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ABSTRACT 
 
 

Ennis, Brandon L.  Ph.D., Purdue University, December 2013.  An Experimental 
Investigation of Wind Turbine Aerodynamic Interaction.  Major Professor: Dr. 
Sanford Fleeter, School of Mechanical Engineering. 

 

 

Wind turbine installed capacity in the United States has seen an exponential 

growth over the last decade and mostly coming in the form of large wind farm 

installations.  The wind farms themselves too have been increasing in size, 

incorporating more wind turbines in larger areas than ever before.   

Wind turbines have become a viable component in the overall energy makeup of 

the United States due to improved economics where energy prices have risen and 

production costs dropped.  For a fixed cost, the effectiveness of a wind turbine 

financially is highly related to its performance.  Considering the size of current wind 

farms, a minor performance improvement will result in large additional sums of 

revenue.  A problem that has received attention with wind farms is that while the 

fixed costs of the development do get spread out further to reduce the installed cost 

of each wind turbine, the wind turbines have been observed to perform at lower 

performance values in the wind farm setting.   

Development work is performed to predict maximum theoretical levels of 

performance describing a wind turbine.  This work is extended to include 

predictions of the limiting power for a two-rotor, counter-rotating wind turbine 

configuration.  Wind farm performance losses are also modeled for the dominant 

modes of interaction when operating a wind turbine within the wake of upstream 

machines; covering single-, multiple-, and lateral-wake scenarios.   
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A year’s worth of wind speed data are analyzed to reveal seasonal trends of the 

wind turbine input condition.  Wind turbine performance is simulated using this 

data and compared amongst small and large wind turbines.   

Predictions of wind farm wake models are compared to data generated using the 

Purdue University Micro Reconfigurable Wind Farm facility.  This facility contains 

four small wind turbines in an in-field experimental setting where wake scenarios 

are created and performance comparisons measured.  Model validation is obtained 

using the experimental results which provides insight into the model’s assumptions’ 

range of effectiveness, and resultant predicted wake behavior.  The physical 

mechanisms of wake operation power losses are also observed from the data 

showing the relative contribution of the wake loss constituents in different wind 

farm configurations.   



1 
 

 
  
  

 
CHAPTER 1: INTRODUCTION 

 

 

1.1 Problem Background 

 

Wind turbines have become a significant component in the overall energy 

makeup in the United States.  Between 1999 and 2012 total installed capacity of 

wind turbines in the U.S. alone has grown from 2.5 to 60 GW.  This tremendous 

growth is indicative of market variables aligning with the product capabilities.   

A noted problem with wind turbines in the wind farm setting is efficiency losses 

due to the passage of upstream wind turbine wake vortex structures impinging 

upon downstream wind turbines.  This effect has been seen to result in 10-20% 

losses in the total farm predicted power for large wind farms [1].  There is a need for 

better understanding of Windfarm Aerodynamic Interaction/Wake Dissipation 

Testing.   

A variable that limits the performance of wind turbines regardless of the turbine 

efficiency or farm losses is simply the wind input variability.  This factor can be 

controlled to a degree by appropriate siting of the wind turbine but the variability is 

an inherent quality of the atmosphere.  To support making accurate performance 

predictions for a wind turbine the wind statistics need to be understood and 

accounted for.  These predictions can be made by first performing a Study of the 

Statistical Analysis of Wind Data. 
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1.2 Problem Description 

 

Windfarm Aerodynamic Interaction/Wake Dissipation Testing 

Experimental and analytical studies point to significant energy losses in wind 

farm arrays spaced less than seven turbine diameters apart [2].  Guidelines for wind 

turbine spacing in a wind farm due to wake effects have been introduced as a result 

of these losses. 

In the wakes of upstream wind turbines the turbulence levels may increase 

sufficiently to cause measurable damage from fatigue and dynamic loads.  Lift-type 

turbines develop less intense wakes than drag-type turbines, but the single rotor 

turbine introduces a turbulent, highly viscous, swirl component of velocity in the 

flow that both degrades the performance of downstream turbines and adds to their 

loads [3].   

It has been experimentally observed from several turbines in a line that the 

interaction produces a significant decrease in the power of the second turbine, with 

practically no further loss in successive machines [3].  Equally, there is an increase 

in turbulence intensity which has been found to reach an equilibrium value after 3 

to 4 rows of turbines [4].  The equivalent loads under these single- and multiple-

wake conditions are also very similar [5].  These findings have implications which 

mean the wakes of upstream wind turbines also need to be considered for small 

wind farms.  The reduced power and increased loads of every turbine downstream 

of another makes this an important phenomena to better understand and quantify. 

 

 

1.3 Technical Literature 

 

Counter-Rotating Wind Turbine High Efficiency Design Modeling 

Significant research has been performed to study counter-rotating propeller 

(CRP) systems arising from the aeronautics industry.  This research, which peaked 

interest in the late 1980’s and 1990’s, was performed because of the predictively 
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known improvement in efficiency of the CRP over single-rotor propeller (SRP) 

systems.  Predictions and early experiments reveal an 8-16% increase in efficiency 

over SRP systems [6], derived primarily from the recovery of axial momentum 

imposed on the flow by the first rotor considered part of the SRP loss mechanism.  

The research for CRP systems eventually faded out as noise concerns were greater 

than fuel concerns, and efficiency, at the time.   

 

Explanation of Agrawal’s CRWT design 

Agrawal performed a design and analysis for a low-TSR counter-rotating wind 

turbine [7].  The work first involved an optimization of the Froude-Momentum 

theory (Actuator Disk Theory) with two disk planes representing the two rotor 

planes in the counter-rotating configuration.  This theory guided the design of the 

rotor disk areas and resulted in a forward rotor with an airfoil over only the outer 

25% of the blade as the optimum design.  Blade Element theory was applied to 

construct the optimum blade pitch and chord length as functions of the radius for 

both rotors.  Design parameters were chosen with the optimum TSR set to 2.86, and 

having a rated wind speed of 24.6 mph.  The airfoil selected for this low speed 

turbine was the NREL S-833, with optimum angle of attack of 5.4°.  The turbine 

performance was calculated using a Prandtl tip loss factor to account for three-

dimensional effects and a commercial computational fluid dynamics program was 

used to determine the swirl input to the second rotor.  The maximum power 

coefficient after taking losses into account was determined to be 65% for this 

turbine. 

 

Explanation of Interaction 

CRP systems operate in unsteady flow fields due to the interaction between the 

two rotors and any holding struts/towers.  This interaction arises from the potential 

field pressure gradients and viscous wakes impinging on downstream flow objects 

and from potential fields impinging on upstream flow objects.  These are primarily 

2D effects that depend on object geometry, rotational speed, incoming freestream 
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wind speed, and object spacing up/downstream.  There are also 3D effects which 

arise from blade tip losses present for both rotors and a resulting horseshoe vortex 

structure which impinges on the back rotor.  Denner documents the analysis of 

calculating the velocity triangles and CRP performance and loading due to these 

interference effects [8].  There are induced velocity components caused by the 

propeller on itself and on a blade segment caused by the other propeller that are 

superimposed over the axial and tangential velocity components.   

 The flowfield interaction mechanisms for a CRP arise from the bound potential 

field of the other propeller, viscous wakes from the front propeller on the back, and 

tip vortices of the front propeller blades.  The bound potential is described to 

strongly depend on the distance between the two propellers, and tip vortices mainly 

influence only the outer radial positions of the rear propeller.  In the experiment of 

Lolgen and Neuwerth [9], thermal anemometry was used to measure the 

circumferential velocity component between the two propellers.  It was found that 

the wakes cause sharp, high peaks whereas potential fields cause a smoother, lower 

amplitude sinusoidal in the measured circumferential velocity.  By testing at 

different radial locations they also found that at 80% of the front propeller radius 

tip effects can be neglected, at 93% the induced velocity is dominated by tip vortices 

(with a nearly 500% fluctuation over the steady value) and that the tip vortex core 

passes through the rear plane at 96% of the front rotor radius.   

 

Chung performed tests to quantify the flow interaction of a CRP system using 

thermal anemometry to measure 1-D axial velocity fluctuations and 3-D 

interference effects [10] [11].   

The initial study presents a method [10] for measuring decay and spreading of 

the forward blade wakes and the upstream propagation of the rear blade 

disturbances using thermal anemometry for a 3x4 (3 blades in the forward rotor 

and 4 in the rear) CRP configuration.  The influence the rotors have on each other is 

the cause of the interaction mechanism which alters the performance from the mean 

values and introduces a new source of sound generation.   
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The results from measuring the axial flow velocity between the two rotors show 

a large peak velocity associated with the potential field of the forward blade.  This 

peak can be reduced by the disturbance from the rear blades as a function of the 

relative phase angle between them.  The addition of the rear rotor to the CRP 

configuration yields increased mean peak velocities and a much more complicated 

time history over the SRP performance.  The forward rotor viscous wakes diffuse 

and separate from each other radially with distance downstream from forward 

rotor, while the rear disturbance remains at a nearly constant angular position due 

to its propagation speed near the speed of sound.   

As the rear blade passes through the forward blade potential flow it causes a 

slight reduction in the average axial velocity.  This is an asymmetrical effect that is 

more pronounced as the measurement section moves axially closer to the rear rotor.  

When the rear blade, hence the disturbance, is offset from the forward blade 

potential wake by half of the rear rotor blade spacing, 45 degrees, there is little 

influence.  At less than 12 degrees the peak velocity begins to degrade quickly.  

When the rear blade is at about -25 degrees the rear blade enhances the axial flow, 

and as the rear blade becomes aligned with the velocity peak the axial velocity is 

retarded.  The results show that the rear rotor will increase and decrease the axial 

flow between rotors of a CRP in a complicated manner depending on the relative 

locations of forward and rear rotor blades and rotor to rotor spacing.   

 

Chung et al. [11] performed a second study using 3-D thermal anemometry to 

measure the aerodynamic interaction between the forward and rear rotors in a CRP 

with a 3x4 blade configuration.  From this study it was observed that the rear rotor 

potential field has little influence at the forward rotor, but that the potential fields 

and viscous wakes are significantly altered before they impinge upon the rear rotor.  

This upstream disturbance from the rear rotor on the potential field and viscous 

wakes of the forward rotor blades occurs in all three flow components and varies 

with distance from the rear rotor and with radial location, which is entirely due to 

the passing of the rear potential field.   
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The measurements revealed an axial velocity which varies with radius, with a 

maximum value around r/Rtip of 0.7-0.9 for this configuration.  The radial velocity is 

negative, towards the hub/axis of rotation, for this compressor (turbine would be 

positive radial expansion).  Circumferential flow vectors plotted in 3d space cause 

the tip vortex from the forward blade rotor to be detectable in the mean flow.  

Circumferential velocity is increased by the rotor interaction (more positive, in 

forward rotor direction). 

The forward rotor viscous wakes are seen to be delayed into the rear rotor plane 

by the convection time dependent upon rotor and freestream speeds, causing a drop 

in the axial velocity.  The primary peaks in axial velocity through rotation are due to 

the potential wakes of the forward rotor.  Periodicity of the forward rotor wake is 

disturbed by the rear rotor, as a function of blade number and the rotational speed 

ratio.  Peaks in axial velocity arise from the potential wakes of the forward blades 

with the local minima caused by the forward blade viscous wakes.  The flow from 

the rear blade may either increase or decrease the axial velocity between rotors due 

to the variation of effects upon the flow as rear blade passes.  Axial velocity would 

be symmetric around the blades if rear rotor was removed.  At any axial location the 

difference between the largest and smallest peak from the potential wake of the 

forward blade is a measure of the influence of the rear blade field.  The peak axial 

velocity was observed to decrease by approximately 7% with a location shift of 

about 15 degrees (relative to the front rotor) pulled in the direction of rotation of 

the rear rotor as the rear rotor passes through the viscous wake.   

 

Explanation of prediction tools  

Denner and Korkan [8] detail an analytical prediction method which utilizes the 

method proposed by Lock and Theodorsen for prediction of the steady CRP 

performance and the vortex lattice method of Lesieutre for calculation of the 

unsteady forces.  The Davidson method, derived from Lock and Theodorsen, 

calculates the steady performance averaged over one revolution.  No information 

can be directly obtained regarding the time dependence of these forces from 



7 
 

Davidson.  The Lesieutre method is used for inviscid, incompressible, unsteady 

aerodynamic calculation of the force variation about these mean levels.  In this 

method the unsteady loads are then added to the steady loads to reflect time-

variation of the forces on the propeller blades due to the interference velocities.  

With the time-dependent variation of the induced velocity components known, the 

variation of the unsteady loads can be obtained.  Blades are modeled by a vortex 

with its circulation determined by the section blade lift force.  A strip-analysis 

method is used for calculating the steady time-averaged loadings.  The unsteady 

interference effects are determined by superimposing the axial and circumferential 

velocity components over the induced velocities from the counter-rotation.  The 

Sears function is used to calculate the loads experienced by the airfoils, in which a 

sinusoidally-varying velocity component is superimposed. 

 

Lolgen and Neuwerth [9] used a method where steady blade loading is 

computed according to the classical theory of Goldstein with the influence of the 

bound potential field calculated from potential theory.  Unsteady blade forces 

arising from velocity fluctuations caused by blade passage through a flow distortion 

are predicted by calculation of the unsteady vorticity shed from the blades.  The 

unsteady forces are then added to the steady forces to predict the overall 

performance. 

 

McKay [12] studied the problem of optimization of a CRP system by combining 

existing propeller theory from Glauert, Lock, and Theodorsen.  The solution method 

studied both Goldstein and Theodorsen optimization techniques which vary the 

radial circulation distribution.  Propeller characteristics and trends were sufficiently 

determined using this ideal induced methodology.  Glauert's axial and rotational 

interference factors were used to represent the induced flow from the aerodynamic 

interaction.  Lock's assumption for a close pair of CRP accounts for front-to-rear 

rotor aerodynamic interactions.  This quantifies the axial induced velocity added to 

both rotors and the rotational induced velocity added to the rear rotor.  Betz 
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criterion for minimum-induced-propellers is used which states that the optimum 

loading distribution occurs when the rearward wake displacement velocity is 

radially constant.  Theodorsen's optimum criterion is also applied where radial 

spanwise circulation distribution is identical for both rotors. 

In this analysis, radial flow was accounted for by comparing a Prandtl tip loss 

factor with a radial flow factor developed by Davidson based on Theodorsen.  These 

calculations yielded similar efficiencies with a 0.5% difference.  The comparison was 

made in solving for the optimum-loaded minimum-induced-loss efficiency using two 

different procedures: (1) Goldstein ideal circulation function (2) Theodorsen's ideal 

circulation function.  The Goldstein method was seen to produce a similar, but lower 

efficiency for a given configuration and power, confirming Theodorsen’s 

distribution as the optimum.  The Theodorsen method may also be desirable 

because it minimizes loading in high-Mach number radially outward regions yet 

produces similar efficiencies, which likely would be better in terms of sound 

generation.  Other results indicated that the rear rotor efficiency is more sensitive to 

increasing rotor speed than the front rotor; that for all practical purposes the 

optimum torque split is 50/50; but also that CRP systems can achieve higher levels 

of performance if the total power is biased in favor of the rear rotor, done by 

operating rear rotor at higher rotational speeds.   

 

Leseiutre and Sullivan performed a study to examine unsteady forces acting on 

CRP blades [13].  In this model the vortex lattice model of counter-rotation is used 

to predict quasi-steady solutions to the propeller loadings in order to predict the 

overall performance.  Total unsteady velocity is composed of the (1) inflow 

(freestream) velocity, (2) the rotational velocity (rotational speed times radius), (3) 

the self-induced velocity of the propeller on itself, and (4) the interference velocity 

induced by the other propeller.  Self-induced and interference velocities from the 

vortex lattice system are determined using the Biot-Savart Law and unsteady 

loadings on the propeller blades are obtained by applying an unsteady Sears 

correction to the quasisteady results from vortex lattice.  Sears showed an airfoil in 
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a sinusoidal gust exhibits an amplitude reduction about the mean and a phase shift 

of the quasi-steady results.  The results revealed that unsteady effects diminish with 

increasing reduced frequency.  Also that unsteady loadings are minimized with large 

number of blades and large blade chord for a given operating condition; where 

peak-to-peak variation about the mean caused by unsteady loads varied from 9% 

for a 2x2 to 2% for an 8x8 CRP. 

 

Page and Liebeck extended the vortex-blade element propeller design procedure 

developed by Adkins and Liebeck to analyze CRP systems [14].  This analytical 

method confirms an optimum loading distribution for CRP systems using a finite 

number of blades.  The Theodorsen method for optimum CRP operation, calculated 

for minimum induced energy losses, assumes that the far-field vortex wake acts as 

two rigid screw helices of equal pitch but opposite rotation.  The velocity profiles 

are affected by the vortex fields on the two rotor disks, with the front rotor 

influenced by its own vortex and the rear rotor influenced by both vortices.  Velocity 

profiles for the optimum loading case occur where the induced motion of the fluid is 

normal to the local vortex sheet.  Calculation of the loading function defining the 

optimum propeller is done for specific advance ratios (wake helix angles) and 

number of blades.  The optimum CRP calculation has a 50/50 split between the two 

rotors in this derivation.  Theodorsen gives an optimum loading for the case of 

infinite blades with a circulation function equal to 1.  The circulation function for a 

finite number of blades is a constant, which varies from 1.  In these calculations the 

effect of varied propeller disk spacing is not present and the equations apply to a 

“closely-coupled” pair of propellers, with no measure or specification given.  The 

theory was compared with actual data and found close agreement for the limited 

range of comparison.   

 

Playle et al derived a numerical method to design and analyze the theoretical 

performance of CRPs by combining existing theoretical models for the design and 

analysis of CRPs [6].  They discussed CRP findings from literature which state that 
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the performance of a CRP is significantly improved at lower advance ratios, high Tip 

Speed Ratio (TSR).  Also that CRPs exhibit many advantages over SRPs including 

higher peak efficiency and better off-design performance.  In this study, three 

previously developed models for the design of CRPs were considered and examined; 

methods by Ginzel, Naiman, and Lock and Theodorsen as described by Davidson.  

Earlier comparisons showed that the Lock and Theodorsen method, given by 

Davidson, was most accurate.  The Davidson method calculates the interference of 

one disk upon the other using an interpolation scheme which requires the 

circulation as the input for the entire configuration.  Advantages of this method are 

the ability to modify for drag and compressibility, and that it is adaptable to include 

off-design analysis, disk spacing, blade sweep, and different angular velocities on 

each propeller disk.  This method of designing and analyzing a CRP is 2D by nature 

of the strip-analysis method; however, the propeller is a 3D flow phenomena.  To 

account for the difference between these effects a method is included by Davidson in 

a version of Lock's tip loss factor for CRPs.  For their design the rear disk results in a 

higher integrated thrust coefficient than the front propeller disk.  And the propeller 

efficiencies vary front to back from 0.798 to 1.93, with total efficiency of 0.946.   

This theoretical model designs a CRP configuration for a given operating 

condition and specified geometric constraints.  Playle also showed how to perform 

off-design calculations, which begin with the propeller blade geometry and flight 

conditions as specified from the design analysis.  In the analysis of the CRP system, 

the design point yields maximum power coefficient.  The results show that there is a 

very broad efficiency map across a large variance of advance ratio (1/TSR), and that 

CRPs perform very efficiently even in off-design flight conditions; an improvement 

upon typical SRPs.   

 

Gazzaniga and Rose tested the efficiency improvement for a propeller by adding 

a vane row downstream to recover swirl from the propeller [15].  Improvements for 

this study were found at 2% for the design speed and up to 4.5% at off-design 

speeds.   The addition of the swirl recovery vanes shifted the efficiency peak to a 
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higher operating speed.  CRP systems have increased efficiency over SRP’s due to 

their ability to recover the swirl present in the propeller slipstream which is 

originally considered into the SRP loss mechanism.  The aim of this test was to 

achieve improvement in efficiency without the complexity of a second rotating 

stage.  The maximum rotor power coefficient changed from 2.3 to 2.85 at advance 

ratios of 3.3 and 2.7 for Mach numbers from 0.80 to 0.60. 

 

Explanation of performance improvements  

Counter-rotating turbomachinery configurations have higher efficiencies than 

their single rotor counterparts due to the recapture of the swirl of the front rotor 

being transformed into additional torque by the rear rotor [9].  A repeated finding 

point to another advantage of the CRP which is that they operate with significantly 

higher efficiencies in off-design conditions [8] [6]. 

 

Explanation of noise sources and directivity 

Denner’s methodology for calculating the loads extended to predicting the 

acoustics for CRP devices [8].  The procedure is summarized as follows: (1) 

Davidson approach is used to calculate the steady loads, pressure forces, on the 

blades, (2) Leseiutre’s method is used to calculate the unsteady loads, (3) Succi 

acoustic prediction is made, using a compact source assumption, to determine the 

acoustic response.  Aerodynamic interference, as experienced with a CRP, alters the 

magnitude and velocity of the airflow over the blade surfaces.  This results in a 

periodic variation of the thrust and torque force creating a highly directional noise 

component that dominates the noise pattern in front of and behind the propellers.  

This method was found to be useful in predicting noise level in the disk-plane of the 

propeller and the frequency characteristics in the disk-plane and on-axis.  The 

prediction is valid in the far-field in order to satisfy the compact source assumption 

where x >> Dsource.  The acoustics were calculated with the need only to determine 

the loads on the front and rear propellers as functions of time. 
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Lolgen measured noise emission of a CRP along with aerodynamic interaction, 

measured by velocity distortions and pressure fluctuations on the rear prop blades 

[9].  Two additional effects have to be considered for a CRP configuration, (1) the 

aerodynamic interaction, and (2) the acoustic interference between the two 

propellers.  In this study, CRP noise was found to be dominated by that due to 

aerodynamic interaction.  This noise was mainly radiated in the upstream and 

downstream directions, and is strongly influenced by the thrust ratio between 

forward and rear propeller.  Propeller noise generation is generally dominated by 

discrete tones, caused by noise sources located on the rotating blades.  When the 

flowfield where the propeller operates is distorted, the unsteady blade loading 

generates additional dipole-type noise sources (for CRP second rotor).  The 

interaction tone is the additional noise source introduced with a CRP configuration 

which occurs at the sum of the forward and rear propeller BPF’s and originates from 

the rear blades chopping the wakes of the upstream prop.  The individual propeller 

tones peak in the propeller plane (90° from Vinf), whereas the interaction noise was 

found to have a maximum radiation at an emission angle of 30 to 45degrees with a 

minimum near the propeller planes.  The Bessel function was found to fit well with 

the prediction of directivity.  Other results revealed that increasing the thrust of one 

propeller leads to an increase of the interaction noise radiated by the other 

propeller, and that the propeller speed also influences the directivity pattern of each 

propeller due to a change of radiation efficiency of the tones. 

 

Chung measured acoustic data, collected with an emphasis on the blade pass 

frequencies (BPF) and interaction tone of the CRP [11].    The rear rotor upstream 

influence affects the wakes of the forward rotor, which affects the radiated noise 

and the performance of the rear rotor.  Increasing rotor spacing improves noise, but 

has an adverse effect on aerodynamic performance at larger spacings.   

They found that the forward rotor tended to dominate the noise spectra (which they 

noted could be due to having higher power per blade for this rotor).  The interaction 

tone, with frequency BPFf + BPFr, has a minimum for directivity near 90 degrees, 
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and exceeds both the forward and rear BPFs in the forward most measurement 

location.  Interaction tones are stronger with reduced rotor spacing. 

Rear rotor noise is most affected (3x4 rotor) by the CRP operation.  The increase in 

SPL for a CRP is caused by the interaction between the forward and rear rotors, 

which mostly affects the rear rotor operating in the unsteady wakes from the 

forward blades. 

 

Squires did an early experimental study on the role of the leading-edge vortex 

due to stall on the forward rotor on CRP noise [16].  The study utilized a 3x4 

configuration CRP where the forward rotor could be configured with forward sweep 

or aft sweep.  Forward sweep on a CRP was found to eliminate the leading edge 

vortex of the upstream blades; significantly altering the SPL of the interaction tone.  

The leading edge vortex is different from tip vortex, and studies have shown that the 

leading edge vortex may be more important than the tip vortex for noise generation.  

The purpose of this study was to manipulate the path of the leading edge vortex as it 

convects into the rear rotor and determine its effect on interaction tone noise.  The 

leading edge vortex develops as a result of the high sweep of the rotor blades.  By 

altering the rotor to a forward sweep no leading edge vortex was found to form.  

Velocity fluctuations imposed by the vortex when sampled along the radius yields a 

circumferential velocity that is skewed alternately positively, then negatively at the 

bottom and top of the vortex.  By this test, results appear that there is no leading 

edge vortex for the forward swept configuration.  BPF tone SPL’s were not greatly 

affected by sweep of the forward blades, forward or rear.  With thrust and torque 

held constant between the two tests the BPF noise sources were unaffected.  The 

SPL in the interaction tone was actually found to increase when the leading vortex is 

removed or altered to reduce the interaction.  This result was not expected or 

explained.  By reducing the leading edge vortex the interaction tone SPL increased.  

The mechanisms for the interaction tone are not greatly understood. 
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Windfarm Aerodynamic Interaction/Wake Dissipation Testing 

 

Wake Development and Physical Mechanisms 

The physical mechanics of a wind turbine wake are classified into two distinct 

regions, the near-wake and the far-wake.  The dividing flow properties are that at 

the onset of the far-wake region, the pressure drop across the rotor is fully 

recovered into the wake and the wake is fully developed. 

The physical mechanics producing, and therefore describing, the wake are the 

rotor’s axial thrust and torque extraction.  Immediately downstream of the rotor, 

the onset of the near-wake, there are non-uniform pressure and velocity deficits in 

the flow.  The pressure and axial velocity reduction arise from the axial thrust, and 

there is also an introduced tangential component of velocity related to the torque on 

the machine.  From the loading of the blade, which relates to the bound circulation 

on the blade, vorticity is shed into the wake.  Variation in circulation, due to the 

loading along the blades, sheds vorticity from the blade trailing edge which 

combines together radially outward and combines with the tip vortices which map 

out a helical trajectory opposite the rotor rotation direction.  These trajectories 

create the shear layer between the slow moving wake flow and the adjacent 

freestream.  Progressing downstream of the rotor, the shear layer expands as the 

pressure seeks to normalize back to atmospheric with associated velocity 

decreasing in the wake until the driving pressure gradient force is reduced to zero.  

Turbulent diffusion of momentum arising from the velocity shear between the wake 

and atmospheric flows becomes the main mechanism causing the wake to diffuse.  

This diffusion mechanism causes the shear layer thickness to increase (inward) with 

axial distance leading to the ultimate transition to the far-wake region defined 

where the shear layer thickness reaches the rotor axis.  This transition from the 

near-wake to far-wake occurs 2 to 5 rotor diameters downstream.  The far-wake 

region has a fully developed wake with axisymmetric and self-similar velocity deficit 

and turbulence intensity profiles (in the absence of an atmospheric boundary layer).  

In this region only the overall properties of the turbine appear as parameters, the 
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rotor thrust coefficient and the total turbulent kinetic energy produced by the rotor 

itself. 

 

Vermeer and Sorensen performed a survey of wind turbine aerodynamic 

experiments within these two distinct regions [17].  The near wake studies 

reviewed are restricted to controlled environments.  The near wake survey 

concluded that good near wake experiments are hard to find in wind energy 

research.  The survey’s far wake studies focus on both single turbines and combined 

effects in wind farm settings; including analytical and experimental results.  It was 

concluded that far wake experimental results can be extended to other turbines if 

the overall drag of the turbine that produces the wake is estimated correctly.  From 

this survey, Vermeer determined that engineering rules developed for describing 

the problems with aerodynamics need more fundamental understanding.  Also, that 

while the aerodynamics of wind turbines seem simple, some of the most basic 

mechanisms of the fluid flow are not well or fully understood, such as the unsteady 

effects from operating in the atmosphere, presence of stall, three-dimensional 

effects which change the airfoil performance, and the production of and operation 

with turbulence.   

The testing parameters of the near wake wind tunnel experiments analyzed by 

Vermeer are summarized, where the most promising results come from full-scale 

experiments of which there was only one at the time.  The limitation to this practice 

is the model to tunnel area ratio, which was given for the experiments and was 

between 1:1.7 and 1:125 for the different experiments.  The dependency of rotor 

inflow and wake structure cause this dimension to be of concern where the rotor 

performance is influenced by the possibility, or not, of free wake expansion.  Good 

practice before studying wakes in a wind tunnel is to first thoroughly test the wind 

turbine rotor.  Flow visualization immediately behind the rotor or along the blades 

produces valid insight into the flow in the vicinity of the rotor, mostly qualitative, 

and can reveal areas of interest to be related to the wake dynamics. 
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Averaged data from these experiments dealing with velocity distribution in the 

wake are mostly used to analyze global properties of the wind turbine, such as 

power and thrust.  These data, however, does not reveal much about the physical 

process of power extraction.  Detailed wake data from high response sensors 

including thermal anemometry, laser doppler velocimetry, and particle image 

velocimetry are needed to provide a better understanding of wind turbine 

aerodynamics.  Data using these high response sensors reveals fundamentally 

insightful patterns regarding wind turbine aerodynamics.  For example; vortex 

spirals from a two bladed wind turbine set at two different pitch angles have two 

different trajectories and converge on each other, the propagation speed of a tip 

vortex spiral is lower than the local flow velocity.  Vermeer summarized that tip 

vortices, in addition to wake properties, are worth noting because they likewise 

determine the physical behavior of the wind turbine rotor as a whole.  These 

properties include wake expansion measured by viewing the tip vortex path at 

distances downstream, the vortex spiral twist angle, and the strength of tip vortex 

itself.   

While properties of the rotor can be discerned in near-wake flow, for the far-

wake region experiments and modeling, the rotor geometry is less important and 

focus is placed on wake models, wake interference, turbulence models, and 

topographical effects.  Emphasis from the studies reviewed was on the influence of 

the wind turbines in wind farm settings, not the individual turbines themselves.  

Vermeer reiterated key results from these studies.  The effects of the far-wake are 

expected to vanish sufficiently far downstream due to turbulent diffusion of the 

wake, implying the relation to atmospheric conditions such as turbulence and 

stability.  Results using static simulators, confirmed later by wind turbine research, 

reveal a saturation of turbulence reaching an equilibrium value within a wind 

turbine cluster after several rows of turbines.  It was also found that turbulence 

intensity in the far-wake decreases with downstream distance and increases with 

the thrust coefficient.  Turbulence effects have been found to be more persistent 

downstream of a wind turbine with its decay less rapid as the decay of velocity.  
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Experiments found turbulence effects noticeable at 12 and 10 rotor diameters 

downstream of a wind turbine, where velocity deficits are nearly negligible.  

Vermeer restated additional results which showed that the wake of a downstream 

machine recovers more rapidly than the initial upstream machine at the same 

relative position, which is likely due to the increased turbulence and atmospheric 

mixing present with downstream inflow.  A shift in the turbulence spectrum to 

higher frequencies accompanies wake flow with the turbulent length scale observed 

to decrease to a quarter of the free stream value.   

 

Wake/Wind Farm Modeling 

Crespo et al. [3] performed a survey in 1999 on the modeling methods for wind 

turbine wakes and wind farms.  The attempts at modeling the wake of a wind 

turbine and their combined effects in a farm setting were reviewed and categorized 

into the different forms.   

