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ABSTRACT 
 

Replogle, Rebecca A. Ph.D., Purdue University, December 2013. Natural Genetic 
Variation Affecting Calcium Homeostasis. Major Professor: James C. Fleet. 
 
 

Calcium (Ca) is essential for multiple functions within the body including skeletal 

health.  The level of Ca in the serum is tightly regulated.  During periods of habitual low 

Ca intake, the body senses a decrease in serum Ca and increases renal conversion of 25 

hydroxyvitamin D (25(OH)D) to 1,25 dihydroxyvitamin D (1,25(OH)2D).  1,25(OH)2D 

acts through the vitamin D receptor (VDR) to increase intestinal Ca absorption, renal Ca 

reabsorption and skeletal Ca resorption.  Efficient intestinal Ca absorption, especially 

during periods of low Ca intake, is critical for protecting bone mass.  Ca absorption and 

its primary regulator, 1,25(OH)2D, are affected by both genetic and environmental factors. 

However, the genetic architecture of these phenotypes has not been carefully 

studied in a controlled environment.  Using genetically characterized mouse models in a 

controlled environment the studies in this dissertation characterize the natural genetic 

variation affecting intestinal Ca absorption, 25(OH)D, and 1,25(OH)2D under normal and 

low dietary Ca conditions.  This dietary intervention allowed for the study of gene-by-

diet interactions (i.e. variability in the adaptation of these parameters to habitual low Ca 

intake).  The relationship of Ca absorption to known regulators and cellular mediators is 

examined, elucidating significant effects of genetics on these relationships and 

 



xii 

 

identifying gaps in our current knowledge of intestinal Ca absorption.  In addition, 

specific genetic loci affecting intestinal Ca absorption, 1,25(OH)2D, 25(OH)D, and diet-

induced adaptation are identified in the mouse genome.  These quantitative trait loci 

(QTLs) represent novel variation affecting Ca absorption and vitamin D metabolites.  

Identification of the causal variation underlying these QTLs will expand our knowledge 

of Ca homeostatic pathways.  These studies serve as a foundation for identification of 

individual variation in Ca homeostasis and personalized dietary recommendations. 
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CHAPTER 1. LITERATURE REVIEW 
 

1.1 Introduction 

 Calcium is an essential nutrient that is important for health as a signaling 

molecule and for maintenance of bone health throughout life.  Calcium is maintained at a 

nearly constant concentration in the serum through a complex homeostatic mechanism 

that is sensitive to dietary calcium intake.  The role of diet in maintaining calcium 

homeostasis becomes tremendously important to preserve bone mass, which serves as the 

largest calcium store in the body, but also as structural support for the body.  For this 

reason, the Dietary Reference Intake for calcium is set in order to achieve optimal bone 

health.(1)   

Inadequate calcium intake is common in adolescence, an age where calcium is 

vital for longitudinal growth and attaining peak bone mass.(2)  This dietary inadequacy 

has been shown to increase with age and increase the risk for osteoporosis.(3)  Intestinal 

calcium absorption is an integral part of calcium homeostasis and may also be crucial for 

the prevention of osteoporosis-related fractures.  Calcium absorption is proposed to occur 

through several mechanisms.(4)  The facilitated diffusion model of active intestinal 

calcium absorption responds in an adaptive manner to habitual low calcium intake.  The 

up-regulation of calcium absorption in response to low calcium is mediated through 
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genomic regulation by hormonal vitamin D.  Thus, dietary calcium intake and its 

absorption at the intestine are important regulators of a complex physiological system. 

An emerging factor influencing this system is natural genetic variation.  Genetics 

is known to affect endpoints related to calcium homeostasis such as bone mineral density 

and, more recently, vitamin D status.(5,6)  Recent observations across racial groups 

suggest genetic variation controls calcium absorption efficiency directly, as well as 

adaptation to a low calcium diet (i.e. a gene-by-diet interaction).(7)   

The focus of this thesis is to characterize and locate the natural genetic variation 

affecting calcium homeostasis, specifically intestinal calcium absorption and its primary 

regulator, vitamin D.  Understanding how natural genetic variation affects calcium 

absorption efficiency and its regulation will help us discover new mechanisms of its 

regulation and functional details of the genes involved.  Such research will inform how to 

leverage dietary interventions for maximum health benefit to the individual.  This chapter 

contains a review of the literature focused on calcium absorption physiology and the 

effects of natural genetic variation. 

 

1.2 Calcium Homeostasis 

 

 The Three Tissue Axis 1.2.1

 Calcium functions as both a primary and secondary signal within cells.(8)  

Consequently, maintaining the concentration of this ion within the serum is of vital 

physiological importance.  A complex interplay of environmental cues and hormonal 

regulation controls calcium absorption in the intestine, reabsorption in the kidney, and 
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resorption from the calcified matrix of the skeleton in order to maintain serum calcium 

concentrations within a tight range of 2.2-2.6 mM.(8)  Calcium absorption at the intestine 

affects both calcium availability and homeostasis.  As such, it is arguably the most 

important component of this three-tissue axis and will be discussed in detail later in this 

chapter.  Reabsorption of calcium from the urine in the kidney occurs in both a passive 

fashion (primarily in the proximal tubule and thick ascending loop of Henle) and an 

active fashion (primarily in the distal convoluted tubule).(9)  The steps and regulation of 

these processes have been well characterized in the kidney.(10-12)  Approximately half of 

all serum ionized calcium is filtered by the kidney, emphasizing its importance for 

maintaining calcium homeostasis.(12)  The skeleton serves as the body’s calcium reserve, 

containing 99% of the body’s total calcium (2).  This calcium reserve serves a dual 

purpose by contributing to the bone mass necessary for structural support of the body.  

However, homeostatic mechanisms will induce bone resorption in order to maintain 

serum calcium concentrations (13).  Calcium intake and absorption at the intestine must 

therefore be sufficient to maintain serum calcium concentration and prevent skeletal 

losses and fracture. 

The importance of adequate calcium absorption for optimal bone health is 

supported by data from both clinical studies and animal models.  Transgenic mice lacking 

a primary regulator of calcium absorption, the vitamin D receptor (VDR), have provided 

valuable lessons on the relationship between calcium absorption and bone health.  These 

mice exhibit greatly decreased bone mineral density, and additional models were able to 

attribute this effect directly to intestinal calcium absorption.(14)   Calcium absorption has 

been observed to increase concomitantly with bone mass accrual during puberty.(15)  
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Calcium absorption efficiency tends to decline with age and this malabsorption has been 

associated with increased hip and vertebral fracture rates.(16,17)  The mechanisms and 

regulation of this critical process will be discussed in the following sections. 

 

 Mechanisms of Intestinal Calcium Absorption 1.2.2

Intestinal calcium absorption has been shown to be composed of a saturable and a 

non-saturable component.(18)  This diversified system allows the intestine to efficiently 

maintain serum calcium homeostasis.  This section will summarize the current state of 

calcium absorption models and discuss observations that suggest our knowledge on this 

topic is still incomplete. 

Passive diffusion, the non-saturable component, is present throughout all sections 

of both the small and large intestine.(19)  Passive diffusion consists of the diffusion of 

small molecules and ions, such as calcium, via a paracellular route between epithelial 

cells according to the electrochemical gradient present in the intestinal lumen.(9,20)  A 

linear relationship of passive calcium absorption to luminal calcium load exists, 

accounting for absorption of 13% of luminal calcium per hour.(21)  Thus, the passive 

component of calcium absorption predominates at normal to high dietary intake levels of 

calcium.(22)  The paracellular route is regulated by tight junctions, which allow the 

intestinal epithelium to be selectively permeable.(23)  Tight junctions are made up of a 

variety of protein families that allow them to be selective based on ion size and 

concentration, similar to ion channels.(24) 

The saturable component of intestinal calcium absorption is a process consisting 

of three phases; calcium entry into the enterocyte at the brush border membrane, 
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facilitated diffusion of the ion across the enterocyte, and extrusion through the basolateral 

membrane.(22)  Decades of research have characterized the kinetics and regulation of each 

step of this facilitated diffusion model.   

Calcium entry into the enterocyte against the chemical gradient was first 

demonstrated using brush border membrane vesicles in rats and chicks.(25-27)  Several 

paradigms (e.g. membrane channel or carrier) were postulated for calcium entry.(22)  Peng 

et al. cloned the transient receptor potential cation channel, subfamily V, member 6 

(TRPV6) and demonstrated its calcium transport capabilities.(28). 

Once through the brush border membrane, it is necessary to buffer free ionized 

calcium concentrations in the cell and to preserve the slight electrochemical gradient that 

exists within the enterocyte.(22)  A calcium binding protein was isolated from the intestine 

of chicks and several mammalian species.(29,30)  Feher et al. found that diffusion of 

calcium across a dialysis chamber was accomplished only when this calcium binding 

protein, not bovine serum albumin, was added to the buffer.(31)  Active intestinal calcium 

absorption was observed to correlate directly with cytosolic levels of this calcium binding 

protein, suggesting the intercellular trafficking step was the rate-limiting step of active 

calcium absorption.(22,32)  The calcium binding protein, calbindin D9k, was identified as 

the specific protein that accomplishes facilitated diffusion in the enterocyte.(33,34)  After 

being ferried across the enterocyte, calcium must be extruded across the basolateral 

membrane.  Using Ussing chambers, it was demonstrated that this process is ATP 

dependent.(35)  Later, the ATPase PMCA1b was located in chick intestine and found to be 

responsive to stimuli known to modulate calcium absorption.(36,37)  Together, these 
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components make up the facilitated diffusion model of active calcium absorption.  The 

regulation of this model will be discussed in later sections.   

While the facilitated diffusion model is perhaps the most widely accepted model 

of saturable intestinal calcium absorption, several others have been proposed.  One such 

method is vesicular transport, where calcium in the lumen is endocytosed, transported in 

lysosomes, and released as the vesicle merges with the basolateral membrane.(38)  Nemere 

et al. found that lysosomes were filled with Ca45 radioisotope tracer in treated chick 

intestine.(38)  Disruption of the lysosome’s acidic pH gradient resulted in a 67% decrease 

in duodenal calcium transport.(39)  This vesicular movement has been shown to be 

increased by the same regulating factor  as the facilitated diffusion model 

(1,25dihydroxyvitamin D, to be discussed later).(40)  The full mode of regulation and 

impact of vesicular calcium transport is unknown.  Another proposed method of intestinal 

calcium transport is transcaltachia; the rapid, hormone-stimulated induction of calcium 

transport in the intestine.  1,25dihydroxyvitamin D (1,25(OH)2D) hormonal treatment to 

the basolateral side of perfused intestinal membranes increased calcium transport within 

14 minutes.(41)  This non-traditional action of the hormone is proposed to work through 

the membrane associated, rapid response, steroid binding receptor (MARRS) and PKA 

signaling.(42)  The study by Nemere et al. used primary cell culture from intestine-specific 

MARRS knockout mice to show loss of stimulated-calcium transport, but failed to show 

what consequence, if any, this knockout had on whole-body Ca homeostasis and bone 

health.(42) 

Morgan et al. suggested that active calcium absorption is linked to glucose 

transport in the lower small intestine.(43)  This active absorption is proposed to occur 

 



7 

 

through the L-type channel Cav1.3 during the presence of both glucose and sufficient 

calcium.(44)  Morgan et al. observed that perfused rat jejunum absorbed more calcium 

when the perfusate contained glucose rather than mannitol.(43)  Additionally, both glucose 

and calcium absorption were inhibited by an L-type channel inhibitor.(43)  The proposed 

implication of these findings is that they represent a nutrient-sensing mechanism.  

However, there is currently no evidence that it has specificity to calcium or sensitivity to 

overall calcium homeostasis, as the hormonal regulation of the facilitated diffusion model 

does.  The increase in calcium absorption efficiency in rats seen after prolactin treatment 

(45) has been shown to be mediated through Cav1.3 in CaCo2 cells(46).  The physiological 

relevance of this observation remains unclear because prolactin is regulated differently 

between rats and humans.(47) 

 

 Regulation by Dietary Calcium 1.2.3

Dietary calcium intake is a primary regulator of calcium homeostasis.(48)  As 

mentioned above, the intestine plays a vital role in maintaining serum calcium 

concentrations.  However, when dietary intake is insufficient the body must adapt each 

arm of the three tissue axis to maintain serum calcium within the physiologically 

necessary range.  Habitual low dietary calcium intake induces a chain of events that 

activates hormonal regulation.  This mode of regulation and the consequences will be 

discussed in the following sections. 

Although it is a ready source to maintain serum calcium concentration, adaptation 

of bone to a low calcium diet is of particular concern.  Low calcium intake increases risk 

of osteoporosis and fracture that accumulates across life stages.(13)  For example, 
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Kalkwarf et al., showed in women that low calcium intake during growth limits the 

attainment of peak bone mass and increases fracture risk later in adulthood.(49)  Calcium 

intake is also important in adulthood to maintain bone mass (i.e. negate bone loss) and 

prevent fracture.(2) Early experiments observed that a calcium deficient diet resulted in 

decreased trabecular bone in cats, suggesting that cancellous bone is more sensitive to 

calcium intake and is the more metabolically active compartment.(50)  This hypothesis is 

supported by a time-course study in rats 70 years later.(51)  However, if the deficient diet 

is maintained, total bone mineral density (BMD) (both trabecular and cortical bone) will 

be affected.(52)  Calcium deficiency limited the increase in BMD during the critical 

pubertal growth period from 35% to 7% in mice.(53) 

Low calcium intake also induces adaptation by increasing the efficiency of 

calcium utilization, primarily by increasing calcium absorption efficiency.  Balance 

studies in rats conducted as early as 1938 suggested that efficiency of calcium utilization 

increased while feeding low calcium diets.(54)  Leichsenring et al. showed that young 

women were more efficient at retaining calcium when maintained on a low calcium diet 

(300mg/d) than when supplemented (1500mg/d).(55)  A population of women with a 

wider age range of intake also exhibited increased calcium retention efficiency on a 

300mg/d compared to a 2000mg/d diet.(56)  Experimental models have shown that the 

efficiency of calcium absorption, specifically, is increased in response to a low calcium 

diet.(18,57)  The inverse relationship between calcium intake and calcium absorption 

efficiency has also been observed in multiple human studies.(58-60)  This physiological 

response to habitual low calcium intake is mediated through vitamin D. 
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1.3 The Role of Vitamin D in Calcium Homeostasis 

The importance of vitamin D for calcium homeostasis became apparent as 

disorders associated with the newly discovered vitamin overlapped with abnormalities in 

bone and Ca metabolism.  Rickets, a disease characterized in children by soft, deformed, 

and under-mineralized bone, was found to be ameliorated by sun exposure or increased 

dietary intake of vitamin D.(61)  Ostoeomalacia has a similar etiology to rickets but occurs 

in adulthood as a result of vitamin D deficiency.(13)  As vitamin D metabolites and details 

of its molecular action have been revealed, vitamin D has been recognized as the primary 

regulator of calcium homeostasis. 

 

 Overview of Vitamin D Metabolism 1.3.1

Vitamin D is obtained from the diet (62) or synthesized de novo from 7-

dehydrocholesterol in the skin upon exposure to sunlight (63).  Vitamin D is then 

hydroxylated to 25-hydroxyvitamin D (25(OH)D) in the liver, most likely by the enzyme 

CYP2r1.(64)  25(OH)D serves as the biomarker for vitamin D status in the serum.  

25(OH)D is further hydroxylated at the 1 carbon position by the enzyme 1±-hydroxylase 

(CYP27b1), predominantly in the kidney.(65-67)  This form, 1,25-dihydroxyvitamin D 

(1,25(OH)2D), is the active hormonal form, exerting influence on the kidney, bone, and 

especially the intestine.  Serum 1,25(OH)2D levels are correlated to calcium absorption 

efficiency in both humans and mice.(57,68-70)  1,25(OH)2D binds to the vitamin D receptor 

(VDR) to initiate target gene transcription to maintain whole-body calcium 

homeostasis.(71)  The renal 24-hydroxylase enzyme, CYP24, inactivates hormonal 

1,25(OH)2D and begins its degradation.(72) 
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The activation of hormonal vitamin D is influenced by calcium homeostasis and 

opposing hormonal signals.  A low serum calcium level is sensed by the calcium sensing 

receptor (CaSR) in the parathyroid gland, signaling release of parathyroid hormone 

(PTH).(48)  PTH increases renal CYP27b1 gene expression and subsequently 1,25(OH)2D 

conversion.(73-75)  The ligand-bound VDR complex then exhibits feedback action by 

binding the promoter of CYP27b1 and inhibiting its expression.(76)  Fibroblast growth 

factor 23 (FGF23) produced by the skeleton also inhibits CYP27b1 expression (and 

therefore 1,25(OH)2D activation) in response to high serum phosphate.(77)  CYP24 is 

inhibited by PTH in order to promote availability of 1,25(OH)2D.(72)  1,25(OH)2D 

operates in a feedback loop to greatly increase the gene expression of CYP24, and 

thereby, its own degradation.(78) 

 

 Genetic Disruption of Vitamin D and Calcium Metabolism in Mice 1.3.2

The importance of vitamin D regulation of calcium homeostasis has been illustrated by 

the use of transgenic mice.  Transgenic mouse models disrupt a targeted gene (usually by 

knockout or overexpression) on an otherwise homogenous, inbred background.  This 

method allows for detailed investigation of pathways of interest.   

Three different VDR knockout (KO) mouse models have been reported and used 

for the study of vitamin D function.(79-81)  Studies in each of these models show similar 

results after pups are weaned including hypocalcemia, hypophosphatemia, 

hyperparathyroidism, increased serum 1,25(OH)2D, type II vitamin D-dependent rickets, 

and alopecia.(79-81)  Similarly, CYP27b1 knockout mice display hypocalcemia, 
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hyperparathyroidism, and type I vitamin D-dependent rickets.(82)  These results 

emphasize that vitamin D action functions primarily to maintain calcium homeostasis.   

These studies, and similar ones, indicate that the intestine is the primary site of 

1,25(OH)2D action to maintain calcium homeostasis.  Intestinal calcium absorption 

efficiency is decreased in VDR KO mice compared to wild-type.(81)  The impact of 

vitamin D on calcium absorption has been assessed using two different strategies.  

