveal two conformationally distinct chains, which are referred 

to as the origin and center chains [12].  

  

(a) (b) 

Figure 8-1 (a) Three dimensional representation of the cellulose Iβ unit cell based on 
Nishiyama et al. [9]. Notice the origin chain positioned at the corner of the unit cell. The 

center chain has been shifted about c/4 with respect to the origin chain in the c-axis 

direction. (b) Origin and center chains viewed along the a-axis according to Nishiyama et 
al. [9]. Blue ellipses added to highlight the conformational differences. 
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Figure 8-1 show a schematic representation of the cellulose Iβ unit cell. The origin chain 

is positioned at the corner of the unit cell parallel to the c axis direction. The center chain, 

passes through the center of the a-b plane and is translated in the c-axis direction by 

about c/4 with respect to the origin chain [9]. 

Calculations of probable conformations of an isolated cellulose chain [157] showed that 

the cellulose molecule is not likely to exist by itself, requiring extended hydrogen-bonded 

arrangements [158]. However, the study of isolated cellulose chains could help 

understanding the intrinsic behavior of cellulose nanocrystals by providing mechanical 

properties of the basic “building block”. Molecular dynamic simulations with ReaxFF 

reactive force field were used to analyze the axial stiffness of a single cellulose chain. By 

combining this results with the ones obtained in previous chapters, it is expected to fully 

address the effects of non-bonded interactions on the axial mechanical response of 

crystalline cellulose. 

 

8.2 Computational methodology 

A modified version of LAMMPS simulation software [144] (details in appendix C) was 

used to compare three different ReaxFF parameterization (ReaxFF_Mattsson [145], 

ReaxFF_CHO [141] and ReaxFF_Glycine [146]) and their ability to accurately represent 

cellulose mechanical properties and hydrogen bond patterns. 

Long range interactions are treated differently by each FF; ReaxFF has an explicit 

description of hydrogen bonds as oppose to an implicit representation (COMPASS, 

GLYCAM). As a result, ReaxFF can provide additional information about the intra-chain 

hydrogen bonding present in cellulose chains but the results are susceptible to the FF 
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parameterization being used. Values of energy, force and stiffness were computed at each 

time step for each hydrogen bond in the system and recorded for further analysis. Two 

hydrogen bond cutoff distance values were selected. A cutoff value of 0.0 Å was used to 

completely deactivate H bonds interactions inside the chain. A cutoff value of 3.5 Å will 

coincide with standard definition of hydrogen bond interactions [148]. Comparing results 

with and without intra-chain hydrogen bonds will allow evaluating the influence of this 

interaction in the axial stiffness. 

 

8.2.1 Simulation cell 

Two simulation cells were constructed, each containing one cellulose chain of origin or 

center type, according with Nishiyama et al. [9] atomic coordinates. A total of 64 glucose 

rings were used to construct each cellulose chain using the crystal-building facilities 

provided by Crystalline cellulose – atomistic toolkit [69]. Non periodic boundary 

conditions were used, all the atomic interactions occurred between atoms that were 

explicitly modeled inside the simulation cell. This approach facilitated the quantification 

of hydrogen bonds and allowed direct comparison with results previously presented [159, 

160]. 
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Figure 8-2 Single chain simulation cell showing the 64 glucose ring structure according 
to Nishiyama et al. [9] atomic coordinates. The insert in the figure emphasizes the 

repeating units. No periodic boundary condition are being used in the simulation. 
 

 

8.2.2 Equilibration and stretching procedure 

It is impossible to perform standard equilibration procedures to a single chain model 

without introducing enormous amount of deformation as it can be seen in Figure 8-3.  

 

 

(a) (b) 

Figure 8-3 Equilibration procedure at 300K for a single chain (a) initial configuration and 

(b) final configuration. Same visualization scale used for both views. The extreme 
deformation suffered by the chain motivated the use of the alternative method described 

in the text. 
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This behavior is a consequence of the reduced size of the system and the lack of periodic 

boundary conditions. To overcome this limitation, molecular dynamics simulations at 

extremely low temperatures (0.01 K) were performed for short periods of time (5 ps, 6 ps 

and 10 ps). This initial procedure added randomness to the chain structure and helped 

overcoming any initial energy barrier that may exist. A series of deformation steps 

consisting in energy minimization techniques followed by stretching steps were used to 

move the system into a potential energy minimum. Each deformation step stretched the 

chain along the longitudinal direction (c-direction) a factor of 0.01% of the total length 

(~0.03 Å). This infinitesimal deformation was uniformly applied over all the atoms in the 

system. Energy minimization (HFTN algorithm) was performed after each deformation 

increment. After several repetitions of aforementioned procedure, the system is in a local 

energy minimum achieved without introducing excessive distortions in the cellulose 

chain. Once system is in the energy minimum, the stretching and minimization steps 

continue. The equilibrium length l and the corresponding potential energy U is recorded 

at each step for further analysis. 

 

8.2.3 Stiffness calculation 

Traditional methods to compute the Young modulus of materials involved experimentally 

obtained stress–strain curves. An alternative method, proposed by Tanaka et al. [136] is 

based on the linear relation between the changes in energy density and the half of the 

square of the compressive or tensile strains. This calculation does not require the stress 

applied to the system but changes in energy during deformation as described in 

equation (12). 
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 − −
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×  
   (12) 

Where U is the potential energy of the system; U0, the potential energy of the system in 

the relaxed configuration; A, the cross-sectional area; l, the length of the system; l0, the 

equilibrated length and E, the elastic modulus.  

This particular approach has the advantage that does not require a definition of stress. 

Stress is inherently a continuum concept and has been proven difficult to define in a 

physically reasonable manner at the atomic scale [161]. 

The equation, as it was derived is ideal to analyze crystalline structures with an 

identifiable cross sectional area. Defining the cross section of single cellulose chain will 

inevitably lead to an arbitrary decision. As a result, the uniqueness of the Young’s 

modulus value is compromised as it is directly connected to the cross-sectional area. This 

situation is known to materials scientists working with carbon nanotubes as the 

“Yakobson’s Paradox” [162]. 

Previous studies have defined a cross-sectional area for a single cellulose chain as half of 

the cross sectional area of a unit cell [159, 160, 163]. A different approach was proposed 

based on the idea that the actual Young modulus of the chain is not of interest in this 

study. By moving the area term, A, to the right hand side of equation (12) it is possible to 

compute the stiffness of the chain as E A× . This approach has a direct advantage, the 

values of A and E cannot be univocally defined but the multiplication of them is unique. 

Equation (13) shows the final form used to compute the stiffness of the cellulose chain: 

 
( )

2

0 0

0

2 U U l
stiffness E A

l l l

× −  
= × = ×  

− 
  (13) 
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It is important to clarify that this definition of stiffness is different than the one described 

for hydrogen bonds interactions in the previous chapter.  

 

8.3 Results and discussion 

8.3.1 Potential energy and chain stiffness 

The first analysis compares potential energy curves with and without hydrogen bond 

interactions. Quadratic regression was used to fit molecular dynamics simulation results; 

equation (13) was applied to obtain the chain stiffness parameter. 

 

 

Figure 8-4 Cellulose chain potential energy (U) as a function of the chain length (l). Red 

dots represent computational data points. Fitting equation, coefficient of determination 

(R
2
) and equilibrated length (l0) added for reference. Results obtained using a center 

chain model, ReaxFF_CHO [141] parameterization and 10 ps of stabilization time. 

 

 Figure 8-4 shows computational data points and the quadratic fitting being applied. In all 

the analyzed cases the coefficient of determination (R
2
) remained above 0.93. Successive 
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analyses only focused in the quadratic fitting curves to simply comparison between 

parameterizations. 

The first step was to analyze the shape of the potential energy curves as a function of the 

change in length (l-l0) for each case. This qualitative analysis can provide very intuitive 

information on the mechanical behavior of a single chain under different 

parameterizations. The axial stiffness of a chain is directly related to the derivative of the 

potential energy curve, in other words, the steeper the parabola the higher the axial 

stiffness. Figure 8-5 summarizes all potential energy curves for each of the analyzed 

parameterizations. Averaged curves were included to facilitate comparison between cases 

with and without hydrogen bond interactions. 

A quick analysis on Figure 8-5 revealed different behaviors for each parameterization. 

ReaxFF_CHO and ReaxFF_Glycine generated small differences between averaged 

curves when hydrogen bond interactions were deactivated. On the other hand, 

ReaxFF_Mattsson showed a clear differentiation between cases with and without 

hydrogen bond interactions. At the same time, ReaxFF_Glycine showed a wider 

dispersion between results, with curves without hydrogen bond interactions that were 

steeper than the ones that consider hydrogen bonds. 
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Figure 8-5 Potential energy (U) as a function of the change in length (l-l0). Each solid line 

represents quadratic regression functions obtained from fitting numerical simulations. 

Dashed lines computed as the average of the quadratic fitting. Results with hydrogen 

bond interaction activated (HB_ON) and deactivated (HB_OFF). 

 

Averaged curves of potential energy as a function of the change in length (l-l0) were 

plotted in Figure 8-6 for comparison. ReaxFF_Glycine and ReaxFF_Mattsson showed 

very similar curve shapes when hydrogen bond interactions were considered. However, 

each parameterization assigned different influences to hydrogen bonds. 