The two methods for farm modeling include the early approach of modeling 

turbines as distributed roughness elements which alter the atmospheric flow, and 

the most common approach which considers individual turbine wakes and 

examines the interaction and superposition with neighboring wakes in the farm.   

For calculating individual turbine wakes the two approaches are using a kinematic 

model or a field model.  Kinematic models are explicit models which depend on 

adjustable coefficients and provide acceptable results if the coefficients are 

appropriate.  Field models are implicit models which calculate the flow magnitudes 

at every point of the flow field and produce an acceptable representation of the flow 

field.   

 

Wind farm modeling by describing the turbines as distributed roughness 

elements assumes a log wind profile including a parameter to describe the ground 

roughness and the presence of a turbine increased this value.  Some models use two 

parameters in their profile calculation; one to describe the profile below the hub 

height, and a second to describe the height above that related to the drag of the 
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machine.  Both methods have the same ultimate process for power calculation 

which is to obtain the wind velocity incident on each machine and derive the power 

produced in those distributed locations to obtain overall wind farm performance.  

These models however are said to not be used much, but that they could be of 

interest in predicting the overall effects of large wind farms on wind characteristics.   

 

Kinematic models to calculate individual wakes for farm approximation have the 

far-wake property of self-similarity as their basis.  Self-similar velocity deficit 

profiles used in these models are obtained from experimental and theoretical work 

from co-flowing jets.  The initial value for the velocity deficit comes from the thrust 

coefficient of the machine, with subsequent reference values at each section 

acquired from global momentum conservation.  Larsen [18] proposed a simple 

analytical model based on work by Schlichting [19] for classical wake theory and 

compared results with empirical relations and obtained relative differences lower 

than 5% in all cases where the downstream distance was greater than 2 diameters.  

Kinematic models have been shown to provide results in good agreement with 

experimental measurements if appropriate values are chosen for the parameters 

appearing in them [20].   

 

Crespo reviewed the field model approach and found that they all solve the 

Ryenolds-average turbulence flow equations and use a closure scheme, based on 

zero-, one-, or two-equation models to calculate the turbulence transport terms.  An 

isotropic turbulence field is implicitly assumed in these models through the use of 

an eddy viscosity.  Wakes are described using a linearized momentum equation in 

the main flow direction with constant advective velocity and eddy diffusivity and a 

parabolic approximation.  This model was compared to small scale experiments 

with agreement for velocity deficit and wake growth within 10% for cases not 

having high thrust loading, where the error could reach 20%.  Considering the 

model simplicity this is seen as a reasonable approximation.  Crespo et al. [21] 

developed the UPMWAKE model based on the field model approach for calculating 
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wind farm performance.  This model calculates the 3D wake model for a wind 

turbine operating in a non-uniform flow corresponding to the atmospheric 

boundary layer.  UPMWAKE uses conservation equations of mass, momentum, 

energy, and turbulence kinetic energy and its dissipation rate.  This model has been 

verified with experimental data to describe accurately the velocity deficits from the 

wake, even in the near-field.  Results have been shown in agreement from wind 

tunnel experiments and field experiments using full-scale machines, along with CFD 

numerical computation using CFD PHOENICS.  In general, field models give an 

acceptable respresentation of the flow field and better insight into the governing 

processes of wake development than the kinematic models. 

Crespo described the process which wind farm codes typically implement where 

the results of single-wake calculations are relied upon, with a superposition 

assumption made which takes into account the combined effect of different wakes 

[3].  Linear superposition fails for larger perturbations where the velocity deficits 

are overpredicted, and this assumption could even lead to non-physical result of 

negative velocities given sufficient wakes.  Katic et al. [22] used linear superposition 

of the squares of the velocity deficits in the PARK model, which in general produces 

better agreement with experimental results than linear superposition.  UPMPARK is 

an extension of the parabolic UPMWAKE code for calculations in a farm with many 

turbines.  This model requires no assumptions about the superposition or type of 

wake to be used as all the wakes and interactions are calculated directly by the code.  

The model solves the same conservation as for the single-wake code with 

turbulence closed using a k-ε model.  This model is especially suited for the case of 

turbines in a row, and can handle moderately irregular terrain.   

 

Wind farm models typically make the simplifying assumption that the terrain is 

flat and that the unperturbed wind velocity is uniform, in the absence of the 

atmospheric boundary layer.  A simple method to account for the terrain effects is 

adding the velocity perturbations arising from the upstream wakes with those 

arising from the terrain as an approximate.  This procedure has been applied with a 
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relative order of the errors of 10%, less than 20%, validating the method for 

moderately irregular terrain but less valid for highly irregular terrain.  Van Oort et 

al. [23] found that terrain irregularity creates additional turbulent diffusion towards 

the ground, diminishing the wake effects.  Additionally, above the apex a hill where 

streamlines concentrate wake effects are increased.  In offshore applications where 

there is a smaller surface roughness, and associated reduced atmospheric boundary 

layer, turbulence intensities will be lower than for equivalent inland locations 

reducing the turbulent diffusion of the wake resulting in wake effects that persist 

further downstream.  Stefanatos et al. [24] and Helmis et al. [25] give some 

guidelines for studying the interaction between wake and terrain, derived from 

experimental results in wind tunnel and large-scale tests.   

 

Analytical expressions and semi-empirical expressions have also been studied to 

estimate the order of magnitude and the tendencies of the most relevant parameters 

which describe wake evolution.  Regressions or correlations have been obtained by 

many authors in describing single wake properties for velocity deficit and width of 

the wake, along with expressions for turbulence intensity.  Taylor [26] performed a 

parametrization of calculated wake magnitudes as functions of dimensionless 

parameters.  Most of these studies describe wake diffusion as a function of 

downstream distance and hub height normalized with the rotor diameter, thrust 

coefficient, and ambient turbulence intensity.  Magnusson and Smedman considered 

the effect of atmospheric stability by including the Richardson number in their 

correlation for velocity deficit decay [27].  Crespo summarized that all the 

correlations show an acceptable degree of agreement but suggests that more work 

is needed for confirmation with experimental results. 

 

Loading Effects Caused by Wakes in Wind Farms 

Crespo summarizes that wake measurements and modeling associated with 

wind farm operation have since been primarily focused on energy production and 

loads, however relatively few direct measurements of structural loads under wake 
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conditions have been performed.  The most serious and expected effects of turbines 

operating in wakes of other turbines is fatigue and dynamic loading.  In the near 

wake, flap-wise bending moments depend primarily on the distance to the 

neighboring machine.  Volund performed an early study utilizing a 250kW turbine 2 

diameters downstream of another revealed that loads were largest when the 

machine was exposed to half-wake conditions [28].  Frandsen and Thomson [29] 

studied an offshore wind farm with eleven 450kW turbines separated by 

approximately 8 diameters and determined the equivalent fatigue load as a function 

of wind direction, and therefore upstream wake participation.  The Alsvik wind farm 

in Sweden was studied by Dahlberg [30] which has 300kW turbines in three rows 

with one instrumented wind turbine exposed to 5-, 7-, or 9.5-diameter spacing from 

single-wakes depending on the wind direction.  Some results found were that there 

were no significant half-wake loads when the instrumented machine was within 7 to 

9.5 diameters downstream.  It was also found that under full-wake conditions the 

equivalent load was increased by 10% at 9.5 diameters, and up to 45% at 5 

diameters.   

The data from these early studies reveal that there is no appreciable difference 

when operating in single- or multiple-wake loads, repeating the trend of power 

losses when operating in wake flows.  Adams et al. [5] also concluded that 

equivalent loads were very similar under single- and multiple-wake conditions.    

Crespo concludes that there have only been limited efforts toward directly 

estimating wake loads from modeling.  Frandsen and Thomson [29] developed a 

model which has been demonstrated to work for turbine separations larger than 3 

to 4 diameters.  The modeled value of turbulence intensity depends on the thrust 

coefficient, wind turbine spacing, and ambient turbulence.  At high wind speeds the 

wake effects decrease due to the reduced thrust coefficient. 

 

Experimental and Computational Wind Turbine Wake Studies 

Bathelmie [1] compared multiple analytic and computational fluid dynamics 

(CFD) wake models to data from the Horns Rev offshore wind farm.  The wind farm 
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consists of 80 Vestas V80 wind turbines in an 8x10 arrangement with a 7-diameter 

spacing each.  In predictions power loss should encompass the entire range of wind 

speeds and directions at each turbine location, but with CFD this is limited to a few 

directions and wind speeds for only a small number of turbines.  When modeling 

wakes the power curve and thrust coefficients must be known.  Atmospheric 

stability has been shown to strongly impact power losses due to wakes offshore, 

however, few models incorporate this parameter.  Wake recovery is determined by 

the transfer of momentum into the wake region which is primarily controlled by 

turbulence, hence, also with atmospheric stability.  For large wind farms on land 

ambient turbulence is significantly higher than off-shore, enhancing atmospheric 

mixing and reducing the wake recovery length.   

The models used in the comparison are described.  The WAsP model uses the 

one-dimensional linear wake expansion model with a constant velocity profile in the 

wake and does not account for complex terrain.  The CRES model accounts for wake 

effects through the amended wake model proposed by Dekker and Pierek [31], and 

includes the effects of multiple wakes on mean wind speed and turbulence.  

WindFarmer from GH utilizes the WAsP model with mean flow parameterized with 

turbine and wake-generated turbulence modeled using empirical relationships, 

solved using a CFD Reynold’s averaged Navier-Stokes (RANS) solver.  WAKEFARM 

from ECN is a CFD solver based on the UPM code described earlier, which uses a 

Gaussian velocity profile for the far-wake downstream boundary condition which 

must be tuned with experimental data.  CENER is based on the CFD package Fluent 

and simulates the rotor effects on the flow as axial momentum sinks with model 

inputs of thrust coefficient and topography.  NTUA solves the 3d incompressible 

RANS equations with wind turbines modeled as axial momentum sinks defined by 

the turbine thrust coefficient.   

Power observations from the wind farm were compared to the models in sorted 

data sets composed of 10 minute averages, then averaged along each row.  There 

was a minimum of fourteen 10-minute averaged points in each case.  Three cases of 

alignment with the wind direction were chosen which resulted in a 7-, 9.4-, or 10.4-
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diameter turbine spacing’s along the row.  These cases were sorted by the averages 

of the yaw alignment and filtered by the degree of alignment with the wind 

direction.  When aligned ± 1° the wind farm row seems to reach a limit power of 

60% freestream.  For the 7-diameter spacing case this result was realized at the first 

wind turbine in wake operation and remained near constant up to the eighth wind 

turbine in the row.  A 9.4-diameter spacing dropped performance to 70% and 

reached 60% at the fourth or fifth wind turbine.  A 10.4 diameter spacing did not 

reach the limit over the five turbine row, but the increments between each turbine 

were more constant beyond the first wake operated turbine’s 90% power.  When 

focusing on narrow wind direction sectors the power at the second wind turbine 

drops significantly. However, if wider sectors are chosen the power drop to the 

second turbine is less severe with power in the row and continues to drop at a 

higher rate.  The effect of yaw alignment on the wake loss is proven significant, 

changing the performance from 60% to 80% in some cases for only a 15° 

misalignment. 

The predictions of the experimental results showed that the wind farm models 

typically under-predicted wake losses, particularly in partial wake flow scenarios, 

while CFD models over-predicted the wake losses.  The errors from the predictions 

were substantial in the comparison, revealing the need for more accurate models for 

wind farms.  The main issue is that models seem to be in good agreement when used 

for single wakes but vary substantially for large wind farm settings.   

 

Barthelmie [32] performed a study using SODAR, a device used to measure 

velocity profiles, to compare several commonly used models for predicting a wake 

downstream of a wind turbine with measured velocity data.  The SODAR 

measurements were taken at distances between 1.7 and 7.4 rotor diameters 

downstream, between 30-90 meters with a 5-m resolution.  This study tested single 

wake scenarios only.  The thrust coefficient used in the models was determined 

based on the hub-height wind speed, with three methods used for calculating the 
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velocity profile which were also compared and seen to differ significantly in some 

cases.   

The models used for the comparison are as described.  The Risoe engineering 

model consists of a collection of sub-models for mean wind wake deficit, turbulence 

intensity, and turbulent length scale, among others.  The model assumes a circular 

symmetric wake deficit and uses a similarity assumption for the shape.  The sub-

models dealing with wake turbulence are purely empirical.  Risoe WAsP model is a 

simple wake model based on linear expansion of the wake.  The expansion slope has 

suggested values of 0.05 offshore and 0.075 onshore, where higher turbulence levels 

are present.  The wake is assumed to have a constant value velocity profile that 

changes with axial location.  The near wake is not modeled specifically so this model 

is only valid for distances of over 3-diameters.  Risoe Analytical Model calculates 

momentum deficit behind each turbine which is conserved as the wake expands.  

Velocity deficit is calculated assuming a circular wake area until the wake expands 

to hit the ground or lateral wakes.  UO FLaP model solves the governing equations of 

the flow numerically with suitable parameterization.  Wake flow is assumed to be 

axisymmetric and incompressible with no external forces or pressure gradients.  

This flow is then described with the two-dimensional Reynold’s equation in the thin 

shear layer approximation without viscous terms.  Eddy viscosity is used for 

turbulence closure, and an empirical wake profile is used as a boundary condition at 

the end of the near wake.  The ECN Wakefarm model is based on the UPMWake 

model, which is a parabolized Navier-Stokes solver with k-ε model for turbulence.  

The velocity profile is defined to fit a Gaussian distribution.  RGU CFD model 

requires inputs of atmospheric velocity and turbulence intensity profiles and 

approximates the rotor as a semi-permeable disk with pressure drop across it. 

Estimation of the free-stream wind speed was seen to have profound effects on 

model results and the comparison.  Reviewing the results, all of the models under 

predict the in the near-wake flow (1.7D) and over predict the deficit at 7.4D 

compared to the measured values.  Risoe Analytic model tends to give lowest values, 

and UO flap and Risoe Engineering also typically predict lower values than other 
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models.  WAsP seems to perform as well as the other models despite use of the 

constant velocity profile among other simplifications.  Average errors at the varying 

distances downstream varied from between 11-17% for the different models.  The 

WAsP model with the simple linear wake approximation had the highest correlation 

coefficient with the data of the models studied.  A large discrepancy remains 

between the model predictions and the experimental measurements with no clear 

identification of its cause.  No particular model gave a consistently better 

performance than the others.  Overall, higher turbulence conditions were not more 

accurately represented by the wake models than lower conditions, or vice versa.  

Comparing momentum deficit instead of velocity deficit produced more consistent 

results between the models.  Wake meandering results in a measured wake which 

may be partial and not a full wake condition, causing the models to over predict the 

velocity deficit, particularly at larger spacing’s.  Correcting for wake meandering 

brings some of the modeled values closer to observed, but the change is not 

uniformly an improvement.  Insight into the near wake transition was provided 

from the experiments where a near wake shape was seen at 1.7 and 2.8-diameters 

but not at 2.9-diameters, possibly due to higher turbulence levels or wind speeds.   

Barthelmie summarized that the spread of wake model predictions is 

considerable even for the relatively simple offshore single wake cases studied, 

suggesting a need for more and better quality measurements and further model 

evaluation.   

 

Cleve analyzes data at the Nysted offshore wind farm in Denmark and compares 

them with the Jensen linear wake model [33].  Data are presented as 10 minute 

averages, with filters used to ensure sufficiently steady and homogenous wind 

conditions over the average.  Data are first sorted into wind condition classes and 

averaged, then compared with fitted model predictions.  A Jensen two parameter 

model fit is performed for each individual 10 minute recording, where the two 

parameters are wind direction and the wake-decay constant.  This model describes 

intra-farm wind flow as a static superposition of linearly spreading wakes.  
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Downwind wake velocity is modeled as a function of "overlap area" between wake 

and rotor areas in an attempt to estimate partial wake scenarios.  Downstream 

velocity deficit is calculated by the sum of squared deficits from each upstream wind 

turbine.   

Wind speeds are obtained from averaged powers of first-row turbines and the 

inverse power curve.  Three options are compared for determining the wind 

direction using meteorological masts, turbine orientation, and best-fit parameters 

produced from the measured power of the turbines.  Each of these methods 

produces different directions.  Actual wind direction was determined by comparison 

of the first and second row turbines power output as a function of the estimated 

direction.  This curve is ideally symmetric around the alignment direction of 

turbines however a misaligned turbine induces a small sideways movement of the 

wake. The best fit wind directions and the corrected turbine orientation can be 

thought of as good estimates of the true wind direction, on average.  Fit quality of 

the Jensen model is increased with precision of the wind direction. 

Using this approach, it was found that the distribution of the wake decay 

parameter peaks around 0.02 for the offshore wind farm and extends up to 0.1. The 

average of 0.028 is less than current standard value of 0.04 for offshore wind farms 

indicating that offshore wakes are narrower than previously expected.  This value 

changes to 0.032, 0.037, and 0.044 when using other fits for the wind direction.  The 

effect of atmospheric stability is revealed by the data producing an average of 

k=0.03 versus k=.026 for stable conditions.  Unstable flows result in weaker velocity 

dependence with height which agrees better with the model assumptions, resulting 

in an improved fit.   

The fit quality of the Jensen model is better for full than for partial wake 

situations, as expected.  Even for full wake situations the Jensen model is not fully 

consistent where different wake decay constants (0.3, 0.5) are observed for 

different turbine spacing’s, which is a measure of model strength.  Further analysis 

of modeling with more data is suggested.   
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Frandsen proposed an analytical model for small and large wind farms [34].  

Models typically applied for calculating production losses due to wake effects are 

based on local "unit by unit" momentum equations disregarding the two-way 

interaction with the atmosphere.  Array efficiency of infinitely large wind farms is 

typically calculated by viewing the wind turbines as roughness elements and 

applying CFD schemes.  In the analysis, wake rotation is neglected and assumptions 

for self-similarity in a constant wake flow speed profile are made.  The model 

includes assumptions which are only valid in the far wake.  A model for expansion of 

the wake cross-sectional area as a function of downstream distance is described 

with values which must be determined experimentally.   

For an infinitely large number of wind turbines it must be assumed that there is 

an asymptotic, non-zero wake flow speed.  If flow speed became zero then thrust on 

the wind turbines becomes zero and the flow would accelerate.  An asymptotic 

relationship for an infinitely large wind farm is derived with a wake expanding 

linearly with axial distance.  The asymptotic wake flow speed deficit was said to be 

constant within approximation, the value of which is only moderately dependent on 

freestream flow speed but likely highly dependent on turbine spacing.  A 

consequence of the asymptotic value not depending on the wind speed is that the 

wake decay constant must be proportional to the thrust coefficient, which also 

describes the initial wake deficit.   

Frandsen included a model where the wake meets side wakes and can only 

expand vertically.  The solution procedure begins with finding the asymptotic 

relative wake speed deficit experimentally and using this value to determine the 

wake decay constant.  When wakes merge with lateral wakes or meet the ground, 

the merged wake expands completely upward.  This is modeled by conserving the 

momentum deficit with a changed area, which results in disproportionately tall 

wake areas, likely implying the inability of the model to describe the actual flow 

physics – despite its reasonable performance results.   A comparison was made with 

data for a row of 7 wind turbines at a set spacing and produced good agreement for 

the different wind speed cases.   
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Troldberg modeled a wind turbine wake with a numerical method which 

combines large eddy simulations and an actuator line technique using 8.4 million 

grid points [35].    Advanced CFD methods have shortcomings regarding inaccurate 

turbulence and transition modeling, in addition to being computationally expensive.  

The work addresses these shortcomings by making numerical simulations of wind 

turbine wakes using an actuator line technique coupled with Large Eddy Simulation 

to predict the region up to 7 diameters downstream, showing both near and far 

wake regions.  Actuator line model adds body forces from the blade-element 

momentum theory and two-dimensional airfoil data onto rotating lines in the three-

dimensional Navier-Stokes solver representing the blades.  The advantage is that 

many fewer points are needed to describe the influence of the blades compared with 

simulating the actual geometry.  The biggest drawback to this method is its 

dependency on accuracy and availability of airfoil data. 

Operating in wakes of upstream wind turbines causes a reduced power 

production and increased turbulence level in the inflow.  Ebert and Wood [36] found 

that at high TSR the tip speed vortices contain a large part of the angular momentum 

in the wake.  Experiments showed that tip vortices could be detected up to 

approximately 3 rotor diameters downstream.  Whale made PIV measurements of a 

model rotor at different tip speed ratios and compared the results with a simulation 

using inviscid free vortex wake method [37]. It was shown that as long as similarity 

is obtained in TSR, that the wake behavior might only be minimally sensitive to 

Reynold's number.  The simulation by Troldberg was carried out with a uniform 

inflow and for varying tip speed ratios. 

Results showed that the axial induction factor varies with the tip speed ratio 

(TSR) – i.e., changing wind speed or rotational speed – and with radius in each case.  

For the lowest TSR the bound circulation is seen to vary along the entire length of 

the blade, indicating that a large amount of vorticity will be shed into the wake from 

the entire span of the blade.  The bound vorticity of the blades is primarily shed 

downstream of the root and the tip regions, which was consistent with the method's 

radial distribution of circulation.  For TSR’s of 5 and 7, the tip-vortex pattern was 
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visible 5 and 1 rotor diameters behind the turbine.  For TSR’s of 3 and 2 the tip-

vortex remains distinct in the entire computational region due to the high pitch of 

the vortex system.  These results are valid qualitatively and not as absolute 

reference due to the lack of atmospheric turbulence in the model which would cause 

the wake to dissipate faster.  The heaviest loaded rotor’s wake expansion is 

significant and the dissolution of the tip vortices results in a rapid transition to a 

fully turbulent wake.  Wake rotation seems to reduce as the wake becomes unstable.  

Axial (and tangential) induction factors in the far-wake reach a value about twice 

that in the rotor plane, which agrees with the actuator disk theory.  An important 

result of the study is that the instability of the wake is an intrinsic part of its 

dynamics and that no external turbulence is needed to create the transition from a 

laminar to turbulent wake, and is a function of the blade loading and TSR. 

 

 

1.4 Research Objectives 

 

• Approximate wind turbine optimum theoretical performance for single and 

double rotor configurations using the Actuator Disk Theory. 

• Describe measured wind speed seasonal variation and distribution and relate 

to approximate and compare wind turbine performance. 

• Experimentally quantify wind turbine performance losses due to aerodynamic 

interaction from wakes produced by upstream wind turbines in the wind farm 

setting. 

• Develop an empirical relationship between turbine-turbine spacing and 

performance losses and compare to model predictions. 

• Test wind turbine wake model predictions against data for wind farm wake 

scenarios. 
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CHAPTER 2: EXPERIMENTAL FACILITY 

 

 

2.1 Micro Reconfigurable Wind Farm Test Facility 

 

A facility has been constructed directed at investigating wind turbine wake 

interactions in an in-field wind farm setting.   

 

 

2.1.1 Micro Reconfigurable Wind Farm Instrumentation 

 

The Purdue University Micro Reconfigurable Wind Farm consists of four wind 

turbines mounted on movable carts located in a field north of Maurice J. Zucrow 

Laboratories, as displayed in Figure 2.1.  Southwest Windpower Whisper 100 model 

wind turbines are used in this facility which have a 900W rated power and a 7-ft 

diameter.  The turbines have a hub height of approximately 35-ft above the ground 

level.  Two of the four turbines are instrumented and data collected on the cart.  

Produced power is used to power the instrumentation with additional power sent to 

a dump load resistor bank.   
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Figure 2.1: Micro Reconfigurable Wind Farm Facility. 

 
The Southwest Windpower Whisper 100 wind turbines are three-bladed wind 

turbines which have an actual airfoil shape along their blade length.  The turbines 

rotate at speeds up to 1000 rpm and produce 900 W at their rated wind speed of 28-

mph.  These turbines are described by the manufacturer’s power curve given in 

Figure 2.2.  Alignment with the wind is controlled passively through a tail fin 

extending from the rear of the nacelle.  Overspeed protection is produced through a 

passive mechanism caused by the misalignment of the rotor thrust center and rotor 

holding pin, where the thrust produces a torque that causes the rotor and generator 

to lift up and furl out of the wind at sufficient wind speeds.   
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Figure 2.2: Southwest Wind Power Whisper 100 Power Curve. 

 
Wind farm arrays are configured and tested within the completely variable array 

layout by positioning the wind turbines in the desired array within the given wind 

condition.  The upstream instrumented wind turbine’s position remains fixed while 

the other required turbines are positioned around it.  The turbine carts have wheels 

which allow them to be pulled by a truck into the desired position.  Once in the 

position, the turbine is leveled and supported by the four adjustable jacks on each 

corner as shown in Figure 2.3.  No additional support is needed for the 1700-lb carts 

at any point of operation or maintenance with the Whisper 100 wind turbines.   

 
Figure 2.3: Wind Turbine Cart and Electrical Systems. 
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Power from the wind turbine is transferred through multiple conditioning and 

controlling electronic devices.  The power from the wind turbine is variable voltage, 

variable frequency AC electricity.  This power is sent to the Whisper 100 charge 

controller which rectifies it to a 24 V nominal DC output, which is then sent to a 

charge a 24 V battery bank.  If this bank voltage reaches a maximum power, the 

turbine controller stops the wind turbine to prevent damaging the batteries.  To 

prevent this feature from engaging, a secondary controller was added across the 

batteries which is set up as a diversion load to a resistor bank capable of dissipating 

the maximum input power of the wind turbine at a voltage that is beneath the 

maximum set voltage of the Whisper 100 charge controller.  Wind turbine 

instrumentation and data acquisition (DAQ) is all powered from the battery bank 

charged by the wind turbines.  This voltage is regulated with a DC-DC converter to 

24V prevent a voltage over the instrumentation limit from being sent from the 

charging battery.  The electrical systems are also shown in Figure 2.3. 

The wind farm is located in a large, flat open area with 40-ft or smaller trees 

around 600-1000 ft North and South of the wind farm, but mostly open from the 

East and West.  The surrounding terrain during testing was short grass with some 1-

2 ft sparsely located throughout the field further away.  A satellite image of the field 

is shown in Figure 2.4, showing the four wind turbines within the red square (the 

southeast turbine position is fixed).   
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Figure 2.4: Micro Reconfigurable Wind Farm Location and Surroundings. 

 
Wind farm wind speed is measured with an anemometer mounted at the same 

height as the turbines 200-ft west of the instrumented turbines.  The anemometer is 

a Lufft two-dimensional sonic anemometer capable of measuring the wind speed in 

the two horizontal directions at up to 15 hz with a maximum 1-second average 

output signal.  The anemometer is configured to measure wind speed and direction 

during testing, and the output current signal is sent to the stationary upstream 

instrumented wind turbine DAQ through buried conduit.  A current output on the 

channels is used due to its capability to transfer a signal accurately over long 

distances.  This anemometer is shown in Figure 2.5. 
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Figure 2.5:  Micro Reconfigurable Wind Farm Anemometer Tower. 

 
 

2.1.2 Wind Turbine Performance Instrumentation 

 

Of the four total wind turbines in the Micro Reconfigurable Wind Farm two are 

instrumented to measure the performance on the rotor aerodynamically and 

produced electrically.  The instrumented wind turbines are used in conjunction to 

quantify performance losses in wind farm settings when operated in the wake of an 

upstream wind turbine.  A view of one instrumented wind turbine mounted on the 

cart tower is given in Figure 2.6.  
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Figure 2.6: Micro Reconfigurable Wind Farm Wind Turbine. 

 
The instrumented wind turbines have instrumentation capabilities as follows: 

• Rotor aerodynamic torque 

• Rotor rotational speed 

• Electrical current sent to the battery from the turbine charge controller 

• Battery voltage/charging voltage 

• Cart located data acquisition system 

 

Torque is measured on the rotor with a reaction torque sensor mounted 

between the rotor and generator load.  An Interface TQ30-600 torque sensor is used 

which is calibrated to 300 lb-in and has a compensated temperature range from 15 

to 115°F.  This sensor produces a low voltage signal and is amplified and 

conditioned at the rotor in an effort to minimize noise effects.  An Interface CSC-8 

signal conditioner is mounted under the turbine nose cap and this conditions the 

input voltage and generates a 4-20mA bipolar output.  Pictures of the configuration 

are shown in Figure 2.7. 
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Figure 2.7: Torque Measurement Instrumentation. 

 
In order to pass the torque measurement cables through the rotating frame of 

the rotor to the stationary nacelle a slip ring mounted on the bearing shaft is used, 

as shown in Figure 2.8.  A Meridian Lab’s MM4 mercury slip ring is used for its 

compact size and robustness.  Rotational speed is measured on this shaft using an 

Encoder Products, Inc. model 15T incremental encoder, mounted between the 

bearings and the slip ring.  The whole assembly fits within a recessed region in the 

turbine nacelle which is sealed and weatherproofed.   

 
Figure 2.8: Encoder and Slip Ring Shaft Mounting. 

 
The torque and encoder cables were initially passed through the yaw axis which 

spins relative to the turbine tower using an additional slip ring.  It was determined 

that capacitive noise was picked up from have the torque signal exposed to the 

digital encoder signal with no shielding within the slip ring.  The noise level was 

high enough to reduce the experimental uncertainty values outside of the acceptable 
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range.  This slip ring was removed and the center of the yaw rotation shaft was 

machined out to allow for cable passage without snagging on the power cables.  

These sets of cables were kept separate immediately behind the turbine exit with a 

counduit section.  The assumption behind this design was that while the turbine will 

rotate frequently and the wind will be from all directions at times, the turbine will 

not go through many turns.  Each turn is stored in twisting or untwisting of the 

torque and encoder cables.  This configuration was found to reduce noise levels 

significantly and to within an acceptable value.   

Electrical power measurements are made after the turbine AC power is 

converted by the turbine charge controller and sent to the DC battery bank.  Current 

is measured with a Flex-Core CTH-050 Hall Effect current transducer which passes 

the battery positive cable and measures up to 50A.  The voltage sent to the battery is 

measured directly by the data acquisition system, after connecting it to a voltage 

divider (with a division value of 7) to reduce the voltage to within the range of the 

DAQ.  

