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ABSTRACT 

Grant, Darion Shawn. Ph.D., Purdue University, December 2013. Cloud To Cloud 
Registration For 3D Point Data. Major Professors: James Bethel and Melba Crawford. 
 
 
The vast potential of digital representation of objects by large collections of 3D points is 

being recognized on a global scale and has given rise to the popularity of point cloud data 

(PCD). 3D imaging sensors provide a means for quickly capturing dense and accurate 

geospatial information that represent the 3D geometry of objects in a digital environment. 

Due to spatial and temporal constraints, it is quite common that two or more sets of PCD 

are obtained to provide full 3D analysis. It is therefore quite essential that all the PCD are 

referenced to a homogeneous coordinate frame of reference. 

 

This homogeneity in coordinates is achieved through a point cloud registration task and it 

involves determining a set of transformation parameters and applying those parameters to 

transform one dataset into another reference frame or to a global reference frame. The 

registration task typically involves the use of targets or other geometric features that are 

recognizable in the different sets of PCD. The recognition of these features usually 

involves the use of imagery, either intensity images or true-color images or both. In this 

dissertation, cloud-to-cloud registration, which is also called surface matching or surface
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 registration is investigated as an alternative registration method, which has potential for 

improved automation and accuracy.  

 

The challenge in cloud-to-cloud registration lies in the fact that PCD are usually 

unstructured and possess little semantics. Two novel techniques were developed in this 

dissertation, one for the pairwise registration of PCD and the other for the global 

registration of PCD. The developed algorithms were evaluated by comparing with 

popular approaches and improvements in registration accuracy up to four fold were 

obtained. The improvement obtained may be attributed to some of the novel 

considerations introduced in this dissertation. The main novel idea is the simultaneous 

consideration of the stochastic properties of a pair of scans via the symmetric 

correspondence.  
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CHAPTER 1. INTRODUCTION 

In recent years the interest in three dimensional (3D) coordinate data capture has seen 

rapid growth in a variety of research and applied communities. The vast potential of 

digital representation of objects by large collections of 3D points is being recognized on a 

global scale and has given rise to the popularity of point cloud data (PCD). These 

collections of 3D points are frequently on the order of hundreds of thousands or even 

more (Cheok, 2006). They provide a dense and accurate means for quickly capturing and 

representing the 3D geometry of objects in a digital environment. Along with the vast 

potential of PCD however, come numerous research challenges, one of which is point 

cloud registration (Lichti et al., 2008). 

 

It is quite common with PCD that two or more sets of coordinate data are obtained with 

each dataset having its own coordinate frame of reference. The task of point cloud 

registration involves determining a set of transformation parameters and applying those 

parameters to transform one dataset into another reference frame or to a global reference 

frame (Cheok, 2006). The challenge lies in the fact that PCD are usually unstructured and 

possess little semantics. Thus it is virtually impossible to establish exact point 

correspondences between sets of PCD. Various methods exist to deal with this challenge 

and this dissertation explores the use of point-to-nearest plane correspondences. In this 
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dissertation, mathematical concepts are developed and described for the registration of 

PCD. These concepts were implemented in the form of computer algorithms, and the 

algorithms will be discussed briefly. Experimental results will then be presented and 

discussed to evaluate the developed concepts and the final conclusions and 

recommendations will also be included in this dissertation. 

 

The remainder of this introduction chapter will give some background on PCD. Here, the 

prevalent methods currently being used for obtaining PCD will be discussed and some of 

the applications of PCD will be provided. The research motivation will then be presented, 

followed by the goals and objectives of the research work. The introduction chapter 

concludes with an outline of the thesis organization. 

 

1.1 Background of Point Cloud Data 

The wide-spread adoption of PCD can perhaps be attributed to three major driving forces. 

First, the technological advancements in ranging sensors and techniques have given rise 

to a large number of 3D imaging systems which provide alternative means of acquiring 

PCD. These systems acquire 3D coordinate data at rapid rates operating on the order of 

thousands of measurements per second or faster. They include laser scanners, 3D optical 

scanners, 3D range cameras, 3D flash LiDARs, stereo vision systems and other devices 

and processes that can deliver 3D coordinate data (Huber, 2011; Cheok, 2006). There is 

now great flexibility in the size, mobility, accuracy, acquisition rates, operating distances, 

and ultimately the cost of these 3D imaging systems. This choice in available sensors has 
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increased the commercial viability of adopting 3D imaging systems (King and Li, 2012; 

Sansoni et al., 2009) and by extension, PCD. 

 

Another major driving force has been the notable progress in software processing tools 

for PCD. In the last five to ten years, the research community has experienced increased 

activity with numerous conferences, workshops and special issue journal publications 

which were focused on processing algorithms (Lichti et al., 2008, King and Li, 2012; 

Bretar et al., 2011; Lichti et al., 2006). The dissemination of PCD and software tools has 

greatly benefitted from the open source movement as researchers and developers actively 

participate in data and knowledge sharing. The direct result has been that a suite of 

software libraries and tools has become readily available for point cloud processing. 

Some examples include LAStools, libLAS, libE57, PCL, PDAL, ITK, MeshLab, and 

CloudCompare. Furthermore, there has been significant progress in the standardization of 

file formats to facilitate data interchange among the ever-growing user community. The 

two most popular public file formats are the LAS and E57 formats. The LAS format was 

developed by the American Society of Photogrammetry and Remote Sensing (ASPRS) 

about ten years ago, to store PCD from airborne laser scanning (ALS). Since then there 

have been many improvements and the fifth format specification (LAS 1.4) was released 

in November 2011. This specification now accommodates PCD from other platforms 

(ASPRS, 2011). The E57 file format is more generic in nature and was developed about 

five years ago by the American Society for Testing and Materials (ASTM) (Huber, 2011). 

 

 



4 

 

A third major driving force has been the increased appreciation by the ever-growing user 

community, of the potential of 3D digital representation of objects. 3D digital models of 

people, animals, plants, objects and sites are of great interest to scientists, engineers, 

medical personnel, persons in the entertainment industry, and even clothes retailers. The 

spectrum of applications is wide and includes digital terrain modeling, digital 

documentation of cultural heritage, forensics, robotics, medical imaging, computer vision, 

forest structure estimation, 3D printing, and city modeling, to name a few. Two of the 

more recent industrial applications of PCD are arguably the most strategically placed to 

propel the utilization of PCD even further. These applications are the entertainment and 

clothing industries. In the entertainment industry, PCD are being used in motion sensing 

associated with gaming devices such as the Kinect sensor (Kinect, 2013). In the clothing 

industry, PCD are being used to obtain the perfect fit in shoe size and clothes size (SPAR, 

2012). 

 

These three major driving forces have combined to make PCD nearly ubiquitous. There is 

still significant ground to cover in the processing of PCD. One of these areas is point 

cloud registration, which is the focus of this dissertation. 

 

1.2 Motivation 

3D imaging systems generally operate with two distinct characteristics. First, they can 

only capture 3D geometry of the portions of objects that are within their line of sight. In 

many applications, the line-of-sight limitation requires either that the 3D imaging system 

or the objects of interest be moved, to obtain a complete 3D digital model. For example, 
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terrestrial laser scanning (TLS) is an active laser-based 3D imaging system which 

operates on a tripod platform (Lichti et al., 2008).  In a typical TLS project, the platform 

must be moved two or more times to capture the 3D geometry of the entire object space 

because there is often occlusion. In Esser and Mayer (2007), the authors reported the use 

of 1168 scanner setups (or tripod positions) in their attempt to digitally document early-

Christian wall paintings at the Domitilla Catacomb in Rome, with TLS. 

 

Second, the acquired 3D coordinates of objects are intrinsically referenced to the position 

and orientation of the system at the epoch of data capture. Some 3D imaging systems 

operate on mobile platforms, such as in ALS and mobile laser scanning (MLS). These 

mobile systems often include a positioning and orientation system (POS), which allows 

all the captured PCD to be georeferenced to a common coordinate frame (King and Li, 

2012). The static based 3D imaging systems such as those used in TLS, and in the 

entertainment industry (Kinect, 2013) do not typically include POS, however. Thus, PCD 

obtained at different platform locations have to be merged (or registered) to have all the 

data in the same coordinate reference frame. In the case of turn table 3D imaging systems 

as used in computer vision, the objects are moved and the imaging system is static 

(Bergevin et al., 1996). In this application, the obtained PCD are relative to the position 

and orientation of the object being imaged. Thus, every time the object moves coordinate 

registration is required. 

 

Point cloud registration is also required in mobile applications that utilize POS. An 

example is 3D city modeling. The PCD obtained from ALS capture the geometry from an 
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aerial perspective and building facades are occluded. PCD from other 3D imaging 

systems such as MLS and/or TLS are needed and must be merged with (or registered to) 

the PCD from ALS. In general, there exist many other applications that require 

registration of PCD, for example sensor calibration and accuracy assessment. Point cloud 

registration is therefore an absolutely essential process and impacts the final accuracy of 

3D modeling and analyses that follow (Akca and Gruen, 2010, Jacobs, 2005). 

 

1.3 Objectives 

The research community has recognized the importance of point cloud registration and 

has devoted much attention to this topic over the past two decades (Lichti et al., 2008). 

The primary aim of most of the research done in this area has been to obtain a fully 

automated method. Cloud-to-cloud (or surface based) registration has been pursued by 

many researchers over the last two decades to fulfill this aim. This registration method 

may potentially reduce or remove the dependency on targets (or tie points) and utilize the 

accuracy potential of the PCD (Akca and Gruen, 2008). In cloud-to-cloud registration 

methods the transformation parameters are obtained by establishing correspondences 

between the disparate 3D coordinate data. These methods can be divided into two groups, 

coarse and fine registration methods. Coarse registration methods determine good initial 

approximations for the registration parameters between overlapping sets of PCD. Fine 

registration methods assume that initial registration parameters exist and they aim to 

improve these parameters. 
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The interest in this dissertation is in the so-called fine registration methods, since in many 

applications especially among the geomatics community, initial registration parameters 

are typically available. This dissertation presents mathematical concepts developed to 

improve the accuracy of cloud-to-cloud registration with two main objectives. The first 

objective is to improve the registration accuracy of a pair of overlapping PCD (i.e. 

pairwise registration). This is done by utilizing the stochastic properties of all observables 

that contribute to the determination of the registration parameters. This has been lacking 

in many existing approaches as researchers have made certain assumptions in their 

stochastic models and neglected certain properties that this dissertation includes. 

 

The second objective of this research is to improve the registration accuracy of multiple 

sets of PCD (i.e. global registration). A common approach to registering multiple sets of 

PCD is to perform a series of individual pairwise registrations among overlapping pairs 

of PCD. This sequential pairwise registration has its advantages and disadvantages, one 

of which is that the final solution may not be globally optimal. An alternative 

simultaneous approach is developed in this research to address some of these 

disadvantages. 

 

1.4 Thesis Organization 

The remainder of this thesis is organized as follows. Chapter two reviews the literature 

related to methods of obtaining PCD and as well as registration methods. The review on 

registration methods first looks at pairwise registration methods. This is followed by a 

review of the related work on global registration methods. Chapters three and four 
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introduce the proposed methods for cloud-to-cloud registration. The proposed pairwise 

approach is presented first in Chapter three, along with experimental results and 

discussions. Chapter four includes the proposed global approach with the experimental 

results and discussions. Final conclusions, future work and recommendations are 

discussed in Chapter five. 
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CHAPTER 2.  LITERATURE REVIEW 

The objective of point cloud registration is to align disparate PCD into one common 

coordinate reference frame. This reference frame may be an established geodetic 

coordinate frame such as the world geodetic system 1984 (WGS84), universal transverse 

Mercator (UTM) or state plane coordinate system. Local and/or arbitrary coordinate 

frames may also be used as the reference frame. The task of registration involves 

determining a set of transformation parameters and applying those parameters to 

transform one dataset into another reference frame (Cheok, 2006). For this to be achieved 

there must exist a means of establishing correspondences among the disparate coordinate 

data sets. Perhaps one of the most popular registration methods is the use of targets or 

other features that are recognizable in the different sets of PCD (Akca and Gruen, 2008; 

Elkrachy, 2008; Jacobs, 2005). The recognition of these features usually involves the use 

of imagery, either intensity images or true-color images or both. 

 

Cloud-to-cloud registration, which is also called surface matching or surface registration 

(Akca and Gruen, 2008; Akca, 2007, Audette et al., 1999), is an alternative method with 

the potential for improved automation and accuracy (Akca and Gruen, 2008). With cloud-

to-cloud methods, correspondences are established based only on the 3D coordinate data 

and they require that the sets of PCD overlap each other. One category of these methods 
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aims to establish correspondences that determine good initial approximations for the 

transformation (or registration) parameters that are also globally optimal. This category is 

referred to as coarse registration. Examples of this category include the use of point 

signatures, spin images, normal distribution transforms and segmentation methods 

(Brenner et al., 2008; Matabosch, 2007). 

 

Another category of cloud-to-cloud methods is called fine registration. In these methods 

it is assumed that approximate values of the transformation parameters exist. These 

values can be obtained from the 3D imaging system’s acquisition mode or from the 

output of some prior coarse registration. An iterative scheme is then typically employed 

to refine these approximate values and minimize a registration error metric between the 

sets of PCD. Like coarse registration, fine registration methods also establish 

correspondence features among sets of PCD. These features can involve points and 

various geometric features or shapes that are derived from the points. Derivative 

geometries may include lines, planes, higher order surfaces, TINs, or DEMs. 

 

The focus of this dissertation is on fine registration and the related literature will be 

discussed in terms of two different modes. These modes will be referred to as pairwise 

registration and global registration. In pairwise registration the algorithms are concerned 

with a single pair of overlapping PCD, while with global registration, multiple sets of 

PCD need to be registered. 
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2.1 Pairwise Registration 

Fine registration for pairwise cloud-to-cloud registration has a long history in the 

literature. Although methods can be traced as far back as 30 years ago (see Potmesil 

(1983)), the seminal work was presented in the early 1990’s. Three groups of researchers 

(Chen and Medioni, (1991), Besl and McKay, (1992), and Zhang (1992)) independently 

developed similar registration methods about the same time. The name given by Besl and 

McKay (1992) for their method was the Iterative Closest Point (ICP) method. The three 

presented methods involve the iterative minimization of an error metric between 

overlapping PCD. The methods of Besl and McKay (1992) and Zhang (1992) may be 

referred to as point-to-point methods. Their methods utilize the actual points from both 

sets of PCD. Chen and Medioni (1991) utilize points from one set of PCD and local 

tangent planes in the other. This method may be referred to as a point-to-plane method. 

These three methods are sometimes referred collectively in the literature as the ICP 

method. However in this research it is preferred to distinguish these two registration 

paradigms. The method by Chen and Medioni (1991) is referred to as an ICPlane method. 

The methods of Besl and McKay (1992) and Zhang (1992) are referred to as ICPoint 

methods. 

 

2.1.1 ICPoint Methods 

Besl and McKay (1992) developed a method aimed at registering PCD that describes a 

rigid object (the data) to some known surface model of that object (the model). The 

model may be originally represented by points, lines, curves, or parametric surface. 

Assuming the model can be decomposed into points, then for each point in the data the 
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closest model point is obtained. The rotation and translation parameters that minimize the 

Euclidean distance (or error) between the set of closest point correspondences are then 

determined. These least squares parameters are used to transform the data and thus update 

the point coordinates. The process of closest model point correspondence, least squares 

parameter estimation and data transformation is repeated until the change in the data 

point coordinates falls below some threshold. Besl and McKay (1992) showed that this 

iterative algorithm converges monotonically to a local minimum with respect to the mean 

square distance objective function. The authors used the quaternion approach for 

obtaining the least squares parameters. It is important to note that the stochastic 

properties of the sets of PCD were ignored by Besl and McKay (1992). Also, this 

approach performs most accurately when the data (PCD representing the rigid object) is a 

subset of the model (PCD representing the known surface model). Besl and McKay (1992) 

also included an accelerated method in their original work. This method monitors the 

changes in parameter space and performs extrapolation to help predict the local minimum 

parameters in fewer iterations. 

 

Zhang (1992) presented a similar approach soon after Besl and McKay (1992) with one 

major difference. Zhang (1992) made no assumption that one set of PCD was obtained 

from a known surface model. Thus, the presented approach involves the filtering of 

closest point correspondences if their Euclidean distance is above some threshold. This 

filtering makes the approach by Zhang (1992) more robust against outliers and occlusions 

that are common in PCD registration. Two other minor characteristics of the method of 

Zhang (1992) are that k-dimensional (k-d) trees are used for efficient closest point 
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searches and the dual-quaternion method is used for obtaining the least squares 

parameters. One advantage of the dual-quaternion method is that the stochastic properties 

of the PCD are partially included (Zhang, 1992). 

 

Over the last two decades many researchers have modified various fundamental aspects 

of the ICPoint methods by Besl and McKay (1992) and Zhang (1992). One aspect that 

has attracted attention is the closest point search. This is the most computationally 

demanding step of ICPoint methods (Simon et al., 1994). Simon et al. (1994) investigated 

different enhancement strategies including k-d trees, coupled and de-coupled parameter 

acceleration, closest point caching and closest surface point caching. Blais and Levine 

(1995) presented an approach that utilized uniform subsampling to obtain control points. 

The authors also filtered the closest point correspondences by Euclidean distance in a 

manner similar to Zhang (1992). But instead of k-d trees the authors project control 

points along their spherical direction (inverse calibration) to quickly obtain closest point 

correspondences. Lavallee and Szeliski (1995) precomputed a 3D distance map they 

called an octree spline that speeds up the distance computation required in the closest 

point search. Their octree spline is an extension to the classical octree structure and 

leverages the benefits of adaptive spline functions.  

 

Audette and Peters (1999) refined the distance map proposed by Lavallee and Szeliski 

(1995) to produce a closest-point map, which provides explicit point pairs suitable for 

closed-form transformation computation. Greenspan and Godin (2001) developed an 

ordering theorem that prunes the correspondence search space and is more efficient than 
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the k-d tree method or Elias method. Langis et al. (2001) proposed a parallel 

implementation of the Besl and McKay (1992) method where the correspondence 

calculations are distributed among the available processors to reduce the overall 

computational time. Jost and Hugli (2002) proposed a coarse to fine matching approach 

which uses increasingly more of the PCD at each successive iteration. In a similar 

manner, Zinsser et al. (2003) developed a hierarchical control point selection method 

which uses increasingly more points at each hierarchy level. More recently, Kim and Kim 

(2010) proposed a fast ICPoint algorithm that consists of two acceleration techniques. 