Feeding a high-calcium diet containing lactose overrides the impairment of active 

intestinal calcium absorption in VDR null mice.(83,84)  VDR null mice fed this “rescue diet” 

showed normal serum calcium and phosphorus levels and a recovery from the rachitic 

phenotype in bone.(83)  Further investigation on the effects in bone showed normal 

morphology and mineral apposition rate in VDR null mice fed the rescue diet.(84)  These 

observations led the authors to conclude that both the mineral ion homeostasis and bone 

phenotypes of VDR KO mice are due to lack of vitamin D action on intestinal calcium 

absorption.(84)  The second approach to examining the impact of vitamin D-mediated 

intestinal calcium absorption on whole-body calcium homeostasis was to restore 

functionality specifically to this system in a VDR KO mouse model.  Xue et al. 

developed a transgenic mouse model with intestine-specific VDR expression in an 

otherwise VDR null mouse.(85)  Intestinal VDR expression completely recovered the 

negative phenotypes of VDR KO mice, emphasizing the importance of intestinal calcium 

absorption.(85)  

Regulation by serum 1,25(OH)2D allows the intestine to be sensitive to decreases 

in dietary calcium intake.  In wild-type animals, feeding a low calcium diet induces an 

increase in serum 1,25(OH)2D and calcium absorption efficiency.(57)  Similarly, direct 
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injection of 1,25(OH)2D induces an increase in calcium absorption efficiency in 

rodents.(19,57)  Adaptation of intestinal calcium absorption to habitual low dietary calcium 

intake occurs through 1,25(OH)2D-mediated up-regulation of the facilitated diffusion 

model.  Gene expression of TRPV6 has been shown to increase in rodents fed a low 

calcium diet or with 1,25(OH)2D injection.(57,86,87) TRPV6 mRNA is decreased in vitamin 

D deficient rats and VDR KO mice.(81,86)  CaBPD9k gene expression is also regulated by 

1,25(OH)2D genomic action.  CaBPD9k is increased on a low calcium diet or after 

1,25(OH)2D injection (57,87,88)  CaBPD9k mRNA and protein are reduced in VDR KO 

mice.(81).  Although typically viewed as less responsive to vitamin D, the basolateral 

transporter, PMCA1b, also responds to vitamin D depletion and repletion.(89)  

Additionally, all three components of the facilitated diffusion model were identified as 

vitamin D target genes in a microarray study conducted in 1,25(OH)2D-injected rats.(90)   

Although the vitamin D-regulated facilitated diffusion model of intestinal calcium 

absorption appears sound, transgenic mouse models have allowed investigators to explore 

the completeness of this model.  Bianco et al. showed a significant decrease in calcium 

absorption efficiency in TRPV6 KO mice compared to WT mice fed a normal diet.(91)    

However, others presented that calcium absorption in the same TRPV6 KO mice was not 

different from WT mice fed a sufficient calcium diet.(92,93)  Kutuzova et al. write that they 

had changed the background of the null mice developed by Bianco et al. by 3 generations 

of backcrossing to C57BL/6J mice.(92)  Both studies showed that active calcium 

absorption does occur, at some level, without TRPV6, calling into question the validity of 

TRPV6 as a calcium transporter in the enterocyte.  However, this function of TRPV6 was 

confirmed by a mouse model overexpressing the protein in the intestine, resulting in 
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hypercalcemia and extensive ectopic calcification.(94)  Additionally, calbindin D9k KO 

mice were shown to be normocalcemic, and exhibited no difference from wild-type in 

calcium absorption.(93,95) 

The roles of TRPV6 and CaBPD9k in low calcium adaptive response have also 

been investigated.  Bianco et al. observed that TRPV6 KO mice had decreased calcium 

absorption compared to WT on both a normal or low calcium diet, suggesting that 

TRPV6 is necessary for intestinal calcium absorption and its adaptation to a low calcium 

diet.(91)  Benn et al. observed that although it did not equal the response of WT mice, 

TRPV6 KO mice were able adapt to a low calcium diet.(93)  Interestingly, 1,25(OH)2D 

injection elicited an equal adaptive response in TRPV6 null and WT mice, suggesting 

that TRPV6 is not necessary for adaptive calcium homeostasis.(92,93)  Lieben et al. 

propose that calcium homeostasis is maintained in TRPV6 knockout mice through 

compensation by the skeleton because TRPV6 KO mice exhibit hyperosteoidosis when 

fed a low calcium diet.(96)   

Studies of CaBPD9k KO mice indicate that this protein is not critical for low 

calcium adaptive response.  CaBPD9k KO mice exhibited an adaptive response equal to 

WT mice on both a low calcium diet and following a 1,25(OH)2D injection.(93)  A study 

by Lee et al. showed that compensatory up-regulation of calcium transport genes in the 

kidney and intestine may be responsible for the adaptive phenotype of CaBPD9k KO 

mice.(95)  When both TRPV6 and CaBPD9k are knocked out in the same mouse, the 

adaptive response of intestinal calcium absorption to both a low calcium diet and 

1,25(OH)2D injection is markedly reduced.(93)  However, adaptive calcium absorption is 

not completely eliminated in these double knockout mice.(93)   
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Recent studies suggest that vitamin D may also affect passive diffusion of calcium 

in the intestine.  The proposed effect of 1,25(OH)2D on passive diffusion of calcium is 

mediated through increasing ion permeability of tight junction, specifically through 

affecting the proteins claudin 2 and claudin 12.(90,97)  Gene expression and protein levels 

of claudin 2 and claudin 12 are decreased in VDR KO mice.(97) Treatment of intestinal 

cells with 1,25(OH)2D increases gene expression of claudins 2 and 12, resulting in 

increased paracellular movement of calcium.(97) Another mechanism through which 

vitamin D may regulate paracellular movement of calcium is by regulating cell adhesion.  

In a microarray study of rat intestine, 1,25(OH)2D treatment suppressed gene expression 

of cell adhesion proteins cadherin-17 and aquaporin-8.(90)  

Taken together, these observations indicate that our knowledge of intestinal 

calcium absorption is incomplete.  There may be aspects of the facilitated diffusion 

model or compensatory mechanisms that are undiscovered. Alternate methods of 

regulation may also be possible.  The paracellular movement of calcium across the 

intestinal epithelia appears to be more complex than simple passive diffusion along a 

concentration gradient.  The possibility of specificity to calcium and regulation of this 

process by vitamin D warrant further study. 

 

1.4 Genetic Variation and Gene-by-Diet Interactions Influence Calcium Homeostasis 

 

 Overview of Forward Genetic Methodologies 1.4.1

Heritable factors have long been recognized to affect physiology.  Identification 

and study of the genes responsible for a trait of interest can be accomplished through two 
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classes of methods: forward and reverse genetics.  Each method has strengths and 

limitations.  The following section will describe paradigms and challenges of genetic 

studies and how they may be used to inform nutrition research. 

Understanding the function of a gene can be accomplished through manipulation 

of the gene in a model organism and studying the outcome.  This genotype to phenotype 

approach is known as reverse genetics.(98)  Reverse genetics studies include targeted gene 

manipulation (e.g. knockout and transgenic mouse models) as well as examination of 

variation within candidate genes.(99)  These studies are excellent for testing a priori 

hypotheses of the gene’s function in a biological process or pathway.(100)  However, this 

strength is also a weakness in that the study is dependent on, and limited by, existing 

knowledge of the biological pathway or gene.(100)  It has also been suggested that another 

limitation of reverse genetics studies is investigator bias in the development and stringent 

testing of hypotheses.(100) 

These limitations are overcome by forward genetic methods including positional 

cloning, mutagenesis screens, and linkage and association mapping.(99)  Forward genetics 

follows observation of a phenotype to its root genotypic cause(s).(98)  In contrast to 

reverse genetics, forward genetics is hypothesis-free.(100)  This quality of forward genetic 

studies places the emphasis on discovery. Novel genes and regulatory pathways or novel 

roles of known genes can be discovered through forward genetics.(100)  Linkage and 

association mapping methods, in particular, have come to the forefront in recent years 

due to successes in identifying genetic loci related to several types of cancer(101-104), Type 

II diabetes(105), the peripheral nervous system(98), atherosclerosis(106), and skeletal 

phenotypes(107) among others.  This surge in forward genetics has been ushered in by a 
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wealth of techniques and resources.  The completion of the human(108) and mouse(109) 

genome sequences allow identification of genes, or putative genes, within a locus.  

Further advances have allowed scientists to examine the polymorphisms and gene 

expression patterns of the entire genome.(110,111)  However, the genetic basis of most 

physiological processes is not entirely known. 

Forward genetic methods present several challenges.  Extreme phenotypes may be 

particularly interesting, but these are monogenic, arising from extremely rare mutations 

in a single gene.  The vast majority of physiological processes and diseases are complex, 

polygenic phenotypes.  Therefore, the most common polymorphisms in a population may 

account for only small phenotypic changes, but these effects accumulate to increase risk 

or susceptibility in an individual.  These polymorphisms can create changes in gene 

regulation, expression, and protein function.  Additional challenges of identifying the 

genetic basis of a phenotype include interactions between loci (i.e. epistasis) and the 

modulating influence of environmental factors such as diet. Consequently, identifying 

and characterizing causal genetic loci in the human population is particularly difficult. 

 

 Mouse Models Allow Investigation of Natural Genetic Variation and Gene-by-1.4.2

Diet Interactions 

The mouse has become the ideal model to identify the role of genetic variation in 

biology and disease susceptibility.  Results from genetic mapping studies in mice have 

been shown to be translatable to humans.(112-114)  Similarly, mapping results of similar 

traits in both mice and humans show high concordance.(115)  The natural genetic variation 

present in the mouse species is estimated to be greater than the variation present in 
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humans.(99)  Portions of this variation have been captured in developed populations of 

mice such as recombinant inbred line panels, consomic strains, and congenic strains.  

These mouse models offer a known genetic background with biological replicates 

because each line is inbred.  This attribute allows the investigator to examine how an 

environmental stimulus or stress (e.g. diet) interacts with genetic variation to alter the 

phenotype of interest.(116)  These gene-by-diet interactions are being studied in human 

populations, but do not always reach significance because of the complexity of the human 

environment.  For example, Nettleton et al. examined the effects of whole grain intake 

and an overall healthy diet on previously identified diabetes risk loci, but found only a 

suggestive interaction of diet and genetic risk.(117,118)  In contrast, mouse models under a 

controlled environment and intervention allow identification of gene-by-diet 

interactions.(116)    

Gene-by-diet interactions can affect biology through several paradigms.  

Permissive gene-by-diet interactions are genetic effects only seen under certain dietary 

conditions, typically deficiency.  For example, inactivating mutations in the 

methylenetetrahydrofolate reductase (MTHFR) enzyme reduce conversion of 

homocysteine to methionine.(119)  Jacques et al. observed that the buildup of 

homocysteine in those carrying the MTHFR mutation was further exacerbated a low 

folate status, and suggested those individuals may have a higher folate requirement.(119)  

A gene-by-diet interaction may also be sensitizing, altering the functional outcome of a 

nutrient.  Examples of this type of gene-by-diet interaction are prevalent in lipid 

biology.(120)  Nicklas et al. reported that a low fat, low cholesterol diet had differing 

effects dependent on apolipoprotein E genotype; the serum lipid profile of women with 
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the APOE4+ genotype was improved, while women with the APOE4- genotype showed 

an increase in serum triglycerides and a large decrease in high-density lipoprotein.(121)  

The following sections will discuss genetic effects on calcium homeostasis phenotypes.  

The evidence for possible gene-by-diet interactions affecting calcium homeostasis will 

also be discussed. 

 

 Genetic Variation Affects Calcium and Bone Metabolism 1.4.3

Much focus has been paid to genetic factors affecting bone health and 

osteoporosis risk.  Evidence collected from family and twin studies, as well as forward 

genetic methods in rodents and humans indicate that bone parameters are highly heritable, 

with heritability values ranging from 50-85%.(5)  Observational twin and family studies 

have noted that genetics contributes to several indices of bone health including; bone size, 

bone mass, BMD, femur geometry, and strength.(122-125)   

There are notable cases of rare, monogenic disorders that lead to extreme bone 

phenotypes.  Candidate gene studies of affected families and knockout mouse models 

have identified COL1A1 and several other genes to be responsible for the bone-fragility 

disease osteogenesis imperfecta.(126)  Interestingly, separate phenotypes were mapped to 

the genomic region containing the lipoprotein-related protein 5 (LRP5) gene.  Linkage 

mapping by Johnson et al. led to identification of LRP5 mutations that  were responsible 

for familial high bone density phenotypes.(127)  Mapping conducted in families with 

fragile, low bone mass osteoporosis pseudoglioma also indicated LRP5 as the causative 

gene.(128)  Linkage mapping followed by positional cloning found SOST mutations to be 

the cause of sclerosteosis and van Buchem disease.(129-131)  These discoveries have greatly 
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enhanced our knowledge of bone biology, but still do not account for the large 

heritability of bone parameters in the general population. 

The majority of variation in bone phenotypes observed in the general population 

is due to polygenic effects which, individually, are too small to be tracked through a 

single pedigree. This variation can be seen at the population level.  It has been observed 

that racial groups (a surrogate for population structure and genetic variation) differ in 

bone density and strength parameters.(132,133)  Similarly, bone density varies greatly across 

inbred mouse strains.(134)  These populations display a distribution of a quantitative trait 

of interest, such as bone mineral density (BMD), indicating the trait is due to the 

contribution of many different factors, genetic and environmental. 

Forward genetic approaches have been applied in diverse populations to 

successfully identify the more common, small-effect variation affecting bone traits.  

Linkage mapping in mice has identified many regions of the mouse genome linked to 

bone parameters.(135,136)  Fewer studies, however, have been able to identify the candidate 

gene within these regions.  Klein and colleagues identified a region of mouse 

chromosome 11 controlling the natural variation in peak whole body and femoral BMD 

between C57BL/6J and DBA/2 mice.(137)  Further studies using congenic fine mapping 

and differential gene expression analysis indicated the gene driving changes in BMD was 

Alox15, a gene that encodes the 12/15-lipoxygenase important for peroxisome 

proliferator-activated receptor gamma (PPAR³ ) signaling in osteoblast differentiation.(138)  

A cross between C57BL/6J mice and CAST/EiJ mice identified significant linkage 

between distal chromosome 1 and BMD which was attributable to variation in the 

chemokine receptor Darc.(139)  Farber et al. investigated the genetic basis of femur 
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morphology in mice and found that variation in cadherin 11 (Cdh11) significantly 

affected femur width.(140)   

 Recently, genome-wide association studies (GWAS) have been used to identify 

genetic polymorphisms associated with bone traits in humans.(107)  GWAS are hampered 

by the extremely large sample size they require, hidden structure in the chosen population 

(which increases the chance for false positives), and the inability to fully account for 

environmental differences.(141)  The results of available bone-related GWAS and mouse 

linkage studies were overlaid in 2010, showing that 26 out of 28 loci identified in human 

GWAS were also identified in mice.(115)  Thus, there is high concordance between the 

two species in both the genomes and susceptibility to complex diseases (e.g. 

osteoporosis), allowing genetic studies in mice to inform the biology of humans.(141,142) 

 Another important factor to calcium homeostasis, vitamin D status, has been 

shown to be heritable and altered by genetic factors.  Serum 25(OH)D has been shown to 

vary across racial groups, mostly owing to differences in skin tone (i.e. 

Whites>Hispanics>Blacks).(143)  However, heritability of 25(OH)D was shown to differ 

between similar Hispanic American populations, suggesting genetic factors beyond skin 

color influence vitamin D status.(144)  Heritability estimates for serum 25(OH)D range 

from 23-80%.(144-149)  The genetic potential of an individual becomes most important 

when environmental factors, such as sunlight exposure, are at a minimum.  Some of the 

largest heritability estimates of 25(OH)D were measured in winter, when the 

environmental effect of sunlight does not play a large role.(146,147)  Serum 1,25(OH)2D has 

also been shown to be heritable, though not to the extent of 25(OH)D.  Heritability of 

1,25(OH)2D has been reported to be 16-20% in Hispanic Americans, 48% in African 
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Americans, and 30% in European populations.(144,149)  There are few studies examining 

the genetic determinants of serum 25(OH)D.  Such studies of serum 1,25(OH)2D are 

extremely limited, possibly due to the myriad of physiological and environment also 

influencing it. 

 Recent associations between vitamin D and multiple health outcomes have led to 

increased interest in defining the genetic architecture of vitamin D biology.(150)  

Engelman et al. examined the relationship of serum 25(OH)D and 1,25(OH)2D to 

polymorphisms in three vitamin D candidate genes; vitamin D binding protein (GC), 

CYP27B1, and VDR. Only GC showed significant association, with one SNP affecting 

both 25(OH)D and 1,25(OH)2D levels, and another SNP associated with 25(OH)D 

only.(144)  Another candidate gene study by Bu et al. tested for relationships between 

25(OH)D status and SNPs in nine candidate genes known to affect vitamin D; alkaline 

phosphatase (ALPL), CYP24A1, CYP27A1, CYP27B1, CYP2R1, CYP3A4, GC, VDR, 

and PTH.(151)  The investigators identified and replicated associations between CYP2R1 

and GC polymorphisms that were associated with serum 25(OH)D levels in two 

Caucasian populations.(151)   

 Forward genetics methods have been applied to understanding genetic variability 

on vitamin D metabolites in two clinical studies.  Wjst et al. sought to identify genetic 

regions linked to either serum 25(OH)D or 1,25(OH)2D in German and Swedish families 

with asthma.(149)  This study found that serum 25(OH)D levels were more highly heritable 

than 1,25(OH)2D, 80% and 30%, respectively.(149)  Five loci were significantly linked to 

serum 25(OH)D in this population, but no previously known vitamin D-related genes 

were near these markers.(149)  The largest and most comprehensive study as of yet is a 
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GWAS of serum 25(OH)D in over 4000 individuals of European descent.(150)  Ahn et al. 

identified single nucleotide polymorphism in only one gene, GC, to be significantly 

associated with serum 25(OH)D.(150)  Three other genes contained variation putatively 

associated with vitamin D status; 7-dehydrocholesterol reductase (DHCR7), acyl-

Coenzyme A dehydrogenase (ACADSB), and CYP2R1.(150)   

 These studies reaffirm relationships seen in candidate gene studies, but also 

indicate that unknown genetic factors affecting vitamin D biology do exist.  Surprisingly, 

the use of animal models to unravel these questions is largely absent.  Natural variation 

was noted in the susceptibility of different dog breeds to rickets in some of the earliest 

studies of vitamin D physiology.(152)  More recently, a screen of 18 inbred mouse lines 

identified significant variation in serum 25(OH)D.(153)  Despite animal models being used 

extensively to characterize vitamin D biology and the genetics of bone health (as 

discussed earlier), they have not been leveraged to identify the genetic factors influencing 

vitamin D metabolites. 