A Gantner Q.series data acquisition system is used for data collection and analog 

to digital conversion.  The DAQ system is comprised of a Q.gate controller, an A109 

module for measuring the digital encoder frequency, and an A108 for the analog 

current and voltage measurements.  Two independent units are used on each of the 

instrumented wind turbine carts, both with GPS devices set up as the clock on the 

two data acquisition (DAQ) systems to ensure proper time stamp synchronization of 

the data.  Proper grounding is enabled through 8-ft ground rods driven in the 

ground in various locations within the wind farm.  The DAQ systems are enclosed 

and sealed from the environment using pelican boxes with environmentally sealed 

cable glands to pass the cables through the box. 
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CHAPTER 3: TECHNICAL APPROACH 

 

 

3.1 Wind Turbine Nomenclature  

 

Power Coefficient: 

                                                             𝐶𝑝 = 𝑃𝑇
1
2� 𝜌𝐴𝑇𝑈3

 .   (3.1) 

Thrust Coefficient: 

                                                            𝐶𝑇 = 𝐷𝑟𝑎𝑔
1
2� 𝜌𝐴𝑇𝑈2

 . (3.2) 

Axial Induction factor: 

                                                             𝑎,𝑏, 𝑐 =  𝑉𝑖𝑛−𝑉𝑇
𝑉𝑖𝑛

 .  (3.3) 

Tip Speed Ratio: 

                                                            𝑇𝑆𝑅 =  Ω𝑟𝑜𝑡𝑜𝑟𝑅𝑇
𝑈

 .   (3.4) 

Aerodynamic Power: 

                                                      𝑃𝑇,𝑎𝑒𝑟𝑜 = 𝜏𝑟𝑜𝑡𝑜𝑟Ω𝑟𝑜𝑡𝑜𝑟  .   (3.5) 

Electric Power: 

                                                     𝑃𝑇,𝑒𝑙𝑒𝑐 = 𝐼𝑐ℎ𝑎𝑟𝑔𝑒𝑉𝑐ℎ𝑎𝑟𝑔𝑒  .  (3.6) 

Normalized Power: 

                                                        𝑃𝑛𝑜𝑟𝑚 = 𝑃𝑑𝑜𝑤𝑛𝑠𝑡𝑟𝑒𝑎𝑚
𝑃𝑢𝑝𝑠𝑡𝑟𝑒𝑎𝑚

 .  (3.7) 
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3.2 Wind Turbine Optimum Theoretical Performance Derivations 

 

Optimizing the design of wind turbines is a complicated problem with physical 

interactions which are unknown or difficult to model.  Air flow surrounding a wind 

turbine is highly three-dimensional requiring approximations and empirical results 

to estimate inputs and performance.  Optimum theoretical wind turbine 

performance is derived in Sections 3.2 with simplifying approximations for a single 

rotor and a dual rotor wind turbine.  The results provide the maximum theoretical 

wind turbine performance, within the limitations of the particular model 

approximations.   

 

 

3.2.1 Single Rotor Wind Turbine Optimum Theoretical Performance 

 

Wind turbine performance can be predicted using the conservation equations of 

mass, momentum, and energy along with state relations.  Froude’s actuator disk 

theory is an idealized approach to solving these equations.  Simplifying assumptions 

are made which model a rotor as an infinitely thin disk with no area change across 

it, in which flow properties are one-dimensional passing through it, and a pressure 

gradient is present across its surface in the direction of the flow (pressure drop for 

energy extracting turbines).  For the following theoretical analysis, steady, inviscid, 

one-dimensional flow is assumed throughout and performance is predicted in these 

calculations in terms of the maximum theoretical power output for a wind turbine.   

 

The steady, incompressible, one-dimensional governing equations are given 

below for reference: 

                                                                         𝑉𝑖𝐴𝑖 = 𝑉𝑒𝐴𝑒  (3.8) 

                                      𝑝𝑖𝐴𝑖 + �̇�𝑉𝑖 + 𝐹 − ∫ 𝑝𝑠𝑖𝑑𝑒𝑠𝑑𝐴𝑥,𝑠𝑖𝑑𝑒𝑠
𝑥𝑒
𝑥𝑖

= 𝑝𝑒𝐴𝑒 + �̇�𝑉𝑒   (3.9) 

                                                              ℎ𝑖 + 𝑉𝑖
2

2
+ 𝑤𝑠 = ℎ𝑒 + 𝑉𝑒2

2
 .  (3.10) 
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The derivation for the optimum, idealized, power coefficient is described below.  

The derivation subscripts correspond to Figure 3.1. 

 
Figure 3.1: Single Rotor Actuator Disk Model Diagram. 

 
Section (u) to (d): 

Conservation of mass is solved for the infinitely thin disk with a constant area 

across it for incompressible flow: 

                                                    𝑉𝑢𝐴𝑢 = 𝑉𝑑𝐴𝑑  →   𝑉𝑢 =  𝑉𝑑 ≡ 𝑉𝑇  .  (3.11) 

 

Solving the momentum equation, now with velocities set equal: 

                                       𝑝𝑢 + 𝜌𝑉𝑢2 −
𝐷
𝐴𝑇

= 𝑝𝑑 + 𝜌𝑉𝑑2  →   𝐷
𝐴𝑇

= 𝑝𝑢 − 𝑝𝑑 .  (3.12) 

 

The energy equation is solved using an isentropic state relation and solved for 

the specific wind turbine work: 

                                   ℎ𝑢 + 𝑉𝑢2

2
− 𝑤𝑇 = ℎ𝑑 + 𝑉𝑑

2

2
→  −𝑤𝑇 = ℎ𝑑 − ℎ𝑢 = ∆ℎ   (3.13) 

                                                   ∆ℎ𝑖𝑠𝑒𝑛𝑡𝑟𝑜𝑝𝑖𝑐 = ∆𝑝
𝜌
→   𝑤𝑇 = 𝑝𝑢−𝑝𝑑

𝜌
 .  (3.14) 

 

Sections (1) to (u) and (d) to (2):  

Bernoulli’s form of the energy equation is applied to these two sections where 

there is no work: 

                                                     𝑝1 + 1
2� 𝜌𝑉12 = 𝑝𝑢 + 1

2� 𝜌𝑉𝑢2   (3.15) 
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                                                     𝑝𝑑 + 1
2� 𝜌𝑉𝑑2 = 𝑝2 + 1

2� 𝜌𝑉22 .  (3.16) 

 

Section 2 is taken to be at a location downstream where the wake pressure has 

been fully recovered to the atmospheric value, so setting p1 and p2 equal and using 

the earlier result that Vu=Vd yields: 

                                                         𝑝𝑢 − 𝑝𝑑 = 1
2� 𝜌(𝑉12 − 𝑉22) . (3.17) 

 

Section (1) to (2): 

The momentum equation is derived between sections (1) and (2): 

                                      𝑝1 + 𝜌𝑉𝑑𝑉1 −
𝐷
𝐴𝑇
− ∫ 𝑝𝑠𝑖𝑑𝑒𝑠𝑑𝐴𝑥,𝑠𝑖𝑑𝑒𝑠

𝑥2
𝑥1

= 𝑝2 + 𝜌𝑉𝑑𝑉2 . (3.18) 

 

The integral is approximated from the known pressure relations that upstream 

of the turbine the pressure is above atmospheric and downstream the pressure is 

below atmospheric.  When looking at the gage pressure this integral of the x-

component of the pressure force is therefore approximated to a zero value.  Solving 

the equation with section (1) and (2) having equal pressures and equal mass flow 

rates, and using the section at the disk to describe the mass flow rate since the area 

is known: 

                                                                 𝐷
𝐴𝑇

= 𝜌𝑉𝑑(𝑉1 − 𝑉2) .  (3.19) 

 

A relation between the unknown velocities (V1, V2) is obtained by setting the two 

equations involving the drag (thrust) force equal and substituting the result for the 

disk pressure drop to relate V1 and V2:  

                                                        𝜌𝑉𝑑(𝑉1 − 𝑉2) = 𝐷
𝐴𝑇

= 𝑝𝑢 − 𝑝𝑑    (3.20) 

                                             𝜌𝑉𝑑(𝑉1 − 𝑉2) = 𝑝𝑢 − 𝑝𝑑 = 1
2� 𝜌(𝑉12 − 𝑉22)   (3.21) 

                                    𝑉𝑑(𝑉1 − 𝑉2) = 1
2� (𝑉12 − 𝑉22) → 𝑉𝑑 = 1

2� (𝑉1 + 𝑉2) .   (3.22) 
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Rewriting in terms of the velocity perturbation, described in Equation 3.23, 

yields an interesting result which will be implemented in the remaining derivation: 

                                                            �
𝑉1 ≡ 𝑈

𝑉𝑢 = 𝑉𝑑 ≡ 𝑈 − 𝑢𝑇
𝑉2 ≡ 𝑈 − 𝑢2

�   (3.23) 

                                    𝑈 − 𝑢𝑇 = 1
2� �𝑈 + (𝑈 − 𝑢2)� →   𝑢𝑇 = 1

2� 𝑢2   (3.24) 

                                                                      𝑢2 = 2𝑢𝑇 .  (3.25) 

 

This relation is used with the definition of the power coefficient to derive the 

value of the optimum performance: 

                                                      𝑤𝑇 = 𝑝𝑢−𝑝𝑑
𝜌

=  1
2� (𝑉12 − 𝑉22)    (3.26) 

                                                                  𝑃𝑇 = 𝑤𝑇𝜌𝑉𝑇𝐴𝑇    (3.27) 

                                                 𝐶𝑝 = 𝑃𝑇
1
2� 𝜌𝑈3𝐴𝑇

=
1
2� �𝑉12−𝑉22�∗𝜌𝑉𝑇𝐴𝑇

1
2� 𝜌𝑈3𝐴𝑇

   (3.28) 

                                                                  𝐶𝑝 = �𝑉12−𝑉22�𝑉𝑇
𝑈3

 .  (3.29) 

 

Rewriting in the perturbation velocity format and using the relation, 𝑢2 = 2𝑢𝑇, 

found above yields the final statement for maximum power coefficient: 

                                                         𝐶𝑝 = �𝑈2−(𝑈−𝑢2)2�(𝑈−𝑢𝑇)
𝑈3

   (3.30) 

                                             𝐶𝑝 = �4 �𝑢𝑇
𝑈
�
2
− 4 �𝑢𝑇

𝑈
�� ∗ ��𝑢𝑇

𝑈
� − 1� .  (3.31) 

 

The perturbation velocity divided by the incoming velocity is defined as the axial 

induction factor, a.  This variable represents the degree to which the incoming wind 

speed is slowed down by the presence of the wind turbine.  Rewriting this equation 

and taking the derivative and setting it to zero is done to determine the optimum 

wind turbine performance and the axial induction factor which yields the optimum 

performance: 

              𝑑𝐶𝑝
𝑑𝑎

= (4𝑎2 − 4𝑎)(1) + (𝑎 − 1)(8𝑎 − 4) = (3𝑎 − 1)(4𝑎 − 4) ≝ 0 .  (3.32) 
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From this optimization maxima/minima are found at a=1/3 and a=1.  Calculating 

the power coefficient using these values reveals that the maximum theoretical 

Cp=16/27=59.3% occurs at an axial induction factor of a=1/3.  The power coefficient 

is plotted versus the axial induction factor to highlight the dependency upon this 

variable, shown in Figure 3.2.  It should be noted from Equation 3.25 that an axial 

induction factor greater than a=0.5 produces a backflow at region 2 which is not 

realistic.  Therefore this model does not predict the region for a>0.5 accurately, and 

should not be used beyond that range. 

 
Figure 3.2: Single Rotor Actuator Disk Solution. 

 

 

3.2.2 Double Rotor Wind Turbine Optimum Theoretical Performance  

 

The actuator disk theory can be applied to the counter-rotating wind turbine 

case with the same approach and governing equations as used above.  The results 

from the derivation for the single rotor are added into this analysis to simplify the 

following derivation.  The analysis is performed with two concentric stream tubes as 

the boundaries.  The outer stream tube produces the same optimum results as 

before, defined at the outer radius of the first rotor.  The inner stream tube is 

defined at the outer radius of the second rotor at the rotor plane downstream of the 
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first rotor.  The inner stream tube is assumed to expand from a smaller area within 

the upstream rotor disk to the entire second rotor disk area, due to power 

extraction of the upstream rotor inner region.  The model assumes an equal first and 

second rotor diameter for optimum power coefficient.  Spacing between the two 

rotors is assumed to be sufficient to allow for full pressure recovery to atmospheric 

conditions between the two rotors.  The results from the single disk analysis 

regarding the velocity at the disk plane and at the region of full pressure recovery 

are included initially in this analysis.  The known relations for velocity are inserted 

into the model description, with three independent axial induction factors (a, b, c) 

and their relations listed, shown in Figure 3.3.   

 
Figure 3.3: Double Rotor Actuator Disk Model Diagram. 

 
The total power for this two-disk wind turbine comes from three contributions 

for this analysis.  The power from the first rotor is split into the region within the 

inner streamtube, 𝑃1𝑖𝑛 , and from the outer portion between the two streamtubes, 

𝑃1𝑜𝑢𝑡 .  The power from the second rotor, 𝑃2, is all within the inner streamtube per its 

definition.  Each of these power components can be calculated from the energy 

equation within the respective streamtube derived from the locations of fully 

recovered atmospheric pressure upstream (location, i) and downstream (location, 

e) of the rotor disk.  The derivation of the maximum power coefficient describing a 

counter-rotating wind turbine follows beginning with solving the energy equation:   
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                                           ℎ𝑖 + 𝑉𝑖
2

2
− 𝑤𝑇 = ℎ𝑒 + 𝑉𝑒2

2
→   𝑤𝑇 = �𝑉𝑖

2−𝑉𝑒2�
2

   (3.33) 

                              𝑃𝑇,𝑑𝑖𝑠𝑘 = �̇� ∗ 𝑤𝑇,𝑑𝑖𝑠𝑘 = 𝜌𝑉𝑑𝑖𝑠𝑘𝐴𝑑𝑖𝑠𝑘 ∗ 1
2� (𝑉𝑖2 − 𝑉𝑒2) . (3.34) 

 

The ‘disk’ values are for the velocity and area of the respective region within the 

streamtubes, i.e., 𝐴1𝑖𝑛 ,𝐴1𝑜𝑢𝑡 ,𝐴2.  The power coefficient is then calculated according to 

its definition as follows, with the total power equaling the sum of the power 

produced from each of the three regions.  A formula for the contribution to the 

power coefficient of each region is then presented: 

                                    𝐶𝑝 = 𝑃𝑇
1
2� 𝜌𝑈3𝐴𝑇

= ∑𝑃𝑡,𝑑𝑖𝑠𝑘
1
2� 𝜌𝑈3𝐴𝑇

=   ∑𝑉𝑑𝑖𝑠𝑘𝐴𝑑𝑖𝑠𝑘�𝑉𝑖
2−𝑉𝑒2�

𝑈3𝐴𝑇
     (3.35) 

                                                       𝐶𝑝,𝑑𝑖𝑠𝑘 = 𝐴𝑑𝑖𝑠𝑘
𝐴𝑇

𝑉𝑑𝑖𝑠𝑘�𝑉𝑖
2−𝑉𝑒2�

𝑈3
 .    (3.36) 

 

The power coefficients are written for each rotor using the known velocity 

relations in terms of the axial induction factors as described in the model: 

                               𝐶𝑝,1
𝑜𝑢𝑡 =  𝐴1

𝑜𝑢𝑡

𝐴𝑇

𝑈(1−𝑎)�𝑈2−𝑈2(1−2𝑎)2�
𝑈3

= 𝐴1𝑜𝑢𝑡

𝐴𝑇
4𝑎(1 − 𝑎)2   (3.37) 

                                  𝐶𝑝,1
𝑖𝑛 =  𝐴1

𝑖𝑛

𝐴𝑇

𝑈(1−𝑏)�𝑈2−𝑈2(1−2𝑏)2�
𝑈3

= 𝐴1𝑖𝑛

𝐴𝑇
4𝑏(1 − 𝑏)2   (3.38) 

       𝐶𝑝,2 =  𝐴2
𝐴𝑇

𝑈(1−2𝑏)(1−𝑐)�𝑈2(1−2𝑏)2−𝑈2(1−2𝑏)2(1−2𝑐)2�
𝑈3

= 𝐴2
𝐴𝑇

(1 − 2𝑏)3 ∗ 4𝑐(1− 𝑐)2 .    

 (3.39) 

 

The total two-disk wind turbine power coefficient is the sum of each of the 

individual values: 

            𝐶𝑝 = 𝐴1𝑜𝑢𝑡

𝐴𝑇
4𝑎(1 − 𝑎)2 + 𝐴1𝑖𝑛

𝐴𝑇
4𝑏(1− 𝑏)2 + 𝐴2

𝐴𝑇
(1− 2𝑏)3 ∗ 4𝑐(1 − 𝑐)2 . (3.40) 

 

The optimum performance for the outer disk region of the first rotor can be 

solved independently of the other regions because it is not coupled to other 

variables.  The solution for this region is the same as for the single rotor derivation, 

resulting in an optimum axial induction factor of a=1/3.  In this formulation of the 
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optimum counter-rotating wind turbine the two rotors have equal areas, meaning 

𝐴2 = 𝐴𝑡 , and 𝐴1𝑖𝑛 + 𝐴1𝑜𝑢𝑡 = 𝐴𝑡.  Adding this information into the power coefficient 

equation reduces the number of variables:   

                𝐶𝑝 = �1− 𝐴1𝑖𝑛

𝐴𝑇
� 16

27� + 𝐴1𝑖𝑛

𝐴𝑇
4𝑏(1− 𝑏)2 + (1− 2𝑏)3 ∗ 4𝑐(1 − 𝑐)2 .  (3.41) 

 

The unknown area can be related to the rotor area by applying conservation of 

mass along the inner streamtube between the two rotors: 

                  𝑈(1− 𝑏)𝐴1𝑖𝑛 = 𝑈(1 − 2𝑏)(1− 𝑐)𝐴2  →   𝐴1
𝑖𝑛

𝐴2
= 𝐴1𝑖𝑛

𝐴𝑇
=  (1−2𝑏)(1−𝑐)

1−𝑏
 . (3.42) 

 

The fully reduced equation for calculating the optimum power coefficient is now 

given: 

    𝐶𝑝 = �1 − (1−2𝑏)(1−𝑐)
1−𝑏

�16
27� + �(1−2𝑏)(1−𝑐)

1−𝑏
� 4𝑏(1 − 𝑏)2 + (1 − 2𝑏)3 ∗ 4𝑐(1 − 𝑐)2 .  

 (3.43) 

 

This solution was solved and produced a maximum power coefficient of Cp = 81.4% 

at axial induction factors of b=0 and c=0.418.  A contour plot is shown in Figure 3.4 

for reference of the power coefficient variation with induction factors, b and c.   
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Figure 3.4: Double Rotor Actuator Disk Model Intermediate Solution. 

 
This result produces the highest power coefficient for this model.  However, a 

very important physical constraint is violated.  The model was derived assuming 

power extraction from the inner region of the first rotor (𝑏 ≠ 0) which produced the 

wake expansion of the inner streamtube from the inner region of the first rotor to 

the outer diameter of the second rotor.  When the model result forces b=0 it violates 

the model as derived.  With b=0 there will be no wake expansion of the inner 

streamtube because momentum is not removed by that disk.  The wake expansion 

for b=0 would require momentum flux addition from the wall boundary, meaning 

the linear momentum equation is violated.   

To fix this problem, an additional constraint must be added for constant 

momentum flux within the region of the inner streamtube between the two rotors.  

This region is diagrammed in Figure 3.5 with the known velocity relations restated.   



49 
 

 
Figure 3.5: Double Rotor Actuator Disk Model Inner Streamtube Diagram. 

 
The continuity equation is solved within the control surface region to gain a 

relation between the two areas: 

                                                                          𝐴𝑑1
𝐴𝑢2

= 𝑉𝑢2
𝑉𝑑1

 . (3.44) 

 

The linear momentum equation is derived for within the control surface, 

Equation 3.45.  The pressure at the two disks, downstream of disk 1 and upstream 

of disk 2, are both non-zero and the x-component of the pressure along the sides of 

the control surface are assumed to become negligible when using the gage pressure 

for all of the values.  This assumption is supported as pd1,g < 0 and pu2,g > 0.   

                    −�𝑝𝑢2,𝑔𝐴𝑢2 − 𝑝𝑑1,𝑔𝐴𝑑1� − ∫ 𝑝𝑠𝑖𝑑𝑒𝑠,𝑔𝑑𝐴𝑠𝑖𝑑𝑒𝑠 = �̇�(𝑉𝑢2 − 𝑉𝑑1)𝑥,𝑢2
𝑥,𝑑1  (3.45) 

with,  

                                                            ∫ 𝑝𝑠𝑖𝑑𝑒𝑠,𝑔𝑑𝐴𝑠𝑖𝑑𝑒𝑠 ≈ 0𝑥,𝑢2
𝑥,𝑑1  . (3.46) 

 

Bernoulli’s equation is then solved within the control surface to relate the two 

pressure values with known velocity relations: 

                                                    𝑝𝑢2,𝑔 = 𝑝𝑑1,𝑔 + 1
2� 𝜌(𝑉𝑑12 − 𝑉𝑢22 ) .  (3.47) 
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Combining these three governing equations yields the result for the inner 

streamtube region: 

                                                    2𝑝𝑑1,𝑔

𝜌
�𝑉𝑑1
𝑉𝑢2

− 1� = (𝑉𝑑1 − 𝑉𝑢2)2 .  (3.48) 

 

Bernoulli’s formulation of the energy equation is then used to get a relation for 

pd1,g, solving between the region just downstream of the first rotor to the region 

where the pressure is fully recovered to p=patm between the two rotors: 

                                                             2 𝜌� 𝑝𝑑1,𝑔 = 𝑉22 − 𝑉𝑑12  . (3.49) 

 

This result for the pressure in the upstream region within the control surface is 

added to Equation 3.48 and is reduced as follows: 

                                               (𝑉22 − 𝑉𝑑12 ) �𝑉𝑑1
𝑉𝑢2

− 1� = (𝑉𝑢2 − 𝑉𝑑1)2  (3.50) 

                                                                      � 𝑉2
𝑉𝑑1
�
2

= 𝑉𝑢2
𝑉𝑑1

 . (3.51) 

 

Inputting the velocities in terms of the axial induction factors, restated in 

Equation 3.52 produces the final relation which conserves momentum flux for the 

inner rotor region:   

                                                        �
𝑉𝑑1 = (1 − 𝑏)𝑈
𝑉2 = (1− 2𝑏)𝑈

𝑉𝑢2 = (1− 𝑐)(1− 2𝑏)𝑈
�   (3.52) 

                                                           𝑐 = 1 −  �1−2𝑏
1−𝑏

� .  (3.53) 

 

The momentum flux constraint on the inner streamtube produces a one-to-one 

relationship between the two rotor disk velocities within this streamtube, meaning 

that they are not actually independent of each other.  The power coefficient can then 

be solved for the two-disk model using the same formulation as before with the 

added constraint relating axial induction factors b and c.  The solution is shown in 

Figure 3.6, along with the dependence of factor c upon b.  Due to the constraint, b 
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only has a solution up to where is produces a value for 𝑐 < 0.5, therefore 𝑏 ≤ 1/3.  

The optimum power coefficient for a double rotor, counter-rotating wind turbine as 

corrected predicts a Cp = 66.9% for b=0.196, with corresponding c=0.244.   

 
Figure 3.6: Double Rotor Actuator Disk Model Final Solution. 

 

 

3.3 Wind Turbine Wake Modeling 

 

Wind turbine operation in a wind farm setting exposes the turbines to several 

wake scenarios which all reduce the performance of the downstream turbine.  

Considering a rectangular layout there will be wake operation from the nearest 

aligned upstream wind turbine, wake operation in multiple upstream wind turbines, 

and there are lateral wakes from other wind turbines which alter the aligned wakes.  

Analytical models are derived and discussed in Sections 3.3 which describe these 

different wake scenarios and how they relate to wind turbine performance losses. 
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3.3.1 Wind Turbine Single Wake Model 

 

The wake behind a wind turbine can be approximated analytically with some 

simplifying assumptions.  The first assumption is for one-dimensional, inviscid, 

steady flow.  This assumption treats the wake velocity as a uniform velocity at some 

deficit value in every region behind the wind turbine.  The second major assumption 

addresses wake expansion and estimates this process with a linear approximation.  

The slope of this approximation is called the wake decay constant, k, commonly 

defined to have a value of 0.1 for wind farms on land.  The model produced from 

these assumptions is shown in Figure 3.7.   

 
Figure 3.7: Single Wake Model Diagram. 

 
To predict the energy losses arising from operation in the wake of upstream 

wind turbines, the velocity at the location of the downstream turbine plane is 

needed.  The linear wake model can be used to predict that velocity loss, using the 

continuity equation to relate the unknown variables to the known variables, 

resulting in Equation 3.56 for the wake velocity ratio, Vx/U: 

                                             ∫ 𝜌𝑉�⃗ ∙ 𝑑𝐴 
𝐶𝑆 = 0 → ∑𝜌𝑖𝑉𝑖𝐴 −  𝜌𝑒𝑉𝑒𝐴 = 0  (3.54) 

                                     𝑈𝜋 4� (𝐷𝑥2 − 𝐷𝑇2) + 𝑉𝑇 𝜋 4� 𝐷𝑇2 −  𝑉𝑥 𝜋 4� 𝐷𝑥2 = 0  (3.55) 
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                                                        1− 𝑉𝑥
𝑈

= �𝐷𝑇
𝐷𝑥
�
2
�1− 𝑉𝑇

𝑈
� . (3.56) 

 

This standard derivation isn’t actually calculating a streamtube analysis for the 

wake, because by the formulation mass flow crosses the linear wake expansion 

boundary.  This model is written such that there is no mass transfer from the outer 

cylindrical surface, meaning that all of the momentum in the upstream, undisturbed 

region is transferred into the wake region, adding significantly to the velocity 

predicted downstream and causing this velocity to increase with x.  This assumption 

is at least qualitatively valid because momentum will be added from the 

atmosphere.  A concern, however, is that the model formulation is inconsistent for 

this reason between the control surface used for solving continuity versus the 

control surface used in solving the linear momentum equation, due to mass transfer 

across the wake in the continuity equation.   

The actuator disk analysis described in Section 3.2 can be used to produce a 

relation for the velocity just downstream of the rotor plane to the incoming 

freestream velocity, VT/U.  This relation is put in terms of the thrust coefficient, and 

is written using consistent nomenclature in Equation 3.64. 

Relevant results from the Actuator Disk theory in consistent nomenclature are 

restated in Equations 3.57-59. 

                                                                    𝐷
𝐴𝑇

= 𝑝𝑢 − 𝑝𝑑   (3.57) 

                                                       𝑝𝑢 − 𝑝𝑑 = 1
2� 𝜌(𝑈2 − 𝑉𝑥2)  (3.58) 

                                 𝐷
𝐴𝑇

= 1
2� 𝜌(𝑈2 − 𝑉𝑥2)  →  𝐷

1
2� 𝜌𝑈2𝐴𝑇

= 𝐶𝑇 = 1 − �𝑉𝑥
𝑈
�
2
 .  (3.59) 

 

This produces a relation between the wake velocity and thrust coefficient, 

Equation 3.60.  Using the axial induction factor definition and results from the single 

rotor analysis in Section 3.2 produces the value of a as follows: 

                                                           𝑉𝑥
𝑈

= �1 − 𝐶𝑇    (3.60) 
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                                                          𝑉𝑥
𝑈

= (1−2𝑎)𝑈
𝑈

= �1 − 𝐶𝑇   (3.61) 

                                       𝑎 = �
1

2� �1 − �1 − 𝐶𝑇�            0 ≤ 𝑎 ≤ 0.5
1

2� �1 + �1 − 𝐶𝑇�             0.5 < 𝑎 ≤ 1
� .   (3.62) 

 

For standard wind turbine operation we are only interested in the region where 

𝑎 ≤ 0.5, so this result is combined with the known velocity relations in solving for 

the wind turbine rotor plane velocity ratio: 

                                      𝑉𝑇
𝑈

= (1−𝑎)𝑈
𝑈

= 1 − 1
2� �1 −�1 − 𝐶𝑇�   (3.63) 

                                                 𝑉𝑇
𝑈

= 1
2� �1 + �1 − 𝐶𝑇� .    (3.64) 

 

This is the correct result according to the model formulation for the velocity 

ratio relation to thrust coefficient.  It however is a different value than that used in 

the standard Jensen linear wake model, and differs by the factor of 1/2.  Because 

this is a model approximating the wake behavior, the wake decay constant can be 

adjusted to cause either formulation to closely agree with the experimental data of 

performance losses versus spacing.  In order to more accurately predict the physical 

wake decay constant, however, it is best to use the correct physics as derived in 

Equation 3.64.  The limitations here are that the model already contains 

approximations which likewise affect the result agreement to the physical values. 

Substituting the new turbine plane velocity relation into the governing 

continuity equation produces the final result for this model, Equation 3.69, which 

again varies by the same factor of 1/2 from the standard Jensen model.  This means 

that for the same input conditions the Jensen estimated velocity deficit (U-Vx) will be 

reduced by a factor of 2.  To compensate and achieve the same velocity deficit at x 

requires that k be decreased.  This means that the physics from the new formulation 

of the wake model require smaller wake decay constants, therefore predicting lower 

wake expansion.  The revised formulation of the single wake model is derived as 

follows: 
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                 1 − 𝑉𝑥
𝑈

= �𝐷𝑇
𝐷𝑥
�
2
�1− 𝑉𝑇

𝑈
� = �𝐷𝑇

𝐷𝑥
�
2
�1 − 1

2� �1 + �1 − 𝐶𝑇��   (3.65) 

                                     1 − 𝑉𝑥
𝑈

= �𝐷𝑇
𝐷𝑥
�
2
�1

2� − 1
2� �1 − 𝐶𝑇�   (3.66) 

                                      1 − 𝑉𝑥
𝑈

= 1
2� �𝐷𝑇

𝐷𝑥
�
2
�1 − �1 − 𝐶𝑇�  (3.67) 

                                                𝐷𝑇
𝐷𝑥

=  𝐷𝑇
𝐷𝑇+2𝑘𝑥

= 1
1+2𝑘𝑥 𝐷𝑇�

  (3.68) 

                                               1− 𝑉𝑥
𝑈

= 1
2�

1−�1−𝐶𝑇

�1+2𝑘𝑥 𝐷𝑇� �
2 .  (3.69) 

 

In this equation, maximum velocity losses are associated with a thrust coefficient 

of 1.  As stated above, the thrust coefficient relates to the axial velocity drop from 

freestream to the rotor plane.  A thrust coefficient of one corresponds to complete 

energy extraction of the incoming freestream, which is never actually realized.  In 

this analysis, the maximum CT used was that corresponding to the optimum wind 

turbine performance predicted at an axial induction factor of 1/3.  Beyond this value 

the turbine operates in what is known as the turbulent windmill state, where the 

axial induction factor increases (axial velocity at the rotor plane decreases) but does 

so with negative results for the power coefficient.  This is a very uncommon domain 

to operate within for a wind turbine, and won’t be of interest to this research so it is 

not considered.  Equation 3.64 above is used to determine the thrust coefficient for a 

given rotor axial induction factor: 

                                                                𝐶𝑇 =  1 − (1− 2𝑎)2 .  (3.70) 

 

Solving this relation using the optimum axial induction factor corresponding to 

maximum power coefficient, a=1/3, yields a maximum thrust coefficient of 

CT,max=0.89.  A relationship between the thrust coefficient and wind speed was given 

generically by Frandsen, and is thought to fit for most modern wind turbines [38].  

This relationship is used in the calculation of the wake velocity deficit to illustrate 

its dependence on the incoming wind speed.  This relationship was used only when 

the thrust coefficient produced remained below 0.89:  
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                                                                 𝐶𝑇 = 3.5(2𝑉𝑥−3.5)
𝑉𝑥2

 . (3.71) 

 

The velocity loss in the wake, at spacing x, according to this model is illustrated 

in Figure 3.8, with various values of CT compared, with a wake decay constant of 

k=0.07.   

 
Figure 3.8: Single Wake Model Velocity Deficit, Revised Formulation. 