They use a hierarchical model point selection and a logarithmic data point search. Liu et 

al. (2012) proposed to use a spherical depth map to facilitate uniform down-sampling of 

the PCD and remove redundant points. Other related work on improving the 

correspondence search may be found in the reviews of Liu et al. (2012), Akca (2007) and 

Liu (2006). 

 

In addition to correspondence search, there have been improvements on other aspects of 

the fundamental ICPoint methods. Some of these aspects include robustness to occlusion 

and outliers, convergence to local minima, consideration of the stochastic properties of 

the PCD, registration accuracy, convergence rate, and parameter estimation. The related 

literature is quite extensive. The interested reader is referred to Akca (2007), Matabosch 

(2007), Bae (2006), Liu (2004) and Rusinkiewicz and Levoy (2001) for useful reviews on 

other ICPoint methods. 
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2.1.2 ICPlane Methods 

Perhaps the most popular point-to-plane approach is that of Chen and Medioni (1991) 

and it has since become the benchmark ICPlane registration method. This approach 

primarily involves two steps. These steps are line-surface intersection to obtain 

correspondences and the estimation of 3D coordinate transformation parameters between 

corresponding pairs of points. The authors developed an iterative approach that utilizes 

point-to-closest-plane correspondences instead of closest point correspondences as in 

ICPoint methods. Given a pair of overlapping PCD that represent the same object, a set 

of points (control points) is selected from smooth regions of one of the PCD. These 

control points are projected along their local surface normals to intersect the surface 

described by the other PCD. This line-surface intersection is done in an iterative manner 

until the change in the coordinates of the intersection points falls below a threshold. 

Local tangent planes are obtained at each intersection point and the transformation 

parameters that minimize the Euclidean distance between control points and tangent 

planes are determined. These least squares parameters are then used to transform the 

control points. The process of line-surface intersection, point-to-plane minimization and 

control point transformation is repeated until the change in the control points falls below 

a threshold. 

 

Because of the similarity of Chen and Medioni (1991) to the ICPoint methods of Besl and 

McKay (1992) and Zhang (1992) many of the improvements used on ICPoint methods 

have also been proposed for ICPlane methods. Gagnon et al. (1994) modified Chen and 

Medioni (1991) in terms of the selection of control points and the search method for 
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corresponding closest plane. The authors extract discontinuous points and discard them to 

obtain feasible control points. These discontinuous points are identified based on least-

squares planar fitting of an 8-point local neighborhood. Occluded points are also 

discarded based on a visibility test. For the closest plane search a two dimensional (2D) 

parametric approach is adopted. Each pair of PCD is converted to a grid structure based 

on a bilinear interpolation of the unstructured PCD. A point in one set of PCD is then 

projected along its surface normal to the parametric surface of the other PCD and the 

intersection point is then obtained. Dorai et al. (1998) also presented an extension to 

Chen and Medioni (1991) in terms of the selection of control points. An iterative scheme 

is devised to remove the most incompatible control point. This incompatible point is 

determined by comparing the distance to its corresponding tangent point with all other 

distances between control points and their corresponding tangent points. At the end of 

this iterative verification process all control points have corresponding tangent points 

such that the distance constraint of rigid transformation is enforced. Park and Subbarao 

(2003) developed an approach that combined Chen and Medioni (1991) with the point-to-

projection ICPoint approach of Blais and Levine (1995). The combined approach of Park 

and Subbarao (2003) called the contractive projection point method was aimed at 

reducing the computational time for obtaining the corresponding intersection point. 

 

The photogrammetric literature includes various ICPlane approaches that were not 

necessarily developed as extensions to Chen and Medioni (1991). Jaw (1999) presented 

an approach for aerial triangulation of photogrammetric images by using unstructured 

ALS data as the control surface. For each measured photo point a neighborhood search 
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was employed to obtain the nearest 3-points and the plane passing through these points 

were determined. The General Least Squares adjustment model was used to determine 

the object space coordinates of photo measured points. The adjustment model minimized 

the Euclidean distance between photo points and their corresponding plane. Jaw (1999) 

used, a diagonal weight matrix in the adjustment thus sacrificing the correlation among 

some of the observations. Maas (2000) organized ALS data into TINs, and the point-to-

TIN elevation differences were used to determine registration parameters for strip 

matching. Schenk et al. (2000) presented a similar registration approach for ALS data. 

Here a study was done to compare the use of elevation differences with the use of surface 

normal differences. Habib et al. (2001) presented an approach called the Modified 

Iterative Hough Transform, where the 3D similarity registration parameters were 

determined through a 2-step process. First there was a sequential and iterative parameter 

determination through the robust Hough transform to establish point-to-plane 

correspondences – the matching step. Then, these correspondences were used in a 

simultaneous least squares adjustment – the least squares solution step.  

 

More recently Akca (2007) presented the Least Squares 3D Surface Matching (LS3D) 

approach. This method was designed for 3D surface data and is an extension of 2D least 

squares image matching. Planes were obtained from 3-point or 4-point local 

neighborhoods through a neighborhood search method, and the registration incorporates 

full 3D geometry in the estimation of the transformation parameters. However, the 

stochastic properties of the local surface normals were neglected in the LS3D approach. 

Habib et al. (2010) presented an approach called ICPatch. The presented approach 
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follows closely on the surface normal minimization method of Schenk et al. (2000). 

Levin and Filin (2010) presented a similar approach to Jaw (1999), where close-range 

photogrammetric imagery were mentioned in the mathematical explanation, but no 

details were provided for implementation purposes. 

 

Other ICPlane methods exist in the literature, for example, Sande et al. (2010). In this 

approach the planes are extracted by a segmentation process, which means that planar 

features involve neighborhoods of typically more than four points. In this research it is 

preferred to exclude such methods in the study, since segmentation is itself an extensive 

research field. The developed approach in this dissertation will involve the utilization of 

corresponding point and planar features obtained from 3-point neighborhood. ICPoint 

methods are attractive in that they require no feature extraction (Lee et al., 2012). 

However, ICPlane methods are more accurate and achieve faster convergence than 

ICPoint methods (Chen and Medioni, 1991). 

 

2.2 Global Registration 

Researchers in the registration community have long recognized that many applications 

of PCD require multiple sets of PCD to be registered. When more than two sets of PCD 

need to be registered, one approach is to perform a series of sequential pairwise 

registration of the overlapping sets of PCD. Only the sequential overlap is considered in 

this approach, and the ignored information (i.e. non-sequential overlap) may potentially 

improve the global registration (Williams et al., 1999; Bergevin et al., 1996).  
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Chen and Medioni (1991) proposed a concatenation approach which utilizes the 

geometric information of previously merged sets of PCD and avoids the error 

propagation of sequential pairwise registrations. In a scenario where three scans overlap 

the transformation parameters needed to register scan 2 to scan 1 are first obtained. Scan 

2 is transformed to the coordinate frame of scan 1 to obtain a merged or concatenated 

dataset. The parameters needed to register scan 3 to the previously concatenated dataset 

are obtained in the typical pairwise approach. The concatenated dataset is then updated 

with the transformed result of scan 3. Gagnon et al. (1994) and Bergevin et al. (1996) 

presented a simultaneous approach that computes transformation parameters for all 

overlapping pairs of PCD. In the method of Chen and Medioni (1991) a concatenated 

scan cannot be modified. Thus, geometric information from subsequent scans that may 

improve the concatenated result is not utilized. This drawback was dealt with by the 

method of Gagnon et al. (1994) and Bergevin et al. (1996), and a better global 

distribution of errors was obtained. The approach of Gagnon et al. (1994) and Bergevin et 

al. (1996) is a global ICPlane approach, where all the scans are transformed 

simultaneously to a common reference frame. Once point-to-plane correspondences have 

been established for all overlapping scans then the transformation needed for each scan to 

be expressed in the reference frame is computed. Thus, given N scans to be registered, N-

1 transformation matrices will be obtained at each iteration, with one of the scans kept 

fixed (the reference frame). Pulli (1999) highlighted the demands of the previous 

methods both in terms of memory requirement and computational cost. The author 

proposed a two-step approach where all overlapping pairs of PCD are first registered, one 

pair at a time, using any pairwise registration method. The second step involves a 
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simultaneous registration that enforces pairwise constraints that were obtained from the 

pairwise registration step. These constraints minimize the motion of overlapping regions 

while non-overlapping regions are free to move.  

 

Williams et al. (1999) presented a novel weighted least squares method to deal with the 

stochastic properties of points in cases where they are heteroscedastically and 

anisotropically distributed. The inclusion of weights for the PCD was previously missing 

in the literature where earlier authors assumed the sets of PCD to have isotropic, 

identically, independent, and normally distributed measurement errors (Williams et al., 

1999). The weighted least squares method of Williams et al. (1999) determines the global 

set of transformation parameters that minimizes the difference between the measured 

point coordinates and their estimated (or adjusted) coordinate values. Scaioni and Forlani 

(2003) presented a semi-automatic procedure that simultaneously registers multiple laser 

scans, based on the photogrammetric aerial triangulation by independent models method. 

The work done here is regarded as semi-automatic as they rely on retro-reflective targets 

for the registration. The interest though, in this research, is in fully automatic registration. 

Sharp et al. (2004) build up a graph that describes the relationship between neighboring 

sets of PCD, and then decompose the graph into basis cycles. They solve the nonlinear 

optimization problem over each basis cycle in closed form, and the solutions for the 

constituent basis cycles are merged using an averaging technique. Beinat (2006) reported 

a general model derived from the Generalized Procrustes Analysis, to obtain the 

simultaneous global registration of a set of PCD. The method is able to simultaneously 

consider all pairs of corresponding points obtained by ICPoint or ICPlane algorithms. 
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The authors reformulate the transformation parameters so they relate the coordinates of 

each set of PCD to a mean common reference coordinate frame. This reference 

coordinate frame is the geometric centroid of globally registered sets of PCD.  

 

Zhai et al. (2006) introduced a closure condition for the global registration of PCD that 

depict a closed-circle (or ring) geometry. In this work, it is assumed that the first and last 

scans can be mathematically related in two ways. One would be through a combination of 

the successive transformations between the first and last scans. The second would be 

through the overlap that exists between the first and last scans. The authors imposed the 

condition that both mathematical relations should result in the same transformed 

coordinates for the last scan, assuming that the first scan is the reference. One novel 

contribution by the authors was their determination of the pairwise registration 

parameters in a simultaneous adjustment model. Akca (2007) proposed a similar 

approach to that of Scaioni and Forlani (2003), except Akca (2007) did not use targets. 

Akca (2007) first obtained correspondences between scans by performing a pairwise 

LS3D on all overlapping scans. The correspondences are thinned (i.e. every n-th 

correspondence is selected), and then used as “fictitious” targets in a simultaneous 

photogrammetric block adjustment by independent models. Kang (2008) extended the 

work of Zhai et al. (2006) by introducing a self-closure constraint among the ring of 

scans. Kang (2008) uses a simultaneous adjustment as in Zhai et al. (2006) where the first 

scan (the reference) appears both at the beginning and the end of the sequential chain of 

scans. The global registration enforces self-closure in that the position of the first scan 

when transformed by the series of sequential sets of parameters does not change. 

 



22 

 

 

Other authors have proposed different global registration approaches. For example, 

Rabbani (2006) and Rabbani et al. (2007) combine registration and modeling in one 

estimation task. The discussed literature however provides an overview of the major 

global registration approaches that have been developed. 
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CHAPTER 3. PAIRWISE REGISTRATION 

The formal definition of pairwise registration begins by first assuming that there exist 

two partially overlapping sets of PCD (or scans)1. It is also assumed that the coordinate 

frames for these scans are different and registration is needed to obtain a homogenous 3D 

model. Let 𝑷 and 𝑸 refer to the 3D point coordinates of the PCD for the two partially 

overlapping scans. These two scans are registered to the same coordinate frame by using 

the 3D 6-parameter rigid-body transformation (Cheok, 2006) such that 

 𝑸 = 𝐑(𝑷) + 𝐭 (3.1) 

𝐑 = 𝑅3(𝜅) ∗ 𝑅2(𝜙) ∗ 𝑅1(𝜔);         𝐭 = [𝑡𝑥, 𝑡𝑦, 𝑡𝑧]T 

In Eq. (3.1) 𝐑  is the conventional 3D orthogonal rotation matrix formed by three 

sequential rotations (𝑅1,𝑅2,𝑅3) about the x-, y-, and z-axes of the 𝑷 coordinate frame, by 

the angles 𝜔, ø, and 𝜅 , respectively. 𝐭  is the vector of translations (𝑡𝑥, 𝑡𝑦, 𝑡𝑧 ) that are 

parallel to the x-, y-, and z-axes respectively, of the 𝑸  frame. The six rigid-body 

transformation parameters are thus 𝜔, ø, 𝜅, 𝑡𝑥, 𝑡𝑦, 𝑡𝑧 .  These parameters describe the 

relative orientation of 𝑷 with respect to (w.r.t.) 𝑸. 

 

Eq (3.1) represents a classical 3D coordinate transformation. This is essentially the 3D 

similarity (or conformal) coordinate transformation (Mikhail and Ackermann, 1976) with 

1 In this research the terms PCD and scans are used interchangeably, as many 3D imaging systems are 
based on laser scanning technology. 
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the scale parameter set to unity. The parameter solution can be obtained in a very 

straightforward manner if exact point correspondences exist. However, 3D imaging 

systems typically acquire unstructured PCD, and no exact point correspondence (or 

labeling) exists. Following the work of Chen and Medioni (1991), it has been established 

that PCD can still be registered without exact point correspondences. This knowledge is 

built on in this research and a new ICPlane method called the P2P registration method 

has been developed. The proposed method extends the works of Akca (2007), Jaw (1999) 

and Levin and Filin (2010). Particular attention is paid to the stochastic properties of the 

local surface normals which were neglected in the work of Akca (2007). A full weight 

matrix is employed instead of the diagonal version in Jaw (1999). Furthermore, the 

registration parameters are solved for, and not point coordinates thus forming a linear 

system of equations with fewer unknowns than in Jaw (1999). Also it is not assumed that 

any of the data represent control surfaces or are error free, as in Chen and Medioni (1991), 

Jaw (1999) or Levin and Filin (2010). Instead, in this work correspondences are 

established on both scans. This is duality of correspondences is referred to as 

commutativity in Godin et al. (1994). In this research work, it is preferred to describe this 

duality as symmetric correspondence. 

 

3.1 Symmetric Correspondence 

Chen and Medioni (1991) selected control points in smooth areas from 𝑷 and perform an 

iterative line-surface intersection to obtain their corresponding locations in 𝑸 . The 

correspondence approach proposed in the P2P method differs from this in three ways. 
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1. The restriction of using smooth areas is removed and all points in 𝑷  may 

potentially be used. Instead of focusing on selecting “suitable” control points, the 

P2P method emphasizes the use of a stochastic model which enables all points to 

potentially contribute to the parameter solution. 

2. Point-to-plane correspondences are established on both scans (see Figure 3-1). 

Corresponding tangent planes (or planar elements) are obtained for scanned points 

both in 𝑷 and 𝑸. This introduction of symmetric correspondences increases the 

redundancy of the adjustment as well as handles the varying point density of the 

sets of PCD (Goddin et al., 1994). Another benefit of the symmetric 

correspondences is that the uncertainty of both scans is considered simultaneously. 

3. No iterative line-surface intersection is done in the P2P method. Rather, like Akca 

(2007) the nearest three sampled points are used to form a planar element. 

 

Let the individual scanned points of 𝑷 and 𝑸 be represented by 𝒑𝑖, and 𝒒𝑖 respectively. 

Considering first those scanned points in 𝑷, each 𝒑𝑖 can be transformed by the current 

approximation of the transformation parameters to obtain the transformed point  𝒑�𝑖. A 

nearest neighbor search is done to obtain the three scanned points in 𝑸 that are closest to 

𝒑�𝑖  in terms of Euclidean distance. This triplet of points is referred to as a planar element 

whose unit normal vector is then determined. The planar element and its unit normal 

vector are denoted by 𝒒𝑒 and 𝒏𝑞 respectively. In a similar manner, a planar element  𝒑𝑒 

and its unit normal vector 𝒏𝑝 can be obtained from the three scanned points in 𝑷 that are 

closest to the transformed point, 𝒒�𝑖 from 𝑸. 
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The transformed points 𝒑�𝑖 and 𝒒�𝑖 are given by 

                    𝒑�𝑖 = 𝐑(𝒑𝑖) + 𝐭;          and         𝒒�𝑖 = 𝐑𝑇(𝒒𝑖 − 𝐭)       (3.2) 

with                                 𝒑𝑖 = [𝑝𝑥,𝑝𝑦,𝑝𝑧]𝑖𝑇;       and          𝒒𝑖 = [𝑞𝑥, 𝑞𝑦, 𝑞𝑧]𝑖𝑇 

 

Potentially one may thus have a correspondence set for each scanned point in 𝑷. This 

correspondence set contains the transformed point, its hypothesized planar element, and 

the unit normal vector of that planar element: {𝒑�𝑖 ,𝒒𝑒 ,𝒏𝑞}. Likewise one may potentially 

have for each point in 𝑸 the correspondence set: {𝒒�𝑖,𝒑𝑒 ,𝒏𝑝}, as depicted in Figure 3-1 

 

 

Figure 3-1 Symmetric Correspondence. Each transformed point is associated with a 
planar element and its unit normal vector. 
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3.2 General Least Squares Adjustment Model 

The registration goal is to minimize the Euclidean distances between transformed points 

and their hypothesized corresponding planar elements. As was introduced by Chen and 

Medioni (1991), an iterative approach is necessary to refine the initial approximations to 

the transformation parameters because Eq. (3.1) is non-linear in relation to the parameters. 

The General Least Squares adjustment model2 (Mikhail and Ackermann, 1976) is used 

for parameter estimation in the P2P method. This adjustment model involves both 

deterministic and stochastic components, and both are of importance in the registration of 

PCD. 