ReaxFF_Mattsson showed an important influence of hydrogen bonds in defining the axial 

stiffness whereas the small influence of hydrogen bonds interactions predicted by 

ReaxFF_Glycine was clearly evidenced by slight differences between curves of the same 
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parameterization. These results suggest different strengthening mechanisms proposed by 

each parameterization. 

 
Figure 8-6 Comparison of potential energy (U) as a function of the change in length (l-l0). 

Each dashed line represent the average of the quadratic fitting for an specific 

parameterization. Results with hydrogen bond interaction activated (HB_ON) and 

deactivated (HB_OFF). 

 

Table 8-1 summarizes results shown in Figure 8-5 and Figure 8-6 by presenting the 

minimum, maximum and average stiffness values for a single cellulose chain under 

different force field parameterizations. Based on average result, it was possible to 

compute a decrease of 20% in stiffness when hydrogen bonds are turned off in 

ReaxFF_CHO parameterization. At the same time, ReaxFF_Glycine show a decrease of 

only 11% whereas ReaxFF_Mattsson produced the biggest decrease with almost 70% 

difference. These results are in agreement with previously reported data [159, 163] for 

other atomistic simulations.  
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Table 8-1 Predicted chain stiffness (EA) for different force field parameterizations and 

simulation conditions. Hydrogen bond “No” implies that hydrogen bond interactions 

have been deactivated in the simulations. Minimum (Min), Maximum (Max) and 

Average values obtained over six different simulations for each parameterization. Young 

modulus values computed from stiffness averages assuming a cross-sectional area of 

31.71 Å
2
. 

Parameterization 
Hydrogen 

Bonds 

Stiffness [Pa · m2] Young 
Modulus 

[GPa] 
Min Max Average 

ReaxFF_CHO 
[141] 

Yes 3.67E-08 3.98E-08 3.79E-08 119.4 

No 2.85E-08 3.44E-08 3.03E-08 95.6 

ReaxFF_Glycine 

[146] 

Yes 4.90E-08 5.71E-08 5.41E-08 170.7 

No 3.99E-08 6.97E-08 4.82E-08 151.9 

ReaxFF_Mattsson 

[145] 

Yes 4.42E-08 6.38E-08 5.20E-08 163.9 

No 1.45E-08 1.82E-08 1.60E-08 50.4 

 

8.3.2 Hydrogen bond force 

The role of hydrogen bonding was explicitly evaluated by analyzing the force that each 

hydrogen bond interaction was exerting over the cellulose chains. The relaxed state 

(minimum potential energy) was used to facilitate comparison between different 

parameterizations. 

A detailed analysis of Figure 8-7 revealed that ReaxFF_Mattsson and ReaxFF_CHO, 

parameterization produced a hydrogen bond pattern that contributes to increase the axial 

stiffness of the cellulose chain. In both cases, hydrogen bonds aligned with the chain 

longitudinal direction produced attraction forces between atoms inside the chain. Figure 

8-7a showed less amount and weaker hydrogen bond for ReaxFF_CHO compared to 

ReaxFF_Mattsson (Figure 8-7c). This difference could be used to explain the important 

decrease (~70%) of stiffness experienced by the ReaxFF_Mattsson when hydrogen bonds 

are deactivated. On the other hand, ReaxFF_CHO only undergoes a 20% reduction in 

stiffness.  
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(a) (b) (c) 

Figure 8-7 Hydrogen bond force distribution (represented as colored lines) for a single 

cellulose chain under diferent paramterizations. Force values in Kcal/mole-Å, positive 

values indicate attration and negative values repulsion. Results for (a) ReaxFF_CHO 
[141], (b) ReaxFF_Glycine [146] and (c) ReaxFF_Mattsson [145]. Atomistic coordinates 

that yield the minimum potential energy. Only four glucose ring per chain are being 
shown. 

 

ReaxFF_Glycine produced unexpected results; Figure 8-7b showed that this 

parameterization lead to hydrogen bond interactions exerting both repulsive and attractive 

forces inside the chain. These results could be used to explain the dispersion in the 

potential energy curves presented in Figure 8-5. Small conformational alterations will 

lead to hydrogen bond interactions applying repulsion forces in different directions, and 

consequently, reducing the total stiffness of the chain. This behavior is directly evidence 

by the small difference (11%) between simulations with and without hydrogen bonds 

interactions. Moreover, Figure 8-5 show potential energy curves for simulations without 
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hydrogen bond interactions that exceed the stiffness measured with hydrogen bond 

interactions.  

 

8.3.3 Qualitative comparison – single chain vs crystalline structure 

The mechanical response of a single chain is here compared with previous results 

obtained for entire crystals. Stiffness values for single chains were converted to Young 

modulus by assuming a cross-sectional area of 31.71 Å
2
. It is important to point out that 

the Young modulus values were not used in the multiscale model framework presented 

here and were only added for comparison purposes. 

 
Figure 8-8 Axial Young modulus comparison between crystalline cellulose (white bars in 
the background) and single chains (colored bars). Young modulus values computed from 

chain stiffness based on an estimated cross sectional area of 31.71Å
2
. Error bars obtained 

from minimum and maximum stiffness values reported in Table 8-1. 
 

Figure 8-8 showed that each parameterization produced a distinct and unique behavior. 

ReaxFF_CHO displayed a ~20GPa difference between chain values and crystalline 
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values when comparing simulations without hydrogen bonds. It is possible to theorize 

that this difference was produced by other non-bonded interactions (van der Waals, 

Coulomb) but the discrepancy vanishes when comparing the same simulations with 

hydrogen bonds activated. Even more interesting is the fact that ReaxFF_Glycine 

evidenced roughly the same difference (~20GPa) between single chain and crystal results. 

In this particular case, the gap remains almost unchanged when hydrogen bonds are 

added or removed. These results reinforce the theory that other non-bonded interactions 

were influencing the axial stiffness for the crystal. However, the wide ranges in the error 

bars for ReaxFF_Glycine make this comparison rather difficult. 

Finally, ReaxFF_Mattsson produced curious results; there is a 12 GPa difference when 

analyzing crystalline simulations with and without hydrogen bonds but almost 115 GPa 

difference when analyzing the influence of hydrogen bonds in single chains. Moreover, 

single chain results for simulations that consider hydrogen bonds yield higher values of 

Young modulus than crystalline simulations under the same condition. These results 

suggest a change in the intra-chain hydrogen bond pattern when single chains become 

part of a crystal. Nevertheless, a close inspection of the hydrogen bond pattern obtained 

in Chapter 7 revealed no differences between intra-chain hydrogen bonds for single 

chains and hydrogen bonded chains. Figure 8-9 provides this comparison. No plausible 

explanation can be given for the differences encountered in Figure 8-8 based only in 

hydrogen bond interactions patterns. It is important to remark that changing the area 

assumed for a cellulose chain will produce a shift in the Young modulus value reported in 

Figure 8-8. For this reason, the previous comparison should be considered with caution 

and regarded only as qualitative. 
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(a) (b) 

Figure 8-9 Comparison of hydrogen bond force distribution (represented as colored lines) 
with ReaxFF_Mattsson [145] for (a) SMALL crystalline struture computed in Chapter 7 

and (b) a single cellulose chain. Atomistic coordinates that yield the minimum potential 
energy. Only four glucose ring per chain are being shown. Notice the almost identical 

inter-chain hydrogen bond patter for both figures. 

 

8.4 Conclusion 

Potential energy curves, atom trajectories and hydrogen bond patterns were analyzed for 

the three different ReaxFF parameterizations under study. The lack of a specific force 

field parameterization designed for cellulose was evidenced by continue disagreements 

found between analysis of similar cases.  

It was possible to directly correlate hydrogen bonds interactions with the mechanical 

response of a single cellulose chain. The three parameterizations reported a decrease in 

the axial stiffness when hydrogen bonds were deactivated showing the reinforcement 
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capabilities of this particular interaction. Nevertheless, the effect measured was different 

in each case; ReaxFF_CHO and ReaxFF_Glycine reported small differences in the 

Young modulus with and without hydrogen bonds (~20 GPa) whereas ReaxFF_Mattsson 

produced an average difference of more than 110 GPa. It was impossible to justify this 

result based merely on the understanding of hydrogen bond interactions. 

 

8.5 Notes on bending and torsional stiffness 

 
(a) 

 
(b) 

Figure 8-10 Deformation map effects over a single chain for (a) constant curvature 

bending and (b) twisting. Note that in both cases the length of the chain is kept constant 

by the deformation map. 
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The bending and torsional stiffness of cellulose chains are also important mechanical 

properties that need to be analyzed. A modified version of LAMMPS (details in appendix 

C) provides the necessary capabilities to compute these two mechanical properties by 

producing bending and torsional deformations as it can be seen in Figure 8-10.  