 
The calculated velocity deficit can be used to determine the power deficit when 

the turbine power’s relationship to the wind speed is known.  The generic wind 

turbine power curve is described below [39], where VC, VR, VF, and PR all describe 

the wind turbine performance and are the cut-in speed, rated-speed, cut-out speed, 

and rated power.  The exponent n describes the power relationship and typically 

has a value of 2 to 3: 

                                 𝑃𝑇(𝑈) =

⎩
⎪
⎨

⎪
⎧ 0                                                  𝑈 < 𝑉𝐶
𝑃𝑅 �

𝑈𝑛−𝑉𝐶𝑛

𝑉𝑅𝑛−𝑉𝐶𝑛
�                   𝑉𝐶 ≤ 𝑈 ≤ 𝑉𝑅

𝑃𝑅                                       𝑉𝑅 < 𝑈 ≤ 𝑉𝐹
0                                                   𝑈 > 𝑉𝐹⎭

⎪
⎬

⎪
⎫

 . (3.72) 

 

Using this relationship for the operation range (𝑉𝐶 ≤ 𝑈 ≤ 𝑉𝑅) of the turbine, a 

relationship is derived between the velocity deficit and the power deficit as follows:  
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                                                                     𝑃𝑥
𝑃𝑟𝑒𝑓

= � 𝑉𝑥
𝑉𝑟𝑒𝑓

�
𝑛

 . (3.73) 

 

For this analysis the exponent, n, is needed to derive the wake performance 

losses and is found for the Southwest Windpower Whisper 100 turbine, the wind 

turbine used in the Micro Reconfigurable Wind Farm.  From Figure 3.9, it is seen 

that this turbine’s power curve more closely follows the n=2 relationship.   

 
Figure 3.9: Whisper 100 Power Curve Velocity Relationship. 

 
Using this value for n and the relationship from Equation 3.69, the power deficit 

was determined for the revised formulation when operating in a wake from another 

wind turbine spaced x/D upstream, as illustrated in Figure 3.10. 
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Figure 3.10: Single Wake Model Normalized Power, Revised Formulation. 

 
Using the standard Jensen model formulation for the wind turbine wake 

performance losses, listed in Equation 3.74, with a wake decay constant of k=0.07 is 

shown Figure 3.11 for comparison. 

                                                              1− 𝑉𝑥
𝑈

= 1−�1−𝐶𝑇

�1+2𝑘𝑥 𝐷𝑇� �
2 . (3.74) 

 
Figure 3.11: Single Wake Model Normalized Power, Jensen Formulation. 
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Estimates using the two models with the same wake decay constant produce 

results which are similar for larger turbine-turbine spacing’s, however predictions 

vary significantly at low spacing’s.  The Jensen formulation predicts overall higher 

performance losses than the revised formulation.  This result requires lower wake 

decay constants be used with the revised formulation to yield the same loss as the 

Jensen model at any given spacing.   

 

 

3.3.2 Wind Turbine Multiple Wake Model 

 

The performance of a wind turbine operating within wakes from multiple 

upstream wind turbines will be modeled using the single wake model and a sum of 

squares method, shown in Equation 3.75.  A diagram of this multiple wake scenario 

using the nomenclature is given in Figure 3.12. 

                                                      �1− 𝑉𝑥
𝑈
�
2

= ∑ �1 − 𝑉𝑥,𝑖
𝑈
�
2

𝑖  . (3.75) 

 
Figure 3.12: Multiple Wake Model Diagram. 

 
This method is widely used and commonly accepted, and produces at least 

qualitatively correct results for a given spacing.  This approach treats the multiple-

wake interaction on the downstream turbine as the sum of squares combination of 
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multiple single wake interactions at the respective spacing from the upstream 

turbines.  This model is purely mathematical in its derivation to generate a desired 

trend, but does so with sufficient agreement.  The model therefore does not 

necessarily accurately describe the physics of the multiple wake scenario. 

Using the single wake model formulation in Equation 3.69, the multiple wake 

scenario results are found and displayed in Figure 3.13 for three different turbine 

spacing’s.  In these calculations, the thrust coefficient is treated as a constant for 

each of the upstream wind turbines, at the maximum value CT=0.89 used previously.  

This assumption is not necessarily correct as the turbines operating within a wake 

do so at a reduced performance, meaning less velocity is extracted and therefore 

less thrust produced on the turbine.  Additionally, the wake decay constant is 

assumed to be a constant in this analysis on each of the upstream wind turbine 

wakes, set to k=0.07.  This again is not a necessary assumption, but a simplifying one 

given that the variation of the wake decay constant is not known with turbine 

number.   

 
Figure 3.13: Multiple Wake Model Power Deficit, Revised Formulation. 

 
This analysis is performed using the standard Jensen linear wake model with a 

wake decay constant k=0.1 and is included in Figure 3.14. 
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Figure 3.14: Multiple Wake Model Normalized Power, Jensen Formulation. 

 

 

3.3.3 Wind Turbine Lateral Wake Model 

 

Another scenario that is present in large wind farms is to have lateral upstream 

wind turbines whose wakes aren’t necessarily operated within but which affect the 

wake of the upstream, aligned wind turbine(s).  The model, shown in Figure 3.15, is 

for a single wake scenario with the downstream turbine at a location, x = s*DT, 

downstream, with lateral wakes produced upstream from wind turbines at a 

location, y = w*DT, on either side of the upstream wind turbine.  The lateral wakes 

produce symmetry planes which suppress wake expansion in the lateral direction 

beyond the x-location where the upstream lateral wakes merge.  Multiple upstream 

wake scenarios with lateral wakes would be treated using the resultant single wake 

scenario with lateral wakes and the sum of squares formulation in Section 3.3.2. 
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Figure 3.15: Lateral Wake Model Diagram. 

 
In this model, the lateral wakes begin to interact with each other starting at a 

distance from the upstream rotor of 𝑥𝑚𝑒𝑟𝑔𝑒as defined: 

                                                          𝐷𝑇 + 2𝑘1𝑥𝑚𝑒𝑟𝑔𝑒 = 𝑤𝐷𝑇  (3.76) 

                                                               𝑥𝑚𝑒𝑟𝑔𝑒 = 𝑤−1
2𝑘1

𝐷𝑇  . (3.77) 

 

For 𝑥 < 𝑥𝑚𝑒𝑟𝑔𝑒the model behaves identically to the single wake model described 

in section 3.3.1, only with a new wake decay constant k1, which is expected to have a 

lower value than in the single wake scenario due to the lateral wakes suppressing 

expansion.  When 𝑥 > 𝑥𝑚𝑒𝑟𝑔𝑒, the area at the downstream turbine plane needs to be 

corrected for the presence of lateral wakes.  This model treats the presence of the 

lateral wakes in two ways; using a reduced wake decay constant which accounts for 

wake suppression due to the symmetry plane, and by including a variation in the 

area calculation beyond x>xmerge which removes the symmetry overlap area.  A 

schematic showing a front view of the wake expansion beyond x>xmerge is presented 

in Figure 3.16, defining the symmetry overlap area, Asym.   
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Figure 3.16: Lateral Wake Model Merged Wake Area. 

 
The area calculation of the downstream turbine section, at location x, is 

piecewise defined as presented in Equations 3.78-79.  Additionally, the model 

formulation allows for a different wake decay constant for the two regions, k1 and 

k2, to account for potential increased expansion in region x>xmerge: 

                                        𝐴(𝑥) =  �
𝜋

4� 𝐷𝑥2                       𝑥 < 𝑥𝑚𝑒𝑟𝑔𝑒
𝜋

4� 𝐷𝑥2 − 𝐴𝑠𝑦𝑚        𝑥 ≥ 𝑥𝑚𝑒𝑟𝑔𝑒
�  (3.78) 

                                𝐷(𝑥) =  �
𝐷𝑇 + 2𝑘1𝑥                                 𝑥 < 𝑥𝑚𝑒𝑟𝑔𝑒

𝑤𝐷𝑇 + 2𝑘2�𝑥 − 𝑥𝑚𝑒𝑟𝑔𝑒�       𝑥 ≥ 𝑥𝑚𝑒𝑟𝑔𝑒
� . (3.79) 

 

The symmetry overlap area is found by assuming a constant radial expansion 

with x, and defined as the total area outside of the symmetry planes produced by the 

laterally spaced wakes, located at y = ± wDT/2: 

                                       𝐴𝑠𝑦𝑚 = 𝜋
4� 𝐷𝑥2 × 𝛼

180
− 1

2� (𝑤𝐷𝑇)2 tan�𝛼 2� �   (3.80) 

where, 

                                                              𝛼 = 2 cos−1 �𝑤𝐷𝑇
2𝐷𝑥

� . (3.81) 
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The lateral wake model is now the combination of the single wake model from 

Section 3.3.1, written using the area ratio, and the lateral wake dependent 

downstream area from Equation 3.78.  This model is described by Equation 3.82, 

with results plotted using the Jensen formulation in Figure 3.17 for varying axial and 

lateral wind turbine spacing, with k1 = k2 = 0.1. 

                                                1− 𝑉𝑥
𝑈

= 𝛽 � 𝐴𝑇
𝐴(𝑥)

� �1 − �1 − 𝐶𝑇�   (3.82) 

                                                       𝛽 = �
1

2�        𝑅𝑒𝑣𝑖𝑠𝑒𝑑
1           𝐽𝑒𝑛𝑠𝑒𝑛

� .   (3.83) 

 
Figure 3.17: Lateral Wake Model Normalized Power, Jensen Formulation. 

 
Based solely on these results, it seems as though this wake scenario produces 

negligible additional performance losses compared to simply a single wake model 

without lateral wind turbines.  However, this plot only accounts for one expected 

component of the performance losses due to lateral wakes, the area change due to 

symmetry planes.  The second component of the lateral wake loss is due to wake 

suppression, modeled with a reduction in the wake decay constant, k1.  Variation of 

the wake decay parameter for a single wake analysis is shown to change the results 

more significantly than with the area change due to lateral wakes alone, shown in 

Figure 3.18.  This alteration of the upstream wake that acts on the downstream wind 
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turbine is expected to dominate the results, more so than the area reduction due to 

symmetry.  Comparison to experimental results will reveal the significance of wake 

suppression compared to area reduction by comparison to Figure 3.17.    

 
Figure 3.18: Single Wake Model with Varying Wake Decay Constants. 

 

 

3.4 Micro Reconfigurable Wind Farm Technical Approach 

 

The Micro Reconfigurable Wind Farm is purposed for quantifying wake 

interaction of wind turbines in farm array settings.  The four turbines belonging to 

this facility are configured appropriately to measure this interaction for the three 

test cases modeled in Sections 3.3.  The processes for acquiring and analyzing data 

collected from the facility’s experiments will be described in detail in Sections 3.4. 

 

 

3.4.1 Micro Reconfigurable Wind Farm Data Acquisition 

 

Wake interaction data acquisition is accomplished by positioning the wind 

turbine carts in the desired test case array on a sufficiently windy day.  Days with a 
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minimum of a 15mph average wind speed were required, with a higher average 

typically meaning more usable data would be collected.  Data acquisition requires 

that the turbine-turbine interaction axis be aligned with the wind direction so that 

the center of the upstream wake hits the center of the downstream turbine within 

an acceptable tolerance for that test case.  Repositioning of the wind turbines to 

maintain alignment with shifting wind direction would be necessary on most days.   

The two instrumented wind turbines are always positioned to measure the 

power of the upstream turbine and of the furthest downstream turbine, to produce 

its normalized power.  The two wake generating wind turbines are used to create 

additional test cases while measuring the normalized power on the wind turbine of 

interest.  In all of the test cases the upstream instrumented turbine is the same and 

is stationary, and the other turbines are positioned around it.  It was observed that 

the downstream turbines would behave erratically and yaw significantly out of the 

wind direction when operating within the wake of the upstream turbine.  This was 

addressed by attaching “yaw collars” on all but the upstream instrumented wind 

turbine which prevented yaw rotation on these turbines.  A yaw collar wasn’t used 

on the upstream instrumented wind turbine so that it could rotate with the wind, in 

order to observe periods of alignment. 

The single wake test case uses the two instrumented wind turbines to quantify 

the effect that spacing from an upstream wind turbine has on performance losses, 

when operating within its wake.  The test is performed by testing one or multiple 

spacing’s on the same day and by testing each of the spacing’s on multiple days.  

This test case is diagrammed in Figure 3.19. 

 

 
Figure 3.19:  Single Wake Test Case Layout. 
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The multiple wake test case adds wind turbines between the instrumented 

turbines to quantify additional losses due to turbines further upstream and wake 

persistence in the array setting.  The wake generating turbines extract power from 

the air additional to the upstream instrumented wind turbine so that the 

downstream instrumented wind turbine operates within the combined wake of both 

upstream wind turbines.  Due to the low predicted magnitude of the loss after the 

third wind turbine combined with the experimental limitations on accuracy, this 

scenario was used for two wake number tests only.  The configuration for this test 

case is shown in Figure 3.20. 

 
Figure 3.20:  Multiple Wake Test Case Layout. 

 
The lateral wake test case complements the single wake test case by combining 

its effect with wind turbines upstream perpendicular to the turbine-turbine wake 

interaction axis spaced from the axis.  This case quantifies the effect of having lateral 

wakes which suppress wake expansion and wake recovery from atmospheric 

momentum addition.  This case tests both the axial spacing and lateral spacing 

independently, and its layout is shown in Figure 3.21.  

 
Figure 3.21:  Lateral Wake Test Case Layout. 
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Instrumented wind turbine sensor output was recorded independently on the 

two instrumented wind turbines and logged to removable memory drives on the 

DAQ systems.  The DAQ system is set with a sample frequency of fs= 4-hz.  White 

noise is seen on the channels from the DAQ hardware and is eliminated by adding an 

averaging feature on the affected channels which reduces the 10-khz internal DAQ 

sample rate to the 4-hz sample rate by averaging the full data set into the samples.  

For the torque sensor channels this is done after first low-pass filtering the signals 

at fc= 200-hz.  The cut-off frequency of this filter was chosen after sampling at 

fs=2500-hz and looking at the torque signal spectrum to locate forcing frequencies, 

and was chosen to be sufficiently above the highest input forcing frequency.  The 

digital encoder signal is converted to a rotor rotational speed using a digital 

frequency channel and the A and A* reciprocal channels.  Encoder frequency was 

determined using the DAQ system’s digital method which sums the number of 

encoder counts and the time from the first edge to the last edge within a selected 1-

sec time window.  This produces accurate rotational speed measurements every 1-

sec.  Wind condition measurements are received at the anemometer’s maximum 

output rate of 1-hz.  The anemometer has two analog current output channels which 

were set to output the actual wind speed and actual wind direction (channels 400 

and 500).  The wind speed output range was set to [0.3, 25] m/s corresponding to 

the [4, 20] mA sensor output.  Wind direction range was set to [0, 359.9]° with 0° 

representing wind from the North, 90° for wind from the East, and so on.  The 

channel properties for the data acquisition are summarized in Table 3.1. 

Table 3.1: Data Acquisition Channel Properties. 
Sensor Channel Type Range Additional Information  

Encoder Frequency 2-wire 
 

Time Base = 1-sec 
Torque Analog Input [10, 20] mA Average/Auto; 200-hz LPF 
Battery Voltage Analog Input [-1, 10] V Average/Auto 
Battery Current Analog Input [-1, 10] V Average/Auto 
Wind Speed Analog Input [4, 20] mA No Filter 
Wind Direction Analog Input [4, 20] mA No Filter 
Align Logic Analog Input [-1, 10] V Average/Auto 
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Data are recorded constantly from the two DAQ units, however, the wind 

direction doesn’t necessarily always line up with the array layout.  Status of this 

alignment was stored in the logged data using a switch which sends a voltage to the 

DAQ unit on the downstream instrumented turbine for positive alignment.  The 

switch is controlled manually by an operator sitting along the turbine-turbine 

interaction axis downstream of the downstream instrumented turbine.  Alignment is 

checked visually, and required the wake center to be less than 1-2 feet off-axis of the 

downstream wind turbine for close to far axial spacing’s.  The condition was stored 

in the “Align Logic” variable. 

 

 

3.4.2 Micro Reconfigurable Wind Farm Data Analysis 

 

In order to determine the wake operation performance loss from the 

experiments, the time-stamped data from the DAQ systems on the instrumented 

wind turbines need to be time synchronized and converted from the analog values 

to the sensor physical values.  The conversion procedure for each sensor is listed in 

Table 3.2.   

Table 3.2: Sensor Conversion to Physical Values. 
Sensor Analog Value Conversion Physical Value 

Encoder counts/sec (A*600/60) rpm 
Torque mA (A- τ0)*300/8 lb-in 
Battery Voltage V (A*7) volts 
Battery Current V (A-I0)*50/10 amps 
Wind Speed mA (A-4)*24.7/16+0.3 m/s 
Wind Direction mA (A-4)*360/16 degrees from N 

 

The measured physical values are used to describe the wind turbine 

performance in two ways.  The first measure is the aerodynamic power.  This power 

is the total power from the wind removed by the wind turbine, and is the product of 

the torque and rotational speed on the rotor: 

                                                       𝑃𝑇,𝑎𝑒𝑟𝑜 = 𝜏𝑟𝑜𝑡𝑜𝑟Ω𝑟𝑜𝑡𝑜𝑟  .   (3.84) 
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A sample data set of the constituents of the aerodynamic power is shown in 

Figure 3.22.  The minor fluctuations in the torque sensor zero level for the two 

sensors would be determined in part from this data at times where the physical 

torque on the rotor is zero.  

 
Figure 3.22: Aerodynamic Power Sample Data. 

 
Another performance measure is the electric power produced by the wind 

turbine.  This power describes the amount of electrical energy produced by the wind 

turbine which varies from the aerodynamic power by the efficiencies of the 

generator and of the conversion from 3-phase AC power to a rectified DC power.  

Electric power components are the DC charging current from the turbine charge 

controller to the battery bank and the voltage measured across the battery 

terminals: 

                                                       𝑃𝑇,𝑒𝑙𝑒𝑐 = 𝐼𝑐ℎ𝑎𝑟𝑔𝑒𝑉𝑐ℎ𝑎𝑟𝑔𝑒  .  (3.85) 
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A sample of the electric power components is shown in Figure 3.23.  The battery 

voltage has sharp drops when the wind turbine stops charging because the charge 

voltage is higher than the actual battery voltage.   

 
Figure 3.23: Electric Power Sample Data. 

 
Comparison of the two wind turbine power measures captures the electrical 

power conversion efficiency of the wind turbine system.  This conversion efficiency 

is defined as the quotient of the two powers, Equation 3.86.  The components of this 

efficiency are shown together in Figure 3.24. 

 

                                                     η𝑐𝑜𝑛𝑣𝑒𝑟𝑠𝑖𝑜𝑛 = 𝑃𝑇,𝑒𝑙𝑒𝑐
𝑃𝑇,𝑎𝑒𝑟𝑜

 .  (3.86) 
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Figure 3.24: Conversion Efficiency Sample Data. 

 
Data for the wind farm flow conditions measured by the anemometer are shown 

for completeness in Figure 3.25.  The high resolution instantaneous velocity 

measurement from this sensor enables estimation of turbulence levels, described by 

turbulence intensity.  This describes the level of variation of the mean wind speed 

and is calculated as the quotient of the standard deviation of the instantaneous wind 

speeds and their average: 

 

                                                                    𝑇𝐼 = 𝜎𝑢
𝑢�

 .  (3.87) 
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Figure 3.25: Wind Speed and Direction Sample Data. 

 
The desired wake interaction results compare the performance of the two 

instrumented wind turbines.  The data are first sorted into bins based on the Align 

Logic variable status, which filters the full set of data for times where the turbines 

are aligned with the wind direction.  An additional filter is added which then 

removes data bins below a minimum time length, Tbin.  This constraint ensures that 

proper alignment was sustained and additionally reduces errors from generator 

dynamics and minor phase misalignment when averaging larger time sets.  Data 

bins which are larger than the minimum bin length are sorted into smaller bins of an 

independent time length, Tsort, where the conditional length is met.  This function 

produces more precise sorting of the data when the bin performance is plotted 

against characteristic bin averages.  The data processing from this point on is done 

within the sorted bins. 

The wind farm DAQ output is time synchronized but the events at the different 

locations actually correspond to different times.  To address the time offsets, data 

produced from the anemometer and the downstream wind turbine are both shifted 



74 
 

to the upstream wind turbine time.  The anemometer conditions are shifted based 

on the known alignment direction of the two wind turbines and known spacing and 

direction from the upstream wind turbine to the anemometer, 200-ft due East.  The 

spacing then from the anemometer plane to the upstream wind turbine is 

determined as shown in Figure 3.26, and Equation 3.88.  This estimation assumes 

that the wind conditions are 1-D, therefore constant in the direction perpendicular 

to the wind direction.   

 
Figure 3.26: Wind Speed Measurement Time Shift Diagram. 

 
                                                 𝐷𝑎𝑛𝑒𝑚 = 200 ∗ sin(𝜙𝑈 − 180°) .  (3.88) 

 

With the distance known, the time delay is a function only of the wind speed.  

The wind speed at the upstream turbine time is not known due to the time delay.  

The time delay must then be solved for iteratively by shifting the bin indices, in a 

direction dependent upon the sign of 𝐷𝑎𝑛𝑒𝑚 , until 𝑈�𝑏𝑖𝑛+𝑠ℎ𝑖𝑓𝑡 ∗ 𝑡𝑠ℎ𝑖𝑓𝑡 > 𝐷𝑎𝑛𝑒𝑚 and 

then using the previous index as the time shift and its corresponding bin averaged 

wind speed to describe the bin.  This shift is negligible when the wind speed is 

constant where 𝑈�𝑏𝑖𝑛+𝑠ℎ𝑖𝑓𝑡 ≈ 𝑈�𝑏𝑖𝑛 .  The shifted bin wind speed average along with 

the turbine-turbine spacing are used to shift the downstream wind turbine data to 

correspond to the same wind condition as the upstream wind turbine by a value 

𝑡12 = 𝑠𝐷𝑇/𝑈�𝑏𝑖𝑛+𝑠ℎ𝑖𝑓𝑡  . This shifted time is used to change the bin indices for the 

downstream turbine to correspond to the upstream turbine bin data set.  For the 

remaining sections, when referring to the downstream wind turbine it will be 
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referring to the shifted time value of that variable corresponding to the upstream 

wind turbine flow conditions, so the shifted condition will no longer be stated.  

Additionally, the remaining variables in the analysis will all be described only as bin 

averages within the upstream bin and the appropriately shifted downstream bin.  

For example, when a variable is mentioned in the remaining sections for the results, 

its value is the bin average of the appropriate bin.   

Wake performance losses are described with a performance variable of the 

downstream turbine normalized by the same variable of the upstream turbine.  The 

normalized power is calculated using the sum of the normalized power indices 

within the bin: 

                           𝑃𝑛𝑜𝑟𝑚 =
∑ 𝑃𝑑𝑜𝑤𝑛𝑠𝑡𝑟𝑒𝑎𝑚,𝑖
𝑁𝑏𝑖𝑛
𝑖

∑ 𝑃𝑢𝑝𝑠𝑡𝑟𝑒𝑎𝑚,𝑖
𝑁𝑏𝑖𝑛
𝑖

=
∑ (𝜏∗Ω)𝑑𝑜𝑤𝑛𝑠𝑡𝑟𝑒𝑎𝑚,𝑖
𝑁𝑏𝑖𝑛
𝑖

∑ (𝜏∗Ω)𝑢𝑝𝑠𝑡𝑟𝑒𝑎𝑚,𝑖
𝑁𝑏𝑖𝑛
𝑖

 . (3.89) 

 

A different formulation of the normalized power can be performed as well, 

Equation 3.90.  This does not produce the same value but based on comparison of 

the two results the estimation has a high accuracy: 

                  𝑃𝑛𝑜𝑟𝑚 =
∑ (𝜏∗Ω)𝑑𝑜𝑤𝑛,𝑖
𝑁𝑏𝑖𝑛
𝑖

∑ (𝜏∗Ω)𝑢𝑝,𝑖
𝑁𝑏𝑖𝑛
𝑖

≈
∑ 𝜏𝑑𝑜𝑤𝑛,𝑖∗∑ Ω𝑑𝑜𝑤𝑛,𝑖

𝑁𝑏𝑖𝑛
𝑖

𝑁𝑏𝑖𝑛
𝑖

∑ 𝜏𝑢𝑝,𝑖
𝑁𝑏𝑖𝑛
𝑖 ∗∑ Ω𝑢𝑝,𝑖

𝑁𝑏𝑖𝑛
𝑖

= 𝜏𝑛𝑜𝑟𝑚Ω𝑛𝑜𝑟𝑚 .  (3.90) 

 

Using this approximation, calculation of the relative contribution to the power 

loss in the wake due to the torque and due to the rotational speed can be 

determined.  These values approximately describe the percentage of the power loss 

solely from the torque reduction due to the wake and rotational speed reduction 

due to the wake, respectively, shown in Equations 3.94 and 3.95: 

                                                   𝑃 =  𝜏Ω → 𝑑𝑃 = ∂𝑃
∂𝜏
𝑑𝜏 + ∂𝑃

∂Ω
𝑑Ω   (3.91) 

                                        𝑑𝑃
𝑃

= 𝑑𝜏
𝜏

+ 𝑑Ω
Ω
→ 𝑃𝑢𝑝−𝑃𝑑𝑛

𝑃𝑢𝑝
≈ 𝜏𝑢𝑝−𝜏𝑑𝑛

𝜏𝑢𝑝
+ Ω𝑢𝑝−Ω𝑑𝑛

Ω𝑢𝑝
  (3.92) 

                         1 − 𝑃𝑛𝑜𝑟𝑚 ≈ 1 − 𝜏𝑛𝑜𝑟𝑚 + 1 −Ω𝑛𝑜𝑟𝑚 → 1 ≈ 1−𝜏𝑛𝑜𝑟𝑚
1−𝑃𝑛𝑜𝑟𝑚

+ 1−Ω𝑛𝑜𝑟𝑚
1−𝑃𝑛𝑜𝑟𝑚

  (3.93) 

                                                                𝑃𝑙𝑜𝑠𝑠,𝑡𝑜𝑟𝑞𝑢𝑒 ≈
1−𝜏𝑛𝑜𝑟𝑚
1−𝑃𝑛𝑜𝑟𝑚

    (3.94) 
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                                                              𝑃𝑙𝑜𝑠𝑠,𝑟𝑜𝑡𝑎𝑡𝑖𝑜𝑛 ≈
1−Ω𝑛𝑜𝑟𝑚
1−𝑃𝑛𝑜𝑟𝑚

 . (3.95) 

 

The aerodynamic power is shown for the sample data set for both wind turbines, 

plotted with the wind turbine alignment logic variable (green curve) in Figure 3.27.  

This sample set presents a single wake test case at a 5 rotor diameter spacing.  The 

necessity of the status variable is made clear where noticeable differences in the 

relative power occur when the alignment is positive (~5000s) and when it is not 

(~5400s).  The bins which are evaluated for the filtered final results are derived 

from this status variable, as described above.  The normalized power is essentially 

the ratio of these two power curves. 

 
Figure 3.27: Wake Interaction Power Reduction Sample Data. 

 
For completeness, the rotor torque and rotational speed comparison plots are 

shown for the same test case, Figures 3.28 and 3.29.  These plots contain the 

information for normalized torque and normalized rotational speed.   
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Figure 3.28: Wake Interaction Torque Reduction Sample Data. 

 

 
Figure 3.29: Wake Interaction Rotational Speed Reduction Sample Data. 

 
A constraint is added, in addition to bin length, which filters the usable data set 

further.  This constraint is a condition on the upstream wind turbine power average 

within the range, 𝑃𝑢𝑝𝑠𝑡𝑟𝑒𝑎𝑚 ≥ 𝑃𝑚𝑖𝑛 .  This constraint is necessary as experimental 

uncertainty begins to dominate below a certain value of the wind turbine power, 

producing fictitious results for the normalized power ratio.   Normalized power is 

summarized within a power range [P1, P2] of the upstream turbine power using a 
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weighting based on the bin time length according to Equation 3.96.  When one value 

for normalized power is given with no mention of the power bin it is assumed to 

describe the entire filtered data set from [Pmin, ∞).   

                                                𝑃𝑛𝑜𝑟𝑚,𝑤𝑡 =
∑ �𝑃𝑛𝑜𝑟𝑚 ,𝑖∗𝑡𝑏𝑖𝑛,𝑖�
𝑁𝑏𝑖𝑛𝑠
𝑖

∑ 𝑡𝑏𝑖𝑛,𝑖
𝑁𝑏𝑖𝑛𝑠
𝑖

 .  (3.96) 

 

Data from multiple days and multiple spacing’s will be present for most of the 

different test cases.  Data for the different days will be combined, and then data for 

the different spacing’s will be separated.  One manner in which the data results will 

be described is by the average within a power range [P1,i, P2,i] of the upstream 

turbine power, and its standard deviation.  The power average will be the weighted 

average as described above, and the standard deviation will also be a weighted 

standard deviation based on the bin length for each sample.  Weighting for the 

standard deviation is done by creating a vector with the bin average repeated ‘bin-

length’ times for each value within the upstream turbine power range for that set.  

This method will be used to describe the wake interaction losses as a function of the 

upstream turbine power for the different test cases and different spacing’s.   

 

 

3.4.3 Micro Reconfigurable Wind Farm Experimental Uncertainty 

 

The results from the wind turbine wake performance measurements all contain 

a level of experimental uncertainty sourced from the component sensor accuracy’s 

and due to the digital conversion.  The experimental uncertainty on the 

aerodynamic power measurement is derived starting with the definitions of the 

power and the standard formulation for propagation of error: 

                                                                          𝑃 =  𝜏Ω  (3.97) 

                                                     𝛿𝑃 = ��∂ 𝑃
∂ 𝜏

 𝛿𝜏�
2

+ �∂ 𝑃
∂ Ω
𝛿Ω�

2
 . (3.98) 
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The experimental uncertainty of the power is sourced from the uncertainties of 

the measured torque and rotational speed: 

                                                     𝛿𝑃 = �(Ω ∗ 𝛿𝜏)2 + (𝜏 ∗ 𝛿Ω)2 . (3.99) 

 

The rotational speed itself isn’t an analog measurement but rather a quotient of 

two measured values, number of counts (N) and sample average time (t).  The 

rotational speed uncertainty is therefore determined using a propagation of error 

analysis of these two variables: 

                                                                           Ω = 𝑁 𝑡�   (3.100) 

                                                     𝛿Ω = ��∂ Ω
∂ 𝑁

 𝛿𝑁�
2

+ �∂ Ω
∂ 𝑡
𝛿𝑡�

2
  (3.101) 

                                                    𝛿Ω = ��1 𝑡�  𝛿𝑁�
2

+ �𝑁
𝑡2
𝛿𝑡�

2
 . (3.102) 

 

The sensor uncertainties are described by the physical hardware accuracies, 

which combine to form the overall measurement uncertainty.  The uncertainty of 

the torque measurement depends on several accuracies.  Hardware accuracies for 

non-linearity, hysteresis, and non-repeatability of 0.1, 0.25, and 0.05% calibration 

full scale (calibration = 300 lb-in) produce an uncertainty of 1.2 lb-in.  This is 

combined with uncertainties due to the temperature effect on the sensor zero and 

on output of 0.002% capacity/F (capacity = 600 lb-in) and 0.002% reading/F over 

the total used temperature range.  Using a temperature range of 30F to describe the 

experimental conditions, and 100 lb-in for the reading value (a worst case analysis), 

the contribution from temperature effect is 0.42 lb-in.  From this analysis, the 

uncertainty in the torque measurement is, as a worst case, δτ = 1.62 lb-in. 