 

3.2.1 Deterministic Model 

The mathematical formulation begins with the point-to-plane distance. Consider a plane 

with unit normal vector 𝒏, whose direction cosines are 𝒂,𝒃, 𝒄 and its normal distance 

from the origin 𝒅. The equation of the plane is given by 

𝒂𝑥0 + 𝒃𝑦0 + 𝒄𝑧0 + 𝒅 = 0    

=> 𝒅 =  −(𝒂𝑥0 + 𝒃𝑦0 + 𝒄𝑧0) 
(3.3) 

In Eq. (3.3)  𝑥0, 𝑦0, 𝑧0 represent respectively the x-, y-, and z-coordinates of a point that 

lies on the plane. The signed distance 𝑘 between an arbitrary point  𝒓, and the plane with 

unit normal vector 𝒏 is 

 

 

𝑘 = 𝒂𝑟𝑥 + 𝒃𝑟𝑦 + 𝒄𝑟𝑧 + 𝒅 

𝒓 = �𝑟𝑥, 𝑟𝑦, 𝑟𝑧�
𝑇
 

(3.4) 

2 The General Least Squares adjustment model is also referred to in the literature as the Gauss-Helmert 
adjustment model, and as the Mixed Adjustment model. 
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If it is also known that the point 𝒖 = �𝑢𝑥,𝑢𝑦,𝑢𝑧�
𝑇
 lies on the plane then combining Eq. 

(3.3) and Eq. (3.4) gives  

 
𝑘 = 𝒂𝑟𝑥 + 𝒃𝑟𝑦 + 𝒄𝑟𝑧 −  �𝒂𝑢𝑥 + 𝒃𝑢𝑦 + 𝒄𝑢𝑧� 

=> 𝑘 = (𝒓 − 𝒖) • 𝒏 
(3.5) 

where (•) is the dot (or inner) product of two vectors.  

 

By symmetric correspondence, two sets of signed distances are obtained, one relating the 

correspondence sets in 𝑷 and another relating the correspondence sets in 𝑸. If 𝑷 and 𝑸 

are in perfect registration then the signed distances between scanned points and their 

corresponding planar elements will be zero. Mathematically, perfect registration may be 

expressed by the following two sets of condition equations which follow from Eq. (3.5): 

𝑭1: (𝒑� − 𝒒) • 𝒏𝑞 = 0;                    𝒒 ∈ 𝒒𝑒 

 𝑭2: (𝒒� − 𝒑) • 𝒏𝑝 = 0;                    𝒑 ∈ 𝒑𝑒  (3.6) 

In Eq. (3.6) 𝒏𝑞 and 𝒏𝑝  represent the unit normal vectors of the planar elements 𝒒𝑒 and 

𝒑𝑒 respectively. 𝒒 and 𝒑 represent any of the three points forming the planar elements 𝒒𝑒 

and 𝒑𝑒 respectively. 𝒑� and 𝒒� represent a transformed point from 𝑷 and 𝑸 respectively as 

defined in Eq. (3.2), but without the subscripts. 

 

The correspondence sets in 𝑷 and 𝑸 yield equations according to Eq.(3.6). The linearized 

form of Eq.(3.6) by Taylor series expansion gives the classical General Least Squares 

equation denoted in Mikhail and Ackermann (1976) as 

 



29 

 

𝑨𝒗 +𝑩Δ = 𝒇 

𝑨 is the Jacobian of the condition equations with respect to the observation  

𝑩 is the Jacobian of the condition equations with respect to the parameter  

𝒗  is the correction term of observations (residual vector   

Δ  is the correction term of the parameters (unknown vector   

𝒇 is the misclosure term (discrepancy vector). 

(3.7) 

 

 

 

 

The known quantities of Eq.(3.7) are 

𝑨 = �𝑨1𝑨2
� ;    𝑩 = �𝑩1𝑩2

� ;    𝒇 = �𝒇1𝒇2
� (3.8) 

where 

𝑨1 = [𝑭1′(𝒑),𝑭1′(𝒒)];                        𝑩1 = 𝑭1′(Δ)                  

𝑨2 = [𝑭2′(𝒑),𝑭2′(𝒒)];                        𝑩2 = 𝑭2′(Δ) 

𝒇1 = −[𝑭1,0];                                         𝒇2 = −[𝑭2,0] 

The observations are the individual scanned points in 𝑷 and 𝑸. These observations are 

combined into an observation vector 𝒍 such that for a pair of correspondence sets (one in 

𝑷 and one in 𝑸) one has 𝒍 = [𝒑,𝒒]𝑻. Here 𝒑 includes both the scanned points that form 

the planar element as well as the scanned point that is transformed and similarly for 𝒒. 

𝑭1′(𝒑),𝑭1′(𝒒)  and 𝑭1′(Δ)  are the partial derivatives (or Jacobians) of the condition 

equation 𝑭1  w.r.t. 𝒑,𝒒 and Δ respectively. Similarly, 𝑭2′(𝒑),𝑭2′(𝒒) and 𝑭2′(Δ) are the 

partial derivatives of the condition equation 𝑭2  w.r.t. 𝒑,𝒒  and Δ  respectively. The 

detailed derivation of these Jacobians is given in Appendix A. 
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The unknown quantities of Eq.(3.7) are the residuals 𝒗, and the parameter corrections Δ 

to the six initial rigid body parameters, 𝜔,𝜙, 𝜅, 𝑡𝑥, 𝑡𝑦, 𝑡𝑧. The residuals may not always be 

of relevance in the current form. Alternatively it may be more meaningful to utilize the 

“equivalent” residuals 𝑨𝒗, which refer to the point-to-plane distances for correspondence 

sets.  The parameters are updated in an iterative fashion by repeatedly solving the 

following normal equation until convergence 

 𝑵Δ = 𝒕 (3.9) 

𝑵 = 𝑩𝑇(𝑨𝑸𝑙𝑙𝑨𝑇)−1𝑩;   𝒕 = 𝑩𝑇(𝑨𝑸𝑙𝑙𝑨𝑇)−1𝒇;   𝑸𝑙𝑙 =
1
𝜎02

Σ 

𝜎02 is the apriori reference variance (typically set to 1)  

Σ   is the Cartesian covariance matrix of the observations. 

 

It must be noted that the correspondence set for a transformed point can potentially 

change at each iteration. Thus there is no iterating performed on the observations as may 

be done in the classical General Least Squares adjustment. Therefore, at each iteration 

only the parameters are improved, hence the reduced forms of 𝒇1  and 𝒇2  in Eq.(3.8). 

However, in cases where the residuals are large (used here loosely) it may be best to 

iterate on the observations as well. One may find that the residuals are large during the 

early iterations, especially if the initial registration parameters are not good 

approximations. 
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3.2.2 Stochastic Model 

The stochastic model impacts the accuracy of the parameter solution in any weighted 

least squares adjustment. Various factors influence the precision of the individual 

scanned points (Soudarissanane et al., 2011; Romsek, 2008; Bae, 2006). These include 

the instrument’s observational precision, geometric factors (e.g. incidence angle), 

radiometric factors (e.g. object reflectivity), and environmental factors (e.g. humidity). 

Each equation of the form in Eq.(3.6) involves two sets of points – the transformed points 

and their corresponding planar elements that are comprised of scanned points. Since these 

points are observations they contain observational error. The proposed P2P registration 

method incorporates the stochastic properties of both point clouds by quantifying the 

uncertainty of both the direct observations (individual points) and the derived quantities 

(planar elements). 

 

3.2.2.1 Individual Point Uncertainty 

The uncertainty of individual points is captured in the covariance matrix of the 

observations which is denoted by Σ in Eq.(3.9). For a single point this covariance matrix 

is of dimension 3x3 and it reflects the impact of the various factors mentioned above. In 

the P2P method the instrument’s precision and the incidence angle are considered, as 

these quantities are either provided (the precisions) or can be determined (the incidence 

angle). 

 

The Cartesian and spherical coordinates of a scanned point 𝒓 are related by 
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𝒓 = �
𝑟𝑥 = 𝜌cos(𝜃)cos(𝜑)
𝑟𝑦 = 𝜌cos(𝜃)sin(𝜑)
𝑟𝑧 = 𝜌sin(𝜃)            

 (3.10) 

In Eq.(3.10)  �𝑟𝑥, 𝑟𝑦, 𝑟𝑧�
𝑇
 are the Cartesian coordinates. Let 𝒔 = [𝜌,𝜃,𝜑]𝑇 be the spherical 

coordinates representing range, vertical angle and horizontal angle respectively. The 

spherical coordinates take values in the following intervals: 𝜌 ∈ [0,∞) , 𝜃 ∈

[−𝜋 2⁄ ,   𝜋 2⁄ ] ,  𝜑 ∈ [0, 2𝜋] where the angular terms are in radians. The trigonometric 

functions of cosine and sine are represented by cos(∙) and sin(∙) respectively. Given the 

precisions of the spherical coordinates and assuming3 there are no correlations between 

these coordinates then the corresponding 3x3 spherical covariance matrix is 

Σ𝑠 = 𝑑𝑖𝑎𝑔��𝜎𝜌2,𝜎𝜃2,𝜎𝜑2�� (3.11) 

where 𝑑𝑖𝑎𝑔(∙) operates on a vector to create a square matrix whose diagonal elements are 

the elements of the vector. 𝜎𝜌,𝜎𝜃,𝜎𝜑 are the precisions of the range, vertical angle and 

horizontal angle respectively.  

 

Soudarissanane et al. (2011) reported that the incidence angle had a cosine effect on the 

precision of PCD that were acquired from TLS. The cosine of the incidence angle for a 

point is given by 

 cos(𝛼) =
𝒃𝒗 • 𝒏

|𝒃𝒗| ∗ |𝒏|
 (3.12) 

3 There may be cases when the spherical coordinates are known to be correlated (especially the angular 
coordinates). In such cases a non-diagonal covariance matrix is warranted. 
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where 𝛼  is the incidence angle, 𝒃𝒗 is the laser beam vector of the point and 𝒏 is the 

local surface normal at the point. The dot (or inner) product of two vectors and the scalar 

multiplication are represented respectively by (•)and (∗). 

 

For any scanned point with coordinates [𝒙,𝒚,𝒛]𝑇  the laser beam vector is 𝒃𝒗 =

[𝒙,𝒚, 𝒛]𝑇 − [𝒙𝟎,𝒚𝟎, 𝒛𝟎]𝑇 where [𝒙𝟎,𝒚𝟎, 𝒛𝟎]𝑇 is the origin of the coordinate frame which 

is typically the zero vector [0,0,0]𝑇 . The normal vector for a point is obtained by 

determining the plane that passes through its three nearest neighboring points. The issue 

of normal estimation for PCD is itself an area of open research with many proposed 

approaches. The optimal neighborhood size is an open question as the size affects the 

estimated normal in some cases. In this research the simplest option of a three-point 

neighborhood is chosen. 

 

If the laser footprint is approximated by a circle, then the diameter of a point at non-

normal incidence (i.e.𝛼 ≠ 0) increases with the cosine of the incidence angle, such that 

𝑑2 ≈ 𝑑1 cos(𝛼)⁄  (Bitenc et al., 2010) as shown in Figure 3-2. The signal-to-noise (SNR) 

ratio of a laser return deteriorates with the cosine of the incidence angle, and the square 

of the range (Soudarissanane et al., 2011), which increases the uncertainty of the range.  
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Figure 3-2 Influence of Incidence Angle on Laser Footprint. The footprint of a return at 
normal incidence (𝑑1) is smaller than at non-normal incidence angle (𝑑2). 

 

Since a large number of 3D imaging systems employ laser scanning, in this work the 

effect of the incidence angle is included in the formulation. The precision of the range is 

thus divided by the cosine of the incidence angle. Soudarissanane et al. (2011) also 

studied the effect of increasing range on the SNR, but this is neglected in the 

implementation of this research, since most laser scanners have their range precision 

given in terms of a constant plus an additional term that varies with range. This additional 

term may have already been assigned to compensate for the range effect on the SNR. 

Furthermore, the incidence angle effect may also have an impact on the precision of the 

spherical angles. This impact may lead to off-diagonal correlation terms in the covariance 

matrix Eq.(3.11). However, these correlations are expected to be small and are thus 

ignored. The updated Eq.(3.11) which includes the cosine angle effect is given by 
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Σ𝑠 = 𝑑𝑖𝑎𝑔 ���𝜎𝜌 cos(𝛼)⁄ �
2

,𝜎𝜃2,𝜎𝜑2�� (3.13) 

 

The 3x3 covariance matrix of a scanned point can be obtained in Cartesian form by 

propagating Eq.(3.13) based on the relationship between spherical and Cartesian 

coordinates given in Eq.(3.10). By error propagation (Mikhail and Ackermann, 1976) one 

obtains the following 

Σ𝑟 = 𝑱𝑟,𝑠 ∗ Σ𝑠 ∗ 𝑱𝑟,𝑠
𝑇  (3.14) 

where                   𝑱𝑟,𝑠 = �
cos(𝜃)cos(𝜑) −𝜌cos(𝜃)sin(𝜑) −𝜌sin(𝜃)cos(𝜑)
cos(𝜃)sin(𝜑) 𝜌cos(𝜃)cos(𝜑) −𝜌sin(𝜃)sin(𝜑)

sin(𝜃) 0 𝜌cos(𝜃)
� 

Σ𝑟 is the covariance matrix of the observations mentioned in Eq.(3.9). 

 

3.2.2.2 Planar Element Uncertainty 

The normals of the planar elements are unique as each plane passes through three points. 

These normals can be determined by any of the simple methods such as the determinant 

method or the covariance approach as used by Bae (2006). Instead of these methods, a 

constrained linear system of equations is formulated, from which the Jacobian of the 

solution w.r.t. the three points is easily obtained. The motivation for using this method is 

that the Jacobian term captures the uncertainty of a planar element. 

 

Given three non-collinear points one can obtain three equations of the form in Eq.(3.3). 

The unknown parameters of this system of equations are the direction cosines and the 

coordinates of the three points are the observations. The centroid of these three points lies 
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on the plane that passes through these points (Bae 2006). The coordinates of the centroid 

are thus chosen as 𝑥0,𝑦0 and 𝑧0. 

 

Eq.(3.3) can be expressed symbolically in a form similar to the classical General Least 

Squares adjustment expression given in Eq.(3.7). It is emphasized here however, that this 

is not a least squares adjustment, but rather simply the solution of a unique linear system 

of equations. The same symbolic usage of the terms of the General Least Squares 

adjustment model is adopted to explain the computation of the Jacobian term. 

 

There are two degrees of freedom for the 3D plane and the linear system is constrained 

by setting the parameters to be the direction cosines of the plane. In other words, the 2-

norm of the vector of parameters should be equal to unity. Thus one has (Mikhail et al., 

2001, pg.354)  

𝒂2 + 𝒃2 + 𝒄2 = 1 (3.15) 

which can be expressed in the linearized form of  

 𝑪Δ = 𝒈             (3.16) 

Expressing the linear system of equations of Eq.(3.3) in the form of Eq.(3.7) and 

combining it with Eq.(3.16) gives a constrained linear system. This constrained system 

requires only one iteration (for the case of three points) to determine the planar 

parameters. The constrained linear system is of the form (Mikhail et al. 2001, pg.405)  

 

�𝑵 𝑪𝑇
𝑪 0

� �Δ𝜆� = �
𝒕
𝒈� 
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 𝑵�          Δ�   = 𝒕� (3.17) 

𝑵 = 𝑩𝑇(𝑨𝑸𝑙𝑙𝑨𝑇)−1𝑩;   𝒕 = 𝑩𝑇(𝑨𝑸𝑙𝑙𝑨𝑇)−1𝒇;   𝑸𝑙𝑙 =
1
𝜎02

Σ 

𝜎02  is the apriori reference variance (typically set to 1), 

Σ    is the 9x9 diagonal covariance matrix of the observations. 

 

The solution to Eq.(3.17) gives the direction cosines of the plane. Now by error 

propagation, the cross-cofactor matrix of the solution vector w.r.t. the observations (𝑸Δ𝑙) 

is given by (Mikhail and Ackermann, 1976, pg.117)  

 
 𝑸Δ𝑙 = −𝜇𝑩𝑇(𝑨𝑸𝑙𝑙𝑨𝑇)−1𝑨𝑸𝑙𝑙 (3.18) 

where  

 �𝑵 𝑪𝑇
𝑪 0

� �𝜇 𝜂𝑇
𝜂 𝛾 � = �𝕀3 0

𝑜𝑇 1
� (3.19) 

with 𝕀3 being the identity matrix of size 3 and 𝑜 being a zero vector of size of 3. The 

Jacobian of the parameters w.r.t. the observations  𝑱Δ𝑙 is then  

𝑸Δ𝑙 = 𝑱Δ𝑙𝑸𝑙𝑙 

 ⇒ 𝑱Δ𝑙 = −𝜇𝑩𝑇(𝑨𝑸𝑙𝑙𝑨𝑇)−1𝑨 (3.20) 

For every contributing point, this 3x9 Jacobian term 𝑱Δ𝑙 is included in the 𝑨 matrix of 

Eq.(3.7) and Eq.(3.8) as described in Appendix A. 

 

3.2.3 Adjustment and Registration Results 

In addition to the final estimated (or adjusted) parameters �𝜔, ø, 𝜅, 𝑡𝑥, 𝑡𝑦, 𝑡𝑧�𝑎𝑑𝑗𝑢𝑠𝑡𝑒𝑑 other 

adjustment quantities can be obtained from the P2P method as a by-product of the 
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General Least Squares adjustment. These quantities include the covariance matrix of the 

estimated parameters Σ∆∆, the transformed (or adjusted) point coordinates of the PCD 

�̂� = �𝑷� ,𝑸��
𝑇
, the covariance matrix of the adjusted coordinates Σ𝑙𝑙, the residuals 𝑣 and the 

estimated reference variance σ�02 (Mikhail et al., 2001, Mikhail and Ackermann, 1976). It 

must be noted that the adjusted parameters are used to transform 𝑷 to give 𝑷� based on 

Eq.(3.1). Since the parameters in Eq.(3.1) describe the transformation of 𝑷 relative to 𝑸 it 

means that points in 𝑸 are not transformed, i.e. 𝑸� = 𝑸. All the adjustment results may 

then be analyzed with the conventional post-adjustment analyses (Mikhail et al., 2001) 

These analyses include tests on the estimated reference variance, tests for blunders, 

computation of confidence region for the estimated parameters and computation of error 

ellipses for the adjusted coordinates. 