 There are indications that calcium absorption is affected by genetic variation, but 

the factors influencing it have not been well studied.  A wide amount of variation has 

been observed in human populations.  Heaney et al. observed a range of 0.05-0.65 in true 

fractional calcium absorption in four combined populations of postmenopausal, non-

osteoporotic women, even after adjustment for dietary calcium intake.(154)  Wolf et al. 

observed a range of 0.17-0.58 in true fractional calcium absorption.(155)  Several 

environmental factors are commonly associated with intestinal calcium absorption 

efficiency, including age, estrogen, calcium intake, and serum 1,25(OH)2D.(70,155,156)  Still 

other dietary components have been indicated to influence intestinal calcium absorption 
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efficiency such as fat, fiber, and protein.(155,157,158)  However, these environmental factors 

and others explain 25%, at most, of the variation seen in calcium absorption.(155,157)  It 

could be hypothesized that genetics makes up the remaining variation.  This idea is 

supported by several pieces of evidence.   

 Similar to BMD, calcium absorption has been observed to vary by race.(60,159-161)  

Abrams et al. observed significantly higher fractional calcium absorption in black than 

white pre and postmenarchal girls.(159)  Several balance and kinetic studies in black and 

white adolescent girls conducted by Dr. Connie Weaver’s research group have confirmed 

this observation under controlled dietary conditions.(60,160,161)  Chinese adolescent girls 

were also observed to have higher calcium absorption efficiency across a range of 

controlled calcium intakes.(59)   

 It has been postulated that polymorphisms in the VDR, specifically, may account 

for the variation seen in intestinal calcium absorption.  However, these candidate gene 

studies have been largely inconclusive and dependent on the haplotype or population 

studied.  Several studies have found a positive association between VDR polymorphisms 

and calcium absorption (162-164), while others found no association at all (155,165-167).  These 

discrepancies may be due to uncontrolled environmental factors, such as dietary calcium 

intake. 

 

 Do Gene-by-diet interactions Influence Calcium Homeostasis? 1.4.4

 As discussed above, calcium homeostasis is sensitive to dietary calcium intake 

which prompts a complex network of physiological and hormonal signals.  Thus, gene-

by-diet interactions may likely influence calcium homeostasis.  Evidence for gene-by-diet 
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interactions is particularly evident in skeletal health.  Observed differences in 

heritabilities of bone mass between monozygotic and dizygotic twins increase with age, 

suggesting bone is affected by interaction of genetics and accumulated environmental 

exposures (e.g. diet).(123)  Specific examples of gene-by-diet interactions affecting bone 

have been shown.   

 Farrow et al. identified a permissive gene-by-diet interaction between mutations 

in FGF23 and iron status.(168)  Mutations in a proteolytic cleavage site of FGF23 result in 

inappropriate maintenance of intact, active serum FGF23 and the disease autosomal 

dominant hypophosphatemic rickets (ADHR).(169)  Low iron status increases gene 

expression of FGF23.  Individuals carrying the mutant allele cannot compensate for this 

increase because the mutation inhibits the degradation of FGF23. (168)  Thus, intact 

FGF23 is increased during periods of low iron status, causing the hypophosphatemia and 

osteomalacia that characterize ADHR. (168)  A sensitizing interaction between PPARG 

and dietary fat has also been observed to affect skeletal health.  Ackert-Bicknell et al. 

identified PPARG as a candidate gene modifying bone mineral density between C3H/HeJ 

and C57BL/6J mice.(112)  The effect of this genetic variation on BMD was found to be 

modulated by dietary fat intake. (112)  The authors were also able to identify variation in 

PPARG that influenced BMD in the Framingham Offspring Cohort. (112)  In this 

population, certain SNPs showed significant interactions with dietary fat intake; a high 

fat diet was detrimental to BMD in one genotypic class and beneficial to BMD in the 

other genotypic class.(112)  These studies emphasize the impact of natural genetic 

variation and the important influence of the dietary environment on an individual level. 

 



25 

 

 Evidence suggests that gene-by-diet interactions influence calcium absorption as 

well.  The adaptive increase in intestinal calcium absorption caused by habitual low 

dietary calcium intake is different among racial groups.  Data from Black and White 

adolescent girls indicate that Black girls display the predicted adaptive increase in 

calcium absorption with decreasing dietary calcium levels, but White girls do not.(161)  

Similarly, Chinese-American girls have higher calcium absorption efficiencies than white 

girls.(59).  The disparity between these racial groups is greater at low calcium intakes, 

supporting the hypothesis that a gene-by-diet (calcium) interaction influencing intestinal 

calcium absorption efficiency exists.(59)   

 The genomic sources of this gene-by-diet interaction are not currently known.  

Candidate gene studies have attempted to relate VDR polymorphisms with calcium 

absorption efficiency, but do not always factor in the effect of dietary calcium.(165)  

Dawson-Hughes et al. examined calcium absorption efficiency in postmenopausal 

women genotyped for the BSM1 VDR polymorphism.(170)  Results of that experiment 

showed calcium absorption efficiency was similar between genotypic classes on a high 

calcium diet, but differed significantly on a low calcium diet.(170)  Specifically, the BB 

genotype showed decreased adaptation to a low calcium diet than the bb genotype.(170)  

Wishart et al. found no associations between the BSM1, APA1 and Taq1 polymorphisms 

and calcium absorption efficiency until the population was corrected for dietary calcium 

intake, serum 1,25(OH)2D, and body weight.(162)  Thus, the effect of VDR genotype on 

intestinal calcium absorption efficiency is dependent on the dietary and physiological 

environment.   
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Characterization of the gene-by-diet interaction affecting adaptation of calcium 

absorption to a low calcium diet is needed.  However, candidate genes studies such as the 

ones described above are unlikely to reveal the genetic root of gene-by-diet interactions 

because they are limited to what is known about genomic control of the trait of interest, 

and by how completely environmental exposure can be ascertained.  Controlled, 

discovery-focused research is needed to identify what genetic factors allow some 

individuals a genetic advantage to protect their bone while on a low calcium diet while 

others are susceptible to this dietary deficiency. 

 

1.5 Gaps Remain in Our Understanding of Calcium Homeostasis and Its Regulation 

 Considerable research has gone into the molecular mechanisms involved in 

intestinal calcium absorption.  Careful characterization in animal models has led to the 

development of the facilitated diffusion model of active intestinal calcium absorption.  

This model has been shown to be regulated by 1,25(OH)2D in response to low dietary 

calcium intake.  However, the 1,25(OH)2D-mediated facilitated diffusion model does not 

solely and completely explain intestinal calcium absorption.  For instance, considerable 

calcium absorption capacity remains in knockout mouse models of two facilitated 

diffusion components, TRPV6 and CaBPD9k.  Calcium absorption in these mice was still 

able to respond to 1,25(OH)2D.  Additionally, the strong relationship between intestinal 

calcium absorption and 1,25(OH)2D seen in cell and wild-type animal models is not seen 

in human populations.  These observations suggest that there are still details of calcium 

absorption to be discovered.  Particularly, novel mechanisms of regulation by vitamin D 

remain to be elucidated.  
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Observations in racial groups indicate that natural genetic variation may influence 

calcium absorption efficiency.  Although genetic approaches have been used to study 

related phenotypes such as bone mineral density and vitamin D status, the effect of 

genetics of calcium absorption has not been widely studied.  Candidate gene approaches 

have explained little, and are limited to current gene function and pathway knowledge.  

No discovery-focused forward genetic methods have been used to identify genetic 

variation affecting intestinal calcium absorption.  The adaptation of calcium absorption to 

habitual low dietary calcium intake appears to have a genetic component as well, but this 

has not been investigated in depth.  Again, candidate gene studies have had limited 

success explaining this gene-by-diet interaction.  These studies were conducted in human 

populations with little to no control over the environment and other genetic factors.  

Forward genetic studies are needed to identify the genetic sources of this gene-by-diet 

interaction.  Animal models are best suited to this purpose because of their known genetic 

background and the ability of the investigator to control and manipulate the dietary 

environment. 

 The goal of this thesis is to address several of these gaps in our knowledge of 

calcium homeostasis.  Inbred mouse lines were chosen as a research model in order to 

control environment and genetic background.  The first research goal was to characterize 

the natural genetic variation present in intestinal calcium absorption and vitamin D 

metabolites in the laboratory mouse population.  The adaptive response of these 

parameters to a low calcium diet was also assessed.  The second goal was to use forward 

genetics to locate genetic regions controlling calcium absorption and vitamin D 
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metabolites.  Gene-by-diet interaction loci were also mapped to identify genetic loci 

affecting the response to a low calcium diet. 
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2.1 Abstract 

Dietary calcium (Ca) intake is needed to attain peak bone mineral density (BMD). 

Habitual low Ca intake increases intestinal Ca absorption efficiency to protect bone mass 

but the mechanism controlling, and the impact of genetics on, this adaptive response is 

not clear.  We fed 11 genetically diverse inbred mouse lines a normal (0.5%) or low 

(0.25%) Ca diet from 4-12 wks of age (n=8 per diet per line) and studied the independent 

and interacting effects of diet and genetics on Ca and bone metabolism.  Significant 

genetic variation was observed in all bone, renal, and intestinal phenotypes measured 

including Ca absorption.  Also, adaptation of Ca absorption and bone parameters to low 

dietary Ca was significantly different among the lines.  Ca absorption was positively 

correlated to femur BMD (r=0.17, p=0.02), and distal femur BV/TV (r=0.34, p<0.0001).  

While Ca absorption was correlated to 1,25 dihydroxyvitamin D (1,25(OH)2D) (r=0.35, 

P<0.0001), the adaptation of Ca absorption to low Ca intake did not correlate to diet-

induced adaptation of 1,25(OH)2D across the 11 lines. Several intestinal proteins have 

been proposed to mediate Ca absorption; claudins 2 and 12, voltage gated Ca channel 

v1.3 (Cav1.3), plasma membrane Ca ATPase 1b (PMCA1b), transient receptor potential 

vanilloid member 6 (TRPV6) and calbindin D9k (CaBPD9k).  Only the mRNA levels for 

TRPV6, CaBPD9k, and PMCA1b were related to Ca absorption (r= 0.42, 0.43, and 0.21, 

respectively).  However, a significant amount of the variation in Ca absorption is not 

explained by the current model and suggests that novel mechanisms remain to be 

determined. These observations lay the groundwork for discovery-focused initiatives to 

identify novel genetic factors controlling gene-by-diet interactions affecting Ca/bone 

metabolism. 
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2.2 Introduction 

Whole body calcium (Ca) homeostasis is maintained by the coordination of a 

three-tissue axis of intestine, kidney, and bone(1) and this coordination is crucial for 

developing peak bone mass and minimizing adult bone loss(2,3).  In humans, fractional Ca 

absorption is positively correlated to bone mass (4-6)  while low Ca absorption efficiency 

is associated with increased fracture risk (7) and can reduce the efficacy of Ca treatment in 

the prevention of osteoporosis (4).  Despite these relationships, we still lack a clear 

understanding for how Ca absorption occurs. 

Ca absorption follows both a saturable, transcellular pathway and a passive, 

paracellular pathway that is directly proportional to dietary Ca intake.(8)  Active intestinal 

Ca absorption is especially crucial to the development of optimal bone density when 

dietary Ca intake is low. During these periods, renal conversion of serum 25 

hydroxyvitamin D (25OHD) to the active hormone 1,25 dihydroxyvitamin D 

(1,25(OH)2D) is increased.  Molecular events regulated by binding of 1,25(OH)2D to the 

vitamin D receptor (VDR) subsequently increase Ca absorption efficiency as well as 

reduce urinary Ca loss.(9-11)  Deletion of intestinal VDR in mice reduces active intestinal 

Ca absorption efficiency by 70% and this is directly responsible for the hypocalcemia and 

osteomalacia seen in VDR knockout mice.(11)    

The most studied mechanism for vitamin D-regulated intestinal Ca absorption is 

the facilitated diffusion model.(8)  In this model, 1,25(OH)2D increases the expression of 

target genes whose protein products mediate Ca entry into the enterocyte through the 

apical membrane channel transient receptor potential vanilloid member 6 (TRPV6), 

movement through the cell by binding to calbindin D9k (CaBPD9k), and extrusion from 
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the cell through the ATP dependent-plasma membrane Ca pump, PMCA1b.(8)  While 

close relationships exist between components of the facilitated diffusion model in CaCo-

2 cells(12) and C57BL/6J mice(13,14) recent studies in knockout mice indicate that the 

facilitated diffusion model may not be accurate (15). 

In human studies, the efficiency of intestinal Ca absorption varies from 7-75%.(16-

18)  The variation in intestinal Ca absorption efficiency in humans is likely due to the 

influence of multiple physiologic (e.g. growth, pregnancy, lactation, aging), 

environmental variables (e.g. dietary Ca intake, vitamin D status), and genetic factors.  

Twin studies, genetic mapping studies in mice, and GWAS in humans reveal that several 

aspects of whole-body Ca and bone homeostasis are influenced by genetics, e.g. multiple 

bone endpoints(19,20) (human findings reviewed in(21)), serum 25OHD (22). However, less 

information is available for the impact of genetics on the efficiency of Ca absorption and 

the adaptive upregulation of Ca absorption to low dietary Ca intake.  Two groups have 

reported that the efficiency of intestinal Ca absorption is higher in C3H/HeJ mice 

compared to C57BL/6J mice, suggesting genetic background may influence this trait.(23,24)  

In addition, racial differences in the ability of adolescent girls to increase Ca absorption 

efficiency during periods of low dietary Ca intake indicate that this adaptive response 

also has a genetic component.(25,26)   

To determine the genetic contribution to the efficiency of Ca absorption, we 

examined 11 inbred lines of mice fed defined diets containing either high or low Ca 

content from weaning to 12 wks of age.  Using this population, we have identified 

genetic variation in intestinal Ca absorption efficiency as well as a number of other 

parameters relevant to whole body Ca homeostasis.  There were independent genetic 
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effects controlling the adaptive response of Ca absorption and other parameters to low 

dietary Ca intake. Collectively, our findings suggest that Ca absorption physiology is 

more complex than suggested by the facilitated diffusion model and that novel genetic 

factors affecting Ca absorption as well as diet-induced adaptation of Ca/bone metabolism 

have yet to be identified. 

 

2.3 Materials and Methods 

 

 Experimental Design 2.3.1

Four week old, male mice from 11 common laboratory inbred strains were 

obtained from The Jackson Labs (Bar Harbor, ME): 129S1/SV1mJ (129S), A/J, AKR/J 

(AKR), C3H/HeJ (C3H), C57BL/6J (B6), CAST/EiJ (CAST), CBA/J (CBA), DBA/2J 

(DBA), PWK/PhJ (PWK), SWR/J (SWR), and WSB/EiJ (WSB).  This panel of lines was 

chosen to encompass three mouse subspecies (Mus musculus domesticus, M.m.musculus, 

and M.m. castaneus), to include classical inbred strains as well as more genetically 

divergent wild-derived inbred lines, and to represent parental strains of available genetic 

mapping resources.(27)  To minimize differences in availability and breeding efficiency 

among the lines, lines were shipped in groups of 4-8 mice within each of two shipment 

periods.  At arrival, an equal number of mice from each line were randomly assigned to 

either a 0.5% Ca (adequate) or 0.25% Ca (low) diet (AIN93G base with 200 IU vitamin 

D3/kg diet, Research Diets, New Brunswick, NJ) (n=8/diet/line). Dietary Ca levels were 

chosen to maintain Ca homeostasis (0.5% Ca) or elicit an adaptive response in serum 

1,25(OH)2D (0.25% Ca).  Mice were maintained in rooms with UV blocking filters over 
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lights (Pegasus Lighting, Beaver Falls, PA) and a 12 h light/dark cycle; they were given 

food and water ad libitum.  At 12 wks of age mice were fasted overnight, anesthetized 

with a cocktail of ketamine and xylazine, and Ca absorption was measured by Ca45 

appearance in the serum 10 min after an oral gavage test as previously described.(10)  

Blood was drawn and serum was prepared for the analysis of intestinal Ca absorption by 

liquid scintillation and 1,25(OH)2D levels by radioimmunoassay as previously 

described.(11,28)  Duodenum and kidney were prepared for mRNA analysis.  Data from a 

pilot study characterizing the response of B6, DBA, and PWK mice to dietary Ca 

restriction were included in the final analysis of available phenotypes (total sample size 

for these lines=16-24/diet).  All animal experiments were approved by the Purdue 

University Animal Care and Use Committee. 

 

 Intestinal Calcium Absorption 2.3.2

Anesthetized mice were given an oral gavage of a solution containing 0.1 mM 

CaCl2, 125 mM NaCl, 17 mM Tris, and 1.8 g/L fructose, enriched with 20 µCi 

45CaCl2/ml (Perkin Elmer, Waltham, MA) (15 µL/g body weight).  Ten minutes later, 200 

µL of blood was drawn from the superficial temporal vein using the Goldenrod Lancet 

(Medipoint, Inc., Mineola, NY).  Serum was isolated by centrifuging samples for 10 min. 

at 500 x g.  Each serum sample was bleached by dilution (1:10) in a 1:4 solution of 3N 

potassium hydroxide and 30% hydrogen peroxide for 30 min, after which pH was 

neutralized with 3N hydrochloric acid.  Samples were then counted by liquid scintillation 

for 1 min. 
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 Gene Expression 2.3.3

Mucosal scrapings were obtained from the first 2 cm of the duodenum.  The left 

kidney was minced and approximately 50 µg saved. These samples were mixed and 

immediately frozen in TriReagent. Total mRNA was isolated and reverse transcribed into 

cDNA(28). Real-time PCR was conducted on samples using the MyiQ RT-PCR system 

containing SYBR green (Bio-Rad, Hercules, CA).  mRNA levels were normalized to the 

expression of ribosomal protein, large, P0 (RPLP0).  Primers used for qPCR have been 

described elsewhere: RPLP0(28), CaBPD9k(9), and TRPV6(9), PMCA1b(29), Cav1.3(30), 

claudin 2 (CLDN2)(31), claudin 12 (CLDN12)(32), TRPV5(9), CaBPD28k(11).   