The extreme deformations observed for a single chain during minimization procedures 

(Figure 8-3) suggest that the bending and torsional stiffness of the chain are extremely 

low compared to the axial stiffness. A limited amount of simulations conducted for 

bending deformation appear to support this assumption. From now one, the bending and 

torsional stiffness of a single chain will be considered as zero. 
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CHAPTER 9.  A SIMPLIFIED CONTINUUM MODEL TO UNDERESTAND THE 

MECHANIZAL RESPONSE OF CELLULOSE NANOCRYSTALS 

9.1 Introduction 

Understanding the relationship between structure and mechanical properties of cellulose 

nanocrystals is of paramount importance in the development of theoretical models 

capable of predicting mechanical responses. The highly complicated crystalline structure 

of cellulose Iβ have made it practically impossible to theoretically calculate the three-

dimensional elastic constants [136, 164]. The role of hydrogen bonding has also been 

controversial. Several studies agreed that intra-molecular hydrogen bond interactions 

affect the axial Young modulus with reported variations up to 60% [91, 92, 164, 165]. 

Molecular dynamic simulations presented in previous chapters confirm these results. 

In contrast, the effect of inter-molecular hydrogen bond is less clear. Tanaka et al. [136, 

166] highlights the importance of inter-chain hydrogen bonds in the axial stiffness. On 

the other hand, Santiago Cintrón et al. [165] claims that inter-molecular hydrogen 

bonding does not significantly affect the elongation stiffness of cellulose. Molecular 

dynamic simulations showed evidence that supports both authors depending on the force 

field and parameterization being used. For example, ReaxFF_CHO showed no statistical 

difference between the axial Young modulus of a single chain and the Young modulus of 

the entire crystal, suggesting no effects produced by inter-chain hydrogen bonds.  
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Alternatively, ReaxFF_Glycine estimates an average increase in the axial Young 

modulus of 20 GPa due to inter-chain hydrogen bond interactions. 

Reliable calculations that use theoretical strategies could provide insights into the role of 

inter-chain hydrogen bonds. A simplified continuum model based on linear springs was 

constructed for such purposes. The objective of this model is to determine if it is 

theoretically possible for inter-chain hydrogen bonds to increase the stiffness of 

crystalline cellulose and to quantify the upper limit of that increment. Moreover, the 

proposed model is independent of any force field parameterization since no atomistic 

simulations are needed.  

 

9.2 Spring model 

A three-step procedure was used to construct the simplified continuum model used in this 

study. First, the hydrogen bond pattern for inter-chain hydrogen bonds was analyzed and 

simplified using continuum techniques. Linear springs were used to replace inter-chain 

hydrogen bond interactions. In the second step, the atomistic representation of cellulose 

chain was replaced by truss bars with linear axial stiffness. The relative distances 

between interactions (springs) was kept unchanged. Finally, the system was reduced to 

one dimension by restricting all lateral displacement. This approximation facilitates 

focusing the study on the longitudinal direction and is expected not to affect the results. It 

is worth notice that molecular dynamic simulation under periodic boundary conditions 

are subjected to the same approximation [136]. 

The atomistic structure and hydrogen bond pattern used in the analysis have a direct 

influence over the results as consequence of the applied simplifications. Fortunately, the 
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crystalline structure of cellulose Iβ as well as its hydrogen bond pattern has been 

extensible study [9, 12, 70]. The energetically favorable hydrogen-bond pattern A [13] 

determined by Nishiyama et al. [9] using X-ray and neutron fiber diffraction is adopted 

herein. Figure 9-1 shows the characteristic layered structure of crystalline cellulose. Two 

hydrogen bonded planes with different hydrogen bond patterns coexist inside the crystal 

[9]. Each plane, regarded as center plane and origin plane, was reduced to a simplified 

continuum independently. The axial stiffness of the entire crystal resulted from the axial 

stiffness of each plane multiplied by the number of planes in the system. This approach 

assumes no hydrogen bond interactions between planes [9, 13, 29, 152, 153]. 

 
Figure 9-1 Expanded view of the P21 unit cell structure of the cellulose Iβ network A 
showing the characteristic layered conformation. The conformationally different 

hydrogen bonded planes have been highlighted for the first two layers. The insert in blue 

dashed lines represent the original unit cell reported by Nishiyama et al. [9]. 
 

Schematic representations of the conversion from an atomistic model to a 1D continuum 

are presented in Figure 9-2 for the center plane and Figure 9-3 for the origin plane. Figure 

9-2a shows four inter-chain hydrogen bond interactions connecting each cellulose 

molecule. The final configuration shown in Figure 9-2c results in four vertical springs 

with the same stiffness constant: KH-Bond. Each cellulose chain was replaced with a truss 

element with an axial stiffness: KChain. The hydrogen bond pattern existing in the origin 

plane produces interactions that are perpendicular to the longitudinal direction as it can 
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be seen in Figure 9-3a and Figure 9-3b. As a result, only the stiffness of the cellulose 

chain contributes to the stiffness of the plane (Figure 9-3c). 

 
(a) 

 
(b) 

 
(c) 

Figure 9-2 Schematic representation of the conversion from an atomistic model to a 1D 
continuum for a center plane with three cellulose chains (a) Inter-chain hydrogen bonds 

replaced by linear springs. (b) Cellulose chains replaced by truss members. (c) Reduction 

of the model to 1D. KH-Bond has the same value for every spring in the model. 
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(a) 

 
(b) 

 
(c) 

Figure 9-3 Schematic representation of the conversion from an atomistic model to a 1D 

continuum for a origin plane with three cellulose chains (a) Inter-chain hydrogen bonds 
replaced by linear springs. (b) Cellulose chains replaced by truss members. (c) Reduction 

of the model to 1D.  
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9.3 Computational methodology 

The resulting system of springs is too complex to be solved analytically. Maple [167] 

computer algebra system was used to numerically solve the mathematical model. A 

change of variables was introduced to simplify the analysis: 

 Chain

H Bonds

K k

K kα−

=

= ×
   (14) 

Modifications introduced by equation (14) produced two new parameters. The parameter 

k is equal to the stiffness of a single cellulose chain whereas α represent the ratio of 

stiffness between hydrogen bonds and a single chain.  

The stiffness of an entire crystal is computed as follow: the number of origin and center 

planes is obtained from the size of the crystal. The number of individual chains in each 

plane is also considered. The stiffness of each center plane is computed based on the 

schematic model shown in Figure 9-2c. The stiffness of each origin plane is computed as 

the stiffness of a chain (k) times the number of chains in the plain. The total stiffness of 

the crystal results from summation over all planes in the system. The result is a function 

of the chain stiffness and the ratio α. The total stiffness of the crystal is not of particular 

interest per se, but it can be used to define the normalized stiffness increment (∆S) 

produced by hydrogen bonds as shown in Equation (15). 

 1 100%
Crystal

Chains

K
S

N k

 
∆ = − × 

× 
  (15) 

Where KCrystal a function of α and k representing the total stiffness of the crystal, NChains is 

the total number of cellulose chains in the crystal and k is stiffness of a single chain. The 
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great advantage of Equation (15) is that by dividing KCrystal by k the normalized stiffness 

increment (∆S) becomes only a function of α. 

 

9.4 Results and discussion 

The normalized stiffness increment (∆S) was computed for the array of crystals shown in 

Figure 9-4. Curves of stiffness increment as a function of the crystalline size for different 

values of α were condensed in Figure 9-5. 

  
1x1 – 5 chains 2x2 – 13 chains 

  
3x3 – 25 chains 4x4 – 41 chains 

  
5x5 – 61 chains 10x10 – 221 chains 

Figure 9-4 Cross-sectional representation of the analyzed crystals. Each model is 

identified by the number of times a unit cell was repeated in the a and b crystallographic 

directions respectively, according to the crystal orientation defined by Nishiyama et al. 

[9]. The number of chain in each crystal and a schematic representation of a unit cell 

(blue dashed lines) were added for reference. 
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Figure 9-5 Stiffness increment (∆S) as a function of the crystalline size for different 

values of α. An upper limit of 50% increment is reached for an infinite crystal (size ∞×∞) 

with infinitely rigid hydrogen bonds (α = ∞). 

 

The 1x1 crystal has two origin planes and none center planes as it can be observed in 

Figure 9-4. As a result, the theoretical stiffness of the 1x1 crystal coincides with the 

stiffness of 5 chains. The normalized stiffness increment due to hydrogen bonding (∆S) is 

equal to zero regardless of the value of α as it can be seen in Figure 9-5. 

The normalized stiffness increment (∆S) increases with the size of the crystal till a 

plateau is reached. This guarantees the existence of an upper limit for the stiffness 

increment. In the extreme case of infinity cross-section (size ∞×∞) and infinitely rigid 
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hydrogen bond interactions (α = ∞) this study predicts a stiffness increment of 50%. In 

other words, inter-chain hydrogen bonds can increase the axial stiffness of a crystal with 

respect to a single chain by 50% at most.  

The value of α (ratio of stiffness between hydrogen bonds and a single chain) was 

computed from molecular dynamic simulation previously presented in Chapter 7 and 8. It 

is important to remark that the upper limit presented in Figure 9-5 is independent of any 

atomistic simulation and was obtained based on pure theoretical models.  

