
Purdue University
Purdue e-Pubs

Open Access Dissertations Theses and Dissertations

Fall 2013

Ant: A Framework for Increasing the Efficiency of
Sequential Debugging Techniques with Parallel
Programs
Jae-Woo Lee
Purdue University

Follow this and additional works at: https://docs.lib.purdue.edu/open_access_dissertations

Part of the Computer Engineering Commons

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact epubs@purdue.edu for
additional information.

Recommended Citation
Lee, Jae-Woo, "Ant: A Framework for Increasing the Efficiency of Sequential Debugging Techniques with Parallel Programs" (2013).
Open Access Dissertations. 114.
https://docs.lib.purdue.edu/open_access_dissertations/114

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Purdue E-Pubs

https://core.ac.uk/display/77939797?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://docs.lib.purdue.edu?utm_source=docs.lib.purdue.edu%2Fopen_access_dissertations%2F114&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/open_access_dissertations?utm_source=docs.lib.purdue.edu%2Fopen_access_dissertations%2F114&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/etd?utm_source=docs.lib.purdue.edu%2Fopen_access_dissertations%2F114&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/open_access_dissertations?utm_source=docs.lib.purdue.edu%2Fopen_access_dissertations%2F114&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=docs.lib.purdue.edu%2Fopen_access_dissertations%2F114&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/open_access_dissertations/114?utm_source=docs.lib.purdue.edu%2Fopen_access_dissertations%2F114&utm_medium=PDF&utm_campaign=PDFCoverPages

Graduate School ETD Form 9
(Revised 12/07)

PURDUE UNIVERSITY
GRADUATE SCHOOL

Thesis/Dissertation Acceptance

This is to certify that the thesis/dissertation prepared

By

Entitled

For the degree of

Is approved by the final examining committee:

 Chair

To the best of my knowledge and as understood by the student in the Research Integrity and
Copyright Disclaimer (Graduate School Form 20), this thesis/dissertation adheres to the provisions of
Purdue University’s “Policy on Integrity in Research” and the use of copyrighted material.

Approved by Major Professor(s): ____________________________________

Approved by:
 Head of the Graduate Program Date

 Jae-Woo Lee

 Ant: A Framework for Increasing the Efficiency of Sequential Debugging Techniques with Parallel
 Programs

Doctor of Philosophy

SAMUEL P. MIDKIFF

MITHUNA S. THOTTETHODI

RUDOLF EIGENMANN

VIJAY S. PAI

SAMUEL P. MIDKIFF

M. R. Melloch 12-02-2013

ANT: A FRAMEWORK FOR INCREASING THE EFFICIENCY OF

SEQUENTIAL DEBUGGING TECHNIQUES WITH PARALLEL PROGRAMS

A Dissertation

Submitted to the Faculty

of

Purdue University

by

Jae-Woo Lee

In Partial Fulfillment of the

Requirements for the Degree

of

Doctor of Philosophy

December 2013

Purdue University

West Lafayette, Indiana

ii

For my wife, Sookyung and my children, Seunghyun and Yejee

iii

TABLE OF CONTENTS

Page

LIST OF TABLES . v

LIST OF FIGURES . vi

ABSTRACT . viii

1 INTRODUCTION . 1

1.1 Motivation . 1

1.2 Ant Framework . 2

1.2.1 AntDM: Exploiting Parallelism of Distributed Memory Pro-
grams . 2

1.2.2 AntSM: Exploiting Parallelism of Shared Memory Programs 4

1.3 Contribution . 5

1.4 Organization of Thesis . 6

2 BACKGROUND AND RELATED WORK 7

2.1 Overview of Value Invariant Detection 7

2.2 Related Work . 9

2.2.1 Debugging Sequential Programs 9

2.2.2 Debugging Parallel Programs 10

2.2.3 Process Clustering . 11

3 ANTDM: ANT FRAMEWORK TARGETING DISTRIBUTED MEMORY
PARALLEL PROGRAMS . 13

3.1 The AntDM Framework . 13

3.2 Compile Time Analysis and Instrumentation 14

3.2.1 Region Demarcation Points (RDPs), ARs and NARs 14

3.2.2 RDP guided instrumentation 18

3.3 Parallel Value Invariant Detection – A Case Study 19

iv

Page

3.3.1 Extending VID to Parallel Programs 20

3.3.2 Using C-DIDUCE with the AntDM framework 20

3.3.3 Scalability . 23

3.4 Experimental Results . 24

3.4.1 Implementation and Experimental Setup 24

3.4.2 Performance of Optimized Parallel Value Invariant Detection 28

3.4.3 Accuracy of Optimized Parallel Value Invariant Detection . 29

3.4.4 Discussion . 30

4 ANTSM: ANT FRAMEWORK TARGETING SHARED MEMORY PAR-
ALLEL PROGRAMS . 31

4.1 The AntSM framework . 31

4.2 AntSM Runtime and Instrumentation 34

4.2.1 Finding root functions . 34

4.2.2 Instrumentation for tracking code executed by root functions 35

4.2.3 Instrumentation for collecting monitoring data 35

4.2.4 AntSM runtime algorithm 36

4.2.5 Sampled monitoring of AntSM 41

4.3 A Case Study with C-DIDUCE and Value Invariant Detection . . . 42

4.4 Experimental Results . 44

4.4.1 Implementation and Experimental Setup 44

4.4.2 Performance of C-DIDUCE with AntSM 47

4.4.3 Scalability Results . 48

4.4.4 Accuracy of C-DIDUCE with AntSM 51

4.4.5 Discussion . 53

5 CONCLUSIONS . 57

LIST OF REFERENCES . 58

A EXTENDING VALUE INVARIANT DETECTION TO PARALLEL PRO-
GRAMS . 61

VITA . 63

v

LIST OF TABLES

Table Page

3.1 Benchmark characteristics: “NARs count” is the number of NAR code
regions; “NARs ratio” is the number of procedures with NARs/total pro-
cedures. For both NARs count and ratio, a smaller value is better for Ant
performance. 25

3.2 The types and the number of injected bugs. “NAR percentage” is the
percentage of code in NARs; “Bug count” is the total bug count and the
number by each type (V: value mutation/ L: loop mutation/ C: control
mutation); and “NAR Bug percentage” is the percent of bugs in NARs. 27

4.1 Summary of the PARSEC benchmark characters: “Monitored Points” is
the number of static program points monitored; “Thread Pool” says if
the benchmark uses a thread pool; “Injected Bugs” is the number of bugs
injected; and “Original Speedup is the speedup of the un-instrumented
benchmark going from 1 to 8 threads. 46

4.2 The speedup of AntSM by different thread counts. The baseline is the
execution time of benchmark with instrumentation in checking mode, ex-
ecuting with a single thread. 50

4.3 Comparison of average accuracy for Replicated, AntSM, and Distributed
monitoring. 53

4.4 The runtime monitoring counts for different monitoring schemes. This
shows how many times C-DIDUCE debugging libraries are actually in-
voked in checking mode with 8 threads. 55

vi

LIST OF FIGURES

Figure Page

2.1 Example of C-DIDUCE in training mode. 8

2.2 Example of C-DIDUCE in checking mode. In the confidence level compu-
tation, Access Count contains the number of accesses to the reference of
a variable and Accepted Values Count contains the number of accepted
values to the reference, i.e., 2 to the power of the number of bits which
are marked as “not invariant” in the mask of an invariant set. 9

3.1 Overview of the AntDM Framework. 14

3.2 Example of AntDM static analysis for marking ARs and NARs based on
RDPs. 16

3.3 Time spent in ARs and NARs during program execution. 17

3.4 Instrumentation example by different regions. 19

3.5 Example of AntDM’s merging Invariant Sets in training mode. 21

3.6 Example of AntDM’s merging Violation Lists in checking mode. 22

3.7 The comparison of C-DIDUCE overhead against the execution time with
no instrumentation. 28

3.8 Accuracy of bug detection by the ranking in the violation list. Any place
means any rank in the violation list was considered as successful detection.
Top 40 means the ranking is within top 40 of violation list. Top 20 is within
first 20 of violation list. Top 10 is within first 10. 29

4.1 Steps performed by AntSM and the AntSM runtime system. 34

4.2 Example of updating group id when entering/exiting root function. . . 40

4.3 Debugging library instrumentation example. 41

4.4 Example of C-DIDUCE with AntSM in training mode. 43

4.5 Example of C-DIDUCE with AntSM in checking mode. 44

vii

Figure Page

4.6 Comparison of C-DIDUCE execution time overhead in checking mode.
The baseline is the execution time of the original benchmark with large
dataset and no instrumentation. Note that the vertical axis is on a log
scale. The data label on each bar shows the overhead (times) rounded to
the nearest one. The number next to each benchmark’s name represents
the overhead reduction from Replicated to AntSM. 47

4.7 The scalability of AntSM. The baseline is the execution time of benchmark
with instrumentation in checking mode, executing with a single thread. 49

4.8 The ratio of AntSM’s speedup to the original speedup by the number of
threads (4, 8, 16, and 32 threads). If the ratio, y, is greater than 1, AntSM
scales better than the original PARSEC benchmark. 51

4.9 The comparison of accuracy among Replicated, AntSM, and Distributed. 52

4.10 Comparison of C-DIDUCE execution time overhead in checking mode
when using separate table for each thread and merging the tables at the
end of execution. The baseline is the execution time of the original bench-
mark with no instrumentation. Note that the vertical axis is on a log
scale. The data label on each bar shows the overhead (times) rounded to
the nearest one. The number next to each benchmark’s name represents
the overhead reduction from Replicated to AntSM. 54

viii

ABSTRACT

Lee, Jae-Woo Ph.D., Purdue University, December 2013. Ant: A Framework for
Increasing the Efficiency of Sequential Debugging Techniques with Parallel Programs.
Major Professor: Samuel P. Midkiff.

Bugs in sequential programs cost the software industry billions of dollars in lost

productivity each year. Even if simple parallel programming models are created,

they will not reduce the level of sequential bugs in programs below that of sequential

programs. It can be argued that the complexity of current parallel programming

models may increase the number of sequential bugs in parallel programs because they

distract the programmer from the core logic of the program.

Tools exist that identify statements related to sequential bugs and allow those bugs

to be more quickly located and fixed. Their use in parallel programs will continue

to be useful. Many of these debugging tools require runtime monitoring of program

points of interest in a program and the overhead of this monitoring is usually very

high.

We propose Ant, a framework that increases the efficiency of sequential debugging

techniques when used with parallel programs. The Ant framework takes two differ-

ent strategies depending on whether the program to be debugged is a distributed

memory program or shared memory program. For MPI programs, the Ant compiler

analyzes the program and identifies two different types of code regions: those that

all processes execute and regions that only part of the processes execute. For shared

memory Pthreads programs, Ant uses a combination of static and dynamic analyses

to determine similar parts of the program executing in parallel and the number of

threads executing those parts of the program. The programs are instrumented with

calls to Ant runtime libraries and debugging libraries based on the Ant compiler’s

ix

static analysis results. Relative to a naive port of a debugging tool (C-DIDUCE, in

our cases), Ant’s technique, by exploiting the application’s parallelism, reduces the

monitoring overhead by up to 15.85 times (and on average 9.23 times) for MPI pro-

grams executing with 32 processes and up to 18.14 times (and on average 8.73 times)

for Pthreads programs executing with 8 threads, while maintaining high accuracy.

