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ABSTRACT 

Butz, Kent D. Ph.D., Purdue University, December 2013. Numerical Techniques for the 

Noninvasive Assessment of Material Properties and Stresses in Soft Biomaterials. Major 

Professor: Dr. Eric A. Nauman, School of Mechanical Engineering. 

The noninvasive measurement of finite displacements and strains in biomaterials by 

magnetic resonance imaging (MRI) may be shown to enable mathematical estimates of 

stress distributions and material properties within structures of the body such as articular 

cartilage or the intervertebral disc. Such methods will allow for non-contact and patient-

specific modeling in a manner not currently possible with traditional mechanical testing 

or finite element techniques. Therefore, the objective of this thesis was to develop 

computational methods incorporating imaging-based measures of deformation, 

composition, and local microstructure to permit nondestructive analysis of a range of 

complex biomechanical systems. 

Finite strain-based models were developed and applied towards the analysis of several 

biomaterial systems of increasing material complexity. First, a model for the analysis of a 

homogeneous, single material system was created and applied to juvenile porcine 

cartilage for both linear and nonlinear material assumptions under plane stress conditions. 

Through this study, the viability of estimating stresses within a homogeneous material 

system solely from MRI-based displacement and strain measures could be established. 

The model was then expanded to encompass single-plane, multi-region structures and 

applied towards the analysis of regional stresses within a rabbit intervertebral disc 

degeneration model. This model incorporated imaging-based methods to estimate 

heterogeneous properties within the disc structure based upon local biochemical 

composition, and showed that the degeneration state of a tissue system could effectively 



 

xiv 

be visualized through the use of finite strain-based modeling. A multi-constituent 

mixture-based material model was next implemented in the analysis of agarose gel 

constructs. Material parameter estimates from this model were found to agree with those 

determined by an unconfined compression validation model, establishing physical 

relevance of noninvasive parameter estimates produced by the models. Finally, the 

mixture-based material model was applied towards an in situ analysis of the human 

intervertebral disc. 

The models implemented here are the first such applications to use MRI-based measures 

of deformation, composition, and local microstructure to provide a nondestructive, finite 

strain-based method of characterizing stress and material properties in cartilage and 

intervertebral discs during applied loading.  



 

1 

CHAPTER 1. INTRODUCTION 

 

Characterization of stress and strain patterns in load-bearing tissues such as articular 

cartilage or intervertebral discs is key to functionally evaluate the progression of tissue 

degeneration and treatment strategies for diseases such as osteoarthritis, a disease 

affecting 27 million people in the United States [1]. Moreover, knowledge of the 

structure-function relationships in soft tissue provides a more comprehensive 

understanding of tissue integrity during degeneration and repair. By characterizing the 

properties of articular joint tissues and stress fields arising from applied loads, it may be 

further possible to predict failure or identify early markers of disease long before the joint 

otherwise shows signs of deterioration or declines in performance [2, 3]. 

In the field of biomechanics, computational models are a powerful tool with which to 

evaluate and predict physical phenomena that cannot otherwise be directly observed. 

Such models commonly rely upon physical testing of material properties for the various 

constituents of the system of interest in order to provide a means of calibrating or 

verifying the predictions of the model [4-6]. While these methods have contributed 

significantly towards the understanding of general mechanical characteristics of a wide 

variety of biomaterials, such information does not necessarily describe patient-specific 

behavior. Maturity, environment, degeneration, and disease are just some of the factors 

that may influence the characteristics of tissue from one individual to the next [7, 8]. 

Currently there is a significant gap in the ability to fully and noninvasively characterize 

the mechanical response and material properties of tissue in vivo. Therefore, the objective 

of this work is to develop a noninvasive means for characterizing stresses and material 

properties in a variety of biological tissue types subject to degeneration, such as articular 

cartilage and intervertebral discs. Towards this goal, MRI-based computational 
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techniques are proposed in this work such that material properties and mechanical 

stresses may be accurately estimated within any biomaterial for which displacements are 

directly measured via MRI when subjected to known loading conditions. A 

computational framework was developed by addressing four specific aims: 

1. To establish and validate a method for estimating stresses and material properties 

for biological structures consisting of a single homogeneous material. This model 

will be applied towards the analysis of juvenile porcine knee cartilage using strain 

fields obtained via displacement-encoded MRI [9]. An optimal material model 

will be identified and the computational model will be verified using strain and 

stress fields generated by finite element simulation. 

2. To develop a multi-material model for biological systems with heterogeneous and 

anisotropic material properties. This model will be applied towards the analysis of 

rabbit intervertebral discs to determine regional stresses and material properties 

that arise within the nucleus pulposus and annulus fibrosus during axial 

compression. 

3. To incorporate and validate mixture theory material models in the context of 

noninvasive biomaterial analysis. Application of the model will be the analysis of 

agarose gels of known composition. Properties of the agarose gels will be 

experimentally determined and used as verification of the parameter estimates 

computed by the models. 

4. To apply a mixture theory-based model to the analysis of human intervertebral 

discs. This model will describe the complex behavior of the disc under axial 

loading conditions, including region-dependent properties and the interactions 

between both solid and fluid constituents within the system. Displacement and 

diffusion data obtained via MRI for human intervertebral disc samples will be 

used as inputs for the computational analysis. 
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CHAPTER 2. BACKGROUND 

2.1.   Anatomy & Physiology 

In the development of the modeling techniques described in this work, two primary 

biological systems will be examined, specifically articular cartilage and intervertebral 

discs. In this section, the anatomy of each of these systems will be described in detail, 

with specific attention paid to how the various components contribute to the mechanical 

behavior of their respective systems. 

2.1.1.   Articular Cartilage Anatomy 

Articular cartilage is a complex material with behavior dominated by the interactions of 

cross-linked collagen networks, proteoglycans, and interstitial fluid. The solid phase is 

largely comprised of type II collagen, which accounts for 15-22% of the wet weight of 

cartilage. Individual collagen fibers within the cartilage system form a series of 

intermolecular and intramolecular covalent cross-links that collectively make up a 

cohesive network. Though relatively weak in compression, collagen fibers are quite 

strong in tension and provide a high degree of tensile strength in the tissue [10].  

The orientation of the collagen network varies significantly from the articular surface to 

the base of the cartilage, effectively segmenting the system into three primary zones: the 

superficial tangential, middle, and deep zone (Figure 2.1) [11]. The superficial tangential 

zone is characterized by a region of collagen fibrils running parallel to the articular 

surface and may be observed in the top 10-20% of the cartilage body. This region 

contains the highest collagen content of the three, with a concentration approximately 

15% higher than in lower regions. Below this, and making up between 40-60% of the 

cartilage, is the middle zone. Here, the collagen fibrils are slightly larger than in the 
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superficial tangential zone and are arranged in a mostly random fashion with an 

orientation slightly trending towards a 45-degree angle. Near the base of the cartilage one 

finds the deep zone. The deep zone makes up the final 30% of the cartilage depth and is 

characterized by a roughly woven collagen network oriented perpendicular to the surface. 

Beneath this zone, the collagen fibrils insert into a shallow region of calcified cartilage 

attached to the subchondral bone. The organization of these zones leads to a complex, 

depth-dependent behavior with properties highly influenced by the respective fibril 

orientations of the composite layers [10, 12, 13]. 

 

 

Figure 2.1: Articular cartilage may be separated into three distinct zones (superficial 

tangential, middle, and deep) distinguished by the organization of the collagen network. 

 

After collagen, the next most prevalent component of the cartilage solid phase is 

proteoglycans [14]. Proteoglycans are macromolecules with a protein core covalently 

bound to several glycosaminoglycan (GAG) chains. Whereas the collagen network 

provides tensile strength, the proteoglycan network provides a strong resistance to 

compression due to both its bulk strength and to osmotic pressure and electrostatic 



 

5 

repulsion that arise between its fixed negative charges [15]. In addition to its load-bearing 

qualities, proteoglycan molecules have a direct influence on the permeability of the 

matrix and thus contribute to the regulation of fluid flow in the structure [16, 17]. The 

prevalence of proteoglycans in the cartilage is observed to be inversely related to that of 

collagen as one progresses through the structural zones, with the highest proteoglycans 

content observed in the middle and deep zones and lowest through the superficial 

tangential zone [10]. 

The remaining bulk of articular cartilage is predominantly interstitial water, accounting 

for 60-85% of the wet weight of articular cartilage. Water content has been found to be 

highest near the surface at approximately 80% total wet weight of the structure, and 

decreases to approximately 65% total wet weight in the deep zone [10]. The water 

associated with articular cartilage serves many functions. While a portion of the water is 

held by the matrix and contributes to osmotic pressure highly resistant to compression, 

unbound water within the structure may be exuded through the surface as the cartilage is 

compressed, only to be replaced following unloading [18]. Thus, regular loading of the 

cartilage provides an inflow source of fresh fluid and nutrients for the structure. In 

describing the mechanics of cartilage, an ideal model will ultimately account for both the 

bound fluid as well as the free water which flows through the structure [10]. 

When cartilage experiences degeneration, a loss in proteoglycan levels is observed 

followed by fluid loss and dehydration [19]. The site of first damage within the cartilage 

may differ between various forms of disease. For example, in the case of osteoarthritis 

degeneration generally occurs first near the cartilage surface, while early rheumatoid 

arthritis may incite degradation within the deep zone [11, 20]. The smaller joints of the 

hands typically see the first signs of arthritic degeneration, followed by the knees and 

other larger joints [21-24].  In all cases, damage to the structure eventually spreads 

throughout the entire cartilage body accompanied by severe degradation of the local 

collagen network [11]. The end result of this degeneration is a severely compromised 

structure causing pain and weakness when subjected to otherwise normal loading [25]. 
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2.1.2.   Intervertebral Disc Anatomy 

The intervertebral disc serves primarily to provide a degree of mobility to the spine while 

also transferring compressive loads and providing a means for absorbing the kinds of 

impacts to the spine normal in an active individual [26]. The intervertebral disc and 

articular cartilage, though different in both structure and function, share many of the 

same basic structural components (collagen, proteoglycans, internal fluid) described in 

the previous section and therefore have some mechanical aspects in common. 

The central region of the intervertebral disc is occupied by the nucleus pulposus. The 

nucleus pulposus is a viscoelastic gel-like structure consisting of proteoglycans and fluid 

surrounding a randomized network of small collagen fibrils (Figure 2.2). When subjected 

to external loading by the body, swelled proteoglycans act in conjunction with fluid 

trapped by the matrix, resulting in the development of an internal pressure capable of 

supporting large compressive loads [8, 27, 28].  

Surrounding the nucleus pulposus is the annulus fibrosus, which principally acts to 

support the nucleus as it expands under compressive loading and anchors the disc to the 

cartilaginous endplates that cap the top and bottom of the disc [26]. The annulus fibrosus 

consists of multiple concentric layers of lamellae with highly organized collagen fibrils 

oriented at angles of approximately ±65 degrees from vertical, with the fibril angle 

alternating in successive layers of the annulus [27]. This arrangement of collagen fibrils 

within the annulus takes advantage of collagen’s natural strength in tension [29]. As the 

disc is compressed in the axial direction, the nucleus and annulus expand in the radial 

direction under the applied load. This expansion places the collagen fibrils of the annulus 

under a tensile load which provides the structural strength necessary to withstand the 

mounting internal pressure and contain the disc [8, 27]. 

Water content of the disc varies with region and health. In the nucleus, for example, 

water may constitute as much as 80-90% of the volume of a healthy disc while occupying 

60-70% of the annulus. This volume will fluctuate throughout the course of a day, as 
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loading cycles push water out of the structure only to be replenished later through 

unloading and rest [8, 27]. 

 

 

Figure 2.2: The intervertebral disc consists of a central nucleus pulposus surrounded by 

the annulus fibrosus. The nucleus pulposus is a gel-like structure consisting of 

proteoglycans and fluid surrounding a randomized network of small collagen fibers. The 

annulus is a highly organized structure of collagen fibers arranged in several layers of 

concentric lamellae. 

 

Degeneration of intervertebral discs through damage or disease is a painful process that 

has a significant transformative effect upon the internal structure and mechanics of the 

disc [30]. Among the effects that may occur within a degenerated disc are a loss of water 

and proteoglycan content, leading to loss of disc height, dehydrated tissue and an 

inability to maintain internal pressures or adequately support external loading [8, 31]. As 

the degenerative process continues, the integrity of the structure becomes severely 

compromised and distinctions between the regions of nucleus and annulus become less 

clear [32]. Meanwhile, the annulus is forced to bear a higher proportion of the load as 

nucleus pressure decreases [33, 34]. Tearing of the disc tissue may develop, and damage 

to surrounding areas of the spine may occur as they become subjected to abnormal and 

excessive loading patterns [7, 33].  
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2.2.   Biomechanical Modeling Techniques 

A number of numerical-based methods have been developed in recent years with the goal 

of more fully describing and characterizing the mechanics of soft tissue interactions in 

load bearing joints. While computer simulations have typically dominated the field, other 

methods have been developed recently to model behavior using imaging techniques in 

combination with numerical methods to describe the deformation of tissue. To date, 

however, there has been a dearth of alternatives to finite element simulations for 

describing stresses within a load-bearing tissue or describing behavior beyond that 

characterized by computed strains. 