The stiffness of a single chain (k) was computed in Chapter 8 for different force field 

parameterizations. A stiffness value of 2.02 Kcal/mole-Å
2
 (1.41 N/m) is obtained from 

the average stiffness over each parameterization for the chain axial stiffness. Previously 

reported values of hydrogen bond stiffness are an order of magnitude bigger than the 

computed chain axial stiffness, its value being 40 N/m [158, 168]. These results suggest a 

ratio of stiffness α equal to ~29. The highest stiffness reported for hydrogen bonds in 

Chapter 7 was 6 Kcal/mole-Å
2
 (4.17 N/m). These results suggest a ratio of stiffness α 

equal to 3. The average value of stiffness multiplied by the average angle between the 

longitudinal direction and the hydrogen bond interaction produced an average 

longitudinal hydrogen bond stiffness of 1.5 Kcal/mole-Å
2
. Considering α = ~1 produce 

an increase up to 20% in the expected axial stiffness for a 5x5 crystal product of inter-

chain hydrogen bonding with respect to a single chains. In other words, if the chain’s 

Young modulus is 150 GPa, a 5x5 crystal can reach values up to 180 GPa. A value of 

α = ~30 is  really close to the infinite limit, approaching a 30% increment for a 5x5 

crystal. In this case, if the chain’s Young modulus is 150 GPa, a 5x5 crystal can reach 

values up to 195 GPa.  
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It is important to clarify that the increase in stiffness is based on geometrical 

considerations, the actual increase in stiffness could be much lower than the values 

presented here. Nevertheless, the objective of defining an upper limit product of the inter-

chain hydrogen bond interactions was accomplished. 

 

9.4.1 Qualitative comparison – Theory vs molecular dynamics 

Molecular dynamics simulations are performed to demonstrate part of the previous 

results. Only inter-chain hydrogen bond interactions and single chain stiffness are being 

considered in the simplified model. Additional corrections need to take place to compare 

this results with molecular dynamic simulations. Several non-bonded interactions 

(Coulomb, van der Waals and intra-chain hydrogen bonds) are being considered when 

simulating an entire crystal. Moreover, previous analysis for different force field 

parameterizations showed the presence of inter-chain hydrogen bonds connecting chains 

that belong to different hydrogen bonded planes. To account for this effect it is necesarry 

to modify Equation (15) into Equation (16):  

 
( )1 1

1 100%
5

MD

CrystalMD

MD

Chains x

K
S

N K

 
 ∆ = − ×

×  

  (16) 

Where 
MD

CrystalK  is the stiffness of a crystal computed with molecular dynamic simulations 

and 1 1

MD

x
K  is the stiffness of a 1x1 crystal computed in the same conditions. By dividing 

by the stiffness of a 1x1 crystal instead of the stiffness of a single chain it is possible to 

remove all non-bonded interactions effects except those produced by inter-chain 

hydrogen bonds present in center planes. This is possible because the 1x1 crystal has 2 
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origin planes (that do not contribute to the stiffness) and none center planes. A factor of 5 

is used to compensate for the stiffness of the five cellulose chains inside the 1x1 crystal. 

Only one force field parameterization (ReaxFF_CHO [141]) was analyzed following the 

same minimization and stabilization procedure described in Chapter 8. Results are 

summarized in Figure 9-6. 

 

Figure 9-6 Normalized stiffness increment (∆S) as a function of the crystalline size for 

different values of α. Molecular dynamics simulations computed using ReaxFF_CHO 

[141]. Error bars showing minimum and maximum values among all simulations. 

 

The increase in the error bars with the size of the crystal suggests that deformation 

mechanisms not present in the small cell are affecting the non-bonded interactions. The 

general trend of the average stiffness increment appears to coincide with theoretical 

predictions for α = ~1. Unfortunately, the relatively large error bars make comparison 
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rather difficult.  Moreover, for a 5x5 crystal, the upper limit of the error bar exceeds what 

was defined as the theoretical maximum for that size. It is important to remind the reader 

that molecular dynamics results are force field specific whereas the theoretical model is 

independent of any parameterization. 

 

9.4.2 Crystalline shape and the effect of inter-chain hydrogen bond 

The previous section studied the effect of inter-chain hydrogen bonds on square crystals 

as shown in Figure 9-4. Interesting results can be observed when the shape of the 

analyzed model changes. The simplifications introduced by the spring model suggest that 

each origin - hydrogen bonded plane added to the model will increase the stiffness only 

due to the added chains. On the other hand, each center – hydrogen bonded plane added 

will contribute with additional stiffness product of hydrogen bond interactions. It is 

natural to ask if a given crystalline size and shape is better to withstand axial 

deformations.  

Two extreme cases are of particular interest. A column crystal is defined as a crystal 

constructed by repeating the unit cell only in the a-direction as defined by Nishiyama et 

al. [9]. By doing so, no center – hydrogen bonded planes are generated since only one 

center chain per unit cell is present in the crystal. As a result, this type of crystal will 

show no increase in the normalized stiffness increment (∆S) based on the simplified 

model.  

On the other hand, a row crystal is constructed by repeating a unit cell only in the 

b-direction as defined by Nishiyama et al. [9]. By doing so, each new unit cell added to 

the crystal will provide additional inter-chain hydrogen bond interactions that increase 
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the stiffness of the whole. Any crystalline shape can be constructed by applying this 

scheme as it is shown in Figure 9-7. 

 It is worth notice that repeating the unit cell in the a direction to form column crystals or 

in the b direction to form row crystal will produce models with intrinsically different 

conformational structures but with the same amount of cellulose chains in them. This 

generates the ideal conditions to compare stiffness values between them. 

 

Figure 9-7 Atomistic representations of Row crystals, Square crystals and Column 

crystals based on the direction used in the repetition of the unit cell (depicted in blue). 

The unit cell represents a 1x1 crystal, the Row crystal is of the type 1x4, the Column 

crystal is of the type 4x1 and the square crystal (black and white background) is of the 

type 4x4.  

 

Figure 9-8 presents a 3D chart with the normalized stiffness increment (∆S) value as a 

function of the size and shape of the crystal. Crystalline values form 1x1 to 5x5 are 

analyzed for α = ∞. Trends observed for α = ∞ appear to be valid also for lower values of 

α since only a downscaling effect is detected in the normalized stiffness increment (∆S) 
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(see Figure 9-5). Numerical values for normalized stiffness increment (∆S) and total 

number of chains as a function of the size of the crystal are presented in Table 9-1 and 

Table 9-2 respectively.  

 

Figure 9-8 Normalized stiffness increment (∆S) as a function of the crystalline size in the 

a and b directions as defined in Figure 9-7. Value of α = ∞. Notice the faster increase in 

normalized stiffness increment for the b direction compared to the a direction. 

 

Assuming a given number of chains it is possible to determine which crystalline 

configuration will yield the best values for normalized stiffness increment (∆S). For 

example, with ~24 chains it is possible to build a 3x3 crystal, a 2x4 and a 4x2 all of them 

containing a similar amount of cellulose chains (see Table 9-2) but different structural 
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configurations. Based on results presented in Table 9-1, the best possible configuration to 

withstand axial deformation is obtained with a 2x4 crystal (∆S = 27.05%) followed by 

the 3x3 square configuration (∆S = 24.53%) and ending with the 4x2 shape 

(∆S = 17.10%). A similar analysis could be conducted for 32 or 40 chains yielding 

always more favorable results towards row shaped type of crystals. 

 

Table 9-1 Normalized stiffness increment (∆S) as a function of the crystalline size in the 

a and b directions as defined in Figure 9-7. Value of α = ∞. Values for 3x3, 4x4 and 

similarly shaped crystals are highlighted in green and orange. 

  b - direction 

 

 
1 2 3 4 5 

a-
di

re
ct

io
n 1 0.00% 12.29% 18.58% 22.21% 24.61% 

2 0.00% 15.13% 22.71% 27.05% 29.88% 

3 0.00% 16.39% 24.53% 29.16% 32.18% 

4 0.00% 17.10% 25.55% 30.35% 33.46% 

5 0.00% 17.56% 26.20% 31.10% 34.29% 

 

Table 9-2 Total number of chains as a function of the crystalline size in the a and b 

directions as defined in Figure 9-7. Values for 3x3, 4x4 and similarly shaped crystals are 

highlighted in green and orange. 

  b - direction 

 

 
1 2 3 4 5 

a-
di

re
ct

io
n 1 5 8 11 14 17 

2 8 13 18 23 28 

3 11 18 25 32 39 

4 14 23 32 41 50 

5 17 28 39 50 61 

 

Based on the aforementioned results, it can be concluded that row shaped type of crystals 

have a theoretical advantage withstanding axial deformations compared to other shapes 

that contain the same amount of cellulose chains. This assumption is based purely on 

mechanical observations. It is worth notice that the stacking direction in crystalline 
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cellulose (a-direction) is governed by van der Waals interactions that were not taking in 

account in the simplified model.  

 

9.5 Conclusion 

A simplified continuum model was developed to analyze the role of inter-chain hydrogen 

bonding in the axial mechanical response of cellulose nanocrystals. This very simple 

approximation proved that inter-chain hydrogen bond interactions can increase the axial 

stiffness of a cellulose crystal and could potentially define the crystalline shape and size. 