1

1. INTRODUCTION

1.1 Motivation

Writing correct sequential programs is a difficult task – bugs in these programs

cost the software industry billions of dollars in lost productivity each year [1]. Using

more complicated parallel programming models will not reduce the number of se-

quential bugs, and may increase their number by adding to the overall complexity of

programming. Tools exist that identify statements that may be related to sequential

bugs and that allow the bugs to be identified quickly and fixed. Because sequential

bugs will continue to exist in parallel programs, these tools will continue to be useful

in parallel programming environments.

Many of these debugging tools require runtime monitoring of program points of

interest in a program. An important class of these tools detects invariant viola-

tions, and includes tools such as DIDUCE [2], C-DIDUCE [3] and AccMon [4]1 that,

in sequential programs, have runtime overheads of up to 20X, 1.21X and 3X (with

specialized hardware support), respectively, even when a whole program is not moni-

tored. A second class of debugging tools (e.g., [5–7]) looks for statistical variations in

program behaviors between correct and incorrect runs, and can also have high run-

time overheads. These overheads result from needing to monitor fine grained program

actions at runtime. A naive port of these tools to parallel programs will have high

overheads while executing on expensive parallel hardware.

1AccMon uses special hardware

2

1.2 Ant Framework

We propose Ant, a framework that increases the efficiency of sequential debugging

techniques when used with parallel programs. The Ant framework allows sequential

debugging tools that do not require all events of interest to be monitored to efficiently

and accurately target parallel programs. We show the effectiveness of the Ant frame-

work using a case study involving C-DIDUCE [3], an implementation of DIDUCE [2]

that targets C instead of Java programs.

The Ant framework picks between two different strategies depending on whether

the program to be debugged is a distributed memory program or a shared memory

program. We call the technique for distributed memory parallel programs AntDM,

and the technique for shared memory parallel programs AntSM.

1.2.1 AntDM: Exploiting Parallelism of Distributed Memory Programs

AntDM allows the sequential tools mentioned above to efficiently and accurately

target distributed memory parallel programs (MPI programs in our study). AntDM

does this by solving two important problems. First, AntDM allows the results gath-

ered on many processes to be merged in a theoretically sound way that gives useful

results. Second, AntDM uses the inherent parallelism of the program being moni-

tored to reduce the overhead of the debugging tool, while maintaining a high level of

accuracy.

Statistical and invariance based debugging tools such as DIDUCE and C-DIDUCE

assert a hypothesis that serves as the foundation of the tool. DIDUCE and C-

DIDUCE assert the value invariant hypothesis, which states that a given variable

takes on a small set of values during its lifetime, even with different input data, and

rarely occurring deviations from this set of values indicate buggy or anomalous be-

havior. Detecting where these deviations occur aids in debugging. The literature on

these and similar techniques (e.g., [2–4, 7, 8]) empirically validate the utility of the

asserted hypotheses in sequential programs.

3

In our case study, AntDM asserts a parallel version of the value invariant hy-

pothesis. AntDM asserts that a value invariant holds across different input datasets,

across similar processes executing the program, and across executions involving dif-

ferent numbers of processes. In Section 3.3.1, we present, from [9], the result that

the merging of the monitoring data gathered over many processes will yield the same

result as if the data was gathered in a single sequential execution.

Empirical evidence gathered from our case study targeting C with MPI programs

and C-DIDUCE shows validity of the value invariant detection and the practical-

ity of exploiting the parallel value invariant hypothesis with AntDM. We use four

MPI parallel benchmarks that have had bugs injected into them. Each process per-

forms replicated monitoring, that is, each process performs the monitoring required

by C-DIDUCE as if it were an independent program, with the results of the individ-

ual processes’ monitoring collected and merged. This monitoring provides effective

detection of the injected bugs, as explained in Section 4.4.

Using the replicated monitoring described above, C-DIDUCE and DIDUCE suffer

high overheads in parallel programs just as they do in sequential programs. One way

to reduce these overheads is to have each of the P processes executing the program

monitor 1

P
of the events. This performs a sampled monitoring by distributing the

monitoring evenly across the P processes. We call this type of monitoring distributed

monitoring. As we show in Section 4.4, distributed monitoring significantly reduces

the monitoring overhead, but suffers from reduced accuracy in detecting anomalous

events of interest. The inaccuracy results from each process only sampling 1

P
events,

even in program regions that are not executed by all P processes.

AntDM takes a more intelligent approach that achieves low overhead similar to

that of distributed monitoring, and accuracy similar to that of replicated monitoring.

It does this by using a static, compile time analysis to divide the program into regions

that are executed by all processes (All-process Regions or ARs) and regions that are

not executed by all processes (Not-All-process Regions or NARs). In ARs, AntDM

acts like distributed monitoring and each process monitors 1

P
of the accesses. In

4

NARs, all processes monitor all accesses, as with replicated monitoring. We present

experimental results showing that AntDM’s strategy achieves the best of both repli-

cated and distributed monitoring: it has nearly the overhead reduction of distributed

monitoring with accuracy that is close to replicated monitoring.

1.2.2 AntSM: Exploiting Parallelism of Shared Memory Programs

While a naive port of sequential debugging tools to a parallel, shared memory

platform is possible, doing so is inefficient. The tools often rely on having a single

data item monitored for each program point of interest (e.g., every reference of a non-

floating point variable). The key insight of this thesis is that different instances of

the same code executing in parallel in different threads are likely to behave similarly,

and that sampled monitoring over that code can reduce overheads with only a small

impact on accuracy.

The Ant Shared Memory (or AntSM) system exploits this key observation to

reduce the overhead of debugging tools when used with shared memory parallel pro-

grams. AntSM uses the parallelism of the multi-threaded shared memory program

being monitored to reduce the overhead of the debugging tool, while maintaining a

high level of accuracy. It does this by first instrumenting the program with calls to

the AntSM runtime library to collect and maintain information about parallelism in

the program. The program is then instrumented with monitoring and other calls for

the bug detection technique being used. At runtime, the parallel structure of the

program and the number of threads executing some region of the program are used

to perform an intelligently sampled monitoring.

We measure the effectiveness of AntSM with a case study using multi-threaded,

parallel Pthreads programs from the PARSEC benchmark suite [10] with injected bugs

like those in the Siemens Benchmark Suite [11]. Our debugging tool is C-DIDUCE [3],

an implementation of DIDUCE [2] targeting C instead of Java. AntSM reduces the

running time of the monitored program by up to 18.14 times (and on average 8.73

5

times) on an eight-core machine relative to a naive port that performs no sampling,

with an accuracy that is close to monitoring all accesses.

1.3 Contribution

Ant framework with AntDM and AntSM technique presents the following technical

contributions:

• A debugging framework that allows sequential debugging tools to be used with

parallel programs;

• A monitoring technique that uses an intelligent sampling strategy to exploit the

parallelism within an application;

• The uses of ARs and NARs to guide MPI program instrumentation for debug-

ging tools, and data showing that this leads to accurate monitoring with a low

overhead;

• Experimental results showing the validity of the parallel value invariant hypoth-

esis with AntDM and the effectiveness of C-DIDUCE on distributed memory

parallel programs;

• The uses of the fork site analysis with Pthreads programs to enable sampled

monitoring to reduce program debugging overheads;

• A case study showing the effectiveness of Ant framework with the C-DIDUCE [3]

value invariant tool with shared memory parallel programs;

• Experimental results showing the usefulness of our sampling results and over-

head reduction strategies used by AntSM when monitoring shared memory par-

allel programs.

6

1.4 Organization of Thesis

The rest of this thesis is organized as follows. Chapter 2 presents the background

and related work. Chapter 3 discusses AntDM, the technique used by the Ant frame-

work targeting distributed memory parallel programs. Chapter 4 describes AntSM,

the technique used by the Ant framework targeting shared memory parallel programs.

Chapter 5 gives our conclusions.

7

2. BACKGROUND AND RELATED WORK

2.1 Overview of Value Invariant Detection

This thesis uses C-DIDUCE [3], a C implementation of DIDUCE. The differ-

ences between DIDUCE and C-DIDUCE result from DIDUCE targeting Java and C-

DIDUCE targeting C. Details of these differences can be found in [3]. Both DIDUCE

and C-DIDUCE first perform a training run to determine an approximation to the set

of all values seen by each reference in the program. DIDUCE associates each reference

of a variable with an invariant I = 〈Mt, V 〉, where V is the variables’ initial value,

and Mt is the value of an invariant mask after the t-th access. V is initialized to the

variable value that is seen when the reference is first executed, and M is initialized

to be all 1’s. Let wt be the t-th value of V observed at the program point.

As each value wt is observed, the test (wt ⊗ V) ∧Mt 6= 0 is performed, where ⊗

is the bitwise XOR operation. If the test is true, the invariant is relaxed by updating

the mask so that M = Mt+1 ← Mt ∧ (wt ⊗ V). Intuitively, each update of the mask

results in the mask having a value of ‘0’ in bit positions where both a ‘0’ and a ‘1’

have been previously seen. A mask position containing a ‘1’ indicates that all previous

values only had a ‘1’ in that position, or that all previous values only had a ‘0’ in

that position. Whether only a ‘0’ or ‘1’ value was seen is determined by inspecting

the corresponding bit of V . Thus the test determines if the value wt differs in one

or more bits from all previously seen values, and if it does, the mask is relaxed to

indicate this.

For example, as shown in Figure 2.1, if the variable, “a” in the program snippet,

has the values in the “Current Value” column, the invariant test is performed each

time and the mask information is updated accordingly. This example shows only

8 bits but the actual implementation keeps 32 bits for each value and mask. After

8

Fig. 2.1. Example of C-DIDUCE in training mode.

three accesses of the variable, a, the resulting mask shows the first and the last bit

is invariant and this mask is used for detecting the invariant violation in checking

mode.

In a production run with a different input, values that are not in the (approximate)

set of seen values are detected by applying the test above. However, not all invariant

violations are treated equally. In particular, violations with values that are seen

many times are treated as being less important than violations with values that

occur only a few times. The intuition behind this is that values that are seen many

times are more likely to be values that should have been in the invariant set. At

the end of the run, the different violations are ranked, and a listing of violations, in

rank order, is produced. As with other debugging and anomaly detection tools, the

assumption is that lower ranked violations are less likely to correlate to a bug, and

that a programmer debugging a program will examine the highly ranked violations,

fix any indicated errors, and then either re-execute the program, or re-train and

re-execute the program.