Finite element analysis has long been a popular means of estimating stress and other 

physical phenomena in biomechanics. While it was common in years past to use an 

idealized geometry approximating a joint or system, if proper care is not taken these 

models have the risk of underestimating joint stresses due to the fact that perfect 

conformation between mating surfaces rarely occurs naturally within the body [35, 36]. 

In recent years image-based geometries have become the dominant basis for modeling. 

By this method, computerized tomography (CT) or magnetic resonance imaging (MRI) is 

used to create a digital replica of a given joint geometry for use in finite element or 

mathematical analyses of the loading or contact response, thus providing a patient-

specific representation of the anatomy [37-47]. Although typically used in the 

development of geometry for articular joints, MRI-based geometries have also been used 

in creating geometries of soft biological systems such as the brain [48, 49]. In some 

cases, additional data obtained from MRI may be used to provide information regarding 

the system’s internal structure in the development of finite element models [50-52]. 

A variety of constitutive models may be used in such modeling of joint mechanics. A 

linear elastic model, for example, provides a simple and straightforward relation between 

stress, strain, and material properties. Nonlinear models, in contrast, are more complex, 

yet far more descriptive of biomaterial behavior [53, 54]. However, while the 

measurement of tissue mechanics ex vivo for compression/tension [55, 56], shear [57], or 
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poroelasticity [58] test conditions are common for determining relevant material 

parameters for these models, the results may not provide an accurate description of a 

living tissue’s response under normal loading conditions within an intact joint. 

Consequently, a given simulation may pair a highly accurate and specific geometry with 

a very broad estimate of material properties in order to model behavior [59]. Such 

methods may provide an estimate of joint response within a statistical range found in 

normal individuals, but have little application to diagnose or monitor individual patients.  

In the field of cartilage mechanics, biphasic and triphasic mixture theories are perhaps the 

most widely accepted models of mechanical behavior. The traditional biphasic model 

considers the loading response of cartilage to be the net result of the mechanical 

contributions of separate fluid and solid constituents [60]. In these models, the solid 

constituent is considered as the collagen/proteoglycan/bound water matrix and is 

typically assumed to behave as an incompressible, porous, hyperelastic solid. Frictional 

drag resulting from interstitial flow of unbound fluid is assumed to be a dominant factor 

contributing to a tissue’s resistance to compression [10, 14, 61]. 

The triphasic model is an extension of the biphasic model which takes into account the 

effects of charge within the tissue [62, 63]. This model is based on the concept that there 

is an interaction between fixed charges associated with proteoglycan content and the ions 

within the interstitial fluid that can affect fluid transport and diffusion throughout the 

interstitium [64, 65]. Regions with a higher fixed charge density are observed to be more 

resistant to compression, thus resulting in changes to mechanical behavior [61]. Although 

differences may be observed between the more complex, charge-inclusive models and the 

simpler biphasic model over an extended period (10 or more seconds), within short 

loading cycles typical of gait (~1 second) the two models produce very similar results 

[65]. 

While the preceding techniques use mathematical models to describe the mechanics of 

the cartilage system, certain imaging-based methods have been used in recent years to 
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quantify deformations and mechanical properties of tissue noninvasively. This includes 

the use of ultrasound waves and a technique known as magnetic resonance elastography 

[66-68]. Both of these methods rely on the imaging of transient shear waves to obtain a 

measure of the elastic response of an object and thus determine bulk material properties. 

While knowledge of the elastic behavior of a material can be valuable, little additional 

knowledge of the stresses of a system can be directly obtained by these methods. 

Alternatively, MR tagging techniques may be used to directly track the deformation of a 

tissue throughout its volume and has found use in cardiovascular as well as cartilage 

systems [69, 70]. 

An alternative method whereby the deformation field of a biomaterial may be obtained is 

referred to as hyperelastic warping. In this method, differences in image intensities 

between a template (reference) image and a target (loaded) image are used to generate a 

body force that deforms a finite element representation of the template such that it aligns 

with the target. To arrive at the final result, an optimization technique is used such that 

the strain energy function of the model is minimized [71]. While noninvasive, the 

technique does require some knowledge or estimate of the material properties of the 

system being analyzed, obtained either experimentally or from the literature [72]. 

Applications of this technique have included noninvasive measurement of strains in 

materials as diverse as ligament and the left ventricle [73, 74]. 

Direct measurement of displacements within tissue has been demonstrated recently using 

displacement-encoded magnetic resonance imaging (MRI). Displacement-encoded MRI 

is a method that calculates the displacement of each pixel within an image set during low 

frequency periodic motion. The technique has been used to noninvasively determine 

deformations across a range of applications, including the heart [75], brain [76], spine 

[32], and joint cartilage [77-79]. Displacements calculated by this technique may then be 

used to directly calculate strain fields in the material associated with the deformation.  
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Despite the number of models and techniques that have been employed in soft tissue 

biomechanics, there has been a clear and significant gap in the ability to fully determine 

patient-specific, noninvasive estimates of soft tissue mechanics in vivo. In this work, a 

modeling technique for simultaneously evaluating stresses and estimating material 

properties is developed utilizing displacement fields obtained by displacement-encoded 

MRI. Based on measured deformations in cartilage or other tissue, it is proposed that 

stress patterns and intrinsic properties may be estimated through computational analysis. 
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CHAPTER 3. A ONE REGION, HOMOGENEOUS MODEL FOR ESTIMATION OF 

STRESSES AND MATERIAL PROPERTIES IN PORCINE TIBIOFEMORAL 

CARTILAGE FOR THREE CONSTITUTIVE MODELS 

3.1. Introduction 

In this chapter, the feasibility of a new and computationally efficient technique is 

demonstrated incorporating MRI-based deformations with mathematical modeling to 

noninvasively evaluate the mechanical behavior of biological tissues and materials. These 

methods were applied to a juvenile porcine tibiofemoral model, which was assumed to 

behave as a single, homogeneous material region due to its developing state. Three 

constitutive (i.e. linear Hookean, and nonlinear Neo-Hookean and Mooney-Rivlin) 

relations with known loading conditions and MRI-based displacement measures were 

employed to estimate stress patterns and material properties in the articular cartilage of 

these joints. 

3.2. Methods  

3.2.1. Magnetic Resonance Imaging 

Two-dimensional in situ displacements and strains were previously determined in 

juvenile porcine tibiofemoral joints (n=7) using displacement-encoding with stimulated 

echoes (DENSE) and a fast spin echo (FSE) [77]. The porcine legs (approximately 4 

weeks old) were obtained freshly frozen from a local abattoir and remained frozen until 

use. Briefly, the intact joints were intermittently and cyclically compressed at one times 

body weight (78 N; 0.3 s and 1.2 s ramp and total loading times, respectively) with a 

custom loading apparatus inside a 7.0 Tesla MRI system (Bruker GMBH, Ettlingen, 

Germany) until a steady-state load-displacement response was achieved. Loading was 
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applied to the joints via a double-acting pneumatic cylinder, computer-controlled by an 

electro-pneumatics system. A steady-state load-displacement response was considered to 

have been reached when the linearly time-regressed slope of pneumatic cylinder 

displacement per 10 second cycle fell below a criterion of half the spatial resolution 

divided by total imaging time, or 0.0163 µm/s with a total imaging time of 128 minutes 

[80]. For each joint, displacement-encoded phase data from a single sagittal slice through 

the medial tibiofemoral joint was acquired (3000 ms repetition time, 21.6 ms echo time, 

256 × 256 pixel matrix size, 64 × 64 mm
2
 field of view, 250 µm spatial resolution, 1.5 

mm slice thickness). Displacements in the loading (y) and transverse (x) directions within 

the femoral and tibial cartilage were calculated and smoothed for strain estimation using 

MATLAB software (The Mathworks, Natick, MA) [81]. Additionally, adjacent sagittal 

slices were imaged using conventional MRI (i.e. multi-slice two-dimensional FSE 

acquisitions) to record the anatomy of each joint and estimate the area of contact between 

the tibial and femoral cartilage. 

3.2.2. Computational Analysis of an Intact Joint 

Mathematical models of femoral and tibial cartilage representing a range of constitutive 

relations were developed and implemented in MATLAB. In these models, each pixel in 

the cartilage region of interest was treated as a separate isotropic unit cell. Stress values 

were computed at each pixel using stress-strain relations and strain data obtained from 

MRI. 

For this study, stresses were analyzed in a cross section through the medial condyle. The 

78 N load at the cartilage interface was assumed to act in proportion to the ratio of the 

contact area of the medial condyle to the overall contact area of the joint, as estimated by 

anatomical MRI. 

Considering the rapid (0.3 s) loading of the joint and the high water content of the 

cartilage, nearly incompressible behavior (i.e. Poisson’s ratio of 0.49) was assumed [82]. 

In addition, a plane stress assumption was used for all models. This assumption allows 
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for deformation in the z-direction, a necessity to maintain incompressibility under 

loading. 

A linearly elastic material was considered first in this analysis. Stresses were related to 

strain data in the x, y, and xy-directions by Hooke’s Law relations as follows: 

    
 

      
          , (2.1) 

    
 

      
          , (2.2) 

    
 

      
    , (2.3) 

where ν is Poisson’s ratio, E is Young’s Modulus, and Exx, Eyy, and Exy are the strains in 

the x-, y-, and xy-directions, respectively. 

An initial Young’s Modulus was estimated and stresses were calculated at each unit cell. 

To determine whether this estimate was appropriate, the predicted load at the joint 

contact region was compared to the actual (78 N) value of the applied load. Here the 

region of contact was defined as the locations along the joint surface where strains 

normal to the surface curvature were negative (Figure 3.1). The forces along this region 

were estimated by first finding the component of stress acting in the loading direction at 

each pixel along the joint surface. The corresponding stress values were multiplied by the 

cross-sectional area of the unit cell to determine the force acting in the loading direction. 

The force values were then summed and compared to the known applied load. The value 

of Young’s Modulus was subsequently iterated until the error between calculated surface 

forces and the known load input fell to within a value of 0.1% of the applied load. 
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Figure 3.1: Lines of contact along each joint surface were defined as the locations of 

negative strain normal to the surface curvature. In this representative image, the lines of 

contact for the femur and tibia are shown by the blue and yellow lines, respectively. 

These points were then used by the models to compare the calculated boundary force to 

the known applied load. Material constants were iterated until the boundary condition 

was satisfied to within 0.1% of the load value [9]. 

 

Second, an incompressible Neo-Hookean model was considered. Here, the strain energy 

density function was given by 

  
  

 
                        , (2.4) 

where I1 is the first invariant of the right Cauchy-Green tensor, C, J is the determinant of 

the deformation gradient, c1 and β are material parameters, and p represents a hydrostatic 
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pressure term included to enforce incompressibility. The Second Piola-Kirchoff stress 

tensor, S, with the identity tensor, I, was then determined by 

                  

 
        . (2.5) 

Imposing the incompressibility assumption and neglecting the stress in the z-direction, 

consistent with the plane stress assumption, yields a relationship for the hydrostatic 

pressure: 

  
            

  
  

             
. (2.6) 

An initial value of c1 was estimated and iterated as before, until the error between 

estimated and known applied load fell to within 0.1%. 

The final model examined the case of an incompressible Mooney-Rivlin hyperelastic 

solid, given as 

                          , (2.7) 

where c1 and c2 are material parameters, I2 is the second invariant of the Cauchy-Green 

tensor, and p is hydrostatic pressure. The Second Piola-Kirchoff stress was calculated as 

                     
 

 
          . (2.8) 

Neo-Hookean solids are a specialized case of the Mooney-Rivlin model, and as such the 

same assumptions used in the incompressible Neo-Hookean model were repeated (i.e. a 

plane stress model with isotropic behavior). With stress in the z-direction assumed to be 

zero, the term for hydrostatic pressure can be written in terms of the parameters c1 and c2 

as 
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. (2.9) 

An initial estimate for c1 was determined from the value estimated in the incompressible 

Neo-Hookean case. This parameter was then varied across a range of ±10% of the initial 

estimate of c1, with a value of c2 iterated for each increment of c1. The combination of c1 

and c2 that resulted in a minimum error between calculated and known load was then 

used as estimates for the next iteration. For each subsequent iteration, the range and 

increment step was decreased to 10% that of the previous loop. This procedure was done 

to consecutively smaller ranges until the desired error of 0.1% was reached. Further, for 

each model, First Piola-Kirchoff stresses, P, were calculated and plotted in accordance to 

the relation P=FS, where F is the deformation gradient and S is the Second Piola-

Kirchoff stress tensor. 