 

The adjustment results and post-adjustment analyses may not be sufficient to describe the 

registration accuracy performance. In cases when the true parameters are known or can 

be determined, the absolute error of the estimated parameters can be obtained. In addition, 

the root mean square of the error (RMSE) between the adjusted point coordinates and the 

true coordinates can be determined. In most practical cases however, the absolute error is 

not possible since the true parameters are unknown. The final point-to-plane distances (i.e. 

after iteration termination) were utilized in Chen and Medioni (1991). Here it is proposed 

to use the root mean square (RMS) of these distances as part of the P2P registration 

accuracy assessment. The RMS of these distances will be abbreviated as RMSD in the 

remainder of this dissertation. 
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3.3 P2P Implementation 

The mathematical concepts presented in sections 3.1 and 3.2 were implemented in a 

computer program using the Matlab ® high-level language. The program was used for 

numeric evaluations of the proposed P2P method which will be discussed in section 3.4. 

Some of the practical considerations are mentioned in this section for the benefit of the 

reader who is interested in implementing the P2P algorithm. 

 

3.3.1 Overlap Region Between Scans 

Conceptually, a correspondence set can be obtained for each scanned point in 𝑷 and for 

each point in 𝑸. However, not all the scanned points will participate in the adjustment for 

several reasons. In the formulation of this research, 𝑷 and 𝑸 are partially overlapping, 

thus only those points within the overlapping region are of interest. The exact boundary 

of this overlapping region is not known prior to pairwise registration, however. Assuming 

that the initial approximate transformation parameters are reasonable, it is expected that 

the overlapping region will not change much at each iteration, since this is a fine 

registration.  

 

Overlapping points in  𝑷 are identified by first transforming the scanned points according 

to Eq.(3.2). For each transformed point, its nearest neighbor in 𝑸  is found and the 

distance to this nearest neighbor is then determined. If the distance is above a threshold 

then this point is not in the overlap region. Similarly for points in 𝑸 the distance to their 

nearest neighbor in  𝑷 is found and then compared with the threshold to determine the 

overlapping points. The choice of this threshold would depend on the quality of the initial 
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approximation to the transformation parameters, the density and distribution of the PCD. 

 

The establishment of correspondence sets (see section 3.1) and the definition of the 

overlapping region involve point searching. This is very computationally expensive 

(Simon et al., 1994) and many approaches have been proposed to reduce the 

computational burden. Akca (2007) proposed the use of a boxing data structure where the 

PCD is partitioned into boxes. In this research a k-d tree is employed, since there may be 

huge disparity between the number of points in each box with the box structure (Zhang, 

1992). The k-d tree is a data structure which utilizes a binary search tree and allows fast 

searching of k-dimensional data (Bentley, 1975). Other search methods were presented in 

Simon et al. (1994) for ICPoint methods and they may also be used for P2P and other 

ICPlane methods. 

 

3.3.2 Inliers 

In addition to non-overlapping points, there are also spurious points caused by geometric 

(e.g. edge effects), radiometric (e.g. highly reflective surfaces), and/or environmental (e.g. 

kinematic objects) factors, which need to be filtered. To identify these outliers it is 

assumed that the distances between transformed points and their corresponding planar 

elements follow a Gaussian distribution. Inlier transformed points can then be detected 

based on a threshold value such as (Bae, 2006) 

|𝑘𝑖𝑛𝑙𝑖𝑒𝑟|
𝜎𝑘

≤ 𝑧(𝑎/2) (3.21) 
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|𝑘𝑖𝑛𝑙𝑖𝑒𝑟| is the absolute point-to-plane distance of an inlier transformed point   

𝜎𝑘 is the sample standard deviation of the point-to-plane distances   

𝑎 is the confidence level, (𝑎 = 0.05 is used in this research)   

𝑧(𝑎) is the standard normal distribution with confidence level of 𝑎. 

 

Also, in the implementation of this research, planar elements with poor geometry (i.e. 

near collinear) are ignored. The condition number of the augmented normal matrix 𝑵�  in 

Eq.(3.17) is largely influenced by the geometric quality of a planar element. As the three 

points of a planar element become collinear, the condition number increases to infinity. 

Degenerate planar elements were identified with a threshold value of 1E+13 for the 

condition number. These correspondence sets were ignored. 

 

3.3.3 Correspondence Sets 

At least six unique correspondence sets are needed to determine all the rigid-body 

transformation parameters. In other words, multiple transformed points cannot share the 

same planar element, as this will lead to rank-deficiency in the A matrix of Eq.(3.7)4 (Jaw, 

1999). However, transformed points that are in close proximity to each other may have 

planar elements that share one or two (but not three) common vertices (or scanned points). 

In applications, multiple transformed points may share a planar element. One example is 

when there is a large disparity in point densities between point clouds. All such rank-

4 When two transformed points are close to each other it is possible that the planar elements they are 
assigned to will share common vertices. In this scenario the associated condition equations become 
correlated. This correlation is visible in the equivalent cofactor matrix which will contain off-diagonal non-
zero values. High correlation among condition equations leads to the A-matrix becoming rank-deficient (i.e. 
some equations in the A-matrix are linearly dependent). This rank-deficiency in the A-matrix renders the 
equivalent cofactor matrix to be singular. 
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deficient cases were handled by retaining the first transformed point that was assigned to 

a planar element. The other transformed points that share that planar element were 

ignored. The choice of the transformed point that should be used is a topic for future 

investigation as the current choice is purely ad hoc. The redundancy of the P2P 

adjustment may be calculated as described in Appendix B. 

 

It must be emphasized that the planar elements contribute to the solution of the 

transformation parameters. In addition to unique correspondence sets, the planar elements 

should span the normal space for optimum registration results. In other words, the normal 

vectors of the planar elements should vary as much as possible (Levin and Filin, 2010; 

Schenk et al., 2000). The extent to which the normal vectors of planar elements vary is 

case dependent. As in other ICPlane methods the performance of the P2P method would 

be restricted in cases where there are not much variations within the overlapping region. 

 

3.3.4 Iteration Termination Sets 

Any of the classical adjustment criteria can be used for iteration termination. Akca (2007) 

chose to terminate the iterations once the change in all parameters was smaller than a 

threshold. Since the parameters are of different types (i.e. angular and linear) it is advised 

that two sets of parameter thresholds be used if this option is selected. Chen and Medioni 

(1991) considered the change in the mean square of the point-to-plane distances (i.e. 

mean square error) to decide when the iterations should be terminated. As was mentioned 

by Chen and Medioni (1991) an alternative criterion is an absolute threshold on the mean 

square error itself. 
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In the proposed P2P method the RMS of change in coordinates of transformed points was 

used to terminate the iterations. At each iteration the updated transformation parameters 

are used to transform 𝑷  and 𝑸   according to Eq.(3.2). These updated transformed 

coordinates are compared with the transformed coordinates obtained from the initial 

transformation parameters and the RMS is determined. If the RMS of the change in 

coordinates becomes smaller than a pre-defined threshold then the P2P algorithm is said 

to have converged and iterations are terminated. Change in transformed coordinates 

allows the use of one threshold despite the presence of parameters with linear and angular 

units. In addition to these methods it may also be necessary to set a maximum number of 

iterations to terminate the algorithm even if the RMS never falls below the threshold. 

 

3.3.5 Algorithm 

The inputs to the P2P algorithm are the 3D Cartesian coordinates of a pair of scanned 

points, the 3D imaging system’s precision (assumed to be in terms of range and angles), 

and an initial set of rigid-body transformation parameters. The output of the algorithm 

includes the least squares estimate of the rigid-body transformation parameters, the 

registered pair of PCD with transformed coordinates, the registration error and the 

adjustment statistics.  

 

It is assumed that the 3D imaging system operates a laser scanning mechanism where the 

range, horizontal and vertical angles are observed with their respective precisions. As 

described in section 3.2.2.1 these observables along with their precisions can provide a 
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3x3 Cartesian covariance matrix for each scanned point. If the 3D imaging system does 

not acquire spherical observables (e.g. in the case of stereo photogrammetric-derived 

PCD) then it is assumed that covariance information is still available for the PCD. In 

extreme cases where this covariance information is absent, then the observations can be 

assumed to be equally weighted and the 3x3 identity matrix can be used.  

 

The algorithm involves nine main steps. Steps 1 through 4 are required only once and 

may be considered as the preprocessing steps. In some cases these steps may be the most 

time consuming and in other cases they may not even be needed. For example, step 1 

may not be needed if the PCD is small (few thousands of points or less). Step 2 would be 

ignored if it is known that the pair of PCD are fully overlapping. Step 3 should be ignored 

if the 3D imaging system is not characterized by the incidence angle effect discussed in 

section 3.2.2.1. Step 4 can be ignored if covariance information is already available for 

the PCD. The iterative section of the algorithm (steps 5 to 9) provides the main 

processing component of the P2P method. Steps 5 to 9 are data independent.  

 

P2P Algorithm for pairwise registration of a pair of PCD 

0. Inputs: - 3D coordinates of unstructured pair of PCD:      𝑷 and 𝑸 

            - initial parameter approximations:      �𝜔, ø, 𝜅, 𝑡𝑥, 𝑡𝑦, 𝑡𝑧�𝑖𝑛𝑖𝑡𝑖𝑎𝑙 

            - observations’ precision:      �𝜎𝜌,𝜎𝜃,𝜎𝜑�𝑷 and �𝜎𝜌,𝜎𝜃,𝜎𝜑�𝑸 
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1. Organize 𝑷 and 𝑸 using a spatial data structure (e.g. k-d tree) to facilitate efficient 

point searching. This is strongly advised for PCD with tens of thousands of points 

or more. 

2. Identify and remove points in 𝑷 and 𝑸 that are not in the overlapping region as 

discussed in section 3.3.1. In steps 3 to 8, 𝑷 and 𝑸 represent only those points in 

the overlapping region. 

3. Compute the incidence angles for points on 𝑷 and 𝑸 using Eq.(3.12). 

4. Obtain the 3x3 Cartesian covariance matrix for points on 𝑷 and 𝑸 for example, 

using Eq.(3.14) if applicable (see earlier discussion in this section). 

 

5. For each scanned point obtain a correspondence set. This involves transforming 

the scanned point according to Eq.(3.2) with the current parameters. The 

transformed point’s corresponding planar element is established as in section 3.1. 

The planar element’s unit normal vector and its uncertainty are determined as 

given in section 3.2.2.2. 

6. Exclude outlier transformed points as in section 3.3.2. The distances between all 

transformed points and their corresponding planar elements are evaluated to 

identify and exclude outliers based on Eq.(3.21). 

7. Use all correspondence sets to populate the least squares matrices 𝑵 and 𝒕  in 

Eq.(3.9). The terms of these matrices are obtained as given in Eq.(3.7), Eq.(3.8), 

and Eq.(3.14). 

8. Solve the linear system in Eq.(3.9) to compute the correction to the parameters, 

and update the parameters. 
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9. Check for iteration termination according to section 3.3.4. If iterations should not 

be terminated then return to step 5. If termination criterion has been met then 

obtain registration and adjustment results according to section 3.2.3. Note that all 

the scanned points (including outliers and non-overlapping points) in 𝑷  are 

transformed to obtain 𝑷� . 

 

10. Outputs: - final (adjusted) parameters:   �𝜔, ø, 𝜅, 𝑡𝑥, 𝑡𝑦, 𝑡𝑧�𝑎𝑑𝑗𝑢𝑠𝑡𝑒𝑑 

               - registration and adjustment statistics   RMSE, RMSD, σ�02 

              - registered pair of PCD    𝑷� , 𝑸�  

                    - covariance matrices    Σ∆∆ , Σ𝑙𝑙 

 

 

3.4 Evaluations and Discussion 

The proposed P2P registration method was evaluated in two ways. The first mode of 

evaluation investigated the impact that various modifications to the stochastic model 

could have on pairwise registration. The second mode of evaluations involved the 

comparison of the P2P method with the ICPlane method of Chen and Medioni (1991). 

The results of these evaluations are presented and discussed in this section. 
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3.4.1 Internal Evaluations 

If the stochastic properties of the planar elements are neglected, 𝑨1 and 𝑨2 in Eq.(3.8) are 

reduced. This has a direct impact on the weighting scheme, since the “equivalent” weight 

matrix 𝑾𝒆 for each the correspondence set is obtained by (Mikhail and Ackermann, 1976) 

 𝑾𝒆 = (𝑨𝑸𝑙𝑙𝑨𝑇)−1 (3.22) 

In this section, the effect of point precision on 𝑾𝒆  is investigated analytically and 

experimentally. The experiments involve both simulated and real PCD. The proposed 

P2P adjustment model is referred to as the full model which carries both the terms from 

the transformed points and the planar elements. The model that carries only the terms 

from the transformed points is referred to as the reduced model. 

 

3.4.1.1 Analytical Comparisons 

The “equivalent” cofactor matrix 𝑸𝒆 is expressed as  

 𝑸𝒆 = 𝑨𝑸𝑙𝑙𝑨𝑇 (3.23) 

If 𝑨 and 𝑸𝑙𝑙 are partitioned such that  

 𝑨 = �𝑨𝒑,𝑨𝒒� and 𝑸𝑙𝑙 = 𝑑𝑖𝑎𝑔��𝑸𝒑, 𝑸𝒒�� (3.24) 

then one has  

 
𝑸𝒆 = 𝑨𝒑𝑸𝒑𝑨𝒑𝑇 + 𝑨𝒒𝑸𝒒𝑨𝒒𝑇                  

    =   𝑡𝑒𝑟𝑚1    +      𝑡𝑒𝑟𝑚2               
(3.25) 

where 𝑨𝒑 = [𝑭1′(𝒑),𝑭2′(𝒑)] 𝑇 , 𝑨𝒒 = [𝑭1′(𝒒),𝑭2′(𝒒)] 𝑇  (see section 3.2). 𝑸𝒑 , and 𝑸𝒒 

are block diagonal cofactor matrices, with each participating point in 𝑷 , and 𝑸 
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contributing a 3x3 diagonal covariance matrix which is then scaled by the apriori 

reference variance (see Eq.(3.9)). 

 

Consider a single correspondence set of the form 𝑭1  in Eq.(3.6), (i.e. one condition 

equation). Given one condition equation, the “equivalent” cofactor matrix becomes a 

scalar quantity. Let 𝑸𝒆1 , and 𝑸𝒆2  represent these scalar quantities for the full and 

reduced stochastic models, respectively. Thus, 𝑡𝑒𝑟𝑚1  in Eq.(3.25) contains the 

contributions from the transformed point (𝒑�𝑖), and 𝑡𝑒𝑟𝑚2 contains the contributions from 

the planar element (𝒒𝑒). Since 𝑡𝑒𝑟𝑚2 is positive one has5 

𝑸𝒆1 = 𝑡𝑒𝑟𝑚1 + 𝑡𝑒𝑟𝑚2 

𝑸𝒆2 = 𝑡𝑒𝑟𝑚1                   

 𝑸𝒆1 > 𝑸𝒆2                       (3.26) 

The precision of the points in 𝒒𝑒 impact 𝑡𝑒𝑟𝑚2 in two ways, first in 𝑸𝒒, and second in 

𝑨𝒒. The first is obvious, the second is also easily seen when considering the Jacobian 

�
𝜕𝒏𝑞𝑖
𝜕𝒒𝑒𝑖

�  in Eq.(A.1), which includes the precision of the points in 𝒒𝑒 . 

 

The consequence of neglecting 𝑡𝑒𝑟𝑚2  is that correspondence sets with transformed 

points of the same precision will be weighted equally, regardless of varying point 

precisions in their planar elements. Thus 𝑸𝒆1  more accurately captures the relative 

difference between correspondence sets. The impact of this difference on point cloud 

5 Recall this is for one equation. For a system of linear equations term1 and term2 are matrices. 
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registration would be data dependent, and would be affected by the level of disparity 

between point precisions in the overlapping region. 

 

3.4.1.2 Simulated Experiments 

Let the “equivalent” weights for full and reduced P2P be respectively 𝑾𝒆1, and 𝑾𝒆2, 

where  

 𝑾𝒆1 = 𝑸𝒆1−1 and 𝑾𝒆2 = 𝑸𝒆2−1 (3.27) 

 

Figure 3-3 illustrates the varying point precision of a sampled point at a range of 10 

meters, and spherical angles both of 0 radians, whose observation standard deviations are 

respectively 1E-2 meters, 2E-5 radians, 2E-5 radians. This range of precision values is 

due to the incidence angle effect. For the experimental setup in this research, the 

functional model obtained from a correspondence set of the form 𝑭1  in Eq.(3.6) is 

considered.  
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Figure 3-3 Influence of Incidence Angle on Point Precision. The point is observed at a 
range of 10 meters and the horizontal and vertical angles are zero radians. The standard 

deviations are 1E-2 meters, 2E-5 radians and 2E-5 radians respectively. 
 

It is assumed that there are nine sets of correspondences of this form with the transformed 

points with incidence angles 𝛼 ∈ [0, 80] degrees, in increments of 10 degrees. For each 

transformed point it is further assumed that there are nine planar elements with each 

planar element consisting of triplets of points that have incidence angles 𝛼 ∈ [0, 80] 

degrees. Since planar elements consist of adjacent points the difference in incidence 

angles among the points in a planar element will be negligible. Thus it is also assumed 

that all the points in a planar element have the same incidence angle.  

 

Next, the “equivalent” weights (𝑾𝒆1, and 𝑾𝒆2) for each of the 81 cases are compared. 

As mentioned in Eq.(3.26) 𝑸𝒆1 > 𝑸𝒆2 ⇒ 𝑾𝒆2 > 𝑾𝒆1  for all the cases. Figure 3-4 
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shows the ratio of 𝑾𝒆2:𝑾𝒆1, with each curve representing a different incidence angle 

for the transformed point (𝒑�𝑖 in Eq.(3.6)). 

 

The first observation is that as the incidence angles of the transformed points increase, 

the ratio of 𝑾𝒆2:𝑾𝒆1 decreases. The second observation is that as the incidence angles 

of the planar elements increase, the ratio increases. For example, for planar elements with 

incidence angle less than 30 degrees the ratio is almost constant (between 1 and 1.5) for 

various incidence angles of the transformed points, but for angles above 70 degrees the 

ratio increases to a factor of almost ten. 