Figure 2.2 shows an example of information used in checking mode. When the

value of variable a is “10000011”, it violates the invariant test. This is because that

the initial value is “11001100” and the mask is “10000001” so the result of invariant

9

Fig. 2.2. Example of C-DIDUCE in checking mode. In the confidence
level computation, Access Count contains the number of accesses to the
reference of a variable and Accepted Values Count contains the number
of accepted values to the reference, i.e., 2 to the power of the number of
bits which are marked as “not invariant” in the mask of an invariant set.

testing is “00000001”, i.e., not zero. The newly computed mask will be “1000000”,

which has 7 bits marked as “not invariant” so the confidence level is computed based

on this. The new and old confidence levels are compared and if the confidence level

drop (the difference between the confidence level for the invariant set in the table and

for the current value) is higher than the previous drop, the new value is recorded in

the invariant violation table.

2.2 Related Work

2.2.1 Debugging Sequential Programs

There has been previous work focusing on the development of tools to aid the

debugging of sequential programs, and we have mentioned some of them in Chapter 1.

Ernst, et al. [8, 12] introduce DAIKON, a system that detects program invariants at

runtime. The DAIKON infers invariants, such as the set of constant values in a

variable and range limits, at specific program points such as procedure entries, exits,

10

and loop heads. At runtime, the instrumented program provides DAIKON with

the values of variables in scope and DAIKON detects the violation of the invariants.

Hangal, et al. [2] propose DIDUCE, a debugging technique of value invariant violation

detection and this was discussed in the previous section. Zhou, et al. [4] discuss a

program counter(PC) based invariant detection tool called AccMon. Their work

asserts that in most programs, a given memory location is typically accessed by only

a small set of instructions and by extracting the invariant of the set of PCs accessing a

given variable, it can detect accesses by outlier instructions, which may be related to

a memory related bugs such as memory corruption, buffer overflow, stack smashing,

etc. Other tools [5–7] describe debugging techniques using statistical variations in

program behaviors between correct and incorrect runs.

Fei, et al. [3] provide a debugging framework, called Artemis, to reduce the over-

head of debugging tools. Their work defines the dynamic context of a program region

to be the program state accessed in that region, and approximates a context at the

entrance of a procedure by approximating a variable’s value by an integer value and

a memory object being pointed to by the pointer’s type. Artemis collects the context

invariant information during the correct runs of a target program and reduces the

overhead of debugging tools in production run by avoiding remonitoring the same

code region under the same context.

These tools are complementary to our work in that Ant framework is applicable

to these tools. Unlike our work, these tools target sequential programs.

2.2.2 Debugging Parallel Programs

There are several previous works on debugging parallel programs. TotalView [13],

Mantis [14], and Prism [15] support typical debugging methods such as adding break-

points at the program points and specifying the processes or threads of interest. These

tools support a GUI to make it possible to debug the target programs interactively

by browsing the source code at runtime.

11

Stringhini et al. [16] introduce PADI, a debugging tool that offers a mechanism to

select the processes to be debugged. PADI’s group selection mechanism allows users

to select pre-defined groups of processes as well as to define their own group and this

mechanism helps reducing the amount of processes to be visualized and controlled.

Cheng et al. [17] discuss a parallel and distributed program debugger that focuses on

portability by incorporating a client-server model. To support portability, their work

provides a protocol that specifies the interaction between a message-passing library

and the debugger. Wismuller et al. [18] introduce a parallel debugger called DETOP

that applies the event-action paradigm to avoid unnecessary user interaction. Their

work also describes a performance analyzer called PATOP that measures the system

utilization to detect the performance loss caused by idle processor states.

Ant differs from these tools in that Ant exploits the parallelism of the applica-

tion to reduce the overhead of sequential debugging tools when used with parallel

programs.

2.2.3 Process Clustering

Another research area looks for outliers in the behavior of processes in a cluster.

These often use statistical techniques to find clusters of similarly behaving processes

based on metrics such as communication patterns, volumes, stack traces, and so

forth, and then look for outliers in terms of control flow behavior, or the previously

mentioned metrics among the processes in a cluster. Mirgorodskiy et al. [19] de-

scribe an approach for locating the causes of anomalies in distributed systems by

collecting function-level traces from each process, comparing them to each other if

the application fails, and identifying a function that is likely to explain the anoma-

lous behavior. Gao et al. [20] introduce a tool called DMTracker that extracts data

movement (DM)-based invariants at program runtime and checks the violations of

these invariants. Their work asserts that these violations of DM-based invariants

indicate potential bugs such as data races and memory corruption bugs. Arnold et

12

al. [21,22] discuss a tool called STAT to aid in debugging large-scale applications. The

STAT collects stack traces over a sampling period to form process equivalence classes

exhibiting similar behavior and the collected information is used for the root cause

analysis of problems such as deadlocks and performance bottlenecks. One problem of

the techniques described in these works is that they are slow, likely too slow to use

at runtime [22].

Our Ant framework is orthogonal to these approaches. It does not use statisti-

cal information to form clusters or find outliers within a cluster. The AntDM uses

statically determined partitioning of regions to drive instrumentation for sequential

bug-finding tools to improve the performance of the tools. The AntSM does a sim-

ple function of clustering by checking the entering/exiting of the root functions and

maintaining the number of threads that execute the root reachable code in the same

thread group at runtime.

13

3. ANTDM: ANT FRAMEWORK TARGETING

DISTRIBUTED MEMORY PARALLEL PROGRAMS

3.1 The AntDM Framework

We call our technique that targets MPI programs, AntDM [9]. AntDM allows

sequential tools to efficiently and accurately target distributed memory parallel pro-

grams. AntDM does this by solving two important problems. First, AntDM allows

the results gathered on many processes to be merged in a theoretically sound way

that gives useful results. Second, AntDM uses the inherent parallelism of the program

being monitored to reduce the overhead of the debugging tool, while maintaining a

high level of accuracy. The target MPI program is statically analyzed and marked as

two different regions, one where all the processes executes the source code (All-process

Regions or ARs) and the other where only subset of processes execute the source code

(Not-All-process Regions or NARs). AntDM applies distributed monitoring over ARs

of the target program among all the processes and replicated monitoring over NARs

of the target program.

The AntDM framework, shown in Figure 3.1, has two main components: (1)

a static analysis component, whose input is a C/MPI program that identifies and

instruments All-process Regions(ARs) and Not-All-process Regions(NARs), and (2)

a debugging runtime. The compiler analysis and instrumentation is discussed in

Section 3.2, and the use of an invariant violation detection and monitoring (runtime)

technique is discussed in Section 3.3, when we discuss a case study using the C-

DIDUCE value invariance debugging tool.

14

Fig. 3.1. Overview of the AntDM Framework.

3.2 Compile Time Analysis and Instrumentation

In this section, we describe AntDM’s compile time analysis and instrumentation

strategies.

3.2.1 Region Demarcation Points (RDPs), ARs and NARs

We consider code to be in a NAR when it is control dependent on a branch whose

conditional is a function of the process rank (i.e., process id). We call these conditional

branches region demarcation points (RDPs). AntDM’s static analysis detects ARs

and NARs by identifying RDPs, and this is done by following DEF-USE chains from

the MPI Comm rank function calls. We are not interested in the value of the control

expression or its variables, only that it is dependent on an MPI rank, and therefore

that some processes may follow the true path from the conditional branch and others

may not. All statements that are control dependent on the RDP are members of a

NAR. We note that our analysis may be conservative – i.e., we may identify regions

as NARs that are actually ARs, but the effect of this is to increase the monitoring

overhead and (possibly) the accuracy.

15

Algorithm 1 AntDM Static Analysis for marking NARs and ARs

1: pid handles← gather process id info(control flow graphs, def use chains)

2: RDPs ← gather RDP info(pid handles, control flow graphs)

3: for all statement in program do

4: pp← get control dependent point(statement)

5: if pp in RDPs then

6: mark statement as NAR

7: else

8: mark statement as AR

9: end if

10: end for

11: while change in NARs do

12: for all callsite in NARs do

13: procedure← get procedure(callsite)

14: mark all statements in procedure as NAR

15: end for

16: end while

16

Algorithm 1 describes the AntDM static analysis for marking NARs and ARs of

the input parallel program. First, RDPs are determined using the process id handles

(i.e., the variables that contain the process id itself or the resulting value from the

function of the process id) by traversing the control flow graph and following def-

use chains (lines 1 and 2). The gather RDP info function finds all the expressions

containing any in pid handles set. Next, all statements in the program are checked

to see if they are control dependent on an RDP and marked as either a NAR or an

AR (lines 3 to 10). Finally, the callee procedures from NARs are iteratively marked

as NARs (lines 11 to 16). The resulting program is ready for instrumentation as

described in the following section.

Fig. 3.2. Example of AntDM static analysis for marking ARs and NARs
based on RDPs.

Figure 3.2 shows an example of the AntDM static analysis and its resulting codes

being marked as ARs or NARs. From the gather process id info function, the

variable rank is added to pid handles set. As shown Figure 3.2(b), the conditional

expression, “rank > n”, is marked as RDP since it contains the process id variable,

rank, in the expression and this changes the execution path of the process depending

17

on the value of the process id variable. Next, the program is traversed over the control

flow graph and marked as either AR or NAR depending on the control dependence

on the RDPs. In the foo function of Figure 3.2(a), statement 1, statement 2, and

statement 4 are marked as ARs and statement 3 and the function call, bar(), are

marked as NARs. Finally, all the statements (statement 5 and statement 6) in the

callee function, bar, in Figure 3.2(a), are marked as NARs.

(a) NPB IS

(b) ASCI SMG2000

(c) SPEC MPI2007 TACHYON

(d) SPEC MPI2007 MILC

Fig. 3.3. Time spent in ARs and NARs during program execution.

18

Figure 3.3 shows the time each benchmark spends in ARs and NARs. The graph

shows that programs spend the overwhelming part of their execution in ARs where we

can distribute monitoring. This observation motivates our instrumentation strategy

that provides much lower runtime monitoring cost and good accuracy in locating

bugs.

3.2.2 RDP guided instrumentation

Our goal is to spread the monitoring across all processes when all processes are

executing a region (i.e., are in an AR) and to ensure that all code is monitored when

in a NAR. Thus, within a NAR, the instrumentation at a program point is replicated,

i.e., performed by all processes, as shown in Figure 3.4(a), with the instrumentation

(i.e., the debug lib call) being executed by all processes. If the spreading happens

in a NAR, it is possible that the monitoring task is assigned to a process that is not

actually executing the path containing the monitoring point. This case may result in

a reduced accuracy as shown in Section 3.4.3. Therefore, we follows a conservative

approach when monitoring in a NAR. Within an AR, however, the instrumentation

is distributed over the processes as shown in Figure 3.4(b) and (c). In this case, the

instrumented code is invoked every 1

P
executions within a process, where P is the

number of processes.

If the program point is in an AR, the guard expression controlling the execution of

the instrumentation is different in straight line code and in a loop. In straight line code

as shown in Figure 3.4(b), the guard expression is pid == k, where k ∈ {0, . . . , P−1}.

After being used to guard an instrumentation call, k is set to (k + 1) % P. In a loop

as shown in Figure 3.4(c), the loop index is used to assign the monitoring task of each

loop iteration to the different process.