For each material parameter, the mean across all joints and standard error of the mean 

was calculated. Shear forces along the surface of the articular region were also calculated 

and summed for each model. Because a healthy joint typically exhibits a low coefficient 

of friction at the surface to enable smooth articulation, we reasoned that a calculated 

lower surface shear implies a more realistic and physiologically-relevant model. 

Consequently, the shear forces calculated along the contact surface were used as a 

method to directly compare relations. 

3.2.3. Model Verification by Finite Element Simulation 

The mathematical formulations implemented in the finite strain-based model were 

verified by comparison to a finite element simulation of a material with known stress and 

strain fields. Three models were created, representing material behavior governed by 

each of the aforementioned constitutive relations. A simple two-dimensional block 

measuring 5 cm square was created using the COMSOL Multiphysics software package 

(3.2 COMSOL AB, Stockholm, Sweden). Plane stress models with rectangular mesh 

elements arranged in a 256×256 grid were used, resulting in 65,536 total mesh elements 
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and 526,338 degrees of freedom. The first model simulated material behavior in 

accordance with linearly elastic relations, with a Young’s modulus of 12.5 MPa and 

Poisson’s ratio of 0.49. The second model used Neo-Hookean constitutive relations and a 

material parameter, c1, of 12.5 MPa. The final model was a Mooney-Rivlin model with 

material parameters of 12.5 MPa for c1, and 3.5 GPa for c2. Homogeneous material 

assumptions were used for each model. 

In each model, the bottom boundary of the block was subjected to a distributed load of 39 

N in the y-direction, and 7.8 N in the x-direction, similar to values estimated from in situ 

cartilage loading. Constraints in the x- and y-directions were imposed on the top 

boundary of the block to restrict motion. After solutions for the simulation models were 

generated, the resulting strain fields and compressive load in the y-direction were used as 

inputs for the mathematical models. Error between the calculated stresses and those 

generated by finite element analysis was subsequently calculated as a means of 

evaluating mathematical error in the finite strain-based model. For each analysis, the root 

mean squared error was calculated between estimated and known stress fields, and was 

further normalized by the maximum value of the known stress field. 

3.3.   Results 

3.3.1. Magnetic Resonance Imaging 

Based on the proportion of medial to total contact area determined by conventional MRI, 

the load applied to the medial compartment of each joint varied among samples (Table 

3.1). Displacements from DENSE-FSE and computed strain patterns were heterogeneous 

(Figure 3.2). 
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Table 3.1: The fraction of total load applied to the medial condyle in this analysis was 

estimated for each joint as the ratio of medial contact area to total contact area of the 

joint, as determined by conventional MRI. The total load applied to each joint was 78 N. 

Joint 
Medial Contact Area 

(mm2) 

Total Contact Area 

(mm2) 

Est. Medial Load 

(N) 

1 16.50 44.63 28.84 

2 29.25 54.94 41.53 

3 11.63 32.63 27.79 

4 16.13 37.50 33.54 

5 15.19 30.00 39.49 

6 19.31 43.88 34.33 

7 21.19 46.88 35.26 

ALL 18.46 ± 2.13 41.49 ± 3.28 34.40 ± 1.91 
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Figure 3.2: Displacements determined by displacement-encoded MRI (dX and dY) and 

the corresponding heterogeneous strain fields were used as inputs to the models. In this 

representative image, areas of high tensile strain in the x-direction and high compressive 

strain in the y-direction can be seen in the central region of the joint [9]. 

3.3.2. Computational Analysis of an Intact Joint 

As expected, the models produced non-uniform stress distributions throughout the 

tibiofemoral cartilage. The calculated distributions for the linear elastic, Neo-Hookean, 

and Mooney-Rivlin relations showed similar stress patterns but differed in magnitude 

(Figure 3.3). In these models, compressive stresses developed in the direction of loading, 

with a region of positive stress in the loading direction at the cartilage-cartilage interface. 

A second tensile-stress region in the loading direction was also observed at the bone-

cartilage interface. 

The lowest mean surface shear values were found with the application of linear Hookean 

relations, followed closely by the Neo-Hookean and Mooney-Rivlin models. The mean 

Young’s Modulus for the seven joints was estimated by the linear model as 5.83 ± 2.44 

MPa. Material constants for nonlinear relations varied for the femur and tibia (Table 3.2). 
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Figure 3.3: Heterogeneous stress fields were estimated and plotted for each 

computational model. For the joint in this representative image, the linear model 

estimated Young’s Modulus values of 3.54 MPa and 4.21 MPa for the femur and tibia, 

respectively. Similarly, the Neo-Hookean model estimated c1 parameter values of 0.27 

MPa and 0.27 MPa at the femur and tibia. The Mooney-Rivlin model estimated c1 

parameter values of 0.25 MPa and 0.25 MPa, and c2 values of 15.52 kPa and 5.00 kPa, 

for the femur and tibia, respectively. Stresses estimated by modeling the joint with 

nonlinear Neo-Hookean relations are similar in distribution to that of the linear case, but 

exhibit lower peak stresses. Although stresses produced by the model developed with 

Mooney-Rivlin relations showed similar distributions to the other models in the loading 

and transverse directions, shear stresses were substantially lower throughout the cartilage 

regions [9]. 
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Table 3.2: Forces and model parameters (mean ± standard error of the mean) were 

calculated at the joint surface for each set of constitutive relations. Here, surface shear 

force was the calculated force along the contact surface tangential to the joint curvature. 

  Linear Neo-Hookean Mooney-Rivlin 

Total Surface 

Shear Force (N) 

Femur 13.25 ± 7.67 9.90 ± 5.08 12.21 ± 1.25 

Tibia 8.46 ± 6.58 12.15 ± 4.69 15.71 ± 3.15 

Mean 10.85 ± 6.93 11.03 ± 4.72 13.96 ± 2.40 

E (MPa) 

Femur 5.99 ± 2.67       

Tibia 5.66 ± 2.41       

Mean 5.83 ± 2.44       

c1 (MPa) 

Femur    0.68 ± 0.40 0.66 ± 0.42 

Tibia    0.66 ± 0.42 0.67 ± 0.46 

Mean    0.67 ± 0.39 0.66 ± 0.42 

c2 (MPa) 

Femur       0.32 ± 0.29 

Tibia       0.18 ± 0.14 

Mean       0.25 ± 0.22 

 

3.3.3. Model Verification by Finite Element Simulation 

The linear mathematical model correctly estimated a Young’s Modulus of 12.5 MPa for 

the linearly elastic finite element simulation, exactly matching the simulation input. 

Similarly, the Neo-Hookean model converged to a value of 12.54 MPa for the parameter 

c1, which was within 0.3% of the finite element simulation input of 12.5 MPa. The 

Mooney-Rivlin model exhibited the largest discrepancy in estimates when compared to 

the parameter inputs of the finite element simulation. The Mooney-Rivlin model 

estimated values of 10.3 MPa and 2.39 GPa for c1 and c2, respectively, which resulted in 

an estimation error of 17.5% for c1 (model input: 12.5 MPa) and 31.8% for c2 (model 

input: 3.5 GPa). 
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In the y-direction, the linear elastic and Neo-Hookean models produced errors in stress 

estimation averaging 0.00% and 2.25%, respectively, while the Mooney-Rivlin model 

produced the largest error at 8.67% (Table 3.3). In the x-direction, errors of 0.00% and 

0.60% were calculated for the linear and Neo-Hookean models, and the Mooney-Rivlin 

model again produced the largest error of 102%. Estimates of error in the shear direction 

were 0.00%, 0.33%, and 201% for the linear, Neo-Hookean, and Mooney-Rivlin models, 

respectively (Figure 3.4). 

 

 

Table 3.3: Strain fields were generated with finite element analysis simulations that 

modeled a material using linearly elastic, Neo-Hookean, and Mooney-Rivlin constitutive 

relations. These strains were then used as inputs to their respective mathematical models. 

The stresses calculated by the models for each set of strains were then compared to the 

known simulated stresses. The error between the stress values estimated by the models 

and the known stress field was calculated for each set as the root mean square deviation, 

normalized by the value of maximum stress of the known stress field. 

 

Linear Neo-Hookean Mooney-Rivlin 

Model Error 

(%) 

Model Error 

(%) 

Model Error 

(%) 

    0.00 0.60 102.01 

    0.00 2.25 8.67 

    0.00 0.33 201.10 
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Figure 3.4: Simulated stress fields were generated by finite element analysis for a linearly 

elastic, Neo-Hookean, and Mooney-Rivlin solid subjected to a compressive vertical load 

of 39 N and a positive shear load of 7.8 N. The corresponding strains were then used as 

inputs to the computational models. Here, the linearly elastic model correctly estimated a 

Young’s Modulus value of 12.5 MPa. Similarly, the Neo-Hookean model estimated a 

value of 12.54 MPa for the parameter c1, which compared well to the actual simulation 

value of 12.5 MPa. The Mooney-Rivlin model estimated parameter values of 10.3 MPa 

and 2.39 GPa for model parameters c1 and c2, respectively, while the true simulation 

values were 12.5 MPa and 3.5 GPa [9]. 
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3.4.   Discussion 

The work of this chapter developed and verified a mathematical method to characterize 

the mechanical behavior of articular cartilage non-invasively using MRI-based strains, 

and to identify the set of constitutive relations that produced the most consistent results. 

When the methods were applied to intact joints under known (e.g. cyclic compressive) 

loading conditions, there was good inter-model agreement of stress distributions, and 

modulus values estimated were within published ranges. Further, the methods described 

here were found to produce estimates of material properties that agreed closely with 

controlled finite element simulations. 

The stress distribution estimates for the porcine tibiofemoral joint were largely consistent 

across models. Further, the mean modulus values determined from the linear analysis 

(5.99 MPa and 5.66 MPa for the femur and tibia, respectfully) both fall within the range 

reported for dynamic modulus of porcine cartilage [83]. Given the cyclic nature and rapid 

application of the load experienced by the joints, it is reasonable that estimates would 

approach dynamic, rather than equilibrium, values as the analysis essentially considers 

one section of a dynamic loading cycle in a nonlinear material. Interestingly, the 

mathematical models predicted tensile stresses in the loading (y) direction in the cartilage 

contact region. This may be explained by the fact that y strains found with DENSE-FSE 

in these regions were near zero, causing the constitutive relations to be dominated by the 

larger tensile strains in the transverse (x) direction. 

When the models were implemented using finite element-based strain fields, material 

parameters were correctly estimated within 1% for the linear and Neo-Hookean models, 

and within 32% for the Mooney-Rivlin model. Further, all models were found to closely 

approximate the stress distributions and magnitudes in the y-direction, or the direction of 

primary loading. Here, the linear and Neo-Hookean models were within 2.5% of the 

known stresses, and the Mooney-Rivlin model correctly predicted stresses to within 9%. 

The linear and Neo-Hookean models also performed well in the estimation of stresses in 

the x-direction and in shear, where errors were within 1% for both models. In contrast, 
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the Mooney-Rivlin model produced errors of 102% and 201% in the x-direction and in 

shear, respectively. It is possible that the larger errors seen in the Mooney-Rivlin model 

may be contributed to the number of simplifying assumptions necessary here to reach a 

determinate system. Additional knowledge of system boundary interactions or 

deformations out of plane may be sufficient to constrain a higher order model such as the 

Mooney-Rivlin. 

Based on a comparison of the overall stress distributions, shear values developed along 

the contact surface of the joint for each model, as well as a comparison of the models 

using finite element-based strain fields, we concluded that the incompressible Neo-

Hookean relation provided the best estimates of the stress state of the tissue. Both the 

linear model and Neo-Hookean model resulted in near-identical shear forces at the 

surface of the joints, with values lower than those estimated using Mooney-Rivlin 

relations. However, the linear model consistently predicted large peaks in stress that did 

not occur in either nonlinear method. It is accepted that cartilage behaves as a nonlinear 

viscoelastic solid [10], and it is likely that the dramatic shifts in stress predicted by the 

linear model are a result of the limitations of a purely elastic assumption with the large 

strains calculated at the joints. From this, it follows that the Neo-Hookean hyperelastic 

relations with incompressibility assumptions provided the most appropriate model for the 

characterization of stresses using two-dimensional MRI-based displacements. 

Assumptions necessary in this analysis may introduce error in the models. Isotropic, 

homogeneous behavior of the cartilage, for example, was assumed in order to arrive at a 

determinate system for the cartilage based upon the available knowledge of deformation 

and loading conditions. The inclusion of anisotropic constitutive relations [84], depth-

dependent properties [85], or mixture theory [86] may further enhance the accuracy of the 

method in cartilage. In addition, expansion of the analysis to include three-dimensional 

displacement data should provide sufficient information to completely characterize the 

hyperelastic behavior of the tissue across a broad range of models with additional degrees 
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of complexity. Estimation of load distribution throughout the volume of the joint may 

lead to additional refinement of results [87, 88]. 