The uncertainty in the rotational speed is caused by uncertainty in the number 

of counts and in the counting time measurement.  The uncertainty in the number of 

counts is due to data acquisition and the encoder mechanical accuracy.  Uncertainty 

in number of counts due to the data acquisition is at most 1-count, if a pulse edge is 

just outside of the count time range.  This value adds with the mechanical error 
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which is 0.017° for the encoder used.  These combine for the 600 count/rev encoder 

to produce δN = 1.0283 counts.  The accuracy of the DAQ clock determines the 

uncertainty in the time measurement where N is counted.  For DAQ system has a 48 

MHz resolution, producing an uncertainty in the time measurement of δt = 20.8-ns. 

The actual uncertainty in a measurement will depend on both the uncertainty of 

the different components and on the nominal values from the sensors.  These values 

will be calculated and given with the results, but to get an estimate of how the 

uncertainty varies with the aerodynamic power certain approximations will be 

made.  The wind turbine torque sensor output is plotted versus the aerodynamic 

power of this turbine for a six hour time set on one wind turbine, and is shown in 

Figure 3.30.  This curve is used to estimate the relationship between torque and 

aerodynamic power, and was done so using a cubic fitting, given in Equation 3.103. 

 
Figure 3.30: Wind Turbine Torque vs. Power Data Set. 

 
                𝜏 = 2.4𝑒 − 8 ∗ 𝑃𝑇3  − 8.7𝑒 − 5 ∗ 𝑃𝑇2 + 0.15 ∗ 𝑃𝑇 + 0.36 . (3.103) 

 

This approximation of the torque at a given turbine power enables calculation of 

a generic uncertainty curve as a function of turbine power.  Rotational speed is 

calculated from the known power and torque values, and measurement 

uncertainties use the nominal values where needed.  The results from this 
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uncertainty analysis are shown in Figure 3.31, showing both the absolute power 

uncertainty in Watts and the uncertainty percentage of the nominal power.   

 
Figure 3.31: Aerodynamic Power Experimental Uncertainty Estimate. 
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CHAPTER 4: WIND DATA ANALYSIS RESULTS 

 

Abstract 

Wind speeds were recorded in West Lafayette, Indiana from October 1st, 2008 to 

December 31st, 2009 and analyzed to determine the wind speed trends both 

throughout the year and throughout the day.  A Weibull function is fit to the data 

and its accuracy proven in the quality of the Weibull calculated average wind speed.  

The five anemometer height locations are used to describe the atmospheric velocity 

profile which is studied to understand its trends.  The wind speed data are used to 

calculate performance for both residential and utility-size wind turbines.  Two 

leading manufacturers of small wind turbines are compared at varying hub heights, 

and three utility size wind turbines from one manufacturer are compared which 

vary in rotor diameter and generator size.   

 

Nomenclature  

 V  Wind speed 

 f(V) Probability density function 

 k  Weibull shape parameter 

 c  Weibull scale parameter 

 VMP Most probable wind speed 

 VMAX,E Wind speed with most energy  

 PW Power in the Wind 

 ρ Density of Air 

 Γ  Gamma function  

 eD Wind power density distribution 

 Hk Hermite polynomial 

 𝑔(𝑧𝐷)  Gaussian probability distribution 
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 zD Scaled wind speed, centered on wind power density 

 v(i) Wind speed value from i-th data point 

 μD Mean value of zD  

 D Standard deviation of zD 

 α Velocity profile power law coefficient 

 z Height in velocity profile 

 PT Wind Turbine Power Production 

 VC Wind turbine cut-in wind speed 

 VR Wind turbine rated wind speed 

 PR  Wind turbine rated power 

 n Wind turbine power curve exponent 

 VF Wind turbine cut-out wind speed 

 CF Capacity factor 

 Cp Power coefficient 

 AT Wind turbine rotor swept area 

 

 

4.1 Introduction 

 

Northern Indiana, in the counties surrounding West Lafayette, has proven to 

possess a favorable environment for the implementation of wind energy.  Over the 

past 5 years, 4 large wind farm projects have been constructed with over 1.8 GW of 

current total installed capacity.  Future wind farm projects are currently being 

developed as well.  The placement of these farms depends on many variables, 

including local policy and relative location to transmission lines, among other 

factors.  The variable of ultimate concern for the success of the wind farm is the fuel 

- the wind resource.  The resource for a given area is not a constant value 

throughout the year, but rather is stochastic by nature.  Apart from the difficult 

predictability of wind conditions at any given moment, there are trends in every 

area which are derived from the global and local location.  Globally, the location 
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relative to the equator and hemisphere of study are of significant contribution to the 

wind patterns.  Locally, mountain ranges, relative altitude, and nearby obstructions 

all affect the average wind speed and wind direction trends, even when compared to 

nearby locations.  Understanding of these trends in the fuel for wind turbines has 

impact in determining whether the energy created will be sufficient and if it will be 

available when most needed, when the loads are high in summer and during the 

day.   

Akpinar and Akpinar [39] collected and statistically analyzed wind data, 

collected in hourly time intervals, taken over a period of six years from 1998 – 2003 

in four different regions in Turkey.  Wind speeds were taken every 10m up to 100m 

in each of these regions.  Seasonal averages were made to compare the trends of the 

four seasons.  Probability distributions were compared with the actual frequency 

bins of these seasons in order to verify the fit.  Weibull and Rayleigh (a one-

parameter Weibull fit) distributions were compared.  Both probability functions 

produced acceptable fits in each season, with the Weibull function more closely 

representing the data for 12 out of the 16 season/locations.  The shape factor in the 

Weibull function was between 1.44 and 1.80 for the four seasons in the four 

locations over the six year period.  The averages for each season for each of the 10 

anemometers were plotted versus the anemometer height to reveal the velocity 

profile for the four areas, revealing appreciable velocity changes with height 

throughout the entire range even up to 100m in all seasons.  The wind data were 

used to determine the energy output of 6 different wind turbines, ranging from 300 

to 2300 kW, by using their actual power curves.  The capacity factors for all the 

machines were found to vary between 16 and 30% seasonally in the optimum wind 

location among the four regions studied. 

Celik [40] performed a study in Iskenderun, Turkey to statistically analyze 1 year 

of hourly wind speed data.  Weibull and Rayleigh density functions were compared 

to the measured probability density on a monthly basis.  This comparison was done 

by calculating correlation coefficient values which measure the fit of the estimations 

to the measured data, with 1 being a perfect fit.  These values ranged from 0.66 to 
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0.96 for the Weibull estimates, 0.88 average, and 0.46 to 0.96 for the Rayleigh 

estimate, 0.80 average.  The Weibull yielded higher coefficient values for 7 of the 12 

months.  Celik shows how to calculate the power density from the known Weibull 

parameters.  The power density was plotted for each month and was seen to vary 

significantly throughout the year, from about 10 to 70 W/m2.  The average yearly 

error in power density from using the probability models were 4.9% for the Weibull 

model, whereas this value averaged to 36.5% for the year and reached over 50% 

using the Rayleigh model in some months.   

Liu and Jiang [41] analyzed 15 years of wind speed data from weather stations at 

two locations in China located in the southwest coastal region.  The anemometers 

were both located at a 10m height.  Weibull distributions were applied to the wind 

data to obtain the mean wind speeds for the two regions, which varied from 2.308 to 

3.03 m/s and 2.651 to 3.608 m/s for the two areas.  The Weibull shape parameter 

varied from 2.08 to 2.905 and 2.08 to 3.031.  Weibull estimated power density and 

its error were calculated according to the method by Celik [2] with a 4.74% and 

9.83% error from measured power density in the two locations.  This area was 

found to be in Wind Power class I with a wind power density less than 100 W/m2.   

Li et al. [42] studied data from a 325m meteorological tower in Beijing 

containing 30 anemometers at 15 different heights taken during 12 windstorms.  

Wind speed profiles are presented and compared with predictions from different 

models.  Atmospheric turbulence information was also derived from this analysis 

recorded by 3 ultrasonic anemometers at different heights.  Wind speed profiles 

were calculated using the Log law, Power law, and Deaves and Harris model.  The 

log law contains 3 to 4 parameters describing the environment that is being 

modeled, and is seen to work for elevations up to 100m, but not greater than 200m.  

The power law is an empirical formulation that operates on the assumptions of (1) 

constant ground roughness exponent and (2) gradient height is a function of ground 

roughness alone.  This model may not describe the vertical distributions of wind 

speed at low heights well, and is generally applied between 30 and 300 m.  The 

power law profile is widely used in many standards, despite its stated drawbacks.  
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The Deaves and Harris model is described by three parameters and contains more 

of the physics of the atmospheric boundary layer.  An explanation of how to 

calculate the relevant parameters of the models is detailed.  The turbulence 

parameters of turbulence intensity, gust factor, and turbulence integral length scale 

are calculated and displayed for the three ultrasonic anemometer locations. 

Morrissey et al. [43] proposed an improvement on calculating the wind power 

density using a Gauss-Hermite expansion.  This model calculates the power density 

directly rather than first relying on a probability distribution with inherent errors in 

the velocity determination which are multiplied when used to determine the power 

(~V3).      

In this paper, a Weibull analysis is applied to wind speed data from five sampled 

anemometer heights acquired over a year in Northern Indiana.  This analysis 

determines the wind speed trends throughout the year and throughout the day as 

well as the atmospheric velocity profile.  The wind speed data is then used to 

calculate performance parameters for both residential and utility-size wind 

turbines.   

 

 

4.2 Data Acquisition 

 

Wind data were recorded in Northern Indiana, in West Lafayette, in an open 

clearing of agriculture plots utilizing a 50 meter meteorological tower.  

Measurements were taken using 6 NRG Systems #40C anemometers, 2 NRG #200P 

wind direction vanes, and 1 NRG #110S Temperature Sensor with Radiation Shield.  

Positions for these sensors are given in Table 4.1, with all wind sensors installed 

using a 20 in. mounting boom.  Data were acquired and stored by an NRG 

Symphonie 12-channel Data Logger.   
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Table 4.1: Wind Data Sensor Descriptions. 
Sensor Height (m) Orientation (deg.) 

Anemometer 50 270, 180 
Anemometer 40, 30 270 
Anemometer 12, 3 180 

Direction Vane 50, 40 0 
Thermometer 1 N/A 

 

The data set was taken from October 1, 2008 to December 31, 2009.  Data points 

are in the form of ten minute averages performed on each of the sensor channels, 

calculated from the interval’s data set which included data sampled every two 

seconds.  The mean and standard deviation were recorded for this ten minute 

period, along with the maximum and minimum values for the sensor.  The data 

collection procedure resulted in 144 total data points for each day, with 457 days in 

the data set viewed.   

 

 

4.3 Mathematical Procedure 

 

The ten minute data points were sampled using a moving average scheme with 

the index value being the center of that bin.  The data were placed into bins where 

divisions of both the number of days and number of hours could be made to group 

the data.  For this analysis, the number of days in a bin range from 1 to 90, and hour 

divisions used are for a whole day (24 hours) and down to every hour.  This 

sampling was performed to add insight into the seasonal trends, those that vary 

with date, and the daily trends, those that vary within each day of the wind data.   

The statistical characteristics of the wind were determined using a Weibull 

probability estimation, Equation 4.1.  The Weibull function is a two parameter 

distribution which describes the probability of a certain value (wind speed) 

occurring.  The parameters describe the shape or spread k and the scale c of the 
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distribution.  The shape factor is said to vary from 1.5 to 3 [1] for most wind 

conditions and describes the variability of the wind:   

                                    𝑓(𝑉) = �𝑘
𝑐
�× �𝑉

𝑐
�
𝑘−1

× 𝑒𝑥𝑝 �− �𝑉
𝑐
�
𝑘
� . (4.1) 

 

The two parameters are calculated using the MATLAB® function wblfit which 

calculates the Maximum Likelihood Estimate of the shape and scale factors given a 

data set.  From this distribution, two important wind speeds are derived; the most 

probable wind speed and the wind speed carrying maximum energy.  The most 

probable wind speed VMP occurs at the peak of the Weibull distribution:  

                                                         𝑉𝑀𝑃 = 𝑐 �𝑘−1
𝑘
�
1
𝑘� . (4.2) 

 

The wind speed which carries the maximum energy VMAX.,E will always occur at a 

higher value than the most probable wind speed.  The power in the wind is 

proportional to the wind speed cubed, balancing with the lower frequency of higher 

wind speeds to produce the energy maximum.  This wind speed is of particular 

interest to the wind turbine designer: 

                                                         𝑉𝑀𝐴𝑋,𝐸 = 𝑐 �𝑘+2
𝑘
�
1
𝑘�  . (4.3) 

 

Total power production in the wind can be estimated using this distribution 

along with known Weibull parameters for the period of interest, with Γ representing 

the gamma function: 

                                                  PW
A

= 1
2� ρ × Γ �c3 �1 + 3

k
�� . (4.4) 

 

A direct method of determining the Wind Power Density Distribution (eD) was 

predicted using a Gauss-Hermite expansion of the sampled wind speed data as 

detailed by Morrissey et al. [6]: 

                                        �̂�𝐷(𝑣|𝑛,𝑚) = ∑ 𝜓�𝐷(𝑘)𝐻𝑘(𝑧𝐷)𝑚→∞
𝑘=0

𝑔(𝑧𝐷)
𝜎𝐷

 . (4.5) 
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The terms 𝐻𝑘  and 𝑔(𝑧𝐷) represent the Hermite polynomial and the standard 

Gaussian, respectively.  The intermediate term 𝜓�𝐷 is calculated using the wind data, 

with n samples: 

           𝜓�𝐷(𝑘,𝑛) = 1
2� 𝜌 � √𝜋

2𝑘−1𝑘!
� 1
𝑛
∑ {𝑣(𝑖)3𝐻𝑘[𝑧𝐷(𝑖)]𝑔[𝑧𝐷(𝑖)]}𝑛
𝑖=1    (4.6) 

where, 

         𝑧𝐷 = 𝑣−𝜇𝐷
𝜎𝐷

;  𝜇𝐷 = ∑ 𝑣(𝑖)4𝑛
𝑖=1

∑ 𝑣(𝑖)3𝑛
𝑖=1

;  𝜎𝐷 = �∑ 𝑣(𝑖)3[𝑣(𝑖)−𝜇𝐷]2𝑛
𝑖=1

∑ 𝑣(𝑖)3𝑛
𝑖=1

�
1/2

 . (4.7) 

 

The five height locations of the anemometer tower were used to describe the 

atmospheric velocity profile below the 50 m height.  The power law profile shape 

assumption, Equation 4.7, was used due to its simplicity and the relatively low 

height of the tower.  Calculations for this parameter were made in the raw data at 

each point before sampling.  The power coefficient was determined from the 6 data 

points using a polynomial fitting tool which minimized error in (ln𝑉) and not (𝑉) 

itself.  

                                                              𝑉
𝑉𝑟𝑒𝑓

= � 𝑧
𝑧𝑟𝑒𝑓

�
∝

. (4.8) 

 

The particular interest of this study of the yearly wind conditions is its interplay 

with wind turbine operation.  This determination begins with the wind turbine 

power calculation, and the normalized performance measures of capacity factor and 

power coefficient are then derived.  Wind turbine power production is calculated 

using the actual, non-sampled, wind speed and the wind turbine of interest’s power 

curve.  For this study two of the leading wind turbines in the “small wind-turbine” 

classification (<100kW) are compared, along with three utility size wind turbines 

from the same manufacturer which vary rotor size and generator capacity.  A 

generic wind turbine power curve is also used following its accepted definition.  

This standard wind turbine power curve [1] is given in Equation 4.8, where VC, VR, 

VF, and PR describe the wind turbine performance and are the cut-in speed, rated-
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speed, cut-out speed, and rated power.  The exponent n describes the power 

relationship and has a typical value between 2 and 3: 

                       𝑃𝑇(𝑉𝑊) =

⎩
⎪
⎨

⎪
⎧0                                                   𝑉𝑊 < 𝑉𝐶

𝑃𝑅 �
𝑉𝑊𝑛−𝑉𝐶𝑛

𝑉𝑅𝑛−𝑉𝐶𝑛
�             𝑉𝐶 ≤ 𝑉𝑊 ≤ 𝑉𝑅

𝑃𝑅                                       𝑉𝑅 < 𝑉𝑊 ≤ 𝑉𝐹
0                                                   𝑉𝑊 > 𝑉𝐹⎭
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 . (4.9) 

 

The performance measures of the wind turbine are capacity factor CF and power 

coefficient C p, Equations 4.9.  They were calculated from the full data set and then 

sampled to smooth out the curve as desired and to gain insight into the seasonal and 

daily trends.  

                                                     𝐶𝐹 =  𝑃𝑇
𝑃𝑅

;   𝐶𝑝 = 𝑃𝑇
1
2� 𝜌𝐴𝑇𝑉𝑊3 . (4.10) 

 

 

4.4 Results 

 

The data set for the wind speed is reduced through averaging to remove some of 

the inherent stochastic properties of wind and to reveal more of the overall seasonal 

and daily trends.  The averaging scheme was performed and compared with one 

day, month (30 day), or season (90 day) as the bin size, Figure 4.1.  The one day 

averages contain much of the stochastic characteristics of the wind, which for the 

sake of this review is undesirable, making the prediction of overall yearly trends 

more difficult.  Monthly and seasonal averages reduce the high variability of the 

wind to reveal a clear trend for yearly averages of wind speed.  The monthly 

averaging was selected over seasonal averaging due to the presence of some of the 

higher frequency trends that the seasonal averaging smoothed out.  For the 

remainder of this review, 30 day averages will be used in the plots and tables where 

applicable.  Also, the following results and figures describe the wind data at a 50m 

height if not stated otherwise 
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Figure 4.1: Averaged Wind Speed of Data Set Comparison.   

 
In addition to periodic variation throughout the year there is also a daily 

variation component superimposed on this seasonal trend, Figure 4.2.  The 

averaging scheme was carried out to also divide the sample bins throughout the day, 

ranging from 1 to 24 hour selected intervals.  The hourly variation is illustrated 

below with the thick black line displaying the mean velocity when no daily sampling 

was performed (24 hour bin).   

 
Figure 4.2: Averaged Wind Speed with 1-hour Sample Bins. 
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This analysis reveals significant variations in the average wind speed both 

throughout the year and throughout the day.  Daily variations fluctuate throughout 

the year and range from about 1.5 to 5 mph differences in the average wind speed, 

with the underlying yearly average varying 7 mph throughout the year.  Table 4.2 

adds insight into the physical properties of the monthly and daily variation.  The 

data representing the month is from the 30 day average whose center is located on 

the 15th day of that month.  The average velocity for that month is given (as 

displayed by the thick black line in Figure 4.2), and minimum and maximum values 

for that average were found for each month from the hourly sampled data.  The 

times where the wind is at a minimum and maximum are also given for each month.  

All of these values were averaged together to yield yearly averaged values.  The 

minimum wind velocity in the day for this area typically occurs early in the morning 

averaged to 7 a.m. (with the exception of November) and the maximum occurs in 

the second half of the day averaged to after 4 p.m.   

 

Table 4.2: Monthly Averaged Wind Speed Data, 50m (mph). 
Month V,max t,max V,min t,min V,avg ΔV,avg 
January 15.41 14:00 13.78 0:00 14.46 1.63 
February 18.98 22:00 15.64 7:00 17.21 3.33 
March 17.00 16:00 12.62 7:00 15.29 4.38 
April 19.19 12:00 14.96 1:00 16.67 4.23 
May 13.97 17:00 11.39 7:00 12.63 2.58 
June 13.42 16:00 9.58 7:00 11.76 3.84 
July 11.39 14:00 8.51 7:00 10.00 2.88 
August 11.87 14:00 9.65 8:00 11.17 2.22 
September 13.36 22:00 9.22 9:00 11.00 4.14 
October 14.78 15:00 12.34 8:00 13.23 2.44 
November 14.42 22:00 12.78 16:00 13.58 1.64 
December 15.86 13:00 13.45 9:00 14.67 2.42 
AVERAGE: 14.97 16:25 11.99 7:10 13.47 2.98 
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The monthly averaged wind speed data tables for the four other anemometer 

height locations are given in Section 4.7. A summary table of the yearly averages for 

each of the anemometer heights is given in Table 4.3.   

 

Table 4.3: Yearly Averaged Wind Speed Data. 
Height V,max t,max V,min t,min V,avg ΔV,avg 
50m 14.97 16:25 11.99 7:10 13.47 2.98 
40m 14.38 16:10 11.33 5:50 12.78 3.05 
30m 13.62 15:05 10.18 7:40 11.78 3.44 
12m 11.46 14:20 6.94 7:40 8.93 4.52 
3m 9.86 13:40 5.49 10:20 7.38 4.37 

 

Figure 4.3 illustrates this trend visually where eight 3-hour sample bins were 

used to more easily observe the hourly trends throughout the day.  It is observed 

how the maximum wind speeds throughout the year typically come from the second 

half of the day, and the minimum wind speeds from the first.  The thick black curve 

of averaged wind speed with no daily sampling division was also plotted for 

comparison.   

 
Figure 4.3: Averaged Wind Speed with 3-hour Sample Bins. 
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The variability throughout the day differs with the height in the atmosphere as 

well as seasonally, Figure 4.4.  The daily fluctuations, defined as the difference in the 

minimum and maximum averaged wind velocity from hourly sampling, are plotted 

for the five anemometer locations.  A trend is observed that these daily fluctuations 

are stronger closer to the ground.    

 
Figure 4.4: Daily Variation in Average Wind Speed at Different Heights. 

 
The Weibull probability distribution was applied to the sampled data to prove its 

reliability in accurately describing the wind speeds in this location, Figures 4.5 and 

4.6.  The two parameters to this function were determined, with the shape factor 

being of particular interest.  The shape factor hourly averages were seen to vary 

from 1.48 to 5.77 throughout the year of interest with significant variation between 

the months of June and October.  This parameter remains within the typical range 

describing wind statistics of 1.5 to 3.0 [1] when averaging within the entire day, 

with the data varying from 1.77 to 3.05 throughout the year, represented by the 

thick black line.  
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Figure 4.5: Weibull Shape Factor, k, with 1-hour Sample Bins. 

 

 
Figure 4.6: Weibull Scale Factor, c, with 1-hour Sample Bins. 

 
The shape factor calculated for each month is summarized in Table 4.4, including 

the maximum and minimum average values found from 1-hour samples with the 

time of day where they occur.  The scale factor is also given for reference.  The 

monthly shape factors average to 2.49 on the year and vary only by about 0.5 from 

this mean throughout the year.  Unlike with the average wind speed, the shape 

factor doesn’t seem to have any noticeable trends throughout the day for when it is 

highest and lowest.   
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Table 4.4: Monthly Averaged Weibull Shape Factor Description. 
Month k,max t,max k,min t,min k,avg Δk,avg c,avg (mph) 
January 3.01 19:00 2.25 9:00 2.56 0.76 16.14 
February 3.26 6:00 2.13 18:00 2.56 1.13 19.33 
March 2.58 2:00 1.72 15:00 2.18 0.86 17.25 
April 3.00 22:00 2.20 1:00 2.60 0.80 18.72 
May 2.87 3:00 1.84 8:00 2.25 1.03 14.22 
June 3.99 23:00 1.81 8:00 2.70 2.18 13.19 
July 3.58 6:00 1.81 0:00 2.53 1.77 11.23 
August 4.19 2:00 1.91 10:00 2.94 2.27 12.49 
September 3.29 6:00 1.79 9:00 2.39 1.50 12.36 
October 3.08 3:00 2.01 12:00 2.51 1.07 14.86 
November 3.32 23:00 2.16 16:00 2.70 1.16 15.14 
December 2.47 6:00 1.63 17:00 1.98 0.84 16.47 
AVERAGE: 3.22 10:05 1.94 10:15 2.49 1.28 15.12 
 

The Weibull statistical analysis was performed at all five anemometer height 

locations within the data set with the remaining heights given in Section 4.8.  A 

summary of the yearly averages at the five different heights of the Weibull 

parameters and trends is listed in Table 4.5. 

 

Table 4.5: Yearly Averaged Weibull Parameter Comparison. 
Height k,max t,max k,min t,min k,avg Δk,avg c,avg (mph) 

50m 3.22 10:05 1.94 10:15 2.49 1.28 15.12 
40m 3.20 5:40 1.98 11:25 2.50 1.22 14.37 
30m 2.99 8:10 1.92 10:25 2.39 1.06 13.26 
12m 2.45 12:35 1.50 9:25 1.91 0.95 10.02 
3m 2.80 13:00 1.46 10:20 2.00 1.34 8.29 
 

The Weibull parameters were used to predict an average wind speed, which is a 

measure for the distribution’s ability to accurately describe the wind data.  Figure 

4.7 presents the Weibull calculated average wind speed which very nearly 

resembles that corresponding to the data.  The error of this estimate compared to 

the direct average of the wind speed was calculated and is less than 0.85% in each of 
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these months at each anemometer location, with average errors for each location 

under 0.3%.   

 
Figure 4.7: Weibull Calculated Average Wind Speed with 1-hour Sample Bins. 

 
The Weibull parameters were used to determine the most probable wind speed 

and the wind speed carrying the most energy, Figures 4.8 and 4.9.  A more 

significant wind speed regarding wind turbines is that corresponding to highest 

energy output (the highest frequency of the cube of the velocity).  For the area 

studied, the most probable wind speed varied seasonally with the yearly average 

listed for each anemometer height in the figure legend, ranging from 5.3 to 12.2 

mph.  The maximum energy wind speed was over twice the value of the most 

probable wind speed for the 3m and 12m cases, and its yearly average ranged from 

13.1 to 20.3mph.  The effect of height on the values is notable with the 3m and 12m 

locations, but far less significant between 30 and 50m.  The implications of this 

result affect the tower height selection for a wind turbine and help to understand 

the trade-off between power production and the installation height. 
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Figure 4.8: Weibull Parameter Calculated Most Probable Wind Speed. 

 

 
Figure 4.9: Weibull Parameter Calculated Maximum Energy Wind Speed. 

 
The ability of a distribution to predict the average velocity of the wind is a useful 

tool for areas where these parameters are known or can be estimated.  The 

prediction of the wind’s power density is however a more significant value for wind 

turbines.  Power density describes the power contained in the wind and is used to 

define the wind class environment.  The distribution’s prediction of velocity has an 

inherent error which is then multiplied when describing the power density; 

proportional to velocity cubed (~V3).  The comparison was made between the 
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power density calculated directly from the wind data and that estimated with the 

three sampling periods chosen: 1, 30, and 90 day, Figure 4.10.  The error in 

estimating the wind power density remained below a maximum error of about 4% 

using the Weibull distribution, confirming its acceptable description of this wind 

data.  The Gauss-Hermite expansion method of calculating the power density of the 

wind distribution directly was also used to verify the results from Morissey et al. [6] 

which indicates the improvement of this method over the Weibull analysis, with a 

maximum error value observed of 1.09%, Table 4.6. 

 
Figure 4.10: Power Density Comparison, Direct vs. Weibull Estimated Comparison. 

 
 
 

Table 4.6: Wind Power Density Estimation and Error Comparison. 

 
50m 40m 30m 12m 3m 

ACTUAL 253.0 226.1 187.0 103.0 58.0 
WBL - 365 day 251.2 221.6 182.3 105.4 59.6 
%error 0.75% 1.96% 2.54% 2.30% 2.78% 
GH - 365 day 250.9 223.8 185.3 103.0 58.0 
%error 1.15% 0.99% 0.89% 0.00% 0.01% 
WBL - 1 day 259.2 229.4 189.9 107.2 60.2 
%error 2.45% 1.50% 1.57% 4.01% 3.81% 
GH - 1 day 251.1 224.0 185.7 103.4 58.2 
%error 0.76% 0.89% 0.70% 0.34% 0.35% 
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Table 4.6: Continued. 
WBL - 30 day 255.0 226.4 187.6 107.0 59.9 
%error 0.79% 0.14% 0.33% 3.86% 3.33% 
GH - 30 day 250.3 223.8 185.7 103.3 58.3 
%error 1.09% 1.00% 0.72% 0.31% 0.52% 

 

The wind power density was determined at the five anemometer height 

locations and is shown for the year in Figure 4.11.  Based on the average throughout 

the year this location has a Wind Rating of between Class I and II at 10m (borders at 

100 W/m2), and a Class II rating at 50m (200-300 W/m2) as defined by the National 

Renewable Energy Laboratory.  Class II rating is typically thought of as a minimum 

for operating a wind turbine.   

 
Figure 4.11: Wind Power Density Comparison with Height. 

 
The relationship between the performance of a wind turbine and its hub height 

is regulated by the atmospheric velocity profile.  For this analysis a power law 

velocity profile was assumed and the power law coefficient was derived following 

the procedure detailed by Equation 4.7.  This coefficient is illustrated with hourly 

samples in Figure 4.12 to reveal the nature of the velocity profile throughout the 

year and day.  In this analysis a lower coefficient describes a fuller velocity profile 

and is associated with turbulence, and a higher coefficient corresponds to a more 
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gradual profile as present with laminar flow conditions.  The power law coefficient 

typically lies in the range from 0.05 - 0.5, with 0.14 being a commonly accepted 

value which is widely applicable to open sites with low surfaces [39]. 

Figure 4.12 reveals the dichotomous power law coefficient  where there is an 

upper and lower cluster of hourly averages with minimal transient time between 

them, around 2 hours.  The year of study displays a transition from the high to low 

cluster at around 6 – 10 am throughout the year, and transitioning up to the high 

cluster between 4 – 6 pm.  These results correlate well with what was found for the 

average wind speed daily trends which had a minimum occur at 7:10am and 

maximum at 4:25pm.  This correlation means that the power law coefficient  is in 

the low cluster at the minimum wind speeds in the first half day (turbulent 

conditions) and in the high cluster at the maximum wind speeds in the second half 

of the day (laminar conditions).   

 
Figure 4.12: Velocity Profile Average Power Law Coefficient with 1-hour Sample 

Bins. 
 

Average monthly wind data were used to show the effect of the velocity profile 

and how it changes throughout the year, Figure 4.13.  The higher wind speed 

months subscribe to a more turbulent looking profile and lower wind speed months 
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to more laminar profiles.  The velocity profile power law coefficient was calculated 

based on these average wind speeds and given in Table 4.7.   

 
Figure 4.13: Averaged Monthly Wind Speed Velocity Profiles. 

 
Table 4.7: Monthly Power Law Coefficients. 
Month α Month α 
January 0.19 July 0.28 
February 0.2 August 0.3 
March 0.19 September 0.33 
April 0.18 October  0.25 
May  0.2 November 0.23 
June 0.21 December 0.17 

 

The wind data was used directly to calculate the performance of two of the 

industry leading small wind turbines to give quality measures of their performance.  

Power production of the wind turbines was determined using the manufacturer’s 

power curve which relates the wind turbine power with wind speed.  The small 

wind turbines studied are described in Table 4.8. 

Table 4.8: Small Wind Turbine Specifications. 
Model Power Capacity (W) Rotor Diameter (ft) 

SWWP Whisper100 900 7 
Bergey XL.1 1000 8.2 
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The capacity factor of the two wind turbines is calculated to display their 

performance fluctuations within the year, also revealing the effects of installation 

height.  The capacity factor is lowest during the summer months for the two 

turbines, following the wind speed trend.  The variability in performance for both 

wind turbines is around 20-30% throughout the year which would need to be 

known to size the turbine appropriately to get the power output required during the 

year or during specific times of the year.  The yearly averaged capacity factors 

calculated from 365 successive days within the data set are given in the legend for 

each height position for the two wind turbines in Figures 4.14 and 4.15.  The 

Southwest Windpower Whisper 100 yearly averaged capacity factor ranges from 

24.5% to 6.5% for hub heights ranging from 50m to 3m, where the Bergey XL.1 

varies similarly from 32.8% to 9%.  The Southwest Windpower Whisper 100 model 

wind turbine was outperformed by the Bergey XL.1 at every height and by about 

33% at 50m.  Both models revealed low capacity factors for this study’s wind 

conditions which was especially true at 3m and 12m.   