Although we provide a case study and implementation using C-DIDUCE, we be-

lieve that the framework can be used with at least two major classes of tools. The first

19

Fig. 3.4. Instrumentation example by different regions.

class is invariant violation detection tools (e.g., [2–4, 8]), which look for violations of

program invariants, such as what program location(s) normally access a memory lo-

cation [4] and what values a variable normally has [2,3]. The second class is tools that

find statistical variations in program behaviors that are correlated to bugs (e.g., [5–7]).

In both classes, AntDM can reduce overheads compared to monitoring all accesses

in all processes, with a minimal impact on precision, and offer similar overheads and

improved precision relative to simply distributing the monitoring across processes.

3.3 Parallel Value Invariant Detection – A Case Study

We now present a case study of the AntDM framework and its instrumentation

technique using the C-DIDUCE [3] value invariant detection (VID) technique [2]

20

adapted to parallel programs. The details of the C-DIDUCE and VID are described

in Section 2.1. In this section, we focus on how the C-DIDUCE and VID is extended

to parallel programs with our AntDM framework.

3.3.1 Extending VID to Parallel Programs

We extend the value invariants hypothesis to adapt VID to parallel programs. The

following [23]1 shows how to compute the merged invariant set I ′ = 〈M ′

t , Vi〉, used to

extend VID and the detail explanation on how the equation computing the mask is

derived is provided in Appendix A:

M ′

t =

[

Vk ∨ (
t
∧

i=1

wk,i ∧ Vj ∧
t
∧

i=1

wj,i)

]

∧

[

Vk ∨ (
t
∧

i=1

wk,i ∧ Vj ∧
t
∧

i=1

wj,i)

]

,

here, Ik = 〈Mk,t, Vk〉 and Ij = 〈Mj,t, Vj〉 are the invariant sets built in two different

processes (pk and pj) and Vi equal to either Vk or Vj.

We note that our I ′ is exactly the I ′ that would be formed if all dynamic refer-

ences to the monitored variable at this program point, in all processes of the parallel

program, had been used to form a single I, and the variable’s value is not a function

of the number of processes. Our formulation allows the approximate invariant set

for each variable reference to independently collected during the parallel run, and

then merged in time proportional to the static number of monitoring points in the

program, as required by our parallel value invariance hypothesis.

3.3.2 Using C-DIDUCE with the AntDM framework

As described in Figure 3.1, C-DIDUCE can be easily used with the AntDM frame-

work. For the static analysis, the debugging library information, such as the function

names (and relevant parameters) for the invariant training/checking, needs to be pro-

1This equation and its derivation was done by Leonardo R. Bachega in an earlier version of this
project that used clustering but never published.

21

vided. This information is used by the AntDM framework when instrumenting the

function calls. The initialization function information for C-DIDUCE is also required,

therefore a runtime initialization call is inserted right after the MPI runtime initial-

ization. This initialization sets the training/checking mode and allocates memory for

the invariant data structures. Upon exiting the program, the invariant information

is written to output files and the post-run tools merge the output files. In training

mode, the output files contain the value invariant training data and are merged into

one training file as described in the previous section. In checking mode, the output

files contain the invariant violation information and this information is also merged

into one violation list. The different debugging tools may require different rules for

merging the output so tools implementing the merging rules are also required.

Fig. 3.5. Example of AntDM’s merging Invariant Sets in training mode.

For example, Figure 3.5 shows an example of merging invariant sets gathered by

multiple processes in training mode. Each process in multiple machines executes the

22

same code and performs the invariant set testing on variables of interest as shown

in Figure 3.5(a). The resulting invariant set is stored in the invariant set files in

the form of Figure 3.5(b). As shown in Section 3.3.1, C-DIDUCE’s value invariant

detection is extended to the parallel program so the bitwise-AND of all the values

shown in the variable and the bitwise-AND of all the values’ complements are stored

in the each process’ invariant set file. This information is required to create a file

with a single invariant set by applying the merging equation in Section 3.3.1. The

merged invariant set file is in the same form as the invariant set file for sequential

programs. This single invariant set file is used to detect the violation of the invariant

set in checking mode.

Fig. 3.6. Example of AntDM’s merging Violation Lists in checking mode.

The merging of violation lists in checking mode is performed as shown in Fig-

ure 3.6. Each process records its detected violations of the merged invariant set into

the violation list file. The processes within the same machine write records into

23

the same violation list file. Multiple violation list files from different machines are

collected after the execution of the program and merged into a single violation list

file. Each file is sorted by the confidence level drop and when the files are merged,

the biggest confidence drop in each invariant set is recorded and sorted for the final

violation list.

3.3.3 Scalability

Although C-DIDUCE with the AntDM framework uses post-run analysis, it is

scalable to a large number of processes and large data sets. In training mode, the

number of records in each output file is at most the static number of invariant monitor-

ing points, i.e., it is proportional to the program size and not the program execution

time. Merging these files requires a fixed number of set operations on each file as

described in Section 3.3.1. Therefore, the execution time for merging training data

is linear in the number of processes. In checking mode, the number of records in

each output file is also at most the number of invariant monitoring points. Since

C-DIDUCE only writes to output files when there are invariant violations in checking

mode, the number of records in each file is typically less than the number of moni-

toring points. Merging these files requires a fixed number of comparisons based on

the confidence drop, as described in the DIDUCE paper [2]. Therefore, the execution

time for merging the invariant violation data is also linear in the number of processes.

The larger data set does not affect the scalability of our post-run analysis within the

AntDM framework because the analysis depends on the number of invariant mon-

itoring points, not the size of data set. Here, the larger data set size causes more

updating or checking of the invariant at each program point at runtime but does not

increase the amount of data being merged from the output files at post-runtime, nor,

in the worst case, is the monitoring overhead higher than it would have been without

our technique. As shown in our experimental results, the overhead is, in practice,

much less than when the technique is applied to sequential programs.

24

3.4 Experimental Results

In this section, we provide quantitative evidence of the effectiveness of AntDM

framework in reducing overheads and detecting buggy behavior with C-DIDUCE.

3.4.1 Implementation and Experimental Setup

Static analysis and instrumentation, described in Section 3.1, are implemented

in the Cetus compiler [24–26]. All variable writes in the program and all variable

reads of control expressions in the program are monitored. The benchmarks used

in the DIDUCE and C-DIDUCE studies [2, 3] are sequential, and so we use the

four benchmarks described in Table 3.1: NPB-IS [27], ASCI-SMG2000 [28], SPEC

MPI2007-TACHYON and SPEC MPI2007-MILC [29].

25

Table 3.1
Benchmark characteristics: “NARs count” is the number of NAR code regions; “NARs ratio” is the number
of procedures with NARs/total procedures. For both NARs count and ratio, a smaller value is better for Ant
performance.

Description Lines of

code

Executable size Instrument

count

NARs count NARs ratio

IS Bucket Sorting 1.2K 680 KB 348 12 1/11

SMG2000 Semi. Multigrid Solver 22.7K 1.1 MB 7278 10 10/349

TACHYON Parallel Ray Tracing 12.9K 890 KB 1732 22 17/413

MILC Quantum Chromodynamics 15.8K 871 KB 3560 115 48/310

26

The same kinds of bugs were injected as with the original DIDUCE and C-

DIDUCE studies, and the bug types are the same as those found in the Siemens

bug benchmarks [11]. Eight to eleven bugs were injected into each benchmark, with

each bug injected into a different copy of the benchmark. The bugs are triggered by

all processes that execute a path containing the bug.

Table 3.2 shows the types and the number of injected bugs in each benchmark.

Bugs types are: Value Mutation which changes an assignment like a = x to a = x + c;

Loop Mutation which changes loop bounds from i < mp to i < mp+1; Control Muta-

tion mutates the operator of conditional expression in which changes an if statement

condition from (a > b) to (a <= b). Bugs were injected into both NARs and ARs,

and most bugs were placed into ARs.

We used machines with two quad-core Intel Xeon 2.33GHz processors, 16 GB of

memory, Linux 2.6.18 and the mpich2-1.0.8. The training run for all benchmarks was

done with 2 processes, and the detection run was done with 16 processes for MILC

and 32 processes for the other three benchmarks.

27

Table 3.2
The types and the number of injected bugs. “NAR percentage” is the percentage of code in NARs; “Bug count”
is the total bug count and the number by each type (V: value mutation/ L: loop mutation/ C: control mutation);
and “NAR Bug percentage” is the percent of bugs in NARs.

NAR Line of Code NAR percentage Bug count (V/L/C) Bug count

in NAR

NAR Bug

percentage

IS 126 10.5 % 8 (7 / 1 / 0) 1 12.5 %

SMG2000 373 1.6 % 10 (8 / 0 / 2) 1 10.0 %

TACHYON 576 4.0 % 11 (11 / 0 / 0) 1 9.1 %

MILC 2887 18.0 % 9 (4 / 0 / 5) 1 11.1 %

28

3.4.2 Performance of Optimized Parallel Value Invariant Detection

Figure 3.7 compares C-DIDUCE monitoring overhead among replicated (“Repli-

cated”), AntDM’s AR/NAR based monitoring (“AntDM”) and naive distributed

(“Distributed”) schemes for our benchmarks. The figure shows that there is sig-

nificant overhead reduction going from Replicated to AntDM and Distributed, with

a reduction of 15.85X for NPB IS, 4.28X for ASCI SMG2000, 11.14X for SPECMPI

TACHYON and 5.63X for SPECMPI MILC. The reason why the maximum overhead

reduction for Distributed is less than the number of the processes is that Distributed

monitoring itself incurs the overhead of checking the process rank at each monitoring

point, as described in Section 3.2.2. The AntDM and Distributed overheads are very

similar (differing by 1.4% to 13%) and low, because the programs are usually execut-

ing ARs, as seen in Figure 3.3. As discussed in the next section, accuracy is better

with AntDM than Distributed. Since AntDM’s monitoring is distributed in ARs, and

analysis and instrumentation occur offline, our technique is inherently scalable with

increasing process counts.

Fig. 3.7. The comparison of C-DIDUCE overhead against the execution
time with no instrumentation.

29

3.4.3 Accuracy of Optimized Parallel Value Invariant Detection

We now present experimental data showing the effectiveness of the three different

monitoring schemes in detecting the injected bugs.

Note that even with fully replicated monitoring, some bugs go undetected because

(1) they may not be executed by C-DIDUCE, or (2) they may not appear as bugs

because the statement is only executed a small number of times and all values appear

equally valid, or the approximation (V and Mt) used by DIDUCE misses outlier

values. This happens with DIDUCE and C-DIDUCE in sequential programs.

Training runs were done with the original, correct benchmarks using small data

sets. After training, each copy of a benchmark containing an injected bug was run

with the large data set under all three monitoring versions.

(a) Any place (b) Top 40

(c) Top 20 (d) Top 10

Fig. 3.8. Accuracy of bug detection by the ranking in the violation list.
Any place means any rank in the violation list was considered as successful
detection. Top 40 means the ranking is within top 40 of violation list. Top
20 is within first 20 of violation list. Top 10 is within first 10.