 

The first conclusion from this illustration is that for planar elements of lower incidence 

angle the difference in the stochastic models is minimal or unnoticeable. The second 

conclusion however, is that for higher incidence planar elements, correspondences with 

larger disparity between incidence of the transformed point and that of the planar 

elements, have noticeably higher differences between the two models. For example a 

transformed point at 0 degrees and planar element at 80 degrees is weighted 14 times 

higher in 𝑾𝒆2 than 𝑾𝒆1. This scenario is very common with TLS data where in the 

overlapping region the disparity in incidence angle between transformed points and 

planar elements is large. The full model more appropriately reduces the weight of these 

correspondences than the reduced model. 
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Figure 3-4 Effect of Point Precision on “Equivalent” Weights. Each curve represents the 
ratio of 𝑾𝒆1(0):𝑾𝒆1(𝑖) for a different incidence angle 

 

 

Figure 3-5 Relative Effect of Point Precision on “Equivalent” Weights. Each curve 
represents the ratio of 𝑾𝒆2:𝑾𝒆1 for a different incidence angle 

 



53 

 

 

As mentioned previously, the reduced model weights all correspondence sets equally if 

their transformed points are of equal precision, regardless of the precisions of the planar 

elements, while the full model does not. Figure 3-5 illustrates the difference in relative 

weights when using the full model.  

 

Using the same data as in Figure 3-4 the curves in Figure 3-5 show the ratio of the 

“equivalent” weights for planar elements at normal incidence (𝑾𝒆1(0)) to weights for 

various other incidence angles (𝑾𝒆1(𝑖)). The figure reinforces the earlier observation 

that for higher incidence planar elements, those correspondences with larger disparity 

between incidence of transformed point and that of planar elements have smaller weights 

than those with smaller disparity. 

 

3.4.1.3 Experiment with Real Data 

An experiment was performed on real PCD to evaluate the registration performance of 

the full P2P method against three modifications. The real PCD were obtained from the 

Working Group V/3 of the International Society for Photogrammetry and Remote 

Sensing (ISPRS). The data represent a TLS of a Buddha statue in Thailand described in 

Bae (2006). The point clouds were obtained with the Riegl LMS-Z210 scanner, whose 

range and angular precisions are respectively 2.5E-2 meters, and 4.7E-4 radians. Intensity 

images were obtained from the point clouds representing the left and right views of the 
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statue (see Figure 3-6). Four common points were identified on these images from which 

initial transformation parameter estimates were obtained. 

 

 

 

 

 

 

 

 

The full P2P model was implemented as described in section 3.1 through section 3.3. 

Modifications were made to this model to investigate the effect of the incidence angle 

and local surface normals of the planar elements on the registration accuracy. The 

aposteriori reference variance was used as the metric to evaluate the models, as both the 

functional and stochastic models of an adjustment contribute to this metric. All variants 

of the P2P model had the same functional model: the only difference was in the 

stochastic model. The description of the full model and the variants are: 

1. P2P - full model, 𝑡𝑒𝑟𝑚1 and 𝑡𝑒𝑟𝑚2 in Eq.(3.25) are included, 

2. P2Pr - reduced model, 𝑡𝑒𝑟𝑚2 in Eq.(3.25) is ignored, 

3. P2Pi - full model as in P2P, but the incidence angle effect is ignored. Eq. (3.11) is 

used instead of Eq. (3.13) in computing the covariance matrix of points, 

Figure 3-6 Intensity Images of Buddha Data (Left and Right Views) 
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4. P2Pri - reduce model as in P2Pr, but the incidence angle effect is ignored as in 

P2Pi. 

 

Figure 3-7 shows the aposteriori reference variances for the four models. As illustrated in 

the figure, P2P gave the smallest aposteriori reference variance, and the largest variance 

was obtained by the model which ignored both the incidence angle effect and 𝑡𝑒𝑟𝑚2 

(P2Pri).   

 

The curve for P2Pr shows an improved variance compared to P2Pri, reflecting the 

contribution of the incidence angle effect. However, greater improvement was obtained 

when including 𝑡𝑒𝑟𝑚2, even if the incidence angle effect was ignored. The F-test for a 

confidence level of 𝛼 = 0.05 indicated that the final variances for the three variants were 

statistically different from that of P2P. 
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Figure 3-7 Comparison of Reference Variances. Values above 75 on the y-axis are not 
shown. 

 

To further investigate the impact of the incidence angle sampled points which exceeded 

certain angle thresholds were removed. The filtering thresholds ranged from 90 degrees 

to 30 degrees at 5 degree decrements, where at 90 degrees, all the points were used 

(Figure 3-7). Thresholds of smaller angles were not used because more than 80% of the 

original points would be removed (Table 3-1). 

 

The results were consistent with Figure 3-7 in that the highest to lowest variances were 

obtained by P2P, P2Pi, P2Pr, P2Pri respectively. An example of the filtered 

performance is given in Figure 3-8, which shows the results for the filtering threshold of 

45 degrees. For incidence angles smaller than 55 degrees all the models showed an 

increase in the final aposteriori reference variance (Figure 3-9). The similarity of surface 
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normals can contribute to this increase. Figure 3-9 shows the average improvement in 

variance over the last 25 iterations, for the different filtering thresholds. Improvement 

represents the ratio of the variance for a P2P modification (e.g. P2Pr) to the P2P 

variance.   

 

The improvement relative to P2Pi decreases near linearly with lower incidence angles, 

confirming that at lower incidence the difference between point precisions is minimal. 

The improvement relative to P2Pr is near constant for higher incidence angles (≥70 

degrees), then increases with decreasing incidence angle. The increased improvement 

indicates that the impact of using only lower incidence angle points is greater on P2Pr 

than on P2P. The curve for P2Pri gives the combined effect of both the P2Pr and P2Pi 

curves.   

 

The conclusion from this experiment is that the inclusion of the incidence angle effect as 

well as the precisions of the local surface normals impact the stochastic model so as to 

improve the aposteriori reference variance of the least squares adjustment. Filtering 

points with higher incidence angle must be considered carefully, as it may not always 

lead to improved reference variances. 
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Table 3-1 Cumulative Distribution of Incidence Angles. The columns with (L) refer to 
the Left View and those with (R) refer to the Right View. 

Angle Cum. Sum (L) Cum. % (L) Cum. Sum (R) Cum. % (R) 
00 100, 860 100 107, 451 100 
10 98, 784 98 104, 934 98 
20 91, 825 91 96, 870 90 
30 78, 751 78 81, 953 76 
40 57, 779 57 58, 638 55 
50 35, 650 35 35, 087 33 
60 19, 893 20 18, 799 17 
70 9, 221 9 7, 981 7 
80 1, 876 2 2, 037 2 

 

 

 

Figure 3-8 Reference variance – after filtering points with incidence angle greater than 45 
degrees (values above 75 on the y-axis are not shown). 
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Figure 3-9 Average improvement in reference variance. Reference variances were 
obtained at iteration #50 for the different incidence angles. 

 

 

Figure 3-10 Final reference variance per registration method for different incidence 
angles 
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3.4.2 Comparisons with Chen and Medioni (1991) 

The comparisons with the approach by Chen and Medioni (1991), referred to here as the 

Chen method, were done to provide some context in terms of the performance of the P2P 

method relative to established methods. The Matlab toolbox developed by Salvi et al. 

(2007) was used to perform the Chen registration. Both real and simulated data were used 

for the comparisons. 

 

3.4.2.1 ISPRS Buddha Data 

The ISPRS Buddha data described in section 3.4.1.3 was used. This experiment involved 

some modifications on the P2P method to assess only the contribution of the planar 

elements to registration performance. For the P2P adjustment all points were weighted 

equally. For the Chen method correspondences were established by normal shooting on 

the right scan. That is, the intersection of the ray (or vector) originating at each point on 

the right scan in the direction of that point’s normal vector with the surface on the left 

scan was determined (Rusinkiewicz, 2001). These intersection points were assigned as 

the correspondences of points in the right scan. The right scan was chosen to be the 𝑸 

surface of the Chen method. For the P2P method, only correspondence sets of the form 

𝑭1 in Eq.(3.6) were used (i.e. symmetric correspondence was not utilized). The metric 

used for comparison was the RMSD (see section 3.2.3), and Figure 3-11 gives the 

registration results. 
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The P2P registration was more accurate than the Chen registration by approximately 

1.5cm for the ISPRS Buddha data. Interestingly, this improvement of about 50% was 

consistent throughout all 50 iterations of the evaluation. This improvement is related to 

two of the two major differences between the P2P and Chen methods.  

• The P2P method includes the geometry of the planar elements whereas the Chen 

method uses only the intersection point on the planar element.  

• The P2P method includes the stochastic properties of the planar elements. 

Although the points were weighted equally, the planar elements would still have 

different weights based on their geometric configurations and the differing 

incidence angles of the points. There is no inclusion of stochastic properties with 

the Chen method.  

 

It is expected that further improvement would have been obtained should the symmetric 

correspondences and proper weighting of individual points be utilized in the P2P method. 

However, for this experiment the objective was to assess the impact of the planar 

elements on registration performance. The conclusion is that the consideration of the 

planar elements both in the deterministic and stochastic models of the P2P method 

improved the registration accuracy as compared with the Chen method. 
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Figure 3-11 Comparison of Registration Methods. 
 

3.4.2.2 Computer Vision Data #1 

The two major performance criteria for registration algorithms are perhaps registration 

accuracy and computational complexity. The computational complexity was not assessed 

in this dissertation, but the runtimes of the P2P and Chen methods were evaluated. The 

Matlab registration toolbox by Salvi et al. (2007) provided surface data which Salvi et al. 

(2007) used for evaluating various registration methods. Four of the surfaces (or scans) 

were used in these comparisons (see Figure 3-12, Table 3-2 and Table 3-3), and all were 

transformed with known parameters to obtain the “overlapping” (or “adjacent”) surface, 

then the registration methods were used to determine the parameters. The transformation 

parameters used by Salvi et al. (2007) were used in this experiment, which was a rotation 
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of 5 degrees about all three axes, and a shift of 0.2 units along the z-axis. The owl surface 

did not converge by the ICP method with this parameter set, and instead a transformation 

of 0.1 degree rotation about all axes, with a shift of 0.05 along the z-axis was used. No 

incidence angle effect was used for P2P, because the adjacent surface data were created, 

rather than observed. Unlike in section 3.4.2.1, here the symmetric correspondence of the 

P2P method was utilized. 

 

No noise was added to the data, and the Chen and P2P iterations were terminated when 

the RMSE of the correspondence was less than 1E-3 units. The correspondence RMSE is 

the norm of the difference between a transformed point and its known location. Table 3-2 

gives the number of iterations needed for termination, and the mean time per iteration. 

The runtime comparisons are to provide some preliminary context in terms of 

computational performance, but are not meant to be strict evaluations. Both approaches 

were implemented in Matlab ® 7.11.0 on an Intel ® Core ™, 2.13GHz, 3.00GB RAM 

PC. For correspondence search the Chen method utilized the box structure as in Akca 

(2007), and the P2P method utilized the k-d tree structure. 

 

The Chen method’s average runtime was less than that of the P2P method in all cases 

except for the frog surface, which was the most difficult for the Chen method. Although 

the P2P method was slower on average per iteration, the number of iterations needed for 

termination was between one-third and one-half that of the Chen method, resulting in a 

reduced overall computational time. Once more these experiments are to provide some 

preliminary context for the P2P method in terms of computational time, and no 
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conclusions of superiority are drawn.  Instead these comparisons indicate that the P2P 

compares favorably with the Chen method in terms of computational time, for these 

surfaces. 

 

Table 3-2 Runtime Comparisons (P2P vs Chen method). The highlighted values are from 
P2P registration and Chen’s results are in parentheses. 

Surface # Points #Iterations Avg. Time per Iteration  

 fractal 4096 5(11) 1.99(1.74) 
wave 4096 5(13) 2.14(1.36) 
owl 4902 6(18) 2.49(2.18) 
frog 4977 8(23) 2.43(4.93) 

 

3.4.2.3 Computer Vision Data #2 

The four datasets which were used section 3.4.2.2 were also used in this section (Figure 

3-12, Table 3-2 and Table 3-3). No linear units were provided by Salvi et al. (2007) for 

the datasets, and meters were adopted for convenience. The fractal and wave datasets 

were synthetic, while the owl and frog datasets were acquired by a scanner on a turn-table. 

The fractal and wave data were scaled by factors of 20 and 5 respectively, to create data 

ranges that are closer to that of TLS data (see Table 3-3). 

 

The accuracy performance of registration methods is affected by various conditions 

which include instrument noise, sampling density, initial approximations to the 

transformation parameters, and the presence of outliers. The data obtained from Salvi et 

al. (2007) were considered noise-free, and Gaussian noise was added to both the original 
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and transformed scans to simulate the precision of a TLS instrument. The spherical 

coordinates of each point were perturbed randomly with standard deviations of 4E-3 

 

 

 

 

 

 

 

 

 

 

 

 

 

meters and 6E-5 radians for linear and angular spherical coordinates, respectively. These 

standard deviations are realistic values as they represent the TLS precision of the 

instrument used for the real TLS data in section 3.4.2.4. 

 

Figure 3-12 Data used for simulated experiments. From top left to bottom left in 
clockwise manner are Fractal, Wave, Owl, and Frog respectively. Fractal and Wave 

are synthetic. Owl and Frog are real laser scanning data. 
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The lack of exact point correspondences between pairs of scans is the fundamental 

challenge of registration methods. To simulate this condition points were randomly 

removed from both the original and transformed scans. Sampling density also impacts 

registration accuracy (Salvi et al., 2007). For ICPlane methods, the sampling density is 

closely related to the sufficiency of the planar hypothesis for local neighborhoods. Three 

different sampling rates were used in the simulated experiments (75%, 50%, and 25%). 

Both the sampling rates and instrument noise were realized with a pseudo-random 

generator. Thus the experiment for each dataset was repeated 100 times and the means 

and standard deviations are given in Figure 3-13 through Figure 3-16. The results for the 

Chen method for the 75% sampling rate in Figure 3-15B were obtained from 33 runs. For 

the other 67 runs this method erroneously converged to local minima. 

 

The initial pose is also an essential determining factor on the accuracy performance of 

registration methods. In general, the closer the initial approximations are to the “truth”, 

the better the registration method will perform. In the experiment three different sets of 

transformation parameters were used, which resulted in different initial registration 

RMSE values for each dataset as given in Table 3-4. Initial registration level 3 was not 

used for the owl data as this yielded an RMSE value that was unrealistically large. In 

Figure 3-13 through Figure 3-16 the subfigures A to C refer to the results from initial 

registration RMSE levels 1 to 3, respectively. 

 

Other criteria such as outliers and overlap percentage were not included in this 

experiment. Since both the proposed P2P and the Chen methods are ICPlane methods the 

 



67 

 

same distance metric in Eq.(3.21) was used to identify outliers. In terms of overlap 

percentage, the more important factor is the variability in the values of local surface 

normals within the overlapping region rather than the percentage of overlap. Also, in 

these experiments the different sampling rates may also be thought of as simulating 

different overlap percentages. 

 

The 75% sampling rate is probably the best of the three rates for representing the lack of 

exact point correspondences that exist in pairs of TLS data. At this sampling rate the 

errors for the P2P method were an order of magnitude smaller than those of the Chen 

method for the synthetic data (fractal and wave). For the real data (owl and frog) errors 

from the P2P method were smaller by a factor of approximately 4. These results were 

consistent for all the initial registration levels. This indicates that the different initial 

poses did not greatly affect the performance of either method. The improved accuracy of 

the P2P method indicates that this method better deals with inexact point 

correspondences between pairs of scans when the point density is high, and the surface is 

well sampled. 
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Table 3-3 Description of data obtained from Salvi et al. (2007). 

 Fractal Wave6 Owl Frog 

# Pts 4096 4096 4902 4977 

X Range (m) 20.000 5.000 102.395 93.492 

Y Range (m) 20.000 5.000 93.713 85.012 

Z Range (m) 12.143 3.235 53.447 66.666 

 

 

Table 3-4 Initial registration RMSE for the different rotation (column 2) and translation 
(column 3) transformation parameters. 

Level Rot 
(rad) 

Tran 
(mm) 

Initial Registration RMSE (mm) 
Fractal        Wave           Owl             Frog   

1 8.73e-5 5 8.7 8.7 114.4 9.8 

40.9 35.0 2282.6 98.3 

1104.5 283.0 N/A 4666.7 
 

2 1.75e-3 20 

3 8.73e-2 50 

 

 

6 The fractal and wave data were scaled by factors of 20 and 5 respectively to create data ranges that are 
closer to that of TLS data. 
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Figure 3-13 Registration RMSE bars showing mean and standard deviation in mm for 
fractal data. Results for the P2P method and the Chen method are given for different 

sampling rates. (A) to (C) are initial registration RMSE levels 1–3 respectively.  

A 

C 
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Figure 3-14 Registration RMSE bars showing mean and standard deviation in mm for 
wave data. Results for the P2P method and the Chen method are given for different 

sampling rates. (A) to (C) are initial registration RMSE levels 1–3 respectively.  

A 
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Figure 3-15 Registration RMSE bars showing mean and standard deviation in mm for 
owl data. Results for the P2P method and the Chen method are given for different 
sampling rates. (A) to (B) are initial registration RMSE levels 1–2 respectively. Note: 
both methods diverged for initial registration RMSE level 3. The Chen method also 
diverged for 75% sampling rate at initial registration RMSE level 2. 

A 

B 
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Figure 3-16 Registration RMSE bars showing mean and standard deviation in mm for 
frog data. Results for the P2P method and the Chen method are given for different 

sampling rates. (A) to (C) are initial registration RMSE levels 1–3 respectively. 

A 

B 
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The 50% sampling rate introduces the conditions of reduced overlap and potential under-

sampling of the surface. These conditions are combined with the inexact point 

correspondences that occurred at the 75% rate. As can be expected, both methods 

performed worse than at the 75% rate. Errors from the P2P method were smaller than 

those of the Chen method by a factor of approximately 4, for all initial registration levels. 

This improvement of the P2P method was consistent with the results at 75%. This result 

indicates that the P2P method dealt better with cases of potential under-sampling and 

reduced overlap, than the Chen method. 

 

The sampling rate of 25% presents an extreme case of the conditions mentioned at the 50% 

rate. Both methods had errors at the 50mm-and-above range, for all datasets and for all 

initial registration levels, except for the wave data. The wave data is predominantly a 

smoothly varying surface which is a possible explanation for the generally small errors 

by both methods. For the real data the P2P errors were smaller than the Chen method by a 

factor of approximately 4, which was consistent with the other sampling rates. There was 

a marked improvement in the Chen method for the fractal data, however. At all three 

initial registration RMSE levels the Chen method had smaller errors than the P2P method. 