 
Figure 4.14: SWWP Whisper 100, Capacity Factor Averages. 
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Figure 4.15: Bergey XL.1, Capacity Factor Averages. 

 
The yearly average capacity factor for the two commercial small wind turbines 

shown above is summarized versus tower height in Figure 4.16, clearly illustrating 

the XL.1’s increasing improvement with tower height and higher wind speeds over 

the Whisper 100.   

 
Figure 4.16: Yearly Average Small Wind Turbine Capacity Factor Comparison. 

 
The ratio of the power density of a wind turbine to the power density of the 

wind is described by the power coefficient, Cp, which was calculated for the two 

small wind turbines over the year of study, Figure 4.17.  There is a significant 
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discrepancy between the amount of power in the wind and that captured by the 

wind turbine, which varies between 18-34% for 30 day averages throughout the 

year for the Bergey XL.1.  The Bergey XL.1 is seen to perform with a higher power 

coefficient than the Whisper 100, however less significantly than with the capacity 

factor due to its larger area.   

 
Figure 4.17: Small Wind Turbine Power Coefficient Averages. 

 
The power coefficient value varies with wind speed following the wind turbine’s 

power curve relationship, Figure 4.18.  The maximum power coefficients for the 

Whisper 100 and XL.1 are found to be 35.8 and 38.4%, respectively, as compared to 

the Betz value of 59%.  These maxima occur at about 11.5 and 14 mph for the 

Whisper 100 and XL.1, after which there is a negative trend with wind speed and 

power coefficient Cp.  The maximum power coefficient occurs at a notably lower 

wind speed than the maximum power production for the two wind turbines (28 and 

24.6 mph).  
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Figure 4.18: Small Wind Turbine Power Coefficient Comparison. 

 
The power coefficient variation throughout the year is shown for the five 

anemometer heights for the Bergey XL.1 wind turbine, Figure 4.19.  The yearly 

average of this parameter varies from 29.8% to 21.7% for a 50m to 3m height.  High 

wind speed portions of the year result in the 50m height location representing the 

lowest value amongst the five heights due to the power coefficient trend with wind 

speed shown in Figure 4.18. 

 
Figure 4.19: Bergey XL.1 Power Coefficient Comparison with Hub Height. 
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Table 4.9 below summarizes the performance results for the two small wind 

turbines studied listing the yearly averaged performance measures at the five wind 

speed height locations from the data set along with the maximum power coefficient 

for each wind turbine. 

 

Table 4.9: Small Wind Turbine Comparison Performance Results. 

 
CFyear (%) Cp,year (%) Cp,max 

Model 50m 40m 30m 12m 3m 50m 40m 30m 12m 3m   
SWWP 
Whisper100 24.5 22.2 18.6 11 6.5 27.1 27 26.2 22.3 19.6 35.8 

Bergey XL.1 32.8 29.7 24.9 15.1 9 29.8 29.6 28.6 24.5 21.7 38.4 
 

This performance analysis was also extended to large utility size wind turbines 

to compare the effects of rotor diameter and generator size on the machine’s 

performance in this wind condition.  Three wind turbines from General Electric 

were compared which have a power rating and rotor diameter that vary 

independently from a control (GE 1.6-100), shown in Table 4.10. 

 

Table 4.10: Utility Size Wind Turbine Specifications. 

Model 
Power Capacity 

(MW) Rotor Diameter (m) 
GE 1.6-100 1.6 100 
GE 1.6-82.5 1.6 82.5 
GE 2.5-103 2.5 103 

 

The three wind turbines analyzed all share one tower height option 

commercially at 80 m.  To make the study more realistic this common height is used 

for the analysis.  Wind speeds were not recorded at 80m so the velocity at this 

height was calculated by extrapolating the velocity at 50m using the velocity profile 

power law estimation and average power coefficients as discussed earlier.  The 

yearly average of the power density from the wind data extrapolated to 80m was 

found to be 348 W/m2.   
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Figure 4.20: Wind Power Density Extrapolated to 80m Height. 

 
Turbine performance was calculated again using the power curves for the three 

utility-size turbines and the wind speed and is described using the identical 

measures as before.  Capacity factor for the three turbines is compared using the 

yearly data with a 30 day sample bin, Figure 4.21.  The yearly average of the 

capacity factor was also determined by averaging the power output of the turbine 

for 365 successive days.  The order of highest capacity factor was the GE 1.6-100 at 

46.8% its rated power, GE 1.6-82.5 at 39.3% its rated power, and finally the GE 2.5-

103 at 36.6% its rated power.  Dependent upon the cost of the turbines and 

installation, an economic decision could be made using this information to either 

buy more of the less expensive turbines which perform at a higher capacity factor or 

less of the more expensive turbines with the higher rated power and lower capacity 

factor.  If the cost was a constant function of only the power capacity of the machine 

then the analysis would conclude to purchase the turbine with the highest capacity 

factor.  The cost for a wind turbine does depend on more than just its capacity 

however, and additional (relatively) fixed costs like installation and land usage push 

towards fewer, higher power capacity wind turbines.  
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Figure 4.21: Utility Size Wind Turbine Capacity Factor Comparison (80m Height). 

 
The second measure of turbine performance, the power coefficient, is also 

compared for the three utility turbines throughout the year using the 80m 

extrapolated wind data, Figure 4.22.  This measure does not duplicate the 

information shown by the capacity factor above as clearly seen in this comparison, 

where the turbine with the highest capacity factor also has the lowest power 

coefficient.  The smaller area GE 1.6-82.5 has the highest power coefficient, which 

depends on the turbine area, followed by the GE 2.5-103 and then the GE 1.6-100.  

There is nearly a 10% increase in this efficiency measure for the 1.6 MW wind 

turbines for the smaller rotor diameter compared with the larger diameter machine.  

The higher rated wind turbine has a 2% increase in machine efficiency than the 

lower rated turbine with nearly the same rotor diameter.   

Power coefficient versus wind speed plots are shown for the three utility wind 

turbines as calculated from the individual turbine power curves.  Figure 4.23 shows 

how the power coefficient varies with wind speed for these three turbines.  An 

important thing to note, the GE 1.6-100 has a higher maximum power coefficient 

than the GE 2.5-103, but a lower yearly average, due to the broader curve for the GE 

2.5-103 and the distribution of wind speed.  Higher peak efficiency doesn’t mean the 

turbine will perform better if the alternative is a broader, flatter peak region.   
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Figure 4.22: Utility Size Wind Turbine Power Coefficient (80m Height). 

 

 
Figure 4.23: Utility Size Wind Turbine Power Coefficient Comparison. 

 
The results of the performance comparison for the three utility-size wind 

turbines are summarized in Table 4.11 with the machine characteristics restated. 

Table 4.11: Utility Size Wind Turbine Comparison Performance Results. 
 Model Prated (MW) Drotor (m) CFyear Cp,year Cp,max 

GE 1.6-100 1.6 100 46.8 31.7 46.6 
GE 1.6-82.5 1.6 82.5 39.3 34.7 49.8 
GE 2.5-103 2.5 103 36.6 32.3 44.4 
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A sensitivity analysis was performed using the generic wind turbine power 

curve from Equation 4.8 to determine the effect of changing the three defining 

speeds of a wind turbine’s power curve; cut-in, rated, and cut-out wind speeds.  

These values are the wind speeds where power is first produced by the turbine, 

where the turbine produces its rated power, and where the turbine is stopped due 

to high winds, respectively.  In this analysis, the three speeds were changed 

independently with the other two speeds held constant.  The nominal values (where 

that speed was not the test subject) are: Cut-in speed = 6 mph, Rated speed = 25 

mph, and Cut-out speed = 45 mph.  Additionally, the exponent n in the generic wind 

turbine equation was set to a value of 3 and the study was performed using 365 

days of the wind speed data at 50m.  Figure 4.24 reveals that changing the rated 

speed has the greatest influence on the capacity factor for a wind turbine.  The 

capacity factor is relatively insensitive to the cut-in and cut-out speeds when they 

remain within current common values.  Extending the range of operation by 

decreasing the cut-in and increasing the cut-out speeds has a negligible effect on the 

capacity factor over much of the range in this wind condition.   

 
Figure 4.24: Wind Turbine Capacity Factor Sensitivity Study. 
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4.5 Conclusions 

 

The analysis of wind speed data for West Lafayette, Indiana holds strong 

seasonal and daily trends.  Within the day and throughout the year wind speeds are 

observed that fluctuate as a substantial percentage of the average.  The trends hold 

that highest wind speeds occur seasonally in winter and early spring, and the lowest 

values are during the summer months.  Daily variations are such that the lowest 

wind speeds occur in the first half of the day where the highest values are in the 

second half.  The time within the day averages out from the year to occur at 7:10 am 

and 4:25 pm for the minimum and maximum.  The distribution of the wind speed 

was described using the Weibull probability function and the accuracy of this 

method is again proven for both estimating the average velocity from calculated 

parameters and from estimating the power in the wind with maximum errors 

around 0.85% and 4%.  The atmospheric velocity profile was estimated using a 

power law approximation and coefficients determined.  Wind turbine performance 

within the measured wind conditions were calculated for small residential wind 

turbines and for utility-size wind turbines to compare.  The two small wind turbines 

compared differed by about 33% on the year at 50m in capacity factor with a 32.8% 

maximum value average on the year.  A comparative study between rotor diameter 

and rated power was performed for utility-size wind turbines, with 100m and 1.6 

MW as the benchmark.  Performing in the wind conditions of this study revealed 

that the low capacity, large rotor diameter had the highest capacity factor, but also 

the lowest power coefficient on the year.  The low capacity, small rotor diameter 

had the highest power coefficient on the year.  Increasing the rotor diameter by 21% 

resulted in a 19% increase in the power production for the 1.6 MW machines, 

therefore an 8.6% decrease in average power coefficient.  For the turbine with a 

56% increase in the rated capacity, the capacity factor decreased by only 28%.   
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4.6 Highlights 
 

• Wind speed averages on the year at heights of (50, 40, 30, 12, 3)-m were found 

of (13.5, 12.8, 11.8, 8.9, 7.4)-mph. 

• November to May and times centered around 4:30pm contain the highest wind 

speeds on the year, while June to October and the time of day centered around 

7am produced the lowest wind speeds on the year. 

• Weibull probability analysis yearly average coefficients were calculated at 

heights (50, 40, 30, 12, 3)-m producing shape factors of k = (2.5, 2.5, 2.4, 1.9, 

2.0) and scale factors of c = (15.1, 14.4, 13.3, 10.0, 8.3)-mph. 

• Wind Power class at the studied location is determined to be Class II at 50-m 

height with a wind power density average of 254 W/m2, and between Class I-II 

at 10-m with an average wind power density at 12-m of 103 W/m2.  

• Small wind turbine performance was estimated for two leading manufacturer’s 

models with yearly average capacity factors at 50-m height of 24.5% and 

32.8% and yearly power coefficient values of 27.1% and 29.8%. 

• Utility-size wind turbines were compared for three models at an extrapolated 

80-m height with yearly averages of the capacity factor of (46.8, 39.3, 36.6)% 

and of the power coefficient of (31.7, 34.7, 32.3)% 
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4.7 Additional Monthly Averaged Wind Speed Data 
 

Table 4.12: Monthly Averaged Wind Speed Data, 40m (mph). 
Month V,max t,max V,min t,min V,avg ΔV,avg 
January 15.23 14:00 13.43 0:00 14.14 1.80 
February 18.36 21:00 14.90 7:00 16.80 3.46 
March 16.70 16:00 11.83 7:00 14.70 4.87 
April 18.65 12:00 14.35 2:00 16.06 4.30 
May 13.74 17:00 10.66 3:00 11.98 3.08 
June 13.09 16:00 9.05 7:00 11.02 4.04 
July 10.68 14:00 7.69 7:00 9.13 2.99 
August 11.55 14:00 9.24 7:00 10.46 2.31 
September 12.08 21:00 8.38 8:00 10.03 3.70 
October 14.28 14:00 11.71 6:00 12.58 2.56 
November 13.37 22:00 11.89 7:00 12.71 1.47 
December 14.87 13:00 12.88 9:00 13.75 1.99 

       AVERAGE: 14.38 16:10 11.33 5:50 12.78 3.05 
 

Table 4.13: Monthly Averaged Wind Speed Data, 30m (mph). 
Month V,max t,max V,min t,min V,avg ΔV,avg 
January 14.94 14:00 12.42 23:00 13.31 2.52 
February 17.16 16:00 13.59 7:00 15.78 3.56 
March 16.14 16:00 10.96 7:00 13.88 5.18 
April 17.95 12:00 12.78 2:00 14.86 5.18 
May 13.03 17:00 9.27 3:00 11.02 3.75 
June 12.39 16:00 8.23 7:00 10.07 4.16 
July 10.18 14:00 6.86 7:00 8.28 3.32 
August 10.85 15:00 7.87 6:00 9.31 2.98 
September 10.43 21:00 7.57 8:00 8.99 2.86 
October 13.44 14:00 10.21 6:00 11.33 3.23 
November 12.37 13:00 10.27 7:00 11.40 2.10 
December 14.53 13:00 12.12 9:00 13.20 2.42 

       AVERAGE: 13.62 15:05 10.18 7:40 11.78 3.44 
 
 
 



115 
 

Table 4.14: Monthly Averaged Wind Speed Data, 12m (mph). 
Month V,max t,max V,min t,min V,avg ΔV,avg 
January 12.20 14:00 9.29 23:00 10.48 2.91 
February 14.25 15:00 10.10 7:00 12.35 4.16 
March 13.74 16:00 8.01 7:00 10.98 5.73 
April 15.98 12:00 9.55 4:00 12.13 6.43 
May 11.42 15:00 5.86 2:00 8.60 5.55 
June 10.81 16:00 5.74 5:00 7.86 5.07 
July 8.73 14:00 3.61 21:00 5.76 5.12 
August 8.84 14:00 4.02 1:00 6.12 4.83 
September 7.47 15:00 4.17 4:00 5.69 3.31 
October 10.68 14:00 6.39 3:00 8.00 4.29 
November 10.63 14:00 7.13 7:00 8.56 3.50 
December 12.79 13:00 9.40 8:00 10.67 3.39 

       AVERAGE: 11.46 14:20 6.94 7:40 8.93 4.52 
 

Table 4.15: Monthly Averaged Wind Speed Data, 3m (mph). 
Month V,max t,max V,min t,min V,avg ΔV,avg 
January 10.79 13:00 7.30 21:00 8.74 3.49 
February 12.10 15:00 8.14 7:00 10.05 3.96 
March 11.72 15:00 6.68 6:00 9.09 5.04 
April 13.67 12:00 7.72 4:00 10.10 5.95 
May 9.87 15:00 4.59 2:00 7.20 5.28 
June 9.14 16:00 4.36 22:00 6.47 4.78 
July 7.31 14:00 2.13 21:00 4.57 5.18 
August 7.45 14:00 2.85 1:00 4.93 4.59 
September 6.32 12:00 3.10 19:00 4.47 3.22 
October 9.24 14:00 5.35 20:00 6.80 3.89 
November 9.52 11:00 5.62 0:00 7.11 3.90 
December 11.15 13:00 8.01 1:00 9.08 3.14 

       AVERAGE: 9.86 13:40 5.49 10:20 7.38 4.37 
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4.8 Additional Monthly Averaged Weibull Parameter Data 
 

Table 4.16: Monthly Weibull Averaged Wind Speed Data, 40m. 
Month k,max t,max k,min t,min K,avg Δk,avg c,avg (mph) 
January 3.70 3:00 2.55 18:00 2.90 1.15 15.84 
February 3.10 6:00 2.17 18:00 2.54 0.93 18.90 
March 2.45 2:00 1.67 14:00 2.10 0.78 16.60 
April 2.84 6:00 2.19 1:00 2.56 0.65 18.09 
May 2.91 3:00 1.92 8:00 2.28 0.99 13.51 
June 3.78 2:00 1.90 10:00 2.57 1.88 12.38 
July 3.53 6:00 1.89 8:00 2.59 1.64 10.27 
August 4.15 2:00 1.97 10:00 2.91 2.18 11.72 
September 3.15 6:00 1.80 9:00 2.36 1.35 11.30 
October 3.02 3:00 2.08 8:00 2.54 0.94 14.16 
November 3.19 23:00 2.09 16:00 2.66 1.10 14.26 
December 2.58 6:00 1.53 17:00 2.01 1.05 15.43 

        AVERAGE: 3.20 5:40 1.98 11:25 2.50 1.22 14.37 
 

Table 4.17: Monthly Weibull Averaged Wind Speed Data, 30m. 
Month k,max t,max k,min t,min k,avg Δk,avg c,avg (mph) 
January 3.66 3:00 2.46 18:00 2.79 1.19 14.92 
February 2.86 6:00 2.13 19:00 2.43 0.73 17.77 
March 2.33 1:00 1.65 14:00 2.02 0.68 15.67 
April 2.74 16:00 2.10 1:00 2.43 0.64 16.75 
May 2.66 3:00 1.84 0:00 2.18 0.82 12.42 
June 3.82 2:00 1.78 8:00 2.54 2.03 11.31 
July 3.21 6:00 1.87 8:00 2.53 1.34 9.30 
August 3.68 23:00 1.96 10:00 2.74 1.72 10.43 
September 2.85 6:00 1.75 9:00 2.20 1.10 10.12 
October 2.76 3:00 1.80 8:00 2.36 0.96 12.74 
November 2.79 23:00 2.07 16:00 2.44 0.72 12.81 
December 2.50 6:00 1.69 14:00 2.03 0.81 14.85 

        AVERAGE: 2.99 8:10 1.92 10:25 2.39 1.06 13.26 
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Table 4.18: Monthly Weibull Averaged Wind Speed Data, 12m. 
Month k,max t,max k,min t,min k,avg Δk,avg c,avg (mph) 
January 2.67 15:00 1.89 23:00 2.24 0.78 11.74 
February 2.53 9:00 1.69 3:00 2.10 0.83 13.91 
March 2.23 9:00 1.56 22:00 1.77 0.67 12.33 
April 2.89 16:00 1.64 0:00 2.22 1.25 13.64 
May 2.32 14:00 1.25 0:00 1.77 1.07 9.59 
June 2.47 17:00 1.45 6:00 1.98 1.03 8.84 
July 2.94 14:00 1.28 2:00 1.88 1.66 6.45 
August 2.38 13:00 1.42 6:00 1.82 0.96 6.86 
September 1.92 12:00 1.34 7:00 1.60 0.58 6.38 
October 2.48 16:00 1.46 4:00 1.83 1.02 8.96 
November 2.59 10:00 1.56 21:00 1.92 1.04 9.59 
December 2.00 6:00 1.48 19:00 1.72 0.52 11.95 

        AVERAGE: 2.45 12:35 1.50 9:25 1.91 0.95 10.02 
 

Table 4.19: Monthly Weibull Averaged Wind Speed Data, 3m. 
Month k,max t,max k,min t,min k,avg Δk,avg c,avg (mph) 
January 3.32 15:00 1.71 18:00 2.53 1.61 9.82 
February 2.85 13:00 1.63 3:00 2.12 1.22 11.30 
March 2.61 9:00 1.45 0:00 1.78 1.16 10.18 
April 3.14 16:00 1.57 0:00 2.28 1.57 11.34 
May 2.63 14:00 1.16 23:00 1.87 1.47 8.03 
June 2.74 17:00 1.64 20:00 2.06 1.10 7.29 
July 3.34 14:00 1.26 1:00 1.99 2.08 5.12 
August 2.66 13:00 1.41 0:00 1.87 1.25 5.52 
September 2.25 12:00 1.25 18:00 1.68 1.00 5.01 
October 2.84 10:00 1.52 1:00 2.03 1.32 7.63 
November 3.13 10:00 1.41 21:00 1.94 1.72 7.96 
December 2.10 13:00 1.50 19:00 1.80 0.61 10.21 

        AVERAGE: 2.80 13:00 1.46 10:20 2.00 1.34 8.29 
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CHAPTER 5: MICRO RECONFIGURABLE WIND FARM EXPERIMENTAL RESULTS 

 

 

5.1 Limitations and Assumptions 

 

Comparison of the performance of the wind turbines in wake operation requires 

a set of assumptions.  The first assumption is that the two wind turbines operate at 

the same power output in equivalent wind conditions.  This assumption depends on 

the repeatability of blade manufacturing and generator and electrical system 

repeatability.  The effect of any error from this assumption’s violation is limited by 

always placing each wind turbine in the same relative position, upstream or 

downstream of the other, and by averaging the power samples over Tbin to reduce 

differences in the power caused by the generator.  In addition to this assumption, 

the torque/rotational speed split of the produced power is also assumed equal for 

both wind turbines at a given input so that these values can also be compared. 

Variations in performance measurements with wind speed and with the 

upstream wind turbine’s aerodynamic power are treated synonymously in this 

analysis.  This assumption is justified by the manufacturer’s power curve which 

displays a one-to-one relationship with the wind speed and output power.  This, 

however, is not the true power curve with wind speed due to the generator 

dynamics which produce regular transients as the load is cycled.  Grouping the 

performance measures within aerodynamic power bins is treated as having the 

same effect as with wind speed, but producing more accurate results due to the 

generator dynamics.   
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5.2 Wind Turbine Single Wake Results 

 

Wake performance data were collected for the single wake case on five windy 

days over a three week span.  The data set includes repeated tests for three different 

turbine spacing’s of 3-, 5-, and 7-rotor diameters.  An example test case facility 

configuration for a 3-rotor diameter turbine spacing is shown in Figure 5.1.  

 
Figure 5.1: Facility Configuration with a Single Wake, 3-Rotor Diameter Spacing. 

 
As detailed in Section 3.4.2, the data were processed and filtered into the final 

usable data set using three filters; Tbin, Tsort, and Prange.  Tbin describes the minimum 

sample bin time length for alignment that would be included in the final data set.  

These bins are then divided into Tsort length bins, when the initial length is large 

enough.  The upstream wind turbine aerodynamic power is averaged within each 

bin, and data whose averages are within Prange are collectively averaged together to 

give the final result describing that variable within Prange.  For the single wake test 

case it was determined that using values of Tbin = 10-sec and Tsort = 10-sec produced 

accurate results.  The total data set averages of the normalized power and data set 

time for the single wake test case for a Prange= [75 W, ∞) are summarized for the 

three wind turbine spacing’s tested in Table 5.1.  In all of the results, the normalized 

averages are the time weighted averages of the bins within the particular Prange. 
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Table 5.1: Single Wake Test Case Performance Results (tbin= 10s/tsort= 10s). 
3-Rotor Diameter Wind Turbine Spacing 

Date Filtered Data Set Time (min) Normalized Power Data Set Average 
Day2 9.5 0.353 
Day3 15.1 0.453 
Day4 22.3 0.499 

total 46.9 0.455 

   5-Rotor Diameter Wind Turbine Spacing 
Date Filtered Data Set Time (min) Normalized Power Data Set Average 

Day1 16.4 0.72 
Day2 19.1 0.676 
Day5 33.9 0.799 

total 69.4 0.746 

   7-Rotor Diameter Wind Turbine Spacing 
Date Filtered Data Set Time (min) Normalized Power Data Set Average 

Day1 2.7 0.876 
Day4 31.7 0.832 
Day5 23 0.85 

total 57.4 0.841 
 

The variable filter times affect the results of the single wake test case.  Choosing 

a larger Tbin means that you are only looking at the data bins where the wind turbine 

was aligned over a larger portion of time.  A larger time also means that the 

generator dynamics would be averaged more appropriately to account for the 

transients of the rotor as it is loaded by the generator.  The higher bin requirement 

however comes at a cost of total data time in each set.  Reducing the amount of data 

for a set results in less certainty of the validity of the results, and can produce 

erroneously large or small distribution statistics.  The Tbin condition was made to 

ensure that the turbines were actually aligned during the sample and not simply 

passing through from on one side of the turbine to the other side.  The time 

condition would also need to be sufficient enough to overcome generator dynamics, 

if present.  Additionally, larger conditional time lengths reduce the error inherent 
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with using a time shift from the upstream wind turbine to the second based on the 

bin average velocity.  With this noted, there were many sub- 10-sec bins of constant 

alignment which would accomplish the goals of this filter.  It was observed that 10-

sec is a fairly long time considering input wind variations and the tight conditions 

placed on alignment.  Tbin= 10-sec was taken as a sufficient time length to produce 

valid results, and more total filtered data with improved statistics.   

The total averaged results are seen to vary from about 1-4% for the three tested 

spacing’s depending upon the bin length chosen, shown in Table 5.2.  In each of the 

cases, the loss is increased with the larger bin length.  The Prange= [75 W, ∞) averages 

are lower, but when plotted with further sub-divided power ranges, the averages 

are consistent within statistical variation for the three spacing’s at each of the 

compared bin time values.  The reduced normalized power trend with bin time is 

likely a result of the longer bins happening during strong gusts where the upstream 

turbine is removing more momentum from the air causing a lower normalized 

power, shifting the weight of the data average to higher powers.   

The Tsort bin division length is seen to have little effect on the average results 

when taken over large power ranges.  This variable is more important for dividing 

up large bins which may actually contain high and low power averages to ensure 

proper averaging when the ranges are divided.  By comparison, the 10-sec sort time 

produced the smoothest results for comparison over a finer sorting of power bins.  

For this reason and considering the justification for the bin time value, a 10-sec sort 

time was chosen for the final results. 

Table 5.2: Normalized Power Data Processing Comparison. 
Bin Time Sort Time s/D = 3 s/D = 5 s/D = 7 
10 sec unsorted 0.453 0.749 0.841 
10 sec 10 sec 0.455 0.746 0.841 
10 sec 30 sec 0.453 0.746 0.842 
20 sec 10 sec 0.429 0.726 0.826 
20 sec 20 sec 0.431 0.727 0.832 
30 sec 10 sec 0.417 0.717 0.832 
30 sec 30 sec 0.412 0.72 0.834 
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Filter conditions using Tbin= 10-sec and Tsort= 10-sec are used for describing the 

results of the single wake test case.  This processing scheme is seen to sufficiently 

average the generator dynamics and any error due to using bin-averaged time shifts, 

while maintaining enough data points and time for accurate power range division 

averaging.  Two additional cases of (Tbin, Tsort) = (20-sec, 20-sec) and (30-sec, 30-

sec) are shown for completeness and comparison of the total filtered data time in 

Tables 5.3 and 5.4.  The total amount of time meeting Pbin > 75W was reduced for (3, 

5, 7) diameter spacing sets from (47, 69, 57) minutes for 10-sec bin requirement to 

(38, 56, 42) and (23, 37, 25) minutes for 20- and 30-sec bin requirements.  

Comparison of these times reveals the amount of data within the 10-sec minimum 

bin requirement data set which has a bin time greater than 20-sec, and greater than 

30-sec.  Outside of these two tables, all remaining results use the final data 

processing conditions described.   

Table 5.3: Single Wake Test Case Performance Results (tbin= 20s/tsort= 20s). 
3-Rotor Diameter Wind Turbine Spacing 

Date Filtered Data Set Time (min) Normalized Power Data Set Average 
Day2 9.4 0.327 
Day3 11.4 0.451 
Day4 17 0.475 

total 37.8 0.431 

   5-Rotor Diameter Wind Turbine Spacing 
Date Filtered Data Set Time (min) Normalized Power Data Set Average 

Day1 16 0.716 
Day2 17 0.669 
Day5 22.5 0.779 

total 55.5 0.727 

   7-Rotor Diameter Wind Turbine Spacing 
Date Filtered Data Set Time (min) Normalized Power Data Set Average 

Day1 2.1 0.886 
Day4 23.8 0.834 
Day5 15.7 0.823 

total 41.6 0.832 
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Table 5.4: Single Wake Test Case Performance Results (tbin= 30s/tsort= 30s). 
3-Rotor Diameter Wind Turbine Spacing 

Date Filtered Data Set Time (min) Normalized Power Data Set Average 
Day2 7 0.314 
Day3 6.77 0.445 
Day4 9.4 0.462 

total 23.17 0.412 

   5-Rotor Diameter Wind Turbine Spacing 
Date Filtered Data Set Time (min) Normalized Power Data Set Average 

Day1 14.1 0.707 
Day2 10.9 0.68 
Day5 11.9 0.771 

total 36.9 0.720 

   7-Rotor Diameter Wind Turbine Spacing 
Date Filtered Data Set Time (min) Normalized Power Data Set Average 

Day1 2 0.918 
Day4 14.3 0.832 
Day5 8.9 0.817 

total 25.2 0.834 
 

The single wake performance total data sets and range averages are shown in 

Figures 5.2-7.  The filtered and sorted bins are averaged individually for the 

normalized power, torque, and rotational speed with each bin plotted for the three 

spacing’s versus the upstream wind turbine power –a measure of the incoming wind 

speed.  Additionally, the range averages are compared using 100-W power ranges 

with the center value as the index.  The averages are plotted with ± 1 standard 

deviation of the range data set to reveal its distribution.  The total data set plot 

reveals the range and number of samples for each of the three spacing’s.  From this 

plot, it is clear that the final 3-diameter spacing range [450, 550] W is not a 

statistically significant result which explains the final point in the range average 

plots for this spacing going against the downward trend with upstream turbine 

power.  Outside of this point the results are determined to be statistically significant.   
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Figure 5.2: Single Wake Power Losses with Turbine Spacing Data Set. 

 

 
Figure 5.3: Single Wake Average Power Losses with Turbine Spacing. 
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Figure 5.4: Single Wake Torque Losses with Turbine Spacing Data Set. 

 

 
Figure 5.5: Single Wake Average Torque Losses with Turbine Spacing. 
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Figure 5.6: Single Wake Rotational Speed Losses with Turbine Spacing Data Set. 

 

 
Figure 5.7: Single Wake Average Rotational Speed Losses with Turbine Spacing. 
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Trends are apparent from the results, namely through comparison of the data 

set averages.  Comparing overall power losses in Figure 5.3 for the three different 

turbine-turbine spacing’s reveals a trend that at larger spacing’s the downstream 

turbine operates at a higher percentage of the upstream turbine’s extracted power.  

This relationship is clearly non-linear where the reduction in normalized power in 

2-diameter increments from spacing’s of 7 to 5 and 5 to 3 are on the order of 0.07 

and 0.3.  The 3-diameter spacing location is likely operating in a region of the 

upstream turbine wake called the near-wake region.  This region extends up to 

around 2 to 5-rotor diameters downstream and is characterized by large structure 

turbulence with swirling flow containing a helical swept trajectory of the tip 

vortices, which are highly rotational.  Within this region, downstream turbine losses 

are not due simply to a reduction in momentum from the freestream by the 

upstream turbine, but also due to the 3-dimensional rotational and turbulent flow 

conditions which both work to reduce power capture by the downstream turbine.  