30

Figure 3.8 presents bug detection rates for each version of C-DIDUCE. A detec-

tion rate of 100% means that all injected bugs are detected by C-DIDUCE. Because

DIDUCE and C-DIDUCE rank anomalies as to the likelihood of them being a bug,

we report the rates for bugs that occur in the top 10, 20, or 40 anomalies, or that are

detected anywhere. Note that AntDM is nearly as accurate as Replicated, despite

having a much lower overhead, showing the effectiveness of the AntDM monitoring

technique. AntDM is also more accurate than Distributed because of AntDM moni-

toring all accesses in all processes within NARs, with the bugs found by AntDM and

not Distributed all being in NARs. Thus AntDM uses a distributed scheme when it

is safe to and otherwise uses a replicated scheme. With TACHYON in Figure 3.8(c),

AntDM does better than Replicated because a program crash causes AntDM to lose

violation data which coincidentally causes an injected bug to be ranked higher.

3.4.4 Discussion

Our experimental results show that the distributed versions of C-DIDUCE in-

creased the performance of the invariant detection by up to 15X while (unlike Dis-

tributed) maintaining almost the full accuracy of the expensive Replicated monitor-

ing. We could further reduce the overhead of AntDM’s monitoring by using clustering

of similarly behaving processes [19, 20] to determine the clusters within NARs, and

distributing the monitoring across the processes within each cluster, in the same way

AntDM does with ARs. This will be particularly important for programs that spend

more time in NARs.

31

4. ANTSM: ANT FRAMEWORK TARGETING SHARED

MEMORY PARALLEL PROGRAMS

4.1 The AntSM framework

We call our technique that targets Pthreads programs, AntSM [30]. The key in-

sight of the AntSM framework is that different instances of the same code executing

in parallel in different threads are likely to behave similarly, and that sampled mon-

itoring over that code can reduce overheads with only a small impact on accuracy.

The Ant Shared Memory (or AntSM) system exploits this key observation to reduce

the overhead of debugging tools when used with shared memory parallel programs.

AntSM uses the parallelism of the multi-threaded shared memory programs being

monitored to reduce the overhead of the debugging tool, while maintaining a high

level of accuracy. It does this by first instrumenting the program with calls to the

AntSM runtime library to collect and maintain information about parallelism in the

program. The program is then instrumented with monitoring and other calls for the

bug detection technique being used. The data used for the bug detection can be

collected in two different ways. One is using a centralized table protected by syn-

chronization and the other is using a per-thread table which will be merged later. At

runtime, the parallel structure of the program and the number of threads executing

some regions of the program are used to perform an intelligently sampled monitoring.

To provide insights into AntSM’s strategy, we now contrast how it, and a straight-

forward port of a monitoring-based debugging tool, function. In this thesis, we use

the statistical and invariance-based debugging tool called C-DIDUCE, used in Chap-

ter 4’s case study, that asserts the value invariant hypothesis. The value invariant

hypothesis states that a given variable takes on a small set of values during its life-

32

time, even with different input data, and rarely occurring deviations from this set of

values indicate buggy or anomalous behavior.

DIDUCE and other invariance based tools typically have a training phase and a

checking phase. During the training phase, the program being debugged is run with

data that gives a correct answer. Each action of interest is monitored and the outcome

of that action is recorded. For DIDUCE, each variable reference is monitored and the

value seen is recorded in a compressed form. These outcomes form an invariant set

of outcomes that are true for correct executions. During checking runs, each action

of interest is monitored and the outcomes that are deviations from the invariant

set are monitored and recorded. This monitoring and recording often incurs a high

overhead, and it is this overhead that we seek to reduce with our techniques. After

the program executes, the deviations from the invariant set are ranked. Frequently

occurring deviations are considered more likely to be invariants that simply were not

seen during the training runs, and are ranked lower. Rarely occurring deviations are

considered more likely to be signs of a bug, and are ranked higher.

A straightforward port of a tool would simply instrument a parallel program as

if it were a sequential program, and monitor all actions of interest in the program.

Ignoring overheads induced by the tool running in a parallel environment and needing

to be thread-safe, this would produce the same overhead as a sequential execution of

the program that executed the same number of monitored actions. Thus each thread

executes all of the monitoring, a mode that we call replicated monitoring.

One way to reduce the overhead of replicated monitoring is to have each of the T

threads executing the program monitor 1

T
of the events. This performs a distributed

sampled monitoring across all T threads. This significantly reduces the monitoring

overhead but can lead to less accuracy in detecting anomalous events that indicate

a bug, as shown in Section 4.4.4. The loss of accuracy results from each thread only

sampling 1

T
events, even in program regions that are not executed by all T threads.

This leads to some actions being severely under-monitored or completely missed by

monitoring.

33

AntSM takes a more intelligent approach, and by doing so achieves nearly the low

overhead of distributed monitoring and accuracy close to that of replicated monitor-

ing. A typical Pthreads program either spawns threads that directly call a function

that performs the thread’s share of the computation, or spawns threads that are in a

thread pool, check a work queue, and perform the computation defined by the func-

tion that is implied by the queue entry. We call all these functions that perform the

computation root functions. By instrumenting and analyzing the thread spawning

points and the root functions, and tracking when threads enter and exit root func-

tions, the exact number of threads performing the computation associated with the

root function can be determined. This count, Tc, can be used to perform sampling of

1

Tc
actions rather than 1

T
actions, and avoid severely undersampling program actions

of interest. Moreover, because the functions associated with a given root function are

engaged in the same operation on different data, sampling within these functions is

more likely to be sampling from a set of similar actions than simply randomly sam-

pling across the entire program, which should lead to higher accuracy. Within loops,

this sampling is implemented by each thread executing 1

Tc
instances of statements,

and within straight-line code, by each thread executing each 1

Tc
statements in the

textual representation of the program. For example, if we consider the situation in

which there are 10 threads spread equally among 2 root functions and assume that

1000 invariant checks are done by the code executed from each root function, the

replicated monitoring will perform 2000 samplings. The AntSM monitoring will do

400 samplings (1
5
× 1000 + 1

5
× 1000) and the distributed monitoring will do 200 sam-

plings (1

10
×2000). This shows that distributed monitoring scales as 1

T
whereas AntSM

scales within each parallel region executing the same code. Thus AntSM samples at

a higher rate than distributed but less than replicated, giving better performance than

replicated. AntSM also samples based on the parallelism in regions executing common

code and thus gives better precision than distributed.

34

(a) Overview of the AntSM debugging system.

(b) AntSM Runtime and a runtime call graph. RF is a root function and the Fs

represent other functions. TP1 shows the case with a thread pool. Squiggly lines

represent threads, numbered by thread group ID.

Fig. 4.1. Steps performed by AntSM and the AntSM runtime system.

4.2 AntSM Runtime and Instrumentation

We now describe how code is instrumented and the information gathered by that

instrumentation is used to enable AntSM’s intelligent sampling strategy (see Fig-

ure 4.1.)

4.2.1 Finding root functions

First, root functions must be identified directly from the start routine argument

to the pthread create function. Programs using a thread pool require instrumenting

35

all functions to log when the function is entered and exited, and printing the function

name and system thread ID. From this, a simple script can extract root function

names. The logging of function names with the thread id incurs about a 20X runtime

overhead, but this task is required only once at the time the root functions are

identified. This is unnecessary if the programmer already knows what functions are

used for the root functions by having the programmer provide the function name list

to the AntSM. Even when this is not the case, we could identify the root functions

within a few minutes to an hour at most.

4.2.2 Instrumentation for tracking code executed by root functions

After root functions are identified, they are instrumented with calls to the AntSM

runtime library to monitor when a thread starts and finishes executing the root func-

tion. This information is made available to any code that is executed within the root

function or any function called (directly or indirectly) from the root function. We

refer to this code as a root reachable code, and the threads executing it as a thread

group. Each thread in the program is given a “thread id” by the system. AntSM also

maintains for each thread a local ID, called the “group id”, where 0 ≤ group id < Tc

and Tc is the number of threads executing a particular root function. AntSM also

maintains a mapping between thread ids and group ids. This allows the thread to test

if it should perform a particular monitoring operation.

4.2.3 Instrumentation for collecting monitoring data

Next, the program is instrumented with calls to the debugging tool’s library to

perform sampling. A training run is then performed to build the initial invariant

sets, and then one or more checking runs are performed to identify potentially buggy

program points. As mentioned in Section 4.1, the data used for the bug detection

can be collected in two different ways.

36

The first way uses a typical shared memory programming style, i.e., the shared

information updated by multiple threads is protected by synchronization. In this

way, a single shared invariant table and a single violation list are used by multiple

threads. All the accesses of the table by multiple threads are synchronized using

Pthreads mutexes and conditional variables. This is a space-efficient way for the

scalable systems. As the number of threads increases, the memory usage of invariant

information does not change.

However, if the memory efficiency is not an issue, an alternative way is possible

when implementing the multi-threaded data collection that gives better performance.

Instead of using a single shared invariant table and violation list, a separate invariant

table and violation list for each thread can be created and updated during execution

of multiple threads and these tables are then merged at the end of the program

execution. This is how AntDM extends C-DIDUCE for distributed memory parallel

programs. This separation causes some space overhead. For example, assuming that

each value invariant requires 32 bytes of memory and there are 10,000 monitoring

points in a target program, 320 Kbytes of memory is required for a value invariant

table. Using the separate tables by 8 threads causes the space overheads of 2.2 Mbytes

(7 × 320 KB) and using the tables by 32 threads causes the space overheads of 9.9

Mbytes (31 × 320 KB). Although this separation causes some space overhead, we

can prevent the interaction between the multiple threads and thus remove the high

overhead of synchronization.

4.2.4 AntSM runtime algorithm

We now describe the algorithm of AntSM runtime in more detail. To maintain

the information about parallelism, i.e., how many threads are executing some root

reachable code, the AntSM runtime provides two library functions - antsm enter root

and antsm exit root. One purpose of this instrumentation is to track when a thread

begins executing a particular root function, and when a thread stops executing a root

37

Algorithm 2 AntSM runtime library, antsm enter root
Input: root addr - an address of a root function

Output: Set of thread-local variables and thread-global variables

1: // thread-local: each thread keeps own copy of these variables

2: thread id ← syscall(SYS gettid) // system thread ID

3: group id // unique thread ID in its thread group assigned by AntSM

4: my root addr ← root addr // root function address

5: // thread-global: all threads share these variables

6: root map // thread id → root function address used by antsm exit root

7: group id map // thread id → thread ID in its thread group

8: thread cnt map // my root addr → runtime thread count

9: root map[thread id] ← my root addr

10: if thread cnt map[my root addr] is not set then

11: // this is the first thread that enters the function

12: group id map[thread id] ← group id ← 0

13: thread cnt map[my root addr] ← 1

14: else

15: group id map[thread id] ← group id ← thread cnt map[my root addr]

16: thread cnt map[my root addr] ← thread cnt map[my root addr] +1

17: end if

38

function. This allows the AntSM runtime to know how many threads are executing

each root function, i.e., the value Tc for each root function. The second purpose of

this instrumentation is to ensure that all group ids lie between 0 and Tc − 1. When

the thread that finishes executing a root function is not the thread with the highest

valued group id, it is necessary to adjust the group ids of the remaining threads to

maintain the constraint that all group ids lie between 0 and Tc − 1.