In conclusion, the work presented in this chapter represents the first steps towards a new 

and novel method for assessing stresses and material properties of intact articular 

cartilage non-invasively through the use of displacement-encoded imaging and 

mathematical modeling. Of the models developed here, the utilization of Neo-Hookean 

relations with known two-dimensional strains was found to produce the best estimation of 

stresses within a body under an applied load. As a result, Neo-Hookean relationships 

would serve as the basis for solid modeling of biomaterials in the succeeding chapters.
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CHAPTER 4. DEVELOPMENT OF A HETEROGENEOUS, MULTI-MATERIAL 

MODEL WITH APPLICATION TO THE RABBIT INTERVERTEBRAL DISC 

SYSTEM 

4.1.   Introduction 

With the groundwork laid for a modeling technique to estimate stresses and material 

properties noninvasively in soft tissue using known strain fields, it is possible to expand 

the complexity of the material of interest. Intervertebral discs present an ideal subject for 

the expansion of these techniques. The intervertebral disc consists of two distinct material 

types that exhibit disparate location- and direction-dependent properties which together 

must satisfy known boundary conditions and displacements. In this chapter, stress fields 

and material parameters will be investigated for rabbit intervertebral discs using a 

nonlinear, multi-material model. 

4.2.   Methods 

4.2.1. Magnetic Resonance Imaging 

Displacement and strain fields from the intervertebral discs of skeletally mature New 

Zealand white rabbits were determined previously using dualMRI in a 9.4 Tesla scanner 

[32]. Briefly, eight rabbits were treated in an annular puncture degeneration model 

between the fourth and fifth vertebrae (L4-L5) using a 16-gauge needle under aseptic 

conditions, and three were used as controls. Four weeks post-operation the rabbits were 

sacrificed and lumbar spine sections were isolated for imaging analysis. Both the 

punctured (L4-L5) discs and the untreated adjacent (L3-L4) discs were analyzed in the 

study, as were L3-L4 and L4-L5 discs from the controls.  
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The discs were subjected to a cyclic compressive load of 30 N for a period of 1.5 

seconds, with a total cycle length of 3.0 seconds (Figure 4.1). Displacements were then 

measured in the axial and radial directions of a coronal imaging plane taken through the 

center of the IVD (Figure 4.2). A steady-state load-displacement response was achieved 

after 200 cycles, following which imaging commenced. Imaging parameters were: 

repetition time = 3000 milliseconds, echo time = 24.7 milliseconds, field of view = 16 × 

16 mm
2
, matrix size = 128 × 128 pixels, and slice thickness = 1.0 mm. The deformation 

gradient and strains were then computed from the discrete displacement fields (Figure 

4.3). 

In addition to strain, the same study [32] evaluated GAG concentrations within the discs 

using delayed gadolinium-enhanced MRI (dGEMRIC). Gd-DTPA
2-

 was allowed to 

penetrate the discs over a period in excess of 9 hours, with image acquisitions taking 

place before and after exposure to the contrast agent. Relevant imaging parameters for 

this portion of the study were as follows: repetition time = 100, 200, 300, 500, 900, and 

4000 milliseconds, echo time = 7.2 milliseconds, field of view = 16 × 16 mm
2
, matrix 

size = 128 × 128 pixels, and slice thickness = 1.0 mm. This experiment permitted 

calculation of both longitudinal relaxation time constant (T1) values before contrast and 

GAG concentration (Bashir, 1999) throughout the unloaded IVD. 
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Figure 4.1: Two-dimensional displacements and strains were obtained with displacement-

encoded MRI for rabbit intervertebral discs subjected to a cyclic 30 N load in the axial (y) 

direction. 
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Figure 4.2: Displacements were measured within a coronal imaging plane oriented 

through the center of the disc for both punctured, degenerated discs as well as adjacent, 

unaltered discs, as shown in this representative pair. 
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Figure 4.3: Strains were determined by dualMRI in paired samples of untreated (L3-L4) 

discs and adjacent (L4-L5) discs treated with an annular puncture to induce degeneration. 

In this representative pair, compressive strains in the loading (y) direction developed 

throughout the disc. In contrast, symmetric regions of tensile strain are observed to occur 

in the transverse (x) direction. 

4.2.2. Computational Analysis of Intervertebral Disc 

Stress distributions and material relations were determined in the IVD using a finite 

strain-based (FSB) computational model. MRI-based strains, describing the two-

dimensional load-displacement response of a plane oriented through the center of the 

disc, were coupled with assumed material relations in this model. As such, a two-

dimensional model with plane stress assumptions was used for the analysis. Importantly, 

the FSB model accounted for material composites, and the NP and AF were identified 

using a combination of histology and T1 value maps acquired with MRI prior to exposure 

to the contrast agent. Histological slices were taken in the coronal plane through the 

center of the IVD and stained with hematoxylin and eosin. T1 mapping provides an 

indication of relative bound water content, and therefore regions associated with the NP 



 

33 

and AF presented differing T1 values in accordance with their differing biochemical 

composition (Figure 4.4). A minimum threshold of T1 intensity was determined for each 

disc individually such that the area of each image with a T1 value above the threshold 

corresponded to NP as observed with histology.  

 

 

Figure 4.4: T1 intensity was used to identify the nucleus pulposus and annulus fibrosus, 

with identifications confirmed by histology. 
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Because both the NP and AF exhibit large strains and nonlinear stress-strain behaviors, 

similar to the previous chapter both the NP and AF were modeled separately as 

incompressible Neo-Hookean materials [9], represented by the strain energy density 

function 

  
  

 
                        , (4.1) 

where I1 is the first invariant of the right Cauchy-Green tensor, C, J is the determinant of 

the deformation gradient,    and β are material parameters, and   represents a hydrostatic 

pressure term included to enforce incompressibility [54]. The Second Piola-Kirchoff 

stress tensor, S, was then determined by 

                  
 

 
          , (4.2) 

where I is the identity tensor. 

Imposing the incompressibility assumption and neglecting the stress in the z-direction, 

consistent with the plane stress assumption, yields a relationship for the hydrostatic 

pressure: 

  
            

  
  

             
. (4.3) 

Material behavior during compression is known to be related to proteoglycan content 

and, subsequently, GAG content [89, 90]. High proteoglycan content is typically 

accompanied by larger amounts of fluid associated with the surrounding matrix, and thus 

a higher resistance to compression may be observed [10, 15]. For example, a linear 

correlation between Gd-DTPA
2-

 and Young’s modulus has been reported to occur in 

bovine articular cartilage [90]. In the model developed here, the Neo-Hookean material 

parameter   , which is linked to material stiffness, and proteoglycan content as measured 
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by dGEMRIC were assumed to exhibit a similar linear relationship [90]. This relationship 

may be represented by 

     , (4.4) 

where   is the local GAG content in units of      , and   is a constant to be calculated 

by the model. By these means, heterogeneous properties that are dependent upon 

biochemical composition may be estimated within the system. 

Two sets of conditions were imposed upon the model. The first was an equilibrium 

condition for the entire system in the loading direction. For this condition to be satisfied, 

the net force acting in the loading direction across an arbitrary plane must equal the 

external load applied to the system (Figure 4.5). The condition was tested at multiple 

planes across the disc, and the average result across the thickness of the disc was used in 

order to compensate for any discontinuities that may occur in the strain data. 

The second condition applied to the system was the enforcement of a continuity condition 

across the boundaries separating the NP and AF. In essence, this condition states that, at 

any given point along the boundary between the NP and AF, forces normal to the 

boundary on either side must be equal to maintain equilibrium. This condition also allows 

for the determination of the relationship between material constants of the two regions 

relative to each other. 

In order for the assumptions of the two-dimensional plane stress analysis to remain valid, 

it is necessary that the system of interest did not experience unbalanced or out-of-plane 

loading. As such, only specimens with strains indicating balanced loading conditions in 

the direction of loading were evaluated. A total of three matched pairs of punctured and 

adjacent discs met this criteria and were included in the stress analysis. 
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Figure 4.5: Regions corresponding to the nucleus pulposus (light blue) and annulus 

fibrosus (dark blue) were then isolated for analysis. An equilibrium condition was 

imposed upon the model such that the net force in the axial direction across an arbitrary 

plane through the disc (dashed white line) equaled the externally applied load. A 

secondary condition was imposed enforcing equilibrium of forces normal to the 

boundaries separating nucleus pulposus from annulus fibrosus (dotted yellow lines). 

4.2.3. Model Verification by Finite Element Simulation 

The predictive capabilities of the model were tested using a simplified finite element 

model generated in COMSOL (v3.2; COMSOL, Inc; Burlington, MA) with two-

dimensional, Neo-Hookean plane stress assumptions. The simplified geometry consisted 

of an interior with a Neo-Hookean constant value of 40 MPa surrounded by an outer 

region with a Neo-Hookean constant of 4 MPa. The material parameters of this model 

were not necessarily of the same scale as those existing within a true intervertebral disc, 

but rather chosen such that a large difference in material behavior would be observed 
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across the two regions. By these means, a more rigorous test of the predictive capabilities 

of the model could be observed. Two thin regions analogous to the placement of 

cartilaginous plates were positioned at the top and bottom of the geometry to transfer an 

externally applied load and restrict motion in the transverse direction. A compressive 

load of 1000 N/m was then applied across the endplates. The model utilized a mesh 

consisting of 55,272 total elements with 310,979 degrees of freedom. 

The resulting strain fields generated by the finite element simulation were exported as 

128 × 128 grids and used as inputs for the computational model. The resulting estimates 

for the stress fields computed by the FSB model were then compared to the known stress 

fields of the finite element simulation. Error in stress estimation in each direction was 

then evaluated using the normalized root mean square error (NRMSE). Similarly, 

estimates of the material constants of the system computed by the strain-based model 

were compared to the known material parameters used as inputs to the finite element 

simulation. 

4.3. Results 

4.3.1. Computational Analysis of Intervertebral Disc 

Heterogeneous stress fields were calculated for each of the six discs. As expected, 

dominant compressive stresses were calculated in the direction of loading for each disc, 

while both tensile and compressive stresses were observed in the transverse direction 

(Figure 4.6). Stresses were consistent in scale across specimens, with stresses computed 

within the range of ±1.5 MPa. 
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Figure 4.6: Stress fields were computed by a strain-based model as shown in these 

representative images. A large, defined central region of compressive stress was found to 

occur in both the loading and transverse directions of the untreated (L3-L4) disc, 

indicative of a healthy nucleus pulposus. A similar, but smaller, region was observed in 

the degenerated disc with compressive stresses more dispersed throughout the disc in the 

loading direction. 

 

Two of the three untreated discs exhibited areas of axial and radial stress of similar 

distribution and magnitude at the center of the disc indicative of a large central nucleus 

region (Figure 4.7). In these instances the matching punctured discs exhibited either a 

smaller and less well defined central region of stress or no such region at all (Figure 4.8). 

Stress patterns in the remaining disc pair were not as well defined and as such did not 

allow for a direct comparison of disc structure or health from stress results alone. 
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Figure 4.7: Stresses in the axial and transverse directions were plotted as a function of 

transverse distance across a middle plane of the disc for each of the adjacent, unaltered 

specimens (top). These stress profiles were then compared to histology of each disc 

(bottom) to compare local stress behavior to the disc anatomy. In each of these adjacent 

discs, a large nucleus region was observed in the histology where a noticeable increase in 

compressive stress may be observed in both the axial and transverse directions. 
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Figure 4.8: Stresses in the axial and transverse directions were plotted as a function of 

transverse distance across a middle plane of the disc for each of the punctured specimens 

(top). These profiles were then compared to histology of each disc (bottom) to compare 

local stress behavior to the disc anatomy. In the punctured discs, the nucleus regions were 

observed to be more fibrous than in the paired, adjacent discs, and the associated stress 

profiles did not demonstrate consistent patterns indicative of clearly defined nucleus and 

annulus regions. 

 

Material parameter estimates calculated by the model were typically highest at the center 

of the disc and decreased with radial distance (Figure 4.9). Estimates of the Neo-Hookean 

material parameter    at the center of the untreated discs were between 1.5 and 2 times 

that of the value estimated in the AF, however there was no such discernible pattern in 

the punctured discs (Table 4.1). In addition, punctured discs tended to have lower peak 

material constant values in the NP than were estimated in the paired adjacent discs. The 

specimen displaying the highest degree of degeneration, as well as large tears in the NP 

evident in histology, produced material parameter estimates that were lower in the region 

of the NP than in the surrounding AF. 



 

41 

 

 

Figure 4.9: The Neo-Hookean material parameter    was assumed to have a linear 

relationship to local glycosaminoglycan (GAG) content, measured by dGEMRIC. The 

parameter   , which is associated with material stiffness, was related to GAG with a 

scaling factor computed by the model such that all boundary and equilibrium conditions 

were satisfied. Neo-Hookean    values were lower in two of the three discs subjected to 

annular puncture than in their matched, untreated discs, corresponding accordingly to a 

decrease in GAG content observed in the degenerated discs. 
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Table 4.1: The mean value of the Neo-Hookean constant,   , was calculated within the 

regions representing the nucleus pulposus (NP) and annulus fibrosus (AF) for each 

specimen. Values for the Neo-Hookean constant in both the NP and AF were lower in the 

punctured disc for two of the three rabbits. 