Beyond the near wake region the wake begins to propagate in a self-similar manner 

with only small scale turbulence.  The data statistics point to a valid result for the 

spacing trend where the ± 1 standard deviation curve from the one spacing’s 

average typically falls outside of the other spacing’s average.  Considering the 

varying atmospheric conditions which could produce widely different results for the 

same wake scenario, this standard deviation is seen as a highly acceptable result 

that validates the significance of the data. 

The normalized power also displays a trend in response to increasing power 

range bins.  As the upstream wind turbine extracts more power (at higher wind 

speeds) the normalized power of the downstream wind turbine decreases.  This 

trend is noticed with the 7- and 3-diameter spacing cases, but not with the 5-

diameter case which is mostly constant.  The decrease with upstream power capture 

for the 7-diameter case only persists up to 200 W.  This can be explained in several 

ways.  The upstream turbine produces increased power in response to increased 

wind speed.  The power in the wind has a cubic relationship to its velocity, whereas 

the turbine extracts power as a square of the velocity.  This means that as wind 
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speed increases, more power is in the atmosphere than is extracted at a divergent 

rate.  The addition of momentum in the freestream potentially compensates for the 

additional momentum extraction by the upstream turbine.  The thrust coefficient 

also can be used to possibly explain the near constant normalized power for power 

ranges greater than 200 W for 7- and 5-diameter spacing’s.  One-dimensional theory 

used in deriving the single wake model in Section 3.3.1 reveals that the wake 

performance loss depends on the spacing, wake expansion properties which vary 

with atmospheric conditions, and on the thrust coefficient of the upstream turbine.  

At a constant spacing in the same, or near the same, atmospheric conditions, the 

only variable that can alter the downstream wind turbine performance is the thrust 

coefficient of the upstream turbine.  It is possible that the upstream turbine begins 

operating in a region of near constant thrust coefficient after about 200-W.  At 200-

W power output the wind turbine is operating at an average of over 600 rpm, so it is 

likely that the thrust coefficient beyond this point has only negligible changes.  The 

wind turbine is operating within the “turbulent windmill state” beyond its 

maximum efficiency point as defined in Figure 5.8 with support given Figure 5.9 

which reveals that the test wind turbine reaches its maximum power coefficient at a 

very low wind speed, from where the thrust coefficient potentially nears a constant 

value.   

 
Figure 5.8: Thrust Coefficient Operating Regions with Empirical Fits [38]. 
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Figure 5.9: Whisper 100 Power Coefficient versus Wind Speed. 

 
The smaller upstream power region produces more suspect measurements due 

to increased percentages of experimental uncertainty.  It is possible that the first 

data point in the averages [100, 200] W has a variation due to these effects.  The 

data will be presented later in a Table, but the time content in the data range for 3, 5, 

and 7-diameter spacing’s is 22.7, 35.1, and 17.4 minutes.  The 5-diameter spacing 

which has a constant normalized power does have more content, but it is 

determined that the 3- and 7-diameter spacing data sets contain a large enough 

sample to validate their results.  Experimental uncertainty is not thought to be an 

explanation to this trend.   

The normalized torque data, Figures 5.4 and 5.5, display trends similar to the 

normalized power trends discussed, and follow the same discussion.  Differences 

are that the normalized torque occurs at a value on the order of 0.1 greater than the 

normalized power values.  This means that the torque comparisons between the 

upstream and downstream turbines are more similar in magnitude than the power 

comparisons.  The average normalized torque values are also mostly constant 

beyond 200 W upstream turbine power, with averages for the (3, 5, 7) diameter 

spacing’s of around (0.6, 0.8, 0.9).  The normalized torque again follows a non-linear 

trend with turbine spacing as it approaches the upstream turbine near-wake region.   
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To a high level of agreement for these data, the normalized power is 

approximated as the product of the normalized torque and normalized rotational 

speed.  While the torque trend closely followed that of the power, the rotational 

speed trend with upstream turbine power for the three spacing’s tested is nearly 

constant.  One implication of this is that the overall power trends with upstream 

turbine power are due to changes in the torque, not the rotational speed.  For the 3- 

and 7-diameter spacing cases which saw a downward trend in the normalized 

power with upstream turbine power, the variation of normalized power compared 

with the variation of normalized rotational speed between the different power 

range averages was on the order of 4 times greater.  This indicates that the 

reduction in rotational speed is much more consistent at varying upstream wind 

turbine power than the reduction in the power due to the upstream wake.    

The normalized rotational speed data points in Figure 5.6 also show very low 

variability for each of the three spacing cases, with slightly more at the near-wake 3-

diameter spacing location.  This low level of scatter results in standard deviations 2-

3 times smaller than for the torque measurements.  The low variability of the 

rotational speed implies that it is nearly a function of the spacing alone, and less 

dependent upon atmospheric conditions or wake variations of the upstream 

turbine.  This seemingly makes the rotational speed an ideal indicator of turbine 

performance in wake operation.  The difficulty however is that it appears that there 

is not a one-to-one relationship between normalized rotational speed and 

normalized power as the normalized rotational speed for the 5- and 7- diameter 

spacing cases are nearly identical and average to within 0.001 of each other.  This is 

a significant result which reveals that between 5- and 7-diameter spacing the 

mechanism which causes a reduction in rotational speed of a wake-operated wind 

turbine operating ceases to decrease it further and has reached a constant value for 

the normalized rotational speed around 0.87.   

A summary of the averages for the non-repeated power bins for normalized 

power, torque, and rotational speed for the three tested spacing’s is given in Table 

5.5.  This table also shows standard deviation and time in the power range sample of 
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each calculated value to support the conclusions drawn about the statistical 

significance of the data.  An additional average is given which contains all of the data 

with an upstream turbine power greater than 200 W, and its standard deviation.  

Due to the discussed nearly constant wake performance with upstream turbine 

power beyond 200 W, this average is considered as the most representative single 

value for describing wake operation.  Observation of the low standard deviations 

combined with the large time samples within this averaging range prove the results 

within the average, and also the similar magnitude normalized value results in the 

bins which combine into this average.  The comparison between the three spacing’s 

reveals that the standard deviation of this average gets smaller as more data time is 

included, another validation of the facility’s instrumentation and measurements. 

 

 

 

Table 5.5: Single Wake Normalized Performance Data Statistical Summary. 
3-Diameter Turbine Spacing Single Wake Summary 

Power Bin [W]: [100,200] [200,300] [300,400] [400,500] [200,∞) 
Power Avg 0.440 0.457 0.435 0.376 0.437 
Power Sdev 0.162 0.117 0.091 0.058 0.109 
Torque Avg 0.562 0.589 0.571 0.512 0.571 
Torque Sdev 0.190 0.132 0.091 0.066 0.119 
Omega Avg 0.769 0.769 0.754 0.723 0.757 
Omega Sdev 0.041 0.039 0.044 0.027 0.043 
Data Time 22.7 10.1 3.2 2.3 16.1 

      5-Diameter Turbine Spacing Single Wake Summary 
Power Bin [W]: [100,200] [200,300] [300,400] [400,500] [200,∞) 
Power Avg 0.735 0.729 0.722 0.731 0.728 
Power Sdev 0.129 0.106 0.064 0.059 0.092 
Torque Avg 0.854 0.830 0.832 0.834 0.830 
Torque Sdev 0.144 0.119 0.062 0.051 0.101 
Omega Avg 0.861 0.880 0.866 0.872 0.876 
Omega Sdev 0.034 0.035 0.023 0.026 0.033 
Data Time 35.1 15.8 4.0 3.1 25.0 
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Table 5.5: Continued. 
7-Diameter Turbine Spacing Single Wake Summary 

Power Bin [W]: [100,200] [200,300] [300,400] [400,500] [200,∞) 
Power Avg 0.882 0.803 0.806 0.807 0.803 
Power Sdev 0.119 0.078 0.091 0.060 0.076 
Torque Avg 1.026 0.920 0.922 0.911 0.914 
Torque Sdev 0.119 0.079 0.085 0.056 0.072 
Omega Avg 0.860 0.872 0.875 0.884 0.877 
Omega Sdev 0.024 0.023 0.024 0.023 0.025 
Data Time 17.4 13.5 8.1 6.6 36.7 

 

The power loss of a wind turbine operated within a wake of an upstream turbine 

is a result of the loss in torque and/or loss in rotational speed.  Using the 

performance averages for the [200,∞) W power range along with the results of 

Equations 3.94 and 3.95, the power loss due to torque loss and to rotational speed 

loss can be estimated and compared to give insight into the physics of the wake and 

performance loss mechanisms as a function of the turbine spacing: 

                                                             𝑃𝑙𝑜𝑠𝑠,𝑡𝑜𝑟𝑞𝑢𝑒 ≈
1−𝜏𝑛𝑜𝑟𝑚
1−𝑃𝑛𝑜𝑟𝑚

  (5.1) 

                                                           𝑃𝑙𝑜𝑠𝑠,𝑟𝑜𝑡𝑎𝑡𝑖𝑜𝑛 ≈
1−Ω𝑛𝑜𝑟𝑚
1−𝑃𝑛𝑜𝑟𝑚

 . (5.2) 

 

The results from this analysis are given in Table 5.6.  The equation used to solve 

for the loss components is only an approximation where the contributions ideally 

add up to 1.  The contribution sum is seen to stray from this ideal, particularly for 

the 3-diameter case.  With this caveat, the loss components can be thought of as 

percent contributions to the total power loss.  The results do show a trend with 

spacing, where the contribution of the torque loss to the total power loss decreases 

with spacing (meaning the torque recovers to its non-wake value).  Rotational speed 

losses are seen to likewise increase, but at a lower rate than with torque losses, and 

reach a constant value as discussed between 5- and 7-rotor diameters.  The overall 

trend produce, seen in the loss ratio (Ltorque/Lrotation), is that as the turbine moves 

further downstream from the wake generating turbine that the power loss 
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originally dominated by a torque loss begins to be dominated by a rotational speed 

loss. 

Table 5.6: Single Wake Power Loss Components. 
x/DT Pnorm τnorm Ωnorm Ploss,torque Ploss,rotation Ltorque/Lrotation 

3 0.437 0.571 0.757 0.76 0.43 1.77 
5 0.728 0.830 0.876 0.62 0.45 1.38 
7 0.803 0.914 0.877 0.43 0.62 0.70 

 

In order to understand this result, consideration is given to flow property 

changes caused by the wake of a wind turbine and their variations with distance 

from the turbine.  The wake of a wind turbine changes the flow in essentially three 

ways, treated independently in this qualitative analysis; momentum extraction 

causing a reduced velocity at the rotor disk and reduced pressure immediately 

downstream of the rotor, tangential swirl velocity addition to the flow produced 

from torque generation opposite the direction of the turbine rotation, and 

turbulence addition to the flow mostly radiating from the blade tip region due to 

blade loading and tip vortices.  These properties and their variation with distance 

downstream of a wind turbine are what produce the power loss contribution 

differences at the three tested spacing’s.  Axial velocity loss due to momentum 

extraction predicted in the wake is highest in the near-wake region and the loss is 

recovered downstream with an expanding wake and momentum addition from the 

atmosphere.  The added swirl velocity due to torque generation is again most 

distinct near the wind turbine and at some point downstream, near the onset of the 

far-wake region, this swirl velocity returns to zero.  Turbulence added to the flow 

from the solid airfoil boundaries initially occurs in large length scale helical 

structures with rotation but is resolved into small length scale turbulence in the far 

wake region with further reduction in turbulence levels with distance downstream, 

ultimately recovering completely but at a further distance than velocity recovery.   

In order to understand the effect of the changing wake flow on torque and 

rotational speed a two-dimensional blade strip analysis is considered, as 

diagrammed in Figure 5.10.   
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Figure 5.10: Wind Turbine Strip Analysis Diagram. 

 
The differential rotor torque contribution at each radial location is determined, 

with CL and CD representing the lift and drag coefficients:   

            𝑑𝜏 =  1
2� 𝜌𝑊2 ∗ {𝐶𝐿 cos(90− (𝜃 + 𝛼)) − 𝐶𝐷 cos(𝜃 + 𝛼)} ∗ 𝑑𝐴 . (5.3) 

 

For reference, the relationship of torque and rotational speed for a stand-alone 

wind turbine not operating within a wake is given in Figure 5.11.  Points plotted are 

for sampled data at 4-hz.  There is a nearly linear relationship visible between the 

two power variables with scatter mostly arising from the wind turbine generator 

dynamics, with an approximated slope of between 0.2-0.23 lb-in/rpm.  In order for 

the relative influence of torque versus rotational speed on the combined power loss 

to fluctuate in a manner that can match the data, this curve would need to change 

when considering the downstream wind turbine, and is not meant to be a 

quantitative reference.   
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Figure 5.11: Wind Turbine Torque vs. Rotational Speed Data Set. 

 
The axial velocity loss due to momentum extraction (assuming a starting 

rotational speed as without the loss) would act to reduce the angle of attack of the 

airfoil and reduce the relative velocity flow over the airfoil.  The change in the angle 

of attack has two main effects which both degrade performance.  Given a blade set 

angle selection which is optimized for the design angle of attack the blade 

performance will move to a less optimum range, and additionally the reduced angle 

of attack also shifts the direction of the lift force so it has a smaller component in the 

rotation/torque plane.  Reduction in the relative speed over the airfoil would act to 

reduce the magnitude of the lift force.  This wake phenomenon causes less torque to 

be generated by the blades, which would in turn require a reduction in the 

rotational speed so that the generator load matches the rotor aerodynamic forcing 

input. 

Swirl velocity addition (initially assuming a rotational speed as the case without 

swirl) will also cause a reduction in the angle of attack but with an accompanied 

increase in the relative airfoil flow speed.  Assuming an equivalent angle of attack 

change between the momentum extraction and swirl addition components, the 

difference in performance will be described completely by the difference in the 

relative velocity between the two cases.  Higher lift forces produced by the 
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increased relative velocity from the swirl flow would mean higher performance for 

the swirl case relative to the momentum extraction case.  It is unclear as to whether 

the two phenomena will produce similar angle of attack reductions required to 

qualitatively compare their relative contributions.  The increase in relative velocity 

caused by the swirl addition also makes approximation of its effect on the flow 

difficult, it is considered however to produce a reduction in torque and therefore 

rotational speed of a small value, lesser than with momentum extraction.   

Turbulence superimposed on flow over an airfoil can increase or decrease its 

performance.  When operated near stall conditions, turbulence will extend the range 

before flow separation is incurred preventing substantially reduced performance.  If 

not operating near stall conditions, turbulence will only act to degrade performance.  

Stall conditions occur at high angles of attack and for high relative velocities seen by 

the airfoil.  While stall may be present over the outer portion of the wind turbine 

blades during its operation, the majority of power production likely arises from the 

inner- to mid-span portions of the blades.  Turbulence will be considered overall as 

a contributor to power losses in the present analysis.  These losses are thought to be 

especially prevalent in the region downstream where the turbulence has reduced to 

smaller length-scale which is more isotropic in nature.  As mentioned, the 

turbulence losses will persist longer than momentum extraction losses and also will 

decrease with downstream spacing once fully developed. 

Single wake performance loss results for the three spacing’s tested are 

summarized graphically in Figure 5.12.  In this figure a dividing line is plotted which 

distinguished the torque dominated loss region from the rotational speed 

dominated loss region, describing the relative contribution of torque and rotational 

speed to the overall power loss.   
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Figure 5.12: Single Wake Normalized Power Component Losses. 

 
An interesting result for this analysis occurs between the 5- and 7-diameter 

spacing cases where the rotational speed seems to hit a constant for the loss, but 

that the torque loss is decreased for the larger spacing.  This result clearly requires 

an explanation beyond the wind turbine torque-rpm curve can provide.  The linear 

torque-rpm curve approximates that an input torque reduction would likewise 

produce a rotational speed reduction.  This trend breaks down when comparing the 

5- and 7-diameter spacing’s, where the increased torque loss from 7- to 5-diameter 

is not accompanied with a rotational speed loss.  If rotational speed loss is thought 

to be due to momentum extraction and swirl addition alone then this result would 

suggest that there is no further axial velocity reduction or swirl component present 

beyond 5-diameters downstream.  In this scenario, turbulence would then be the 

only varying component meaning that turbulence causes a reduction in torque with 

spacing, but not so or less so with rotational speed.  The reasoning that turbulence 

would decrease the torque but not rotational speed is unclear. 

The results from Figure 5 show that a 3-diameter spacing wind turbine is clearly 

operating in a high loss region.  This case has a power reduction both due to torque 

losses and rotational speed losses.  These losses are considered to be sourced by 

each of the three mechanisms.  Rotational speed losses are thought to be dominated 
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by both axial velocity reduction and swirl velocity addition from the upstream wind 

turbine which both have high magnitudes at this close spacing.  This location 

produces torque dominated losses considered in part from the reduced 

performance due to axial speed reduction and in part from turbulence reduced 

torque – if the possible result from the 5- and 7-diameter spacing comparison holds.   

The wind turbine single wake operation power loss results versus turbine 

spacing are summarized in Figure 5.13.  This plot includes two power ranges in 

order to reveal the role of upstream power extraction on the downstream turbine 

power loss, where up to a 5% additional loss is observed at the higher upstream 

power condition.  This result can, in part, be described by the reduced thrust 

coefficient in the lower power range.  The averages are plotted with ± 1 standard 

deviation of the averages. 

 
Figure 5.13: Single Wake Average Power Losses vs. Turbine Spacing. 

 
The exact values from the single wake power losses with spacing are listed, with 

the total time of data within the average, in Table 5.7.  The time included in the [100, 

300] W power range is naturally more substantial, however the [300, 500] W curve 
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follows the expected trend where a higher momentum capture from the upstream 

turbine will result in greater power losses in the downstream turbine so the data 

time is viewed as sufficient.   

 

Table 5.7: Single Wake Spacing Normalized Power Comparison. 
Data Range: Prange = [100, 300] W Prange = [300, 500] W 

Spacing (x/DT) Data Time (min) Pnorm,wt Data Time (min) Pnorm,wt 

3 32.8 0.446 5.5 0.410 
5 51 0.733 7.2 0.726 
7 30.9 0.848 14.7 0.806 

 

Comparison of the overall single wake results for the three spacing’s to the 

models described in Section 3.3.1 will now be made.  The model formulation from 

the revised analysis in addition to the standard Jensen model will both be used to 

compare to the data, and compare the model’s results.  The models will be solved 

and fit to the experimental results over a range of thrust coefficient.  The model 

formulation from Equations 3.69 and 3.74 are solved for k and rewritten, again 

using n=2 to describe the test wind turbine: 

                                                       𝑘 = 1
2𝑠
��

𝛽�1−�1−𝐶𝑇�

1−�𝑃𝑥 𝑃1� �
1 𝑛�
− 1� (5.4) 

                                                         𝛽 = �
1

2�        𝑅𝑒𝑣𝑖𝑠𝑒𝑑
1           𝐽𝑒𝑛𝑠𝑒𝑛

� . (5.5) 

 

Results for the revised formulation model for the wake decay constant fit to the 

data point as a function of the required input thrust coefficient are shown in Figure 

5.14.  The associated wake decay constants for the six data points, 3 spacing’s and 2 

power bins each, were each solved for with the small power bin, [100, 300] W, 

plotted using the dashed lines and the large power bin, [300, 500] W, displayed 

using the solid lines.  The power bins are associated with the thrust coefficient 

where the lower power bin would be expected to have a lower thrust coefficient.  
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Additionally, it would be expected for the same power bin at different spacing’s to 

have the same thrust coefficient since this is dependent upon only the upstream 

wind turbine and not on the spacing.  This assumption is especially true in 

comparing the 5- and 7- diameter spacing’s.  Given validity of the constant linear 

wake expansion assumption, this would require intersection of the two spacing’s 

curves at (CT, k).  To an approximation, the wake decay constant can be thought of as 

a strong function of the atmosphere, and a weak function of the upstream turbine 

power range or spacing.  With this approximation, the thrust coefficient can be 

compared for the two power bins, by maintaining a constant k, when one thrust 

coefficient is determined. 

 
Figure 5.14: Single Wake Model Fit to Data, Revised Formulation. 

 
This model’s results do not match the expectations for the single wake analysis.  

In order for the thrust coefficients to have the same value, with an assumed constant 

k from the atmosphere produced at that particular CT, the curves for 5- and 7-

diameter spacing’s would need to intersect.  For the large power bin, the curves for 

k come within 0.01 of each other for thrust coefficients greater than CT = 0.76.  The 

constant wake decay assumption bin for the two spacing’s within the same power 

bin may be inaccurate to within 0.01 since the testing was partially done on 

different days and with different weigthing.  The model is not invalidated by this 
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comparison.  With a known thrust coefficient, the wake decay constant can be 

determined.  For values of CT = [0.8, 0.9] resultant wake decay constants are 

approximately between k = [0.04, 0.06].  

Comparison of the curves for the three spacing’s reveals a stark disagreement 

between this model and what’s physically possible from the 3-diameter spacing.  

This spacing requires a wake contraction (negative k) for thrust coefficients less 

than 0.92 for the high power bin – the actual CT is likely beneath this value.  The one-

dimensional formulation of the model makes assumptions on the flow that are not 

physical, and these assumptions are especially violated within the near-wake region 

of the flow where large structure turbulence and swirling velocities make significant 

contributions to the overall flow conditions.  The model formulation does not 

capture the physics of the near-wake region and therefore it is not appropriate to 

use this model near that region. 

The Jensen model results for the wake decay constant fit to the experimental 

data are derived in the same way, presented in Figure 5.15.     

 
Figure 5.15: Single Wake Model Fit to Data, Jensen Formulation. 

 
The Jensen model curves for the 5- and 7-diameter spacing’s do intersect as 

expected for the high power bin.  The intersection, and therefore the results for the 

large power bin, occurs at CT = 0.848 with k = 0.103.  This result is significant 
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because a wake decay constant of k = 0.1 is a commonly accepted value using the 

Jensen model, further verifying the experimental results.  The Jensen model does a 

better job at approximating the 3-diameter turbine spacing case than the revised 

formulation, however the model still does not describe the near wake region physics 

appropriately.  The 3-diameter spacing result requires a wake decay constant of k = 

0.05 at the intersection CT = 0.85, which is the actual thrust coefficient for the 

upstream wind turbine within the [300, 500] W power bin, according to this model.  

In order to describe all of the spacing’s appropriately the model would have to be 

formulated with a non-linear wake expansion, expanding slowly at first (low k) and 

then more rapidly expanding with axial location, eventually reaching a linear 

expansion region with constant k.   

For both models, the small power bin cannot be accurately compared due to the 

reduction in power for 7-diameter but not for the 5-diameter spacing.  If the 7-

diameter spacing small power bin is treated as correct, the thrust coefficient change 

can be compared as predicted by the two models.  This change is calculated using 

the known thrust coefficient from the Jensen model at the high power range 

(CT=0.85) along with the assumption of nearly constant k for the same spacing case 

between the two power bins described earlier.  With these assumptions, the revised 

formulation predicts a CT=0.85 reducing to CT=0.72 for the [100, 300] W power 

range, with a wake decay constant k=0.044.  The Jensen model predicts the [300, 

500] W power range CT=0.85 will reduce to the exact same value of CT=0.72 for the 

[100, 300] W power range, at the wake decay constant k=0.1.  Due to the model 

formulation, at a constant k (that can vary for the two respective models) the two 

model equations will produce the same resultant CT value if the starting value is the 

same.  Accordingly, for both models this reduction in the thrust coefficient is 

reasonable at the lower power range.   

The revised model was created as a more theoretically correct derivation of the 

linear wake model, but the more fundamentally correct model is the ultimate goal 

for the single wake model.  The Jensen model more nearly captured the near-wake 

region as opposed to the wake contraction predicted by the revised formulation in 
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this region, where using the resulting k=0.1 value predicts a normalized power of 

0.58 for the 3-diameter spacing result compared to the actual result of 0.41.  This 

deviation is minor compared to the model violation within this region and is 

considered to be in good agreement for that reason.  The Jensen model was in 

complete agreement with the normalized power results for 5- and 7-diameter 

spacing’s which was where the two curves intersected and the values for CT=0.85 

and kJensen=0.103 were derived.  The revised model formulation, using the CT 

solution from the Jensen model and solving for krevised=0.044 predicts normalized 

power value for spacing’s (3, 5, 7) of (0.65, 0.73, 0.78) compared to the experimental 

results of (0.41, 0.73, 0.81).  The results of the two models and their predictions 

beyond the spacing’s tested are shown and compared in Figure 5.16. 

 
Figure 5.16: Single Wake Model Comparison with Data. 

 
This figure shows that the formulation of the Jensen model fits best with the data 

over the range it was collected.  The revised formulation predicts a higher 

normalized power in the near-wake region, and more sustained power loss with 

lower normalized power values at higher turbine spacing’s.  The appropriateness of 

either model formulation could also be compared by considering the resulting wake 

decay constants from both.  For an assumed CT=0.85, these constants differ from 

k=0.044 for the revised formulation to k=0.1 for the standard Jensen formulation.  
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The values predict expansion rates with difference of a factor of two, which is 

substantial.  Comparison to actual wake flow measurements may reveal the more 

accurate physics of wake expansion rate for one of the models.   

 

 

5.3 Wind Turbine Multiple Wake Results 

 

Wake performance data was collected for a double wake test case on one windy 

day.  The data set contains a double wake (three turbine) 7-rotor diameter spacing 

multiple wake test.  The test case facility configuration for the 7-rotor diameter, 

double wake turbine spacing is shown in Figure 5.17.  

 
Figure 5.17: Facility Configuration with a Double Wake, 7-Rotor Diameter Spacing. 

 
A comparison of the data processing parameters for the double wake was 

performed as with the single wake analysis comparing the effects of Tbin, Tsort, and 

Prange.  This comparison produced the same conclusion with the same justification as 

for the single wake scenario.  The Tbin with 30-sec didn’t contain enough points to be 

accurate and the plots were erratic when plotted in the divided power bins for this 

reason.  The 20-sec bin requirement plots look very similar to the 10-sec 

requirement, only with less data.  The concern for this analysis was that the double 

wake scenario doubles the mandatory time shift increasing the magnitude of its 
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errors in a smaller time bin.  The agreement between the 20-sec and 10-sec curves 

disproved the concern for increased loss in the double wake with Tbin = 10-sec.  For 

these reasons, the double wake analysis also uses Tbin = 10-sec and Tsort = 10-sec to 

filter the data set, over various Prange values.   

Table 5.8 details the justification for selection of Tbin = 10-sec, where the results 

were similar to the 20-sec case only with more total data.  The 8.0 minutes of data 

collected on one day is not as statistically significant as would be hoped for, 

however it was seen in the single wake case where reduced 100 W sample data bins 

with small time content (< 5 minutes) would repeatedly produce consistent results 

with the larger set (> 15-25 minutes).  These data for that reason are justified as 

correct in regards to their trend.   

A significant difference between the processing of the single wake scenario and 

the double wake scenario is seen in the variation of its average with respect to the 

power range, shown in Table 5.8.  For Prange = [75 W, ∞) results seemingly point to a 

constant value for the normalized power from wake number 1 to wake number 2, 

comparing with results from Table 5.9.  When processed for Prange = [200 W, ∞) the 

results change and the normalized power for the double wake scenario (wake 

number 2) changes from 0.861 to 0.738 for the data processing scheme of interest.  

This results in a difference in single to double wake normalized power of 

approximately 0.07, compared with no change for the larger power range. 
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Table 5.8: Double Wake Normalized Power Comparison (7-diameter Spacing). 
Data Processing Scheme Prange = [75 W, ∞) Prange = [200 W, ∞) 
Bin Time Sort Time Data Time (min) Pnorm,wt Data Time (min) Pnorm,wt 
10 sec unsorted 33.3 0.861 8.4 0.731 
10 sec 10 sec 31.2 0.861 8.0 0.738 
10 sec 30 sec 33.3 0.862 7.3 0.736 
20 sec unsorted 22.9 0.839 5.9 0.717 
20 sec 20 sec 22.6 0.836 5.2 0.730 
30 sec 10 sec 6.9 0.807 1.5 0.659 
30 sec 30 sec 7.6 0.817 1.5 0.677 

 

 

Table 5.9: Single Wake Normalized Power Comparison (7-diameter Spacing). 
Data Processing Scheme Prange = [75 W, ∞) Prange = [200 W, ∞) 
Bin Time Sort Time Data Time (min) Pnorm,wt Data Time (min) Pnorm,wt 
10 sec 10 sec 57.4 0.841 36.7 0.803 
10 sec 30 sec 60.9 0.841 36.9 0.803 
20 sec 10 sec 39.4 0.826 26.5 0.796 
20 sec 20 sec 41.6 0.832 27.1 0.799 
30 sec 10 sec 23.1 0.832 16.9 0.793 
30 sec 30 sec 25.2 0.834 16.0 0.788 

 

The total filtered data set results are displayed in Figures 5.18-23 for normalized 

power, torque, and rotational speed.  These data are presented in the same manner 

as for the single wake scenario, only now comparing the 7-diameter spacing data set 

from the single wake case above with data for the 7-diameter double wake test case.   
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Figure 5.18: Wake Power Losses with Wake Number Data Set. 

 

 
Figure 5.19: Wake Average Power Losses with Wake Number. 
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Figure 5.20: Wake Torque Losses with Wake Number Data Set. 

 

 
Figure 5.21: Wake Average Torque Losses with Wake Number. 
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Figure 5.22: Wake Rotational Speed Losses with Wake Number Data Set. 

 

 
Figure 5.23: Wake Average Rotational Speed Losses with Wake Number. 
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The comparison plots of the performance for single- and double-wake 7-

diameter spacing scenarios reveal some conclusive trends.  Comparisons are made 

using the bin average plots, which are averaged over a 100 W range with the plotted 

point being the center of that range.  Observation of the total data set plot reveals 

that in the final range [350, 400] W there aren’t very many total points which makes 

the final point plotted in the averages suspect, and may not well describe the actual 

average for this bin or its statistics.   

One clear trend in both the normalized power and normalized torque plots is 

that as the power range increases, the separation between the curves for a single 

and double wake increases.  This is best explained by the momentum extraction 

increasing with the power range (as explained with the single wake), only now in 

the double case there is a multiple effect because of the second wake.  The 

normalized power in the small power range bins for the torque and power are very 

near that of the single wake results.  This agreement verifies the quality of the 

results for the double wake because at very low power extraction, the first turbine 

(14-diameters upstream) would only be expected to contribute a small amount to 

the power loss of the third turbine, meaning the results would be very near those of 

the single wake.  Although the average given in Table 5.8 for the [75 W, ∞) range 

seemed to point to a negligible reduction for the second wake number from the first, 

it is seen from this plot that the trend with power range is correct, meaning that the 

high average was due to a disproportionate weighting towards low upstream wind 

turbine power averages (where the normalized power for single and double wake 

scenarios is about 0.88).  At the high power range, the single and double wake 

scenarios seem to reach a limit in the normalized power of approximately 0.8 and 

0.72, meaning the additional loss is 0.08 from the second wake.   

As with the single wake test cases, the rotational speed for the double wake 

scenario is also nearly a constant with little scatter, Figure 5.23, with the same 

justification as before.  For the double wake scenario, this value is reduced further, 

from an average of about 0.88 to 0.86 for the double wake test case.  The addition of 

the second wake upstream causes a small reduction in the rotational speed, which is 
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thought to be due to a further decrease in the freestream wind speeds, with the 

wind turbine rotating more slowly in this lower wind condition.   