The improvement here of the Chen method was by a factor of approximately 1.2. A 

possible explanation for this result can be based on the surface characteristics of the 

fractal data. With such low sampling density the local planar elements may not suffice to 

model the coarse fractal surface geometry. Since the P2P method is more dependent on 

the planar elements than the Chen method it follows that the Chen method would perform 

better here. 
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To summarize the results, it was found that the initial poses did not affect the registration 

performance of any of the methods, as they both yielded consistent results for all 

registration levels. The proposed P2P method was consistently more accurate than the 

Chen and Medioni (1991) method by a factor of approximately 4. The improved accuracy 

of the P2P method indicates that this method better deals with inexact point 

correspondences, reduced sampling rate and reduced overlap between pairs of scans. The 

only case where the Chen and Medioni (1991) method was more accurate was the 25% 

sampling rate of the fractal data. The improvement was by a factor of approximately 1.2 

and was probably due to the fractal data being grossly under-sampled. 

 

3.4.2.4 Purdue Data 

Real TLS data were obtained from a Leica Geosystems ScanStation 2. The original scans 

were filtered manually to remove major outliers such as people, cars, vegetation and the 

nearby buildings. The TLS data used in this research included eight scans of the Neil 

Armstrong statue on Purdue University’s campus (see Figure 3-17 and Table 3-5). The 

statue has approximate dimensions of 2.2, 1.8, 2.6 meters (L, W, H). For each scan the 

ScanStation 2 was positioned at a distance of 5-10 meters from the statue to allow strong 

overlap (see overlap percentages in Table 3-6). The range and angular precisions of the 

instrument are 4E-3 meters and 6E-5 radians, respectively. Four Leica Geosystems pole 

targets were also scanned by each of the eight scan locations and these target coordinates 

were used to provide reference registration data for each pair of scans. Seven successive 
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pairs of scans were registered, with pair one consisting of scans 1 and 2, pair 2 consisting 

of scans 2 and 3, and so on. The registration RMSE values for both the proposed P2P 

method and the Chen method are given in Table 3-6. 

 

The difference in RMSE between the proposed P2P method and that of Chen and 

Medioni (1991) was on the order of millimeters or less for each scan pair. Both methods 

provided good registration results for all scan pairs, except for scan pair 3 where the Chen 

method did not converge. Scan pair 2 was also difficult for the Chen method, with an 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3-17 Left – View of Neil Armstrong statue at Purdue University from scan 1. 
Right – Layout of scans and targets. 
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Table 3-5 Number of points for each scan of the TLS data (Neil Armstrong statue). 

Scan 1 2 3 4 

# Pts 30,128 112,865 76,989 155,717 

Scan 5 6 7 8 

# Pts 157,839 141,630 86,299 104,183 

 
 
 

Table 3-6 Registration RMSE for each scan pair of the Neil Armstrong Statue. The 
percentage overlap for the scans is given in the first column, in parentheses. For each pair 

the scan with the smaller index was regarded as Q. Thus 82% of scan 1 was in the 
overlap region for the registration of scan pair 1. 

Scan Pair (%P, %Q) P2P_RMSE (mm) Chen_RMSE (mm) 

1 (52, 82) 3.0 3.8 

2 (85, 47) 1.5 8.0 

3 (35, 83) 3.0 N/A 

4 (94, 71) 1.7 2.5 

5 (77, 89) 3.6 3.2 

6 (83, 32) 3.6 4.7 

7 (64, 91) 1.1 4.0 

 Mean = 2.5 Mean = 4.4 

 

 

improvement factor of approximately 5 obtained by the P2P method. Scan pairs 2 and 3 

both involved scans with overlap percentages of 47 and 35 (for scans 2 and 4, 

respectively). Compared to the other overlap percentages this was low, and may be a 
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contributing factor to the performance of the Chen method. Scan pair 7 showed an 

improvement factor of approximately 4, which was consistent with the results of the 

simulated experiments. The other scan pairs showed smaller differences of about 1 mm 

between to two methods. 

 

Scan pair 5 was the only pair where the Chen method gave a smaller error than the P2P 

method. The difference, however, was the smallest among all the scan pairs (0.4mm). 

Scan pairs 4 and 5 had the highest overlap percentage and these pairs gave the best results 

for the Chen method. This is not surprising as the P2P method is less affected by reduced 

overlap as indicated in the simulated experiments. 

 

Overall, the proposed P2P method yielded more accurate registration results based on the 

RMSE metric, when compared with the Chen and Medioni (1991) method. The mean 

RMSE for the P2P method was smaller than that of Chen and Medioni (1991) by about 

43% (P2P mean RMSE was 2.5 mm, Chen mean RMSE was 4.4 mm, ignoring scan pair 

3). For four scan pairs the differences between the two methods were approximately 1mm. 

For two scan pairs the P2P method was more accurate by factors of approximately 4 and 

5. For one scan pair the Chen method did not converge, but this scan pair was 

successfully registered with the proposed P2P method. 

 

3.5 Conclusions on Pairwise Registration 

This chapter focused on the so-called fine registration of a pair of PCD. Of specific 

interest were those methods that utilize corresponding point and plane features, as they 
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employ minimal processing of the original data during the registration task (Habib et al., 

2010). A rigorous ICPlane registration approach called the P2P method was presented, 

which utilizes the General Least Squares adjustment model. As in any weighted least 

squares adjustment the stochastic model impacts the final solution. Thus, particular 

attention was paid to the stochastic properties of the estimated local surface normals 

which are neglected in the work of Akca (2007). A full weight matrix was employed 

instead of the diagonal version in Jaw (1999). The registration parameters were solved for 

and not point coordinates, thus forming a linear system of equations with fewer 

unknowns than in Jaw (1999). Also it is not assumed that any of the scans should be 

control surfaces, as in Jaw (1999) or Levin and Filin (2010) who used the ALS data as 

control data. Instead correspondences were established on both scans and the uncertainty 

of these scans were treated simultaneously. 

 

Experiments were conducted with real and simulated PCD, and the registration accuracy 

of the proposed P2P method was compared against the well-established method of Chen 

and Medioni (1991). The proposed P2P method was consistently the more accurate of the 

two methods. The improvement indicated that the proposed P2P method was better able 

to deal with three conditions that impact registration accuracy: the lack of exact point 

correspondences, reduced overlap and potential under-sampling. It was also observed that 

the P2P method was comparable to the Chen method in terms of runtimes and in some 

cases converged faster. 
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The proposed P2P method can be further improved in terms of its accuracy, especially for 

cases where the surfaces are grossly under-sampled. A higher-order surface fitting 

scheme may be necessary in such cases. Future work involve assessing the computational 

burden of the proposed P2P method and conducting extensive comparisons with other 

published fine registration methods. Other implementation improvements that have been 

applied to ICPlane methods may also be applied to the P2P method and these will be 

explored to obtain a highly efficient version of P2P method. In addition, the proposed 

P2P approach can be extended for data of dimension greater than 3, so as to include the 

ancillary information that typically accompanies TLS data (e.g. intensity and RGB data). 

 

 



80 

 

CHAPTER 4. GLOBAL REGISTRATION 

Some applications require multiple sets of PCD to be registered in order for a complete 

3D model to be obtained. For example, due to ranging and visibility restrictions, multiple 

scan stations are often required with TLS. Esser and Mayer (2007) reported on a large 

TLS campaign, where more than 1100 scan stations were required for an archeological 

documentation project. In these cases where multiple scans exist, a global registration is 

necessary to have all the scans transformed to a common reference coordinate frame. 

 

Assuming that there are N overlapping scan pairs and each pair is related as given in Eq. 

(3.1) then one has 

[𝑸 = 𝐑(𝑷) + 𝐭]𝟏
[𝑸 = 𝐑(𝑷) + 𝐭]𝟐

⋮
[𝑸 = 𝐑(𝑷) + 𝐭]𝑵

     (4.1) 

In Eq. (4.1), each [ .  ]𝒊 row represents the 3D rigid-body transformation for the i-th scan 

pair and the symbols are as explained in Eq.(3.1). The transformation parameters 𝐑 and 𝐭 

are local to each pair and the aim of global registration is to determine parameters that 

relate each scan to a common (or global) reference. After global registration one has for 

M scans 
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𝑸 = [𝐑(𝑷) + 𝐭]𝟏
𝑸 = [𝐑(𝑷) + 𝐭]𝟐

⋮
𝑸 = [𝐑(𝑷) + 𝐭]𝑴

     (4.2) 

In Eq.(4.2), each row represents the transformation for a scan relative to the global 

reference coordinate frame, and thus these parameters are global. 

 

As was discussed in section 2.2, global registration approaches may be grouped into two 

classes: sequential pairwise approaches and simultaneous approaches. The main 

advantage of sequential pairwise approaches is in the computational load. At any given 

time during the registration process, the computational load is greatly reduced as 

compared to the simultaneous approach. However, there are some disadvantages 

associated with sequential pairwise approaches. 

 

Global registration by a sequential pairwise approach is generally susceptible to the 

propagation of errors. The transformation parameters for any scan are impacted by the 

parameters errors of all the preceding scans. In the case where the PCD is acquired in a 

ring structure such that the first and last scan share overlap, this propagation results in a 

misclosure error. That is, if the coordinate frame of the first scan is chosen as the 

reference after the series of sequential transformations, the first scan will have a rotation 

matrix that is not the identity matrix and a non-zero translation vector. Also, when there 

are multiple overlapping scans (i.e. redundant overlap) not all the overlap information can 

be used. The choice of sequential pairs to use can be haphazard and may not always yield 

a globally optimal solution.  
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Simultaneous approaches, although more computationally expensive aim at addressing 

these issues associated with the sequential pairwise approaches. The pairwise approach 

developed in Chapter 3 is extended for the global registration of multiple scans. Here it is 

proposed to accomplish this in a simultaneous adjustment that is closely related to the 

photogrammetric bundle-block adjustment. The developed method is coined the P2Pg 

registration method to indicate that it is a global extension of the developed P2P method 

of Chapter 3. 

 

4.1 Simultaneous Global Adjustment (P2Pg) 

As presented in Chapter 3, the 3D points coordinates of a pair of overlapping scans may 

be represented symbolically as 𝑷  and 𝑸 . The point-to-plane distances between 

correspondence sets in 𝑷  and 𝑸  yield condition equations as given in Eq.(3.6) and 

repeated here for convenience 

𝑭1: (𝒑� − 𝒒) • 𝒏𝑞 = 0;                    𝒒 ∈ 𝒒𝑒 

 𝑭2: (𝒒� − 𝒑) • 𝒏𝑝 = 0;                    𝒑 ∈ 𝒑𝑒  (4.3) 

 

In the context of a global adjustment, these condition equations need to be modified. For 

the global case, both 𝑷 and 𝑸 need to be transformed to the reference frame, in both 

𝑭1and 𝑭2. Also, the planar elements and their unit normal vectors are determined in the 

transformed reference space. The modified set of condition equations that arise for an 

overlapping pair of scans for the global adjustment is thus given by 
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𝑭1: (𝒑� − 𝒒�) • 𝒏𝑞� = 0;                   𝒒� ∈ 𝒒�𝑒 

 

𝑭2: (𝒒� − 𝒑�) • 𝒏𝑝� = 0;                   𝒑� ∈ 𝒑�𝑒 

 

𝒑� = 𝐑𝒑(𝑷) + 𝐭𝒑            𝒒� = 𝐑𝒒(𝑸) + 𝐭𝒒  

(4.4) 

   

 

In Eq.(4.4), 𝒑�  and 𝒒�  are transformed points (i.e. they are in the global reference). 

𝐑𝒑, 𝐭𝒑  and 𝐑𝒒, 𝐭𝒒  are the rotation and translation parameters for 𝑷 and 𝑸 respectively, 

that transform their original scan points to the global reference. For the transformed point 

𝒑� its correspondence set includes the transformed planar element 𝒒�𝑒 (i.e. the closest three 

transformed points in 𝑸) and its unit normal vector 𝒏𝑞� . Similarly for points in 𝑸 each 

correspondence set contains {𝒒�,𝒑�𝑒 ,𝒏𝑝�}. In the first set of condition equations 𝑭1 , 𝒒� 

represents any of the three points forming the planar elements 𝒒�𝑒. Likewise for 𝑭2, 𝒑� 

represents any of the three points forming the planar elements 𝒑�𝑒. 

 

The two sets of condition equations that are given in Eq.(4.4) can be linearized by Taylor 

series expansion to give the classical General Least Squares form of 𝑨𝒗 + 𝑩∆= 𝒇 

(Mikhail and Ackermann, 1976). The meaning of the symbols in this linearized form is as 

given in Eq.(3.7). For a pair of overlapping scans this linearized form is expressed as 

 

�
𝑨1𝑃 ,   𝑨1𝑄
𝑨2𝑃 ,   𝑨2𝑄

�   �
𝑣𝑃
𝑣𝑄�   +  �

𝑩1𝑃 ,    𝑩1𝑄
𝑩2𝑃 ,   𝑩2𝑄

�   �
∆𝑃
∆𝑄
� =  �𝒇1𝒇2

�   (4.5) 
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where  

𝑨1𝑃 = 𝑭1′(𝒑), 𝑨1𝑄 = 𝑭1′(𝒒);              𝑩1𝑃 = 𝑭1′(Δ𝑃),              𝑩1𝑄 = 𝑭1′�Δ𝑄� 

𝑨2𝑃 = 𝑭2′(𝒑), 𝑨2𝑄 = 𝑭2′(𝒒);              𝑩2𝑃 = 𝑭2′(Δ𝑃),              𝑩2𝑄 = 𝑭2′�Δ𝑄� 

𝒇1 = −[𝑭1,0];                                         𝒇2 = −[𝑭2,0] 

 

In Eq.(4.5), 𝑭1′(𝒑),𝑭1′(𝒒)  , 𝑭1′(Δ𝑃)  and 𝑭1′�Δ𝑄�  are the partial derivatives (or 

Jacobians) of the condition equation 𝑭1 w.r.t. 𝒑,𝒒, Δ𝑃 and Δ𝑄 respectively. Δ𝑃 and Δ𝑄 are 

the parameter corrections to the initial rigid-body transformation parameters for scans 𝑷 

and 𝑸  respectively. 𝑣𝑃  and 𝑣𝑄 are the residuals for points in 𝑷  and 𝑸  respectively. 

𝑭2′(𝒑),𝑭2′(𝒒), 𝑭2′(Δ𝑃) and 𝑭2′�Δ𝑄� are similarly the partial derivatives of the condition 

equation 𝑭2  w.r.t. 𝒑,𝒒 , Δ𝑃  and Δ𝑄  respectively. The detailed derivation of these 

Jacobians is given in Appendix C. 

 

Given multiple scans, the unknown vector and correction vectors in Eq.(4.5)  would have  

lengths equal to the number of scans. If the coordinate frame of one of the scans is chosen 

as the reference then the correction vector would have a length equal to one less than the 

number of scans. Each overlapping pair that is involved in the adjustment, contributes to 

the coefficient matrices 𝑨  and 𝑩 . The locations of these contributing terms in the 

coefficient matrices would be determined by the corresponding order of scan points in the 

residual vector. 
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A scenario of three scans may be considered, where there exist three overlapping pairs 

which are (1,2), (2,3) and (1,3). It is further assumed that the coordinate frame of scan 1 

is set to be the reference (i.e. this scan is not to be transformed). Also, the adopted 

convention is that in a given scan pair, example (2,3), 𝑷 will represent the scan with the 

larger scan number, which is scan 3 in this case. For simplicity, the two-row expression 

in Eq.(4.5) is replaced by the following single-row expression 

�𝑨𝑃,𝑨𝑄� �
𝑣𝑃
𝑣𝑄� + �𝑩𝑃,𝑩𝑄� �

∆𝑃
∆𝑄
� = 𝒇    (4.6) 

where 

𝑨𝑷 = �𝑨1𝑃𝑨2𝑃
� ;   𝑨𝑸 = �

𝑨1𝑄
𝑨2𝑄

� ;  𝑩𝑷 = �𝑩1𝑃𝑩2𝑃
� ;  𝑩𝑸 = �

𝑩1𝑄
𝑩2𝑄

� ;   𝒇 = �𝒇1𝒇2
� 

 

Replacing 𝑷 and 𝑸 by their corresponding scan numbers, the combined linearized system 

for the three overlapping scan pairs is given by 

�
𝑨1 𝑨2 ∅
∅ 𝑨2 𝑨3
𝑨1 ∅ 𝑨3

� �
𝑣1
𝑣2
𝑣3
� + �

𝑩2 ∅
𝑩2 𝑩3
∅ 𝑩3

� �∆2∆3
� = �

𝒇(𝟏,𝟐)
𝒇(𝟐,𝟑)
𝒇(𝟏,𝟑)

�   (4.7) 

𝑨 �      𝒗     +       𝑩�      ∆    =     𝒇�  

 

In this combined system, each row represents a pair of overlapping scans. For example 

the first row reflects the contributions of the overlap between scans 1 and 2. Both 

coefficient matrices 𝑨 � and 𝑩� contain null matrices in each row which are represented by 

∅ . Since the coordinate frame of scan 1 was chosen to be the reference frame, the 

unknown vector only has parameter corrections for scan 2 and scan 3. The solution to this 
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combined system is obtained iteratively by solving the following normal equation until 

convergence 

 𝑵Δ = 𝒕 (4.8) 

𝑵 = 𝑩�𝑇(𝑨�𝑸𝑙𝑙𝑨�𝑇)−1𝑩�;   𝒕 = 𝑩�𝑇(𝑨�𝑸𝑙𝑙𝑨�𝑇)−1𝒇;   𝑸𝑙𝑙 =
1
𝜎02

Σ 

𝜎02 is the apriori reference variance (typically set to 1)  

Σ  is the Cartesian covariance matrix of the observations (i.e. the scan points) as 

discussed in Chapter 3. 

 

4.2 P2Pg Algorithm 

All the considerations that were discussed in section 3.3 apply to the global algorithm. 

Special attention must be given to the correspondence sets that are used. The combined 

linearized system of equations can include highly correlated observations. The P2Pg 

algorithm was used in this research as a refinement method after pairwise registration 

was performed with P2P. As such, the approach of Akca (2007) was adopted, where a 

small portion of the condition equations were used in the global adjustment. In this 

research 1% of the condition equations were used. This sub-sampling of the condition 

equations helped in avoiding rank-deficiency in the 𝑨 � -matrix of Eq.(4.7) as the spacing 

between transformed points increased (see section 3.3.3). Also, this sub-sampling 

reduced the computational load of the P2Pg approach. The relatively high computational 

load is the main disadvantage of simultaneous global approaches. In addition, since a full 

pairwise registration was performed prior to the global refinement, only one or two 

iterations of P2Pg are expected. It must be further emphasized that the sub-sampling was 
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applied to the condition equations and not to the points. The latter will modify the point 

density of the PCD which is undesirable. 