 
Rabbit 1 Rabbit 2 Rabbit 3 

Untreated Punctured Untreated Punctured Untreated Punctured 

      1.34E+06 1.85E+06 9.27E+06 7.63E+06 5.46E+06 2.56E+06 

      6.36E+05 2.90E+06 4.98E+06 4.37E+06 3.61E+06 2.20E+06 

 

4.3.2. Model Verification by Finite Element Simulation 

The computational model performed well in the estimation of material parameters, with 

estimates of 40.13 MPa for the interior region and 3.85 MPa for the exterior, as compared 

to the actual values of 40 MPa and 4 MPa input to the finite element simulation, 

respectively (Figure 4.10). Accordingly, errors in parameter estimation for the interior 

and exterior were 0.325% and 3.68%, respectively. NRMSE in stress estimates were 

below 1% across the entire interior region and below 2.1% across the exterior region 

(Table 4.2). 

 

Table 4.2: Normalized root mean square error (NRMSE) was calculated in each direction 

to evaluate the accuracy of stress estimation between the predicted stresses of the FSD 

model and those generated by finite element simulation for both the interior and exterior 

regions of the validation model. 

 
NRMSE (%) 

Interior Exterior 

    0.91 2.09 

    0.45 1.61 

    0.04 0.62 
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Figure 4.10: The FSB model was validated using finite element analysis simulations. 

Stress fields were generated by finite element analysis for a two-material body subjected 

to a compressive vertical load of 1000 N/m. The corresponding strains were then used as 

inputs to the FSB model used in the intervertebral disc analysis. Here, the simulated and 

computed stress fields are shown. The strain-based model estimated material parameters 

of 40.13 MPa for the interior region and 3.85 MPa for the exterior, while the true values 

input to the finite element simulatoin were 40.00 MPa and 4.00 MPa, respectively. 
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4.4. Discussion 

In this chapter, a computational method for the noninvasive mechanical analysis of the 

IVD was developed. Stresses were estimated for both the AF and NP, as were material 

parameters for each region as a function of local biochemical composition. Stresses were 

within a range reasonable for the magnitude of loading and size of the discs. Strong 

agreement in results was found in the validation study comparing model predictions to 

known stress fields produced by finite element simulation, confirming proper 

implementation of the modeling methods. 

A well-defined region with behavior similar to that expected of the NP was observed in 

the majority of untreated discs, characterized by a central region of compressive stress of 

the same shape and size in both the axial and radial directions. This region was observed 

to be less well-defined or nonexistent in the punctured discs. These results corresponded 

well with observations of NP size and integrity made from histological images of the 

discs. Estimates for material constants within the NP of the untreated discs were higher 

than those of the punctured discs, a result that agrees well with direct measurements of 

healthy and degenerated NP in other studies [91]. 

A potential limitation of the models is the use of a single plane, two-dimensional model 

for the system, which requires minimal out-of-plane motion. If a disc were to experience 

out-of-plane loading, the assumptions of the model would be violated and make it 

difficult to reach any conclusions about the state of degeneration or material properties 

associated with the system. Only discs with displacements indicating near-uniform 

compression were analyzed in this study in order to minimize such difficulties, but such 

influences are difficult to entirely eliminate. The consideration of multiple planes and 

measures of out-of-plane displacements in future work will require three dimensional 

dualMRI-based displacement measurements. While these are time consuming, they are 

likely to decrease errors in measured and modeled data. 
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The incorporation of a linear relationship between GAG content and local mechanical 

stiffness could potentially be further improved upon for a refinement in the model. 

However, the relationship allows for a reasonable approximation of heterogeneous and 

biochemically-dependent properties and relates well to linear correlations in the literature 

[90]. Given the fibrous and highly oriented nature of the AF, the addition of anisotropic 

constitutive relations in the AF may lead to further advancement in future work [5]. 

The methods developed in this chapter demonstrate the ability to noninvasively assess the 

mechanics of the IVD and, consequently, the physical health of the disc through 

visualization of the stress state during a known applied load. The techniques 

demonstrated here show potential towards the analysis of disc degeneration in a clinical 

setting, where the evaluation of stress distributions and concentrations may lead to 

improved early diagnostic capabilities not possible with current techniques. 
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CHAPTER 5. PRINCIPLES OF MIXTURE THEORY 

5.1.   Introduction 

In order to more fully describe the complex interactions of biomaterials with distinct 

solid and fluid constituents, such as cartilage and intervertebral discs, the modeling 

techniques previously described will be extended by the incorporation of mixture theory 

principles. While nonlinear models for a single continuum provide a good approximation 

for many biological materials, mixture theory allows for a more complete description of 

the interactions within solid-fluid composites, including motion of free water within the 

system and effects due to the permeability and diffusivity of the solid. 

5.2.   Theory 

In the following equations, a material structure is defined in terms of a solid component 

(s) and fluid component (f). Both components have an associated true density,   
 , and 

volume fraction,   , where α refers to components s or f. The volume fraction of each 

may be defined in terms of the volume of the component,   , and the total volume of the 

mixture,   , by 

   
  

  
. (5.1) 

From this relation it follows that 

       . (5.2) 

The total mixture density, ρ, may be represented as the sum of the apparent densities of 

each component by 
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       , (5.3) 

where apparent density is defined by 

     
   . (5.4) 

The principal of conservation of mass may be applied to the mixture, giving the relation 

  
    

  
          

           
   , (5.5) 

where    is the velocity vector and     is the rate of mass production for each component. 

As indicated by the above equation, the rate of mass production within the closed system 

is assumed to be negligible. Expanding the material derivative, 
    

  
, (5.5) becomes 

  
   

  
  

   

   
  

  
             

     . (5.6) 

Conservation of linear momentum for the mixture can be represented as 

    
   

    

  
        

               
   , (5.7) 

where    is a stress tensor,    is the body force vector acting on the component, and    

represents an interaction force between components resulting from momentum transfer. 

This final term is given for the fluid component as 

         
  

  
       

     , (5.8) 

where Af/s is a material constant that describes the motive force caused by diffusion and 

Cf/s represents resistance due to drag. The relationship between the interaction force 

between the solid and fluid components is: 
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      . (5.9) 

The balance of linear momentum for the individual components then becomes 

      

  
           

         
  

         
     , (5.10) 

      

  
           

 
        

  

  
       

     . (5.11) 

Finally, the stress tensor for the mixture is the sum result of the stress tensors for each 

component. In symbolic form, 

            
   . (5.12) 
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CHAPTER 6. APPLICATION AND VALIDATION OF A MIXTURE THEORY, 

FINITE STRAIN-BASED MODEL OF AXISYMMETRIC AGAROSE GELS 

6.1. Introduction 

Effective analysis of soft, porous biomaterials is a central concept towards the 

development of an imaging-based modeling methodology to fully describe the complex 

mechanics of soft biological tissue during applied loading. In this chapter, methods are 

implemented for estimating stresses and material properties for a nonlinear material 

under mixture material assumptions. The implementation of these methods is verified by 

comparison to finite element simulation. Model material parameter estimates are then 

compared to those determined by unconfined compression measures. For the 

development and validation of this model, agarose gels were chosen as the material of 

interest. Agarose is a linear polymer that, in combination with water, can be used to form 

a porous gel structure that is most commonly used in gel electrophoresis [92, 93]. The 

porous solid and fluid structure, repeatable composition, and wide availability make it an 

ideal material for a first application of the mixture theory-based model. 

6.2. Methods 

6.2.1 Agarose Gel Preparation 

Agarose gels of 2% concentration were prepared one day prior to data acquisition by 

thoroughly mixing 0.5 g of low melt agarose powder (Bio-Rad Laboratories, Inc; 

Hercules, CA) with 25 mL of 1X phosphate buffered saline (PBS). The solution was 

heated in a microwave in 5 second increments for approximately 20 seconds, or until the 

powder was fully dissolved, with the fluid gently swirled at each increment to ensure 
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uniformity. The heated solution was then poured into Petri dishes with a pipette to a final 

gel height of 5 mm. The gels were then allowed to cool to room temperature, then sealed 

and refrigerated until testing commenced to minimize fluid loss from the gel. A punch 

with inner diameter of 1 cm was used to slice the gels into uniform cylindrical samples 

just prior to testing. 

6.2.2. Magnetic Resonance Imaging 

Displacements and strain fields for 2% agarose gels were determined using dualMRI in a 

14.0 Tesla MRI (Bruker GMBH, Ettlingen, Germany). The cylindrical samples were 

fixed to the Delrin base of the loading apparatus sample chamber with one drop of 

cyanoacrylate, and kept submerged in 1X PBS throughout the duration of loading. The 

gels were subjected to a cyclic compressive load of approximately 0.125 N with a 1.27 

cm diameter spherical Delrin indenter for a period of 1.5 seconds, with a total cycle 

length of 3.0 seconds. Displacements were then measured in the axial and radial 

directions of an imaging plane through the center of the gel. A steady-state load-

displacement response was achieved after 50 cycles, following which imaging 

commenced. Imaging parameters were: repetition time = 3000 milliseconds, echo time = 

1.85 milliseconds, field of view = 25.6 × 25.6 mm
2
, matrix size = 256 × 256, slice 

thickness = 1.5 mm. The deformation gradient and strains were then computed as before. 

6.2.3. Computational Analysis of Agarose Gels 

Due to the symmetry of the geometry and loading conditions, knowledge of the in-plane 

loading deformation response is adequate to describe the stress state of the sample 

volume. Therefore, a cylindrical coordinate system was employed in this analysis with 

axial symmetry assumptions. With this change of coordinates, the deformation gradient is 

now written as 
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Next, the equation for conservation of mass, given by 

  
   

  
  

   

   
  

  
             

    0, (6.2) 

may be expanded and written in cylindrical coordinates as 

  
   

  
  

  
 

 

   

  
  

  
   

  
  

       
 

  
     

 

 
 

 

 
     

 

  
      

 

  
  

     . (6.3) 

The time-dependent term 
   

  
 is assumed negligible here due to the quasi-static loading 

condition.  

Similarly, assuming negligible acceleration due to the quasi-static loading state, 

negligible effects due to diffusion, and limited effects of gravity or other body forces, the 

equations for conservation of linear momentum, 
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may be expanded in cylindrical coordinate form for the solid component as 
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Similarly, for the fluid component, 
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The solid component is modeled here as a homogeneous, compressible Neo-Hookean 

solid, described by the strain energy density function 

      
  

                , (6.12) 

where    and    are Neo-Hookean material parameters,   is the determinant of the 

deformation gradient F, and    is the first invariant given by 

      . (6.13) 

The Second Piola-Kirchhoff stress is: 

    
  

   

   

  
      

  
     

 

 
                       , (6.14) 

where   is the identity tensor. 

The first Piola Kirchoff stress, P, is then determined by the relation P=FS. 

The fluid component at each voxel is modeled as a hydrostatic pressure, given by 
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 , (6.15) 

where   is the identity tensor. Due to the quasi-static nature of the load-displacement 

response, the fluid pressure was assumed to be near constant throughout the volume of 

the samples. 

The precise fluid volume fraction of the gels was unknown. For the purposes of the 

model, the volume fraction was varied from 0.86 to 0.94 in 0.02 increments [94]. The 

unknown material parameters   ,   , and p were solved for each half plane system using a 

nonlinear least squares fit of the parameters to the equilibrium equations of the system 

with a solution convergence tolerance of 1e-7. 

6.2.4. Model Verification by Finite Element Simulation 

Similar to previous chapters, the mathematical implementation of the axially symmetric 

model was verified using displacement fields artificially generated by finite element 

simulation as inputs to the model. This in turn allowed for a direct assessment of 

mathematical error in material property estimation. COMSOL was used once again to 

generate an axially symmetric simulation of a cylinder 5 mm high and with radius of 5 

mm – identical to the geometry of the agarose samples. 

A compressible Neo-Hookean material model was implemented for the simulation, with 

arbitrary material parameters of            and           selected as simulation 

inputs. The simulated material was subjected to a compressive strain of 5% by applying a 

displacement of 0.25 mm to the top boundary in the negative z-direction. The left 

boundary was constrained by an axial symmetry condition, the bottom boundary was 

constrained to zero displacement in the z-direction, and the right boundary was free to 

deform in the r-direction. A tetrahedral mesh was used in the simulation with 3920 

elements and 23883 degrees of freedom. 
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Displacement fields generated by the simulation as a result of the loading condition were 

exported as 256 × 256 grids and used as inputs to the computational finite strain-based 

model. The error in material parameter estimates computed by the finite strain-based 

model to the actual parameter values used in the COMSOL simulation was then 

calculated. 

6.2.5. Experimental Fitting of Agarose Gel Material Parameters 

Material parameters of the agarose gels were calibrated from experimental measurements 

as a means of evaluating the accuracy of parameter estimation by the finite strain-based 

model. Unconfined compression tests were performed on the 2% agarose gel samples. 