A call to antsm enter root, described in Algorithm 2, is inserted at the beginning

of each root function. The thread id and root function address are captured in thread-

local variables (lines 2 and 4). Line 9 associates the root function’s address with the

current thread. Because parallelism information is kept for each root function, line

10 checks if another thread is already executing the root reachable code. If not, in

line 12 the current thread is given the group id of 0 in the current thread group (the

set of threads executing this root reachable code) and the thread count is set to 1

(line 13). If other threads are executing code from this root, the group id for this

group is set to the number of threads that were already executing code from the

root (line 15) and the thread count for this root is incremented (line 16). At this

point, each thread executing root reachable code has access to its position within its

thread group, and the total number of threads in the thread group. Note that thread-

local variables are used to avoid unnecessary synchronization for better performance

in the AntSM runtime. In Algorithm 2, all the accesses to the thread-global data

structures must be guarded by the proper synchronization techniques. The hashmap

variables (root map, group id map and thread cnt map) may be accessed by multiple

entering/exiting threads at the same time. Pthreads mutexes and condition variables

with the read/write counters are used to synchronize the accesses.

A call to antsm exit root, described in Algorithm 3, is inserted at the exit points

of each root function. This function updates the count of threads executing a root

reachable code, and ensures each group id has values between 0 and Tc − 1. The

function first decrements the thread count for the current thread group (lines 4 and

5) and nulls out its entry in the group id map and the root function map (lines

39

Algorithm 3 AntSM runtime library, antsm exit root
Input: root addr - an address of a root function

Output: Set of thread-local variables and thread-global variables

1: // thread local and global variables are as in antsm enter root in Algorithm 2

2: // local (automatic) variable:

3: thread cnt

4: thread cnt ← thread cnt map[my root addr] −1

5: thread cnt map[my root addr] ← thread cnt

6: if group id map[thread id] = thread cnt then

7: group id map[thread id] ← NULL

8: root map[thread id] ← NULL

9: else if group id map[thread id] < thread cnt then

10: find group id map[thread idi] where root map[thread idi] = root addr

and group id map[thread idi] = thread cnt

11: // i between 0 and size[group id map] −1

12: group id map[thread idi] ← group id map[thread id]

13: group id map[thread id] ← NULL

14: root map[thread id] ← NULL

15: end if

40

7, 8, 13 and 14) since the thread is no longer active in executing a root reachable

code. Because of the way the monitoring code is generated (as described below),

the group id must always be in the range, 0 ≤ group id < thread cnt . Thus, if the

current thread’s group id is less than the decremented thread count (line 9), then the

thread with the highest group id in its group will have a group id equal to the thread

count in its group. In this case, the thread with its group id equal to thread count is

found (line 10), and assigned the current thread’s group id in its group (line 12). As in

Algorithm 2, all accesses to the thread-global data structures (root map, group id map

and thread cnt map) must be also protected by the synchronization techniques. The

same Pthreads mutexes and condition variables with the read/write counters that are

used in the antsm enter root function are also used to synchronize these accesses.

Fig. 4.2. Example of updating group id when entering/exiting root func-
tion.

For example, in the Pthreads program snippet of Figure 4.2(a), when an initial

thread enters a root function, RootFunction, the group id of 0 in its thread group,

is assigned and the associated thread’s count is increased by one (line 12 and 13 of

Algorithm 2). If three more threads execute the RootFunction function, each will

execute lines 15 and 16 of Algorithm 2 (i.e., thread cnt map[RootFunction] is 4) as

shown in Figure 4.2(b). If a thread with group id, 2, exits RootFunction (giving a

41

“true” condition in line 9 of Algorithm 3), the thread with group id, 3, is found and

its group id is replaced with the leaving thread’s group id, 2 (lines 10 and 12 of Algo-

rithm 3). Therefore, the range of thread IDs in this group is maintained within the

updated thread count of 3. The resulting thread id mapping is shown in Figure 4.2(c).

The group id for each thread group, set in lines 12 and 15 of Algorithm 2, is also used

to distribute monitoring as described in Section 4.2.5.

Fig. 4.3. Debugging library instrumentation example.

4.2.5 Sampled monitoring of AntSM

With AntSM, the sampled monitoring of program points is done within a thread

group. If the program point is in straight-line code (Figure 4.3(b)), AntSM generates

the conditional statement:

if (group id == pgm pt id % Tc)

42

where group id ∈ {0, . . . , Tc − 1} and pgm pt id is the numerical ID given for the cur-

rent program point. Sampling in loops (Figure 4.3(c)) is done using an inserted count

variable, loop cnt, which helps the monitoring of each statement’s instances within the

loop to be distributed evenly among the threads in their group. antsm enter root and

antsm exit root cause the number of threads, Tc, to change dynamically as threads

enter and exit the root function, as was described in Section 4.2.4. AntSM performs

replicated monitoring (Figure 4.3(a)) on code that is never executed in parallel, i.e.,

not reachable from a root function.

4.3 A Case Study with C-DIDUCE and Value Invariant Detection

We now present a case study of the AntSM framework and its instrumentation

technique using the C-DIDUCE [3] value invariant detection (VID) technique [2]

adapted to shared-memory parallel programs. The details of C-DIDUCE and VID

are described in Section 2.1.

When using AntSM with C-DIDUCE and Pthreads programs, a runtime initial-

ization call is inserted at the beginning of the program to initialize the C-DIDUCE

runtime. This initialization records whether the run is a training or checking run,

allocates memory and initializes the invariant data structures. Upon exiting the pro-

gram, the invariant information is written to an output file. In training mode, the

output files contain the value invariant set for all monitored points. In checking mode,

the output files contain invariant violation information.

For example, Figure 4.4 shows an example of the instrumented target program

with C-DIDUCE debugging and AntSM runtime libraries. In the main function in

Figure 4.4(a), the initialization function of AntSM, antsm init, is inserted with the

mode option, TRAINING, and in the root function, root function, the AntSM runtime

functions, antsm enter root and antsm exit root are inserted at the beginning and

end of the root function respectively. The C-DIDUCE libraries are inserted at the

monitoring point of interest as described in Section 4.2.5. The resulting invariant

43

Fig. 4.4. Example of C-DIDUCE with AntSM in training mode.

information is recorded in the invariant set in the form of Figure 4.4(b). When the

value invariant testing fails, the current invariant mask of the variable is updated by

applying the newly added invariant information.

As shown in Figure 4.5, the initialization function of AntSM, antsm init, is also

inserted with the mode option, CHECKING, and the root function is instrumented with

the entering/exiting AntSM runtime functions in the same way as training mode.

When the invariant testing fails, the confidence level drop is computed and if the

drop is greater than the previous confidence drop, this violation is recorded and

sorted in the violation list.

44

Fig. 4.5. Example of C-DIDUCE with AntSM in checking mode.

4.4 Experimental Results

4.4.1 Implementation and Experimental Setup

Static root function analysis and instrumentation, described in Section 4.2, are

implemented in the LLVM compiler, v 3.1 [31–33]. When a thread pool is used,

we find root functions as described in Section 4.2. All memory loads, stores, and

return values from function calls are monitored. We use eleven programs from the

PARSEC Pthreads benchmark suite [10] described in Table 4.1. Two programs from

this suite are not used: freqmine, which uses OpenMP, not Pthreads1, and facesim,

which LLVM cannot compile.

The bugs which are injected into our benchmark programs are the same kind as

those used in the original DIDUCE and C-DIDUCE studies and in the Siemens bug

1No significant technical challenge prevents us from using OpenMP.

45

benchmarks [11]. Five to fifteen bugs were injected into each benchmark, with each

bug injected into a different copy of the benchmark. To allow an accurate comparison

of our technique with C-DIDUCE, bugs are injected at frequently executed program

points. If a program point is not frequently executed, it is possible that our sampling

will miss “noise” and capture relatively more buggy actions. This in turn makes our

sampled executions appear better than full monitoring. Because of this, the number

of injected bugs is not proportional to the lines of code in Table 4.1.

We used machines with two quad core Intel Xeon 2.33GHz processors, 16 GB of

memory, and Linux 2.6.32 for the performance and accuracy experiments; machines

with 48 AMD Opteron 6176, 2.3 GHz processors, 256 GB of memory, and Linux 2.6.32

were used for the scalability test. For the performance and accuracy experiments,

training runs were done using 2 threads and the small dataset. Checking runs were

done using 8 threads and the large dataset.

46

Table 4.1
Summary of the PARSEC benchmark characters: “Monitored Points” is the number of static program points
monitored; “Thread Pool” says if the benchmark uses a thread pool; “Injected Bugs” is the number of bugs
injected; and “Original Speedup is the speedup of the un-instrumented benchmark going from 1 to 8 threads.

Name Application Domain Lines of Code Monitored Points Thread Pool Injected

Bugs

Original

Speedup

blackscholes Financial Analysis 408 180 No 8 4.63

bodytrack Computer Vision 3066 6544 Yes 15 5.62

canneal Engineering 371 207 No 7 1.37

dedup Enterprise Storage 398 553 Yes 8 2.03

ferret Similarity Search 8940 9141 Yes 5 2.86

fluidanimate Animation 2733 1329 No 6 4.02

raytrace Visualization 3553 2757 Yes 7 1.28

streamcluster Data Mining 1720 978 No 6 3.46

swaptions Financial Analysis 994 898 No 14 7.98

vips Media Processing 98940 21168 No 10 7.63

x264 Financial Analysis 26437 14705 No 15 5.71

47

4.4.2 Performance of C-DIDUCE with AntSM

Figure 4.6 compares the overhead of different monitoring schemes. The base-

line is the original benchmark execution time (without any monitoring). The bars

labeled “Replicated”, “AntSM” and “Distributed” are for the naive replicated moni-

toring scheme, AntSM’s sampled monitoring, and the distributed monitoring scheme,

respectively. Note that the vertical axis is on a log scale. The benchmark names

are labeled with the reduction in overhead going from the replicated scheme to the

AntSM scheme (“Replicated” to “AntSM”). AntSM shows up to 18.14 times overhead

reduction (dedup) and an average reduction of 8.73 times.

Fig. 4.6. Comparison of C-DIDUCE execution time overhead in checking
mode. The baseline is the execution time of the original benchmark with
large dataset and no instrumentation. Note that the vertical axis is on a
log scale. The data label on each bar shows the overhead (times) rounded
to the nearest one. The number next to each benchmark’s name represents
the overhead reduction from Replicated to AntSM.

Two benchmarks with low overhead reduction are canneal (1.67X) and raytrace

(1.01X). As shown in Table 4.1, these benchmarks have a low original speedup, indi-

cating little parallelism and few opportunities for AntSM to perform sampled mon-

48

itoring. In particular, the raytrace benchmark executes almost entirely sequentially.