The exact increase value could not be obtained without recurring to molecular dynamic 

simulations that depend on force field parameterizations. Nevertheless, an upper bound 

for the stiffness increment was obtained and reported. Considering α = ~1 produce an 

increase up to 20% in the expected axial stiffness for a 5x5 crystal product of inter-chain 

hydrogen bonding with respect to a single chains. In other words, if the chain’s Young 

modulus is 150 GPa, a 5x5 crystal can reach values up to 180 GPa. A value of α = ~30 

generates a 30% increment for a 5x5 crystal. In this case, if the chain’s Young modulus is 

150 GPa, a 5x5 crystal can reach values up to 195 GPa. Molecular dynamic simulations 

using ReaxFF_CHO parameterization were used to compare with the theoretical model 

producing good agreement in the range analyzed. 

Size and shape effects were study using the theoretical model to predict the structural 

configuration that produced the biggest increase in the normalized stiffness increment 

(∆S). Row shaped crystals proved to be better suitable for withstand axial loading when 

compared to other shapes that contain the same number of cellulose chains. 
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Changes in lateral stiffness product of inter-chain hydrogen bond interactions were not 

analyzed in this chapter. The structural arrangement shown in Figure 9-3a and b suggest 

an important role of this type of interactions making them worth of study.  
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CHAPTER 10.  FINAL ELEMENT REPRESENTATION OF CELLULOSE 

NANOCRYSTALS 

10.1 Introduction 

Multiscale modeling have been particularly useful for polymers and biological materials 

where the characteristics of the system make it impossible to utilize full atomistic 

representations [169]. To access larger time and length scales, molecular models must be 

simplified or coarse-grained (CG) in such a way as to preserve only the degrees of 

freedom responsible for the macroscopic properties of interest [43]. Interactions between 

atoms are replaced by interaction between CG units dramatically decreasing the amount 

of degrees of freedom in the model. There is no unique way to formulate a CG model. In 

extreme cases, a whole molecule can be represented by a single particle and interactions 

between particles incorporate average properties of the whole molecule [170]. With this 

approach, the number of degrees of freedom is reduced practically to a minimum. This 

process results in a speed-up of simulation times by several orders of magnitude. Not 

surprisingly, the application of such methods to study entirely new problems of biological 

importance has been rapidly gaining increased attention in the biomolecular simulation 

community [169]. 
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The first and most simple coarse-grained model is the ‘dumbbell’ model [171]. 

Molecules are treated as a pair of beads interacting via a harmonic potential. Using this 

model, it is possible to perform kinetic theory derivations and calculations for nonlinear 

rheological properties and flow problems.  Modeling chain-like macromolecules, such as 

cellulose, require more advance models; the bead-rod and bead-spring model are 

available for this purpose. Beads in the bead-rod model do not represent the atoms of the 

polymer chain backbone, but some portion of the chain, normally 10 to 20 monomer units. 

These beads are connected by rigid and massless rods. While in the bead-spring model, a 

portion of the chain containing several hundreds of backbone atoms are replaced by a 

“spring” and the masses of the atoms are concentrated in the mass of beads [170]. Even 

though they can be consider as very simple models, different variations of coarse grained 

techniques have been used to simulate all kinds of bimolecular systems (i.e., RNA, DNA 

[172]). One of the existing limitations in the CG models previously described is that, in 

general, beads are considered as rigid-bodies. The deformation of the system can only 

occur at the links (springs). As a result, the model force localization of deformation based 

on the position and size of the representation being used. Successfully representing 

crystalline cellulose with a coarse grained model will require a different approach.  

Virtually every phenomena in nature, whether biological, geological or mechanical can 

be described in terms of algebraic, differential or integral equations based on physical 

laws. A complete understanding of the physical processes involved in a given system is 

required to build its mathematical model. The formulation results often in differential or 

integral equations relating quantities of interest [61]. While the derivation of the 

governing equations for most problems is not a trivial task, their solution by exact 
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methods of analysis is generally not possible. The finite element method overcomes this 

problem by providing a systematic procedure for the derivation of an approximate 

solution over a given domain. Three basic features give the finite element method (FEM) 

a clear advantage over other methods. First, a geometrically complex domain of the 

problem is represented as a collection of geometrically simple subdomains, called finite 

elements. A collection of finite elements is called mesh. Second, each finite element is 

represented mathematically by approximation functions derived using the basic idea that 

any continuous field can be represented as a linear combination of algebraic polynomials. 

Third, the algebraic relations needed to solve the undetermined coefficients (i.e., nodal 

displacements, nodal temperatures) are obtained by satisfying the governing equations 

over each element.  

The power of the FEM resides principally in its versatility, the method can be applied to 

various physical problems. The body analyzed can have arbitrary shape, loads and 

support conditions. The mesh can mix elements of different types, shapes and physical 

properties [173]. This great versatility is contained within a single computer program 

which gives an incredible advantage from the user’s point of view. The finite element 

method also has disadvantages, for example, a specific numerical result is found for a 

specific problem. A finite element analysis provides no closed-form solution that permits 

analytical study of the effect of changing various parameters. 

The finite element method and the coarse graining approach were combined to develop a 

continuum model for cellulose nanocrystals. The continuum based multiscale model is 

constructed based on the hypothesis that bonded and non-bonded interactions can be 

decoupled. Bonded interactions determine the cellulose chain behavior whereas non-
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bonded interactions define inter-chain behavior (i.e., size of the crystal and lattice 

parameters). The response of the crystal as a whole arises from the mutual work of these 

two mechanisms. These hypotheses were consistently proven trough different simulations 

presented in Chapters 4 to 8 and theoretically based results obtained in Chapter 9.  

The following subsections describe the derivations of the formulation being used in the 

continuum model. Relations between atomistic based simulations and the continuum 

formulation are also explained.  

 

10.2 Beam element: modeling a single cellulose chain 

The first step in modeling cellulose nanocrystals involves the mathematical description of 

a single chain. Extensive analyses have been done on single cellulose chains using 

atomistic simulations. The mechanical response under tension, bending and torsion has 

been studied providing the information needed to develop a continuum representation. A 

three dimensional Euler-Bernoulli beam element was specially modified to accommodate 

the needs of cellulose chains.  

Beam elements are slender members capable of supporting axial and transverse loading 

[174]. In the FEM framework, beams are considered to be one of the most basic 

structural elements. However, several types of elements with increasingly complexity 

have been developed. Nowadays, beam elements can be found in FEM codes ranging 

from 2D symmetric linear elements to 3D finite deformation – co-rotational formulations 

[175]. 

The first challenge encountered when adapting the atomistic representations to the 

continuum formulation is the definition of geometrical and material properties: area (A), 
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cross sectional shape, moment of inertia (I, J), Young modulus (E) and Poisson’s ratio (ν) 

are not uniquely determined for atomistic systems in general [162]. The use of a special 

developed beam element allows completely avoiding those definitions without losing 

simulation capabilities.  

A 2-node – 6 degrees of freedoms (d.o.f.) – 3D beam element was developed on the basis 

that it is not possible to isolate section properties (A, I, J) from material properties (E, G). 

The element was formulated under small deformation hypothesis, allowing decoupling of 

axial, bending and twisting deformations. There is no coupling between deformation in 

different planes and shear is neglected accordingly to Euler-Bernoulli equations.  

 

 

 

 

 

 

Figure 10-1 Schematic representation of a 2 node – 6 d.o.f. – 3D beam element. All the 

active degrees of freedom are explicitly shown in each node. The arrows indicate a 

positive value of deformation / rotation according to the local system of coordinates 

shown in the figure. 

 

The 3D Euler Bernoulli beam element has been extensible studied [61, 173, 174, 176, 

177]. Only the most important concepts are shown to avoid excessively large 

mathematical derivations. By using equilibrium equations it is possible to obtain four 

major differential equations that govern the response of the 3D linear beam element. 
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-Axial deformation (u1, u2):  

 
2

2
0

d u
EA

dx
=  (17) 

- Bending deformation in the X-Y plane (v1, r1, v2, r2): 

 
2 2

112 2
0

d d v
EI

dx dx

 
= 

 
 (18) 

- Bending deformation in the X-Z plane (w1, q1, w2, q2): 

 
2 2

222 2
0

d d w
EI

dx dx

 
= 

 
 (19) 

- Twisting deformation (p1, p2): 

 
2

2
0

d p
GJ

dx
=  (20) 

It is worth noticing that the four parameters that define the stiffness of the system always 

appear in pairs (EA, EI11, EI22, GJ) and in completely different equations. This apparently 

simple finding outlines the basis of the entire approach utilized to model CNC from a 

continuum point of view. Molecular dynamic simulations provide the values of those four 

stiffness constants (geometry + material) without any assumption over the geometry or 

material properties of a single chain. Reconstructing the beam equations taking care of 

never separating those four groups will generate a formulation that does not need 

individual information about the material or the section being analyzed. 

The beam element formulation can be summarized as a stiffness matrix, Equation (21), 

and a force vector, Equation (22), that combined define the elastic behavior of the single 

cellulose chain. 
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 { } { }1 1 1 1 1 1 2 2 2 2 2 2

T xy xz xz xy xy xz xz xy

ef P Q Q T M M P Q Q T M M=  (22) 

 

It is important to remark that the length of the cellulose chain and its relation to the length 

of the beam element (le) was never used in the development of Equations (21) and (22). 

