
Purdue University
Purdue e-Pubs

Open Access Dissertations Theses and Dissertations

Fall 2013

Enabling Richer Insight Into Runtime Executions
Of Systems
Karthik Swaminathan Nagaraj
Purdue University

Follow this and additional works at: https://docs.lib.purdue.edu/open_access_dissertations

Part of the Computer Sciences Commons

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact epubs@purdue.edu for
additional information.

Recommended Citation
Nagaraj, Karthik Swaminathan, "Enabling Richer Insight Into Runtime Executions Of Systems" (2013). Open Access Dissertations. 96.
https://docs.lib.purdue.edu/open_access_dissertations/96

https://docs.lib.purdue.edu?utm_source=docs.lib.purdue.edu%2Fopen_access_dissertations%2F96&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/open_access_dissertations?utm_source=docs.lib.purdue.edu%2Fopen_access_dissertations%2F96&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/etd?utm_source=docs.lib.purdue.edu%2Fopen_access_dissertations%2F96&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/open_access_dissertations?utm_source=docs.lib.purdue.edu%2Fopen_access_dissertations%2F96&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=docs.lib.purdue.edu%2Fopen_access_dissertations%2F96&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/open_access_dissertations/96?utm_source=docs.lib.purdue.edu%2Fopen_access_dissertations%2F96&utm_medium=PDF&utm_campaign=PDFCoverPages

Graduate School ETD Form 9
(Revised 12/07)

PURDUE UNIVERSITY
GRADUATE SCHOOL

Thesis/Dissertation Acceptance

This is to certify that the thesis/dissertation prepared

By

Entitled

For the degree of

Is approved by the final examining committee:

 Chair

To the best of my knowledge and as understood by the student in the Research Integrity and
Copyright Disclaimer (Graduate School Form 20), this thesis/dissertation adheres to the provisions of
Purdue University’s “Policy on Integrity in Research” and the use of copyrighted material.

Approved by Major Professor(s): ____________________________________

Approved by:
 Head of the Graduate Program Date

KARTHIK SWAMINATHAN NAGARAJ

!
!
ENABLING RICHER INSIGHT INTO RUNTIME EXECUTIONS OF SYSTEMS

Doctor of Philosophy

CHARLES E. KILLIAN PATRICK T. EUGSTER

JENNIFER L. NEVILLE

DONGYAN XU

RAMANA R. KOMPELLA

CHARLES E. KILLIAN

JENNIFER L. NEVILLE

SUNIL PRABHAKAR 10/10/2013

ENABLING RICHER INSIGHT INTO RUNTIME EXECUTIONS OF SYSTEMS

A Dissertation

Submitted to the Faculty

of

Purdue University

by

Karthik Swaminathan Nagaraj

In Partial Fulfillment of the

Requirements for the Degree

of

Doctor of Philosophy

December 2013

Purdue University

West Lafayette, Indiana

ii

To my wife Ashwathi,

my parents Nagaraj & Rajeswari,

and sister Narmadha.

iii

ACKNOWLEDGMENTS

There have been many people who have immensely supported me over the last

five years, and it would be erroneous on my part to not mention them. To begin with,

I thank my wife, Ashwathi, for all her love, encouragement, support and belief in me

through this long journey. My parents and sister constantly motivated and pushed

me toward scholastic excellence, for which I’ll always be grateful.

My advisors Chip Killian and Jennifer Neville provided abundant encouragement

and guidance, along with spirited discussions and hands-on experience, while persuad-

ing me to attend many conferences. Their recommendations never failed to bring a

different perspective to my work. Working with them came with abundant freedom,

making for a wonderful PhD experience with little stress. Their unceasing motivation

kept my enthusiasm high to bring this dissertation to a successful completion.

I am also thankful to Ramana Kompella, Dongyan Xu and Patrick Eugster for

their insights, suggestions and support. It would be remiss of me to not thank my

collaborators at Microsoft Research – John (JD) Douceur and Bryan Parno who

exposed me to a remarkably different style of research and a great work atmosphere,

during my summer internship.

I had the good fortune to work with great individuals in my lab on various projects,

and I appreciate the assistance from KC Sivaramakrishnan, Lukasz Ziarek, Hyojeong

Lee, Sunghwan Yoo, Hitesh Khandelwal, Jayaram KR and Bo Sang. The CS software

and hardware facilities have been particularly patient and helpful in managing our

server machines, allowing me to focus on my research.

iv

TABLE OF CONTENTS

Page

LIST OF TABLES . vi

LIST OF FIGURES . vii

ABBREVIATIONS . viii

ABSTRACT . ix

1 INTRODUCTION . 1
1.1 Problems with Managing and Maintaining Systems Software 2

1.1.1 Development Problems . 4
1.1.2 Maintenance Problems . 4

1.2 Instrumentation: Record Runtime State 5
1.3 Facilitating Large Scale Analysis Using Statistics and Machine Learning 6
1.4 Thesis Statement . 7
1.5 Contributions . 7

1.5.1 Distalyzer: Diagnosing Performance Problems in Systems Soft-
ware . 8

1.5.2 PerfDetect: Tracking Performance Changes of Systems in Code
Repositories . 9

1.6 Road Map . 9

2 DISTALYZER: DIAGNOSING PERFORMANCE PROBLEMS IN SYS-
TEMS SOFTWARE . 10
2.1 Instrumentation . 12
2.2 Design . 14

2.2.1 Feature Creation . 16
2.2.2 Predictive Modeling . 20
2.2.3 Descriptive Modeling . 22
2.2.4 Attention Focusing . 25

2.3 Implementation . 27
2.3.1 Processing Text Log Messages 27
2.3.2 Distalyzer . 28

2.4 Case Studies . 30
2.4.1 TritonSort . 30
2.4.2 HBase . 33
2.4.3 Transmission . 36

2.5 Related Work . 41

v

Page

2.6 Practical Implications . 43
2.7 Summary . 44

3 TRACKING PERFORMANCE CHANGES OF SYSTEMS IN CODE REPOS-
ITORIES . 46
3.1 Designing PerfDetect . 49

3.1.1 Performance Metrics Features 52
3.1.2 Windows of Large Software Changes 54
3.1.3 Change Detection by Trend Estimation 55
3.1.4 Queue Extra Experiments 56

3.2 Measurement & Implementation . 57
3.2.1 Transmission . 59
3.2.2 V8 . 60
3.2.3 Hadoop . 61

3.3 Experiences . 62
3.3.1 Quantitative Evaluation . 62
3.3.2 Practical Experiences . 66
3.3.3 Transmission . 66
3.3.4 V8 . 71
3.3.5 Hadoop . 74

3.4 Related Work . 75
3.5 Summary . 77

4 SUMMARY . 78
4.1 Contributions . 78
4.2 Future Work . 81

LIST OF REFERENCES . 84

VITA . 91

vi

LIST OF TABLES

Table Page

2.1 Event and State feature types extracted from the logs 17

2.2 Summary of performance issues diagnosed using Distalyzer 29

2.3 Distalyzer diagnosis: Reduction in the number of features for each di-
agnosed problem . 30

3.1 Summary of software and benchmarks used in our measurement and eval-
uation . 58

3.2 Descriptions of the important performance changes observed in Transmis-
sion . 68

3.3 Descriptions of the important performance changes observed in Chrome
V8 and Hadoop . 72

vii

LIST OF FIGURES

Figure Page

1.1 Performance management of systems software through automated detec-
tion and diagnosis of degradations . 8

1.2 Framework for automated analysis of runtime instrumentation to aid in
system management . 9

2.1 Four-step log comparison process in Distalyzer leading up to a visual
interface . 15

2.2 Example Dependency Network (DN). 24

2.3 Algorithm for feature scoring of dependency networks, in attention focusing 26

2.4 Distalyzer logging API . 28

2.5 TritonSort dependency graphs indicating the root cause of the slow runtime 31

2.6 DN for unmodified HBase events . 34

2.7 DN for HBase after fixing lookups . 34

2.8 Dependency graphs for unmodified Transmission 38

2.9 Dependency graphs for BitTorrent after fixing the NAT problem 40

3.1 Performance measurement study of Transmission and V8 software reposi-
tories . 50

3.2 Design of PerfDetect for detecting deviations of performance metrics
from their expected behavior . 51

3.3 Comparisons of prediction accuracy of PerfDetect to other methods 64

3.4 Box-plot of Transmission file download performance indicating three per-
formance issues . 67

3.5 Three performance problems identified in the V8 JavaScript engine across
two benchmarks . 73

3.6 Performance improvement on the Hadoop TeraSort benchmark 75

viii

ABBREVIATIONS

API Application Programming Interface

CDF Cumulative Distribution Function

CPD Conditional Probability Distribution

DN Dependency Network

IP Internet Protocol

SLA Service Level Agreement

TCP Transport Control Protocol

UDP User Datagram Protocol

ix

ABSTRACT

Nagaraj, Karthik Swaminathan Ph.D., Purdue University, December 2013. Enabling
Richer Insight into Runtime Executions of Systems. Major Professors: Charles E.
Killian and Jennifer L. Neville.

Systems software of very large scales are being heavily used today in various im-

portant scenarios such as online retail, banking, content services, web search and

social networks. As the scale of functionality and complexity grows in these software,

managing the implementations becomes a considerable challenge for developers, de-

signers and maintainers. Software needs to be constantly monitored and tuned for

optimal efficiency and user satisfaction. With large scale, these systems incorporate

significant degrees of asynchrony, parallelism and distributed executions, reducing

the manageability of software including performance management. Adding to the

complexity, developers are under pressure between developing new functionality for

customers and maintaining existing programs. This dissertation argues that the man-

ual effort currently required to manage performance of these systems is very high, and

can be automated to both reduce the likelihood of problems and quickly fix them once

identified. The execution logs from these systems are easily available and provide rich

information about the internals at runtime for diagnosis purposes, but the volume of

logs is simply too large for today’s techniques. Developers hence spend many human

hours observing and investigating executions of their systems during development

and diagnosis of software, for performance management. This dissertation proposes

the application of machine learning techniques to automatically analyze logs from

executions, to challenging tasks in different phases of the software lifecycle. It is

shown that the careful application of statistical techniques to features extracted from

x

instrumentation, can distill the rich log data into easily comprehensible forms for the

developers.

1

1 INTRODUCTION

Systems implementations are ubiquitous in today’s computing platforms, from oper-

ating systems running on end-user machines to large distributed systems running over

thousands of machines across the planet. Distributed systems implementations oper-

ating in data centers power the bulk critical functions of businesses, with a wide range

of services such as banking, serve news content, online retail, web search and social

networks to name a few, making them indispensable to humans. All this respon-

sibility falls in the hands of developers and maintainers, who need to keep systems

operating continuously without loss of correctness or efficiency. Systems software are

no different from any other mechanical machine, in requiring careful and constant

monitoring for proper functioning. Today, software developers are frequently under

pressure to provide new features in their products for customers, rather than support

older versions, to stay ahead of the competition. This commonly leads to growing

software projects that accumulate hidden or subtle flaws.

The management of systems is a continuous process in the software development

lifecycle, happening at the design, development and maintenance stages. These stages

induce changes in the software code or execution environment, which must be vali-

dated against developer expectations of behavior. Such validations are typically made

on the two externally visible metrics of software – correctness and performance.

Correctness in the functionality of systems programs is paramount in enabling

reliability and reputation. An error in the business logic of the program can cause

trouble such as initiating an unauthorized wire transfer to a foreign bank account,

authorize online retailer inventory to be sent to the wrong address, return irrelevant

results to a web search request, or even leak a user’s sensitive photos to the public.

System developers take precautionary measures at all stages to avoid correctness

problems including the use of language primitives, unit tests, integration tests and

2

nightly regression tests, to ensure the safety of the runtime execution. These tests

return a boolean result, which can be used to monitor correctness. Research in

software engineering has made great strides in creating tools and techniques to aid

developers in maintaining functionally correct software [1–6]. Performance of systems,

although commonly misconceived to be secondary or insignificant has been shown to

greatly induce customer satisfaction and increased revenues [7, 8].

Performance encompasses a variety of runtime metrics, such as latency, through-

put, resource footprint (CPU, Memory, Disk, etc.) or others defined by developers.

Since systems software is usually large and complex with many components, develop-

ers create multiple benchmarks and workloads that exercise different aspects of the

software jointly in a comprehensive evaluation. Unfortunately, unlike correctness and

functionality, performance is much harder to evaluate and assess. In the case of cor-

rectness and functionality, tests essentially ask a binary question about whether the

software is behaving correctly. But with performance, there is no simple and straight-

forward measure to evaluate the software completely. Additionally complicating the

performance evaluation is that performance measurements are typically different ev-

ery time they are evaluated, arising from external factors, inputs, background load,

traffic, etc.

The investigation into the runtime properties of systems creates many challenges

for developers in managing their software, arising from the scale and complexity of

today’s software.

1.1 Problems with Managing and Maintaining Systems Software

Today’s systems software are commonly large scale and developed over many years

of active development, to attain rich functionality and high performance. They utilize

asynchrony and parallelism to efficiently leverage resources such as multi-core CPUs

and time consuming I/O operations. To scale to large scale data and computation,

systems utilize distributed executions to leverage the power of multiple machines,

3

frequently into the hundreds or even thousands of machines. This leads to complex

software executions that are hard to predict and understand. The complexity arises

from internal and external non-determinism, software randomness, unpredictable net-

work delays and machine failures, to name a few. For example, if a process receives

messages from two other remote processes on different channels at the same time, the

messages could be delivered in any order deemed appropriate by the OS transport

layer.

Compounding this complexity is the fact that software is typically developed by

teams of programmers, often relying on external components and libraries developed

independently, such that generally no one developer is fully aware of the complex

interactions of the sub-components.

Large software projects are separated into components, often clearly defined by

functionality such as business logic, networking, fault tolerance, etc. Component in-

teractions are facilitated through thin interfaces designed with pre-defined semantics.

Inter-component interactions can often be delicate and subtle, requiring careful use

to avoid adverse outcomes. For instance, consider the interface between an applica-

tion and the transport, with the implicit assumption that the application timeouts

are larger. Here, an unplanned increase in the transport layer’s timeout could result

in unexpected behavior in the application. In distributed executions, such interplay

also happens across distributed sites over the network, requiring software to be more

robust. Most performance problems in systems originate from faulty interactions

between components, that the developers had not already anticipated.

With the greatest trouble in managing systems software being bugs or deficiencies

in the software code, we next discuss the kinds of problems that occur at each stage

of development, maintenance and design.

4

1.1.1 Development Problems

At time of software development, many concurrent software changes go into a

common repository resulting from quick development of both related and indepen-

dent functionality. Since software is developed in groups of tens or hundreds of

programmers who may not be aware of code changes from their peer programmers,

it is not uncommon for correctness or performance bugs to manifest. A rigorous and

comprehensive set of benchmarks and nightly tests are necessary to avoid unexpected

surprises. Nevertheless, the complexity of systems software triggers intricate execu-

tion paths during integration tests that result in faulty or inefficient behavior, that

don’t necessarily flag as clear failures.

1.1.2 Maintenance Problems

Even well built systems occasionally fail or perform poorly in deployment due to

unexpected changes in the workload characteristics, background load, system updates,

machine failures, etc. Swift diagnosis of problems in deployed systems is of principal

importance to maintainers. A bug in a particular component could trigger erroneous

(possibly non-crash) behavior, that traverses multiple component boundaries and

reflect as faulty behavior at a remote component. Thus diagnosis needs to extract

both the symptom and the root cause. This needs to be performed by systematically

extracting the reverse sequence of actions from the observed fault to the actual root

cause, easily becoming a tedious process amidst thousands of concurrent operations.

This is especially made difficult by opaque component executions and inter-leavings

of concurrent operations.

To manage software execution and investigate problems, developers need a mecha-

nism to look into the execution state of programs. Software runtime instrumentation

is the most popular, ubiquitous and comprehensive method for recording program

state, for purposes of monitoring or diagnosing software behavior. With a wealth of

5

information already available within existing systems software in this form, it is only

rational to leverage this to provide richer insight into system behaviors.

1.2 Instrumentation: Record Runtime State

Instrumentation is the process of monitoring the runtime aspects of a system,

collected and stored as a trace of the execution. The scope of instrumentation can

include values of program variables/states, signals received, system calls performed

and resource utilization. Instrumentation data is often unstructured and labeled with

the recording time, verbosity of the message, severity of the occurrence, followed by

a software-specific message. Instrumentation forms the common substrate across dif-

ferent libraries, versions and even software implementations allowing developers to

seamlessly inspect runtime executions of programs. Developers collect instrumenta-

tion data for a variety of purposes such as monitoring resource usage [9], identifying

occurrence of fatal actions [4,10], modeling components usage [11], tracing execution

paths [12–14], etc.

Instrumentation is ubiquitous, because many developers already instrument their

programs [15], using one of their preferred logging frameworks (printf, log4j [16] or

others [12,13,17]). Moreover, instrumentation data is frequently recorded in a method

that separates it from the execution (e.g. text logs), and hence allows for decoupled

analysis.

Instrumentation is primarily used to diagnose faults in the software, using error

or warning messages. However, existing instrumentation of program state and/or

performance metrics also aids in diagnosis of performance degradations, by identi-

fying bottleneck components. Unfortunately, as software continues to grow in size

and complexity, the volume of instrumentation data also increases. Today’s systems

frequently instrument GBs worth of data every hour [18, 19]. The contributions of

logging to debugging are so deeply ingrained that systems typically are not successful

6

without a significant amount of effort expended in logging infrastructures. As data

volume grows, the search for root causes of problems becomes notably challenging.

Manual analysis of large volumes of instrumentation data is hard, and is a big bur-

den on developers [14,20]. Apart from the sheer volume of information instrumented

from the programs, one difficulty is the unpredictable ordering of instrumented events,

stemming from complexity of parallel and distributed executions, that cause large de-

grees of non-determinism in executions. Currently, most developers näıvely manually

browse through this data in an attempt to find useful pieces of information [4]. Un-

fortunately, most developers are equipped with brittle and unsophisticated tools such

as sed, awk, grep, etc. together with visualization tools [21–23]. This results in very

little automation and limits the extent and efficiency of such analysis.

1.3 Facilitating Large Scale Analysis Using Statistics and Machine Learning

Statistical and machine learning methods are useful for summarization, catego-

rization and prediction tasks on large volumes of data. By extracting higher order

statistics from runtime values of programs, the unpredictability of systems executions

can be quantified. More specifically, by observing runtime values such as program val-

ues or timing information of a large collection of unpredictable executions, summary

statistics can distinguish patterns from truly random events. As opposed to manual

techniques for analyzing logs, machine learning techniques can be easily automated

to scale to complex and repetitive tasks.

As deployed systems grow to become hard to manage, there is an emergence of

analyzing instrumentation logs using machine learning. These applications range

from analysis of raw system logs [4, 14], diagnosing faults by tracking component

dependencies [24,25], summarizing execution behavior for profiling and diagnosis [11,

20] and anomaly detection [26]. However, these applications have only grazed the

boundary of a large space of problems.

7

One of the biggest challenge in this space is identifying the right modeling of the

input dataset – program execution state, into an appropriate and amenable form,

combined with using suitable machine learning methods. One needs to transform

the instrumentation logs (frequently in text form) into tabular views of numerical or

categorical data. Naturally, identifying such a transformation can be challenging, as

it is heavily dependent on both the software management and machine learning task.

1.4 Thesis Statement

Manual techniques for investigating runtime executions of large systems are cum-

bersome, inefficient and not scalable. Machine learning can be used to automatically

detect and diagnose performance degradations of software systems, by analyzing their

instrumented runtime executions.

Specifically this dissertation posits the following:

• Performance problems in systems implementations can be automatically diag-

nosed by comparing instrumentation logs from a set of executions with unac-

ceptable performance, to logs from executions with acceptable performance.

• Significant changes in performance characteristics of software during develop-

ment, that diverge from expected behavior can be automatically detected.