 

 Bone Phenotyping 2.3.4

Hindlimbs were removed, skin was removed, and the remaining tissue was fixed 

in 10% neutral buffered formalin for 2 weeks after which the tissue was stored in 70% 

ethanol.  After all muscle was removed bones were transferred back to 70% ethanol.  

Formalin-fixed femora were scanned using a PIXImus densitometer (Lunar; GE-

Healthcare, Madison, WI) to yield bone mineral content (BMC, g) and bone mineral 

density (BMD, g/cm2) or by microcomputed tomography (µCt 40, Scanco Medical, AG, 

Bassersdorf, Switzerland) at the midshaft and distal metaphysis.(33)  Samples were 

scanned for µCt while immersed in 70% ethanol.  Images were obtained using a cubic 

voxel size of 16 µm, X-ray tube potential of 55 kVp, an X ray intensity of 145 µA, and 

300 ms integration time.  

The region of interest (ROI) for cortical bone was at 50% of the length of the 

bone (midshaft) where 15 slices (0.24 mm) were scanned and reconstructed.  Cortical 
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bone volume fraction (Ct.Ar/Tt.Ar, %) and cortical thickness (Ct. Th, mm) were 

calculated.  For trabecular bone, the ROI was set at 1 mm from the growth plate, 94 slices 

were scanned (1.5 mm) and 56 slices (1 mm) were reconstructed starting from the first 

slice containing no evidence of growth plate or primary spongiosa.  Reference contours to 

delineate trabecular bone region were drawn manually a few voxels away from the 

endocortical surface, the shape of the reference contours were automatically adapted to 

the bone surface approximately every 10 slices. Images were segmented using Gaussian 

filtration (Sigma = 0.8, support = 1).  Parameters calculated for trabecular bone were 

bone volume/total volume (BV/TV, %), trabecular number (Tb.N, 1/mm), trabecular 

spacing (Tb.Sp, mm), and trabecular thickness (Tb.Th, mm).  All images were 

reconstructed using the Scanco software and measures obtained were based on 3D model-

independent algorithms.  A single global threshold value was set manually for each ROI.  

The reproducibility of this method for mouse femur is reported elsewhere.(33,34) 

 

 Statistical Analysis 2.3.5

Data points with a z score in the extreme 2.5% of either end of a line/diet group 

distribution were removed as outliers.  Adherence to a normal distribution was 

determined by Anderson-Darling tests.  Data not normally distributed were transformed 

as follows: Ca absorption (log 10); VDR (y0.5); TRPV6 and 1,25(OH)2D (y0.25); duodenal 

and renal CaBPD9k, PMCA1b, CLDN2, CLDN12, Cav1.3, Tb.Sp, Tb.Th, BV/TV, 

TRPV5, and CaBPD28k (natural log).  Adherence to a normal distribution was confirmed 

after transformation.  Each phenotype was assessed for the presence of main effects (line, 

diet) and a line-by-diet interaction using ANCOVA with body weight (BW) and femur 
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length (FL) as body size covariates.(35)  When a significant F statistic was detected, 

specific a priori post-hoc comparisons were made using a permutation-based t-test 

procedure (Supplemental Table 2.3).  Relationships between phenotypes were determined 

after, significant, independent confounding effects of BW and/or FL were removed by 

linear regression (35).  Phenotypes affected by BW and FL were: BMD, BMC, Tb.N, 

Tb.Sp, and renal CaBPD9k; while Ca absorption, TRPV6, duodenal CaBPD9k, PMCA1b, 

VDR,  CLDN2, CLDN12, 1,25(OH)2D, Tb.Th, Ct.Th, and Ct.Ar/Tt.Ar were affected by 

BW only and BV/TV was affected by FL only.  The resulting residual values were used 

in Pearson’s correlations, full model linear regression, and principal components analysis 

(PCA).    The number of factors extracted in PCA was based on the Kaiser criterion 

(eigenvalue >1) and scree plot examination.(36)  Factors were next rotated using the 

orthogonal Varimax rotation.  Factor loadings >0.4 or <-0.4 were used for interpretation 

of each principal component. 

For several phenotypes, a unique adaptation parameter reflecting the response to 

low dietary Ca intake was generated for each mouse on the 0.25% Ca diet.  This was 

calculated as the percent difference between the phenotype value for an individual (i) fed 

the 0.25% Ca diet (x) and the line (j) mean for the phenotype value from the 0.5% Ca diet 

(y), standardized to the line mean for the phenotype value from the 0.5% Ca diet and 

multiplied by 100, i.e.��𝑥𝑖𝑗 − 𝑦�𝑗�/𝑦�𝑗�*100. The adaptation parameter was normally 

distributed and not affected by body-size covariates for any phenotype.  Summary 

statistics of adaptation parameters are given in Supplemental Table 2.4.  The effect of 

genetic variation on the adaptation parameter was tested in a one-way ANOVA.  The 

impact of low dietary Ca intake on phenotypes within individual lines was determined 
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using a one-sample t-test (H0=0).  All analyses were conducted using SAS Enterprise 4.2 

(SAS Institute, Inc., Cary, NC) and significance determined at p<0.05.  

Our primary research goal was to determine the effect of genetics on Ca 

absorption and so the study was powered based on variance estimates from B6 mice for 

this phenotype (n=8, 50% difference between dietary groups, SD = 30% of mean, α = 

0.05, power = 0.872).  Using this sample size we had sufficient power to detect 

significant differences in mRNA endpoints (100% difference, SD = 50%, power = 0.96) 

and distal femur µCT parameters (30% difference, SD = 20%, power = 0.797) but femur 

midshaft, BMD, and BMC had reduced power 0.461).  Our linear associations with 

n=123 have the power (0.8) to see a significant correlation of r = 0.25 (p<0.05). 

 

2.4 Results 

 

 Ca Absorption and Its Adaptation to Low Dietary Ca Intake 2.4.1

Unadjusted values and least squares means from ANCOVA are provided for all 

parameters in Supplemental Tables 2.1 and 2.2, respectively.  Intestinal Ca absorption 

was significantly affected by genetic background (line) regardless of the level of dietary 

Ca fed (Figure 2.1A, p<0.0001) with CBA, A/J, and WSB lines having the highest 

absorption efficiency on the 0.5% Ca diet and 129S, CAST, and DBA lines having the 

lowest.   

As expected, Ca absorption efficiency was significantly increased by low dietary 

Ca intake in the B6 reference line (+82%, p<0.0001).  However, the adaptation of Ca 

absorption to low dietary Ca stress varied significantly among the inbred lines (line-by-
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diet interaction, p=0.009).  Low Ca intake significantly increased Ca absorption only in 

the B6 and 129S lines (Figure 2.1A).  Consistent with this observation, analysis of the Ca 

absorption adaptation parameter shows that the B6 and 129S lines were significantly up-

regulated (p<0.05) while a trend towards increased Ca absorption was also seen for 

CAST, DBA, C3H, and SWR (p<0.1, Figure 2.1B). Lines with no diet-induced increase 

in Ca absorption were: A/J, AKR, CBA, PWK, and WSB. 

 

 Bone Parameters, and Their Adaptation to Low Dietary Ca Intake 2.4.2

BMD was affected by significant line and diet main effects, as well as a 

significant line-by-diet interaction (p=0.038).  Variability in BMD across the population 

for each diet can be seen in Figure 2.2A.  Similar levels of variation were also seen for 

Ct.Ar/Tt.Ar, distal femur BV/TV, Tb.Th, Tb.N, and Tb.Sp (Supplemental Table 2.3).  

However, the impact of line on bone loss due to dietary Ca restriction was different 

among BMD, Ct.Ar/Tt.Ar, and BV/TV (line effect p=0.005, p=0.8, p<0.0001, 

respectively; Figure 2.2B-D).  Only PWK mice were resistant to diet-induced bone loss 

in all three measures.  The adaptive response of distal femur BV/TV to low Ca diets was 

most heterogeneous with significant loss of  BV/TV observed in 129S, AKR, and DBA 

lines, no change in A/J, C3H, CAST, CBA, PWK, and WSB lines, and an increase in B6 

(p=0.04) and SWR lines (p=0.1) (Figure 2.2D). 

 

 Ca Absorption Efficiency Is Correlated to Bone Mass 2.4.3

Ca absorption was positively correlated to BMD (r=0.17, p=0.02, Table 1).  This 

effect was due to the beneficial impact of Ca absorption on trabecular bone (BV/TV, 
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Figure 2.3, Tb.Th, Table 1).  In contrast, while Ct.Ar/Tt.Ar correlated to Ca absorption in 

mice on the 0.5% Ca diet (r = 0.25, p for trend = 0.052), the relationship was not 

significant for mice fed the 0.25% Ca diet or for the combined population. 

 

 Regulation of Intestinal Ca Absorption by 1,25(OH)2D 2.4.4

Using in situ ligated loops, we previously showed that Ca absorption efficiency is 

significantly correlated to serum 1,25(OH)2D in B6 mice (r = 0.92(14)).  We confirmed 

this relationship in B6 mice using the oral gavage test (r=0.65, p=0.0006) (Figure 2.4, 

black symbols).  In the full panel of 11 inbred lines the relationship was still significant, 

but weakened (r=0.35, p<0.0001, Figures 2.4 and 2.5) due to the high degree of diversity 

in the relationship between adaptation of Ca absorption and adaptation of serum 

1,25(OH)2D to low Ca intake among the lines.  Figure 2.6 shows that only two lines had a 

proportional, diet-induced increase in Ca absorption and serum 1,25(OH)2D (B6, C3H).  

In contrast, other lines were hyper-responders (i.e. the diet-induced increase in Ca 

absorption was high relative to the diet-induced increase in serum 1,25(OH)2D in 129S 

and CAST), or hypo-responders (i.e. a blunted response in Ca absorption in relation to a 

large increase in serum 1,25(OH)2D in PWK and SWR).  Two other lines increased Ca 

absorption with little to no corresponding increase in serum 1,25(OH)2D (i.e. vitamin D-

independent in WSB, DBA), while three lines did not increase either Ca absorption or 

serum 1,25(OH)2D on a low Ca diet (i.e. non-responders were CBA, A/J, AKR) (Figure 

2.5, Supplemental Table 2.4). 

 

 



55 

 

 Correlations between Duodenal mRNA Levels and Ca Absorption 2.4.5

Several proteins have been proposed to contribute to basal and vitamin D-

regulated intestinal Ca absorption, i.e. VDR, TRPV6, CaBPD9k, PMCA1b, CLDN2, 

CLDN12, and Cav1.3.(8)  Line effects influenced the duodenal mRNA level for each of 

these genes (Supplemental Table 2.3).  However, only TRPV6 and CaBPD9k mRNA 

levels were significantly increased by dietary Ca restriction.  Consistent with their 

proposed roles in the facilitated diffusion model(8), TRPV6, CaBPD9k, and PMCA1b 

mRNA were each significantly, positively correlated with Ca absorption efficiency 

(Figure 2.7A-C).  Additionally, each gene target was positively correlated to serum 

1,25(OH)2D (Table 2) and the three mRNA levels were closely correlated with one 

another (Table 2, Figure 2.8).  When all three mRNAs were included in a multiple linear 

regression model for Ca absorption, only CaBPD9k mRNA level remained significant, 

indicating that these three factors are not independent determinants of Ca absorption. 

Duodenal CLDN2, CLDN12, and Cav1.3 mRNA levels were not significantly correlated 

to Ca absorption or to serum 1,25(OH)2 D levels (data not shown). Although VDR 

mRNA correlated with TRPV6, CaBPD9k, and PMCA1b mRNA, it did not correlate 

with Ca absorption (Table 2).  Diet-induced changes in CaBPD9k mRNA, but not the 

other mRNAs, were correlated to the adaptation of Ca absorption to low Ca intake 

(r=0.38, p<0.0001, Figure 2.9).  However, while VDR mRNA levels did not correlate to 

the adaptive increase in Ca absorption using mean values from the full panel of 11 inbred 

line (n = 11, r = 0.44, p = 0.17), a significant correlation was observed when the 

biological outlier line, A/J, was removed (n = 10, r = 0.81, p<0.01, data not shown). 
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 Renal mRNA Levels 2.4.6

Renal levels of TRPV5, CaBPD28k, and CaBPD9k mRNA were significantly 

affected by genetic background (Supplemental Tables 2.1 and 2.3) while only CaBPD28k 

and CaBPD9k were significantly influenced by diet and no significant line-by-diet 

interaction was detected for any of the three renal mRNAs.  CaBPD28k and CaBPD9k 

mRNA were significantly, positively correlated with serum 1,25(OH)2D (r = 0.27 and 

0.33, respectively, p<0.001) but TRPV5 mRNA was not (Supplemental Table 2.5).  

TRPV5 mRNA was negatively correlated with intestinal Ca absorption (r = -0.23, 

p=0.007) while TRPV5, CaBPD28k, CaBPD9k mRNA levels were negatively correlated 

with several bone parameters (e.g. r =  -0.25, -0.43, -0.33 with Ct.Th., respectively, p < 

0.002, Supplemental Table 2.5).   

 

 Principal Components Analysis (PCA) 2.4.7

Two significant principal components (PC1, PC2) were extracted and they 

account for 30.8% and 25.9% of the total variance, respectively (Supplemental Table 2.6).  

PC1 contained intestinal Ca absorption, duodenal mRNA levels, and renal CaBPD9k 

mRNA.  PC2 contained factors from each arm of the 3-tissue axis; Ct.Ar/Tt.Ar, BV/TV, 

Ca absorption, and renal mRNA levels. 

 

2.5 Discussion 

Identification of genetic diversity in inbred mouse lines has been the foundation 

for quantitative trait loci (QTL) mapping, candidate gene, and genome wide association 

studies to identify molecular determinants of phenotypes like BMD.(20)  However, few 
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studies have examined the effects of genetics on tissues controlling Ca metabolism other 

than bone, nor have interactions between genetics and diet been accounted for, resulting 

in inconsistencies in the association between dietary Ca intake and bone health.(37-41)  Our 

study addresses this knowledge gap with a special focus on intestinal Ca absorption.  We 

demonstrate that although feeding Ca restricted diets to growing mice initiates a 

physiological adaptation to protect bone, the robustness of this adaptive response is 

dependent on genetic background (Figure 2.1 and 2.2, Supplemental Table 2.4).  For 

most of the phenotypes we examined, there was no correlation between the basal genetic 

effect and adaptation of a phenotype to low Ca intake, demonstrating that these genetic 

effects are distinct. 

Bone is the most abundant store of Ca in the body and is influenced by regulatory 

mechanisms occurring at the bone, intestine, and kidney.  Our data show that while 

significant gene-by-diet interactions control the adaptation of bone mass and intestinal Ca 

absorption to low dietary Ca intake, no interaction influenced the renal levels of 

transcripts related to Ca reabsorption. This suggests that while genetic variation affecting 

renal Ca handling may contribute to bone health, it may be less critical for the adaptive 

response to Ca restriction in growing mice.  We expected that renal TRPV5, CaBPD28k, 

and CaBPD9k levels, as surrogate markers of renal Ca reabsorption, would be tightly 

correlated to each other and positively associated with both serum 1,25(OH)2D and bone 

parameters (i.e. improved Ca retention = improved bone).(9,42)  However, while CaBPD9k 

and D28k mRNA levels were positively associated with serum 1,25(OH)2D levels (r = 

0.33, 0.27, respectively, p<0.001), TRPV5 mRNA was not.  The lack of correlation 

between renal TRPV5 and serum 1,25(OH)2D is consistent with previous reports showing 
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modest changes in renal TRPV5 mRNA levels between wild-type and VDR knockout 

mice(10,13)  and following injection with pharmacologic levels of 1,25(OH)2D
(9).  Previous 

studies report that urinary Ca excretion is higher in mice with TRPV5 gene deletion or 

low renal CaBPD9k and D28k levels(42,43) suggesting a positive role for these proteins in 

limiting bone loss and maintaining bone density.  In contrast, we found that the three 

renal mRNA levels were individually, and in a principal components analysis, negatively 

associated with various bone endpoints. We hypothesize that this is an indirect effect that 

reflects a reduced need for renal Ca reabsorption when intestinal Ca absorption is high.  

This idea is supported in part by a negative association between renal TRPV5 mRNA and 

Ca absorption. 

The primary goals for our study were to evaluate the genetic influences on 

intestinal Ca absorption as well as to use our genetically diverse population to learn more 

about mechanisms for Ca absorption and the contribution of Ca absorption to 

development of peak bone mass.  Two previous studies showed that Ca absorption was 

greater in 8-12 week old female C3H than B6 mice fed a Ca-sufficient diet (0.4% or 1.2% 

Ca).(23,24)  We have extended these observations to 11 inbred strains and our data reveal a 

large amount of variation in Ca absorption efficiency in mice fed an adequate or low Ca 

diet, as well as in the ability of mice to adapt to low dietary Ca intake (Figure 2.1).   

Armbrecht et al.(24) previously showed that the maximal response of Ca 

absorption to 1,25(OH)2D injection was not different between C3H and B6 mice.  In 

contrast, our study examined a nutritionally and physiologically relevant condition – 

restriction of dietary Ca by 50%, i.e. similar to the relationship between Ca intake and Ca 

requirements seen in adult women in the U.S.(44)  Previously, we reported that B6 mice 
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follow the traditional model of adaptation to low dietary Ca intake(9); increases in serum 

1,25(OH)2D induce active intestinal Ca absorption that protect mice from bone loss 

through a VDR dependent mechanism(8,9,13).  However, while we see variation in the Ca 

absorption response to low dietary Ca intake across the 11 lines, this variation was not 

strongly associated with diet-induced increases in serum 1,25(OH)2D levels (Figure 2.6).  