As a result, the coarse graining parameter (cgp), number of glucose rings being 

represented by each finite element, is a free variable that can be defined by the user based 

on experimentation and observation. 

Large rotations, especially under torsion and bending, have been observed in many 

atomistic simulations of free standing single chains. Although the current implementation 

of a 3D beam element is limited to small deformations, an extension to large rotations is 

possible and a topic for future development. 
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10.3 Hydrogen bond element: modeling inter-chain hydrogen bond interactions 

A continuum representation of hydrogen bonds is needed to model cellulose nanocrystals 

using FEM. Hydrogen bond interaction occurring between atoms that belong to the same 

chain (intra-chain hydrogen bonds) are already considered in the beam element 

previously developed. Inter-chain hydrogen bond can occur between chains that belong to 

the same hydrogen-bonded plane or connecting chains that belong to different planes as it 

can be seen in Figure 10-2. A generic formulation, capable of representing both types of 

situations was developed. 

   

(a) (b) (c) 

 
 

(d) (e) 

Figure 10-2  (a) 2D atomistic representation of a CNC. (b) Isolation of single cellulose 

chain inside the crystal. (c) Schematic representation of all possible hydrogen bond 

interactions for a given chain. (d) 3D atomistic representation of a CNC. (e) Schematic 

representation of inter-chain hydrogen bonds of an interior chain. The number of 

hydrogen bonds formed depends on the force field parameterization, figures only for 

illustration purposes. 
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Hydrogen bond elements will be used to connect several of the previously defined beam 

elements. A compatibility requirement must be satisfied between these two elements. 

Nodal displacements and rotations, at the shared nodes, must be equal for both elements.  

Schematics of the transition from atomistic to continuum representation for the hydrogen 

bond element are shown in Figure 10-4. 

  

  

(a) (b) 

  
(c) (d) 

Figure 10-3 Schematics of the transition from atomistic to continuum representation for 

the hydrogen bond element. Internal description of the hydrogen bond element. Each 

panel reveals different levels of detail. (a) Representation of inter-chain hydrogen bonds 

for two glucose rings. (b) Conversion into a beam element (purple) and estimation of the 

hydrogen bond virtual surfaces (blue). (c) Numerical representation of the hydrogen bond 

element (membrane connecting 4 nodes). (d) Insides of the hydrogen bond element 

showing the continuum representation of hydrogen bond forces (red surface). 
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(a) (b) 

 

 

(c) (d) 

Figure 10-4 Internal description of the hydrogen bond element. Each panel reveals 

different levels of detail. (a) Hydrogen bond element connecting two beam elements 

(orange lines), virtual surfaces replacing atomic coordinates in green, generic points 

inside the surface in purple. (b) Integration line mn (in blue) and schematic representation 

of forces for a generic point P’. (c) Local coordinate system and detailed representation 

of forces acting over a generic point P’. (d) 2D representation of distributed forces acting 

over the virtual surfaces AB and CD. 

 

The principle of virtual work was used to derive the governing differential equations. 

Equation (23) defines the internal virtual work as: 

 I I
W f uδ δ= − ×   (23) 
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Where f I represents internal forces and δu displacements. The infinitesimal virtual work 

can be expanded as:  

 

( )

( )

( )

12 34

1 1

1 12 1 34

2 2

2 12 2 34

AB t CD t

I t P t P

N NAB CD

N P N P

N NAB CD

N P N P

d W F dl u F dl u

F dl u F dl u

F dl u F dl u

δ δ δ

δ δ

δ δ

′ ′

′ ′

′ ′

= − × × − × ×

+ × × − × ×

+ × × − × × 

  (24) 

Where forces and directions correspond to Figure 10-4. The internal virtual work can be 

computed by integrating Equation (24) over the virtual surfaces AB and CD (see Figure 

10-4d)  
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∫

∫
  (25) 

Whereas the forces Ft, FN1 and FN2 can be computed as: 
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( )

1 1

1 1

2 2

2 2
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N N

N N

N N

N N
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  (26) 

With x
K : stiffness factor in the x direction (not necessarily constant) and x

yzu : 

displacement of the point yzP′
 
in the direction x . Moving the integration line from AB 

and CD to mn (Figure 10-4b) simplifies Equation (25) as:  

 ( )1 1 2 2

1 2

n
N N N Nt t mn

I t N N
m

W u K u u K u u K u S dlδ δ δ δ= ∆ × × ∆ + ∆ × × ∆ + ∆ × × ∆ × ×∫   (27) 

With S being a correction factor for the change in the integration interval and xu∆  

computed as: 34 12

x x x
u u u∆ = − . 
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Finally, the integration domain in changed from [m,n] to [-1,1] to facilitate the use of 

numerical integration:  

 ( )1 1 2 2

1 2

1

12

N N N Nt tmn

I t N N

l S
W u K u u K u u K u dδ δ δ δ ζ

−

×
= ∆ × × ∆ + ∆ × × ∆ + ∆ × × ∆ ×∫   (28) 

 

The final form presented in Equation (28) is remarkable simple but the calculation of the 

relative displacements: ∆u
t
, ∆u

N1
 and ∆u

N2
 proved to be extremely challenging. These 

values depend upon the exact configuration of the virtual surfaces used to represent 

hydrogen bonded atoms and need to be computed based only on nodal displacements. 

Only the most fundamental relations will be presented in this document in an attempt to 

avoid overwhelming the reader with unnecessary details. The relative displacements can 

be computed as: 
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Where [B] are derivative matrices and {U} is the displacement vector containing 

displacement and rotations for the 24 d.o.f. related to the hydrogen bond element. As a 

result, Equation (28) could be rewriting as:  

 { } [ ] [ ]( ) { }
1 1 1 2 2 2
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12
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 
∫   (32) 

By doing so, it is possible to shift the problem from computing ∆u to obtaining the 

derivative matrices [B]. A matrix form was developed to compute the value of Bt, BN1 

and BN2 for each d.o.f.. The process needs to be repeated 24 times at each integration 

point to complete the B matrices. Equation (33) shows the matrix form previously 

mentioned for a generic degree of freedom xx: 
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Where [L12] and [L34] are shape function matrices for the beam element connecting node 

12 and 34 respectively; [λ12] and [λ34] are direction cosine matrices to interchange 

between global and local coordinates; [T12] and [T34] are expanded versions of [λ12] and 

[λ34]; [R12] and [R34] are rotation matrices; [λ 1] is the direction cosine matrix for the local 

system of coordinates; and finally, L12(ζ), L34(ζ), h12(ζ) and h34(ζ) are geometrical 

parameters that define the virtual hydrogen bond surfaces (depicted in green on Figure 

10-4a). Using the above mention relations and numeric integration, the internal virtual 

work could be rewritten as:  

 { } [ ]{ }
2

T mn

I

l S
W U M Uδ δ

×
=   (34) 

The correction parameter, S, can be computed as: 
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+
=   (35) 

Special attentions needs to be applied in the calculation of lAB, lCD and lmn since the 

integration paths connecting points AB, CD and mn are not necessarily straight lines. 

Finally, the internal force is reduced to:  

 { } [ ]{ }
2

mn

I

l S
f M U

×
=   (36) 

 

This final form provides a great deal of flexibility in defining all the parameters that 

describe the internal behavior of the hydrogen bond element. 

 

10.4 Modeling long-range interactions 

Non-bonded interactions can be divided into two classes; short and long range 

interactions. Being a strong dipole-dipole attraction, hydrogen bonds are classified as 
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short range interactions allowing a relatively easy conversion into a continuum form. On 

the other hand, Coulomb and van der Waals interaction are long range interactions [178]. 

These types of interactions are difficult to represent due to its non-local nature 

(interaction of pairs that are not necessary neighbors), which represents a challenge for 

regular finite element codes. 

Two solutions were implemented to account for these types of interactions. The first 

approach reduced the non-local behavior to an approximated local scheme. As a result, 

interactions between atoms that are not neighbors (from the chain point of view) are 

discarded. This approximation allows treating van der Walls and Coulomb interaction the 

same way hydrogen bonds are being considered. An additional element, directly related 

to the hydrogen bond element was used to such purposes. 

The second approach allows a better representation of non-local interactions by 

modifying the basic implementation of a finite element code. A homemade umbrella code 

was developed to run on top of a finite element simulation software. Nodal coordinates of 

each node in the model were registered before each integration step. Long range 

interactions based on current nodal coordinates were computed between all nodes in the 

model. The resultant force over each node was added to the force vector inside the finite 

element code. This approach was successfully tested in a in house version of FEAP [175] 

finite element simulation code available at the Computational Multi-Scale Materials 

Modeling Laboratory. A clear disadvantage of this approach is the need to stop the 

simulation each time the non-bonded interactions needed to be computed.  
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10.5 Proof of concept: combining elements 

Each individual element was extensively tested in their ability to fulfill the requirements 

imposed during development. Analytical solutions as well as simple computer 

simulations were used to verify the correct implementation in to the finite element code: 

FEAP [175]. This section provides a quantitative proof of concept simulation in an 

attempt to verify the potential usability of the finite element framework developed in this 

work. 