1.5 Contributions

This thesis explores the application of machine learning to automate the manage-

ment of performance degradations in systems software as shown in Fig. 1.1. Firstly,

we designed Distalyzer for automated diagnosis of performance problems in systems

implementations by automatically analyzing unstructured logs. Next, we identify

problems in software at an early stage in the development environment, by enhancing

software repositories with the intelligence to track and manage performance metrics.

8

Detect new
performance
degradations

DetectionDiagnosis

Diagnose root cause
of performance in

deployments

Code repository
+

benchmarks

Figure 1.1.: Performance management of systems software through automated detection
and diagnosis of degradations

The common foundation to these machine learning analysis is the automated

analysis of program instrumentation. Fig. 1.2 describes the framework for such anal-

yses, from the instrumentation of programs, to extracting meaningful metrics from

the data, to applying statistical and mathematical models (machine learning) on the

transformed data. Finally the developer is presented with a simplified description of

the analyzed deteriorations. We describe the two dimensions briefly below:

1.5.1 Distalyzer: Diagnosing Performance Problems in Systems Software

Distalyzer diagnoses the root cause of performance problems from existing sys-

tems logs by differentiating the given execution with bad performance from another

comparable execution with acceptable performance. It can work with little or no

extra instrumentation added to existing logs, and achieves automated diagnosis by

supplementing the logs with minimal structure. Distalyzer uses event occurrences

and program values extracted from the logs to compare sets of logs and determines

the root cause that most affects overall performance. It is specifically designed for use

by non-expert developers who are not familiar with the whole system design or code

base. The effectiveness of these techniques is demonstrated through the diagnosis of

6 real performance issues in 3 systems.

9

Data
summarization

Feature
creation

Machine
Learning Developer

Analysis
Reduced

effort analysis

Application
Instrumentation

Software
code

Logs Analysis
models

Figure 1.2.: Framework for automated analysis of runtime instrumentation to aid in system
management

1.5.2 PerfDetect: Tracking Performance Changes of Systems in Code Repositories

Software undergoes significant changes on a daily basis in code repositories, many

of which impact the performance of one or more benchmark metrics. We conduct

a detailed measurement study of three software repositories to highlight classes of

performance issues and their impact on the software. We design PerfDetect to

manage daily performance and detect code changes that cause significant divergence

in performance metrics. We demonstrate its effectiveness through qualitative eval-

uations of performance issues, and quantitative comparisons with state-of-the-art

detection techniques.

1.6 Road Map

Chapter 2 describes Distalyzer and our novel techniques in leveraging logs to

diagnose performance problems, together with a demonstration of Distalyzer on

three real distributed systems. Next, Chapter 3 discusses PerfDetect, a tool for

detecting significant changes of performance in software repositories, along with an

evaluation over three systems repositories. Finally, Chapter 4 summarizes this dis-

sertation and indicates avenues for future work.

10

2 DISTALYZER: DIAGNOSING PERFORMANCE PROBLEMS IN SYSTEMS

SOFTWARE

Performance problems are common and frequently discovered in many stable and

mature systems implementations. The diagnosis of performance problems is however

quite hard, because of the scale and complexity of the implementations, heavy non-

determinism in executions and unavailability of comprehensive diagnosis tools.

Transmission [27] and HBase [28] exemplify the scale of this type of software

development. Transmission is an open-source implementation of BitTorrent. In 2008,

after three years of development, it became the default BitTorrent client for Ubuntu

and Fedora, the two most popular Linux distributions. In the last two years alone, 15

developers committed changes to the codebase, not counting patches/bugs submitted

by external developers. HBase is an open-source implementation of BigTable [29],

depending on the Hadoop [30] implementation of the Google File System [31]. HBase

has grown very popular and is in production use at Facebook, Yahoo!, StumbleUpon,

and Twitter. HBase’s subversion repository has over a million revisions, with 21

developers from multiple companies contributing over the last two years.

Given the activity in these projects, it not surprising that, in our experiments, we

observed performance problems, despite their mature status. In systems with many

independent developers, large user-bases with differing commercial interests, and a

long history, diagnosis and correction of performance issues can be a daunting task—

since no one developer is likely to be completely familiar with the entire system. In the

absence of clear error conditions, manual inspection of undesirable behaviors remains

a primary approach, but is limited by the experience of the tester—a developer is

more likely to ignore occasional undesirable behavior if they do not have intimate

knowledge of the responsible subsystems.

11

Recent research on distributed systems has produced several methods to aid de-

bugging of these complex systems, such as execution tracing [12, 13, 32], replay de-

bugging [33], model checking [3,34,35], live property testing [36], and execution steer-

ing [37]. However, these methods either require either extensive manual effort, or are

automated search techniques focused on discovering specific error conditions.

To address the challenge of debugging undesirable behaviors (i.e., performance

issues), the problem can be scoped toward comparing a set of baseline logs with

acceptable performance to another set with unacceptable behavior. This approach

aims to leverage the vast log data available from complex, large scale systems, while

reducing the level of knowledge required for a developer to use the tool. The state-

of-the-art in debugging the performance of request flows [10, 11, 14, 20] also utilizes

log data; however, in contrast with this previous work, the focus of this work is

analyzing a wider range of system behaviors extracted from logs. This has enabled

the development of an analysis tool applicable to more than simply request processing

applications. Other work in identifying problems in distributed systems from logs [4]

is restricted to identifying anomalous local problems, while it is argued here that poor

performance commonly manifests from larger implementation issues.

Distalyzer is a tool to analyze logs of distributed systems automatically through

comparison and identify components causing degraded performance. More specifi-

cally, given two sets of logs with differing performance (that were expected to have

equivalent performance), Distalyzer outputs a summary of event occurrences and

variable values that (i) most diverge across the sets of logs, and (ii) most affect overall

system performance. Distalyzer uses machine learning techniques to automatically

infer the strongest associations between system components and performance. Con-

tributions of this dissertation include:

• An assistive tool, Distalyzer, for the developer to investigate performance

variations in distributed systems, requiring minimal additional log statements

and post processing.

12

• A novel algorithm for automatically analyzing system behavior, identifying sta-

tistical dependencies, and highlighting a set of interrelated components likely to

explain poor performance. In addition to the highlighted results, Distalyzer

also provides interactive exploration of the extended analysis.

• A successful demonstration of the application of Distalyzer to three pop-

ular, large scale distributed systems–TritonSort [38], HBase & Transmission–

identifying the root causes of six performance problems. In TritonSort, a re-

cently identified performance variation is analyzed – the TritonSort developers

surmised Distalyzer could have saved them 1.5 days of debugging time. In

follow-up experiments on Transmission and HBase, once fixed the identified

problems were fixed, their performance was boosted by 45% and 25% respec-

tively.

2.1 Instrumentation

Distalyzer derives its analysis based on the data extracted from logs of dis-

tributed systems executions. Hence, we describe the process of obtaining and prepar-

ing the logs for analysis, before the actual design in Section 2.2. Applying our mod-

eling to the logs of systems requires that some amount of its meaning is provided to

Distalyzer. Inherently, this is because we are not seeking to provide natural lan-

guage processing, but instead to analyze the structure the logs represent. Xu et al. [4]

have considered the automatic matching of log statements to source code, which re-

quires tight coupling with programming languages to construct abstract syntax trees.

In contrast, Distalyzer aims to stay agnostic to the source code by abstracting the

useful information in the logs. We describe this in more detail below.

The contributions of logging to debugging are so deeply ingrained that systems

typically are not successful without a significant amount of effort expended in logging

infrastructures. Distalyzer assumes that the collection of logs has not affected the

performance behaviors of interest in the system. This is a standard problem with

13

logging, requiring developers to spend much effort toward efficient logging infrastruc-

tures. Logging infrastructures range from free text loggers like log4j [16], to fully

structured and meaningful logs such as Pip [12] and XTrace [13]. Unfortunately,

the common denominator across logging infrastructures is not a precise structure

indicating the meaning of the logs.

Consider Pip [12], a logging infrastructure which provides log annotations indi-

cating the beginning and ending of a task, sending and receiving of messages, and a

separate log just as an FYI (a kind of catch-all log). Every log also indicates a path

identifier that the log belongs to, thus it is possible to construct path trees showing

dependencies between tasks within paths. This kind of instrumentation has been

leveraged by Sambasivan et al. [20] to compare the path trees in systems logs. Unfor-

tunately, this detail of logging is neither sufficient (it does not capture the instances of

value logging, and does not adequately handle tasks which belong to multiple flows),

nor is it widely available. A more commonly used logging infrastructure, log4j, pro-

vides a much more basic scheme - logs are associated with a “type,” timestamp,

priority, and free text string. It then remains to the developer to make sense of the

logs, commonly using a brittle set of log-processing scripts.

As a compromise between fully meaningful logs and free-text logs, we work to find

a middle-ground, which can be applied to existing logs without onerous modifications

to the system being investigated. Our insight is that logs generally serve one of two

purposes: event log messages and state log messages.

Event log message. An event log message indicates that some event happened at

the time the log message was generated. Most of the logging for Pip falls into

this category, in particular the start or end of tasks or messages. Other examples

of such logs include logs that a particular method was called, branch of code

taken, etc. These logs are often most helpful for tracing the flow of control with

time between different components of the system.

14

State log message. A state log message indicates that at the time the log message

was generated, the value of some system variable is as recorded. Typically,

a state log message does not imply that the value just became the particular

value (that would instead be an event log message), but merely that at the

present time it holds the given value. State log messages are often printed out

by periodically executed code, or as debugging output called from several places

in the code. State log messages are often most helpful for capturing snapshots

of system state to develop a picture of the evolution of a system.

Distinguishing state and event log messages is an important step, that allows us to

tailor our modeling techniques to treat each in kind. We will commonly refer to these

values as the Event Variables and the State Variables. A practical artifact of this

approach is that we can simply use the system’s existing infrastructure and logging

code to generate logs, and then write a simple script to translate logs into state and

event log messages in a post-processing step (§ 2.3.1). Adopting this approach makes

it much easier to apply Distalyzer to a wide range of existing systems, and avoids

extra logging overheads at runtime. Additionally, it is possible to integrate our logging

library into other logging infrastructures or code-generating toolkits that provide a

distinction between state and event log messages, so that no post-processing phase

would be required. Furthermore, this strategy allows the incorporation of external

system activity monitoring logs for a richer analysis.

2.2 Design

This section presents the design of Distalyzer, an operational tool capable of

identifying salient differences between sets of logs, with the aim of focusing the at-

tention of the developer on aspects of the system that affect overall performance and

significantly contribute to the observed differences in behavior. Distalyzer involves

a multi-step analysis process as shown in Figure 2.1. The input to the workflow is a

set of logs with tagged event and/or state log messages, separated by the developer

15

Predictive
modeling

Collect
Logs

Log
Store

State

Event

Descriptive
modeling

Log files
Attention

Focussing

Feature
Creation

DISTALYZER

Figure 2.1.: Four-step log comparison process inDistalyzer leading up to a visual interface

into two classes C0 and C1 with different behavior on some performance metric P

(e.g., runtime). The choice of performance metric can be easily determined from Ser-

vice Level Agreement (SLA) metrics. Some example choices for separation of classes

are as follows:

• Different versions of the same system

• Different requests in the same system

• Different implementations of the same protocol

• Different nodes in the same run

Distalyzer uses machine learning methods to automatically analyze the input

data and learn the salient differences between the two sets of logs, as well as the

relationships among the system components. Further, Distalyzer identifies and

presents to the developer (for investigation) the most notable aspects of the system

likely to contain the root cause of the observed performance difference. Specifically

the system involves the following four components:

1. Feature Creation: A small set of event/state features are extracted from each

log instance (file) in both classes to make the data more amenable for automated

analysis.

2. Predictive Modeling: The event/state variables are analyzed with statistical

tests to identify which features distinguish the two classes of logs. This step

16

directs attention to the system components that are the most likely causes of

performance difference.

3. Descriptive Modeling: Within a single class of logs (e.g., C0), the relation-

ships among event/state variables are learned with dependency networks [39].

The learned models enhance the developer’s understanding of how aspects of

the system interact and helps to discard less relevant characteristics (e.g., back-

ground operations, randomness).

4. Attention Focusing: The outputs of steps 2 and 3 are combined to auto-

matically identify a set of interrelated variables that most diverge across the

logs and most affect overall performance (i.e., P). The results are graphically

presented to the developer for investigation, not only indicating where to look

for performance bugs, but also insight into the system itself, obviating the need

for the developer to be an expert at all system interactions.

We describe each of these components in more detail below. We note that the user

need not be aware of the internals of the statistical or machine learning techniques,

and is given an understandable graphical representation of the variables likely to

contain the root cause of performance differences. With a clear understanding of

the root cause, the developer can spend more time on finding a good fix for the

performance bug. In Section 2.4 we present results of using Distalyzer to analyze

TritonSort (different versions), BigTable (different requests), and BitTorrent (different

implementations).

2.2.1 Feature Creation

The workflow starts with extracting a handful of feature summaries from the logs.

The input is two sets of logs C0 and C1, classified by the developer according to a

performance metric of interest P . For example, the developer may be interested in di-

agnosing the difference between slow (C0) and fast (C1) nodes based on total runtime

17

Table 2.1: Event and State feature types extracted from the logs

Event times

{First, Median, Last} × {Absolute, Relative} occurrences
{Count}
State values

{Minimum, Mean, Maximum, Final}
{One-fourth, Half, Three-fourth} × {Absolute, Relative} snapshots

P . Distalyzer performs offline analysis on the logs, after they have been extracted

from the system execution. We assume that a similar test environment was main-

tained for both sets of logs, including workloads, physical node setup, etc. However,

it is not necessary that both classes contain the same number of occurrences of a vari-

able. Also, the two classes are not required to have disjoint non-overlapping values

for P . The necessity for similarity can be relaxed further under certain conditions as

discussed in Section 2.6.

Distalyzer begins by calculating features from variables extracted from the log

instances. We refer to each log instance as an instance. Each instance i contains

many event and state log messages, which first need to be summarized into a smaller

set of summary statistics before analysis. The intuition behind summarizing is that

this reduces the complexity of the system execution to a handful of features Xi, that

are much less prone to outliers, randomness and small localized discrepancies in log

statements. Since Distalyzer aims to find the source of overall performance prob-

lems (and not localized problems as in [4]), a coarse-grained set of features provides a

better representative of each instance than every single value within that instance. A

smaller set of features are a lesser burden on the developer, but a richer set provides

better coverage for different types of problems. Distalyzer aims at striking the

right balance between these objectives through our experiences and intuition debug-

ging distributed systems. Distalyzer constructs a set of summary statistics X from

the timestamps of event log messages and the values of numeric variables for state

log messages, as described below.

18

Event Features

The timing of system events is often closely related to overall performance, as it

can identify the progress of system components, the presence or absence of noteworthy

events, or the occurrence of race conditions between components. We consider a set

of event variables Y e that are recorded in the log instances with timestamps. For

example, an instance may refer to a node downloading a file in BitTorrent, where the

event log may contain several recv bt piece events over time.

To summarize the timing information associated with a particular type of event

Y e in instance i, Distalyzer constructs features that record the time associated

with the first, median and last occurrence in Y e
i . (All timestamps within a log

instance i are normalized based on the start time). Specifically, Xe
i.1 = min(Ye

i
[t]),

Xe
i.2 = median(Ye

i
[t]),Xe

i.3 = max(Ye
i
[t]). In addition, a fourth feature is constructed

that counts the total number of occurrences of Y e, Xe
i.4 = |Ye

i
|. Our experience

debugging systems suggests that these occurrences capture some of the most useful,

yet easily comprehensible, characteristics of system progress. They most commonly

indicate issues including but not limited to startup delays, overall slowdown and

straggling finishes.

In addition to the above features, which consider the absolute timing in instances,

we consider the same set of features for relative times. Since the instances from C0

and C1 may have different total times, normalizing the times within each instance

to the range [0, 1] before computing the features will yield a different perspective on

event timings. For example, in BitTorrent, it is useful to know that the last outgoing

connection was made at 300sec, but for debugging it may be more important to know

that it occurred at 99% of the runtime when comparing to another instance where

the last connection was made at 305sec, but earlier at 70% of its total runtime. In

this case, the divergence in the relative event times is more distinguishing. The top

half of Table 2.1 outlines the set of event feature types considered by Distalyzer.

19

State Features

It is common for some system state variables to be directly or inversely pro-

portional to the performance, and their divergence could be equally important for

diagnosis. We consider a set of state variables Y s that maps to a list of values with

their logged timestamps in an instance. For example, in BitTorrent, one of the state

variables logged is the download speed of a node, which is inversely proportional to

the total runtime performance. Distalyzer does not attempt to understand the

meaning behind the variables or their names, but systematically searches for patterns

in the values.

To summarize the information about a particular state variable Y s in log i, we

construct features that record the minimum, average and maximum value in Y s
i .

Specifically, Xs
i.1 = min(Ys

i
), Xs

i.2 = mean(Ys
i
), Xs

i.3 = max(Ye
i
). In addition,

to understand the variable values as the system progresses and also give the values

context, Distalyzer constructs features that record the variable values at one-fourth,

half and three-fourth of the run. Similar to the events, the relative versions of these

snapshots are also considered as feature types. The complete list of state feature

types is listed in Table 2.1.

Cost of Performance Differences

Our analysis focuses on leveraging the characteristics of the average performance

difference between the two classes, thus näıve use of the instances in statistical tech-

niques will fail to distinguish performance in the tails of the distribution. For example,

in a class of bad performance, there may be 2-3% of instances that suffer from signif-

icantly worse performance. Although these cases are relatively infrequent, the high

cost of incurring such extreme bad performance makes analysis of these instances

more important. Distalyzer automatically detects a significant number of abnor-

mally high/low values of the performance metric, and flags this to the developer for

consideration before further analysis. Specifically, Distalyzer identifies a “heavy”

20

tail for P when the fraction of Pi outside P ± 3σP is larger than 1.1% (i.e., 4×

the expected fraction in a normal distribution). To more explicitly consider these

instances in the modeling, we can re-weight the instances according to a cost func-

tion (see e.g., [40]) that reflects the increased importance of the instances in the tail.

Section 2.4.2 discusses this further.

2.2.2 Predictive Modeling

In the next stage of the workflow, Distalyzer uses statistical tests to identify

the features that most distinguish the two sets of logs C0 and C1. Specifically, for

each event and state feature X described above (e.g., first(recv bt piece)), we con-

sider the distribution of feature values for the instances in each class: XC0
and XC1

.

Distalyzer uses t-tests to compare the two distributions and determine whether

the observed differences are significantly different than what would be expected if

the random variables were drawn from the same underlying distribution (i.e., the

means of XC0
and XC1

are equal). If the t-test rejects the null hypothesis that the

XC0
= XC1

, then we conclude that the variable X is predictive, i.e., able to dis-

tinguish between the two classes of interest. Specifically, we use Welch’s t-test [41],

which is defined for comparison of unpaired distributions of unequal variances. The

t-value and significance probability (p) are computed as follows:

t =
XC0

−XC1
√

σ2
C0

NC0

+
σ2
C1

NC1

(2.1)

v =

(

σ2
C0

NC0

+
σ2
C1

NC1

)2

σ4
C0

N2
C0
(NC0

− 1)
+

σ4
C1

N2
C1
(NC1

− 1)

(2.2)

p = 2(1− CDF (TDist(v), t)) (2.3)

21

where σ2
C0
, σ2

C1
are the variances, NC0

, NC1
are the sample sizes, v is the degrees of

freedom, TDist is the t-distribution. We use a critical value of p < 0.05 to reject the

null hypothesis and assess significance. An adjustment for multiple comparisons must

be made for tests made on the same data source, and is performed with a Bonferroni

correction [42] based on the total number of features evaluated (i.e., NumFeatures×

NumV ariables).

Our use of t-tests is motivated by the fact that we want to identify variables

that distinguish the two classes on average across many instances from the system.

Previous work [20] has used Kolmogorov-Smirnov (KS) tests to distinguish between

two distributions of request flows. In that work, the bulk of the two distributions are

the same and the KS test is used to determine whether there are anomalous values

in one of the two distributions. In contrast, our work assumes that the log instances

have been categorized into two distinct classes based on developer domain knowledge.