Subpopulations were identified in the panel of 11 lines that reflected “normal” and 

“hyper” adapters, vitamin D-independent adapters, vitamin D-resistant adapters, and non-

adapters. The lack of a strong relationship between adaptation of Ca absorption and diet-

induced changes in serum 1,25(OH)2D were not due to obvious line-specific differences 

in duodenal VDR mRNA level (Supplemental Tables 2.2 and 2.4).  We previously 

reported that growth hormone or IGF-1 contributes to the residual Ca absorption 

efficiency that exists in growing VDR knockout mice.(13)  However, we measured Ca 

absorption in mice that were past their rapid growth phase and our data was adjusted for 

body size to minimize growth-related effects on our phenotypes.  Taken together, these 

observations indicate the existence of a vitamin D-independent, enhancing effect of low 

Ca intake on Ca absorption but the mechanism for this is not clear.   

In B6 mice there is a close relationship between serum 1,25(OH)2D levels and Ca 

absorption efficiency (Figure 2.3, r = 0.65; r = 0.9(14)).  However, when the genetic 

diversity available in our 11 line panel is considered, the relationship of Ca absorption to 

serum 1,25(OH)2D is more similar to that reported in humans (r = 0.23-0.35)(45-47)(Figure 

2.4). Known environmental factors such as diet, age, and circulating hormones account 

for, at most, one quarter of the variation in true fractional Ca absorption seen in human 

populations.(45,48)  Our data suggest that the remainder of the variation in Ca absorption is 
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due to genetic factors and gene-by-diet interactions.  Consistent with this concept, 

adolescent black girls have higher Ca absorption compared to white girls(49) and this may 

contribute to the higher bone deposition seen in black girls(50).  Also, serum 1,25(OH)2D 

is a significant predictor of Ca absorption in black but not white women, suggesting an 

impact of genetics on this relationship.(16)  Here we found that adaptive increases in Ca 

absorption were not strongly correlated to diet-induced changes in serum 1,25(OH)2D.  

This suggests that resistance or hyper-responsiveness to the action of 1,25(OH)2D may 

reflect defects in the VDR-dependent regulatory system.(12,14)  However, there were also 

no obvious polymorphisms in the VDR gene that segregate with the responses of the 

mouse lines studied here.  Identification of the genetic factors controlling Ca absorption 

has been difficult because studies on polymorphisms in candidate genes have been 

limited and inconsistent.(8)  In addition, the environmental and genetic complexity of free-

living human populations makes identifying gene-by-diet interactions difficult, especially 

for a hard to measure physiologic trait like Ca absorption.  In contrast, our study in 

genetically well-characterized mouse models raised in a controlled environment provides 

a strong foundation for future gene mapping studies to identify the genetic variants that 

control intestinal Ca absorption efficiency as well as its adaptation to low dietary Ca 

intake.(27)   

Our study has also allowed us to examine three models proposed to describe 

intestinal Ca absorption(8), i.e. the facilitated diffusion model, passive diffusion through 

the tight junction proteins CLDN2 and CLDN12 (51), and transcellular Ca transport 

through the voltage gated Ca channel Cav1.3 (52).  Although CLDN2, CLDN12, and 

Cav1.3 mRNA levels were each detected in duodenum and each was significantly 
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affected by line, none of them were influenced by diet nor were they significantly 

associated with Ca absorption or serum 1,25(OH)2D.  This observation indicates they 

play a minimal role in Ca absorption under our experimental conditions (i.e. a low Ca 

load in our absorption test designed to reveal transcellular, not paracellular, Ca transport).   

In the facilitated diffusion model(53), TRPV6, CaBPD9k, and PMCA1b work in 

coordination to mediate Ca absorption, e.g. in B6 mice, TRPV6 and CaBPD9k levels are 

elevated by increased serum 1,25(OH)2D levels and they are associated with increased Ca 

absorption efficiency(9).  However, the role of these proteins in Ca absorption has been 

questioned due to lack of a dramatic phenotype in TRPV6 and CaBPD9k knockout 

mice.(15)  Our data indicate that TRPV6, CaBPD9k, and PMCA1b likely perform as a 

single functional unit; multiple linear regression and PCA indicated that TRPV6, 

CaBPD9k, and PMCA1b mRNA were not independent predictors of Ca absorption.   

However, the correlations of these messages with Ca absorption, while significant, are 

weak (r values < 0.43 lead to r2 < 0.18 or less), indicating that only a small portion of the 

variability in Ca absorption is dependent upon the facilitated diffusion model (Table 2.2).  

In addition, only the adaptation of CaBPD9k mRNA to low Ca intake was significantly 

correlated to low dietary Ca-induced adaptation of Ca absorption. This observation 

supports our hypothesis that CaBPD9k expression is a response to the elevated 

intracellular Ca levels that accompany Ca absorption, but it does not strongly support an 

exclusive role for the facilitated diffusion model as the mediator of Ca absorption.(28)  

In conclusion, we have shown that genetic variation and gene-by-diet interactions 

affect not only active intestinal Ca absorption, but also its relationship to bone.  These 

interactions are partially accounted for by variation in the traditional cellular mediators 
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(i.e. TRPV6, CaBPD9k, PMCA1b mRNA) and the hormonal regulator (i.e. 1,25(OH)2D) 

of Ca absorption.  However, the characterization done here, on 11 inbred lines of mice in 

a carefully controlled environment, indicates that there are aspects of Ca homeostasis that 

remain to be discovered.  Future studies using mouse genetic mapping populations, such 

as recombinant inbred line panels, are needed to map genetic loci responsible for our 

observation.(27)  Further characterization of the gene-by-diet interactions identified here 

will provide insight into their impact on fracture risk and will provide scientific support 

for defining dietary requirements for individuals or genetically distinct subgroups. 
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Table 2.1  Correlation of Bone Density and Morphometry Parameters to Ca Absorption 
Phenotype r (95% CL) p n 

BMD 0.172 (0.025-0.312)  p=0.02 n=176 

BMC 0.048 (-0.104-0.198)  p=0.54 n=168 

Ct.Ar/Tt.Ar  0.085 (-0.086-0.251) p=0.33 n=134 

Ct.Th 0.102 (-0.066-0.265) p=0.24 n=138 

BV/TV  0.338 (0.178-0.481) p<0.0001 n=133 

Tb.Th 0.277 (0.134-0.438) p=0.0004 n=140 

Tb.Sp -0.106 (-0.269-0.063)  p=0.22 n=137 

Tb.N 0.055 (-0.115-0.221)  p=0.53 n=135 

Pearson’s correlation coefficients are given: r (upper, lower 
95% confidence limits).  Body size corrected residuals were 
used for analysis. 
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Table 2.2 Pearson's Correlation Coefficients of Ca Absorption Regulators 
 Ca Absorption TRPV6 CaBPD9k PMCA1b 1,25(OH)2D 

TRPV6 
0.42 (0.26, 0.55) 
p<0.0001, n=127 

    
CaBPD9k 

0.43 (0.27, 0.55) 
p<0.0001, n=153 

0.74 (0.65, 0.80) 
p<0.0001, n=140 

   
PMCA1b 

0.21 (0.04, 0.37) 
p=0.02, n=129 

0.53, (0.40, 0.64) 
p<0.0001, n=142 

0.47, (0.33, 0.59) 
p<0.0001, n=141 

  
1,25(OH)2D 

0.35 (0.21, 0.48) 
p<0.0001, n=166 

0.44, (0.30, 0.57) 
p<0.0001, n=139 

0.39, (0.27, 0.51) 
p<0.0001, n=189 

0.19, (0.02, 0.34) 
p=0.03, n=140 

 
VDR 

-0.02 (-0.19, 0.15) 
p=0.82, n=132  

0.45, (0.31, 0.54) 
p<0.0001, n=147 

0.23, (0.06, 0.37) 
p=0.01, n=145 

0.53, (0.40, 0.63) 
p<0.0001, n=148 

0.09, (-0.07, 0.25) 
p=0.29, n=146 

Pearson’s correlation coefficients are given: r (upper, lower 95% confidence limits), p-value, n.  Body size 
corrected residuals were used for analysis. 
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Figure 2.1  Ca absorption and adaptation of Ca absorption to low Ca intake is variable 
among 11 inbred mouse lines.  Bars reflect the mean ±SEM (n=4-14 per diet for each 
line).  (A) Unadjusted Ca absorption values, * dietary groups within a line differ 
significantly (p<0.05); line mean differs significantly relative to the B6 reference line 
(p<0.05), † for the 0.5% Ca group, ^ for the 0.25% Ca group. (B) Adaptation of Ca 
absorption to low dietary Ca intake; adaptation significantly differs from 0 (*, p<0.05;    
#, p<0.1). 
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Figure 2.2  Bone parameters and adaptation of bone parameters to low Ca diets are 
variable among 11 inbred mouse lines.  Bars reflect the mean ±SEM (n=7-20 per diet for 
each line). (A) Unadjusted BMD values, * dietary groups within a line differ significantly 
(p<0.05); line mean differs significantly relative to the B6 reference line (p<0.05), † for 
the 0.5% Ca group, ^ for the 0.25% Ca group. (B-D) Adaptation to low dietary Ca intake 
for (B) BMD, (C) BV/TV, and (D) Ct.Ar/Tt.Ar; adaptation significantly differs from 0  
(*, p<0.05;  #, p<0.1). 
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Figure 2.3  Distal femur BV/TV is significantly, positively correlated with intestinal Ca 
absorption.  Pearson’s correlation was calculated using individual residual values from 
mice representing all 11 inbred lines from both diet groups with data points present for 
both phenotypes.  Solid line = regression (r=0.34, p<0.05), dotted line = 95% confidence 
interval, n=133. 
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Figure 2.5  Genetic diversity affects the relationship between 1,25(OH)2D and Ca 
absorption.  . The relationship between serum 1,25(OH)2D and intestinal Ca absorption 
across the 11 inbred lines (r=0.35, p<0.001, n=166, dotted line = 95% confidence 
interval) is weaker than that observed for the B6 line alone (r=0.65, p<0.01, n=24).  
0.25% Ca diet (circles), 0.5% Ca diet (squares). Body-size corrected residuals are plotted. 

Figure 2.4  Relationship between serum 1,25(OH)2D and intestinal Ca absorption across 
the 11 inbred lines (r=0.35, p<0.001, all symbols).  Values for the B6 reference line alone 
are shown as filled symbols (r=0.65, p<0.01).  0.25% Ca diet (circles), 0.5% Ca diet 
(squares).  Body size-corrected residual values are plotted, dotted line = 95% confidence 
interval, n=166. 
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Figure 2.6  Correlation between adaptation of serum 1,25(OH)2D and intestinal Ca 
absorption to low Ca diets in the 11 inbred lines.  An adaptation parameter was calculated 
for each mouse on the 0.25% diet and the line mean values (+ SEM) were plotted. 
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Figure 2.7  Correlation between mRNA levels for the key members in the facilitated 
diffusion model and Ca absorption.  (A) TRPV6 mRNA (r=0.42, p<0.001, n=127), (B) 
CaBPD9k mRNA (r=0.43, p<0.001, n=153), and (C) PMCA1b mRNA (r=0.21, p<0.05, 
n=129).  Body size-corrected residuals with 95% confidence intervals are shown. 
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Figure 2.8  Key members in the facilitated diffusion model are significantly interrelated 
at the mRNA level.  (A) TRPV6 to CaBPD9k (r=0.74, p<0.0001, n=140), (B) TRPV6 to 
PMCA1b (r=0.53, p<0.0001, n=142), and (C) CaBPD9k to PMCA1b (r=0.47, p<0.0001, 
n=141).   Data are shown as body size-corrected residuals with 95% confidence intervals. 
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Figure 2.9  Adaptation of CaBPD9k to a low Ca diet is significantly, positively 
correlated with adaptation of Ca absorption to a low Ca diet.  An adaptation parameter 
was calculated for each mouse on the 0.25% diet.  Pearson’s correlation was calculated 
using individual values from mice representing all 11 inbred lines with data points 
present for both phenotypes (r=0.38, p<0.001, n=79), dotted line = 95% confidence 
interval. 
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3.1 Abstract 

Vitamin D regulates calcium (Ca) homeostasis and is necessary for proper bone 

health. Low dietary Ca intake increases the renal conversion of 25 hydroxyvitamin D 

(25(OH)D) to the hormone 1,25 dihydroxyvitamin D (1,25(OH)2D), a regulator of gene 

expression through the nuclear vitamin D receptor (VDR).   While studies have identified 

genetic variation controlling serum 25(OH)D levels, it is unclear whether genetics control 

serum 1,25(OH)2D levels or their adaptation to low Ca diets. To test this, male mice from 

11 inbred lines (Study 1) and 51 BXD recombinant inbred lines (Study 2) were placed on 

controlled diets containing 200 IU vitamin D and either 0.5% (the rodent Ca requirement) 

or 0.25% Ca from 4-12 wks of age (n=8/line/diet).  Significant variation was identified in 

Study 1 in serum 25(OH)D, serum 1,25(OH)2D, renal hydroxylases controlling vitamin D 

metabolism, and adaptation of 1,25(OH)2D to low dietary Ca. In Study 2, narrow sense 

heritability (h2) of 25(OH)D and 1,25(OH)2D on the 0.5% Ca diet was 0.40 and 0.66 , 

respectively.  The adaptive response of 1,25(OH)2D to the low Ca dietary environment 

ranged from -6% to 297% across BXD lines (h2=0.59).  Quantitative trait loci associated 

with serum 1,25(OH)2D did not overlap those linked to diet-induced adaptation, 

indicating the genes controlling the physiologic response to low dietary Ca are distinct 

from those controlling baseline levels.  Our results indicate serum vitamin D metabolite 

levels are controlled by multiple genetic factors that, in some cases, interact with the 

dietary environment. 
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3.2 Introduction 

Vitamin D deficiency is characterized by rickets and osteomalacia, highlighting 

its important role in calcium (Ca) and bone homeostasis.(1)  Additionally, vitamin D has 

been proposed to have unique, beneficial effects in several other diseases including 

cancer, heart disease, and autoimmune disease.(1)  The regulation of vitamin D synthesis, 

metabolism, and action are complex processes.  Vitamin D is acquired from the diet or by 

de novo synthesis in the skin, after which it is hydroxylated in the liver to 25-

hydroxyvitamin D (25(OH)D) and released into the serum.  Circulating 25(OH)D levels 

are used to assess vitamin D status.  25(OH)D is the biologically inactive precursor to the 

hormonal metabolite, 1,25 dihydroxyvitamin D (1,25(OH)2D).  1,25(OH)2D functions 

through the vitamin D receptor (VDR) to maintain serum Ca homeostasis by regulating 

gene expression in the intestine, kidney and bone.(2)  This method of regulation is 

sensitive to the dietary Ca environment.  Habitually low dietary Ca intake stimulates an 

adaptive increase in the conversion of 25OHD to 1,25(OH)2D in the kidney by the 

enzyme CYP27b1.(2-4)  

Serum vitamin D metabolite levels are influenced by genetic and environmental 

factors.(5,6)  The heritability of serum 25(OH)D in human populations ranges from 23-

80%.(6-11)  However, only a few genetic factors accounting for a small amount of variance 

(1-14%) in serum 25(OH)D levels have been identified.(5,12)  Combined, environmental 

factors and selected genotypes have explained just 54% of total variance in serum 

25(OH)D levels.(12)  Together, these data suggest novel genetic factors influencing 

vitamin D status remain to be identified. 
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Heritability of 1,25(OH)2D has been estimated at 16-48% in human 

populations.(13,14)  Studies examining the effect of genetic modifiers on serum 

1,25(OH)2D level are limited.  What data are available are inconclusive because this 

metabolite is particularly sensitive to environmental (e.g. dietary Ca) and physiological 

cues (e.g. low serum Ca).  Research suggests that natural genetic variation can interact 

with the dietary Ca environment to influence 1,25(OH)2D-mediated Ca homeostasis.(15-17) 

However, gene-by-diet interactions affecting serum 1,25(OH)2D levels have not been 

carefully studied.  Understanding the influence of natural genetic variation, the dietary 

environment, and their interaction on serum 1,25(OH)2D may elucidate new biology in 

the vitamin D metabolic pathway.  In turn, this knowledge may clarify the hormone’s 

roles in other systems. 

We have characterized the natural genetic variation in serum 25(OH)D and 

1,25(OH)2D present in a diverse population of inbred mice.  Using animal models 

allowed us to control genetic background as well as environmental conditions, thus 

overcoming the highly variable nature of 1,25(OH)2D present in free-living populations.  

Additionally, we have used a physiologically relevant habitual dietary Ca restriction in 

order to study the effect of natural genetic variation on the adaptation of serum 

1,25(OH)2D to this stress and have conducted quantitative trait locus (QTL) mapping to 

identify genetic regions controlling serum vitamin D metabolite levels and the adaptation 

of 1,25(OH)2D to low Ca intake.  This is the first linkage mapping study to identify loci 

controlling serum 1,25(OH)2D or its adaptation to a low Ca diet under controlled 

environmental conditions. 
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3.3 Materials and Methods 

 

 Animal Models 3.3.1

Study 1 was a characterization of serum vitamin D metabolites in a diverse 

population of 11 inbred mouse lines; 129S1/SV1mJ (129S), A/J, AKR/J (AKR), 

C3H/HeJ (C3H), C57BL/6J (B6), CAST/EiJ (CAST), CBA/J (CBA), DBA/2J (DBA), 

PWK/PhJ (PWK), SWR/J (SWR), and WSB/EiJ (WSB).  Intestinal Ca absorption and 

bone related phenotypes for this population have been reported previously.(18)  Study 2 

was a forward genetic linkage mapping study to identify QTL influencing serum vitamin 

D metabolites using the BXD recombinant inbred (RI) panel.  In the BXD RI panel, each 

line is a unique recombination of the B6 and DBA parental genomes, but because each 

BXD line is inbred, each individual within a line is genetically identical.(19)  This aspect 

allows for biological replicates to test an environmental intervention such as diet.(19) 

 

 Experimental Design 3.3.2

Using the study design reported previously(18), male mice from the 11 inbred lines 

(Study 1) and 51 BXD RI lines (Study 2) were obtained at 4 wks of age (The Jackson 

Labs, Bar Harbor, ME).  At arrival, an equal number of mice from each line were 

randomly assigned to either a 0.5% Ca (adequate) or 0.25% Ca (low) diet (AIN93G base 

with 200 IU vitamin D3/kg diet, Research Diets, New Brunswick, NJ) (n=8/diet/line).  