The analysis consists in three cellulose chains arranged side by side to form a hydrogen 

bonded plane. Molecular dynamic simulations as well as continuum modeling techniques 

were used to simulate a small pullout perturbation in the middle chain (0.5 Å 

displacement in the end node). The initial atomistic structure was probed to define the 

basic needed parameters for the continuum model (dimensions, hydrogen bond virtual 

surfaces). One beam element per glucose ring was used; the number of degrees of 

freedoms in the system decrease from 3798 for the atomistic simulation to 378 for the 

continuum model. The simulation time was reduced from 2 hours to less than 1 minute. 

Both systems share the same boundary conditions but whereas molecular dynamics 

involved explicit type computations, the continuum model was solved using an implicit 

scheme (stiffness matrix inversion). 

Figure 10-5 and Figure 10-6 show the simulation evolution in terms of the atomistic and 

continuum models. It is worth notice that the continuum elements were implemented to 

consider the initial configuration as the equilibrium position (minimum of potential 

energy). This implies that the continuum model will not modify its original configuration 

unless a perturbation is introduced in the simulation.  
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(a) (b) 

 
 

(c) (d) 

Figure 10-5 Pullout test using atomistic and continuum representation methods. Three 
dimensional view of: (a) Initial atomistic structure; (b) Initial continuum structure. Blue 

circles represent clamped boundary conditions, the black arrow indicates the direction of 

the pullout displacement; (c) Final atomistic structure; (d) Final continuum structure. 
Inter-chain hydrogen bonds represented in orange for both models. A displacement value 

of 0.5 Å was applied at the end of the center chain. 
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(a) (b) 

  
(c) (d) 

Figure 10-6 Pullout test using atomistic and continuum representation methods. Front 

view: Final atomistic (a) and continuum (b) structures. Detailed lateral view: Final 

atomistic (c) and continuum (d) structures. Inter-chain hydrogen bonds represented in 
orange for both models. A displacement value of 0.5 Å was applied at the end of the 

center chain. 
 

 

Figure 10-7 Pullout force as a function of the applied displacement for the continuum 

based model. Notice the apparent initially linear response followed by an unstable 
behavior. Linear fitting for the unstable region shown in black. 
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Figure 10-7 shows the force applied at the end of the middle chain as a function of the 

applied displacement for the continuum model. An initially linear response is observed 

followed by an unstable behavior. Additional analyses need to be perform to confirm the 

representation provided by the model. 

 

10.6 Conclusion 

A comprehensive solution to model cellulose nanocrystals from a continuum point of 

view was presented and discussed. It was shown that continuous theories can be applied 

to molecular systems under certain conditions but not without specific modifications. 

A 3D Euler Bernoulli beam element was specially developed and implemented to 

simulate the mechanical response of cellulose chains. Four parameters: EA, EI11, EI22 and 

GJ of a single chain were identified as key to feed the continuum model. No geometric or 

material approximations were needed to compute these parameters from atomistic 

simulations. 

Inter-chain hydrogen bonds were reduced to a continuum form using a specifically 

developed element. Variable virtual surfaces were used to map atomistic positions to the 

continuum element allowing a better representation of hydrogen bond interaction. Two 

possible solutions were presented to model van der Waals and Coulomb interactions. A 

local approach was preferred due to implementation advantages. 

Proof of concept simulations were conducted resulting in good conformational agreement 

between atomistic simulation and continuum modeling. The total simulation time was 

reduced by two orders of magnitude!  
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CHAPTER 11.  SUMMARY AND CONCLUSIONS 

11.1 Summary 

A multiscale framework has been developed to predict and describe the thermo-

mechanical behavior of cellulose nanocrystals using state-of-the-art computational tools 

capable of connecting atomistic based simulations to experiments through continuum 

based modeling techniques.  

First-principle density functional theory and molecular dynamic simulations were utilized 

at the atomistic level. Longstanding issues regarding the elastic and thermal expansion 

anisotropies for crystalline cellulose have been probed in terms of the single-crystal 

elasticity tensor and the thermal expansion tensor components. First-principles phonon 

calculations via Van der Waals density functionals as well as reverse non-equilibrium 

molecular dynamics simulations were used to gain a fundamental understanding of 

defect-free, crystalline cellulose thermo-mechanical properties. Entropy, enthalpy, 

constant pressure heat capacity, thermal expansion tensor, thermal conductivity 

coefficients, Young’s modulus, and Poisson’s ratio, were computed over a wide range of 

temperatures. A comprehensive study of the hydrogen bond structure that characterize 

crystalline cellulose has been conducted in an attempt to ascertain the roles of inter- and 

intra- molecular hydrogen bonds in the mechanical properties of CNCs.   
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Five different force fields/parameter sets were compared with experimental results and 

first-principles simulations in terms of their ability to predict the following properties: 

lattice parameters and angles, linear elasticity tensor and linear thermal expansion tensor. 

Continuum based modeling techniques were used to answer fundamental questions 

regarding the role of hydrogen bonding in the mechanical response of CNCs. A variety of 

finite element-based continuum models were specifically developed for cellulose chains 

and non-bonding interactions (van der Waals, Coulomb and hydrogen bonds). As a result, 

a complete multiscale framework capable of reproducing the behavior of cellulose 

nanocrystals and that can be extended to any material with similar characteristics such as 

other polysaccharides (e.g. α-chitin, amylose) has been successfully developed. 

 

11.2 Conclusion 

The key mechanisms that govern the thermo-mechanical response of CNCs were 

identified and investigated. First-principle density functional theory simulations provided 

groundbreaking information regarding the extreme anisotropies of crystalline cellulose. A 

clear correlation between the stiffness of the crystal and the different deformation 

mechanisms was noted. The largest Young’s modulus (206 GPa) was found to be aligned 

with the c-axis were covalent bonds govern the mechanical response of the crystal. 

Perpendicular to the cellulose chain axis, the b-direction shows the next greatest value for 

the Young modulus (98 GPa); this can be explained by the presence of the hydrogen 

bond network linking the cellulose chains. Finally a value for the Young modulus of only 

19 GPa was computed along the direction perpendicular to the previous two, where only 

weak van der Waals forces play a role in the mechanical response of the material. 
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Additionally, 3D contour surfaces and 2D polar plots of the Young’s Modulus and 

Poisson’s ratio variations with crystallographic orientations were used for the first time to 

explain the substantial variability in the literature experimental data on the Young’s 

modulus for cellulose, and to understand the Poisson’s effect in selected planes.   

The extreme anisotropies of the thermal expansion properties were also probed In terms 

of the van der Waals density functionals. It was found that ξ1 is extremely large 

(10.7×10
-5

 K
-1

 at 300K), whereas ξ2 (1.12×10
-5

 K
-1

 at 300K) and especially ξ3 

(0.42×10
-5

 K
-1

 at 300K) are quite small. The predicted results, such as the large ξ1 and 

C33, and the quick decrease of C11 with respect to temperature, are traceable from the 

weak van der Waals force between layers perpendicular to a-axis direction and the strong 

hydrogen bond along c-axis direction. These features of cellulose Iβ were observed 

quantitatively by the stretching force constants between atomic pairs. Thermal 

conductivity coefficients were calculated for the first time for crystalline cellulose 

showing results that were consistent with the thermal expansion coefficients and the 

bonding patterns in the structure. The thermal conductivity had its maximum along the 

chain direction (0.90 ± 0.06 W/mK), where the strongest bonds are present. As a result of 

this first analysis, a deep understanding of the role of covalent bonds, hydrogen bonds 

and van der Waals interactions in the thermo-mechanical response of CNCs was obtained. 

The ground was set to study the natural interaction between these mechanisms. 

An exhaustive analysis of crystalline cellulose thermo-mechanical response was 

conducted using molecular dynamics simulations focusing on defining the right set of 

parameters needed to advance the model towards a continuum representation. 

Comparison with QM-DFT results were used to asses many of the issues encountered 
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during the analysis. It is well known that molecular dynamics simulations depend heavily 

on the force field and the parameterization that is used to describe energetic interactions. 

Researchers have been performing molecular dynamics simulations of cellulose for years 

but still there is no force field specially developed for cellulose. Five different force 

fields/parameter sets were compared with experimental results and quantum mechanics 

simulations in terms of their ability to predict three different properties: lattice parameters, 

elastic constants and thermal expansion coefficients. Not surprisingly, none of the tested 

force fields yield results in perfect agreement with experimental data for all predicted 

properties. It is possible to select a particular force field that will give moderately good 

results for a given case but the same force field may fail miserably when used for some 

other case. This situation makes analyzing combined cases (i.e., mechanical response and 

thermal expansion) rather difficult. However, a specific property can be predicted quite 

accurately if an appropriate force field is chosen. For example, ReaxFF_CHO provides 

the most promising results regarding hydrogen bond configuration patterns showing the 

capability of interchanging hydrogen bond patterns on-the-fly and producing consistent 

results through the entire analysis. Nevertheless, the apparently good results show for 

hydrogen bonds patterns needs to be leveraged with relatively poor performance in 

predicting mechanical properties. On the other hand, ReaxFF_Glycine performed 

remarkably well in predicting longitudinal mechanical properties (compared with QM-

DFT) but failed in maintaining a stable hydrogen bond configuration. 