Thus the overlap between distributions will be minimal if we can identify a variable

that is related to performance degradation in one of the classes. In this circumstance,

KS tests are too sensitive (i.e., they will always reject the null hypothesis), and t-tests

are more suitable form of statistical test.

Given the features that are determined to be significant, the magnitude of the

t-statistic indicates the difference between the two distributions—a larger t-statistic

can be due to a larger difference in the means and/or smaller variance in the two

distributions (which implies greater separation between the two classes). The sign of

the t-statistic indicates which distribution had a bigger mean. Among the significant

t-tests, we return a list of significant variables ranked in descending order based on

the absolute sum of t-statistic over all features. This facilitates prioritized exploration

on the variables that best differentiate the two classes.

22

2.2.3 Descriptive Modeling

In the third component of the workflow, Distalyzer learns the relationships

among feature values for each class of logs separately. The goal of this component is

to identify salient dependencies among the variables within a single class (i.e., C0)—

to help the developer understand the relationships among aspects of the system for

diagnosis and debugging, and to highlight the impact of divergent variables on overall

performance P . It is often difficult to manually discover these relationships from the

code, because of large code bases. It is also possible that observed variation across the

classes for a feature is not necessarily related to performance. For example, a timer

period may have changed between the classes without affecting the performance, and

such a change can be quickly ignored if the dependencies are understood.

Since we are interested in the overall associations between the features in one

class, we move beyond pairwise correlations and instead estimate the joint distribu-

tion among the set of features variables. Specifically, we use dependency networks

(DNs) [39] to automatically learn the joint distribution among the summary statistics

X and the performance variable P . This is useful to understand which sets of vari-

ables are inter-related based on the feature values. We construct DNs for the event

and state features separately, and within each we construct two DNs for each feature

type (e.g., First.Absolute), one for instances of class C0 and one for instances of C1.

Dependency Network (DN)

Dependency Networks [39] are a graphical model that represents a joint distri-

bution over a set of variables. The primary distinction between Bayesian networks,

Markov networks, and dependency networks is that dependency networks are an ap-

proximate representation of the joint distribution, which uses with a set of conditional

probability distributions (CPDs) that are learned independently.

Consider the set of variables X = (X1, ..., Xn) over which we would like to model

the joint distribution p(X) = p(X1, ..., Xn). Dependencies among variables are repre-

23

sented with a directed graph G = (V,E) and conditional independence is interpreted

using graph separation. Dependencies are quantified with a set of conditional proba-

bility distributions P. Each node vi ∈ V corresponds to an Xi ∈ X and is associated

with a probability distribution conditioned on the other variables, p(xi|x−{xi}). The

parents of node i are the set of variables that render Xi conditionally independent of

the other variables (p(xi|pai) = p(xi|x− {xi})), and G contains a directed edge from

each parent node vj to each child node vi ((vj, vi) ∈ E iff Xj ∈ pai).

The CPDs in P do not necessarily factor the joint distribution so we cannot

compute the joint probability for a set of values x directly. However, given G and P ,

a joint distribution can be recovered through Gibbs sampling (see [39] for details).

From the joint distribution, we can extract any probabilities of interest.

For example, the DN in Figure 2.2 models the set of variables:

X = {X1, X2, X3, X4, X5} (2.4)

Each node is conditionally independent of the other nodes in the graph given

its immediate neighbors (e.g., X1 is conditionally independent of {X2, X4} given

{X3, X5}). Each node contains a CPD, which specifies a probability distribution over

its possible values, given the values of its parents.

Both the structure and parameters of DNs are determined through learning the

local CPDs. The DN learning algorithm learns a CPD for each variable Xi, condi-

tioned on the other variables in the data (i.e., X−{Xi}). Any conditional learner can

be used for this task (e.g., logistic regression, decision trees). The CPD is included

in the model as P(vi) and the variables selected by the conditional learner form the

parents of Xi (e.g., if p(xi|{x− xi}) = αxj + βxk then PAi = {xj, xk}). The parents

are then reflected in the edges of G appropriately. If the conditional learner is not

selective (i.e., the algorithm does not select a subset of the features), the DN will

be fully connected. (i.e., PAi = x − {xi}) To build understandable DNs, it is thus

desirable to use a selective learner. Since event and state features have continuous

values, we use Regression Trees [43,44] as the conditional learner for the DNs. Their

24

X1

X
3

X2

X4X5 p(X4 | X2,X3)

p(X2 | X3,X4)

p(X5 | X1)

p(X1 | X3,X5)

p(X3 | X1,X2,X4)

Figure 2.2.: Example Dependency Network (DN).

advantage over standard regression models is that they are selective models, so the

features selected for inclusion in the tree will determine the structure of the DN.

Improvements

The graphical visualization of the learned DN are enhanced to highlight to the

developer (1) the divergence across classes (sizes of the nodes), (2) the strength of as-

sociations among features (thickness of edges), and (3) temporal dependencies among

features (direction of edges). Specifically, each feature (node) in the DN is matched

with its corresponding statistical t-test value. Since the t-statistics reflect the amount

of divergence in the feature, across the two classes of logs, they are used to size the

nodes of the graph. Next, for the assessment of relationship strength, we use an input

parameter m for the regression tree that controls the minimum number of training

samples required to split a leaf node in the tree and continue growing (i.e., a large

value of m leads to shorter trees because tree growth is stopped prematurely). The

dependencies identified in a shorter tree are stronger because such variables are most

correlated with the target variable and affect a larger number of instances. Thus, we

25

weigh each edge by the value of m for which the relationship is still included in the

DN. Finally, we augment the DN graphical representation to include happens-before

relationships among the features. If a feature value Xi occurs before feature value Xj

in all log instances, the edge between Xi and Xj is drawn as directed in the DN.

2.2.4 Attention Focusing

The final component of the workflow automatically identifies the most notable

results to present to the user. The goal of this component is to focus the developers

attention on the most likely causes of the observed performance differences. The

predictive modeling component identifies and presents a ranked list of features that

show significant divergences between the two classes of logs. The divergence of a

single feature is usually not enough to understand both the root cause of performance

problems and their impact on performance—because performance problems often

manifest as a causal chain, much like the domino effect. The root cause feature

initiates the divergence and forces associated features (down the causal chain) to

diverge as well, eventually leading to overall performance degradation.

Moreover, we noticed that divergences tend to increase along a chain of interrelated

features, thus the root cause may not have the largest divergence (i.e., it may not

appear at the top of the ranking). The descriptive modeling component, on the other

hand, identifies the associations among features within a single class of logs. These

dependencies can highlight the features that are associated with the performance

measure P . To identify likely causes for the performance difference, Distalyzer

searches for a small set of features that are both highly divergent and have strong

dependencies with P . The search procedure for finding the DN that highlights this

set is detailed below.

The set of DNs vary across three dimensions: (1) event vs. state features, (2) fea-

ture type, e.g., First.Absolute, and (3) the parameter value mmin used to learn the

DN. In our experiments, we set mmin to one-third of the instances. The aim was to

26

Input: Log type: t (State / Event)
Input: Log class: c, Number of instances: N
Input: T-tests for all random variables in (t, c)
Input: DNs for all random variables in (t, c)
Input: Performance metric: P
feature graphs = {}
for Feature f : feature types(t) do
dn = DNf(mmin = N/3)
cc = Connected-component in dn containing P
tree = maxSpanningTree(cc) rooted at P
score = 0
for Node n: tree do
score += Tf(n) ∗ dn.weight(parentEdge(n))

end for

Append (score, cc) to feature graphs
end for

return feature graphs sorted by score

Figure 2.3.: Algorithm for feature scoring of dependency networks, in attention focusing

focus on the sufficiently strong relationships among features, and this choice of mmin

consistently proved effective in all our case studies. However, mmin is included as a

tunable parameter in the system for the developer to vary and observe the impact on

the learned models. Distalyzer identifies the most notable DN graph for the state

and event features separately. Within a particular set, the attention-focusing algo-

rithm automatically selects the feature type with the “best” scoring DN subgraph.

To score the DN graphs, they are first pruned for the smallest connected compo-

nent containing the node P , and then the selected components are scored using the

algorithm shown in Fig. 2.3.

The intuition behind the DN subgraph score function is that it should increase

proportionally with both the node weights (divergence across classes) and the edge

weights (strength of association). The node and edge weights are normalized before

computing this score. If the developer is interested in biasing the search toward

features with larger divergences or toward stronger dependencies, a parameter α can

be used to moderate their relative contributions in the score. The feature type with

27

the highest scoring connected component is selected and returned to the developer

for inspection.

Section 2.4 describes the outputs of Distalyzer for real systems with observed

performance problems. Apart from the final output of the attention focusing algo-

rithm, the developer can also access a table of all the t-test values and dependency

graphs for both the state and event logs. This is shown as the final stage in Fig. 2.1.

2.3 Implementation

We describe some implementation details for transforming text logs and developing

Distalyzer.

2.3.1 Processing Text Log Messages

The BitTorrent implementations we considered were implemented in C (Trans-

mission [27]) and Java (Azureus [45]), whereas HBase [28] was implemented in Java.

The Java implementations used Log4j [16] as their logger. Transmission however used

hand-coded log statements. HBase also used Log4j, but did not have any logs in the

request path.

For each implementation, we tailored a simple Perl script to translate the text

logs into a standard format that Distalyzer accepts. We maintained a simple

internal format for Distalyzer. This format captures the timestamp, type of log,

and the name of the log. For state logs, the format additionally includes the value

of the log. We advocate adopting a similar procedure for analyzing any new system

implementation. A developer with domain knowledge on the system should be able

to write simple one-time text parsers to translate the most important components of

the log instances. To support the translation, we provide a simple library API for

logging in a format accepted by Distalyzer (shown in Fig. 2.4). At the beginning of

each log instance, the translator calls setInstance, which indicates the instance id and

28

setInstance(class , instance_id)

logStateValue(timestamp , name , value)
logEventTime(timestamp , name)

Figure 2.4.: Distalyzer logging API

class label for subsequent log messages. It specifically requires marking log messages

as event or state logs at translation time by calling one of the two log methods.

2.3.2 Distalyzer

We implemented Distalyzer in Python and C++ (4000 lines of code) using the

scientific computing libraries Numpy and Scipy. Distalyzer is publicly available for

download [46]. The design allows adding or tweaking any of the event or state features

if required by the developer. The Orange data mining library [43] provides regression

tree construction, and we implemented dependency networks and Algorithm 2.3 over

that functionality. The DOT language is used to represent the graphs, and Graphviz

generates their visualizations. The implementation of Distalyzer comprises of many

embarrassingly parallel sub-tasks and can easily scale on multiple cores and machines

enabling quick processing.

An interactive JavaScript based HTML interface is presented to the developer

along with the final output. This immensely helps in trudging through the individual

distributions of variables, and also to view the dependency graphs of all features.

This has been useful in the post-root cause debugging process of finding a possible

fix for the issue. To a good extent, this also helps in understanding some of the non-

performance related behavioral differences between the logs. For example, in one case

of comparing different implementations, we noticed that either system was preferring

the use of different protocol messages to achieve similar goals.

29

T
ab
le

2.
2:

S
u
m
m
ar
y
of

p
er
fo
rm

an
ce

is
su
es

d
ia
gn

os
ed

u
si
n
g
D
is
t
a
l
y
z
e
r

S
y
st
e
m

Im
p
le
m
e
n
ta
ti
o
n

T
y
p
e
s
o
f
L
o
g
s

V
o
lu
m
e

V
a
ri
a
b
le
s

Is
su

e
s

P
e
rf
o
rm

a
n
c
e
g
a
in

N
e
w

is
su

e
s

T
ri
to
n
S
or
t

S
ta
te
,
E
ve
nt

2.
4
G
B

22
7

1
n
/a

×
H
B
as
e
(B

ig
T
ab

le
)

E
ve
nt

2.
5
G
B

10
3

22
%

√

T
ra
n
sm

is
si
on

(B
it
T
or
re
nt
)

S
ta
te
,
E
ve
nt

5.
6
G
B

40
2

45
%

√

30

Table 2.3: Distalyzer diagnosis: Reduction in the number of features for each diagnosed
problem

System Implementation Input Features Output Features

State Event State Event

TritonSort 1990 217 8 3
HBase (BigTable) – 70 – 5, 3, 3
Transmission (BitTorrent) 110 203 7, 5 2, 6

2.4 Case Studies

Our goal in these case studies is to demonstrate that Distalyzer can be applied

simply and effectively to a broad range of existing systems, and that it simplifies the

otherwise complex process of diagnosing the root cause of significant performance

problems. We therefore applied Distalyzer across three real, mature and popular

distributed systems implementations. Table 2.2 captures the overview of the sys-

tems we considered. These systems represent different types of distributed system

applications: distributed sorting, databases, and file transfers. We identified previ-

ously unknown performance problems with two of these systems, and worked with

an external developer to evaluate usefulness of Distalyzer in rediscovering a known

performance bug with another. In all cases, Distalyzer significantly narrowed down

the space of possibilities without the developer having to understand all components.

Due to space constraints, we are unable to describe each action taken by the developer

leading to fixes for problems. A user need not be aware of how the tool computes

divergences and dependencies to understand Distalyzer’s outputs. We describe the

outputs of Distalyzer and henceforth straightforward debugging process.

2.4.1 TritonSort

TritonSort is a large scale distributed sorting system [38] designed to sort up to

100TB of data, and holds four 2011 world records for 100TB sorting. We demon-

strate the effectiveness of Distalyzer by applying it over logs from a known bug.

31

Writer_1 run

Finish

Writer_5 run

(a) Event

Runtime

Writer_0 write_size

Writer_2 write_size Writer_5 write_size

Writer_1 write_size

Writer_4 write_size Writer_7 write_size

Writer_6 write_size

(b) State

Figure 2.5.: TritonSort dependency graphs indicating the root cause of the slow runtime

We obtained the logs of TritonSort from the authors, taken from a run that suddenly

exhibited 74% slower performance on a day. After systematically and painstakingly

exploring all stages of the sort pipeline and running micro-benchmarks to verify exper-

imental scenarios, the authors finally fixed the problem. They said that it took “the

better part of two days to diagnose”. The debugging process for the same bug took

about 3-4hrs using Distalyzer, which includes the implementation time of a log

parser in 100 lines of Python code. A detailed analysis of the output of Distalyzer

and the debugging process on these logs follows.

We had access to logs from a 34 node experiment from the slow run that took 383

sec, and also a separate run with the same workload that had a smaller runtime of

220 sec. These naturally fit into two classes of logs with one instance per node, which

could be compared to identify the reason for the slowdown. These logs were collected

as a part of normal daily testing, meaning no additional overhead for log collection.

The logs contained both event and state log messages that represented 8 different

stages of the system (Table 2.2). The performance metrics were identified as Finish

and runtime for the event and state logs respectively, both indicating the time to

completion. Fig. 2.5 shows the final dependency sub-graphs output by Distalyzer

for both event and state logs.

To briefly explain the visualization generated by Distalyzer, nodes shown to

be colored indicate the performance metric and the font size is proportional to the

magnitude of the divergence. Edge thickness represents the strength of the dependen-

32

cies between variables. Directed edges in event graphs indicate that a happens-before

relationship was identified between the two bounding variables, as described in Sec-

tion 2.2.4.

The best dependency graph picked for events (Last feature type) is shown in

Fig. 2.5a, indicating that variables Writer 1 run and Writer 5 run are both significant

causes of Finish’s divergence. The final stage of TritonSort’s pipeline is the writer

which basically handles writing the sorted data to the disk. Each stage in TritonSort

is executed by multiple thread workers, denoted by the number in the variable. This

analysis attributes the root cause of slow runs to highly divergent last occurrences

of the writer workers. A quick look at our distribution comparison of the two sets

of logs in both the writers indicated that the slow run showed a difference of 90 sec.

The performance metric and the writer run distributions also showed an outlier with

a larger time than the rest.

Similarly, the DN picked for the states is shown in Fig. 2.5b, where the performance

metric Runtime is connected to the subgraph consisting of the write queue size of

different writer workers. Although the figure was scaled down for space constraints,

it is clear that all the nodes are highly divergent like the total performance. To

understand the reason of this divergence, we looked at distributions for Absolute Half

(best feature) to learn that writers in the slow run were writing 83% more data. Thus,

we concluded the root cause as slow writers.

The actual bug had been narrowed down to the disk writing stage, found to be

slowing down earlier stages of the pipeline. It was further noticed that a single node

was causing most of this delay, which eventually led the authors to discover that the

cache battery on that node had disconnected. This resulted in the disks defaulting to

write-through and hence the poor performance. Both the top ranked DNs output by

Distalyzer were useful in identifying the bug. We shared these DNs and interactive

t-test tables with the author of the TritonSort paper, who had manually debugged

this problem. The output root cause was immediately clear to him, and he surmised

33

“had we had this tool when we encountered this problem, it would have been a lot

easier to isolate the difference between the bad run and a prior good one”.

2.4.2 HBase

BigTable [29] is a large-scale storage system developed by Google, holds structured

data based on rows and columns, and can scale efficiently to a very large number of

rows and column content. HBase [28] is an open source implementation of BigTable

being developed by the Apache foundation. It runs on top of Hadoop Distributed

Filesystem (HDFS), and has been tuned and tested for large scales and performance.

In our experiments, we noticed that “Workload D” from the Yahoo Cloud Storage

Benchmark (YCSB) [47] had a notable heavy tail distribution of read request laten-

cies. The minimum and median latencies were 0 and 2 msec respectively. However

the mean latency was 5.25 msec and the highest latency was as high as 1 second,

which is 3 orders of magnitude over the median. Moreover, more than 1000 requests

have a latency greater than 100ms. To debug this performance bottleneck in HBase,

we would like to be able to compare these slow requests to the huge bulk of fast

ones. This task is infeasible manually because these issues manifest only in large

experiments (1 million requests), and a sufficiently large number of requests exhibit

this behavior. We used Distalyzer to identify and debug three performance bugs

in HBase, two of which are described below in detail.

Experimental setup Our testbed consisted of 10 machines with 2.33GHz Intel

Xeon CPUs, 8GB RAM and 1Gbps Ethernet connections running Linux 2.6.35.11.

Our HBase setup used a single master on a dedicated machine, and 9 region servers

(equivalent to BigTable tablet servers), and 1 Million rows of 30kB each were pre-

loaded into the database. The YCSB client was run on the same machine as the master

(which was otherwise lightly loaded), with 10 threads issuing parallel requests. Each

request is either a read or write for a single row across all columns. “Workload D”

consisted of 1 Million operations out of which 5% were writes.

34

HBaseClient.post_get

client.HTable.get

client.HTable.get_lookup

regionserver.HRegionServer.get

regionserver.HRegion
.get_results

regionserver.HRegion.get

regionserver.StoreScanner
_seek_end

regionserver.StoreScanner
_seek_start

Figure 2.6.: DN for unmodified HBase events

HBaseClient.post_get

regionserver.HRegion.
get_results

regionserver.StoreScanner_
seek_end

Figure 2.7.: DN for HBase after fix-
ing lookups

The HBase implementation had no log statements in the request flow path, in

spite of using the log4j logging library that supports log levels. Therefore, we manu-

ally added 10 event logs to the read request path, using the request row key as the

identifier. The request logs from the different machines were gathered at the end

of the run and bucketed by request ID. The performance metric is the event that

signifies the last step in request processing – HBaseClient.post get.

Fixing the slowest outliers

On applying Distalyzer to the logs, it detected the presence of a heavy tail

in the performance metric (§ 2.2.1) and suggested re-weighting the instances. The

weight function used to boost the instances with a large latency was &wlatency'. This

is an exponential weight function and we chose a value of w = 2(1/150), with the

intuition that instances with P < 150ms will have a weight of 1. Fig. 2.6 shows the

best DN of the root cause divergence. All dependency edges are directed because

all requests follow the same flow path through the system. We identified two strong

associations with large divergences leading up to the performance metric. Each of

the chains is considered independently, and we first chose to follow the path leading

from client.HTable.get lookup (the second chain is discussed in § 2.4.2). This chain

starts at client.HTable.get which indicates that the HBase client library received the

35

request from YCSB, followed by client.HTable.get lookup after completion of lookup

for the region server handling the given key.