Following Equations 5.1 and 5.2 as before, the contribution to the loss from the 

torque and rotational speed components for comparison of the single and double 7-

diamter spacing scenarios is summarized in Table 5.10.  The comparison reveals 

that adding a wake only slightly increases the rotational speed loss, but 

disproportionately increases the torque loss of the downstream wind turbine.  The 

ratio of torque loss to rotational speed loss is nearly doubled with the addition of 

the second wake, from 0.68 to 1.29.  For a single wake number the power loss was 

mostly due to rotational speed loss whereas with a wake number of 2 the torque 

loss dominates the overall power loss.  Following the explanation given in the single 

wake scenario, a shifting towards greater torque losses is explained with the added 

turbulence, where now the second turbine operates with incoming turbulence in 

addition to its own production. 

 

Table 5.10: Double Wake Power Loss Components. 
Wake # Pnorm τnorm Ωnorm Ploss,torque Ploss,rotation Ltorque/Lrotation 

1 0.803 0.914 0.877 0.43 0.62 0.70 
2 0.738 0.859 0.854 0.54 0.56 0.97 

 

An additional summary including the amount of time within the data bin 

averages and listed values for the normalized wake performance variables is given 

in Table 5.11.  For the double wake scenario, due to the persisting decrease of 

normalized power and normalized torque as seen in Figures 5.19 and 5.21, the best 

single value summary is thought to be the [250, 500] W range averages. 
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Table 5.11: Wake Number Normalized Performance Summary (x/D=7). 
Single Wake Summary (7-Diameter Spacing) 

Power Bin [W]: [100,350] [250,500] [200,∞) 
Power Average 0.842 0.803 0.803 
Power Standard Dev. 0.111 0.081 0.076 
Torque Average 0.972 0.916 0.914 
Torque Standard Dev. 0.116 0.078 0.072 
Omega Average 0.867 0.876 0.877 
Omega Standard Dev. 0.025 0.024 0.025 
Data Set Time [min] 35.5 21.2 36.7 

    Double Wake Summary (7-Diameter Spacing) 
Power Bin [W]: [100,350] [250,500] [200,∞) 
Power Average 0.838 0.719 0.738 
Power Standard Dev. 0.168 0.102 0.107 
Torque Average 0.988 0.825 0.859 
Torque Standard Dev. 0.173 0.082 0.095 
Omega Average 0.844 0.865 0.854 
Omega Standard Dev. 0.038 0.043 0.040 
Data Set Time [min] 29.7 3.9 8.0 

 

The multiple wake results are plotted as the averages ± 1 standard deviation for 

power range bins of [100, 350] and [250, 500], shown in Figure 5.24.  The bins were 

chosen to overlap so that they would include more data.  The bins are large when 

considering the variation of normalized power for the double wake seen for the 100 

W bin ranges in Figure 5.19, which explains the large variation on the wake number 

2 data.  The plot average data, along with its time content, is listed in Table 5.11. 
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Figure 5.24: Multiple Wake Average Power Losses vs. Wake Number. 

 
This plot reveals what was identified in Table 5.11 earlier, that the wake number 

has a significant effect for a 7-diameter spacing up to at least a wake number of 2 

when comparing the data within a high power bin to avoid over-averaging the 

repeated low power data into the result.  For the high power range [250, 500] W the 

normalized power decreases 0.084 with the second wake from the single wake test 

case.  For the low power bin [100, 350], there is nearly no effect of adding the 

second wake upstream.   

The results for normalized performance with number of wakes are compared 

with the multiple wake model described in Section 3.3.2.  The first method of 

comparison is using this sum of squares approach to combine the wake number 

effects independently while assuming that the values for the wake decay constant 

and the thrust coefficient are constant for each successive upstream wind turbine.  

The normalized power results of the turbine at the wake number one position are 

used to determine the k, CT values for the overall formulation.  The single wake 

solution for k at a given turbine spacing and with known normalized power is 
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plotted in Figure 5.25 versus the thrust coefficient, which needs to be selected for 

this model.  A value of CT=0.85 is selected for the high power bin, as found from the 

single wake results using the Jensen model.  The small power bin thrust coefficient 

is approximated as the thrust coefficient at the same wake decay constant as for 

CT,high=0.85 of the high power range.  For this analysis, the high power range 

produces a wake decay constant of k = 0.05, which then corresponds to a CT,low=0.74 

for the [100, 350] W power range.   

 
Figure 5.25: Single Wake Model Fit for Wake Number 1, Revised Formulation. 

 
With the thrust coefficient, wake decay constant pairs of (k, CT) = (0.85, 0.05) and 

(0.74, 0.05) for the low and high power ranges, the second wake number can be 

added.  The multiple wake scenario is solved using these values and treating them 

as a constant with wake number, and is compared to the actual data results for wake 

numbers of 1 and 2, with the model being fit to the wake number 1 turbine, 

displayed in Figure 5.26.   
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 Figure 5.26: Multiple Wake Model Fit to Wake Number 1, Revised Formulation. 
 

The Jensen model is also used with a fit to the wake number 1 turbine at CT=0.85 

for the high power range, resulting in the same value of CT= 0.74 for the low range.  

The Jensen plot comparison of the wake decay constant with power range is shown 

in Figure 5.27.  The thrust coefficients correspond to a wake decay constant of 

k=0.1. 

 
Figure 5.27: Single Wake Model Fit for Wake Number 1, Jensen Formulation. 
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Using the input parameters and assuming a constant k and CT with wake number 

within the model produces the results shown in Figure 5.28. 

 
Figure 5.28: Multiple Wake Model Fit to Wake Number 1, Jensen Formulation. 

 
The multiple wake model is fit to the data at wake number 1, and treated as 

constant, using the revised linear wake single wake model and the Jensen single 

wake model.  Using this approach to determine the (k, CT) inputs to the model 

produces results that are very constant with wake number.  This trend is in 

agreement with the low power range [100, 350] W averages for both models due to 

this data point’s minor reduction from wake number 1 due to the low power 

extraction.  The multiple wake model however, should not be solved in this manner 

when making predictions for higher power ranges, under most standard conditions.  

The models, in both cases, over predict the performance of the wake number 2 

turbine.  The revised formulation and the Jensen model over predict the normalized 

power by 0.06 and 0.07, respectively.   

The multiple wake model does not capture the additional loss caused by wake 

number 2 by around 0.07 normalized power.  In the formulation to reach the model 

predictions it was however assumed that there would be a constant CT and k input 

for each upstream turbine.  To relax this assumption, the second wake number 

turbine is allowed to have an independent k, CT pair from the first wake number 
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turbine.  With known values from the data for single and double wake scenarios, it is 

possible to solve for the k vs. CT relationship for the isolated wake from wind 

turbine #2 to wind turbine #3 using the multiple wake model sum of squares 

approach.  Rewriting the single wake formulation and solving for k12: 

                                             𝑘𝑤#1→𝑤#2,𝑠=7 = 1
2𝑠
��𝛽 1−�1−𝐶𝑇

√𝑃∗
− 1�  (5.6) 

where, 

                              𝑃∗ = �1 − �𝑃𝑥 𝑃1� �
𝑤#2

1 𝑛�

�

2

− �𝛽 �1−�1−𝐶𝑇
1+2𝑘𝑥 𝐷𝑇�

�
𝑤#1,𝑠=14

�
2

 . (5.7) 

 

The results using this approach for the revised model and for the Jensen model 

are given in Figures 5.29 and 5.30.   

 
Figure 5.29: Double Wake Model Fit for Wake Number 2, Revised Formulation. 
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Figure 5.30: Double Wake Model Fit for Wake Number 2, Revised Formulation. 

 
Selection of a thrust coefficient for the 2nd wind turbine reveals the necessary 

accompanying wake decay constant produced by this wind turbine.  For the smaller 

power bin, the requirement is for greater expansion which would increase the 

velocity downstream according to the model to match the data that is higher than 

the model.  For the high power range, whose data point was well below the model, k 

would need to be decreased in order to reduce the power of the turbine at wake 

number 2. 

 

 

5.4 Wind Turbine Lateral Wake Results 

 

Wake performance data were collected for a lateral wake test case on one windy 

day.  The data set contains a 7 rotor diameter single wake downstream of a row of 

three turbines spaced laterally with a 2 rotor diameter width spacing.  This spacing 

was chosen as it was the closest width spacing obtainable with predicted losses at a 

7-diameter wake spacing.  The instrumented upstream wind turbine was the center 

turbine in the row with the downstream instrumented wind turbine directly behind 



159 
 

it when aligned with the wind direction.  The test case facility configuration for the 

7x2-diameter spacing lateral wake configuration is shown in Figure 5.31.  

 
Figure 5.31: Facility Configuration with a Lateral Wake, 7x2-Diameter Spacing. 
 
The findings from the single wake analysis for selection of the data processing 

variables were used for the lateral test case (Tbin = 10-sec, Tsort = 10-sec).  These 

variables depend mostly on the turbine-turbine spacing for the two instrumented 

wind turbines, which is the same for the two test cases justifying the use of the 

result here.  Comparison is made of the lateral wake 7x2-diameter spacing with the 

7-diameter spacing data from the single wake test case, which has no lateral wakes.  

Plots of the total data sets and their 100 W power bin averages ± 1 standard 

deviation are given in Figures 5.32-37.   

 



160 
 

 
Figure 5.32: Wake Power Losses with Lateral Wakes Data Set. 

 

 
Figure 5.33: Wake Average Power Losses with Lateral Wakes. 
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Figure 5.34: Wake Torque Losses with Lateral Wakes Data Set. 

 

 
Figure 5.35: Wake Average Torque Losses with Lateral Wakes. 
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Figure 5.36: Wake Rotational Speed Losses with Lateral Wakes Data Set. 

 

 
Figure 5.37: Wake Average Rotational Speed Losses with Lateral Wakes. 
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The results from this study show, within atmospheric variation and 

experimental uncertainty, that there is only a small change in the performance of a 

7-diameter spaced turbine when 2-diameter lateral wakes are added upstream.  The 

normalized power shows an average 1-2% decrease with the lateral wakes present 

over the high power ranges, Figure 5.33.  There is a distinction present at the low 

power ranges in which the lateral wakes produce an average 5-8% decrease from 

the case without wakes.  The total data sets of normalized power can also be 

compared and there is almost no discernible distinction between the two test cases 

except for at the lower power ranges.  The two cases appear to occur within 

approximately the same range of values for the individual data points, but with a 

higher weighting of the lower values for the w=2 lateral wake case.   

The increased power losses at lower power ranges are not fully understood.  

From the normalized torque and normalized rotational speed plots it is clear that 

the additional loss is due mostly to a further torque reduction, where the rotational 

speed loss is constant relatively.  Torque reduction alone, without rotational speed 

reduction, was determined to be sourced from added turbulence in the wake.  If this 

analysis is true, then it would mean that the wake has higher turbulence levels in the 

low power ranges when a lateral wake is added.  This could possibly be due to the 

increased time of wake development for a given spacing with a lower freestream 

velocity.  The distinction between these results at the low power range is not simply 

the low power range, but that in the presence of upstream lateral wakes.  This 

would imply that the lateral wakes generate losses mostly due to turbulence 

addition versus axial flow reduction or swirl addition.   

The normalized torque data set reveals a similar result to the power where data 

points occur over the same range for both test cases with no clear difference 

between the two.  The average shown in Figure 5.35 is used to reveal the overall 

trend, where the downstream turbine is seen to perform at a higher torque value by 

about 1% in the high power ranges.  The environmental and experimental accuracy 

constraints limit this result to a statement that the torque values are essentially 

constant between the two cases.  The rotational speed may be a better indicator of 
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relative performance due to the nature of the measurement’s reliability, produced 

by the experimental uncertainty and its substantially lower response rate, as 

discussed earlier.  The accuracy of this measurement produces a factor of two to 

four times less variation than with the torque measurement.  The normalized 

rotational speed loss averages in Figure 5.37 reveal a nearly constant 5% absolute 

decrease from the no lateral wake to the w=2 lateral wake case.  The averages are all 

outside of the 1 standard deviation variation making this additional loss a 

conclusive result.   

A summary and comparison of the lateral wake test case results averaged over 

low, high, and total power ranges is included in Table 5.12.  For the high and total 

power ranges, it is noted that the loss due to the lateral wake may be slightly larger 

than shown due to the torque average having a higher value with the lateral wake 

scenario in these cases which is an unexpected result.  This variation could be on the 

order of an absolute 2% difference, resulting in around a 3-4% absolute loss with 

the addition of lateral wakes, spaced at 2-diameters.   
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Table 5.12: Lateral Wake Normalized Performance Summary (x/D =7). 
Single, No Lateral, Wake Summary (7-Diameter Spacing) 

Power Bin [W]: [100,350] [350,600] [200,∞) 
Power Average 0.842 0.803 0.803 
Power Standard Dev. 0.111 0.063 0.076 
Torque Average 0.972 0.911 0.914 
Torque Standard Dev. 0.116 0.058 0.072 
Omega Average 0.867 0.881 0.877 
Omega Standard Dev. 0.025 0.023 0.025 
Data Set Time [min] 35.5 14.7 36.7 

    Lateral Wake Summary (7x2-Diameter Spacing) 
Power Bin [W]: [100,350] [350,600] [200,∞) 
Power Average 0.798 0.782 0.791 
Power Standard Dev. 0.114 0.059 0.091 
Torque Average 0.959 0.924 0.938 
Torque Standard Dev. 0.112 0.050 0.084 
Omega Average 0.830 0.845 0.841 
Omega Standard Dev. 0.026 0.020 0.024 
Data Set Time [min] 23.8 8.9 25.7 

 

Relative contributions for the studied test cases to the power loss of operating in 

the wake of an upstream wind turbine within the influence of lateral wakes are 

summarized in Table 5.13.   

 

Table 5.13: Lateral Wake Power Loss Components. 
Width, w Pnorm τnorm Ωnorm Ploss,torque Ploss,rotation Ltorque/Lrotation 

∞ 0.803 0.914 0.877 0.43 0.62 0.70 
2 0.791 0.938 0.841 0.30 0.76 0.39 

 

These results suggest that the presence of lateral wakes reduces performance 

losses due to increased torque on the downstream wind turbine, and increases 

performance losses due to rotational speed losses, among increasing performance 

losses all around for this spacing layout.  The shift of overall loss contribution with 
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the addition of lateral wakes seems to further increases relative contribution to the 

overall power loss by rotational speed losses.  The percentages of which discussion 

is made for the torque measurement are within experimental uncertainty values 

and therefore cannot be definite statements.   

The results from the lateral wake test case are compared using the model 

described in Section 3.3.3.  The data listed in Table 5.12 for power ranges of [100, 

350] W and [350, 600] W are used for the comparison with experimental results.  

This comparison is made for both power ranges using the two formulations of the 

lateral wake model.  In each of the formulations it is assumed that the wake decay 

constant does not change value after the wakes merge.  This is a reasonable 

assumption if the wake expansion is driven more by the interface with the 

atmosphere than by the internal volume of fluid.  Regardless, for these comparisons 

it will be assumed that the wake-atmosphere interface is the controlling factor for 

wake expansion rate and that the wake decay constant has the same value before 

and beyond the merged wake region.   

The first method of comparison to model results is done by fitting the case 

without a lateral wake to the single wake model to first determine a value for the 

wake decay constant, k, and then using this value to describe the lateral wake case.  

The thrust coefficient is again needed as an input to this equation and the results 

from the single wake case describe the lateral cases studied, CT=0.72, 0.85 for the 

low and high power ranges.  The two additional contributions to wind turbine 

performance loss when considering lateral wake scenarios are that due to area 

change caused by wake merging and that due to wake suppression caused by the 

symmetry planes.  This first analysis compares the effect of modeled performance 

losses due to area change alone with the experimental data for the two power bins.   

Results are first shown using the revised formulation of the linear wake model in 

Figure 5.38.  This formulation of the linear wake model produces a wake decay 

constant k=0.05, which is one half of the value of the Jensen model at the same 

thrust coefficient.  Due to this low wake decay constant there is no predicted loss at 
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the 7-diameter spacing from wake area change.  For this reason, only the low power 

bin from this formulation is shown in this section. 

 
Figure 5.38: Lateral Wake Model Fit to Low Power Data, Revised Formulation. 
 
This same approach was used with the Jensen model formulation for both low 

and high power range cases with the results shown in Figures 5.39 and 5.40.  This 

model’s wake decay constant has a sufficient value to predict a wake area change 

due to lateral wakes at the tested 7-diameter spacing, as seen by the divergence of 

the lateral wake case (solid magenta line) from the single wake case, with no lateral 

wakes (dashed red line).   
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Figure 5.39: Lateral Wake Model Fit to Low Power Data, Jensen Formulation. 

 

 
Figure 5.40: Lateral Wake Model Fit to High Power Data, Jensen Formulation. 

 
The model comparison plots show a reasonable level of agreement with the 

experimental results for the two power bins.  The low power bin deviates from the 

experimental result for the 2-diameter lateral wake case when using the wake decay 

constant fit from the single wake data assuming CT=0.72, estimated from the single 

wake analysis.  The high power comparison produces a high level of agreement with 

the lateral wake model with the assumed CT=0.85.   



169 
 

The unknown thrust coefficient of the low power range can be adjusted to yield 

improved results compared to the model.  If the thrust coefficient of the high power 

range is used for the low power range analysis the prediction changes as shown in 

Figure 5.41.  In this figure the solid lines represent the previous results for CT=0.72 

and the dashed lines for the new comparison with CT=0.85.  The dashed magenta 

line for the lateral wake model with the high power range thrust coefficient used 

reduces the discrepancy from the model and the result by a factor of two and with 

an absolute difference of only 1.6%.   

 
Figure 5.41: Lateral Wake Model Low Power Data CT Comparison, Jensen. 

 
The remaining gap between the lateral wake model and data can be accounted 

for with wake suppression.  The presence of lateral wakes can act to suppress wake 

expansion due to bounded atmospheric conditions in the lateral direction.  In 

reality, this suppression would skew the area growth of the wake based on the 

distinction between the atmospheric conditions at the top interfaces and the side 

interfaces but it will be treated as a constant radial growth with overall suppression.  

The presence of this effect is seen in the remaining discrepancy between the lateral 

wake data and model in Figures 5.42-43, which is clearly more significant for the 

low power range than the high.  In the model this effect is accounted for by changing 
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the wake decay constant in the lateral wake model so it will fit the experimental 

data point for the 2-diameter lateral wake test case. 

Results from this analysis are shown using the revised linear wake model 

formulation with lateral wake effects, which are not present at 7-diameter spacing 

for this formulation.  With this model, the entire performance loss due to the 

addition of lateral wakes is due to wake suppression, at this spacing.  In order for 

the revised model to be accurate, given the validity of the lateral wake model, the 

wake decay constant has to take a suppressed value of k = 0.035 and k = 0.045 for 

the low and high power ranges.  The values are suppressed from a wake expansion 

without lateral wakes of about k=0.05.  As before, these are seemingly low values 

but the revised single wake model validity could be proven or disproven from flow 

measurements that quantify the wake expansion.   

 
Figure 5.42: Lateral Wake Model Low Power Fit with Wake Suppression, Revised. 
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Figure 5.43: Lateral Wake Model High Power Fit with Wake Suppression, Jensen. 

 
The Jensen formulation is also compared using this method of determining a 

suppressed wake decay constant from the single wake, no lateral wake, benchmark 

value.  Figures 5.44 and 5.45 show the results using the low and high power range 

experimental data.  These fits are calculated using the original values of CT=0.72, 

0.85 for the low and high power ranges.  The suppressed wake decay constants take 

on values of k=0.08 and k=0.1 for these ranges, varying from the single wake value 

of approximately k=0.1. 

 
Figure 5.44: Lateral Wake Model Low Power Fit with Wake Suppression, Revised. 
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Figure 5.45: Lateral Wake Model High Power Fit with Wake Suppression, Jensen. 

 
The main conclusion from the lateral wake results is that the model developed as 

part of this dissertation to describe lateral wakes seems to agree well with what is 

physically happening, especially when combined with the Jensen model.  If the 

Jensen single wake model is correct, then the conclusion from this study is that the 

lateral wake model agrees well with experimental results with only a minor amount 

of wake suppression present in the lateral wake scenario.  This model’s validity 

would prove that area reduction produced by the presence of lateral wakes is the 

dominant source of additional performance losses.  If the revised linear wake model 

is correct then the source of additional performance loss due to lateral wakes at 7-

diameter spacing is completely due to wake suppression.  A summary of the results 

from the lateral wake analysis is given in Table 5.14.  This table lists the wake decay 

constants when fit to the single wake and lateral wake experimental data which 

highlights the level of wake suppression required.  The relative additional power 

loss from single wake to a lateral wake case caused by area change versus by wake 

suppression are also given in the last two columns. 
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Table 5.14: Lateral Wake Model Results, 7x2-Diameter Spacing. 
Jensen Model Wake Formulation 

Power Range CT kfit-no Lat. kfit-Lat, w=2 Ploss,Area Ploss,suppress 
[100, 350] W 0.72 0.100 0.080 0.29 0.71 
[100, 350] W 0.85 0.123 0.110 0.63 0.37 
[350, 600] W 0.85 0.102 0.099 0.82 0.18 

      Revised Linear Wake Model Formulation 
Power Range CT kfit-no Lat. kfit-Lat, w=2 Ploss,Area Ploss,suppress 
[100, 350] W 0.72 0.050 0.035 0.00 1.00 
[100, 350] W 0.85 0.066 0.049 0.00 1.00 
[350, 600] W 0.85 0.051 0.045 0.00 1.00 

 

The results for the lateral wake model’s effectiveness can be better concluded 

with additional spacing’s tested at further distances which could be added to the 

comparison.   
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CHAPTER 6: SUMMARY AND CONCLUSIONS 

 

 

6.1 Conclusions 

 

Wind turbine performance has been predicted analytically and determined 

experimentally as part of this research.  Maximum theoretical performance of 

individual wind turbines has been derived for single- and double-rotor, counter-

rotating configurations with respective anticipated power coefficient performance 

merits of 59.3% and 66.9%, corrected from earlier results for a double rotor 

analysis.  Wind turbine performance predictions, namely losses, when operated 

collectively in wind farm settings were modeled with single, multiple, and lateral 

wake scenarios.  The standard Jensen single wake linear expansion model was 

corrected for more theoretically consistent prediction with a revised linear wake 

model.  A model describing lateral wake scenarios due to adjacent upstream wind 

turbines was created as part of this research.   

The Purdue Micro Reconfigurable Wind Farm facility was used to test variable 

array layouts in order to simulate and measure wind turbine performance in a wind 

farm setting.  Test cases were performed to quantify the effects of turbine-turbine 

spacing in a single wake scenario, to quantify further performance losses when 

operating within the wakes of multiple upstream wind turbines, and to quantify the 

effect of lateral wake spacing from adjacent upstream wind turbines. 

Data for the single wake test case were collected using spacing’s of 3-, 5-, and 7-

rotor diameters.  The data analysis reveals that performance losses with single wake 

spacing are highest nearer to the upstream wind turbine and the power losses from 

upstream decrease with this spacing in a non-linear manner.  The data averages 

show that experimental variation is well within an acceptable level for the three 
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cases tested validating the significance of the results.  The power losses with single 

wake spacing were presented separating low and high power ranges for the [3, 5, 7] 

diameter spacing’s with normalized power values of [0.446, 0.733, 0.848] for the 

low power range and [0.410, 0.726, 0.806] for the high power range. 

The data from the three spacing’s for normalized power, torque, and rotational 

speed were averaged within power range bins to produce their dependency with 

upstream wind turbine power, which is a value indicative of wind speed.  

Normalized rotational speed loss due to wake operation was presented with very 

low variability for each of the tested cases, however, predictions from measurement 

of rotational speed alone do not necessarily produce a representative value for total 

power losses as they are not in a one-to-one relationship with each other.  By 

treating the power loss as the multiple of torque and rotational speed losses the 

relative contribution of the two was derived for the three test cases.  This analysis of 

the loss mechanisms yields insight into the physics of the wake flow at the tested 

locations downstream.   

Results from the single wake test case were compared with a model which 

assumes a linear wake expansion to determine velocity deficits downstream.  The 

standard Jensen model and a revised formulation of it which has a theoretically 

more correct derivation are both used for the comparison.  This comparison split 

the data into two power ranges to account for the anticipated difference in thrust 

coefficient, which is an important input to this model.  The downstream wind 

turbine spacing condition is not considered to affect the upstream performance, 

particularly for larger spacing’s.  An outcome of this condition was modeled 

correctly with the Jensen model causing the 5- and 7-diameter cases to intersect 

when deriving the wake decay constant fit to the experimental data as a function of 

the unknown thrust coefficient.  This intersection occurred at a value of CT=0.848 

resulting in a wake decay constant of k=0.103.  These values agree well with what 

would be expected providing merit to both the data and the model.  The thrust 

coefficient of the low power range was assumed to occur at a constant k value and 

matched with the 7-diameter spacing low power data which resulted in CT=0.72 for 
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the upstream turbine.  The 3-diameter spacing was not approximated accurately by 

this model.  This location is considered within the near-wake region of the flow and 

its physics are not accounted for in this one-dimensional model, and should not be 

used in this region.  For the high power range the wake decay constant is forced to 

take a value of k=0.05 to fit this close spacing point.  It was determined that a non-

linear wake expansion would have to be modeled to describe all of the spacing’s 

tested, expanding slowly at first and then more rapidly, eventually reaching a 

constant linear expansion.   

The revised linear wake model formulation predicted a wake decay constant 

using a high power range CT=0.85 of k=0.044, which resulted in a low power range 

prediction of CT=0.72.  The revised formulation of the single wake model was fit to 

the data with wake decay constant plotted versus thrust coefficient but without 

intersection of the 5- and 7-diameter curves as with the Jensen model.  The revised 

formulation of the linear wake model provided less agreement overall with the data, 

most notably at the 3-diameter spacing which would require wake contraction to fit 

to the data.  Despite its more theoretically correct conception, the revised model 

does not predict the wake power loss data for the single wake case as well as the 

Jensen model.  The wake decay constant predicted differs by a factor of two between 

the two models.  The accuracy compared to physical wake expansion for either 

model is left to further flow-field analysis for conclusion. 

A double wake case was tested with a 7-diameter spacing.  The normalized 

power comparison with upstream wind turbine power shows power losses that 

differ between single- and double-wake scenarios which increase with the power 

range.  Additional absolute power losses on the order of 8% are produced at the 

high power ranges with the presence of the second wake.  For the low power range 

there was nearly no effect of adding the second wake.  The additional power loss 

source was determined to be primarily from additional torque losses for the double 

wake case, with double the magnitude of additional rotational speed losses.   

The double wake results were compared with the standard velocity deficit sum 

of squares mathematical approach.  The model was first used assuming a constant 
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wake decay constant and thrust coefficient as fit to the single wake data and then 

compared with the double wake results.  The Jensen model and its revised 

formulation predicted the double wake scenario with similar accuracy where 

prediction for the lower power bin, low additional loss data was in good agreement 

but the high power range additional power loss was underestimated by about 7%.  

The second approach used with this model was to relax the constant (k, CT) pair 

with wake number assumption and to solve for the pair that fits the experimental 

data at the downstream wind turbine.  The relationship between wake decay 

constant and thrust coefficient required at the second wind turbine by the multiple 

wake model to fit the experimental data was determined using the two single wake 

formulations and two power ranges.  For the high power range the requirement is 

for lower wake expansion to fit the double-wake data using the multiple-wake 

model.  Reduced thrust coefficient and wake decay constant is to be expected for the 

downstream wind turbine as required by the multiple-wake model 

The effect of the lateral wake on downstream wind turbine performance was 

compared for a 7-diameter downstream spacing when 2-diameter width lateral 

wakes were added.  This case resulted in an average of 1-3% absolute decrease of 

power with lateral wakes over the high power range.  The low power range 

predicted 5-8% additional power losses with the lateral wakes.  The additional loss 

incurred by adding the lateral wakes was found to be mostly caused by rotational 

speed losses.  The shift of overall loss contribution is increased in favoring 

rotational speed losses due to the lateral wakes from upstream adjacent wind 

turbines.   

A model was created to describe power losses of a wind turbine operating in the 

wake of an upstream wind turbine with adjacent wind turbines producing lateral 

wakes.  Deviation of this model from the single wake model occurs both explicitly 

and implicitly.  Explicitly this model predicts additional power loss through wake 

area reduction beyond the point where the lateral wakes meet and create a 

symmetry plane.  Additional power loss is expected by the model implicitly from 

wake suppression due to the lateral wake mirroring effect, reducing the wake decay 
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constant.  The relative effect of the variation sources was determined for the two 

linear wake model formulations.  Area effects were first observed through the model 

derivation as written with treatment of the wake decay constant as fit to the no 

lateral wake data.  The revised formulation predicted zero loss for the tested layout 

from area reduction due to its small wake decay constant (k=0.05).  The analysis 

was additionally performed using the Jensen model which predicted an area change 

reduction in power for the low and high power ranges, which was in good 

agreement for the high power range.  The low power range was found to agree 

better if using the same thrust coefficient as for the high power range.  A measure of 

how well the model fit to the data without wake suppression is determined through 

using the model to fit a wake decay constant to the experimental data for the lateral 

wake case.  The Jensen model predicted wake suppression on the order k=0.1 to 

k=0.08 for the low power range and k=0.102 to k=0.099 for the high power range.  

The revised formulation of the linear wake model predicted additional power loss 

caused by lateral wakes to arise solely from wake suppression with wake decay 

constant reduction from k=0.05 to k=0.035 and from k=0.51 to k=0.045 for the low 

and high power ranges, respectively.  The derived lateral wake model has been 

given a level of proof from its predictions compared to the experimental results.  

Depending on the correctness of either linear wake model formulation, insight has 

been gained as to the mechanism of the additional loss – due to either area 

reduction or wake suppression. 
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6.2 Future Work 

 

Viable results have been obtained using the Micro Reconfigurable Wind Farm 

facility at Purdue University which gives fundamental insight into wake behavior.  

Results from this facility can be used to aid model revision and derivation as done 

with this dissertation’s research.  Future studies which are believed to be significant 

are listed in relative high to low order of perceived significance: 

 

• Collect multiple wake test case data with higher wake number (using all four 

wind turbines) for the 7-diameter configuration to determine if there are 

further losses that result in greater errors from the multiple wake model. 

• Collect multiple wake test case data using a 3- or 5-diameter spacing to 

determine if the multiple wake model predicts an inverse trend with spacing 

for predictions beyond wake number 1 than what physically occurs; as 

anticipated. 

• Collect lateral wake test case data at higher axial spacing’s to compare to 

validate the lateral wake model, suggested 10x2-diameter configuration 

benchmarked with a 10-diameter single wake configuration. 

• Collect single wake test case data at 2- and 4-diameter spacing’s to provide 

insight into the near-wake dynamics and the far-wake transition length. 

• Using the single wake 2-, 4-, and 10-diameter spacing’s in addition to the 3-, 5-, 

and 7-diameter spacing data given to generate a more discretized grid of the 

wake losses with spacing in order to verify the linear wake expansion 

approximation. 

• Combine the validated models into a wind farm prediction tool; can be used to 

determine significance of lateral wake spacing versus axial spacing. 

• Use the 10-diameter single wake spacing data for model validation of the 

Jensen model or the revised linear wake model formulation. 

• Collect data for partial wake flow scenarios for a single wake test case. 
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• Determine the physical wake expansion of a wind turbine for low and high 

power ranges and use the value to compare between the two formulations of 

the linear wake model, and to revise the model. 
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