Dietary Ca levels were chosen to meet the rodent dietary Ca requirement (0.5% Ca) or 

elicit an adaptive response to low Ca intake in serum 1,25(OH)2D (0.25% Ca).  Mice 

were maintained in an UV free environment (12h light/dark cycle) and given food and 
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water ad libitum.  At 12 wks of age mice were anesthetized with an intraperitoneal 

injection of ketamine and xylazine.  Mice were euthanized by exsanguination and the left 

kidney was removed.  Serum was separated by centrifugation at 700 rcf for 10 min at 

room temperature.  Serum vitamin D metabolites 25(OH)D and 1,25(OH)2D were 

measured using commercially available radioimmunoassays (IDS, Plc., Scottsdale, AZ) 

according to the manufacturer’s directions.  Renal tissue was harvested and mRNA 

isolated as described previously.(18)  Renal CYP24 and CYP27b1 mRNA was measured 

by real-time PCR as previously described.(20)  All animal experiments were approved by 

the Purdue University Animal Care and Use Committee. 

 

 Statistical Analysis 3.3.3

Statistical methods for Study 1 can be found in Replogle et al.(18)  Study 1 was 

transformed as follows; 1,25(OH)2D (y0.25), CYP24 and CYP27b1 (natural log) and 

adherence to a normal distribution confirmed using the Anderson-Darling test for 

normality following transformation.  ANCOVA was used in Study 1 to test for the main 

effects of genetic background (i.e. line) and diet as well as a line-by-diet interaction while 

controlling for the effect of body weight (BW) and femur length (FL) as covariates.  

Select, a priori post-hoc comparisons were made using Fisher’s LSD. Relationships 

between phenotypes were done with Pearson’s correlation tests using covariate corrected 

residuals.  25(OH)D, 1,25(OH)2D, and CYP27b1 were corrected for BW while CYP24 

was corrected for FL using simple linear regression as described elsewhere.(18) In Study 2 

the covariate effect of BW was removed by linear regression and residuals were used for 

linkage mapping.(21)  Narrow-sense heritability was calculated using the r2 of a one-way 
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ANOVA (main effect=line) for each diet/phenotype population.  An additional parameter 

reflecting adaptation of 1,25(OH)2D  to the low Ca diet was calculated as the percent 

difference between the raw phenotype value for an individual (i) fed the 0.25% Ca diet (x) 

and the raw line (j) mean for the phenotype value from the 0.5% Ca diet (y), standardized 

to the line mean for the phenotype value from the 0.5% Ca diet, i.e.��𝑥𝑖𝑗 − 𝑦�𝑗�/𝑦�𝑗�*100.  

Statistics were conducted using SAS Enterprise Guide 4.2 (SAS Institute Inc., Cary, NC). 

 

 QTL Mapping 3.3.4

Marker information and BXD genotypes were downloaded from GeneNetwork 

(http://www.genenetwork.org/genotypes/BXD.geno) and the genetic location of each 

marker was updated using the Mouse Map Converter tool at the Jackson Labs Center for 

Genome Dynamics (http://cgd.jax.org/mousemapconverter/).(22)  Markers with duplicate 

genetic locations or perfectly correlated genotypes in our panel of BXD lines were 

removed.  The final genetic map for the 51 lines contained 1558 markers (the list is 

available on request). 

Composite interval mapping (CIM) was conducted using Windows QTL 

Cartographer v2.5_011 (http://statgen.ncsu.edu/qtlcart/WQTLCart.htm) with RI line 

means (n=51).  Forward selection identified 5 significant background markers.  CIM was 

carried out using a Haldane map function, 2 cM walking speed, and a 10 cM window.  

Each diet (0.5% or 0.25% Ca) group and the adaptation to low dietary Ca (1,25(OH)2D 

only) were mapped separately.  Permutations (n=500) were used to determine 

significance for each analysis.(23)  A Bayesian QTL mapping method using individual 

animal values was also used to validate CIM findings.  This method, as described in 
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Zhang et al., accurately detects multiple QTL in a study with a large number of marker 

effects (p) and small sample size (n).(24)  Bayes factors were used as a measure of 

significance for the presence of a QTL.  Specifically, twice the natural log of the Bayes 

factor (2lnBF) was used as a test statistic because it scales similarly to an LOD score.(25,26) 

The strength of the 2lnBF test statistic was assessed according to the rubric defined by 

Kass and Raftery; “0-2 not worth a bare mention, 2-6 positive, 6-10 strong, >10 very 

strong”.(25)  Each diet population was mapped separately as well as included together in a 

full model to test the genetic main effect.  The use of these two QTL mapping methods 

allowed us to test for QTLs within the traditional framework, but still leverage our study 

design which contained biological replicates.  Results that were replicated among the 

analyses lent more confidence to the outcome and were prioritized for further study. 

 

 Bioinformatic Characterization 3.3.5

The QTL candidate region was defined using 1-LOD support intervals which 

approximate 95% confidence intervals.(27,28)  QTL candidate regions were populated with 

genome features including protein-coding genes, non-coding RNA genes, gene fragments, 

and unclassified genes from the Mouse Genome Informatics (MGI) database 

(http://www.informatics.jax.org/).(29) Genome-wide DNase1 hypersensitive site (HSS) 

data from the mouse ENCODE project was used to identify potential regulatory regions 

(i.e. open chromatin) within QTL regions.(30)  DNase1 HSS peaks in 10 adult tissues (fat 

pad, genital fat pad, heart, kidney, large intestine, liver, lung, skeletal muscle, spleen, and 

brain) were merged using the UCSC Genome Browser. 
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Gene locations were identified as the region from the first to last exon plus 5000 

bp region upstream of the gene coordinates for exon 1 (i.e. the proximal promoter region).  

Genomic regions that were identical by decent (IBD) between B6 and DBA were 

identified using the Mouse Phylogeny Viewer (http://msub.csbio.unc.edu/).(31)  Regions 

that were 100% IBD were eliminated from further consideration.  Genes that were less 

than 100% IBD and the remaining non-IBD regions were used to query for 

polymorphisms between B6 and DBA using the Mouse Phenome Database (MPD, 

http://phenome.jax.org/).  MPD annotations were used to categorize polymorphisms by 

gene attribute; intronic, mRNA un-translated region (5’ and 3’ UTR), promoter region 

(5000 bp upstream), and exon-associated (i.e. synonymous and non-synonymous codons, 

stop codons, splice sites, or frameshift mutations). HSS data was then overlaid with the 

polymorphisms present in the QTL region.  Reference amino acids and variants resulting 

from non-synonymous polymorphisms were categorized based on charge, polarity, size, 

and special cases using the classification set out by Zhang et al with modifications.(32)  

Amino acids were classified into only two categories for size: small; C, P, G, A, S, T, N, 

D, Q, E, I, L, M, and V; and large; R, H, K, F, W, and Y.  Three special cases are 

considered; C, P, and G.  An amino acid substitution was considered deleterious if the 

reference and variant alleles were in a different category for any classification. 
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3.4 Results 

 

 Variation Related to Vitamin D Metabolites and Metabolic Enzymes Was Seen 3.4.1

across the Diverse 11 Inbred Line Population 

Serum 25(OH)D was significantly affected by genetic background in the 11 

inbred line population (line effect p<0.0001, Figure 3.1A) but there was no diet effect nor 

line-by-diet interaction observed.  Significant line and diet main effects were found for 

serum 1,25(OH)2D (p<0.0001, Figure 3.1B) while a trend for a gene-by-diet interaction 

was found (p=0.09).  A significant line effect influenced the diet-mediated change in 

serum 1,25(OH)2D (p<0.0001, Figure 3.1C).  However, the adaptive increase in serum 

1,25(OH)2D was significant for only five lines; B6, 129S, PWK, and SWR (p<0.05), 

C3H (p<0.1).  CYP27b1 mRNA levels in the kidney were significantly affected by the 

main effects of line (p<0.0001) and diet (p=0.0005), but no line-by-diet interaction was 

seen (p=0.4)(Figure 3.2A).  Renal CYP24 mRNA levels showed a significant influence 

of line (p<0.0001)(Figure 3.2C) while no diet effect (p=0.6) or line-by-diet interaction 

(p=0.12) was observed.  Serum 1,25(OH)2D levels did not significantly correlate to either 

renal CYP27b1 (r=0.08, p=0.3) or CYP24 (r= -0.03, p=0.7) mRNA levels (Figure 

3.2B,D). 

 

 Genetic Loci Controlling Serum 25(OH)D 3.4.2

A significant line effect influencing serum 25(OH)D was seen in the BXD RI 

panel (p<0.0001).  The main effect of diet was not significant (p=0.2), but a significant 

line-by-diet interaction (p<0.0001) was observed for serum 25(OH)D (Figure 3.3A for Z 
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scores).  The narrow sense heritability (h2) of 25(OH)D was 0.40 and 0.45 in the 0.5%  

and 0.25% Ca diet groups, respectively.  When significant QTL mapping results from all 

analyses were considered together, 13 QTLs were identified (Figure 3.4A, Table 3.1).  A 

detailed summary of the test statistics for each analysis can be found in Table 3.2. 

Two 25(OH)D QTLs were selected for in-depth bioinformatics analysis: 25D2 

(chr 1, 95.4 cM) and 25D4 (chr 6, 28.2 cM).  Table 3.3 lists the characteristics of the 1-

LOD support interval for each of these QTL.  The number of genome features remaining 

after IBD filtering was 14 and 50 for 25D2 and 25D4, respectively.  Further classification 

of functional polymorphisms at each locus is given in Table 3.4. Genes contained within 

the 1-LOD support interval are listed in Table 3.5. 

 

 Genetic Loci Controlling Serum 1,25(OH)2D and Its Adaptation to Low Ca Intake 3.4.3

Serum 1,25(OH)2D was significantly affected by line and diet main effects 

(p<0.0001) as well as a line-by-diet interaction (p=0.0002) in the BXD RI panel (see Z-

scores in Figure 3.3B).  Serum 1,25(OH)2D had a narrow-sense heritability (h2) of 0.66 

and 0.65 in the 0.5% and 0.25% Ca diet groups, respectively.  The adaptation of serum 

1,25(OH)2D to low Ca intake was significantly affected by line (p<0.0001, Figure 3.3C), 

and had a heritability of 0.59.  

Twelve QTLs for serum 1,25(OH)2D were significant in at least one mapping 

method and one population (Table 3.1, Figure 3.4B).  Two of these loci were significant 

for the adaptation of 1,25(OH)2D to a low Ca diet: 125D10 (chr 10, 61.7 cM) and 

125D16 (chr 18, 25.0 cM) (Table 3.1, Figure 3.4B, see Table 3.6 for detailed test 

statistics for each QTL).  Five loci were selected for in-depth, bioinformatic investigation 
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based on concordance between analyses and association with the adaptation parameter: 

125D7, 125D10, 125D15, 125D16, and 125D17.  1-LOD candidate regions of these 5 

QTLs were characterized by the number of genome features remaining after IBD filtering, 

polymorphisms, and HSS characteristics (Table 3.3).  The number of genome features 

remaining in 125D7, 125D10, 125D15, 125D16, and 125D17 after IBD filtering was 9, 

11, 18, 36, and 17, respectively.  Further classification of functional polymorphisms at 

each locus is given in Table 3.4. Genes contained within the 1-LOD support interval are 

listed in Table 3.7. 

 

3.5 Discussion 

Although vitamin D has attracted attention as a novel contributor to many health 

outcomes, strong associations between vitamin D status and health outcomes are often 

difficult because of the complex milieu of factors influencing vitamin D metabolite levels 

in a free living population.  The genetic factors influencing the status marker, 25(OH)D, 

and the active hormone, 1,25(OH)2D, are poorly understood.  We have used genetically 

variable mouse models to show that serum 25(OH)D and 1,25(OH)2D levels are 

significantly affected by genetic background in a diverse population of mice.  Variation 

in serum 1,25(OH)2D was not explained by variation in the enzymes that control its 

activation and degradation, CYP24 and CYP27b1.  The heritability of 25(OH)D in 

human populations is widely variable (23-80%) due to the effects of environmental 

factors, mainly UV exposure.(6,7,13,14,33,34)  Heritability of 25(OH)D in our BXD RI panel 

fell within this range at 40-45%.  Serum 1,25(OH)2D has also been shown to be heritable 

in several human populations; 16-20% in Hispanic Americans, 48% in African 
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Americans, and 30% in European populations.(13,14)  Heritability of serum 1,25(OH)2D in 

our BXD RI panel was slightly higher, 65-66%, likely due to the ability of our 

experimental model to distill the effect of genetics by tightly controlling environmental 

factors.  Additionally, our experimental model allowed us to test for a gene-by-diet 

interaction.  Individuals within each BXD RI line serve as biological replicates, allowing 

us to test how natural genetic variation affects the adaptation of 1,25(OH)2D to habitual 

low Ca intake.  We found that the low dietary Ca adaptation of 1,25(OH)2D was 

significantly affected by genetic background in both the 11 inbred mouse lines and the 

BXD RI panel (h2= 59%).  This forward genetic study represents the first characterization 

of the effect of natural genetic variation on serum 1,25(OH)2D and its adaptation to 

habitual low Ca intake under controlled conditions. 

Our data demonstrate that the genetic control of serum vitamin D metabolites is 

multi-focal and complex.  Both 25(OH)D and 1,25(OH)2D mapped to multiple, separate 

locations in the BXD RI panel (13 and 12 loci, respectively).  The majority of genetic loci 

identified are unique to each metabolite and indicate independent controls on the serum 

levels of each metabolite.  This observation is consistent with the traditional viewpoint 

that 1,25(OH)2D is highly sensitive to physiological cues and subject to multiple points of 

regulation (e.g. habitual low dietary Ca intake (35)) while 25(OH)D is not.  In addition, the 

adaptive response of 1,25(OH)2D to low Ca intake also mapped to unique loci, 

suggesting that genetic controls on the adaptive capability of an individual are 

independent of the factors controlling baseline levels. 

The loci affecting 25(OH)D in this BXD RI panel do not contain the genes whose 

natural variants have been associated with vitamin D status in humans in either candidate 
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gene studies, (i.e. the vitamin D binding protein (GC) and the 25-hydroxylase, CYP2R1 

(13,36)) or genome wide association studies (GWAS) (i.e. GC, 7-dehydrocholesterol 

reductase (DHCR7), acyl-Coenzyme A dehydrogenase (ACADSB), and CYP2R1.(37)  

Both DHCR7 and ACADSB are involved in cholesterol metabolism and de novo 

synthesis of vitamin D from cholesterol upon exposure to UV radiation.(37,38)  In our 

study, all vitamin D was supplied in the diet and mice were shielded from UV radiation.  

Thus, we would not expect natural genetic variation in cholesterol metabolism genes (e.g. 

DHCR7 and ACADSB) to influence serum 25(OH)D in this experiment.  In addition, the 

BXD RI panel represents just 20% of the total variation known to exist in the mouse 

genome.(39)  Thus, although the BXD lines in this study did not harbor variants similar to 

those found in published human studies, other mouse crosses might.  None-the-less, our 

linkage mapping in BXD lines has identified new loci not yet associated with vitamin D 

status by other methods.   

One example of the unique variation we identified in the BXD RI panel is the chr 

6 QTL 25D4 (chr 6, 28 cM)   After examining genes within the 25D4 candidate regions 

for Gene Ontology (GO) terms relating to kidney filtration, lipid absorption, lipid 

trafficking, vesicular transport, and vitamin metabolism, pleckstrin homology domain 

containing, family A (phosphoinositide binding specific) member 8 (PLEKHA8 or 

FAPP2, 54 Mb) was identified.  Expression of this gene is highly enriched in the intestine 

and kidney (40) and PLEKHA8 has been indicated in lipid synthesis, apical membrane 

trafficking in polarized kidney epithelial cells, and structural confirmation of apical 

tubule carriers.(41-43)  These functions may impact recycling of the apical membrane 

proteins megalin and cubilin.  Megalin and cubilin are cell surface receptors which bind 
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and internalize GC-bound vitamin D from the urine in the kidney.(44)  We hypothesize 

that variation in PLEKHA8 disturbs the proper localization and internalization of the 

ligand-bound megalin/cubilin complex, thus altering the circulating concentration of 

25(OH)D by influencing urinary 25(OH)D levels.  In the BXD panel PLEKHA8 contains 

no non-synonymous coding polymorphisms, but does contain 5 polymorphisms within 

DNase1 HSS.  This variation suggests that gene expression or regulation of PLEKHA8, 

rather than protein function, may be altered in the BXD RI panel.  Future studies are 

needed to identify whether renal PLEKHA8 mRNA or urinary 25(OH)D levels differ 

across the BXD panel. 

Few studies have examined the genetic architecture of serum 1,25(OH)2D in a 

comprehensive manner.  Engelman et al. found polymorphisms in GC to be associated 

with 1,25(OH)2D levels in Hispanic and African Americans (13) while Wjst et al. found no 

significant loci controlling serum 1,25(OH)2D in a linkage mapping analysis of a 

population of German families.(14).  These findings illustrate that, despite a moderate 

level of heritability, genetic determinants of 1,25(OH)2D are difficult to identify in a 

mixed, free-living population.  However, the BXD RI panel is ideal for investigating a 

physiologically complex phenotype such as serum 1,25(OH)2D.(19)  This mouse model 

allows us to have complete lifetime control of environmental exposure, an impossible 

task in human studies.  In addition, we were able to leverage a major strength of the BXD 

RI panel, biological replicates, in order to test for gene-by-diet interactions affecting the 

adaptation of serum 1,25(OH)2D to habitual low Ca intake.(19)  Our QTL characterization 

highlights a gene known to mediate 1,25(OH)2D metabolism, as well as identifies novel 

variation that may affect 1,25(OH)2D pathways. 
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125D15 (chr 15, 51 cM), does not contain any obvious new candidates, but the 

VDR gene (chr 15, 97.8Mb) is located < 1Mb from the 1-LOD region.  VDR is necessary 

for mediating the negative feedback regulation of its ligand, 1,25(OH)2D.  Ligand-bound 

VDR regulates gene expression of several genes that control vitamin D metabolism (i.e. 