This particular edge leads from a tiny variable to a variable with significant di-

vergence, and domain knowledge indicates that no other event occur between them.

client.HTable.get is drawn small because it does not differ considerably between the

two classes of logs. As it is connected by a strong directed edge to the larger vari-

able, this indicates the two classes consistently differ between these two variables. In

this context, the edge represents the operation where the client needs to lookup the

particular region server that manages the row, and this is achieved by contacting the

master who maintains the mapping. The distributions of this particular event in the

t-test table shows that this event created gaps in the request flow of the order of 1000

ms.

When we looked at the logs of the regionserver at the same time these requests

were being delayed, we noticed that the server was throwing a NotServingRegionExcep-

tion. This is given by the server when it does not serve a region that was specifically

requested. This happens when a region was moved to another server for load balanc-

ing. The client possesses a stale cache entry for the region, and hence receives this

exception. The client was catching this exception as an IOException, and treated it as

a server failure. This triggers an exponential back off procedure that starts at 1 sec.

According to the Bigtable description [29], the client immediately recognizes a stale

cache and retries with the master leading to an overhead of just 2RTTs. We came

up with a fix for this issue, by treating the exceptions correctly and extracting the

NotServingRegionException, and retrying immediately. This fixed the requests with

latencies over 1 second.

Operating System effects

Distalyzer was used again to analyze the new logs to find the cause of the other

delays. Since the distribution skew was lesser than the threshold, the weighting func-

36

tion was not used anymore. The best DN is shown in Fig. 2.7, and closely resembles

the right chain of Fig. 2.6. In fact, this root cause was also identified in the initial

step as a second significant root cause, but was not chosen for inspection. Here, the

variables regionserver.StoreScanner seek end and regionserver.HRegion.get results chain

up as the root cause.

The default Linux I/O scheduler since version 2.6.18 is Completely Fair Queuing

(CFQ), and it attempts to provide fairness between disk accesses from multiple pro-

cesses. It also batches requests to the disk controller based on the priority, but it does

not guarantee any completion times on disk requests. Since only the HBase process

was accessing the disk on these machines, we believed that this scheduling policy was

not well suited to random block reads requested by HBase. Another available I/O

scheduler in Linux is the deadline scheduler, which tries to guarantee a start service

time for requests. Hence the deadline scheduler would be more suited toward latency

sensitive operations.

After we applied the I/O scheduler change, we ran the same experiment again

to understand if this improved the latencies of the slow requests. The number of

slow requests (≥100ms) reduced from 1200 to just under 500 – a 60% reduction.

Also, the mean latency for the workload dropped from 5.3ms to 4ms, which is a 25%

overall improvement in the read latency, confirming deadline is appropriate for these

workloads. Both the reported root cause DNs were helpful in debugging HBase.

Further, we identified a problem with HBase’s TCP networking code which af-

fected latencies of requests, but we do not discuss it here for brevity.

2.4.3 Transmission

Transmission implements the BitTorrent protocol, a distributed file sharing mech-

anism that downloads different pieces of a file from multiple peers. The protocol works

by requesting a set of active peers for the file from a tracker, then directly requests

file pieces for download from them. By downloading from multiple peers simultane-

37

ously, clients can more easily download at large speeds limited only by its bandwidth.

Azureus is another BitTorrent implementation, that we used for comparison. In

some basic experiments, Transmission had a much worse download time compared to

Azureus (552 sec vs. 288 sec).

Transmission [27] is a light-weight C implementation, and among all the free

clients, it is known for its minimal resource footprint. Azureus [45] is one of the

most popular free implementations of the protocol, developed in Java. It is an older

and more mature implementation of the protocol and well known for its excellent

performance. Unlike Transmission, it extends the basic BitTorrent messaging protocol

for extra minor optimizations in communicating with supporting peers. Both are

serious implementations of the protocol, and we expect a well tuned C implementation

should perform no worse than a Java implementation. Using Distalyzer, we were

able to identify two performance bugs in Transmission that eliminated the download

time difference completely.

Experimental setup Experiments consisted of 180 BitTorrent clients (30 clients

per machine) attempting to download a 50MB file, providing ample interaction com-

plexity in the system. They used the same machines as described in Sec. 2.4.2. The

swarm was bootstrapped with a single seeder, and each client was limited to an upload

bandwidth of 250KB/s which is similar to common Internet bandwidths and makes

ample room for running 30 clients on a single machine. Experiments were conducted

with each implementation in isolation.

We built Azureus from its repository at rev. 25602 (v4504). Azureus had a

detailed log of BitTorrent protocol messages during a download, and we added some

state logs. The experiments used the HotSpot Server JVM build 1.6.0 20. We used

version 2.03 of Transmission in our experiments, which contained debugging logs, and

we simply activated the ones pertaining to the BitTorrent protocol. We identified the

event and state performance metrics Finish and Runtime, respectively.

38

Finish
Recv Bt_Piece

Sent Bt_Have

(a) Event DN

Runtime

Pieces Have

Progress

(b) State DN: 1st with score 0.89

Runtime

Peers Connected

Upload Speed

Seed Ratio

(c) State DN: 2nd with score 0.84

Figure 2.8.: Dependency graphs for unmodified Transmission

Faulty component affecting performance

The best DNs output by Distalyzer for both event and state shown in Fig. 2.8a

and Fig. 2.8b, were dependencies between trivial divergences. These are in a sense

false positives to the automatic root cause detection. More specifically, Fig. 2.8a was

picked from the Last event-feature and shows the performance metric coalesced with

the last piece receipt. The strong dependency to Sent Bt Have is justified by the fact

that implementations send out piece advertisements to peers, as soon as they receive

one more piece. Similarly, the state dependency graph in Fig. 2.8b shows strong

dependencies between download completion time and the number of pieces download

in half the run, and also the progress (which is in fact a factor of Pieces Have). We

discard these DNs and move to lesser ranks.

39

This led to considering the second ranked state graph in Fig. 2.8c, which in fact

had a very close score to the highest rank. This DN was constructed from snapshots

of the state variables at three-fourth of Transmission’s runtime. Runtime is connected

to divergent Peers Connected through a chain of variables. The chain involves the

amount of data seeded and upload speed, both affirming the symbiotic nature of

BitTorrent. This immediately takes us to the distributions of the number of peers,

where we noticed that all nodes reported 6 peers in Transmission, as against 50 for

Azureus. We also verified these values for the Maximum feature.

Fixing the bug To find the problem that limited Transmission’s peer connectivity,

we considered a single node’s logs and fetched the set of unique IP:port pairs, and

on looking at the values, we immediately realized that each peer had a different IP

address. In our experimental setup with 6 physical machines, different nodes on the

same physical machine were setup to listen on different ports and coexist peacefully.

The bug was traced to the internal set that holds peers, whose comparison function

completely ignored port numbers. When a node obtains a new peer from the tracker,

and it is already connected to a peer with the same IP address, it is simply dropped.

On looking through forums and bug management software, we found that this

inconsistency had actually been identified 13 months back, but the bug was incorrectly

closed. We verified the authenticity of this bug and reopened it. The developers

deemed this bug to be hard to fix, in terms of requiring changes to many modules.

We argue that this is an important bug that limits Transmission from connecting to

multiple peers behind a NAT box. In cases where multiple peers are situated behind

a NAT box in an ISP, they would definitely want to download from each other and

avoid the slow ISP link. This bug would prevent local connections, thus forcing them

to connect to peers on the Internet.

40

Finish
Recv Bt_Piece

Announce

Recv Bt_Unchoke

Sent Bt_RequestSent Bt_Have

Sent Bt_Interested

(a) Event

Runtime

Seeds Total

Peers Connected

Seeds ConnectedPeers Total

(b) State

Figure 2.9.: Dependency graphs for BitTorrent after fixing the NAT problem

Tuning the performance

Since the fix for the first bug was too tedious, we decided to circumvent the

problem by assigning unique virtual IP addresses to each of the nodes. This did

indeed solve the problem and made Transmission faster to an average download time

of 342 sec, which was still much higher than 288 sec. Distalyzer was used again with

the new set of logs which produced the dependency graph output shown in Fig. 2.9.

Considering the event DN in Fig. 2.9a, showing the highly divergent performance

metric for the Last feature. Some of the features of this DN are similar to Fig. 2.8a

that were discussed earlier.

The dependency between finishing and sending requests fits well with the protocol

specifications, that a request for a piece must be sent in order to receive one. The

Announce event happens after sending out requests, and hence de-values its possibility

for root cause. The interested messages were a more probable cause of the differences

(compared to un-choke) because one must first express interest in another peer after

connection establishment. Only after this step does the remote peer un-choke it, thus

opening up the connection to piece requests. This hypothesis was verified by viewing

the distributions of Sent Bt Interested across all features. After knowing the root

cause, the distribution for the offending variable in the First feature showed gaps of

the order of 10 sec on Transmission, but was very small for Azureus.

We traced the code from the message generator to fix these large gaps, and found

a timer (called rechokeTimer) that fired every 10 sec. For comparison, we found that

41

Azureus had a similar timer set at 1 sec, thus giving it a quicker download start.

The large divergence in sending interested messages could be fixed by shortening the

timer value from 10sec to 1sec. Fig. 2.9b shows the state DN for the same logs for

completeness, but it does not indicate a highly divergent root cause.

Performance gains We were able to apply a quick fix for this problem and the

download times of Transmission were much better than earlier, dropping the mean

completion time to 288 sec. The performance was up to 45% better than the first

experiment. It should be noted that the more frequent timer did not affect the

resource utilization of Transmission, still using far fewer CPU cycles and memory

than Azureus. Neither of these issues affected correctness, nor threw any sort of

exceptions, and present themselves as subtle challenges to the developers. Overall, 5

DNs were reported for the two issues in Transmission, out of which 3 indicated trivial

relationships between the components, but the other two were immensely helpful in

understanding the root causes.

2.5 Related Work

One of the underpinnings of systems software development is model checking.

Model checking aims to provide guarantees on program code against pre-specified

properties. A number of techniques [1–3] have described different methods to as-

sert program correctness. However, traditional model checking attempts to discover

violations of clear failure conditions, which is convenient for correctness problems.

There is also research in applying machine learning to logs of faulty executions, to

categorize them [11, 48] and also predict the root cause [10]. Conditions of perfor-

mance degradation cannot be accurately modeled using these approaches, because it

is rarely possible to specify performance as definite runtime predicates.

The formulation of debugging as an anomaly detection task has been applied in a

variety of contexts, with the hypothesis that bad behavior is occasional and diverges

as an anomaly from normal behavior. Magpie [11] and Pinpoint [10] model request

42

paths in the system to cluster performance behaviors, and identify root causes of

failures and anomalous performance. Fu et al. [26] propose the use of a Finite State

Automaton to learn the structure of a normal execution, and use it to detect anoma-

lies in performance of new input log files. Xu et al. [4] propose a mechanism to encode

logs into state ratio vectors and message count vectors, and apply Principal Compo-

nent Analysis to identify anomalous patterns within an execution. However, they

completely ignore timestamps in logs and use the value logged, to identify localized

problems within a single log file. On the other hand, Distalyzer finds the root cause

of the most significant performance problem that affects the overall performance. In

contrast to all these systems, Distalyzer aims to find the cause of performance

problems in a major portion of the log instances, and hence uses t-tests to compare

the average performance.

Request flows are a specific type of distributed processing, with a pre-defined set

of execution path events in the system. Spectroscope [20] aims to find structural

and performance anomalies in request flows that are induced by code changes, by

analyzing instrumented latencies on request paths. Their approach of comparing dif-

ferent requests bears some similarity to our technique. X-ray [49] also tracks the

paths of possible root causes to observed performance degradations. It intelligently

instruments application binaries through dynamic instrumentation at runtime, and

computes the likelihood of specific root causes impacting measured performance met-

rics. Similar to Spectroscope, X-ray performs performs performance differentiation

to identify faulty components on code paths. However, as illustrated through the

case studies, Distalyzer can be applied to request flow systems (HBase, § 2.4.2),

as well as other types of distributed systems, by abstracting the logs into states and

events. Although these specific applications of machine learning (including [9–11,14])

can leverage path structures, Distalyzer can show the most impacting root cause

among many performance problems.

Cohen et al. [9] use instrumentation data from servers to correlate bad performance

and resource usage using tree-augmented Bayesian networks. Similarly, Distalyzer

43

can utilize system monitoring data as outlined in Section 2.1 to identify performance

slowdowns due to resource contention using DNs. NetMedic [24] and Giza [25] use ma-

chine learning to construct dependency graphs of networked components, to diagnose

faults and performance problems. WISE [50] uses network packet statistics to predict

changes to CDN response times on configuration changes, using causal Bayesian net-

works. In contrast, the use of distributed system logs allows Distalyzer to identify

software bugs by marking specific components in the code. Our novel use of depen-

dency networks to learn associations between code components alleviates the need

for an expert developer.

Splunk [21] is an enterprise software for monitoring and analyzing system logs,

with an impressive feature set. Although it provides a good visual interface for

manually scanning through logs and finding patterns, it does not provide tools for

rich statistical analysis on the data. Furthermore, there is no support for comparing

two sets of logs automatically. We believe that Splunk is complementary to our work,

and the concepts embodied inDistalyzer could serve as a great addition to Splunk.

2.6 Practical Implications

While Distalyzer has proven to be useful at finding issues in real systems im-

plementations, we now discuss some of the practical implications of our approach, to

illustrate when it is a good fit for use.

First, Distalyzer is based on comparing many log instances using statistical

approaches. To be effective, there must exist enough samples of a particular behavior

for the tool to determine that a behavior is not just a statistical anomaly. The use of

weights is a partial solution to this problem. Similarly, however, the tool cannot find

problems which are not exercised by the logs at all, either originating from an external

black box component or insufficient logging within the system. In the former case,

there is hope that existing logs would capture artifacts of the external problem and

hence point to that component. The ideal approach would be combining logs from the

44

external component or network with the existing logs, to paint the complete picture.

With insufficient logging, Distalyzer would fail to find feature(s) that describe

the performance problem. This can be alleviated with additional instrumentation

followed by iterative use of Distalyzer to diagnose the issue.

Second, we assume similar execution environments for generating the logs, leaving

situations of differing machine architectures, network setups or node count in obscu-

rity. This is a tricky process because a subset of features can be dependent on the

environment, and hence their divergence would be trivial leading to futile DNs. As

a counter measure, these features can either be removed or transformed into a com-

parable form with domain knowledge. The specific case of relative times for event

features highlights such a transformation. In future work, we imagine support for a

mapping technique provided by the user for converting the features into comparable

forms, allowing Distalyzer to be used even to compare different environments.

Finally, the system inherently requires log data. If it is impractical to collect logs,

either due to the overhead imposed or the manual effort required to instrument un-

instrumented systems, our tool will not be a good choice. Similarly, it is important

when using Distalyzer to verify that the user-provided classifying distribution is

not adversely affected by the instrumentation. Indeed, one “problem” we tracked

down using Distalyzer identified that some poor performance was actually caused

by the system’s logging infrastructure flushing to disk after every log call. This is

observed by seeing performance variations with and without logging.

2.7 Summary

This chapter proposed a technique for comparing distributed systems logs with

the aim of diagnosing performance problems. By abstracting simple structure from

the logs, the machine learning techniques described here can analyze the behavior of

poorly performing logs, as divergence from a given baseline. We design and implement

Distalyzer, which can consume log files from multiple nodes, implementations, runs

45

and requests and visually output the most significant root cause of the performance

variation. The analysis of three mature and popular distributed systems demonstrates

the generality, utility, and significance of the tool, and the reality that even mature

systems can have undiagnosed performance issues that impact the overhead, cost, or

health of these systems. Distalyzer can help to find and solve these problems when

manual analysis is unsuccessful.

46

3 TRACKING PERFORMANCE CHANGES OF SYSTEMS IN CODE

REPOSITORIES

Many software projects consider performance as a vital component of development.

While many tools [48,51,52] exist to help developers optimize and profile the resource

utilization of the code they are currently running, there are fewer tools available to

help developers understand how code changes will impact the overall performance of

the system in the real world.

In ongoing development, continuous integration tests (e.g., unit tests) are run

after nightly builds to monitor correctness and ensure that local code changes do not

have long-range unintended consequences [6, 53]. However, unlike correctness and

functionality, performance is much more difficult to evaluate and assess.

To address this, developers typically create multiple performance benchmarks that

exercise various components of the code, and can be run on specific revisions in the

repository to measure and evaluate performance. One or more of these benchmarks

may be affected due to changes in the code, and any significant changes in the be-

havior of the benchmarks need to be brought to the attention of the developers.

Identifying such changes is beneficial to developers in two ways: (i) expected changes

in performance can be confirmed with domain knowledge expectations of the code

change; (ii) unexpected changes can be investigated and diagnosed early, to avoid the

persistence of performance bugs.

The primary goal of a performance management framework is to identify impor-

tant changes in the performance metrics, so that a developer may investigate its

cause. Previous work in the context of monitoring systems performance [9, 54] has

assumed unchanging systems with varying workload, and use thresholds to identify

changes. To our best effort, we explored the performance and software engineering

literature in the past 10 years, but surprisingly found little work on systems to au-

47

tomatically monitor the performance of changing software. Performance modeling of

complex software systems has been explored in the context of predicting performance

on configuration changes or significantly different workloads [55–57], but such models

cannot be easily applied to changing software code.

The current state-of-the-practice for automatically flagging significant performance

changes use variants of Service Level Agreements (SLAs) [9, 58], thresholds [59] or

moving windows [54]. Each of these require significant developer assistance and con-

figuration. These techniques are tedious and error-prone for changing software appli-

cations for the following reasons:

• Requires the specification of SLA bounds using domain knowledge for each

metric,

• Requires developers to choose parameter settings such as thresholds or window

sizes,

• Performs inaccurately unless carefully tuned by the developer (§ 3.3.1).

These factors severely limit the scope of these techniques for use in performance

testing of code repositories. To address this, in this dissertation we develop an au-

tomated tool that can help developers detect when changes in the code produce an

important impact on performance (Section 3.1).

To begin, we conducted a performance measurement study of three popular soft-

ware projects over years of their commits, all of which highlight the existence of abrupt

performance changes. The performance of Transmission BitTorrent (Fig. 3.1a), Google

Chrome V8 JavaScript engine (Fig. 3.1b) and Hadoop (not shown here due to lack of

space) have their own unique characteristics. Each benchmark was executed multiple

times to obtain these measurements. From this study, we derived the key insight that

application performance behavior can be characterized as periods of predictable per-

formance, punctuated by significant code changes and anomalies. We believe that this

natural model of performance is not properly accounted for, in state-of-the-practice

techniques, thus being the primary reason for their low accuracy.

48

Our analysis shows evidence of many possible performance problems over the pe-

riod of study. We discovered cases where commits trigger changes in both the average

and variance of the performance of the executions. Interestingly, some instances of

bad performance changes have persisted for many weeks, showing evidence of uniden-

tified performance issues. The impact of these unidentified, and uncorrected, perfor-

mance problems should not be overlooked. For example, a slow JavaScript engine

(V8) in Chrome could seriously impede the rendering and responsiveness of pages,

impacting a substantial userbase [60]. Furthermore, these plots do not show the

features other performance metrics that these benchmarks yield including software-

specific metrics and machine resource metrics (CPU, memory, etc.), all of which are

likely to change independently.

Since we identified many instances of code changes that have visible impact on

different metrics, but sometimes without an effect on the main metric itself, we conjec-

ture that important changes could be more easily detected by looking at all relevant

changes in unison. However, due to the large number of metrics and complex rela-

tionships between them, it would be difficult to manually identify correlated changes

across metrics on a daily basis.