Measuring overhead in only the parallel section of raytrace gives an overhead reduc-

tion of 2.17 for AntSM. The naive “Distributed” scheme gives the best performance

because this scheme performs a 1

T
, where T is the number of threads, sampling even

in sequential areas of the program. As shown in Section 4.4.4, “Distributed” has a

lower accuracy than the other two schemes.

Training runs were done with 2 threads and the overhead reductions from “Repli-

cated” to “AntSM” (measured as with the checking runs) are 4.40X for blackscholes,

3.55X for bodytrack, 1.39X for canneal, 0.97X for dedup, 2.17X for ferret, 4.23X for flu-

idanimate, 1.08X for raytrace, 2.46X for streamcluster, 3.86X for swaptions, 1.78X for

vips, and 1.80X for x264. Low overhead reductions occur because the initial AntSM

startup overhead is not amortized on a small number of threads and smaller data set

used for some benchmarks.

4.4.3 Scalability Results

We now present experimental data showing the scalability of AntSM when moni-

toring value invariants. Figure 4.7 and Table 4.2 present the speedup of AntSM with

an increasing number of threads. The baseline for the speedup is the execution of C-

DIDUCE with AntSM in checking mode, executing with a single thread. As the table

shows, AntSM scales in most benchmarks as the number of threads increases. There

are three benchmarks showing low scalability (raytrace, canneal, and dedup) but as

shown in the last column of Table 4.2, the original speedup of those benchmarks are

low, resulting in the low scalability in AntSM as well.

49

Fig. 4.7. The scalability of AntSM. The baseline is the execution time of benchmark with instrumentation in
checking mode, executing with a single thread.

50

Table 4.2
The speedup of AntSM by different thread counts. The baseline is the execution time of benchmark with
instrumentation in checking mode, executing with a single thread.

4 Threads 8 Threads 16 Threads 32 Threads Original Speedup

blackscholes 6.94 11.64 22.49 44.16 4.63

bodytrack 5.96 10.54 13.81 15.59 5.62

canneal 2.25 2.48 2.59 2.64 1.37

dedup 2.81 3.13 3.58 5.48 2.03

ferret 9.03 20.69 35.67 45.51 2.86

fluidanimate 9.44 17.35 28.03 35.25 4.02

raytrace 1.03 1.05 1.06 1.07 1.28

streamcluster 9.17 29.48 71.52 127.77 3.46

swaptions 7.15 18.39 39.80 72.96 7.98

vips 10.25 25.37 52.64 98.03 7.63

x264 6.96 11.92 13.27 16.22 5.71

51

Figure 4.8 shows the ratio of AntSM’s speedup to the original speedup by the

number of threads (i.e., the ratio, y = SPA

SPO
, here, SPA is the speedup of AntSM and

SPO is the speedup of the original benchmark without instrumentation). As shown

in the figure, AntSM scales better than the original benchmark except for raytrace

which shows a very low original speedup(1.28) in Table 4.2. This is because as the

program runs with more threads, the task of monitoring is more distributed among

the threads, therefore, the effect of distribution becomes bigger as the number of

threads increases.

Fig. 4.8. The ratio of AntSM’s speedup to the original speedup by the
number of threads (4, 8, 16, and 32 threads). If the ratio, y, is greater
than 1, AntSM scales better than the original PARSEC benchmark.

4.4.4 Accuracy of C-DIDUCE with AntSM

Figure 4.9 shows the accuracy measurements for C-DIDUCE in a checking mode

run with “Replicated”, “AntSM” and “Distributed” monitoring. We injected 5 to 15

bugs into each benchmark. Each bug is a form of Value Mutation, which changes an

52

Fig. 4.9. The comparison of accuracy among Replicated, AntSM, and
Distributed.

assignment like “a = x” into “a = x + c”, where c is an integer constant. DIDUCE

and C-DIDUCE rank anomalies as to how likely they are to be a bug, and we report

the rates for bugs occurring in the top 5, 10, 20, or 50 ranked anomalies. Top X

in Figure 4.9 means that only bugs ranked in the top X violations are considered

to be successfully detected. Figure 4.9 shows that “AntSM” has accuracy similar

to “Replicated” in most cases while providing much better performance. “AntSM”

accuracy is equal to, or better than (5 cases) “Distributed” in all cases. In particular,

“AntSM” has higher accuracy than “Distributed” for the two benchmarks with a

large sequential portion (raytrace and vips) in Top 50 because the “AntSM” checking

uses replicated monitoring in the sequential parts of the program while “Distributed”

uses sampling.

53

Table 4.3
Comparison of average accuracy for Replicated, AntSM, and Distributed
monitoring.

Replicated AntSM Distributed

Top 5 50.5 48.7 40.2

Top 10 57.0 55.4 44.9

Top 20 65.5 62.9 53.6

Top 50 83.9 81.3 62.9

Note that sometimes the sampling schemes (“AntSM” and “Distributed”) are

ranked higher than “Replicated” as with streamcluster of Top 5, raytrace and x264

of Top 10, canneal and streamcluster of Top 20, and streamcluster of Top 50. This is

because the “Replicated” scheme performs more monitoring, and thus can see more

violation data, which may lower the ranking of detected violations. The same reason

holds between “AntSM” and “Distributed.”

Table 4.3 shows the comparison of the average accuracy for the three different

monitoring scheme by each ranking. This also shows “AntSM” monitoring has ac-

curacy similar to “Replicated” monitoring, better than “Distributed” monitoring in

average.

4.4.5 Discussion

In our C-DIDUCE case study and experiments, multi-threaded C-DIDUCE was

implemented in a typical shared memory programming style, i.e., the shared informa-

tion among threads was protected by synchronization. In Section 4.2.3, we discussed

an alternate implementation using per-thread tables to avoid synchronization. In

this section, we provide experimental results when using this alternate implementa-

tion that show its higher performance and memory use.

54

Fig. 4.10. Comparison of C-DIDUCE execution time overhead in checking
mode when using separate table for each thread and merging the tables
at the end of execution. The baseline is the execution time of the original
benchmark with no instrumentation. Note that the vertical axis is on a log
scale. The data label on each bar shows the overhead (times) rounded to
the nearest one. The number next to each benchmark’s name represents
the overhead reduction from Replicated to AntSM.

Figure 4.10 compares the overhead when a separate table for each thread is used

during the execution and merged at the end of execution with 8 threads. When

compared with overheads from Figure 4.6, which uses synchronization for globally-

accessed invariant data, Figure 4.10 shows significant overhead reduction by using

separate tables for each thread in all three different monitoring schemes. This over-

head reduction is the effect of removing synchronization at the cost of memory for

each thread. As shown in Figure 4.10, AntSM’s sampled monitoring scheme based on

runtime thread counts further reduces the overhead. This shows the effect of sampled

monitoring by exploiting parallelism of the programs even with additional overhead

of checking the runtime thread counts and checking the current thread’s turn of mon-

itoring. To support this assertion, Table 4.4 shows the actual access counts of the

C-DIDUCE debugging library. The ratio of “Replicated” to “AntSM” at the right-

55

Table 4.4
The runtime monitoring counts for different monitoring schemes. This
shows how many times C-DIDUCE debugging libraries are actually in-
voked in checking mode with 8 threads.

Replicated AntSM Distributed Replicated
AntSM

blackscholes 2.84× 108 4.26× 107 3.83× 107 6.67

bodytrack 4.96× 108 1.74× 108 4.24× 107 2.85

canneal 2.48× 108 2.02× 108 6.54× 107 1.23

dedup 2.48× 108 1.41× 108 6.76× 107 1.76

ferret 2.05× 109 3.66× 108 3.27× 108 5.59

fluidanimate 1.08× 109 1.46× 108 1.44× 108 7.42

raytrace 6.69× 108 6.63× 108 7.54× 107 1.01

streamcluster 4.98× 108 1.12× 108 1.08× 108 4.45

swaptions 1.54× 109 3.97× 108 2.29× 108 3.90

vips 7.83× 108 1.18× 108 9.99× 107 6.62

x264 2.23× 108 4.66× 107 4.46× 107 4.79

most column of Table 4.4 shows the ratio for the number of times that the C-DIDUCE

invariant violation testing function is invoked between those two monitoring schemes.

This shows how effectively the parallelism is exploited. As mentioned in Section 4.1,

AntSM performs its sampling within code regions with the same root function that

are executed in parallel and so “AntSM” sampling lies between “Replicated” and

“Distributed.” AntSM does “Distributed” monitoring only within similar regions.

In Figure 4.10, the blackscholes, ferret, fluidanimate, streamcluster, vips and x264

are applications that show a larger overhead reduction than the other applications.

From the access count in Table 4.4, we observed that these applications shows higher

parallelism than the other applications, therefore, shows that AntSM exploits effec-

tively the parallelism of applications on its overhead reduction. With low parallelism,

56

it is possible for “AntSM” monitoring to show more overhead than “Replicated” as

in the case of raytrace because of the cost of checking the runtime thread counts and

introducing an additional branch to check the current thread’s turn of monitoring.

As shown from our experiments in Section 4.4 and discussion in this section,

the Ant framework is effective with either using space-efficient approach or using a

performance-centric approach at the cost of increased memory usage. Although the

effect of removing synchronization in this section is high, separating debugging data

and merging at the end of execution may not be always the best solution depending

on the focus of the execution environment for targeting programs. However, AntSM

shows its usefulness in either way of implementation as shown from the experimental

results in Figure 4.6 and Figure 4.10.

We note that “AntSM” monitoring becomes closer to “Replicated” monitoring

as the number of threads executing the program in parallel becomes small. As the

number of threads increases, “AntSM” monitoring becomes close to “Distributed”

monitoring because our AntSM framework adjusts the sampling rate based on the

parallelism of the application by monitoring runtime thread counts. When all paral-

lelism is from a single root function, “AntSM” and “Distributed” do identical mon-

itoring. Our experimental results in this section and sections 4.4.2 and 4.4.4 show

that this is an effective way of reducing overhead while maintaining the accuracy by

exploiting the parallelism of an application.

57

5. CONCLUSIONS

We have presented the Ant framework for increasing the efficiency of sequential de-

bugging techniques with parallel programs.

In AntDM, which is targeting distributed memory parallel programs such as MPI

programs, our technique uses a static AR/NAR detection analysis and instrumenta-

tion strategy. We present a case study that extends to parallel programs with the

C-DIDUCE debugging tool developed for sequential programs. More specifically, we

have presented the design and implementation of parallel value invariant analysis and

experimentally shown the validity of the parallel value invariant hypothesis and the

effectiveness of C-DIDUCE on parallel programs.

AntSM, which targets shared memory parallel programs, such as Pthreads pro-

grams, the framework uses a combination of compile-time analysis and instrumen-

tation, and runtime monitoring, to intelligently sample events of interest for these

tools. We presented a case study of using AntSM with the C-DIDUCE debugging

tool that was developed for sequential programs. Our techniques lead to significant

performance improvements over a naive porting of these tools and much better accu-

racy than a less intelligently applied sampling. This work allows sequential bugging

tools to be efficiently used to create more reliable and robust parallel programs.

We believe that the Ant framework will allow a broad range of debugging tools,

whose monitoring can be sampled, to be efficiently used with parallel programs.