 

The algorithm involves seven main steps. The P2P approach is first used as a 

preprocessing step to provide the initial parameter approximations. If an initial pairwise 

registration is not done then the P2Pg algorithm will require more iterations for 

convergence. It must also be noted that it is advised that the unit normal vectors in 

Eq.(4.4) be computed in the original space and then rotated by the current rotation 

parameters as discussed in Appendix D. The P2Pg algorithm can be summarized as 

follows: 

 

P2Pg Algorithm for global registration of multiple sets of PCD 

0. Inputs: - 3D coordinates of unstructured sets of PCD 

            - initial set of parameter approximations obtained from P2P 

            - observations’ precision (as used in P2P) 

 

1. Transform each scan by its parameter approximations according to Eq.(4.4). All 

transformed scans will now be in the reference frame. 

2. Organize transformed scans using a spatial data structure (e.g. k-d tree) to facilitate 

efficient point searching. 

3. Establish correspondence sets and point-to-plane distances for each scan according to 

Eq.(4.4).  
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4. Identify and remove points that are not in the overlapping region. This can be done 

either by using the distance to closest transformed point or the point-to-plane distance. 

5. Use every i-th correspondence set to populate the least squares matrices 𝑵 and 𝒕 in 

Eq.(4.8). The considerations for the sub-sampling rate include the quality of the 

parameter approximations, point densities and computational resources. 

6. Solve the linear system in Eq.(4.8) to compute the correction to the parameters, and 

update the parameters. 

7. Check for iteration termination. If iterations should not be terminated then return to 

step 1. If termination criterion has been met then obtain registration and adjustment 

results. 

 

8. Outputs: - final (adjusted) parameters and their covariance matrix 

               - registration and adjustment statistics   

         - registered sets of PCD and covariance matrix (if needed)  

 

 

One of the advantages of the P2Pg approach is that covariance information for the 

parameters is available. This is a distinguishing feature of simultaneous adjustment 

approaches. Also, as expressed in Eq.(4.5) and Eq.(4.6) one set of residuals per scan is 

obtained from P2Pg. When pairwise registrations are performed, scans that share overlap 

with more than one scan will have multiple sets of residuals. These residuals can be 

inconsistent (i.e. not the same) for a given scan. P2Pg provides consistent residuals for 

each scan, however. P2Pg also provides a solution with zero-misclosure. All the 
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overlapping scan pairs can potentially contribute to the final solution and since the 

reference scan is not included in the unknown vector it is never transformed. 

 

4.3 Evaluations and Discussion 

Two sets of global registration experiments were performed using the Purdue data 

described in section 3.4.2.4. First, a global registration was obtained by the sequential 

pairwise approach. The performance of the P2P algorithm was evaluated by comparisons 

with other registration methods in the context of sequential pairwise registration. Second, 

the P2Pg algorithm was used to refine the result that was obtained from the sequential 

P2P approach. This refined result was then evaluated by comparisons with other global 

registration methods. 

 

4.3.1 Global Registration by Sequential Pairwise Approach 

The Purdue data comprises eight scans with each successive pair of scans sharing overlap. 

The first and last scan also shared overlap, which meant there was a total of eight scan 

pairs, [(1,2), (2,3), (3,4), (4,5), (5,6), (6,7), (7,8), (8,1)]. The sequential pairwise 

parameters were combined to obtain the global parameters for each scan. Thus, for 

example, to obtain the global parameters for scan 3, the pairwise parameters from pairs 

(1,2) and (2,3) were used. This was done for all scans, including scan 1 which shares 

overlap with scan 8. Since scan 1 was chosen as the reference, the global transformation 

for scan 1 should include the identity matrix for rotation and the zero vector for 

translation. Any other obtained transformation for scan 1 would result in a non-zero 

misclosure error, and it provided the basis for the first type of evaluation. 
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The P2P algorithm was compared with three registration methods in terms of their 

misclosure errors. The ICPoint method by Besl and McKay (1992) was implemented and 

used for comparisons. Although this method is a point-to-point registration method and 

not point-to-plane as P2P, it was used for comparisons because of its popularity. The 

cloud registration tools of two software packages were also used. The first software 

package was the open source, 3D point cloud and mesh processing software 

CloudCompare version 2.4. This software package includes a version of the ICPoint 

method of Besl and McKay (1992) in its fine registration (CloudCompare, 2013). The 

Leica Cyclone version 7.4.1 was the second software package used, which is a 

commercial package. Cyclone cloud registration tool requires the presence of point 

normals on both scans of a scan pair. This suggests that it uses some modification of the 

ICPlane version of Chen and Medioni (1991) (Leica, 2013).  

 

Pairwise registration parameters were determined for each of the eight scan pairs by all 

four registration methods (P2P, Besl, CloudCompare and Cyclone). These sequential 

pairwise parameters were then combined to obtain the global registration parameters for 

scans 2 through 8, with scan 1 being the reference. The registration parameters obtained 

from the use of targets were used as described in section 3.4.2.4 to obtain the registration 

errors for each of the four registration methods. The misclosure RMSE values are given 

in Figure 4-1 and the pairwise and global registration RMSE values are given in Table 

4-1 and Table 4-2 respectively. The registered Purdue data was color coded by 

registration errors for the Besl, P2P and Cyclone methods and these results are given in 
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Figure 4-2, Figure 4-3 and Figure 4-4 respectively. The parameter errors are provided in 

Appendix D. 

 

The pairwise registration results from CloudCompare were worse than the other methods 

by an order of magnitude, for scan pairs 1, 2 and 8, as shown in Table 4-1. It is uncertain 

what caused this poor performance. Both CloudCompare and Besl used the ICPoint 

method by Besl and McKay (1992), but possible areas where implementations differ are 

in the iteration termination and outlier removal. It is quite clear from Table 4-1 that P2P’s 

pairwise registration RMSE was very consistent for all scan pairs. Scan pair 8 was the 

most problematic for the other methods but P2P’s results were consistent with its results 

for the other pairs. It must be mentioned here that the iteration termination criteria used 

for P2P in this chapter was slightly different to that in chapter 3. Also for all registration 

methods, the registration was performed in a forward and backward approach and the 

best results reported here. A forward registration for scan pair (i, j) would be to find the 

parameters to transform scan j to scan i. A backward registration would be to find the 

parameters to transform scan i to scan j. 
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Table 4-1 Pairwise Registration RMSE in mm, for scan pairs of the Purdue data. 

Pair Besl P2P CloudCompare Cyclone
1 3.5 1.4 28.6 0.9
2 1.6 0.9 10.2 3.5
3 3.4 1.6 7.4 3.8
4 1.3 1.1 7.2 1.7
5 1.1 1.3 5.0 2.9
6 1.9 1.5 3.6 3.9
7 2.9 2.9 4.9 3.8
8 5.7 2.4 46.2 8.7  

 

Table 4-2 Global Registration RMSE in mm, for scan pairs of the Purdue data. 

Scan Besl P2P CloudCompare Cyclone
2 3.5 1.4 28.6 0.9
3 4.4 2.3 35.4 3.2
4 7.9 2.8 35.7 6.7
5 8.4 3.4 27.1 7.9
6 8.5 4.2 28.4 9.2
7 7.9 5.3 31.2 7.3
8 5.9 3.0 29.3 4.5  

 

The global registration errors are more of interest in this chapter. Again CloudCompare’s 

performance was an order of magnitude worse than the other methods as shown in Table 

4-2. Among the other three methods, the global registration RMSE by P2P was the best 

for all scans except for scan 2. It is known that the Chen and Medioni (1991) method is 

more accurate than the Besl and McKay (1992) method which explains why Cyclone’s 

errors are smaller than Besl’s. The P2P method showed marked improvement over 

Cyclone’s tool in scan’s 4, 5 and 6 (see Figure 4-2, Figure 4-3 and Figure 4-4) which can 
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be attributed to the increased stochastic consideration of the proposed P2P method. The 

misclosure RMSE in Figure 4-1 reflects the same results as Table 4-2.  

 

 

Figure 4-1 Registration Misclosure for different algorithms/software.  
(CloudCompare*: the misclosure RMSE was 69.2mm). 
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Figure 4-2 View from scan 6 of Purdue data, registered by Besl and color-coded by 
registration errors. Error scale bar ranges from 0.00m (blue) to 0.01m (red). 

 

 

Figure 4-3 View from scan 6 of Purdue data, registered by P2P and color-coded by 
registration errors. Error scale bar ranges from 0.00m (blue) to 0.01m (red). 
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Figure 4-4 View from scan 6 of Purdue data, registered by Cyclone and color-coded by 
registration errors. Error scale bar ranges from 0.00m (blue) to 0.01m (red). 

 

4.3.2 Global Registration by Simultaneous Approach 

The proposed P2Pg method was used to refine the results obtained from the global 

registration by sequential pairwise P2P. Cyclone also offers a global refinement tool and 

this was used to refine the sequential pairwise Cyclone results (called Cyclone-g). The 

registration RMSE values are given in Figure 4-5 for both of these methods, before and 

after refinement. Table 4-3 shows the global registration RMSE values for each scan both 

for the P2P algorithm and the P2Pg algorithm. Also, the distribution of the registration 

errors for P2P and P2Pg are given in Figure 4-6 and Figure 4-7. The parameter errors are 

included in Appendix E. 

 

Both refinement methods (Cyclone-g and P2Pg) obtain global registration results that 

have no misclosure. However, it can be seen that unlike Cyclone-g, P2Pg achieved this 
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without increasing the registration RMSE values for each scan. In fact, as shown in 

Figure 4-6 and Figure 4-7 the proposed P2Pg method improved the distribution of the 

global registration errors. A look at the RMSE values for each scan in Table 4-3 shows 

that the proposed P2Pg method reduced the standard deviation of the RMSE values for 

the seven scans. In other words the P2Pg method better distributed the errors to obtain an 

improved global registration result.  

 

 

 

 

Figure 4-5 Registration RMSE before and after refinement. 
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Figure 4-6 Distribution of global registration errors by P2P. 
 

 

Figure 4-7 Distribution of global registration errors by P2Pg. 
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Table 4-3 Global registration RMSE (in mm). 

Scan P2P_RMSE P2Pg_RMSE
2 1.4 1.6
3 2.3 2.4
4 2.8 2.9
5 3.4 3.4
6 4.2 4.0
7 5.3 5.1
8 3.0 2.9

Mean 3.18 3.18
Max 5.31 5.06
Std 1.28 1.11  

 

4.4 Conclusions on Global Registration 

Global registration is an essential task with PCD, as some applications require multiple 

sets of PCD to be registered in order for a complete 3D model to be obtained. For 

example, due to ranging and visibility restrictions, multiple scan stations are often 

required with TLS. In the context of cloud-to-cloud registration the two common 

approaches for global registration are the sequential pairwise approach and a 

simultaneous global approach. The proposed P2P method was used in the sequential 

pairwise approach and evaluated by comparisons with other registration methods on a 

real TLS dataset. The global registration results of P2P were shown to be better than the 

other approaches. 
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An extension of the P2P approach was developed in this chapter which was called the 

P2Pg algorithm. This method was developed to provide global refinement to the P2P 

method and it determines global registration parameters in a simultaneous adjustment. 

The proposed approach presents many advantages which include the computation of 

consistent residuals for each scan (i.e. only one set of residuals is obtained for a 

registered scan). The P2Pg approach potentially includes all overlapping pairs in the 

adjustment, not only sequential pairs. Thus all information contribute to the final results 

and no haphazard selection of scan pairs is needed for the registration process. The 

computational load of the simultaneous approach may be circumvented when P2Pg is 

used as a refinement to the P2P. In this case, very good initial approximations would be 

available which mean only one or two iterations of P2Pg would be needed. Also, sub-

sampling of the condition equations is a feasible option in this case.
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CHAPTER 5. FINAL CONCLUSIONS AND RECOMMENDATIONS 

5.1 Thesis Summary 

Point cloud data (PCD) have become very pervasive due to its use in many communities 

which include, but are not limited to, biomedical imaging, photogrammetric engineering, 

roadway and construction mapping, city modeling, automobile industry, autonomous 

navigation, robotics and computer vision. In some applications multiple sets of PCD are 

required to be registered in order for a complete 3D model to be obtained. For example, 

due to ranging and visibility restrictions, multiple scan stations are often required with 

terrestrial laser scanning (TLS). In these cases where multiple scans exist, a registration 

of the PCD is necessary to have all the scans transformed to a common reference 

coordinate frame. 

 

The task of registration involves determining a set of transformation parameters and 

applying those parameters to transform one dataset into another reference frame (Cheok, 

2006). For this to be achieved there must exist a means of establishing correspondences 

among the disparate coordinate data sets. Perhaps one of the most popular registration 

methods is the use of targets or other features that are recognizable in the different sets of 

PCD (Akca and Gruen, 2008; Elkrachy, 2008; Jacobs, 2005). The recognition of these 

features usually involves the use of imagery, either intensity images or true-color images 
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or both. Automatic registration methods that are independent of targets, and rather exploit 

the PCD, can reduce some of the current limitations of the use of targets. Cloud-to-cloud 

(or surface based) registration has been pursued by many researchers over the last two 

decades to fulfill this aim. In cloud-to-cloud registration methods the transformation 

parameters are obtained by establishing correspondences between the disparate 3D 

coordinate data. However, PCD are usually unstructured and possess little semantics. 

Thus it is virtually impossible to establish exact point correspondences between sets of 

PCD. 

 

In this dissertation both pairwise and global cloud-to-cloud registration were addressed. 

Existing pairwise approaches do not consider the full stochastic model. This research 

sought to do that and showed improvement in accuracy over popular approaches. A 

rigorous point-to-plane registration approach was developed. Its formulation uses the 

General Least Squares adjustment model, with the scanned points on both surfaces being 

used as the model observations. The effect of the incidence angle is taken into account in 

the stochastic model, as well as the local surface normals, which are treated as derived 

quantities from the observations. Also it is not assumed that any of the scans should be 

control surfaces, as in Jaw (1999) or Levin and Filin (2010). Instead correspondences 

were established on both scans (symmetry) and the uncertainty of these scans was treated 

simultaneously. 

 

The pairwise approach was then extended for the global registration of multiple scans. A 

simultaneous adjustment is proposed that is closely related to the photogrammetric 
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bundle-block adjustment. The proposed approach addresses the issue of some 

overlapping information which occurs in the sequential pairwise approach, when there is 

overlap between non-sequential scan pairs. Instead, the proposed approach utilizes all the 

available information from all scans so as to obtain a globally optimal parameter solution. 

Thus all information can contribute to the final results and no haphazard selection of scan 

pairs is needed in the registration process. 

 

5.2 Final Conclusions 

Experiments on pairwise registration were conducted with real and simulated PCD, and 

the registration accuracy of the proposed P2P method was compared against the well-

established method of Chen and Medioni (1991). The proposed P2P method was 

consistently the more accurate of the two methods. The improvement indicated that the 

proposed P2P method was better able to deal with three conditions that impact 

registration accuracy: the lack of exact point correspondences, reduced overlap and 

potential under-sampling. It was also observed that the P2P method was comparable to 

the Chen method in terms of runtimes and in some cases converged faster than the Chen 

and Medioni (1991) method. The improved accuracy performance that was observed in 

these experiments can be attributed to the distinguishing feature of the P2P method. The 

symmetric correspondence enables the stochastic properties of both scans to be 

considered in the adjustment theory. This symmetric correspondence distinguishes the 

proposed P2P method from other fine, pairwise registration methods. 
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For global registration, two approaches were investigated. The commonly chosen method 

of sequential pairwise registrations was done with the proposed P2P method on real 

experimental data. Comparisons with other registration algorithms and software tools 

showed the P2P method to be the most accurate method. The proposed simultaneous 

global approach (called the P2Pg method) was shown to better distribute the registration 

errors among the overlapping scans. Also, this simultaneous global approach yields zero 

misclosure which is a desirable result from global registration. The P2Pg global 

refinement approach showed marked improvement in registration accuracy when 

compared to the global refinement tool in Cyclone. 

 

The improved accuracy performance of both the P2P and P2Pg methods in these 

experiments suggests that these algorithms can be utilized in many of the applications 

where PCD exist. 

 

5.3 Recommendations 

The ICPlane method developed by Chen and Medioni (1991) has had many modifications 

since its development. Some of these modifications can be included in P2P, to improve 

areas such as the robustness and the search optimization. Also, both the P2P and P2Pg 

methods involve least squares matrices with sparse structure (see Figure 5-1), which may 

be exploited in the parameter solution process with iterative solvers. Another approach 

that may be considered is the re-ordering of the point order for the 𝑷 and 𝑸 scans. Re-

ordering schemes may compact the non-zero elements of some of the sparse least squares 

matrices and render a more efficient approach to parameter solution. 
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In addition to the linear algebra strategies it may be useful to adopt a coarse-to-fine 

strategy in the registration algorithm, especially for the P2Pg. This coarse-to-fine strategy 

may involve the use of a small percentage of the points in the early iterations which 

reduces the computational cost per iteration. The percentage of used points may then 

increase as the solution approaches convergence. As with all cloud-to-cloud registration 

methods, the success of these approaches and strategies would be data dependent. The 

overlap percentage impacts the final registration accuracy but perhaps more importantly 

would be the surface geometry within the overlapping regions. The P2P and P2Pg 

methods rely on having surfaces with sufficient variations in the directions of the unit 

normal vectors to be successful. 

 

Future work include extensions from 3D to more dimensions to include intensity and 

RGB data. It may also be possible to even include multispectral data and have the 

registration be adopted in tasks such as manifold alignment for multispectral 

classification. In this case, a single point will be an n-dimensional point and the condition 

equations will involve minimizing the point-to- hyper-plane distances. In terms of the 

P2Pg method, the adjustment theory is flexible enough to include other data. These 

additional data may include targets, GNSS data, and other control information. Also, 

other geospatial data such as photogrammetric data may be included in the adjustment 

theory. This opens many options in terms of multi-sensor fusion. The synergy between 

PCD from LiDAR sensors and photogrammetry may be exploited by building on the 

current P2Pg mathematical model. 
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The algorithms developed in this research have the potential for being easily transferred 

to other communities. These communities utilize PCD and they include biomedical 

imaging, autonomous navigation, robotics and computer vision. These developed cloud-

to-cloud registration approaches may potentially assist in autonomous navigation and also 

help towards autonomous mapping by reducing the need of control information. 