To address this, we aim to develop a system which does not only consider whether

performance increases or decreases, but instead detects when the performance of a

system is abnormally (i.e., significantly) different from expectations in one or more

of several dimensions, be it average performance, performance stability, or the cor-

relation of performance to other measures. The contributions of this dissertation

are:

• A measurement study of how software performance changes over time in three

popular software repositories – Transmission, V8 JavaScript engine and Hadoop

MapReduce in Sec 3.2.

• The design of PerfDetect, a framework for managing daily performance and

detecting code changes that cause significant changes in one or more perfor-

mance metrics, in Sec 3.1.

49

• A quantitative evaluation of PerfDetect against state-of-the-practice tech-

niques, together with experiences in diagnosing these performance changes in

Sec 3.3. We find that threshold-based techniques are very sensitive to the choice

of the threshold, that even a ±0.6% change from the “ideal” threshold can cause

upto a 100% increase in false positives, or a 20% reduction in true positives.

When compared to the only publicly available implementation of a detection

scheme, used by Mozilla Firefox [61], PerfDetect detects an additional 10–

125% true changes, and reduces misdetections as much as 40–70%.

3.1 Designing PerfDetect

This section presents the design of PerfDetect, a framework for identifying

changes in the performance characteristics of code repositories, that concurrently

manages the execution of daily performance benchmarks and monitors divergence of

metrics from their historical trend. Fig. 3.2 shows the different stages of PerfDe-

tect starting with the execution of daily performance benchmarks on code revisions,

and identifying revisions that require developer investigation on unexpected perfor-

mance. At its input are the code repository coupled with a build system, and the set

of performance benchmarks developed and configured for the repository. The devel-

oper also configures the framework for nightly testing with the choice of night builds,

most commonly chosen as the last commit nightly (e.g. 4 AM). In our evaluation

of the three code repositories, we empirically identified their respective night times

as the time of day with least commits (Sec. 3.3). The developer also indicates the

performance metrics of interest collected during benchmark execution, including a

primary performance metric P (e.g. latency), other benchmark-specific metrics and

resource usage metrics. Examples of benchmark-specific metrics include scores of in-

dividual sub-benchmarks, throughput, goodput, etc. Each execution of a benchmark

produces a single value of each of these metrics.

50

(a) Performance trend of Transmission revisions on a file download benchmark on 100 nodes.
Shaded regions indicate the upper and lower half of the execution distributions. Gray lines
show true changes as identified by the authors.

(b) Performance scores of Chrome V8 JavaScript engine under the V8Bench and SunSpider
benchmarks. Although using the same code, the benchmarks are quite contrasting. Gray
lines show true changes across benchmarks as identified by the authors.

Figure 3.1.: Performance measurement study of Transmission and V8 software repositories

51

1

Performance
Benchmarks

Consolidate
Performance

Statistics

Average

Variance

Correlation

Statistical
change detector

C
od

e
R

ep
os

ito
ry

Flagged
revisionsSoftware-

specific

Resource

Queue extra executions for
verification

Trend estimation

▪ Average
▪ Variance
▪ Correlation

Significance
detector

Performance

2

3
4

5
67 8

N

Large code
change

Nights

Figure 3.2.: Design of PerfDetect for detecting deviations of performance metrics from
their expected behavior

PerfDetect uses statistical techniques to identify if today’s benchmark metrics

exhibits changes in mean, variability or correlation, that are considered unexpected

deviations from the current trend. The components that make up PerfDetect are:

• Mean, Variance and Correlation: Each performance metric is assessed for

changes in these dimensions, to gather not just the average behavior, but the

variability of the metric, and association with the primary performance metric.

• Large code changes: To improve the accuracy of change detection against

large variance, we argue for the demarcations of specific revisions as having

significant impact on future performance characteristics of the system.

• Detecting changes: By estimating the trend of a performance metric since

the last large code change, this flags revisions as having significant impact on

one or more performance metrics.

• Queue extra experiments: If a day is identified to have caused a significant

change, it is crucial to identify if the executions are exhibiting a real shift in

performance or simply large variability. Therefore, extra benchmark executions

are automatically scheduled to improve the accuracy of the prediction.

52

We evaluate the output of these flagged days in Section 3.3 by comparing them

with other known techniques, and describing the issues we diagnosed as a result. Each

of these components is described in greater detail below.

3.1.1 Performance Metrics Features

Performance metrics typically often vary from execution to execution, because

of non-determinism that exists both within and outside the software. Therefore, a

single benchmark execution of a day’s code snapshot is insufficient for characterizing

output behavior. PerfDetect summarizes the scores from multiple executions in

the following dimensions:

Mean. The mean performance is the mean of the performance values from all ex-

ecutions of a given day. This aims to capture changes in the overall performance of

the software, and is also the most frequently used metric to track performance. For

instance, the mean runtime performance of Transmission improved from 350 sec to

330 sec in Feb 2011 shifting the whole distribution, with the 20 sec difference having

a magnitude larger than nearby noise (Fig. 3.1a).

Variance. Variance is natural to systems and measurements of performance, pri-

marily attributed to randomness in code, timing measurements, scheduling, etc. and

developers strive to reduce the variability of their systems [62,63]. Even small changes

in the code can have significant impact on the variability, as we observe in our mea-

surement. Surprisingly, we identified instances of increase in variance going unnoticed

for many weeks, suggesting that developers easily miss variability although it is well

appreciated to be important. For example, Transmission exhibited high variance for

a month in Mar 2011 (Fig. 3.1a) that went undetected§ 3.3.3. PerfDetect con-

siders the variance of all performance metrics for estimation of changes. Estimating

variance accurately requires a large number of samples, and it may not be feasible

53

for all benchmarks due to limited time. Sec. 3.1.4 discusses methods for improving

accuracy.

Correlation Analysis. As the performance changes over time, other performance

and resource metrics are expected to change synchronously. These can be metrics

such as CPU usage, memory usage, or scores of individual benchmarks that consti-

tute a benchmark suite. For instance both V8Bench and SunSpider benchmark suites

aggregate scores from many sub-benchmarks. These associated metrics share some

characteristics with performance metrics such as variability, unpredictability and of-

ten change together with the software in its lifetime. For the purposes of diagnosis,

a näıve detection technique would be identifying correlated changes in other metrics

when performance changes. Today, this can be easily achieved using standard corre-

lation techniques. However, we quickly realized that metrics are very often correlated

as one would expect, leading to very little new knowledge about the revisions. On

the contrary, PerfDetect searches for changes to the correlation behavior.

For instance, it is trivial to infer that faster download times are correlated with

larger bandwidth usage on the machines. However, it is much more useful to know

that increased correlation between UDP throughput and performance happens on the

same day performance got worse (§ 3.3.3). We use a standard Pearson correlation co-

efficient of the performance metric and the secondary metric. This value ranges from

−1 to +1, indicating strong negative and strong positive correlations respectively. A

value of 0 indicates no correlation. A small caveat to correlating with scores from

sub-benchmarks for both V8Bench and SunSpider is that the total score is necessarily

correlated with the sub-benchmark scores, as the total score is a mathematic function

of the individual scores. To remove this dependence before correlation, we correlate

a sub-benchmark score against a new aggregate of the other scores. Sec. 3.3.4 de-

scribes our experiences in using the correlation predictor to identify the cause of a

performance degradation to a single sub-benchmark.

54

The mean, variance and correlation of all performance metrics are independently

analyzed for significant changes. In identifying a technique for estimating change, it

is intuitive to see that recent trends in the performance are more representative of

the near future, than performance values from (say) last year. This is because perfor-

mance trends in code repositories do not follow any periodicity. Therefore, an early

prototype of PerfDetect used an exponential moving average (EMA) and variance

(EMV) of a performance statistic since beginning of time. With this technique, we

were actually able to successfully detect many of the significant performance changes

in all the benchmarks, but were consistently missing changes following a large change.

Right after a large change in the performance metric, the EMA and EMV consume

a few days warming up to the new performance values, and hence temporarily esti-

mates large variability. This causes it to miss relatively smaller changes that would

otherwise be considered significant.

3.1.2 Windows of Large Software Changes

By taking the position of a developer of these systems, we realized that all large

performance changes were the result of code changes that were well intended. Hence

the repercussions in the form of performance improvement or degradation, were ex-

pected. Deriving from this observation, we posit that software development can be

characterized as regions of predictable performance, punctuated by large code changes

or anomalies. Large code changes are recognized by the developers as important

changes to the software history, and alter one or more performance metrics consider-

ably. Anomalies are commonly due to trivial flaws in the software or the experiment

infrastructure, and do not contribute to the performance trend. This model of soft-

ware performance behavior allows us to construct a realistic model of performance,

whose scope is bounded by the large changes.

Determining a large change. Large code changes are not frequent in software

repositories, and in our experience with analyzing the performance changes of Trans-

55

mission and V8, we noticed only 4 large code changes in V8 and Transmission, and

2 in Hadoop, over years of commits. Revisions are manually tagged by the devel-

oper as a large change, but it is worth noting that these are easy to identify and are

some of the largest changes in the software’s lifetime. As elaborated in the evalua-

tion(§ 3.3), PerfDetect manages to identify all large code changes as significantly

divergences. Being non-developers of these systems, we were easily able to associate

commit messages with observed performance trends to determine these changes.

3.1.3 Change Detection by Trend Estimation

Given a set of historical values X of a performance metric, the goal is to identify

if today’s value of the performance metric xt is similar or divergent. To correctly

model the trend in performance values, we use a linear regression predictor to predict

divergences. This is achieved by fitting a trend line on the historical values, and

estimating the distance of xt from this line. The predictor outputs two values – a

binary value indicating the significance of the new data against the history, and a

score indicating the strength of the prediction.

Linear Regression Predictor After fitting a line to the historical performance

values, the significance of today’s value is determined by comparing today’s diver-

gence from the line to the historical divergence. The comparison is made using a

normality test, that determines the probability that a value came from a given nor-

mal distribution, and in this case, the normal distribution of divergences. Given the

history contains t − 1 days of performance values (x1, x2, · · · , xt−1), this predictor is

constructed out of the two dimensional data points (1, x1), (2, x2), · · · , (t, xt−1). The

least squares function is used as the minimization function for fitting a line to these

points. Once the line is computed, the error in today’s value is simply the distance

between the predicted value of pred(X, t) and xt (say err(xt)). To estimate the sig-

nificance of xt, we compute the distribution of all err(xi); i < t, and then compare

this error distribution to err(xt). Using the distribution mean (µ) and variance (σ2),

56

the normality test is used to estimate the significance of the new value err(xt) using

a confidence threshold of 0.05 or 5%. In other words, the new value is insignificant

if it lies in the symmetric 95% window around the mean of the normal distribution,

and significant otherwise. This choice of threshold is standard in statistics and well

accepted.

The strength of the significance is determined using a standard one-sample student

T-Test. The T-value is computed as:

t = (µ− x)/(
√

σ2

n)

The strength of the significance is reported to the user, only if it has already

been determined to be significant. It should be noted that the linear regression is

recomputed on each day with the addition of every data point to the history, allowing

the regressor to attempt finding a better line to fit the data on each day, i.e., the trend

changes daily. As hypothesized, we observed linear trends in performance metrics for

all benchmarks, within the scope of large code change windows, but little evidence of

such trends for the whole lifetime. This allows this predictor to have a high accuracy

for predicting software performance trends. Moreover, we did not observe a non-linear

trend in any of the metrics, and therefore higher order regression (polynomial of 2nd

degree or higher) was unnecessary.

3.1.4 Queue Extra Experiments

The physical resources available for running performance benchmarks is lim-

ited, because these benchmarks tend to be large and time consuming, and more-

over need multiple executions for precision. For instance, our benchmarks for Trans-

mission and Hadoop consume between 7 and 10 cluster minutes for a single execu-

tion(§ 3.3.3, 3.3.5), and it is practical to run only a handful of executions within a

practical benchmarking quota of 1–2 hrs daily. With such a constrained environment,

PerfDetect needs to efficiently use the given time across executions. Currently,

57

we run each benchmark daily with a standard repetition (nstd) and use these per-

formance metric samples to assess if the day’s values are significantly different from

the trend. If evidence of such changes are found, PerfDetect successively gathers

more precision by queuing more execution repetitions of the benchmark (nextra), and

repeating the predictions.

To summarize, PerfDetect estimates the divergences in the mean, variance and

correlation behaviors of the performance metric on every new data point. Positive

predictions are reported to the developer for further investigation and diagnosis. We

describe some of our experiences in using the predictions made by PerfDetect to

determine real performance issues in these systems in Section 3.3.

3.2 Measurement & Implementation

We systematically collected performance data from each night’s commits from

years worth of code change in three software repositories – Transmission BitTor-

rent [27], Google Chrome V8 JavaScript engine [64] and Hadoop MapReduce [30].

These represent high-performance, popular systems implementations that are actively

developed and maintained, with both distributed and non-distributed semantics. Ta-

ble 3.1 summarizes the benchmarks and code activity for these repositories. Perfor-

mance is an important concern for these systems and is frequently an objective of code

changes, which is also apparent from the performance measurements (Fig. 3.1a, 3.1b).

To the best of our knowledge, these systems do not have a systematic performance

testing framework or haven’t publicized their performance data. In this section, we

describe each software repository briefly along with details on compilation and bench-

marks execution. For all these software, the benchmarks were inter-operable with all

revisions of the code selected for this measurement.

Experimental setup All our experiments were run on 8-core 2.33GHz Intel ma-

chines with 8GB of RAM, configured with Gentoo GNU/Linux 3.0.18 x86 64. One

concern for a long term use of PerfDetect is the change in infrastructure at in-

58

T
ab
le

3.
1:

S
u
m
m
ar
y
of

so
ft
w
ar
e
an

d
b
en

ch
m
ar
ks

u
se
d
in

ou
r
m
ea
su
re
m
en
t
an

d
ev
al
u
at
io
n

S
o
ft
w
a
re

C
o
m
m
it
s

N
ig
h
ts

B
e
n
ch

m
a
rk

N
o
te
s

T
ra
n
sm

is
si
on

28
00

61
8

10
0-
n
od

e
50
M
B

to
rr
en
t

S
lo
w
es
t
n
od

e
ru
nt
im

e
w
it
h
25
0K

B
p
s
u
p
-

lo
ad

ca
p
,
ru
n
on

5
m
ac
h
in
es
.

C
h
ro
m
e
V
8

86
17

93
7

V
8B

en
ch

8
su
b
-b
en

ch
m
ar
ks
:
C
ry
p
to
,
E
ar
le
yB

oy
er
,

R
ay
T
ra
ce
,
N
av
ie
rS
to
ke
s,

et
c.

S
u
n
S
p
id
er

26
su
b
-b
en

ch
m
ar
ks

in
9
cl
as
se
s:

3D
,
B
it
-

op
s,

C
ry
p
to
,
M
at
h
,
R
eg
E
xp

,
S
tr
in
g,

et
c.

H
ad

oo
p

34
47

56
6

T
er
aS

or
t

S
or
t
3G

B
/m

ac
h
in
e,

on
10

m
ac
h
in
es

P
i

C
om

p
u
te

π
to

la
rg
e
p
re
ci
si
on

,
on

10
m
a-

ch
in
es

59

termediate times. A possible workaround is to consider such changes as large code

changes, thereby ignoring the performance of earlier revisions. A more intelligent

workaround could execute a small number of historic revisions in the new infrastruc-

ture to estimate a small portion of the trend and improve accuracy.

3.2.1 Transmission

Transmission [27] is a client implementation of the BitTorrent protocol [65] being

developed since 2005, and is the default BitTorrent client in the Fedora and Ubuntu

Linux operating systems. The trunk branch had its lowest commit activity at 0900hrs

UTC, and hence picked to be the time of the nightly testing.

Compilation. Transmission uses the GNU build system for compilation, and all our

binaries were compiled for GNU/Linux and x86 64 target architecture. Specifically,

the Command Line Interface (CLI) target is built, skipping all GUI related code. It

should be noted that the choice of building and testing the CLI specifically limits the

scope of bugs we find to this code. For instance, this would not catch performance

issues that are resident in the GUI code. A library dependency issue was encountered

for libevent, where the dependency changed from pre-v2.0 to v2.0 or higher in

December 2010.

Benchmark. Transmission’s code base is only bundled with a set of unit tests that

verify correctness of a few components, but no performance tests. Therefore, we

designed a simple benchmark that would exercise most of the core features, by evalu-

ating the efficiency of downloads. The experiment consists of 100 peers downloading

a 50MB file in a single torrent with a single seeder. All peers run the same binary,

and are specified an upload bandwidth cap of 200KBps. These nodes are equally dis-

tributed on 5 physical machines connected through 3×1Gbps links, and we ensured

that none of CPU, memory, network or disk was a bottleneck during the experiments.

60

Performance Metric. The primary performance metric is the time to completion

of download by all nodes, i.e., runtime of the slowest node. The ideal runtime for

downloading this torrent file is 256sec (50MB on a 200KBps link), and the fastest

observed runtime for Transmission was 309sec. Fig. 3.1a shows the performance of

all revisions ranging between 60sec and 400sec. It is interesting to note that the

average runtime dropped from 350sec to 330sec overall, with a 2 month region in the

middle exhibiting high variance. Around Nov 2011, the 10sec runtime gap between

executions almost completely vanishes.

3.2.2 V8

The V8 JavaScript engine [64] is an interpreter and runtime for the JavaScript lan-

guage, designed and developed by Google using C++. It powers the Google Chrome

web browser, that is used by over 34% of all Internet users [60]. We picked 937 night

revisions since August 2009 for measurement, after empirically determining the night

test time as 0200hrs UTC.

Compilation. V8 went through two different build systems in three years of com-

mits, that we systematically automated. SCons was the build system used between

Mar 2009 and Dec 2010, then Generate Your Projects (GYP) generator and standard

GNU make files between Dec 2010 and Oct 2012. We used the 64-bit build target –

shell, that takes in a single JavaScript program and executes it completely.

Sun Spider. The Sun Spider benchmark suite is one of the oldest and most pop-

ular JavaScript benchmark, comprising of 26 sub-benchmarks in 9 broad classes as

indicated in Table 3.1. The performance metric for this benchmark is the elapsed

time. The default behavior of this benchmark is to run all the benchmarks once for

warmup (and discarding these timings), and running the benchmarks a second time

for the true scores. A single run of the benchmark takes only 2 seconds, and therefore

we run 150 executions nightly. Fig. 3.1b captures the overall performance of this

61

benchmark, with more than a 2X improvement in 3 years. There are multiple large

performance improvements such as the one in Jul 2011, with a general trend in better

performance overall. There are also a number of deteriorations such as Jul 2012, and

also a period of high variance in May 2011.

V8Bench. The V8 project also maintains its own performance benchmarks suite

consisting of 8 sub-benchmarks (version 7), designed as macro experiments when

compared to Sun Spider. Each sub-benchmark score represents the ratio between

its pre-determined ideal runtime to the observed runtime, where higher values are

better. Each benchmark is run at least 32 iterations for at least one second. The

performance metric is the geometric mean of the individual benchmark scores, thus

equally weighting all sub-benchmarks. Each run of the benchmark takes about 23sec

on average on our machines, and we run about 8–10 runs each night. Fig. 3.1b shows

the performance of this benchmark on the V8 code, with over a 4X improvement

in performance on the same code. Similar to the other systems and benchmarks,

there are periods of large performance improvements, high variance, low variance and

gradual performance growth.

3.2.3 Hadoop

Hadoop Map-Reduce [30] is a popular framework for large scale data processing,

that leverages distributed execution of map and reduce tasks. The framework com-

prises of the Hadoop Distributed Filesystem (HDFS), upon which the Map-Reduce

framework is layered. Revisions from the trunk repository from 2009 and 2010 were

picked for analysis. To the best of our knowledge, Hadoop does not have a principled

approach to performance detection although it maintains a Jenkins continuous inte-

gration system. We measured performance of two benchmarks that come packaged

with Hadoop and are considered relevant [66] – TeraSort which is the world record

holder sorting benchmark, Pi which computes an approximation of π. All bench-

marks were run on 10 machines, with 4 mappers and 4 reducers per machine. The

62

performance metric for all Hadoop benchmarks is the total runtime, and we designed

the experiments to run for approximately 10 minutes. Due to lack of space, we do

not show the complete plots for these benchmarks.