CYP27b1, CYP24, and PTH).(45-48)  No predicted deleterious, non-synonymous amino 

acid substitutions or other coding region polymorphisms were found in the VDR between 

B6 and DBA.  However, polymorphisms were found in potential regulatory regions 

controlling transcription of the VDR gene.  Previously, Zella et al. used osteoblasts to 

identify seven enhancer regions within and around the VDR gene (49): 5 within the VDR 

gene (S1, S2, S4, and S5 are intronic, S3 spans exon 2), 1 at the proximal promoter (PP), 

and 1 approximately 7 kb upstream of the VDR transcription start site (U1).(49)  Using 

ENCODE data, 20 DNase1 HSS regions were found within the enhancer regions 

identified by Zella et al.(49)  Ten polymorphisms were found in these HSS: 3 within the 

S1 region, 1 within the S3 region, 4 within the S5 region, 1 within the PP region, and 1 

within the U1 region.  These polymorphisms may affect VDR gene expression by altering 

binding of transcription factors to regulatory sequences within the enhancer regions.  

Previous data from our group shows that duodenal VDR mRNA level does not differ 

between B6 and DBA mice (18).  However, lack of differential duodenal VDR expression 

does not eliminate the possibility of variability of VDR gene expression in other vitamin 

D target tissues.  The global transcription factor profile, and therefore gene expression 

profile, varies by tissue.(50)  Each VDR enhancer region identified by Zella et al. in 

osteoblasts was shown to be targeted by specific transcription factors.(49)  However, our 

group has evaluated the VDR enhancer regions in colon epithelial cells and found only 3 
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to be active; S3, PP, and U1 (Fleet lab, unpublished data).  Variation in the BXD RI panel 

may influence the complex and tissue specific gene expression of VDR and, downstream, 

serum 1,25(OH)2D levels. 

Other QTLs linked to serum 1,25(OH)2D in this study represent novel variation.  

For example, 125D7 (chr 9, 18 cM) was highly significant across all of our analyses.  

Within the 125D7 candidate region is the gene encoding the transcription factor E26 

avian leukemia oncogene 1 (Ets1).  Ets1 has the potential to impact the 1,25(OH)2D 

negative feedback mechanisms mediated through 1,25(OH)2D-target genes CYP24 and 

FGF23, whose protein products inactivate and inhibit synthesis of 1,25(OH)2D, 

respectively.(51-53)  Previous studies from our group and others have identified Ets1 as a 

cofactor necessary for maximal 1,25(OH)2D-induced, transcription of the CYP24 

gene.(54,55)  Additionally, conserved Ets1 binding sites in the FGF23 proximal promoter 

suggest that Ets1 may upregulate FGF23 gene expression.(56)  Thus, similar to the classic 

feedback regulation of 1,25(OH)2D, Ets1 is induced by 1,25(OH)2D at the gene 

transcription level and then acts indirectly to down-regulate 1,25(OH)2D serum levels. 

Others have shown that 1,25(OH)2D treatment increases gene expression Ets1 in rat 

osteogenic sarcoma cells.(56)  The Ets1 gene is highly polymorphic the BXD RI panel.  It 

contains 120 polymorphisms that fall within DNase1 HSS located either upstream or 

within introns.  Future studies will be necessary to determine whether these variants 

influence Ets1 gene regulation. 

125D17 (chr 18, 49 cM) was highly significant in all analyses of serum 

1,25(OH)2D concentration.  Examination of GO terms within the 125D17 candidate 

region identified RAB27b (member RAS oncogene family) as an interesting candidate.  
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In the BXD RI panel Rab27b contains 6 intronic HSS polymorphisms and two 3’ mRNA 

untranslated region polymorphisms which may influence its regulation and gene 

expression.  Rab27b is involved in the fusion of secretory granules with the plasma 

membrane of secretory cell types.(57)  In addition it is important for apical membrane 

trafficking in polarized epithelial cells.(57)  Parathyroid hormone (PTH), a major regulator 

of 1,25(OH)2D serum levels, is released into the circulation via fusion of secretory 

granules with the apical plasma membrane of the parathyroid gland.(58)  Also, localization 

of proteins to the apical membrane of parathyroid cells is important for signal 

transduction as well as for trafficking and fusion of secretory granules.(59)  In addition, 

apical membrane trafficking is also necessary for delivery of GC-vitamin D transport 

proteins (i.e. megalin and cubilin) to the apical plasma membrane of the kidney.  

Unfortunately, expression of Rab27b in the kidney is low and it has not been evaluated in 

the parathyroid gland.  As a result, the role of Rab27b in PTH release or renal vitamin D 

metabolite handling is unknown.   

In summary, using a mouse genetics approach we have identified considerable 

genetic diversity controlling serum vitamin D metabolite levels.  Our study is the first to 

examine the genetic architecture of serum 1,25(OH)2D in a controlled, genetically diverse 

animal model.  Our data show that genetic variation controlling serum 1,25(OH)2D 

concentrations is multifocal and complex, independent from the variation controlling 

serum 25(OH)D levels, and independent from the variation controlling adaptation of 

1,25(OH)2D  to a low Ca diet.  Although we have not been able to definitively identify 

the causal variants affecting serum vitamin D metabolite levels, we have identified 

several plausible candidate genes for future study. The genetic loci identified in this study 
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serve as a starting point to identify novel pathway members or gene functions that will 

expand our knowledge of vitamin D physiology and pave the way for personalized health 

recommendations to better manage vitamin D status. 
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Table 3.1  Significant QTLs Identified for Serum Vitamin D Metabolites 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Chr 
Point Estimate 

(cM) 
Point Estimate 

(Mb) 
Parental 

Influence   
    25(OH)D     
  1 65.3 155.0 B6 
  1 95.4 190 B6 
  3 34 75.9 B6 
  6 28.2 59.1 B6 
  6 66.2 135.3 B6 
  7 28.8 51.8 B6 
  8 63.2 119.1 B6 
  10 45.1 87.1 B6 
  11 11.8 19.4 B6 
  13 14.4 36.0 B6 
  15 39.4 82.9 B6 
  17 46.1 75.3 B6 
  X 4.4 9.1 B6 
  1,25(OH)2D     
  1 16.8 38.5 B6 
  2 13.2 19.0 DBA 
  3 33.7 74.5 B6 
  7 45.6 87.4 B6 
  9 18.1 33.6 B6 
  9 55.8 103.8 DBA 
  10 4.7 12.7 B6 
  10 61.7 114.6 DBA 
  13 53.8 102.4 B6 
  15 51.3 96.0 DBA 
  18 25.0 47.2 DBA 
  18 48.8 73.4 B6 
  QTLs in bold are prioritized for candidate region characterization 
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Table 3.2 Test Statistics for 25(OH)D QTLs Across Analyses 

Chr 
Peak 
(cM) 

Analyses Represented 
0.5% Ca 0.25% Ca  Full1 

C2 B3 C B C B 
1 65.3   10         
1 95.4 4 72 5 

 
8 23 

3 34 
 

4 
 

5 
 

10 
6 28.2 5 7 

   
7 

6 66.2 
 

2 
   

6 
7 28.8 

   
4 

  8 63.2 
   

4 
  10 45.1 

   
3 

 
4 

11 11.8 
     

12 
13 14.4 

  
6 15 

 
11 

15 39.4 
  

4 
  

5 
17 46.1 

   
7 

  X 4.4         4   
1 "Full" denotes the full combined diet 
population 

 2 CIM (C) results are given in LOD, significance 
determined at 3.1 LOD for adaptation, 3.8 LOD for 
all other analyses.  LOD >2 is considered putative 
3 Bayesian (B) results are given in 2lnBF, 
significance determined at 2lnBF>6, putative 
2lnBF>2 
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Table 3.3  Characteristics of Vitamin D Metabolite QTL Candidate Regions 

QTL 
ID Chr 

1-LOD 
Candidate 

Region 
(Mb) 

Total 
Polymorph.1 

Total 
Genome 
Features2 

Protein-
Coding 
Genes 

Functional 
Polymorph.3 

Dnase1 
HSS 
Peaks 

Polymorph. 
in Dnase1 

HSS 

Polymorph. 
in Dnase1 

HSS 
associated 
with genes  

25(OH)D                 
25D2 1 188.9-190.7 3971 14 7 8 546 215 100 
25D4 6 54.6-68.5 6690 50 32 5 968 328 183 

1,25(OH)2D                 
125D7 9 32.3-34.4 18628 9 6 1 496 750 287 
125D10 10 111.7-114.9 3902 11 8 1 204 110 16 
125D15 15 95.6-97.1 4123 18 8 5 642 345 202 
125D16 18 45.2-48.9 8915 36 19 7 826 323 142 
125D17 18 69.2-73.5 9298 17 7 9 613 258 172 
1 Polymorphisms 

       2 Genome features include; protein-coding genes, non-coding RNA genes, gene fragments, and unclassified genes  

3 The Functional Polymorphism category contains non-synonymous, splice site, frameshift, and stop site 
polymorphisms 
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Table 3.4  Classification of Polymorphisms in Vitamin D Metabolite QTLs 

      
Exon-associated Polymorphisms 

  

QTL 
ID Chr 

1-LOD 
Candidate 

Region 
(Mb) 

5kb 
Promoter1 Intronic 

Splice 
Site 

Acceptor 
Synonymous 

Codon  

Non-
Synonymous 

Codon 

Gain 
of 

Stop 
Codon  Frameshift  

5' 
UTR 

3' 
UTR 

25(OH)D                     
25D2 1 188.9-190.7 160 1056 0 15 7 1 0 3 38 
25D4 6 54.6-68.5 310 3120 0 8 5 0 0 6 36 

1,25(OH)2D                     
125D7 9 32.3-34.4 365 2508 0 10 1 0 0 4 67 
125D10 10 111.7-114.9 96 2293 0 2 1 0 0 0 27 
125D15 15 95.6-97.1 277 1616 1 8 5 0 0 6 72 
125D16 18 45.2-48.9 410 3309 0 13 7 0 0 0 20 
125D17 18 69.2-73.5 188 3849 0 6 7 1 1 10 20 
1Numbers indicate total number of polymorphisms per category in each QTL candidate region 

    

 

 

  

 



106 
106 

Table 3.5  Candidate Genes Remaining for 25(OH)D QTLs after IBD Filtering 
25D2 25D4 

n-Tn3 Gm24092 Fkbp14* Crhr2* Gm3793* Vmn1r13 Gm20158 

Kctd3*1 Cenpf* Plekha8* Gm25963 Vmn1r4 Mmrn1 9630021D06Rik# 
Kcnk2* Ptpn14* Gm15863 Inmt* Vmn1r5 A730020E08Rik* Gm25205 

2900042K21Rik# Smyd2* 2410066E13Rik* Fam188b* Vmn1r6# Ccser1* Atoh1* 

Gm3837 Prox1* 2610209C05Rik* Gm25458 Vmn1r7# B230204D01Rik# C530040J15Rik 

A430027H14Rik Gm17566* Znrf2* Aqp1 Vmn1r8 A730075L09Rik# 2610300M13Rik# 

Gm2149 Gm23153 Nod1* Ghrhr* Vmn1r9# Gm24645 Mad2l1# 

    Gm24230* 6430584L05Rik* Vmn1r10 Gm22212# Smarcad1* 

    Ggct* Adcyap1r1* Vmn1r11 9330118I20Rik Vmn1r32# 

    Gars* Nt5c3* Vmn1r12# Grid2* Fkbp9 
Genes are listed in ascending order of 5' top strand start site bp location (given by the Mouse Genome Informatics 
Database) 
1Genes containing at least one functional polymorphism are in bold  
*indicates the presence of a polymorphism within a DNase1 HSS within the gene, #indicates a gene with no 
polymorphisms 
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Table 3.6  Test Statistics for Significant 1,25(OH)2D QTLs Across Analyses 

Chr 
Peak 
(cM) 

Analyses Represented 

0.5% Ca 0.25% Ca Full1 Adaptation2 

C3 B4 C B C B C 
1 17 2 3 2 2 

 
72 

 2 13 
     

6 
 3 34 5 72 

     7 46 
  

2 72 
 

72 
 9 18 13 72 11 72 16 72 
 9 56 

     
8 

 10 5 
   

13 
 

72 
 10 62 

      
4 

13 54 5 72 
  

2 
  15 51 

 
6 8 72 10 72 

 18 25 
      

4 
18 49 6 72 6 13 9 72   

1"Full" denotes the full combined diet population 
 2 "Adaptation" denotes the calculated adaptation to a low Ca 

diet 
3 CIM results are given in LOD, significance determined at 3.1 
LOD for adaptation, 3.8 LOD for all other analyses 
4 Bayesian results are given in 2lnBF, significance determined at 
2lnBF>6 
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Table 3.7  Candidate Genes Remaining for Five 1,25(OH)2D QTLs after IBD Filtering 
125D7 125D10 125D15 125D16 125D17 

Kcnj5* Gm20758* Dbx2 Kcnn2 Gm3734# Tcf4* 
Kcnj1* Krr1 Gm6961* A330093E20Rik* Cdo1* 6030446J10Rik* 

Fli1*1 Glipr1* A130051J06Rik* Gm26262 Atg12 Gm24845* 
Gm22060 Glipr1l1 Ano6* Trim36* Ap3s1 4732423E21Rik* 
Ets1* Glipr1l2 Gm17546* 1700018A14Rik A430019L02Rik 9630026C02Rik* 
Gm3331* Glipr1l3 Gm25070* Pggt1b* 4833403I15Rik* Gm20343* 
Gm21540* Caps2 3110045A19Rik* Gm23914 Gm23610 Gm22508* 
Gm25439 Kcnc2 D030018L15Rik Ccdc112* Arl14epl Ccdc68* 

7630403G23Rik* Trhde* 2610037D02Rik# n-Tt10 Commd10* 1700061H18Rik* 

  4930473D10Rik# 4833422M21Rik* 4930415P13Rik* Gm22791 4930448D08Rik# 

  Gm15723# E330033B04Rik# Gm4107* Hspe1-rs1* Rab27b* 

  
 

Arid2* Gm24617# Gm25036* Poli* 

  
 

Gm25397 Mospd4# Sema6a* Mbd2* 
  

 
Scaf11* Gm24076 9130209A04Rik C230075M21Rik* 

  
 

Slc38a1* Fem1c* Gm5095* Dcc* 
  

 
Gm22045* Ticam2* Gm4146* 5730478J17Rik* 

  
 

Slc38a2* Tmed7* G630055G22Rik Gm19825 

    Slc38a4* Eif1a* Gm5506#   
Genes are listed in ascending order of start site bp location (given by the Mouse Genome Informatics Database) 
1Genes containing at least one functional polymorphism are in bold  
*indicates the presence of a polymorphism within a DNase1 HSS within the gene, #indicates a gene with no 
polymorphisms 
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Figure 3.1  Serum vitamin D metabolites and the low dietary Ca adaptation of 
1,25(OH)2D are variable in a genetically diverse population of 11 inbred mouse lines.  
Bars reflect the mean ±SEM (n=6-20 per diet per line).  (A) Unadjusted serum 25(OH)D 
values, *dietary groups within a line differ significantly; line mean differs significantly 
relative to the B6 reference line, † for the 0.5% Ca group, ^ for the 0.25% Ca group 
(p<0.05) (B) Unadjusted serum 1,25(OH)2D values, *dietary groups within a line differ 
significantly; line mean differs significantly relative to the B6 reference line, † for the 
0.5% Ca group, ^ for the 0.25% Ca group (p<0.05) (C) Adaptation of 1,25(OH)2D to low 
dietary Ca intake; adaptation significantly differs from 0 (*, p<0.05;  #, p<0.1). 

 



110 

 

 

 

  

Figure 3.2  CYP27b1 and CYP24 enzymes are variable in a diverse population, but 
do not correlate to serum 1,25(OH)2D.  (A&C) CYP27b1 and CYP24 mRNA levels 
(arbitrary unit means ±SEM), *dietary groups within a line differ significantly; line 
mean differs significantly relative to the B6 reference line, † for the 0.5% Ca group, 
^ for the 0.25% Ca group (p<0.05, n=6-20 per diet per line) (B&D) Correlation of 
CYP27b1 and CYP24 to serum 1,25(OH)2D.  Solid line = regression line, 95% 
confidence interval = dotted line. n=204 and 202, respectively. 
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Figure 3.3  Serum vitamin D metabolites and the low dietary Ca adaptation of 
1,25(OH)2D are genetically variable in the BXD RI panel.  Z-scores were calculated for 
each BXD line mean on each diet population in reference to the combined population 
mean for (A) serum 25(OH)D, (B) 1,25(OH)2D, and (C) low dietary Ca adaptation of 
1,25(OH)2D. 
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Figure 3.4  Composite Interval Mapping (CIM) identified multiple QTLs for 25(OH)D 
and 1,25(OH)2D. (A) 25(OH)D CIM results for (a) 0.5% Ca, (b) 0.25% Ca, and (c) Full 
combined diet population.  (B) 1,25(OH)2D CIM results for (a) 0.5% Ca, (b) 0.25% Ca, 
and (c) Full combined diet population, and (d) Adaptation to a low Ca diet.  Significance 
was determined separately for each data set by permutation (n=500), LOD cutoff shown 
as solid horizontal line. 
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4.1 Abstract 

Intestinal calcium (Ca) is a vital component of the three-tissue axis (i.e. intestine, 

kidney, and bone) that maintains serum Ca homeostasis, particularly in times of low 

dietary Ca intake.  Natural genetic variation has been indicated to play a role in Ca 

absorption efficiency and its adaptation to a low Ca diet, but the genetic factors 

controlling this gene-by-diet interaction are not known.  We measured Ca absorption in 

male mice from 51 BXD recombinant inbred (RI) lines that were fed a normal (0.5%) or 

low (0.25%) Ca diet from 4-12 wks of age (n=8 per diet per line).  We used these data to 

map quantitative trait loci (QTLs) controlling Ca absorption efficiency as well as its 

adaptation to a low Ca diet.  We found that Ca absorption is genetically variable in the 

BXD RI panel with narrow sense heritability (h2) of 0.37 and 0.4 in the 0.5% and 0.25% 

Ca groups, respectively.  Ca absorption efficiency mapped to 12 QTLs in the mouse 

genome.  Diet-induced adaptation of Ca absorption ranged from -36% to 124% (h2=0.36).  