 

Figure 5-1 Example sparse matrices from pair#1 of Neil Armstrong Data.  
Top – A-matrix, size = 50,346 x 193,194, non-zeroes = 603,195 (0.0062%) 

Bottom – Q-matrix, size = 193,194, non-zeroes = 579,582 (0.0016%) 
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Appendix A Jacobians of Condition Equations for P2P Method 

The Jacobian terms in Eq.(3.8) for a single correspondence set in 𝑷 (i.e. one condition 

equation), are given by 

𝑭1′(𝒑𝑖) =
𝜕𝑭1
𝜕𝒑�𝑖

∗
𝜕𝒑�𝑖
𝜕𝒑𝑖

= 𝒏𝑞𝑖
𝑇 ∗ 𝐑                                          ∈ ℝ1,3 

𝑭1′(𝒒𝑖) =
𝜕𝑭1
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∗
𝜕𝒏𝑞𝑖
𝜕𝒒𝑒𝑖

+
𝜕𝑭1
𝜕𝒒𝑒𝑖

                                                           

            = (𝒑�𝑖 − 𝒒𝑗)𝑇 ∗
𝜕𝒏𝑞𝑖
𝜕𝒒𝑒𝑖
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𝑇 ,𝒐𝑇�                         ∈ ℝ1,9 
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�                                        

             = 𝒏𝑞𝑖
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𝜕𝑹
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𝒑𝑖,
𝜕𝑹
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𝒑𝑖 ,
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𝒑𝑖� , 𝕀3�                   ∈ ℝ1,6 (A.1) 

where  

𝕀3 is the identity matrix of size 3  

𝒐 is a zero vector of length six 

𝐑 is the conventional 3D orthogonal rotation matrix given in Eq.(3.1) 

𝒏𝑝𝑖is the normal vector of the planar element  𝒑𝑒 as given in Eq.(3.6) 

𝒏𝑞𝑖is the normal vector of the planar element  𝒒𝑒 as given in Eq.(3.6) 

𝜕(.)
𝜕(.)

 represents the partial derivative (or Jacobian) 

(. )𝑇 represents the transpose of a vector or matrix 

𝒑�𝑖 is the transformed point as given in Eq.(3.2) 

𝛥1 and 𝛥2 represent the rotation and translation parameters respectively 
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The point 𝐪𝑗 in Eq.(A.1) refers to any of the sampled points forming the planar element 

𝐪𝑒 as given in Eq.(3.6). In Eq.(A.1) the location of the zero terms for 𝑭1′(𝒒𝑖) must be 

consistent with that of the points in the planar element. If the first point is selected as 𝐪𝑗 

then the zero terms will be as given in Eq.(A.1).   

 

The Jacobian term 
𝜕𝒏𝑞𝑖
𝜕𝒒𝑒𝑖

  is the partial derivative of the local surface normal with respect to 

the planar element. This term is obtained from using the relevant rule of error 

propagation for multivariate cases (Mikhail and Ackermann, 1976) as described in 

Appendix B.  This Jacobian captures the uncertainty of the local surface normals, and it 

impacts the stochastic model of the least squares adjustment. 

 

By similar manipulations for a correspondence set in 𝑸 one has   

𝑭2′(𝒑𝑖) = (𝒒�𝑖 − 𝒑𝑗)𝑇 ∗
𝜕𝒏𝑝𝑖
𝜕𝒑𝑒𝑖

− �𝒏𝑝𝑖
𝑇 ,𝒐𝑇�                                                 

𝑭2′(𝒒𝑖) = 𝒏𝑝𝑖
𝑇 ∗ 𝐑𝑇                                                                                          

𝑭2′(Δ) = 𝒏𝑝𝑖
𝑇 ∗ ��

𝜕𝐑𝑇

𝜕𝜔
(𝒒𝑖 − 𝒕),

𝜕𝐑𝑇

𝜕𝜙
(𝒒𝑖 − 𝒕),

𝜕𝐑𝑇

𝜕𝜅
(𝒒𝑖 − 𝒕)� ,−𝐑𝑇� 

  (A.2) 

The terms for the differentiation of the rotation matrix can be found in Mikhail et al. 

(2001, pg.425). Also for 𝑭2, the partial differential of the transposed rotation matrix with 

respect to any of the rotation parameters is simply the transposed partial differential of 

the rotation matrix with respect to that parameter. 
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Appendix B Redundancy Calculation for P2P Method 

For a pair of scans, 𝑷 and 𝑸 if four scanned points are selected from 𝑷, then the number 

of unique planar elements that can be obtained is calculated from the binomial coefficient 

�43� = 4. If another four scanned points are selected from 𝑸 there can be potentially four 

unique correspondence sets between the two point clouds. In other words, each unique 

planar element in 𝑷 has a corresponding unique transformed point from 𝑸. 

 

Similarly, the four scanned points in 𝑸 can also provide an additional four unique planar 

elements. If two of these planar elements are chosen then two additional unique 

correspondence sets can be obtained. This is done by associating two of the scanned 

points in 𝑷 with these additional planar elements in 𝑸. 

 

By similar deduction it can be seen that any other combination of less than four points 

from each scan will fail to provide the minimum of six unique correspondence sets. Thus 

a minimum of eight points (four on each scan) is needed for P2P registration. The 

redundancy of the adjustment is therefore equal to 3*(Np+Nq-8), where Np and Nq are the 

number of contributing points from 𝑷, and 𝑸 respectively. These contributing points are 

inlier points within the overlapping region. 

 
 

 



113 

 

Appendix C Jacobians of Condition Equations for P2Pg Method 

The Jacobian terms in Eq.(4.5) for a single correspondence set in the 𝑷 of a pair of 

overlapping scans (i.e. one condition equation, from one scan pair), are given by 

     𝑭1′(𝒑𝑖) =
𝜕𝑭1
𝜕𝒑�𝑖

∗
𝜕𝒑�𝑖
𝜕𝒑𝑖

= 𝒏𝑞�𝑖
𝑇 ∗ 𝐑𝒑                                                ∈ ℝ1,3 

= �𝐑𝒒 ∗ 𝒏𝒒𝒊�
𝑇
∗ 𝐑𝒑                                                  

              𝑭1′(𝒒𝑖) =
𝜕𝑭1
𝜕𝒏𝑞�𝑖
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𝜕𝒏𝑞�𝑖
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+
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𝜕𝒒�𝑒𝑖

∗
𝜕𝒒�𝑒𝑖
𝜕𝒒𝑒𝑖

                                        ∈ ℝ1,9             

            = �(𝒑�𝑖 − 𝒒�𝑗)𝑇 ∗ 𝐑𝒒 ∗
𝜕𝒏𝑞𝑖
𝜕𝒒𝑒𝑖

� − ��𝐑𝒒 ∗ 𝒏𝒒𝒊�
𝑇
∗ 𝐑𝒒,𝒐𝑇�     
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𝜕𝑭1
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�                                            
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𝑇
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In Eq.(C.1):  

𝕀3 is the identity matrix of size 3  

𝒐 is a zero vector of length six 

𝐑𝒑,𝐑𝒒 are the conventional 3D orthogonal rotation matrices given in Eq.(4.4) 

𝒏𝑞𝑖is the normal vector of the planar element  𝒒𝑒 as given in Eq.(3.6) 

𝒏𝑞�𝑖is the normal vector of the planar element 𝒒�𝑒 as given in Eq.(D.1) 

𝒒�𝑒is the planar element obtained from transformed points in 𝑸 

𝜕(.)
𝜕(.)

 represents the partial derivative (or Jacobian) 

(. )𝑇 represents the transpose of a vector or matrix 

𝒑�𝑖,𝒒�𝑖 are the transformed points as given in Eq.(4.4) 

𝛥𝑝 and 𝛥𝑞 represent the transformation parameters for 𝑷 and 𝑸 respectively 

𝛥𝑝1 and 𝛥𝑝2 represent the rotation and translation parameters respectively for 𝑷 

 

The point 𝐪�𝑗  in Eq.(C.1) refers to any of the transformed points forming the planar 

element 𝐪�𝑒 as given in Eq.(4.4). In Eq.(C.1) the location of the zero terms for 𝑭1′(𝒒𝑖) 

must be consistent with that of the points in the planar element. If the first point is 

selected as 𝐪�𝑗 then the zero terms will be as given in Eq.(C.1). The computation of the 

normal vector in the transformed coordinate space and the associated Jacobian terms are 

discussed in Appendix D. 
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By similar manipulations for a correspondence set in 𝑸 of a pair of overlapping scans one 

has  

𝑭2′(𝒑𝑖) = �(𝒒�𝑖 − 𝒑�𝑗)𝑇 ∗ 𝐑𝒑 ∗
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Appendix D Transformed Planar Element and its Partial Derivatives 

The planar element in Eq.(4.4) and its unit normal vector are given in the reference 

coordinate frame. These quantities are obtained from the transformed point coordinates. 

However, when the original sampled points are transformed to the reference coordinate 

frame, new (or false) incidence angles are introduced at each transformed point. This 

happens since the incidence angle is computed relative to the coordinate origin. For the 

transformed coordinates the new origin is that of the reference coordinate frame and not 

the origin of the local coordinate frame in which the point coordinates were obtained. 

These new (or false) incidence angles impact the stochastic model and it is thus preferred 

to compute unit normals for points in their original coordinate frame. The necessary 

transformed quantities can be obtained as follows. 

 

𝒏𝑞�𝑖 = 𝐑𝒒 ∗ 𝒏𝒒                   ∈ ℝ3,1   

                         =>
𝜕𝒏𝑞�𝑖
𝜕𝒒𝑒𝑖

= 𝐑𝒒 ∗
𝜕𝒏𝑞𝑖
𝜕𝒒𝑒𝑖

                 ∈ ℝ3,9      (D.1) 

 

The left-hand side of Eq.(D.1) can alternatively be expressed as 

𝜕𝒏𝑞�𝑖
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And, 

 �
𝜕𝒒�𝑒𝑖
𝜕𝒒𝑒𝑖

�
−1

= �
𝐑𝒒 ∅ ∅
∅ 𝐑𝒒 ∅
∅ ∅ 𝐑𝒒

�
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 ∈ ℝ9,9           (D.3) 

 

Eq.(D.3) is in relation to the three points of a planar element.  

 

Finally, 
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Appendix E Registration Parameter Errors 

In both Table E-1 and Table E-2, the parameter errors are the differences in rotation 

values (in radians) and translation values (in meters) relative to the parameters obtained 

by using the target based registration. In Table E-2, Cyclone2 represents the refined 

Cyclone option.  

 

Table E-1 Pairwise parameter errors for each scan pair of the Purdue data.  

Pair 1 2 3 4 5 6 7 8
Besl_om -2.8E-03 -1.5E-03 -2.6E-03 2.6E-04 9.7E-04 -1.0E-03 -2.4E-04 -3.6E-03
Besl_ph 4.9E-04 9.0E-04 3.0E-03 1.9E-04 -3.4E-05 4.9E-04 1.2E-03 -3.5E-03
Besl_ka 4.9E-04 -3.1E-04 1.5E-03 0.0E+00 2.0E-04 -8.1E-04 7.9E-04 1.7E-03
Besl_Tx 0.008 0.001 -0.003 0.000 0.001 0.002 0.000 0.010
Besl_Ty -0.001 0.001 -0.013 0.001 0.001 0.002 -0.001 -0.007
Besl_Tz -0.004 -0.003 0.022 -0.001 0.004 -0.001 0.004 -0.004
P2P_om 4.2E-04 -2.9E-04 -9.1E-04 -3.8E-05 1.1E-04 2.9E-04 -4.2E-04 -1.6E-04
P2P_ph -1.4E-03 1.1E-04 1.0E-04 8.5E-05 2.4E-04 4.9E-04 -3.1E-04 8.8E-04
P2P_ka -2.1E-04 -5.0E-04 4.9E-04 0.0E+00 2.0E-04 -6.0E-04 -6.1E-04 7.9E-04
P2P_Tx -0.002 -0.001 -0.001 0.001 0.000 0.001 0.002 0.003
P2P_Ty 0.001 0.003 -0.004 0.000 0.002 0.002 0.005 -0.002
P2P_Tz -0.008 -0.001 0.000 0.001 0.001 0.002 -0.003 0.005
CloudC_om 4.5E-03 4.3E-03 -1.6E-03 -1.5E-03 -5.6E-04 9.5E-05 2.1E-03 1.1E-02
CloudC_ph -1.9E-02 -5.1E-03 1.0E-03 3.0E-03 4.2E-03 9.8E-04 -2.2E-03 8.9E-03
CloudC_ka -3.2E-04 -1.2E-03 1.1E-03 2.6E-04 2.1E-04 -5.8E-04 2.0E-03 2.4E-04
CloudC_Tx 0.003 -0.002 -0.007 0.004 0.004 0.001 -0.003 0.022
CloudC_Ty -0.008 0.004 -0.014 -0.004 0.003 -0.001 -0.011 -0.030
CloudC_Tz -0.117 -0.007 0.008 0.002 0.018 0.003 -0.004 0.002
Cyclone_om 2.1E-04 -1.0E-04 -2.2E-03 5.2E-04 2.7E-04 -1.8E-03 -8.5E-04 -3.7E-03
Cyclone_ph 1.7E-04 4.3E-04 2.5E-03 -2.5E-04 8.3E-04 1.6E-03 1.1E-03 -1.9E-03
Cyclone_ka 3.3E-05 -1.4E-03 9.5E-04 2.2E-05 2.4E-04 -4.9E-04 9.2E-04 2.0E-03
Cyclone_Tx 0.000 -0.003 -0.001 0.000 -0.001 0.001 0.000 0.004
Cyclone_Ty 0.001 0.010 -0.007 0.001 0.001 0.004 -0.002 -0.002
Cyclone_Tz 0.001 0.001 0.019 -0.002 0.004 0.000 0.003 0.005  
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Table E-2 Global parameter errors for each registered scan of the Purdue data.  

Scan 2 3 4 5 6 7 8
Besl_om -2.8E-03 -2.3E-03 -4.8E-03 -7.3E-03 8.8E-03 5.4E-03 3.6E-03
Besl_ph 4.9E-04 3.6E-03 6.5E-03 -2.7E-03 2.6E-04 -5.6E-03 -5.7E-03
Besl_ka 4.9E-04 8.6E-05 1.6E-03 1.6E-03 1.8E-03 1.0E-03 1.8E-03
Besl_Tx 0.008 0.006 0.009 0.001 -0.005 -0.001 0.000
Besl_Ty -0.001 0.002 0.015 0.010 0.005 -0.005 -0.008
Besl_Tz -0.004 0.005 0.051 0.054 0.046 -0.001 -0.017
P2P_om 4.2E-04 -1.4E-03 -2.3E-03 1.4E-04 7.1E-04 2.5E-03 2.5E-03
P2P_ph -1.4E-03 -8.7E-04 -8.4E-04 -2.3E-03 2.5E-03 1.7E-03 5.9E-04
P2P_ka -2.1E-04 -8.0E-04 -3.0E-04 -3.0E-04 -8.6E-05 -6.6E-04 -1.3E-03
P2P_Tx -0.002 -0.004 -0.001 0.000 -0.002 0.000 0.002
P2P_Ty 0.001 -0.002 -0.001 -0.002 -0.001 -0.001 0.005
P2P_Tz -0.008 -0.010 -0.008 0.005 0.014 0.014 0.007
CloudC_om 4.5E-03 -1.1E-02 -1.3E-02 1.1E-02 -6.9E-03 1.0E-02 1.7E-02
CloudC_ph -1.9E-02 -1.8E-02 -1.7E-02 -1.4E-02 2.1E-02 2.1E-02 1.5E-02
CloudC_ka -3.2E-04 -1.8E-03 -6.7E-04 -2.3E-04 -1.9E-08 -7.3E-04 1.3E-03
CloudC_Tx 0.003 0.001 0.013 0.011 0.008 0.007 0.001
CloudC_Ty -0.008 -0.011 -0.005 0.001 0.005 0.003 -0.005
CloudC_Tz -0.117 -0.125 -0.137 -0.041 0.059 0.111 0.110
Cyclone_om 2.1E-04 1.5E-04 -2.0E-03 -2.7E-03 3.3E-03 1.5E-03 7.0E-04
Cyclone_ph 1.7E-04 3.7E-04 2.8E-03 -1.4E-03 1.3E-03 1.3E-04 7.7E-04
Cyclone_ka 3.3E-05 -1.4E-03 -4.5E-04 -4.4E-04 -1.8E-04 -6.5E-04 2.8E-04
Cyclone_Tx 0.000 -0.009 -0.003 -0.002 -0.001 0.002 0.000
Cyclone_Ty 0.001 -0.005 -0.005 -0.006 -0.006 -0.005 -0.005
Cyclone_Tz 0.001 0.001 0.021 0.020 0.021 0.004 0.003
P2Pg_om 2.2E-04 -9.5E-04 -2.1E-03 7.3E-05 4.0E-04 3.1E-03 2.3E-03
P2Pg_ph -1.6E-03 -8.6E-04 -1.1E-03 -2.2E-03 2.6E-03 1.9E-03 6.9E-04
P2Pg_ka -9.0E-05 -5.5E-04 -2.2E-04 -4.0E-04 4.3E-05 -1.1E-03 -1.2E-03
P2Pg_Tx -0.001 -0.003 -0.001 0.000 -0.003 0.002 0.002
P2Pg_Ty 0.000 -0.002 -0.001 -0.003 -0.001 0.001 0.005
P2Pg_Tz -0.010 -0.008 -0.010 0.004 0.013 0.015 0.007
Cyclone2_om 5.2E-04 -6.0E-04 -3.0E-03 -2.2E-03 3.3E-03 3.2E-03 2.9E-03
Cyclone2_ph -8.0E-04 -3.6E-04 2.2E-03 -3.0E-03 3.4E-03 1.5E-03 1.5E-03
Cyclone2_ka -2.8E-04 -1.8E-03 -9.7E-04 -9.8E-04 -7.4E-04 -1.9E-03 -1.5E-03
Cyclone2_Tx -0.002 -0.011 -0.004 0.000 0.003 0.008 0.006
Cyclone2_Ty 0.000 -0.007 -0.008 -0.009 -0.008 -0.002 0.002
Cyclone2_Tz -0.004 -0.005 0.016 0.021 0.031 0.015 0.012  
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