TeraSort benchmark. We configured this benchmark to sort 3GB of data/ma-

chine using 100-byte rows. An input generator MapReduce program called TeraGen

generates the input for TeraSort, and is run for each instance of the benchmark. The

performance metric only accounts for sorting time.

Pi benchmark. We configured the precision of this benchmark so that it runs for

10 minutes (input n = 1010). As described later, the runtime for this benchmark was

double (20 min) for periods in early 2009.

3.3 Experiences

We applied PerfDetect to the historic performance data collected from the

three systems that we measured, to both verify if the important changes are detected

and also to understand the types of performance issues present in systems software.

Firstly, we provide a quantitative evaluation of PerfDetect by comparing it with

known and used methods to detect performance changes, namely thresholds, moving

windows and exponential weighting as used by Mozilla Firefox. Next, we present

experiences from diagnosing the performance issues that were flagged and describe

what this measurement data means for systems developers.

3.3.1 Quantitative Evaluation

To develop a baseline for evaluation, we simulated the decision-making behavior

of analysts and identified interesting behavior via manual inspection of the full time

series. We have marked the revisions that were flagged as important using vertical

lines in Fig. 3.1a and Fig. 3.1b for the reader. We use these points as “ground truth”

63

to quantitatively evaluate the methods, but future work is needed to more carefully

assess the impact of each revision on system performance. Section 3.3.2 reports on the

bugs that we uncovered after delving deeper into several of the “anomalous” revisions

flagged by PerfDetect.

For each comparison, we measure standard metrics including True positives, False

positives and False negatives of the predictor as compared with the “truth”, as shown

in Fig. 3.3. The quantitative evaluation of one statistic, mean performance, is pre-

sented across all state-of-the-practice techniques, due to lack of space. However, this

evaluation is representative of change prediction that is performed on any other per-

formance metric and statistic (variance, correlation, etc.).

Comparison with Mozilla Firefox’s methods

Mozilla Firefox maintains a daily performance testing system – Talos, that uses an

exponentially weighted moving distribution [61] to estimate the historical trend. Their

method computes the exponential moving average (EMA) of the count, mean and

variance of the performance to estimate the “exponentially-weighted distribution”,

and then performs a T-Test to compare it with today’s values [67].

We have identified this to be an erroneous estimation of an exponentially weighted

distribution, because EMA(variance) is not the correct evaluation of the variance

of an exponential distribution var(ExpDistr) [68]. We fixed this computation using

the presentation in [68]. Fig. 3.3a shows the evaluation of both the original (buggy)

detection technique and our fixed version as compared with PerfDetect. It is clear

from these graphs that PerfDetect performs better across the board with higher

true positives and lower in both false positives and negatives.

Comparison with Thresholds

Thresholds are one of the most popular techniques for change estimation, and

works by classifying the performance difference between two successive performance

64

(a) Firefox’s exponential detection technique compared with PerfDetect on prediction
accuracy

(b) Different Thresholds applied on the previous day’s performance compared with
PerfDetect on prediction accuracy

(c) Different moving window sizes compared with PerfDetect on prediction accuracy

Figure 3.3.: Comparisons of prediction accuracy of PerfDetect to other methods

65

values based on a pre-specified threshold. We originally expected the sensitive of

the threshold value will be linear and 5% threshold would work reasonably. However,

5% threshold performed too poor and it led us to a finer grained evaluation. The

comparison is shown in Fig. 3.3b where PerfDetect is independent of the threshold

(horizontal lines).

As shown in Fig. 3.3b, at a very low threshold value, this technique is very sen-

sitive and predicts almost all changes as significant resulting in high false positives,

that grows exponentially. When the rates of false positives are equal (at about 2%

threshold), the true positives starts dropping across all benchmarks.

Our observation shows the biggest drawback of threshold methods, which is the

choice of the threshold is very sensitive to the accuracy. Moreover, the optimal

threshold value depends on the benchmark, even when two benchmarks are for the

same system. Thus, despite the importance, selecting a right threshold is a very

challenging task. PerfDetect on the contrary is not based on a parameter input

and achieves good accuracy with a reasonable number of false positives.

Comparison with Windows

We constructed the moving window predictor as follows: compare the distribution

of performance values in the moving window to the new performance, to assess if it

belongs to the same distribution. We used a normality test with a confidence interval

of 5% similar to the significance technique used by PerfDetect (§ 3.1.3). The

accuracy of this technique is shown in Fig. 3.3c.

Similar to what we observed in the threshold method, a lower window size pro-

duces a high true positive rate, yet with a huge false positive rate that grows exponen-

tially. The ideal choice of window size would minimize false positives and maintain

high truth, however this does not happen in unison for both V8Bench and SunSpi-

der benchmarks, and can be identified for a small range of values for Transmission.

Moving windows predicts Transmission’s performance more effectively because of its

66

rather flat performance trend (Fig. 3.1a). Moreover, the window sizes at which moving

windows are equal the false positive rate of PerfDetect (intersection of the green

lines) for three benchmarks are completely different. This indicates the downside of

this scheme: while choice of an appropriate window size is critical for the prediction

accuracy, selecting the right size of window is impossible or very challenging and it

depends on the target system.

3.3.2 Practical Experiences

By tracking the performance of these systems using methodical automated tech-

niques, we identified many instances of performance changes at the time of their

inception and for problems, their eventual fix. We describe a few of these issues

for each software system in detail, to highlight the common types of performance

changes. Note that PerfDetect identifies the existence of a performance change

in one or more performance metrics and dimensions (mean, variance, correlation),

and we manually determined the root causes of those issues. The issues were most

commonly identified by going through the commit logs and execution logs to identify

the offending change. Some issues are persistent for prolonged periods, and in such

cases we patched together commits from the initiation and termination to diagnose

them.

3.3.3 Transmission

Transmission exhibited instances of all of mean, variance and correlation changes

in our measurement time frame from July 2010 to March2013, of which we describe

3 in detail here. Note that Transmission has been quite stable in its overall perfor-

mance, given that it has already been adopted by many users and OS distributions,

and its release notes mainly indicated new features and associated bug fixes. Fig. 3.4

summarizes the issues that include a 10% average performance improvement, perfor-

mance degradation in variance and eventual fix, and a reduction in runtime variance

67

Figure 3.4.: Box-plot of Transmission file download performance indicating three perfor-
mance issues. Shaded regions show the large code change windows. Other performance
issues are not shown here for clarity.

of 10 sec. Tab. 3.2 briefly describes these performance issues, and we pick the most

important to detail below.

Improvement to Piece Prioritization Policy

This is the first improvement in performance, that happens in February 2011 when

the average runtime improves by 10% to around 320 sec in Fig. 3.4. Although we found

it obvious that an improvement to the piece policy would improve performance in a

sufficiently complex benchmark, we were surprised to find no mention of performance

on the bug ticket. This change was predicted on the primary performance metric,

and is indicated using a blue vertical line due to the direction of the change.

Prioritizing download on the rarest pieces is an important component of the Bit-

Torrent protocol, and is the recommended technique by the specification – the stan-

dard does not force any piece download policy on implementations. By the virtue

of the fact that the rare pieces are picked to be replicated across nodes, these pieces

more easily available, thus increasing the number of available sources to download

this piece. Transmission used a random piece policy until Nov 2010 when the lack of

68

T
ab
le

3.
2:

D
es
cr
ip
ti
on

s
of

th
e
im

p
or
ta
nt

p
er
fo
rm

an
ce

ch
an

ge
s
ob

se
rv
ed

in
T
ra
n
sm

is
si
on

S
ys
te
m

P
re
d
ic
ti
on

T
yp

e
C
h
an

ge
D
es
cr
ip
ti
on

R
ef
.

T
ra

n
sm

is
si
o
n

A
ve
ra
ge
,
W

in
d
ow

10
%

im
p
ro
ve
m
en
t

In
co
rp
or
at
ed

it
s
fi
rs
t
ve
rs
io
n
of

th
e
ra
re
st

p
ie
ce

p
ri
or
-

it
iz
at
io
n
p
ol
ic
y
in

F
eb

20
11

,
fr
om

it
s
ea
rl
ie
r
sc
h
em

e
of

ra
n
d
om

p
ie
ce
s.

§
3.
3.
3

A
ve
ra
ge
,
A
n
om

al
y

5X
fa
st
er

E
xt
re
m
e
p
er
fo
rm

an
ce

im
p
ro
ve
m
en
t
ca
u
se
d
d
u
e
to

vi
o-

la
ti
on

of
sp
ec
ifi
ed

u
p
lo
ad

b
an

d
w
id
th

(M
ar
ch

20
11

).
V
ar
ia
n
ce
,

A
ve
ra
ge
,

W
in
d
ow

(2
)

L
ar
ge

d
eg
ra
d
at
io
n

an
d
in
st
ab

il
it
y

F
or

40
d
ay

s
st
ar
ti
n
g
M
ar
ch

20
11

,
in
st
ab

il
it
y
ca
u
se
d
by

en
ab

li
n
g
n
ew

µ
T
P
w
ir
e
p
ro
to
co
l
im

p
le
m
en
ta
ti
on

to
re
-

p
la
ce

T
C
P
.R

oo
t
ca
u
se

d
ia
gn

os
ed

to
a
fa
u
lt
y
b
an

d
w
id
th

al
lo
ca
to
r,
an

d
n
ot

in
µ
T
P

co
d
e.

§
3.
3.
3

B
ro
ke
n
pa
rt
ia
ll
y

A
ss
er
ti
on

fa
il
u
re
s

P
ar
ti
al

fa
il
u
re

of
n
od

es
(8
3
am

on
g
99

)
in

th
e
m
id
d
le

of
th
e
ex
ec
u
ti
on

,
ob

se
rv
ed

fr
om

la
te

A
p
ri
l
20

11
to

la
te

Ju
n
e.

C
au

se
d
by

a
se
gm

en
ta
ti
on

fa
u
lt
on

a
sp
ec
ifi
c
co
d
e

p
at
h
ex
er
ci
se
d
by

th
e
n
od

es
.

V
ar
ia
n
ce
,
W

in
d
ow

P
er
en
n
ia
l
10

se
c
ga

p
va
n
is
h
es

In
N
ov

20
11

,
a
b
im

od
al

p
er
fo
rm

an
ce

tr
en
d

va
n
is
h
ed

al
m
os
t
co
m
p
le
te
ly
,
ca
u
se
d
by

a
ra
n
d
om

ge
n
er
at
or

b
u
g

fa
il
in
g
to

al
lo
ca
te

eq
u
al

b
an

d
w
id
th

at
a
sm

al
l
gr
an

u
la
r-

it
y.

§
3.
3.
3

69

this property was first reported by an external user, and was eventually incorporated

into the code in Feb 2011. Due to the nature of this code change, this fix was later

marked as the start of a new change window.

Lessons. It appeared from the bug ticket that performance was not a major criteria

of this improvement. Firstly, the external reporter of this ticket does not mention

a reason, and there was no reference of performance tests or improvement. More

interestingly, on the same day that the final patch for this bug was committed, 70

other unrelated changes were committed. Within our measurement period this was

the highest number of changes on a day, with the next highest falling short of 25.

Such performance changes could happen at any day of development, and must be

properly analyzed and investigated.

Enable µTP Wire Protocol Implementation

A new wire protocol called µTP meant to replace TCP as the default, was enabled

in March 2011 causing a big performance degradation in both the mean and variance

of the benchmark. This protocol constructs a less aggressive reliable in-order trans-

port using UDP, meant to react to congestion sooner and back-off. In an uncongested

network such as ours however, this is expected to provide throughput comparable to

TCP and hence this change was not intended to drastically reduce performance. The

goal of using µTP is to reduce the effect of BitTorrent traffic on ISP networks, by

being nice to other TCP traffic.

Fig. 3.4 shows both the start and end of this degradation in March and April 2011

which lasted for 40 days. The mean performance worsened from 320 sec to 360 sec,

and the variance spiked. It should be noted that PerfDetect also flagged changes

in the UDP datagram and TCP packet volume, and further identified a large change

in correlation between UDP and performance. These signals would quickly allow a

developer to narrow down the space of performance metrics, to diagnose the problem.

The actual root cause was a problem in the bandwidth allocator that was triggered

70

by the switch to µTP. Moreover, the fix did not lie in newly written code for µTP

but rather in a function that was last modified 2 years ago.

Lessons. Most of the implementation and testing of µTP was done earlier and sim-

ply enabled at this time. Since Transmission lacked a solid performance management

system, such an important performance degradation was missed by the developers for

a prolonged period. This bug clearly demonstrates repercussions of newly triggered

executions that can cause older code to perform badly. Such problems are hard to

predict and prevent during development due to the large number of components, but

can be reactively identified and fixed.

Bi-Modal Performance Distribution

One characteristic of Transmission’s performance graph was a fairly stable gap of

10-15 seconds between the slowest and fastest executions (across multiple executions)

for most part of our measurements. This gap tapered off around November 2011

although not completely, with a few outlier executions as seen in the right end of

Fig. 3.4. PerfDetect detected this change in the mean and variance of performance,

but unfortunately none of the other performance metrics were flagged indicating the

subtle nature of the change. The box-plots clearly show the disappearing bi-modality

with the reduction in the inter-quartile range.

This improvement is important to Transmission’s development as it removed a

really old instability leading up to the beginning of our measurements. The root

cause of the bi-modality was traced again to the bandwidth allocator, to the same

function that was erroneous in Sec. 3.3.3. The bandwidth allocator was using a faulty

random generator causing it to mis-allocate bandwidth across peers albeit at a very

small granularity. In the overall execution of the system, this led to a predictable half

of the executions to run longer.

71

Lessons. The bug ticket was reported externally and marked as minor, although we

thought that it was a significant performance issue that ought to have been identified

earlier. This shows that performance problems can go unfixed for years, and simply

treated as cases of randomness or ignored because of their small magnitude.

3.3.4 V8

V8’s performance had a tremendous gain since the beginning of the measurement

period, as opposed to Transmission which had smaller and less frequent changes. Al-

though both V8Bench and SunSpider benchmarks operate on the same V8 JavaScript

engine code base, they exhibit very different performance characteristics (Fig. 3.1b),

representing common challenges in measuring the performance of complex systems.

Both benchmarks exhibited performance improvements and deteriorations, with some

of the biggest changes being large performance boosts.

Here we describe two of the 6 performance changes (Table 3.3) that induce the

most interesting performance fluctuations, as indicated by the vertical lines in Fig. 3.5.

The whole performance history contains many more interesting behaviors that are also

flagged by PerfDetect, but we have not diagnosed all of them.

Crankshaft JIT Compiler

In March 2011, both V8Bench and SunSpider saw one of the biggest performance

improvements in V8, as a consequence of enabling a new component called Crankshaft

in the JavaScript engine. This is shown in Fig. 3.5 as a large improvement in the

score V8Bench from 3500 to 6000, and a smaller decrease in the runtime of SunSpider

from 650 msec to 550 msec. Crankshaft is a compilation infrastructure for V8 and it

brought significant improvements to compute-intensive JavaScript, by incorporating

aggressive optimizations only on the most popular parts of the program (hot code).

Note that JavaScript is an interpreted language and hence any compilation performed

72

T
ab
le

3.
3:

D
es
cr
ip
ti
on

s
of

th
e
im

p
or
ta
nt

p
er
fo
rm

an
ce

ch
an

ge
s
ob

se
rv
ed

in
C
h
ro
m
e
V
8
an

d
H
ad

oo
p

S
ys
te
m

P
re
d
ic
ti
on

T
yp

e
C
h
an

ge
D
es
cr
ip
ti
on

R
ef
.

C
h
ro

m
e
V
8

A
ve
ra
ge
,
W

in
d
ow

7%
im

p
ro
ve
m
en
t

D
ec

20
09

,
fi
xe
d
an

ov
er
ly
-a
gg

re
ss
iv
e
op

ti
m
iz
at
io
n
ea
r-

li
er

m
ad

e
in

N
ov

20
09

.
A
ve
ra
ge
,

V
ar
ia
n
ce
,

W
in
d
ow

Im
p
ro
ve
m
en
t
of

65
%

fo
r

V
8B

en
ch
,

15
%

fo
r
S
u
n
S
p
id
er

M
ar
ch

20
11

,
en
ab

li
n
g
C
ra
n
ks
h
af
t
–
a
n
ew

JI
T
co
m
p
il
a-

ti
on

in
fr
as
tr
u
ct
u
re
.

S
ig
n
ifi
ca
nt

p
er
fo
rm

an
ce

im
p
ro
ve
-

m
en
ts

on
co
m
p
u
te
-i
nt
en
si
ve

Ja
va
S
cr
ip
t,

w
it
h

la
rg
er

va
ri
ab

il
it
y.

§
3.
3.
4

A
ve
ra
ge
,
V
ar
ia
n
ce

36
%

im
p
ro
ve
m
en
t
on

S
u
n
S
p
id
er

Ju
n

20
11

re
d
u
ci
n
g

ov
er
h
ea
d

of
op

ti
m
iz
at
io
n
s.

R
ea
l

C
ra
n
ks
h
af
t
b
en
efi
ts

fo
r
S
u
n
S
p
id
er
.

A
ve
ra
ge
,
C
or
re
la
ti
on

13
%

sl
ow

d
ow

n
A

p
er
fo
rm

an
ce

p
ro
b
le
m

ca
u
se
d

by
ag

gr
es
si
ve

d
e-

op
ti
m
iz
at
io
n
,
fi
xe
d
by

ca
re
fu
l
op

ti
m
iz
at
io
n
.
A
p
p
ea
rs

in
a
si
n
gl
e
su
b
-b
en
ch
m
ar
k,

b
u
t
aff

ec
ts

th
e
ov
er
al
l
sc
or
e.

§
3.
3.
4

V
ar
ia
n
ce
,

A
ve
ra
ge
,

W
in
d
ow

20
%

im
p
ro
ve
m
en
t
on

V
8B

en
ch

F
eb

20
12

,
ac
h
ie
ve
d
by

an
ag

gr
es
si
ve

op
ti
m
iz
at
io
n
fo
r

ar
ra
ys

co
nt
ai
n
in
g
on

ly
sm

al
l
in
te
ge
rs
.

V
ar
ia
n
ce
,
A
ve
ra
ge

In
N
ov

20
11

,
su
cc
es
si
ve

im
p
ro
ve
m
en
t
an

d
d
et
er
io
ra
ti
on

w
as

m
ad

e
d
u
e
to

ch
an

ge
s
in

ga
rb
ag

e
co
ll
ec
ti
on

.

H
a
d
o
o
p

A
ve
ra
ge

10
%

im
p
ro
ve
m
en
t

C
h
an

ge
in
d
u
ci
n
g

au
to
m
at
ed

co
n
fi
gu

ra
ti
on

of
in
-

m
em

or
y
so
rt

b
u
ff
er
,
im

p
ro
vi
n
g
th
e
T
er
aS

or
t
b
en
ch
m
ar
k

w
h
ic
h
ex
er
ci
se
s
th
e
sh
u
ffl
e
p
h
as
e
si
gn

ifi
ca
nt
ly
.

§
3.
3.
5

A
ve
ra
ge

2X
im

p
ro
ve
m
en
t

T
h
e
P
i
b
en
ch
m
ar
k
im

p
le
m
en
ta
ti
on

w
as

u
p
d
at
ed

to
u
se

a
m
or
e
p
re
ci
se

co
m
p
u
ta
ti
on

of
π
,
in
ci
d
en
ta
ll
y
al
so

im
-

p
ro
vi
n
g
it
s
p
er
fo
rm

an
ce
.

73

Figure 3.5.: Three performance problems identified in the V8 JavaScript engine across
two benchmarks. Shaded regions show the large code change windows, common to all
benchmarks sharing the codebase. Other performance issues are not shown here for clarity.

by the engine is Just-In-Time (JIT) compilation. By applying heavy optimizations

only on the hot code, it avoids increasing runtime overheads due to compilation.