The gels were compressed in increments of 2.5% nominal strain to 30% nominal 

compression, with a hold time of 5 minutes between increments [95]. 

The gels were compressed with a 1.27 cm diameter, flat cylindrical indenter attached to a 

linear motor. The forces experienced by the gels during compression were measured with 

a 1000 g load cell. Cylindrical gel samples of 2% agarose were made for the experiments 

as previously described, except in this case two drops of India ink was added to the 

solution. The addition of the dye was employed to improve the visibility of the gel for 

purposes of tracking radial expansion. The samples were centered on a Delrin platform 

directly beneath the cylindrical indenter (Figure 6.1), and mineral oil was used to 

lubricate both the Delrin platform and indenter to reduce friction between the surfaces 

and the gel. Prior to testing, the indenter was lowered until just touching the top surface 

of the gel. Displacement of the gels in the z-direction was measured by the displacement 

of the indenter, while strain in the r-direction was monitored using photos taken at 

multiple time points during the test. Changes in sample diameter were then determined 

after testing by measuring the change in dimensions in Photoshop. 
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Figure 6.1: Unconfined compression tests were performed on 2% agarose gel samples. 

The gels were compressed in increments of 2.5% nominal strain to 30% nominal 

compression, with a hold time of 5 minutes between increments. A 1000 g load cell 

measured the force-displacement response of the gels over time. 

 

Prior to measurement, the gels were cyclically compressed to 10% nominal strain for 50 

cycles to approximate the conditions required to meet a steady-state load-displacement 

response during the MRI experiments. The cycle duration was the same as that during 

MRI acquisition, with a 1.5 second load duration and total cycle length of 3.0 seconds. 

Stress parameters were evaluated for the gels using displacement and force measurements 

1.5 seconds after initial compression to correspond to the 1.5 second loading time of the 

gels during MRI acquisition. As before, the solid components of the gels were assumed to 

behave as compressible Neo-Hookean materials.  Under uniaxial compression 

assumptions, the deformation gradient of the sample experiencing loading may be written 

as 
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 , (6.16) 

where   ,   , and    are the principal stretches in each direction. The determinant of the 

deformation gradient is then              .  As a result, the right Cauchy-Green 

deformation tensor becomes 

   

  
   

   
  

    
 

 . (6.17) 

The inverse of the right Cauchy-Green deformation tensor is then 
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and the trace is 

       
    

    
 . (6.19) 

Solving for the Second Piola-Kirchhoff stress of equation (6.14), the non-zero stress 

components become: 
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Using the relation P=FS, the First Piola-Kirchhoff stresses for the solid are then 

determined from (6.20), (6.21), and (6.22) to be: 
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The fluid component was again modeled as a hydrostatic pressure term as given in (6.15). 

The coordinate axes were oriented with the 3-direction aligning with the direction of 

loading. The First Piola-Kirchhoff stresses relate forces in the deformed configuration to 

areas in the reference configuration. From this,     could be determined using the 

measured forces and the reference area of the samples. A least squares fit was used to 

determine the parameters    and    that minimized error between the experimental force 

data and the loading conditions calculated by the compressible Neo-Hookean stress-strain 

model to within a tolerance of 1e-7. Error between these values and those predicted by 

the finite strain-based model were then calculated. 

6.2.6. Sensitivity Analysis 

The sensitivity of the model to variations in inputs was tested using Cotter’s Method. In 

this design, input parameters that may influence the output of the model are identified, 

with a low value and a high value considered for each parameter. The simulation is then 

run once with all factors at their upper levels, once with all factors at their lower levels, 

once for each factor at its upper level while the other factors are maintained at their lower 

levels, and finally once with each factor at its lower level while the other factors are 
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maintained at their higher levels. The impact of each factor was then calculated by 

comparing the sensitivity factor,   , for each parameter, given by 

      
    

     
  
   

, (6.26) 

where    is the number of independent variables, and      is 

                    . (6.27) 

The terms       and       are then: 

      
 

 
                     , (6.28) 

      
 

 
                     , (6.29) 

where    is the output with all parameters high,      is the output with parameter j low 

and all others high,      is the output with parameter j high and all others low, and    is 

the output with all parameters low. 

The primary inputs to the MRI-based model are the applied loading condition, the 

measured displacements, and the assumed volume fraction. Therefore, the sensitivity 

analysis focused on possible variations in these three parameters. The influence of 

potential variation in load was investigated by varying the loading condition to the model 

by ±5%. Meanwhile, variation in the displacement fields used as inputs is primarily 

affected by the number of smoothing cycles implemented during processing of the raw 

MRI data. In the primary model, 25 smoothing cycles was used to process the 

displacement data. For the purposes of the sensitivity analysis, displacements processed 

with 10 and 25 smoothing cycles were used for the low and high parameter values, 

respectively. Finally, the volume fraction of the fluid input to the model was varied by 
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±4% to span a common range reported for similar gels [94]. These factors and the 

sequence of evaluation are summarized in Table 6.1 and Table 6.2. 

 

Table 6.1: Cotter’s Method was used to evaluate the sensitivity of the finite strain-based 

model outputs to changes in model inputs. The inputs evaluated were the applied loading 

condition, the number of smoothing cycles used during processing of the displacement 

data, and the fluid volume fraction of the gel (  ). Sensitivity was evaluated by running 

the model at alternately low- and high-end values for the inputs identified. 

 FSB Model Value Low Value High Value 

Load (N) 0.125 0.119 0.131 

Smoothing Cycles 25 10 25 

   0.9 0.86 0.94 

 

 

Table 6.2: Summary of the model evaluations performed in the Cotter’s sensitivity 

analysis. In this table, (  ) is the fluid volume fraction of the gel, “H” indicates that the 

high-end value of the given input was used in the model, and “L” indicates that the low-

end value was used. 

Test Number 1 2 3 4 5 6 7 8 

Load H L H H H L L L 

Smoothing Cycles H H L H L H L L 

   H H H L L L H L 
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6.3. Results 

6.3.1 Magnetic Resonance Imaging 

Displacements in the agarose gels appeared roughly symmetric with respect to the axis of 

loading. As expected, the largest displacement occurred in the region adjacent to the 

indenter and decreased with radial distance (Figure 6.2). 

 

 

Figure 6.2: Displacements were measured within 2% agarose gels subjected to axial 

compression by a spherical indenter. Displacements in the loading (z) and radial (r) 

directions were approximately symmetric about the central axis, with some small off-axis 

deformation observed in the radial direction for a portion of the samples. 

 

The gels exhibited regions of large compressive strains in the direction of loading below 

the area of surface contact with the indenter (Figure 6.3). Maximum compressive strain in 

the gels was found to be 14%. These regions are complemented by areas of positive 
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strains in the radial direction. Strains in the radial direction typically peaked at a value of 

approximately 7%. Shear strains were also exhibited throughout the gel during the 

loading phase. The highest shear strain was found to occur at the gel interface with the 

indenter, indicating the presence of surface friction at the area of contact. 

 

 

Figure 6.3: Strain fields were calculated for each sample. The largest strains in the 

loading (z) direction were 14% compression. Highest strain was observed in the region of 

the gel directly beneath the applied load. Shear strains were at a maximum at the indenter 

surface interface, indicating the presence of friction shear forces at the surface. 

 



 

62 

6.3.2 Computational Analysis of Agarose Gels 

Neo-Hookean parameters estimated by the finite strain-based model ranged from 23.4 

kPa to 48.4 kPa for parameter   , and from 59.4 kPa to 110.0 kPa for parameter    (Table 

6.3). For both parameters, the results increased with the value of assumed fluid volume 

fraction. Parameter    had the largest variance in results across samples, with the 

standard deviation reaching as high as 42% of the mean for a given fluid volume fraction. 

Parameter    was slightly more consistent across samples, with the highest standard 

deviation found to be 27% of the mean value. 

 

Table 6.3: Neo-Hookean parameters calculated for a range of agarose gel fluid volume 

fractions (mean ± standard deviation). Parameter estimates were found to increase with 

increasing fluid content. 

   0.86 0.88 0.9 0.92 0.94 

   (kPa) 23.4 ± 5.6 27.5 ± 7.4 32.2 ± 8.0 38.0 ± 6.6 48.4 ± 9.7 

   (kPa) 59.4 ± 22.5 69.7 ± 29.3 77.9 ± 24.6 87.2 ± 25.9 110.0 ± 30.3 

 

 

Unsurprisingly, the region of highest stress within the gels was found to occur in the 

direction of loading, with compressive stresses developing in the region of the gel below 

the indenter contact region (Figure 6.4). These compressive stresses peaked at a value of 

approximately 5 kPa. Stresses in the radial and out of plane directions were similar in 

shape and magnitude, with compressive stresses reaching a maximum value of 

approximately 2 kPa. Shear stresses within the gel were highest near the indenter contact 

surface where stresses reached 0.7 kPa. Half of the samples exhibited stresses that were 

slightly higher towards one half of the sample, suggesting that loading was not purely in 

the z-direction for those samples. 
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Figure 6.4: Stress fields were calculated for the axisymmetric model. Compressive 

stresses as high as 5 kPa were estimated in the loading direction. Shear stresses were 

found to be highest in the gel near the indenter surface interface. 

6.3.3. Model Verification by Finite Element Simulation 

The finite strain-based model did well in estimating the material parameters that were 

used in the finite element simulation. The strain-based model estimated that parameters 

of 2.52 MPa for   , and 43.34 MPa had been used as inputs to the simulation, as 

compared to the actual values of 2.5 MPa and 43 MPa. The resulting error in these 

parameter estimates to the known values of the finite element simulation was therefore 

0.80% and 0.79%, respectively. 
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6.3.4. Experimental Fitting of Agarose Gel Material Parameters 

A time-dependent stress response was measured in the agarose gels, as compressive 

forces decreased over the period of applied loading and approached a steady response 

over time (Figure 6.5). Damage to the gel structure was observed to occur in the gels after 

20% nominal strain. As such, compression data at 15% nominal strain and below was 

used for the purposes of parameter fitting. 

 

 

Figure 6.5: Preconditioned agarose gels were compressed in increments of 2.5% nominal 

strain over periods of 5 minutes per increment. The load response is shown here for 

nominal strain values from 0-15%, similar in magnitude to the strains measured in the 

gels. 

 

The curve-fit Neo-Hookean parameters for the gels ranged from 21.7 kPa to 50.6 kPa for 

parameter   , and from 40.9 kPa to 95.5 kPa for parameter    (Table 6.4). As with the 

finite strain-based model, the results increased with increasing assumed fluid volume 

fraction. 
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Table 6.4: Neo-Hookean parameter fitting results in 2% agarose gels in unconfined 

compression for varying fluid volume fraction. 

   0.86 0.88 0.9 0.92 0.94 

   (kPa) 21.7 25.3 30.4 38.0 50.6 

   (kPa) 40.9 47.7 57.3 71.6 95.5 

 

 

Percent error was calculated between the parameters determined by the finite strain-based 

model and those determined by fitting to unconfined compression measures. Calculations 

of    matched most closely, with a high error of 8.65% and a low error of 0.01%. 

Calculations of    were more disparate, with a high error of 46.07% and a low error of 

14.77% (Table 6.5). 

 

Table 6.5: Percent error in parameter estimation between the finite strain-based model 

and parameter fitting to unconfined compression measures. 

   0.86 0.88 0.9 0.92 0.94 

   (%) 8.03 8.65 5.95 0.01 4.33 

   (%) 45.07 46.07 35.96 21.72 14.77 

 

6.3.5. Sensitivity Analysis 

Results of the sensitivity model showed a similar degree of sensitivity in the model to 

both the loading condition input to the model and to the number of smoothing cycles used 

in the processing of the displacement data (Table 6.6). The sensitivity factors for 

parameter    were 0.38 and 0.44 for the loading condition and smoothing, respectively. 
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Similarly, for parameter    the sensitivity factors were 0.42 and 0.43 for loading and 

smoothing, respectively. Little sensitivity was found to the fluid volume fraction for the 

range of values input to the model, with sensitivity factors of 0.18 for    and 0.14 for   . 

 

Table 6.6: Summary of sensitivity of output parameters to model inputs (mean ± standard 

deviation). 

 Output Parameters 

       

      0.38 ± 0.07 0.42 ± 0.06 

           0.44 ± 0.10 0.43 ± 0.06 

    0.18 ± 0.04 0.14 ± 0.12 

6.4. Discussion 

In this chapter, material parameters and stresses were estimated in agarose gels 

experiencing an applied axial load. The resulting stress fields indicated behavior expected 

of spherical indentation, with a region of high compressive stress in the center of the gels 

below the indenter. Shear stresses at the interface between gel and indenter indicated the 

presence of surface friction during the loading process. 

Non-symmetry within the samples indicates that a small radial load may have occurred 

during cyclic loading. A slight bend was found to exist in the pushrod, which may have 

resulted in a small radial force being exerted on the samples as the rod passed through the 

sleeve bearing of the loading apparatus. This imperfection might explain some of the 

variation in model results, particularly between halves of the same sample. 