Hydrogen bond patterns were extensible study for both crystals and isolated chains in an 

initial and relaxed (minimum potential energy) atomic configuration. By keeping track of 

each hydrogen bond interaction inside the simulation cell it was possible to explain the 
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increase in mechanical properties produced by this interaction. Values of energy, force 

and stiffness for each hydrogen bond in the system were extracted an analyzed providing 

the fundamental information required to model this particular interaction in a continuum 

framework. 

A new approach was proposed to analyze the mechanical properties of single cellulose 

chains based on the linear relation between the changes in energy density and the half of 

the square of the compressive or tensile strains. This particular approach had the 

advantage that does not require a definition of stress or cross-sectional area solving what 

is known to materials scientists working with carbon nanotubes as the “Yakobson’s 

Paradox”. 

Finally, it was possible to directly correlate hydrogen bonds interactions with the 

longitudinal mechanical response of a single cellulose chain. A decrease in the axial 

stiffness of a single chain was observed when hydrogen bonds were deactivated showing 

the reinforcement capabilities of this particular interaction. Nevertheless, the effect 

measured was different for each parameterization. A limited amount of simulations were 

conducted to address the bending and torsional stiffness of single chains. The extreme 

deformations observed during minimization procedures suggest that the bending and 

torsional stiffness of the chain are extremely low compared to the axial stiffness and 

could be regarded as zero. 

As a result of the extensive analysis conducted with QM-DFT and MD simulation it was 

possible to develop a simplified continuum model to study the longitudinal mechanical 

response of isolated CNCs. Initially developed to analyze the role of inter-chain hydrogen 

bonding in the axial mechanical response of cellulose nanocrystals, the simplified model 
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proved to be more valuable. Size and shape effects were study using the theoretical 

model to predict the structural configuration that produced the biggest increase in the 

normalized stiffness increment (∆S). Row shaped crystals proved to be better suitable for 

withstand axial loading when compared to other shapes that contain the same number of 

cellulose chains.  

Finally, a comprehensive solution to model cellulose nanocrystals from a continuum 

point of view using FEM was presented and discussed. It was shown that continuous 

theories can be applied to molecular systems under certain conditions but not without 

specific modifications. A 3D Euler Bernoulli beam element was specially developed and 

implemented to simulate the mechanical response of cellulose chains with parameters 

(EA, EI11, EI22 and GJ) directly extracted from atomistic simulations. Inter-chain 

hydrogen bonds were reduced to a continuum form using a specifically developed 

element. Variable virtual surfaces were used to map atomistic positions to the continuum 

element allowing a better representation of hydrogen bond interaction. Two possible 

solutions were presented to model van der Waals and Coulomb interactions. A local 

model was preferred due to implementation advantages. A proof of concept simulations 

was introduced resulting in good conformational agreement between atomistic simulation 

and continuum modeling. The total simulation time was reduced by two orders of 

magnitude!  

Extensive analyses need to be conducted to demonstrate the validity of the FEM 

continuum model by comparison with molecular dynamics and quantum mechanics 

simulations. For the first time, length and time scales on the order of laboratory 

experiments could be reached allowing direct comparison between experimental setups 
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and computer simulations. Extension to include CNC – CNC interactions, water 

influence and CNC-matrix interaction are expected in the near future. 
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Appendix A Crystalline cellulose – Atomistic toolkit 

Crystalline Cellulose -Atomistic toolkit [69] is a NanoHUB [179] simulation tool capable 

of generating and running molecular dynamic simulations of cellulose nanocrystals 

(CNCs). 

LAMMPS [144] simulation code coupled with ReaxFF force field [141] provide the 

necessary simulations platform. C code capable of generating CNCs structures is used to 

populate the initial atomic positions based on Nishiyama et al. [9] reported coordinates. 

Different sizes and shapes, ranging from single chains to fully sized crystals, can be 

created with a simple but very powerful graphical user interface within the NanoHUB 

framework. 

  
(a) (b) 

Figure A 1 Crystalline Cellulose - Atomistic toolkit [69] graphical user interface. (a) 
Panel used to define a single chain structure and length. (b) Panel used to define the size 

(in number of unit cells) of crystalline models. 
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Figure A 1 shows the “Structure” panel that defines the model characteristics. Two basic 

structures are available for selection, a single chain (Figure A 1a) and an entire crystal 

(Figure A 1b). Single chains are divided in center or origin according to the 

conformational types defined by Nishiyama et al. [9]. The number of glucose ring present 

in the chain, that is, the length of the chain, is also defined by the user. 

Crystalline structures are constructed by repetition of the unit cell reported by Nishiyama 

et al. [9]. The repetition number for each lattice direction (a, b and c) is controlled by the 

user.  

 

 

(a) (b) 
Figure A 2 Crystalline Cellulose - Atomistic toolkit [69] graphical user interface. Results 

for: (a) 2x2x1 crystalline structure, (b) Single chain made of four glucose rings.  
 

Molecular dynamic simulations are performed in LAMMPS [144] The system is 

equilibrated in a NVT ensemble (constant number of atoms, volume and temperature).  

 



216 

 

Several simulation parameters can be defined by the user, such as: temperature, timestep, 

total simulation time, hydrogen bond cutoff distance and force field parameterization. 

JMOL viewer [180] provides state-of-the-art post-processing capabilities of atom 

trajectories as it can be observed in Figure A 2. XY-plots of temperature, potential energy, 

kinetic energy, total energy and hydrogen bonds energy are being automatically 

generated to help understanding the thermodynamic evolution of the simulated system 

(Figure A 3).  

 

 

Figure A 3 Superposition of XY-plots for temperature, potential energy, kinetic energy, 

total energy and hydrogen bonds energy to demonstrate the output capabilities of 
Crystalline Cellulose - Atomistic toolkit [69]. 
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Appendix B Anisotropy calculator - 3D visualization toolkit 

Anisotropy Calculator - 3D Visualization Toolkit [89] is a NanoHUB [179] visualization 

tool specifically developed to generate surface contour plots of Young’s modulus based 

on a material compliance matrix (Sij).  

 

Figure B 1 Anisotropy Calculator - 3D Visualization Toolkit [89] input panel. 
Components of the compliance matrix are introduced by the user ordered by row. The 

simulate bottom triggers the visualization module. 
 

Each point on the surface represents the magnitude of Young’s modulus in the direction 

of a vector from the origin of the surface (i.e., at the intersection of the 1, 2, and 3 axes in 

the interior of the surface) to a given point on the surface. The shape of this surface is 

indicative of the anisotropy of the analyzed material. Additionally, color contours of 
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Young modulus values help identifying variations within a particular direction. For 

instance, the computed Young modulus surface for a linearly elastic isotropic material 

would be a perfect sphere with the same value (surface color) in any direction. 

Figure B 1 shows the input panel where the user introduces the components of the 

compliance matrix for the material under analysis. Once the simulate bottom is pressed, 

the tool generates 3d contour plot to be manipulated in real time, as shown in Figure B 2a. 

A Tecplot data file (.dat) is also available for downloading (Figure B 2b). 

 

(a) (b) 
Figure B 2 Visualization options: (a) real time 3D manipulation capability provided by 

the tool. (b) Post-processing capabilities provided by the Tecplot data file. 
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Appendix C Modified version of LAMMPS 

LAMMPS (Large-scale Atomic/Molecular Massively Parallel Simulator) [131] is a 

classical molecular dynamics simulation code capable of modeling a wide range of 

materials from biomolecules and polymers to solid state metals and coarse-grained or 

mesoscopic systems. It can be used to model atoms or, more generally, as a parallel 

particle simulator at the atomic, meso, or continuum scale [144]. LAMMPS can run on 

single processors desktop machines or in high performance parallel computers. It was 

designed in C/C++ to be easy to modify or extend with new functionalities and it is 

distributed as an open source code under the terms of the GPL.  

Several modifications were introduced in the original LAMMPS code. A new user 

interface was developed along with several futures for visualization and post-processing, 

increasing the productivity of the software. All the implementations were done using 

Message Passing Interface (MPI) retaining the ability of the original code to run in large 

parallel machines. 

The first modification allows to change atomic coordinates between simulation steps 

directly from memory direction (RAM addresses). The user is now capable of 

introducing a deformation map directly into the simulation model, using LAMMPS 

powerful minimization capabilities to run molecular mechanics studies. The 

implementation is based on an umbrella code that manages boundary conditions and calls 

LAMMPS to perform energy minimizations [144]. This capability can be used with any 

of the force fields available in LAMMPS.  
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The second modification was applied to the ReaxFF force field implementation inside 

LAMMPS. All the computed parameters for the Hydrogen bonds including: donor and 

acceptor atoms, distance between donor and acceptor, hydrogen bond angle, interaction 

energy and bond order, are extracted directly from the force field source files during each 

time step in the simulation. This guarantees that the data being analyzed is exactly the 

one that is being computed inside the simulation code.  

Finally, the modified version of LAMMPS is capable of generating Tecplot data files and 

layouts for: atom trajectories, hydrogen bond maps and energy curves, facilitating the 

post-processing of the results.  
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