Crankshaft was enabled for the x64 platform in March 2011 which is our testing

platform, although it appears to have been enabled earlier in December 2010 for

the 32-bit builds. PerfDetect detected a change in both the mean and variance

scores of V8Bench, and the box-plots clearly show the increase in variance. The

instability in performance triggered by this change remains for a year until March

2012, before decreasing slightly. A similar variance trend was also caused in the

SunSpider benchmark at this change, but this trend ends sooner in June 2011.

Lessons. Different benchmarks can have very different performance changes as a

result of the same change in the code, and developers should carefully extract and

analyze all such interesting changes. For instance, the V8 developers identified that

the improvement to SunSpider is not as significant as in V8Bench and therefore

needs other tweaks, that come later in June 2011. Also, a large magnitude of average

performance change might easily mask secondary effects to the human eye, such

as the variance in this case. In fact, we were unable to find any references to the

74

high variance caused by Crankshaft in the commit logs, indicating a case of masked

variance effects.

Misbehaving Sub-Benchmark: 3d-raytrace

This performance degradation is seen only in the SunSpider benchmark score in

May 2012 as flagged with the red line in Fig. 3.5. The runtime of the benchmark

increases from 300 msec to 350 msec. Along with the performance benchmarks,

PerfDetect also predicted a change in one of the benchmark-specific scores of

SunSpider – 3d-raytrace. This performance degradation persists for a month in

SunSpider. The computation of correlation factors out the 3d-raytrace component

from the total score as described in Sec. 3.1.1. As a result of this change, the correla-

tion score for 3d-raytrace starts a negative trend toward −1, i.e., tending to negative

correlation.

This bug was caused by overly aggressive de-optimization, with significant effect

on the code exercised by this benchmark. As a result, this benchmark suffered the

biggest penalty causing the sum of the runtimes of the sub-benchmarks to go up for

SunSpider.

3.3.5 Hadoop

The performance of the Hadoop benchmarks were in general highly variable as

compared to the other systems and benchmarks we measured. Fig. 3.6 shows a

10% performance improvement in the mean performance of the TeraSort benchmark

as predicted by PerfDetect shown with box-plots. This change follows a perfor-

mance commit made to automatically configure the sort buffer that is used during the

shuffle phase. Prior to the commit, a configured fraction of the in-memory sort buffer

was allocated for meta-data. The developers realized that such a hard-configuration

was bad for workloads such as this sort benchmark which generates more meta-data

per data, and added auto-configuration of this threshold. Naturally this caused an

75

Figure 3.6.: Performance improvement on the Hadoop TeraSort benchmark

improvement in the MapReduce shuffle phase which is crucial for the sort benchmark,

resulting in lower runtime.

Having described our experiences in designing and evaluating a principled ap-

proach to detecting performance changes in software repositories, we now turn to

placing this in the context of published work for other similar problems in related

areas.

3.4 Related Work

Performance detection is orthogonal to performance diagnosis, which is explored

by Distalyzer (Chapter 2). Performance diagnosis usually follows the detection of

a new problem.

Mathematical models of system behavior can be used to estimate performance

characteristics. System modeling aims to model the performance behavior of complex

software systems in a target environment, commonly when it is not easy or feasible to

execute the system repeatedly. There exist a variety of system modeling techniques

for target systems ranging from white to black-box modeling [55–57]. These modeling

techniques have been proven effective for complex systems under uncertain environ-

ments, and could potentially be used to predict the impact of code changes. However,

76

in the context of an automated test infrastructure, it is much less cumbersome to ex-

ecute the target system for multiple executions than perform costly and uncertain

performance modeling, and is the most commonly adopted approach [54, 61].

Mining software repositories (MSR) is a branch of software engineering that ex-

plores various aspects of software as it evolves in a revision control system (RCS) [69].

Apart from exploring the nature of the committed patches [70–72] and people who

commit them [73,74], it also explores choice of daily regression tests [5,6]. We argue

that the ability to manage performance measurements of systems collected regularly

is orthogonal to the choice of the tests and infrastructure to facilitate their automatic

execution. To the best of our knowledge, we conduct the first large scale study of the

evolution of performance over years of development and thousands of code changes.

Many large software projects (including open-source ones) are known to perform

daily tests to avoid performance regressions, but to the best of our effort we were

able to find a publicly available system only at Mozilla Firefox [61]. Most state-of-

the-practice techniques demand domain knowledge and careful configuration ability

from the developers to make Service Level Agreements (SLAs) [9,58], thresholds [59]

or moving windows [54] work accurately, as clearly shown by the quantitative eval-

uation(§ 3.3.1). This places a huge burden on the developers, especially with the

abundance of benchmarks and their associated performance metrics.

The automated correlation analysis of metrics data to performance of evolving

software [75,76] is perhaps the closest work to this PerfDetect w.r.t. correlations.

Although they also apply machine learning techniques to find changes in correlation

between the performance metric and other system metrics, it only computes corre-

lation on discretized version of the input metrics. Moreover, the paper expects all

the historical metrics to be generally similar to assess the general historical behavior.

As seen for both Transmission and V8, the expected behavior of many metrics fre-

quently changes with the system itself. Detecting significant changes from expected

performance behavior has been explored in the context of software rejuvenation [77]

with the goal of identifying changes during the execution of a system. This technique

77

assumes the availability of a normal behavior as performance average and standard

deviation, to identify specific kinds of deviations from this distribution based on a

model of the input workload. We argue that our analysis is more powerful by being

robust to non-discrete metrics and automatically estimates the recent normal behavior

in history.

3.5 Summary

Regular performance measurements of software systems vary frequently with code

changes, benchmarks, randomness in the environment, etc. Moreover large systems

have many metrics and dimensions that must each verified with developer expecta-

tions, making performance tracking hard. Automatically tracking the performance of

system benchmarks is essential for software whose performance is critical, so that per-

formance deteriorations in the average, variance and correlations are identified early.

This chapter motivates the need for automated performance management through

a measurement study of three real systems over multiple years, and then builds

PerfDetect that can automatically identify diverging performance behaviors. We

develop on the insight that performance can be described as large code changes sepa-

rating regions of predictable performance trends. The effectiveness of PerfDetect

as compared with known techniques is demonstrated using both quantitative and

qualitative evaluations.

78

4 SUMMARY

Software systems are becoming complex and harder to build and understand, es-

pecially in the context of parallel and distributed executions. With this shift in the

complexity, it is getting harder for developers to manually manage the performance of

their systems, hence inhibiting faster improvements to the software development life

cycle. Performance issues often go undetected and pose as time consuming challenges

to diagnose, due to unpredictable platforms, software randomness and the scale of

executions. Many developer hours can be saved if such deteriorations can be detected

at their early stages and fixed rapidly.

Machine learning techniques are useful to analyze the large volumes of rich run-

time instrumentation data that are generated by these systems, to automate the

management of performance. This thesis explored the application of machine learn-

ing techniques to aid software management in performance detection and diagnosis

using widely available instrumentation logs.

4.1 Contributions

This thesis improves the state of performance management for developers by de-

vising new machine learning techniques to detect and diagnose degradations in large

scale systems software. We designed Distalyzer to diagnose performance problems

using existing unstructured logs from systems software, to highlight the root cause

of performance through event and state logs. As the precursor step toward diagnosis

is the detection of new incoming problems during software development, we designed

PerfDetect to automatically flag code changes that trigger non-trivial changes in

one or more performance metrics. In developing these tools for developers, we have

contributed to this field in many dimensions:

79

• Semi-structured logs: Most existing logs from large systems are unstructured

yet rich with systems internal details, making them hard to use for automated

analysis. Although there exist logging frameworks for generating highly struc-

tured logs, they are rarely used in practice. Inducing a small amount of structure

through State and Event logs, allows for automated techniques to leverage the

wealth of information.

• Differentiate non-determinism from execution patterns: Non-determinism

is a major contributor to internal system event timings, as is intended program

logic such as timers. During analysis, performing this distinction is necessary

so that automated methods can search for true patterns in event signals as

opposed to random event sequences. This can be resolved by requiring a suffi-

ciently large sample set of event sequences (logs), and using robust statistical

functions on observed values.

• Graphical output of bug root causes: As human developers are the con-

sumers of our automated tools, it was necessary to develop outputs that are easy

to comprehend and interpret as opposed to large tables of statistical computa-

tions. The use of visual graphs to represent component dependencies in Dist-

alyzer helped developers decipher the root cause, without previously having

to know all dependencies. In addition, it required robust techniques for pruning

the entities (or features) in the output, so that the developer is not overwhelmed

by a bigger problem. Such visual output representations of machine learning

analysis on systems logs would in general prove very useful to developers, who

are commonly non-experts in statistics or data analysis.

• Trends in software performance: Identification of the trends in each per-

formance metric delineated by large code changes was critical to the techniques

of PerfDetect. Each of the possible hundreds of performance metrics estab-

lishes its own trend over code commits, and it would help software managers to

understand these trends.

80

This thesis has demonstrated that the common practice of debugging performance

in systems through manual analysis is cumbersome and does not scale, and develops

techniques for two common developer tasks. Our measurement study of three software

repositories showed that daily performance characteristics are hard to track, especially

in the presence of a large number of metrics, when these metrics are constantly

impacted by different code commits. The insight into existence of metric trends,

large code changes and anomalies led to the design of PerfDetect that estimates

large metric divergences with high accuracy. Apart from the average trend in metrics,

variance and correlation are shown to be helpful in detecting important changes to

the software. On comparison with current practices in such detection that require

heavy tuning, PerfDetect’s detection scheme outperformed others with higher true

positives and lesser false positives.

The natural successor to detection is diagnosis of the root cause, which is partic-

ularly hard for performance given the absence of clear error conditions, amidst large

volumes of suspect log events. We identified that a common use case for developers

is reasoning about bad performance against another set of executions with better

performance, gathered from other implementations, versions, nodes or requests. We

further recognized that existing logging in implementations contained enough infor-

mation to perform a reasonable diagnosis task. This led to the design of Distalyzer

to automate the comparison of semi-structured systems logs to identify a small subset

of log events that best describes the performance problem. These graphical represen-

tations capture a balance between divergence in log features across the set of logs,

and the statistical dependencies between possible root causes and the performance

metric. This resulted in the successful diagnosis of six performance problems in three

deployed software implementations.

The exploration of these problems in systems performance unraveled various other

challenges that would help advance the state-of-the-art in automated management of

systems. Next we identify a few closely related problems.

81

4.2 Future Work

In the era of big data, the growth of large systems is creating avenues for mining

information from instrumentation logs. This research area is still at its infancy, and

the work in this dissertation raises more problems and questions. Below, we list a

few open problems.

Integration of software engineering with analysis techniques. Automated

techniques for detection and diagnosis of bugs in software need good mechanisms

and representations for output to human developers. Developers are most comfort-

able with the code and/or associated configuration parameters, and it would be ideal

for automated techniques to associate directly to these, much like executable debug-

gers. Software engineering techniques such as static and dynamic program analysis,

program tracing can enable automated tracing of program paths and interaction of

program components. The combination of machine learning techniques that extract

root cause chains with code analysis toolchains would be beneficial, by ideally out-

putting specific parts of the code corresponding to the root cause. For instance, the

output dependency graphs of Distalyzer (Chapter 2) refer to names of log instances

found in the instrumentation. With an incorporation of software engineering that as-

sociates the locations in the code that generates the log statements, such software

engineering techniques can scale much easily for diagnosis, and generate easier out-

puts for the developers. The scope of PerfDetect is more restricted to changes in

the code as a result of repository commits (Chapter 3). When performance changes

are observed as an outcome of a specific changeset, they can also be associated with

specific lines of change. The knowledge of the components affected by a changeset,

together with a model for inter-component behavior can be used to diagnose new

performance problems precisely. Additionally, repository maintainers can also choose

to analyze software metrics such as code coverage, lines of change and other code

metrics for change detection.

82

Diagnosis of performance problems caused by hardware faults. Hardware is

equally likely compared to software, to fail or perform poorly. Faults are exacerbated

in large scale deployments, where the mean-time-to-failure of individual components

compound, resulting in higher probabilities of single component failure. Hardware

problems are hard to detect, and developers frequently attempt to mask these in

software as poor performance. In systems with large numbers of inter-dependent

components, this can manifest as concealed performance problems in the overall or

worst-case performance. Detecting root causes that exist in hardware is quite chal-

lenging when compared to software-induced problems, because the instrumentation

only captures the software manifestation of the true problem. In our diagnosis of the

hardware bug in TritonSort using Distalyzer (§ 2.4.1), we gathered the insight that

hardware performance issues are caused by failure of a small number of components,

as opposed to widespread deployments of buggy software. This creates challenges for

the machine learning techniques such as the availability of a small number of sam-

ples, and misrepresented instrumentation data (i.e., one or more log events display

some postmortem evidence of the hardware problem). We believe that this space of

hardware-induced performance problems is quite prevalent in large system establish-

ments, and machine learning techniques can be specially tailored toward hardware

nuances.

Analyzing gradual changes in component dependencies. Software under-

goes many types of changes through continued development commits in the repos-

itory. Chapter 3 detects changes in the performance and related performance met-

rics due to code changes. Additionally, code changes trigger behavioral changes in

inter-component dependencies. Systems have rich dependencies between components

(Chapter 2) and understanding the nature and structure of dependencies is essential

to understand the overall characteristics of the system behavior. Similar to changes in

performance characteristics, gradual changes in dependency structures signify impor-

tant behavioral changes. In complex systems with tens or hundreds of components

83

and complex dependencies, developers struggle to manage such dependencies on a

regular basis. We have explored the use of automated techniques such as depen-

dency networks to learn these complex dependencies. The scope of these applications

should be expanded to include analysis of dependency structures and their continuous

evolution with code repositories.

LIST OF REFERENCES

84

LIST OF REFERENCES

[1] Patrice Godefroid. Model Checking for Programming Languages using VeriSoft.
In Proceedings of the 24th ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages, POPL ’97, pages 174–186, New York, NY, USA,
1997. ACM.

[2] Madanlal Musuvathi, David Y. W. Park, Andy Chou, Dawson R. Engler, and
David L. Dill. CMC: A Pragmatic Approach to Model Checking Real Code.
In Proceedings of the 5th Symposium on Operating Systems Design and Imple-
mentation – Volume 5, OSDI ’02, Berkeley, CA, USA, December 2002. USENIX
Association.

[3] Charles Killian, James W. Anderson, Ranjit Jhala, and Amin Vahdat. Life,
Death, and the Critical Transition: Detecting Liveness Bugs in Systems Code.
In Proceedings of the 4th USENIX Conference on Networked Systems Design
and Implementation, NSDI ’07, page 18, Berkeley, CA, USA, 2007. USENIX
Association.

[4] Wei Xu, Ling Huang, Armando Fox, David Patterson, and Michael I. Jordan.
Detecting Large-Scale System Problems by Mining Console Logs. In Proceedings
of the ACM SIGOPS 22nd Symposium on Operating Systems Principles, SOSP
’09, pages 117–132, New York, NY, USA, 2009. ACM.

[5] Thomas Ball. On the Limit of Control Flow Analysis for Regression Test Selec-
tion. In Proceedings of the 1998 ACM SIGSOFT International Symposium on
Software Testing and Analysis, ISSTA ’98, pages 134–142, New York, NY, USA,
1998. ACM.

[6] John Bible, Gregg Rothermel, and David S. Rosenblum. A Comparative Study
of Coarse- and Fine-Grained Safe Regression Test-Selection Techniques. ACM
Transactions Software Engineering Methodologies, 10(2):149–183, April 2001.

[7] Latency is Everywhere and it Costs You Sales – How to Crush it. http://goo.
gl/35092y.

[8] Giuseppe DeCandia, Deniz Hastorun, Madan Jampani, Gunavardhan Kakula-
pati, Avinash Lakshman, Alex Pilchin, Swaminathan Sivasubramanian, Peter
Vosshall, and Werner Vogels. Dynamo: Amazon’s Highly Available Key-Value
Store. In Proceedings of the 21st ACM SIGOPS Symposium on Operating Sys-
tems Principles, SOSP ’07, pages 205–220, New York, NY, USA, 2007. ACM.

[9] Ira Cohen, Moises Goldszmidt, Terence Kelly, Julie Symons, and Jeffrey S.
Chase. Correlating Instrumentation Data to System States: A Building Block
for Automated Diagnosis and Control. In Proceedings of the 6th Symposium on
Operating Systems Design and Implementation – Volume 6, OSDI ’04, page 16,
Berkeley, CA, USA, 2004. USENIX Association.

http://goo.gl/35092y
http://goo.gl/35092y

85

[10] Mike Y. Chen, Anthony Accardi, Emre Kiciman, Jim Lloyd, Dave Patterson, Ar-
mando Fox, and Eric Brewer. Path-Based Failure and Evolution Management.
In Proceedings of the 1st Symposium on Networked Systems Design and Imple-
mentation – Volume 1, NSDI ’04, page 23, Berkeley, CA, USA, 2004. USENIX
Association.

[11] Paul Barham, Austin Donnelly, Rebecca Isaacs, and Richard Mortier. Using
Magpie for Request Extraction and Workload Modelling. In Proceedings of the
6th Symposium on Operating Systems Design and Implementation – Volume 6,
OSDI ’04, page 18, Berkeley, CA, USA, 2004. USENIX Association.

[12] Patrick Reynolds, Charles Killian, Janet L. Wiener, Jeffrey C. Mogul, Mehul A.
Shah, and Amin Vahdat. Pip: Detecting The Unexpected In Distributed Sys-
tems. In Proceedings of the 3rd Conference on Networked Systems Design and Im-
plementation – Volume 3, NSDI ’06, page 9, Berkeley, CA, USA, 2006. USENIX
Association.

[13] Rodrigo Fonseca, George Porter, Randy H. Katz, Scott Shenker, and Ion Stoica.
X-Trace: A Pervasive Network Tracing Framework. In Proceedings of the 4th
USENIX Conference on Networked Systems Design and Implementation, NSDI
’07, page 20, Berkeley, CA, USA, 2007. USENIX Association.

[14] Marcos K. Aguilera, Jeffrey C. Mogul, Janet L. Wiener, Patrick Reynolds, and
Athicha Muthitacharoen. Performance Debugging for Distributed Systems of
Black Boxes. In Proceedings of the 19th ACM Symposium on Operating Systems
Principles, SOSP ’03, pages 74–89, New York, NY, USA, 2003. ACM.

[15] Ding Yuan, Soyeon Park, and Yuanyuan Zhou. Characterizing Logging Practices
in Open-Source Software. In Proceedings of the 2012 International Conference
on Software Engineering, ICSE ’12, pages 102–112, Piscataway, NJ, USA, 2012.
IEEE Press.

[16] Apache Log4j. http://logging.apache.org/log4j.

[17] Sun. Solaris Dynamic Tracing Guide, 2009.

[18] Benjamin H. Sigelman, Luiz Andr Barroso, Mike Burrows, Pat Stephenson,
Manoj Plakal, Donald Beaver, Saul Jaspan, and Chandan Shanbhag. Dap-
per, a Large-Scale Distributed Systems Tracing Infrastructure. Technical report,
Google, Inc., 2010.

[19] Wei Xu, Ling Huang, Armando Fox, David Patterson, and Michael Jordan. Ex-
perience Mining Google’s Production Console Logs. In Proceedings of the Work-
shop on Managing Systems via Log Analysis and Machine Learning Techniques,
SLAML ’10, page 5, Berkeley, CA, USA, 2010. USENIX Association.

[20] Raja R. Sambasivan, Alice X. Zheng, Michael De Rosa, Elie Krevat, Spencer
Whitman, Michael Stroucken, William Wang, Lianghong Xu, and Gregory R.
Ganger. Diagnosing Performance Changes by Comparing Request Flows. In
Proceedings of the 8th USENIX Symposium on Networked Systems Design and
Implementation, NSDI ’11, page 4, Berkeley, CA, USA, 2011. USENIX Associa-
tion.