The results of the validation study suggest reasonable agreement between model 

parameter estimations and those determined by curve fitting to experimental compression 
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data. The error between the two methods was within 10% for Neo-Hookean parameter   , 

and within 50% for parameter   . While parameter estimations agree well over the 

experimental period of applied loading, the quasi-static assumptions necessary from the 

conditions of the MR data acquisition do not necessarily provide a description of the 

entire time-dependent relaxation response. For systems where, for example, a predictive 

model at varying strain rates is desired, it may be useful in some systems to acquire 

additional data sets under varying, prolonged loading conditions. 

A potential source for error in results lies in the loading condition input to the model. 

Because of the level of relatively low force applied in the MRI experiments, and with the 

discovery of the slight bend in the pushrod, influences due to friction or other factors 

have the potential for greater impact. Because of this, forces required to achieve the 

observed displacement of the samples with a spherical indenter were measured again 

after experimentation to ensure the loading condition used in the models was as accurate 

as possible. 

The sensitivity analysis performed on the models resulted in the conclusion that the 

model was equally sensitive to both changes in the applied load input to the model, and to 

the number of smoothing cycles. Variation in the third parameter, fluid volume fraction, 

was not found to have as large an impact on results for the range of values used. This 

reinforces the conclusion that fluctuation in the applied loading condition could lead to a 

potential source of error in results.
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CHAPTER 7. FINITE STRAIN-BASED MODELING OF THE HUMAN 

INTERVERTEBRAL DISC WITH MIXTURE THEORY MATERIAL 

ASSUMPTIONS 

7.1. Introduction 

The primary goal of noninvasive, finite strain-based modeling techniques is the 

nondestructive analysis of soft biological systems, both solid and porous. The previous 

chapter detailed the analysis of uniform materials using MRI-based displacement 

measures and a modeling framework rooted in a two component mixture theory. In this 

chapter, the mixture theory-based model will be applied toward the in situ analysis of 

human intervertebral discs. This model advances the intervertebral disc model developed 

in Chapter 4 with the inclusion of a more advanced material model accounting for three 

distinct regions within the discs. In addition, this model will demonstrate the 

incorporation of diffusion tensor imaging in the evaluation of disc microstructure and 

material modeling. A sensitivity analysis of the model will also be performed to evaluate 

which factors have the largest impact on the outcome of the models, and how uncertainty 

in model inputs may affect a generated solution. 

7.2. Methods 

7.2.1. Magnetic Resonance Imaging 

Displacements in three human cadaveric L4-L5 intervertebral discs were measured using 

dualMRI in a 9.4 Tesla scanner Biospec (Bruker Medical GMBH, Ettlington, Germany). 

The intact discs and surrounding vertebral bodies were isolated from three fresh-frozen 

cadaveric lumbar spines obtained from a tissue and organ donation center (Unyts, 

Buffalo, NY). The ends of the disc segments were potted in a fiberglass resin to be 
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fastened in a MRI-compatible loading device. Prior to loading the discs were wrapped in 

gauze soaked with PBS to help prevent breakdown of the disc tissue during loading. The 

discs were then subjected to a cyclic compressive axial load of 445 N (Figure 7.1). A 

steady state load-displacement response was achieved after 500 cycles, following which 

imaging began. Imaging parameters were: echo time = 1.6 milliseconds, field of view = 

64 mm × 64 mm, slice thickness = 2 mm. 

 

 

Figure 7.1: Displacements and strains were obtained with dualMRI for human 

intervertebral discs subjected to a cyclic 445 N load in the axial (z) direction. 
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In contrast to the previous models, where two-dimensional displacements were known for 

a single plane, displacements were measured for two central orthogonal imaging planes. 

In addition, both in- and out-of-plane displacements were measured within the disc. The 

addition of a second plane and out-of-plane displacement allows for much greater 

knowledge of deformations within the discs during applied loading. Deformation 

gradients and strains were computed as described previously. 

Diffusion tensor imaging (DTI) data was acquired for each disc, which provided a 

method for the measurement of diffusion magnitude and direction for each sample. One 

way in which the directionality of diffusion within a region may be used is to provide 

greater knowledge of local microstructure. For example, regions where diffusion is 

highly anisotropic typically indicate the presence of a highly oriented or fibrous 

microstructure, with fiber orientation aligning with the direction of highest diffusion [96]. 

In this way, local organization of the disc microstructure could be inferred and used to 

provide a more detailed material model of the discs. 

7.2.2. Computational Analysis of Human Intervertebral Disc 

Stress distributions and model parameters were determined in the discs using MRI-based 

displacement measures, as before. In addition, calculations of mean diffusion, as well as 

fractional anisotropy and direction were calculated from the DTI data to provide greater 

insight into local diffusion and disc microstructure. First, mean diffusion was calculated 

as 

     

 
            , (7.1) 

where   is the diffusion tensor. 

Next, the local fractional anisotropy of diffusion throughout the disc was determined by 
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, (7.2) 

where   ,   , and    are the eigenvalues of the diffusion tensor. 

Finally, the direction of highest diffusion was calculated. This was determined at each 

point within the region of interest by calculating the eigenvector associated with the 

largest eigenvalue of the diffusion tensor. Combining the knowledge provided by these 

calculations permits the determination of regional differences by local anisotropy as well 

as preferred fiber orientations within the disc. 

Using this information, the discs were manually segmented into three computational 

regions: nucleus pulposus, outer annulus fibrosus, and inner annulus fibrosus. The 

separation of the annulus fibrosus into outer and inner regions allows for the presence of 

a transition zone where the inner region of the annulus contains more fluid and fiber 

orientations are less distinct than in the outer zone [27].  

The external shape of the disc volume was reconstructed for each sample by manually 

defining the external boundaries in Photoshop for multiple image slices acquired in both 

the sagittal and coronal planes throughout the thickness of the disc. An array was then 

constructed of the intersecting images, and volumetric profiles of the discs were 

generated by fitting polynomial curves to these defined boundaries in MATLAB (Figure 

7.2). T2 and DTI image intensity was similarly used to manually define internal 

boundaries of the nucleus and both inner and outer annulus regions. These regions, as 

well as deformations throughout the reconstructed disc profile were then estimated by 

linearly interpolating between planes along the defined profile curves. By approximating 

displacements throughout an estimated volume in this manner, it was hoped that a more 

physiologically relevant estimation of the stress state could be achieved than would be 

possible with either the plane stress or axially symmetric assumptions used previously. 
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Figure 7.2: A) A partial reconstruction of a disc volume created from RARE cross-

sectional images and the isosurface function in MATLAB provides a visualization of the 

internal geometry of a representative disc. B) A transverse view of the extrapolated image 

volume demonstrates the curvature of a portion of the disc geometry. C) External and 

internal boundaries of the discs were manually defined from T2 and DTI image intensity. 

Polynomial curves fit to these boundaries defined the outer boundaries as well as the 

nucleus (white), inner annulus (light gray), and outer annulus (dark gray) regions, as seen 

in this representative transverse slice of the estimated volume.  
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Both the nucleus pulposus and the inner annulus fibrosus regions were modeled as 

isotropic, two-component mixtures with the solid component modeled as a compressible 

Neo-Hookean solid, as described in (6.12-6.14). 

A transversely isotropic, fiber-reinforced Neo-Hookean model was employed in the outer 

annulus fibrosus region [97]. In this form, the strain energy density function is 

represented as 

      
  

                 
 

 
       . (7.3) 

In this equation,    and    are Neo-Hookean material parameters,   is a material 

parameter associated with the fiber reinforcing function,   is the determinant of the 

deformation gradient F, and    is the first invariant given by 

      ,  (7.4) 

where   is the right Cauchy-Green tensor.    is the fourth invariant, 

        ,  (7.5)  

where    is a unit vector in the direction of fiber orientation, determined by the DTI data 

and the direction of highest diffusion.  

The second Piola Kirchoff stress is then given by 

       
  

     
 

 
                                        , (7.6) 

where   is the identity tensor. As before, the first Piola Kirchoff stress, P, is determined 

by the relation P=FS. 
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A direct measure of local fluid volume fraction was not possible for the discs, and so 

fluid content was estimated for each region. Here the discs were considered to have 

unbound water content approximate to that of a fresh disc sample, with fluid volume 

fractions of 0.8, 0.7, and 0.65 assumed for the nucleus, inner annulus, and outer annulus 

regions, respectively [98]. A nonlinear least squares fit was then used to fit material 

parameter values to the equilibrium equations to within a function tolerance of 1e-7. 

7.2.3. Sensitivity Analysis 

The sensitivity of the model to variations in inputs was investigated using Cotter’s 

Method in the same manner as in the previous chapter. As with the agarose gel model, the 

primary inputs to the MRI-based IVD model are the applied loading condition, the 

measured displacements, and the assumed fluid volume fractions of each region. 

Therefore, the sensitivity analysis focused on possible variations in these parameters. 

The influence of potential variation in the applied load was investigated by varying the 

loading condition to the model by ±5%. Meanwhile, variation in the displacement fields 

used as inputs is primarily affected by the number of smoothing cycles implemented 

during processing of the raw MRI data. In the primary model, 50 smoothing cycles was 

used to process the displacement data. For the purposes of the sensitivity analysis, 

displacements processed with 10 and 100 smoothing cycles were used for the low and 

high parameter values, respectively. The fluid volume fractions of the outer annulus, 

inner annulus, and the nucleus were each varied by ±10% [99]. These factors and the 

sequence of evaluation are summarized in Table 7.1 and Table 7.2. 
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Table 7.1: Cotter’s Method was used to evaluate the sensitivity of the finite strain-based 

model outputs to changes in model inputs. The inputs evaluated were the applied loading 

condition, the number of smoothing cycles used during processing of the displacement 

data, and the fluid volume fraction of the nucleus (  
 
), inner annulus (   

 
), and outer 

annulus (   
 

). Sensitivity was evaluated by running the model at alternately low- and 

high-end values for the inputs identified. 

 FSB Model Value Low Value High Value 

Load (N) 445 422.75 467.25 

Smoothing Cycles 50 10 100 

  
 
 0.8 0.7 0.9 

   
 

 0.7 0.6 0.8 

   
 

 0.65 0.55 0.75 

 

 

 

Table 7.2: Summary of the model evaluations performed in the Cotter’s sensitivity 

analysis. In this table, “H” indicates that the high-end value of the given input was used 

in the model and “L” indicates that the low-end value was used. The test was performed 

for all three disc samples. 

Test Number 1 2 3 4 5 6 7 8 9 10 11 12 

Load H L H H H H H L L L L L 

Smoothing Cycles H H L H H H L H L L L L 

  
 
 H H H L H H L L H L L L 

   
 

 H H H H L H L L L H L L 

   
 

 H H H H H L L L L L H L 
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7.3. Results 

7.3.1. Magnetic Resonance Imaging 

Heterogeneous displacements and strains were observed within the three discs. The 

nucleus regions of the discs were found to exhibit large transverse displacements in 

response to applied loading (Figure 7.3). In contrast, displacements near the outer edge of 

the discs did not typically display large displacements orthogonal to the direction of 

loading, suggesting little radial expansion of the annulus. 

 

 

Figure 7.3: Heterogeneous displacement fields were measured in three human 

intervertebral discs subjected to an axial load of 445 N. High displacements may be seen 

occurring in the transverse directions at the center of the discs. In contrast, very small 

transverse displacement is observed in the outer regions of the discs, indicating little 

radial expansion of the disc as a whole to compression. 
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Non-symmetric strains and shear behavior evident in the discs indicate that deformation 

was not purely in the axial direction and that a degree of non-uniform bending took place 

within the discs during the period of applied load (Figure 7.4). 

 

 

Figure 7.4: Strain fields in the coronal and sagittal planes were determined for each disc. 

In this representative disc, higher strains to one side of the disc indicate some bending 

behavior in the disc in response to the axial load. High shear strains in this disc also 

indicate shearing of the structure occurred during the applied load. 

 

DTI results of the mean diffusion within the discs show mean diffusion values of 1.8e-3 

      within the central region of the disc, with values decreasing to values of 1.0e-3 

      near the outer boundaries (Figure 7.5). Calculations of fractional anisotropy 

within the discs showed large central regions of low anisotropy (Figure 7.6). This is 

typical of an isotropic nucleus, as well as a transition zone of low structural organization 

between the nucleus and outer annulus region. In regions of high anisotropy, the direction 
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of highest diffusion tended to align with the axial and out-of-plane directions (Figure 

7.7). This indicates similarly oriented fibril alignment within the outer annulus, which 

would agree with typical fibril orientations observed in the anatomy. 