LIST OF REFERENCES

58

LIST OF REFERENCES

[1] “Software errors cost U.S. economy $59.5 billion annually,” 2002. NIST News
Release 2002-10.

[2] S. Hangal and M. S. Lam, “Tracking down software bugs using automatic
anomaly detection,” in Proceedings of the 24th International Conference on Soft-
ware Engineering, pp. 291–301, 2002.

[3] L. Fei and S. P. Midkiff, “Artemis: practical runtime monitoring of applications
for execution anomalies,” in PLDI ’06: Proceedings of the 2006 ACM SIGPLAN
conference on Programming language design and implementation, (New York,
NY, USA), pp. 84–95, ACM Press, 2006.

[4] P. Zhou, W. Liu, L. Fei, S. Lu, F. Qin, Y. Zhou, S. Midkiff, and J. Torrellas,
“AccMon: Automatically detecting memory-related bugs via program counter-
based invariants,” in Proceedings of the 37th Annual IEEE/ACM International
Symposium on Micro-architecture (MICRO’04), 2004.

[5] B. Liblit, M. Naik, A. X. Zheng, A. Aiken, and M. I. Jordan, “Scalable statis-
tical bug isolation,” in Proceedings of the ACM SIGPLAN 2005 conference on
Programming Language Design and Implementation, 2005.

[6] B. Liblit, A. Aiken, A. X. Zheng, and M. I. Jordan, “Bug isolation via remote
program sampling,” in Proceedings of the ACM SIGPLAN 2003 conference on
Programming Language Design and Implementation, pp. 141–154, 2003.

[7] C. Liu, X. Yan, L. Fei, J. Han, and S. P. Midkiff, “Sober: statistical model-based
bug localization,” in ESEC/FSE-13: Proceedings of the 10th European software
engineering conference held jointly with 13th ACM SIGSOFT international sym-
posium on Foundations of software engineering, ACM Press, 2005.

[8] M. D. Ernst, A. Czeisler, W. G. Griswold, and D. Notkin, “Quickly detecting rel-
evant program invariants,” in Proceedings of the 22nd International Conference
on Software Engineering, pp. 449–458, 2000.

[9] J.-W. Lee, L. R. Bachega, S. P. Midkiff, and Y. Hu, “Ant: A debugging frame-
work for MPI parallel programs,” in International Workshop on Languages and
Compilers for Parallel Computing (LCPC’12), 2012.

[10] “The PARSEC Benchmark Suite.” http://parsec.cs.princeton.edu.

[11] M. Hutchins, H. Foster, T. Goradia, and T. Ostrand, “Experiments of the effec-
tiveness of dataflow- and controlflow-based test adequacy criteria,” in Proceed-
ings of the 16th International Conference on Software engineering, ICSE ’94,
(Los Alamitos, CA, USA), pp. 191–200, IEEE Computer Society Press, 1994.

59

[12] M. D. Ernst, J. Cockrell, W. G. Griswold, and D. Notkin, “Dynamically discov-
ering likely program invariants to support program evolution,” in Proceedings of
the 21st international conference on Software engineering, ICSE ’99, (New York,
NY, USA), pp. 213–224, ACM, 1999.

[13] “Totalview user guide.” last checked 9/28/2012.

[14] S. S. Lumetta and D. E. Culler, “The Mantis parallel debugger,” in SPDT ’96:
Proceedings of the SIGMETRICS symposium on Parallel and distributed tools,
(New York, NY, USA), pp. 118–126, ACM Press, 1996.

[15] S. Sistare, E. Dorenkamp, N. Nevin, and E. Loh, “MPI support in the Prism
programming environment,” in Supercomputing ’99: Proceedings of the 1999
ACM/IEEE conference on Supercomputing (CDROM), p. 22, ACM Press, 1999.

[16] D. Stringhini, P. Navaux, and J. C. de Kergommeaux, “A selection mechanism
to group processes in a parallel debugger,” in In Proceedings 2000 International
Conference on Parallel and Distributed Processing Techniques and Applications
(PDPTA’00), June 2000.

[17] D. Cheng and R. Hood, “A portable debugger for parallel and distributed pro-
grams,” in Proceedings of Supercomputing ’94, pp. 723–732, November 1994.

[18] R. Wismuller, M. Oberhubera, J. Krammera, and O. Hansenb, “Interactive de-
bugging and performance analysis of massively parallel applications,” Parallel
Computing, vol. 22, pp. 415–442, March 1996.

[19] A. V. Mirgorodskiy, N. Maruyama, and B. P. Miller, “Problem diagnosis in large-
scale computing environments,” in SC ’06: Proceedings of the 2006 ACM/IEEE
conference on Supercomputing, p. 88, ACM, 2006.

[20] Q. Gao, F. Qin, and D. K. Panda, “DMTracker: finding bugs in large-scale par-
allel programs by detecting anomaly in data movements,” in SC ’07: Proceedings
of the 2007 ACM/IEEE conference on Supercomputing, ACM, 2007.

[21] D. C. Arnold, D. H. Ahn, B. R. de Supinski, G. L. Lee, B. P. Miller, and
M. Schulz, “Stack trace analysis for large scale debugging,” Parallel and Dis-
tributed Processing Symposium, International, vol. 0, p. 64, 2007.

[22] G. L. Lee, D. H. Ahn, D. C. Arnold, B. R. de Supinski, M. Legendre, B. P.
Miller, M. Schulz, and B. Liblit, “Lessons learned at 208k: towards debugging
millions of cores,” in SC ’08: Proceedings of the 2008 ACM/IEEE conference on
Supercomputing, (Piscataway, NJ, USA), pp. 1–9, IEEE Press, 2008.

[23] “Personal conversation.” Leonardo R. Bachega.

[24] S. ik Lee, T. A. Johnson, and R. Eigenmann, “Cetus - an extensible compiler
infrastructure for source-to-source transformation,” in Languages and Compilers
for Parallel Computing, 16th Intl. Workshop, College Station, TX, USA, Revised
Papers, volume 2958 of LNCS, pp. 539–553, 2003.

[25] “The Cetus Project.” http://cetus.ecn.purdue.edu.

60

[26] H. Bae, D. Mustafa, J.-W. Lee, Aurangzeb, H. Lin, C. Dave, R. Eigenmann, and
S. P. Midkiff, “The cetus source-to-source compiler infrastructure: Overview
and evaluation,” International Journal of Parallel Programming, vol. 41, no. 6,
pp. 753–767, 2012.

[27] “NAS Parallel Benchmarks.” http://www.nas.nasa.gov/publications/npb.html.

[28] “The ASCI Purple Benchmark.” https://asc.llnl.gov.

[29] “SPEC MPI2007.” http://www.spec.org/mpi2007/.

[30] J.-W. Lee and S. P. Midkiff, “AntSM: Efficient debugging for shared memory
parallel program,” in International Workshop on Languages and Compilers for
Parallel Computing (LCPC’13), 2013.

[31] C. Lattner and V. Adve, “LLVM: A compilation framework for lifelong program
analysis and transformation,” in Proceedings of the International Symposium on
Code Generation and Optimization (CGO’04), 2004.

[32] C. Lattner and V. Adve, “The LLVM compiler framework and infrastructure
tutorial,” Languages and Compilers for High Performance Computing Lecture
Notes in Computer Science, vol. 3602, pp. 15–16, 2005.

[33] “The LLVM Compiler Infrastructure.” http://llvm.org.

APPENDIX

61

A. EXTENDING VALUE INVARIANT DETECTION TO

PARALLEL PROGRAMS

To adapt the value invariant detection (VID) to parallel programs, we extend the

value invariants hypothesis to parallel programs, as follows. First, we observe that a

large part of the computation performed in a parallel program across tasks is identical

regardless of the number of processes used to execute the program. Intuitively, this is

true because given the same input the parallel and sequential versions of the program

will return the same answers, disregarding numerical stability and round-off effects.

Based on this observation, we allow training runs to use a smaller input on a small

number of processes, and detection runs using larger inputs on a large number of

processes. While significantly lowering the cost of training runs, it creates another

problem: How do we form the approximations of the sets of invariant values that will

be used by each of the P ′ processes on the detection run from the approximations

formed by the P processes on the training runs? Consider the expression for the mask

in I = 〈Mt, V 〉 defined above. When the expression is monitored at time t, the mask

value will be

Mt =
t
∧

i=1

(wi ⊗ V) ∧M0 =
t
∧

i=1

(wi ⊗ V),

since M0 ≡ 1. It follows from the DeMorgan’s laws and the definition of ⊗:

Mt =

t
∧

i=1

(wi ⊗ V) =

t
∧

i=1

(wi ∧ V) ∨ (wi ∧ V)

=
t
∧

i=1

((wi ∨ V) ∧ (wi ∨ V)) =
t
∧

i=1

(wi ∨ V) ∧
t
∧

i=1

(wi ∨ V)

= (V ∨
t
∧

i=1

wi) ∧ (V ∨
t
∧

i=1

wi)

62

Now, consider the invariant sets Ik = 〈Mk,t, Vk〉 and Ij = 〈Mj,t, Vj〉 of the same

variable reference (i.e., the same program point) built in two different processes (pk

and pj). We can merge both to form a single invariant set I ′ = 〈M ′

t , Vi〉, with

M ′

t =

[

Vk ∨ (

t
∧

i=1

wk,i ∧ Vj ∧

t
∧

i=1

wj,i)

]

∧

[

Vk ∨ (

t
∧

i=1

wk,i ∧ Vj ∧

t
∧

i=1

wj,i)

]

,

and Vi equal to either Vk or Vj.

VITA

63

VITA

Jae-Woo Lee was born in Daegu, South Korea in June 1974. He received his B.E. in

Computer Engineering from Dankook University, Seoul, South Korea, in 1997, and

M.S. in Computer Science from University of Southern California, Los Angeles, CA,

in 1999. From January 2000 to July 2007, he worked at Samsung SDS, Seoul, South

Korea, as a software engineer and was involved in many projects within a broad area

of technologies.

In August 2007, Jae-Woo joined the Ph.D. program in the School of Electrical and

Computer Engineering at Purdue University, West Lafayette, IN. He began research

work with Prof. Midkiff in Summer 2008. Jae-Woo interned at Nvidia Corporation,

Santa Clara, CA, in Summer 2012 as a compiler software engineer for three months.

Jae-Woo’s research interests lie broadly in optimizing compilers and their appli-

cations for the perfomance enhancement. The focus of Jae-Woo’s Ph.D. was on the

overhead reduction of sequential debugging tools with parallel programs. He was also

involved in the Cetus project and developed several features in the Cetus compiler.

Jae-Woo will pursue his career as a compiler software engineer at Intel Corporation

from January 2014 and wants to contribute to people in the world with his talent and

best efforts.

	Purdue University
	Purdue e-Pubs
	Fall 2013

	Ant: A Framework for Increasing the Efficiency of Sequential Debugging Techniques with Parallel Programs
	Jae-Woo Lee
	Recommended Citation

	lee_jae-woo_etd_form_9[1]
	thesis_jaewoo