[21] Splunk. http://www.splunk.com/.

http://logging.apache.org/log4j
http://www.splunk.com/

86

[22] Elmer Garduno, Soila P. Kavulya, Jiaqi Tan, Rajeev Gandhi, and Priya
Narasimhan. Theia: Visual Signatures for Problem Diagnosis in Large Hadoop
Clusters. In Proceedings of the 26th International Conference on Large Installa-
tion System Administration: Strategies, Tools, and Techniques, LISA ’12, pages
33–42, Berkeley, CA, USA, 2012. USENIX Association.

[23] Jiaqi Tan, Soila Kavulya, Rajeev Gandhi, and Priya Narasimhan. Visual, Log-
Based Causal Tracing for Performance Debugging of MapReduce Systems. In
Proceedings of the 2010 IEEE 30th International Conference on Distributed Com-
puting Systems, ICDCS ’10, pages 795–806, Washington, DC, USA, 2010. IEEE
Computer Society.

[24] Srikanth Kandula, Ratul Mahajan, Patrick Verkaik, Sharad Agarwal, Jitendra
Padhye, and Paramvir Bahl. Detailed Diagnosis in Enterprise Networks. In
Proceedings of the ACM SIGCOMM 2009 Conference on Data Communication,
SIGCOMM ’09, pages 243–254, New York, NY, USA, 2009. ACM.

[25] Ajay Anil Mahimkar, Zihui Ge, Aman Shaikh, Jia Wang, Jennifer Yates, Yin
Zhang, and Qi Zhao. Towards Automated Performance Diagnosis in a Large
IPTV Network. In Proceedings of the ACM SIGCOMM 2009 Conference on
Data Communication, SIGCOMM ’09, pages 231–242, New York, NY, USA,
2009. ACM.

[26] Qiang Fu, Jian-Guang Lou, Yi Wang, and Jiang Li. Execution Anomaly Detec-
tion in Distributed Systems through Unstructured Log Analysis. In Proceedings
of the 9th IEEE International Conference on Data Mining, ICDM ’09, pages
149–158, Washington, DC, USA, 2009. IEEE Computer Society.

[27] Transmission BitTorrent Client. http://www.transmissionbt.com/.

[28] HBase. http://hbase.apache.org/.

[29] Fay Chang, Jeffrey Dean, Sanjay Ghemawat, Wilson C. Hsieh, Deborah A. Wal-
lach, Mike Burrows, Tushar Chandra, Andrew Fikes, and Robert E. Gruber.
Bigtable: A Distributed Storage System for Structured Data. In Proceedings of
the 7th Symposium on Operating Systems Design and Implementation – Volume
7, OSDI ’06, page 15, Berkeley, CA, USA, 2006. USENIX Association.

[30] Apache Hadoop Project. http://hadoop.apache.org/.

[31] Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung. The Google File
System. SIGOPS Oper. Syst. Rev., 37(5):29–43, 2003.

[32] Dennis Geels, Gautam Altekar, Scott Shenker, and Ion Stoica. Replay Debugging
for Distributed Applications. In Proceedings of the USENIX Annual Technical
Conference, ATEC ’06, page 27, Berkeley, CA, USA, 2006. USENIX Association.

[33] Dennis Geels, Gautam Altekar, Petros Maniatis, Timothy Roscoe, and Ion Sto-
ica. Friday: Global Comprehension For Distributed Replay. In Proceedings of
the 4th USENIX Conference on Networked Systems Design and Implementation,
NSDI ’07, page 21, Berkeley, CA, USA, 2007. USENIX Association.

http://www.transmissionbt.com/
http://hbase.apache.org/
http://hadoop.apache.org/

87

[34] Charles Killian, Karthik Nagaraj, Salman Pervez, Ryan Braud, James W. An-
derson, and Ranjit Jhala. Finding Latent Performance Bugs in Systems Imple-
mentations. In Proceedings of the 18th ACM SIGSOFT International Symposium
on Foundations of Software Engineering, FSE ’10, pages 17–26, New York, NY,
USA, 2010. ACM.

[35] Madanlal Musuvathi, Shaz Qadeer, Thomas Ball, Gérard Basler, Pira-
manayagam A. Nainar, and Iulian Neamtiu. Finding and Reproducing Heisen-
bugs in Concurrent Programs. In Proceedings of the 8th USENIX Conference
on Operating Systems Design and Implementation, OSDI ’08, pages 267–280,
Berkeley, CA, USA, 2008. USENIX Association.

[36] Xuezheng Liu, Zhenyu Guo, Xi Wang, Feibo Chen, Xiaochen Lian, Jian Tang,
Ming Wu, M. Frans Kaashoek, and Zheng Zhang. D3S: Debugging Deployed
Distributed Systems. In Proceedings of the 5th USENIX Symposium on Net-
worked Systems Design and Implementation, NSDI’08, pages 423–437, Berkeley,
CA, USA, 2008. USENIX Association.

[37] Maysam Yabandeh, Nikola Knezevic, Dejan Kostic, and Viktor Kuncak. Crys-
talBall: Predicting and Preventing Inconsistencies in Deployed Distributed Sys-
tems. In Proceedings of the 6th USENIX Symposium on Networked Systems De-
sign and Implementation, NSDI ’09, pages 229–244, Berkeley, CA, USA, 2009.
USENIX Association.

[38] Alexander Rasmussen, George Porter, Michael Conley, Harsha V. Madhyastha,
Radhika Niranjan Mysore, Alexander Pucher, and Amin Vahdat. TritonSort:
A Balanced Large-Scale Sorting System. In Proceedings of the 8th USENIX
Symposium on Networked Systems Design and Implementation, NSDI ’11, page 3,
Berkeley, CA, USA, 2011. USENIX Association.

[39] David Heckerman, David Maxwell Chickering, Christopher Meek, Robert Roun-
thwaite, and Carl Kadie. Dependency Networks For Inference, Collaborative
Filtering, and Data Visualization. Journal of Machine Learning Research, pages
49–75, 2001.

[40] Charles Elkan. The Foundations of Cost-Sensitive Learning. In Proceedings of
the 17th International Joint Conference on Artificial Intelligence – Volume 2,
IJCAI ’01, pages 973–978, San Francisco, CA, USA, 2001. Morgan Kaufmann
Publishers Inc.

[41] B. L. Welch. The Generalization of Student’s Problem when Several Different
Population Variances are Involved. Biometrika, 34(1-2):28–35, 1947.

[42] Olive J. Dunn. Multiple Comparisons Among Means. Journal of the American
Statistical Association, 56(293):52–64, 1961.

[43] Janez Demšar, Blaž Zupan, Gregor Leban, and Tomaz Curk. Orange: From
Experimental Machine Learning to Interactive Data Mining. In Proceedings of
the 8th European Conference on Principles and Practice of Knowledge Discovery
in Databases, PKDD ’04, pages 537–539. Springer-Verlag New York, Inc., New
York, NY, USA, 2004.

[44] Leo Breiman, J. H. Friedman, R. A. Olshen, and C. J. Stone. Classification and
Regression Trees. Wadsworth, 1984.

88

[45] Azureus BitTorrent Client. http://azureus.sourceforge.net/.

[46] Distalyzer download. http://www.macesystems.org/distalyzer/.

[47] Brian F. Cooper, Adam Silberstein, Erwin Tam, Raghu Ramakrishnan, and
Russell Sears. Benchmarking Cloud Serving Systems with YCSB. In Proceedings
of the 1st ACM Symposium on Cloud Computing, SoCC ’10, pages 143–154, New
York, NY, USA, 2010. ACM.

[48] Ira Cohen, Steve Zhang, Moises Goldszmidt, Julie Symons, Terence Kelly, and
Armando Fox. Capturing, Indexing, Clustering, and Retrieving System History.
In Proceedings of the 20th ACM Symposium on Operating Systems Principles,
SOSP ’05, pages 105–118, New York, NY, USA, 2005. ACM.

[49] Mona Attariyan, Michael Chow, and Jason Flinn. X-Ray: Automating Root-
Cause Diagnosis of Performance Anomalies in Production Software. In Pro-
ceedings of the 10th USENIX Conference on Operating Systems Design and Im-
plementation, OSDI ’12, pages 307–320, Berkeley, CA, USA, 2012. USENIX
Association.

[50] Mukarram Tariq, Amgad Zeitoun, Vytautas Valancius, Nick Feamster, and
Mostafa Ammar. Answering What-If Deployment and Configuration Questions
with WISE. In Proceedings of the ACM SIGCOMM 2008 Conference on Data
Communication, SIGCOMM ’08, pages 99–110, New York, NY, USA, 2008.
ACM.

[51] SAR: System Activity Report. http://www.linuxmanpages.com/man1/sar.1.
php.

[52] Gprof. http://sourceware.org/binutils/docs/gprof/.

[53] Paul Duvall, Stephen M. Matyas, and Andrew Glover. Continuous Integration:
Improving Software Quality and Reducing Risk (The Addison-Wesley Signature
Series). Addison-Wesley Professional, 2007.

[54] Abhishek Chandra, Weibo Gong, and Prashant Shenoy. Dynamic Resource Al-
location for Shared Data Centers using Online Measurements. SIGMETRICS
Performance Evaluation Review, 31(1):300–301, June 2003.

[55] Eno Thereska, Bjoern Doebel, Alice X. Zheng, and Peter Nobel. Practical Per-
formance Models for Complex, Popular Applications. In Proceedings of the 2010
ACM SIGMETRICS International Conference on Measurement and Modeling of
Computer Systems, SIGMETRICS ’10, pages 1–12, New York, NY, USA, 2010.
ACM.

[56] Michael P. Mesnier, Matthew Wachs, Raja R. Sambasivan, Alice X. Zheng, and
Gregory R. Ganger. Modeling the Relative Fitness of Storage. In Proceedings
of the 2007 ACM SIGMETRICS International Conference on Measurement and
Modeling of Computer Systems, SIGMETRICS ’07, pages 37–48, New York, NY,
USA, 2007. ACM.

[57] Eno Thereska and Gregory R. Ganger. IRONModel: Robust Performance Mod-
els in the Wild. In Proceedings of the 2008 ACM SIGMETRICS International
Conference on Measurement and Modeling of Computer Systems, SIGMETRICS
’08, pages 253–264, New York, NY, USA, 2008. ACM.

http://azureus.sourceforge.net/
http://www.macesystems.org/distalyzer/
http://www.linuxmanpages.com/man1/sar.1.php
http://www.linuxmanpages.com/man1/sar.1.php
http://sourceware.org/binutils/docs/gprof/

89

[58] Jin Chen, G. Soundararajan, and C. Amza. Autonomic Provisioning of Backend
Databases in Dynamic Content Web Servers. In Proceedings of the 3rd IEEE
International Conference on Autonomic Computing, ICAC ’06, pages 231–242,
Washington, DC, USA, 2006. IEEE Computer Society.

[59] Upendra Sharma, Prashant Shenoy, Sambit Sahu, and Anees Shaikh. A Cost-
Aware Elasticity Provisioning System for the Cloud. In Proceedings of the 31st
International Conference on Distributed Computing Systems, ICDCS ’11, pages
559–570, Washington, DC, USA, 2011. IEEE Computer Society.

[60] Top 5 Browsers from April to September 2012. http://gs.statcounter.com/#
browser-ww-monthly-201204-201209.

[61] Talos Statistical Analysis Writeup. https://wiki.mozilla.org/Auto-tools/
Projects/Signal_From_Noise.

[62] Charlie Curtsinger and Emery D. Berger. STABILIZER: Statistically Sound
Performance Evaluation. In Proceedings of the 18th International Conference
on Architectural Support for Programming Languages and Operating Systems,
ASPLOS ’13, pages 219–228, New York, NY, USA, 2013. ACM.

[63] Andy Georges, Dries Buytaert, and Lieven Eeckhout. Statistically Rigorous
Java Performance Evaluation. In Proceedings of the 22nd Annual ACM SIG-
PLAN Conference on Object-oriented Programming Systems and Applications,
OOPSLA ’07, pages 57–76, New York, NY, USA, 2007. ACM.

[64] V8 JavaScript Engine. http://code.google.com/p/v8/.

[65] The BitTorrent Protocol Specification, 2008. http://www.bittorrent.org/
beps/bep%2F0003.html.

[66] A Benchmarking Case Study of Virtualized Hadoop Performance on VMware
vSphere 5. White Paper, 2011.

[67] Firefox Datazilla. https://github.com/mozilla/datazilla.

[68] Tony Finch. Incremental Calculation of Weighted Mean and Variance. February
2009. http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.147.
5233.

[69] Huzefa Kagdi, Michael L. Collard, and Jonathan I. Maletic. A Survey and
Taxonomy of Approaches for Mining Software Repositories in the Context of
Software Evolution. Journal of Software Maintenance and Evolution: Research
and Practice, 19(2):77–131, March 2007.

[70] David Kawrykow and Martin P. Robillard. Non-Essential Changes in Version
Histories. In Proceedings of the 33rd International Conference on Software En-
gineering, ICSE ’11, pages 351–360, New York, NY, USA, 2011. ACM.

[71] Foutse Khomh, Tejinder Dhaliwal, Ying Zou, and Bram Adams. Do Faster
Releases Improve Software Quality? An Empirical Case Study of Mozilla Firefox.
In 9th Working Conference on Mining Software Repositories, MSR ’12.

http://gs.statcounter.com/#browser-ww-monthly-201204-201209
http://gs.statcounter.com/#browser-ww-monthly-201204-201209
https://wiki.mozilla.org/Auto-tools/Projects/Signal_From_Noise
https://wiki.mozilla.org/Auto-tools/Projects/Signal_From_Noise
http://code.google.com/p/v8/
http://www.bittorrent.org/beps/bep%2F0003.html
http://www.bittorrent.org/beps/bep%2F0003.html
https://github.com/mozilla/datazilla
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.147.5233
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.147.5233

90

[72] Benjamin Livshits and Thomas Zimmermann. DynaMine: Finding Common
Error Patterns by Mining Software Revision Histories. In Proceedings of the
10th European Software Engineering Conference held jointly with 13th ACM
SIGSOFT International Symposium on Foundations of Software Engineering,
ESEC/FSE-13, pages 296–305, New York, NY, USA, 2005. ACM.

[73] Dominique Matter, Adrian Kuhn, and Oscar Nierstrasz. Assigning Bug Reports
using a Vocabulary-Based Expertise Model of Developers. In Proceedings of the
2009 6th IEEE International Working Conference on Mining Software Reposi-
tories, MSR ’09, pages 131–140, Washington, DC, USA, 2009. IEEE Computer
Society.

[74] Georgios Gousios, Eirini Kalliamvakou, and Diomidis Spinellis. Measuring De-
veloper Contribution from Software Repository Data. In Proceedings of the 2008
International Working Conference on Mining Software Repositories, MSR ’08,
pages 129–132, New York, NY, USA, 2008. ACM.

[75] King Chun Foo, Zhen Ming Jiang, Bram Adams, Ahmed E. Hassan, Ying Zou,
and Parminder Flora. Mining performance regression testing repositories for
automated performance analysis. In Proceedings of the 2010 10th International
Conference on Quality Software, QSIC ’10, pages 32–41, Washington, DC, USA,
2010. IEEE Computer Society.

[76] Zhen Ming Jiang, A.E. Hassan, G. Hamann, and P. Flora. Automated Perfor-
mance Analysis of Load Tests. In Proceedings of the IEEE International Con-
ference on Software Maintenance, ICSM ’09, pages 125 –134, Washington, DC,
USA, September 2009. IEEE.

[77] Alberto Avritzer, Andre Bondi, Michael Grottke, Kishor S. Trivedi, and Elaine J.
Weyuker. Performance Assurance via Software Rejuvenation: Monitoring, Statis-
tics and Algorithms. In Proceedings of the International Conference on Depend-
able Systems and Networks, DSN ’06, pages 435–444, Washington, DC, USA,
2006. IEEE Computer Society.

VITA

91

VITA

Karthik Swaminathan Nagaraj was born in Chennai, India where he did most of

his schooling. He obtained his B.Tech. in computer science with distinction in 2008

from National Institute of Technology, Trichy, India. He continued in computer sci-

ence to get his M.S. in May 2011 and PhD in December 2013 from Purdue University,

West Lafayette, Indiana, USA. His research interests span distributed systems, net-

working and machine learning. During the course of his PhD, he interned at Google,

Mountain View in the summer of 2009 and at Microsoft Research, Redmond in the

summer of 2012. After his PhD, he joined Google, Mountain View, California, as a

software engineer in the Platforms Networking Group.

PUBLICATIONS

Karthik Nagaraj, Charles Killian and Jennifer Neville. “Structured Comparative
Analysis of Systems Logs to Diagnose Performance Problems”. In proceedings of
USENIX Symposium on Networked Systems Design and Implementation. April 2012.

KC Sivaramakrishnan, Mohammad Qudeisat, Lukasz Ziarek, Karthik Nagaraj and
Patrick Eugster. “Efficient Sessions”. In proceedings of Science of Computer Pro-
gramming. 2012.

Karthik Nagaraj, Hitesh Khandelwal, Charles Killian and Ramana Rao Kompella.
“Hierarchy-Aware Distributed Overlays in Data Centers using DC2”. In proceedings
of International Conference on Communication Systems and Networks. January 2012.

Charles Killian, Karthik Nagaraj, Salman Pervez, Ryan Braud, James W. Anderson
and Ranjit Jhala. “Finding Latent Performance Bugs in Systems Implementations”.
In proceedings of International Symposium on the Foundations of Software Engineer-
ing. November 2010.

92

KC Sivaramakrishnan, Karthik Nagaraj, Lukasz Ziarek and Patrick Eugster. “Effi-
cient Session Type Guided Distributed Interaction”. In proceedings of International
Conference on Coordination Models and Languages. June 2010.

	Purdue University
	Purdue e-Pubs
	Fall 2013

	Enabling Richer Insight Into Runtime Executions Of Systems
	Karthik Swaminathan Nagaraj
	Recommended Citation

	LIST OF TABLES
	LIST OF FIGURES
	ABBREVIATIONS
	ABSTRACT
	1 INTRODUCTION
	1.1 Problems with Managing and Maintaining Systems Software
	1.1.1 Development Problems
	1.1.2 Maintenance Problems

	1.2 Instrumentation: Record Runtime State
	1.3 Facilitating Large Scale Analysis Using Statistics and Machine Learning
	1.4 Thesis Statement
	1.5 Contributions
	1.5.1 Distalyzer: Diagnosing Performance Problems in Systems Software
	1.5.2 PerfDetect: Tracking Performance Changes of Systems in Code Repositories

	1.6 Road Map

	2 DISTALYZER: DIAGNOSING PERFORMANCE PROBLEMS IN SYSTEMS SOFTWARE
	2.1 Instrumentation
	2.2 Design
	2.2.1 Feature Creation
	2.2.2 Predictive Modeling
	2.2.3 Descriptive Modeling
	2.2.4 Attention Focusing

	2.3 Implementation
	2.3.1 Processing Text Log Messages
	2.3.2 Distalyzer

	2.4 Case Studies
	2.4.1 TritonSort
	2.4.2 HBase
	2.4.3 Transmission

	2.5 Related Work
	2.6 Practical Implications
	2.7 Summary

	3 TRACKING PERFORMANCE CHANGES OF SYSTEMS IN CODE REPOSITORIES
	3.1 Designing PerfDetect
	3.1.1 Performance Metrics Features
	3.1.2 Windows of Large Software Changes
	3.1.3 Change Detection by Trend Estimation
	3.1.4 Queue Extra Experiments

	3.2 Measurement & Implementation
	3.2.1 Transmission
	3.2.2 V8
	3.2.3 Hadoop

	3.3 Experiences
	3.3.1 Quantitative Evaluation
	3.3.2 Practical Experiences
	3.3.3 Transmission
	3.3.4 V8
	3.3.5 Hadoop

	3.4 Related Work
	3.5 Summary

	4 SUMMARY
	4.1 Contributions
	4.2 Future Work

	LIST OF REFERENCES
	VITA