 

 

Figure 7.5: Mean diffusion values were calculated for each disc from DTI. These results 

show the highest diffusion occurring in the center of the disc, with values decreasing with 

radial distance from the center. 
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Figure 7.6: The fractional anisotropy of diffusion was calculated for each disc. These 

calculations show diffusion was highly isotropic in the center of the disc. The fractional 

anisotropy was highest near the outer edges of the discs, where fibrils in the annulus are 

highly oriented. 
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Figure 7.7: The direction of highest diffusion was calculated from the DTI data to 

provide an indication of collagen fibril alignment in the discs. In the outer region, where 

fractional anisotropy was highest, diffusion was found to occur primarily in the axial and 

out of plane directions consistent with typical alignment of collagen fibrils in the annulus 

of a normal intervertebral disc. 
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7.3.2. Computational Analysis of Human Intervertebral Disc 

Neo-Hookean parameters determined by the finite strain-based model for the three discs 

are summarized in Table 7.3. Mean values for    were 8.60 MPa, 1.18 MPa, and 1.48 

MPa for the nucleus, inner annulus, and outer annulus regions, respectively. Similarly, 

mean values for    were 3.74 MPa, 4.20 MPa, and 0.72 MPa for the nucleus, inner 

annulus, and outer annulus, respectively. Large variations in parameter estimates were 

found to occur between discs for the three sub-regions. 

 

Table 7.3: Mean and STD values of constants of the three discs and mean results.  

  Nucleus Inner Annulus Outer Annulus 

Disc 1 

   (Pa) 7.93e6 4.28e-2 1.27e-4 

   (Pa) 9.67e6 1.26e7 1.49e-10 

  (Pa) - - 2.22e-14 

Disc 2 

   (Pa) 1.29e7 2.47e-14 2.88e-4 

   (Pa) 1.01e-6 1.19e-9 2.16e6 

  (Pa) - - 0 

Disc 3 

   (Pa) 4.97e6 3.54e6 4.43e6 

   (Pa) 9.67e6 1.01e-6 1.56e6 

  (Pa) - - 1.05e-4 

Mean ± STD 

   (Pa) 8.60e6 ± 3.27e6 1.18e6 ± 1.67e6 1.48e6 ± 2.09e6 

   (Pa) 3.74e6 ± 4.24e6 4.20e6 ± 5.94e6 7.21e5 ± 1.02e6 

  (Pa) - - 3.51e-5 ± 4.96e-5 
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Principal stresses (Figures 7.8-7.10) and the components     of the stress tensor 

(Appendix A) were calculated for all discs. Compressive normal stresses in the range of 

2-3 MPa were calculated throughout the majority of the nucleus and inner annulus 

regions, with significantly lower stresses estimated throughout the outer annulus region. 

Concentrations in stress were found to occur at the center axis of the discs, which also 

coincides with the intersection line of the imaging planes in which displacements were 

measured. 

 

 

Figure 7.8: Isometric, sagittal (y-z plane), coronal plane (x-z), and transverse (x-y) plane 

views of principal stress    for a representative disc. 
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Figure 7.9: Isometric, sagittal (y-z plane), coronal plane (x-z), and transverse (x-y) plane 

views of principal stress    for a representative disc. 
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Figure 7.10: Isometric, sagittal (y-z plane), coronal plane (x-z), and transverse (x-y) plane 

views of principal stress    for a representative disc. 
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7.3.3. Sensitivity Analysis 

Evaluation of the sensitivity of the model Neo-Hookean material parameters showed that 

the applied loading condition input to the model was the most consistently sensitive 

parameter, resulting in the highest sensitivity factor for six of the seven outputs. The 

exception was parameter    in the outer annulus, which was most sensitive to changes in 

the nucleus fluid volume fraction (Table 7.4). 

 

Table 7.4: Results of the Cotter’s sensitivity analysis for Neo-Hookean parameters    and 

   at each disc sub-region (mean ± standard deviation). 

 Nucleus Inner Annulus Outer Annulus 

                     

      0.84 ± 0.17 0.24 ± 0.13 0.49 ± 0.19 0.39 ± 0.05 0.27 ± 0.11 0.18 ± 0.12 0.63 ± 0.26 

           0.03 ± 0.05 0.20 ± 0.03 0.07 ± 0.07 0.07 ± 0.07 0.17 ± 0.01 0.17 ± 0.02 0.04 ± 0.06 

 
  

  0.07 ± 0.08 0.18 ± 0.03 0.15 ± 0.05 0.20 ± 0.04 0.22 ± 0.00 0.28 ± 0.02 0.10 ± 0.05 

 
   

  0.02 ± 0.03 0.19 ± 0.02 0.15 ± 0.06 0.17 ± 0.02 0.14 ± 0.03 0.20 ± 0.03 0.13 ± 0.09 

 
   

  0.03 ± 0.03 0.19 ± 0.02 0.15 ± 0.06 0.17 ± 0.03 0.20 ± 0.06 0.17 ± 0.04 0.10 ±0.08 

 

7.4. Discussion 

Compressive stresses throughout the disc structure were highest in the nucleus region for 

all discs, with lesser compressive stresses observed in the inner annulus and minimal 

stresses demonstrated in the outer annulus. This result as well as the overall magnitude of 

stress in the nucleus was consistent with measures by other studies of internal disc 

pressure during physiologically relevant loading [98, 100-102]. As a result of the low 

stress state within the outer annulus, the fiber-reinforced model did not play a significant 

role in the results. This may be largely due to the discs showing little evidence of either 

radial expansion or axial tension due to bending. In scenarios where the dominate 
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deformation state of the annulus is compression, the annulus has been found to 

demonstrate little direction dependency [34]. Controlled torsion or disc bulging loading 

scenarios would likely result in a greater importance for the inclusion of a fiber-

reinforced model. 

Parameter estimates were found to vary dramatically between samples. These results may 

be due in part to the effect of unbalanced loading conditions in the discs. Such conditions 

may result in a material response that is a combination of axial, shear, and bending 

loading behavior rather than simply the assumed axial loading condition. As a result, 

more knowledge of the loading distribution or the analysis of alternate loading scenarios 

that place a more consistent deformation across the disc may produce more consistent 

and repeatable model results. Future work towards the optimization of loading conditions 

for the modeling of IVD mechanics may also be useful towards the development of in 

vivo studies. 

Small areas of concentrated stress were observed in the stress fields near the center of 

each disc. This appears to be due to slight discontinuities in the displacement fields at the 

intersection point of the two imaging planes. When displacements are interpolated 

between the two planes, discontinuities near the intersection point may cause spikes in 

the deformation gradient. It is possible that the process of smoothing the raw 

displacement data during processing may be the source of these discrepancies.  

The sensitivity analysis of the model indicated that load was the most sensitive input 

parameter to the model outputs. For six of the seven material outputs, the loading 

condition was the most sensitive input parameter. Surprisingly, the parameter    in the 

outer annulus region was most sensitive to fluid volume fraction of the nucleus. The inner 

annulus region parameter    also showed some sensitivity to this parameter. It is possible 

this may be due in part to the effect fluid content has on the load-bearing qualities of the 

nucleus region. Physically, this is somewhat analogous to observations during the 

degeneration process when the nucleus suffers a loss in water content or becomes 
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otherwise compromised. The loss of fluid content in the nucleus often shifts load 

distribution outward, causing increased compressive loading on the annulus and, 

subsequently, further deterioration of the annulus structure [34]. 

The methods presented in this chapter represent a significant step forward towards the 

three-dimensional in vivo mathematical analysis of intervertebral disc mechanics solely 

from MRI-based measures of displacement and composition. With further future 

development, such models may eventually permit diagnostic, image-based stress analysis 

of tissue in clinical settings, where traditional finite element methods would otherwise 

not be feasible. 
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CHAPTER 8. SUMMARY AND FUTURE WORK 

 

The primary objective of this work was to develop a computational framework for the 

noninvasive analysis of soft tissue stresses and material parameters using MRI-based 

measures.  

The first step towards this goal was the modeling of a two-dimensional stress response of 

a homogeneous material using only knowledge of in-plane deformations and loading 

state. This model was applied to the analysis of juvenile porcine cartilage experiencing a 

cyclic applied load. Material properties of the cartilage were estimated for three 

constitutive relations. The relations investigated were linear elastic, incompressible Neo-

Hookean, and incompressible Mooney-Rivlin material models. The incompressible Neo-

Hookean relationship was found to be the most appropriate model for characterizing the 

nonlinear, large strain behavior of the cartilage when only in-plane deformations and 

loading condition are known. 

The modeling methods were then expanded to perform analyses of multi-region, 

heterogeneous systems. Stresses and material parameters were estimated for a rabbit 

intervertebral disc system. Measures of local biochemical composition were used in the 

development of the material models, allowing for the inclusion of heterogeneous material 

behavior. Both degenerated and non-degenerated disc states were analyzed in the model. 

The stress response of the discs were found to agree well with behavior characteristic of 

both healthy and degenerated states, suggesting future potential for noninvasive analysis 

of degeneration. 

Further expansion of the imaging-based model was focused on allowing for the analysis 

of porous biomaterials. This model was subsequently created and validated for an agarose 
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gel system. An axisymmetric model accounting for the presence of an unbound fluid 

constituent within a porous solid matrix was used in the analysis. The force-displacement 

response of the gels was measured in unconfined compression as a means of evaluating 

the accuracy of material parameter estimates. Results for the solid constituent parameters 

calculated by the finite strain-based model were found to agree well with those fit to the 

unconfined compression force-displacement curve. 

Finally, the multi-constituent mixture model was applied towards the analysis of an in 

situ stress response of human intervertebral discs subjected to axial loading. Magnetic 

resonance imaging measures of diffusion magnitude and direction were used to identify 

material sub-regions within the discs and to provide an indication of local microstructure. 

Stress behavior characteristic of the loading response of typical intervertebral discs was 

observed. A large variance in material parameter estimates across the sample size 

suggests that measures of the disc response during more highly controlled deformations 

may be necessary to better constrain parameter estimates in similarly complex models. 

Under the conditions of the current models, where a given system is assumed to be in a 

quasi-steady state and the influence of time-dependent behavior is assumed negligible, a 

compressible solid material model may be sufficient for estimating the stress state for 

certain systems. To maximize the application of a multi-constituent model, it may be 

desirable to repeat data acquisition for a system after varying periods of extended 

relaxation under applied loading. This would allow for longer periods of fluid exudation 

from the system. In turn, this could potentially lead to an enhanced capability of 

predicting the time-dependent response of the tissue or the influence of permeability and 

diffusion to the load response. Due to the time requirements, such experiments would 

lend themselves more readily in the short term to research applications investigating 

tissue mechanics and load response than to clinical applications. 

The next step for this work is the application of the modeling methods described here to 

in vivo systems. Other short-term extensions of these methods may focus on extending 
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the results of the finite strain-based models to allow for the prediction of behavior under 

high strain rate loading conditions. Under these conditions, the fluid motion and drag 

force terms of the porous mixture model will become significant and a time-dependent 

stress response will have a larger influence. Such applications would open possibilities to 

a number of potential research directions, including tissue impact modeling.  

The work performed herein presents a new and novel methodology for the analysis of 

soft tissue biomechanics, and is the first to use displacement-encoded MRI as the 

foundation for noninvasive cartilage and intervertebral disc stress analysis. This work 

represents a significant step forward in noninvasive techniques for the quantification of 

material behavior in soft biomaterials. Development and enhancement of the methods 

presented here may allow for valuable insight into long term tissue degeneration models, 

or open pathways towards noninvasive diagnostic stress modeling in clinical settings. 

Ultimately, it is hoped that future advancement of MRI-based stress and material analysis 

will permit wide-ranging insights into the mechanics of a number of soft biomaterial 

systems that are otherwise not possible with current modeling and measurement 

techniques. 
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 Stress Results for a Human Intervertebral Disc during Applied Axial Loading 

 

 

Figure A.1: Isometric, sagittal (y-z plane), coronal plane (x-z), and transverse (x-y) plane 

views of     for a representative disc. 
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Figure A.2: Isometric, sagittal (y-z plane), coronal plane (x-z), and transverse (x-y) plane 

views of     for a representative disc. 
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Figure A.3: Isometric, sagittal (y-z plane), coronal plane (x-z), and transverse (x-y) plane 

views of     for a representative disc. 
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Figure A.4: Isometric, sagittal (y-z plane), coronal plane (x-z), and transverse (x-y) plane 

views of     for a representative disc. 
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Figure A.5 Isometric, sagittal (y-z plane), coronal plane (x-z), and transverse (x-y) plane 

views of     for a representative disc. 
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Figure A.6: Isometric, sagittal (y-z plane), coronal plane (x-z), and transverse (x-y) plane 

views of     for a representative disc. 
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Figure A.7: Isometric, sagittal (y-z plane), coronal plane (x-z), and transverse (x-y) plane 

views of     for a representative disc. 
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Figure A.8: Isometric, sagittal (y-z plane), coronal plane (x-z), and transverse (x-y) plane 

views of     for a representative disc. 
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Figure A.9: Isometric, sagittal (y-z plane), coronal plane (x-z), and transverse (x-y) plane 

views of     for a representative disc. 
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