The three QTLs linked to diet-induced adaptation of Ca absorption did not overlap the 

twelve QTLs linked to Ca absorption efficiency on one or more diets.  Thus, genetic 

control of diet-induced adaptation of Ca absorption is independent of baseline efficiency.  

No known Ca absorption genes are found in these QTLs.  These results point to novel 

genetic variation that will further our knowledge of Ca absorption physiology. 
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4.2 Introduction 

Intestinal calcium (Ca) absorption is critical for maintaining whole-body Ca 

homeostasis and protecting bone mass.(1)  Ca absorption is positively correlated to bone 

density in mice and humans.(2-4)  Higher Ca absorption efficiency during growth leads to 

higher bone deposition and decreased Ca absorption efficiency in adulthood is associated 

with increased fracture risk.(5-7)   Regulation of Ca absorption is sensitive to both genetic 

and environmental (e.g. diet) influences, but the genetic factors affecting Ca absorption, 

as well as its response to diet, are not well defined. 

 Ca absorption occurs through both a passive, paracellular component and an 

active, saturable transcellular pathway that is regulated in response to dietary Ca intake.  

During periods of habitual low dietary Ca intake serum Ca concentration drops, signaling 

release of parathyroid hormone (PTH) which upregulates the conversion of serum serum 

25 hydroxyvitamin D (25OHD) to the active hormone 1,25 dihydroxyvitamin D 

(1,25(OH)2D).  Genomic action of 1,25(OH)2D, through binding to the vitamin D 

receptor (VDR),  increases gene expression of the factors that mediate the facilitated 

diffusion model of intestinal Ca absorption.(8)  This model consists of Ca transport into 

the enterocyte by apical membrane channel transient receptor potential vanilloid member 

6 (TRPV6), movement of Ca across the cell bound to calbindin D9k (CaBPD9k), and 

extrusion across the basolateral membrane by the ATP dependent-plasma membrane Ca 

pump, PMCA1b.(8)  However, recent knockout models of TRPV6 and CaBPD9k indicate 

that the facilitated diffusion model is not the only mechanisms by which Ca absorption 

adapts to a low Ca diet.(9)   
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 Wide variation in Ca absorption efficiency (7-75%) has been observed in human 

populations.(10-12)  A large portion of this variation is likely due to natural genetic 

variation because environmental factors account for, at most, 25% of the variability.(13,14) 

Ca absorption efficiency has also been shown to differ between racial groups, a surrogate 

of genetic background.(6,15)  Similarly, racial differences exist in the adaptive response of 

Ca absorption to low dietary Ca intake and relationship to serum 1,25(OH)2D .(10,15,16)   

Our group has previously characterized the significant genetic diversity of Ca absorption 

and its response to a low Ca diet present in a diverse population of mice.(4)  We now build 

on these observations using the BXD RI panel to map specific genomic regions (i.e. 

quantitative trait loci, QTLs) controlling intestinal Ca absorption efficiency and its 

adaptation to a low Ca diet.  This is the first study to map QTLs linked to Ca absorption 

under controlled and physiologically relevant conditions. 

 

4.3 Materials and Methods 

 

 Animal Models 4.3.1

The BXD recombinant inbred (RI) panel was used in this forward genetic linkage 

mapping study to identify QTL influencing intestinal Ca absorption efficiency.  In the 

BXD RI panel, each line is a unique recombination of the C57BL/6J (B6) and DBA/2J 

(DBA) parental genomes, but because each BXD line is inbred, each individual within a 

line is genetically identical.(17)  This advantage allows for biological replicates to test an 

environmental intervention such as diet.(17) 
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 Experimental Design 4.3.2

Using the study design reported previously(4), male mice from the 51 BXD RI 

lines available from The Jackson Labs (Bar Harbor, ME) were obtained at 4 wks of age.  

At arrival, an equal number of mice from each line were randomly assigned to either a 

0.5% Ca (adequate) or 0.25% Ca (low) diet (AIN93G base with 200 IU vitamin D3/kg 

diet, Research Diets, New Brunswick, NJ) (n=8/diet/line).  Dietary Ca levels were chosen 

to meet the rodent dietary Ca requirement (0.5% Ca) or elicit an adaptive response to low 

Ca intake in serum 1,25(OH)2D (0.25% Ca).  Mice were maintained in a UV free 

environment (12 h light/dark cycle) and given food and water ad libitum.  At 12 wks of 

age mice were fasted overnight, anesthetized with an intraperitoneal injection of ketamine 

and xylazine, and Ca absorption measured by Ca45 radioisotope appearance in the serum 

10 min after an oral gavage test, as previously described.(4,18)  All animal experiments 

were approved by the Purdue University Animal Care and Use Committee. 

 

 Statistical Analysis 4.3.3

Data points with a z score in the extreme 2.5% of either end of a line/diet group 

distribution were removed as outliers.  Ca absorption was normalized using a natural log 

transformation and adherence to a normal distribution confirmed using the Anderson-

Darling test following transformation.  A significant covariate effect of femur length was 

determined by Pearson’s correlation and removed by simple linear regression.  Residuals 

were used for ANOVA and linkage mapping.(19)  ANOVA was used to test for the 

presence of significant main effects of genetic background (i.e. line) and diet as well as a 

line-by-diet interaction.  An additional parameter reflecting adaptation of Ca absorption 
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to the low Ca diet was calculated as the percent difference between the raw phenotype 

value for an individual fed the 0.25% Ca diet and the raw line mean for the phenotype 

value from the 0.5% Ca diet, standardized to the line mean for the phenotype value from 

the 0.5% Ca diet, i.e.��0.25% 𝑥𝑖𝑗 − 0.5% 𝑥̅𝑗�/0.5% 𝑥̅𝑗�*100.  ANOVA was used to 

determine the effect of genetic background on this parameter.  Narrow-sense heritability 

(h2) was calculated using the r2 of a one-way ANOVA (main effect=line) for each 

diet/phenotype population.  Statistics were conducted using SAS Enterprise Guide 4.2 

(SAS Institute Inc., Cary, NC). 

 

 QTL Mapping 4.3.4

Marker information and BXD genotypes were downloaded from GeneNetwork 

(http://www.genenetwork.org/genotypes/BXD.geno) and the genetic location of each 

marker was updated using the Mouse Map Converter tool at the Jackson Labs Center for 

Genome Dynamics (http://cgd.jax.org/mousemapconverter/).(20)  Markers with duplicate 

genetic locations or perfectly correlated genotypes in our panel of BXD lines were 

removed.  The final genetic map for the 51 lines contained 1558 markers (the list is 

available on request). 

Composite interval mapping (CIM) was conducted using Windows QTL 

Cartographer v2.5_011 (http://statgen.ncsu.edu/qtlcart/WQTLCart.htm) with RI line 

means (n=51).  Forward selection identified 5 significant background markers.  CIM was 

carried out using a Haldane map function, 2 cM walking speed, and a 10 cM window.  

Each diet (0.5% or 0.25% Ca) group and the adaptation to low dietary Ca (1,25(OH)2D 

only) were mapped separately.  Permutations (n=500) were used to determine 
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significance for each analysis.(21)  A Bayesian QTL mapping method using individual 

animal values was also used to validate CIM findings.  This method, as described in 

Zhang et al., accurately detects multiple QTL in a study with a large number of marker 

effects (p) and small sample size (n).(22)  Bayes factors were used as a measure of 

significance for the presence of a QTL.  Specifically, twice the natural log of the Bayes 

factor (2lnBF) was used as a test statistic because it scales similarly to an LOD score.(23,24) 

The strength of the 2lnBF test statistic was assessed according to the rubric defined by 

Kass and Raftery; “0-2 not worth a bare mention, 2-6 positive, 6-10 strong, >10 very 

strong”.(23)  Each diet population was mapped separately as well as included together in a 

full model to test the genetic main effect.  The use of these two QTL mapping methods 

allowed us to test for QTLs within the traditional framework, but still leverage our study 

design which contained biological replicates.  Results that were replicated among the 

analyses lent more confidence to the outcome and were prioritized for further study. 

 

 Bioinformatic Characterization 4.3.5

The QTL candidate region was defined using 1-LOD support intervals which 

approximate 95% confidence intervals.(25,26)  QTL candidate regions were populated with 

genome features including protein-coding genes, non-coding RNA genes, gene fragments, 

and unclassified genes from the Mouse Genome Informatics (MGI) database 

(http://www.informatics.jax.org/).(27) Genome-wide DNase1 hypersensitive site (HSS) 

data from the mouse ENCODE project was used to identify potential regulatory regions 

(i.e. open chromatin) within QTL regions.(28)  DNase1 HSS peaks in 10 adult tissues (fat 
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pad, genital fat pad, heart, kidney, large intestine, liver, lung, skeletal muscle, spleen, and 

brain) were merged using the UCSC Genome Browser. 

Gene locations were identified as the region from the first to last exon plus 5000 

bp region upstream of the gene coordinates for exon 1 (i.e. the proximal promoter region).  

Genomic regions that were identical by decent (IBD) between B6 and DBA were 

identified using the Mouse Phylogeny Viewer (http://msub.csbio.unc.edu/).(29)  Regions 

that were 100% IBD were eliminated from further consideration.  Genes that were less 

than 100% IBD and the remaining non-IBD regions were used to query for 

polymorphisms between B6 and DBA using the Mouse Phenome Database (MPD, 

http://phenome.jax.org/).  MPD annotations were used to categorize polymorphisms by 

gene attribute; intronic, mRNA un-translated region (5’ and 3’ UTR), promoter region 

(5000 bp upstream), and exon-associated (i.e. synonymous and non-synonymous codons, 

stop codons, splice sites, or frameshift mutations). HSS data was then overlaid with the 

polymorphisms present in the QTL region.  Reference amino acids and variants resulting 

from non-synonymous polymorphisms were categorized based on charge, polarity, size, 

and special cases using the classification set out by Zhang et al with modifications.(30)  

Amino acids were classified into only two categories for size: small; C, P, G, A, S, T, N, 

D, Q, E, I, L, M, and V; and large; R, H, K, F, W, and Y. Three special cases are 

considered; C, P, and G.  An amino acid substitution was considered deleterious if the 

reference and variant alleles were in a different category for any classification. 
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4.4 Results 

 

 Ca Absorption Is Genetically Variable and Affected by a Gene-by-Diet 4.4.1

Interaction in the BXD RI Panel 

Ca absorption was significantly affected by the main effect of diet (p<0.0001, 

ANOVA) in the BXD RI panel.  Ca absorption was genetically variable as shown by a 

significant main effect of BXD line (p<0.0001, ANOVA).  The portion of variability in 

Ca absorption accounted for by additive genetic effects (i.e. narrow-sense heritability, h2) 

was 0.37 and 0.4 in the 0.5% and 0.25% Ca groups, respectively.  A significant gene-by-

diet interaction affecting Ca absorption was observed in the BXD RI panel (p=0.0008).  

This gene-by-diet interaction was investigated further by analyzing the calculated 

adaptation parameter.  Line means of the diet-induced adaptation of Ca absorption ranged 

from -36% to 124% across the BXD RI panel.  Low Ca adaptation of Ca absorption was 

significantly affected by genetic background (line main effect p<0.0001, ANOVA).  

Heritability of the adaptation of Ca absorption to a low Ca diet was estimated at 0.36. 

 

 Ca Absorption and Its Adaptation to a Low Ca Diet Map to Multiple, Independent 4.4.2

Genetic Loci 

Linkage mapping identified twelve QTLs that were significantly associated with 

Ca absorption efficiency in at least one mapping analysis conducted (Figure 4.1A-C, 

Table 4.1).  The diet-induced adaptation parameter mapped to three separate loci on chr 3, 

8, and 15 (Figure 4.1D, Table 4.1).  Detailed test statistics for QTL analyses can be found 

in Table 4.2.  Five QTLs were chosen for in-depth bioinformatic analysis based on 
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concordance among analyses and association with the adaptation parameter; CaAbs2 (chr 

4, 47cM), CaAbs5 (chr 7, 30 cM), CaAbs12 (chr3, 30 cM), CaAbs13 (chr 8, 24 cM), 

CaAbs14 (chr 15, 32 cM).  The characteristics of the 1-LOD support interval for each of 

these QTLs are listed in Table 4.3.  After IBD filtering the number of protein coding 

genes remaining in each region was 26, 220, 49, 67, and 57, respectively.  Further 

classification of functional polymorphisms at each locus is given in Table 4.4. Genes 

contained within the 1-LOD support interval are listed in Table 4.5. 

 

4.5 Discussion 

 Whole-body Ca homeostasis is maintained by absorption of dietary Ca in the 

intestine, reabsorption of urinary Ca by the kidney, and resorption of Ca from bone.(8)  

Sufficient dietary Ca intake is recommended for maintenance of bone health.  However, 

not every study sees a clear relationship between Ca intake and bone mineral density 

(BMD).(31-33)  Variability in intestinal Ca absorption efficiency provides a functional link 

between Ca intake and BMD.  Intestinal Ca absorption has been shown to be the critical 

element in maintaining Ca homeostasis and rescuing the low bone mass seen in VDR 

knockout mice.(1,18)  Low Ca absorption efficiency was shown to increase the fracture risk 

of postmenopausal women with low dietary Ca intake.(7)  This study highlights the 

importance of the physiological adaptive increase in Ca absorption in response to a low 

Ca diet in bone health.  Our group has previously shown that Ca absorption efficiency is 

significantly, positively correlated with femoral aBMD and trabecular bone volume 

fraction in a genetically diverse population of mice fed adequate or low Ca diets.(4)  

Identifying the genetic factors that affect intestinal Ca absorption efficiency and its 
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adaptive response to a low Ca diet is necessary for understanding the relationship 

between Ca intake and bone health.  We have conducted the first study to estimate the 

genetic component of intestinal Ca absorption and map it to linked loci in the mouse 

genome. 

 Our study demonstrates that intestinal Ca absorption and its adaptation to a 

habitual low Ca diet are influenced by both dietary environment and natural genetic 

variation in the BXD RI panel. The portion of the variability in Ca absorption that is due 

to genetic background (i.e. narrow sense heritability, h2) was 37% and 40% in the 0.5% 

and 0.25% Ca diet groups, respectively.  These heritability values are similar to those for 

other Ca homeostasis traits measured in the BXD RI panel.(See Ch. 3 and (34))  

Heritability of Ca absorption has not been estimated in human populations, but several 

lines of evidence suggest that genetics is a significant contributor to variability in 

intestinal Ca absorption efficiency in humans.  First, Ca absorption efficiency is observed 

to be widely variable in clinical studies.  Heaney et al. observed a range of 0.05-0.65 in 

true fractional calcium absorption (TFCA), even after adjustment for dietary calcium 

intake in four combined populations of postmenopausal, non-osteoporotic women.(35)  

Wolf et al. observed a range of 0.17-0.58 in TFCA.(13)  Environmental variables (e.g. 

dietary components, smoking, estrogen status) account for, at most, 25% of this 

variation(13,14), suggesting that genetic and gene-by-environment interactions account for 

the remainder. Additionally, Ca absorption efficiency has been observed to vary by racial 

background, which can be used as a surrogate for genetic background.  Specifically, 

fractional Ca absorption has been shown to be higher in black than white adolescent 
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girls.(6,16,36,37)  Chinese adolescent girls were also observed to have higher Ca absorption 

efficiency across a range of controlled calcium intakes.(15) 

 The adaptation of intestinal Ca absorption to a low Ca diet was also influenced by 

genetics in our study, as evidenced by a significant line-by-diet interaction influencing Ca 

absorption in the full BXD RIL panel.  Additionally, the calculated adaptation parameter 

was significantly variable across BXD lines and had a heritability of 36%.  Variation in 

the response of Ca absorption to a habitual low Ca intake has also been observed between 

racial groups.  Ca absorption assessed by balance over a range of Ca intakes indicated 

black adolescent girls increase Ca absorption efficiency on a low Ca diet, but white girls 

do not.(16)  In a separate study, Asian adolescents also exhibited an increase in Ca 

absorption efficiency on low Ca diets.(15) The genetic sources of this gene-by-diet 

interaction are unknown, but could greatly increase our ability to target individual dietary 

interventions.  Our study is the first forward genetic study to map the genetic variation 

controlling Ca absorption and its adaptation to a low Ca diet. 

Our results indicate that genetic control of Ca absorption is multifocal and 

complex.  Additionally, QTLs linked to diet-induced adaptation of Ca absorption did not 

overlap with other Ca absorption QTLs, indicating that regulation of the adaptive 

response is independent from regulation of baseline Ca absorption efficiency.  Identifying 

the causative variation driving these QTLs is a long and complex process that presents 

several challenges.(38)  It is helpful to first examine candidate genes that have previously 

been associated with the trait of interest, but because this is the first forward genetic 

mapping study of Ca absorption, no previous candidate loci data is available for 
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comparison.  However, current models of intestinal Ca absorption provide possible a 

priori candidate genes.   

Facilitated diffusion is the most widely accepted model of intestinal Ca absorption 

and consists of transport of Ca across the apical membrane by TRPV6, escort across the 

enterocyte by CaBPD9k, and extrusion across the basolateral membrane by PMCA1b.(8)  

The facilitated diffusion model is up-regulated by the PTH-vitamin D endocrine axis in 

response to a low Ca diet.  Each of these genes is a target of 1,25(OH)2D genomic action, 

mediated through the vitamin D receptor (VDR).  Additionally, diffusion of Ca between 

enterocytes has been suggested to be regulated by tight junction proteins CLDN2 and 

CLDN12.(39)  Others have suggested that Ca absorption is linked to glucose absorption by 

the L-type Ca channel Cav1.3 (40)   

However, these genes are not located in, or near, the QTLs identified in this study.  

This finding could be due to the fact that the BXD population represents only a small 

portion (~20%) of the variance observed in the mouse genome.(41)  Thus, the BXD RI 

panel does not necessarily harbor genetic variation that alters known candidate gene 

function or regulation.  Instead, the variation inherent in the BXD RI panel that is driving 

Ca absorption QTLs represents novel factors or functions influencing Ca absorption. 

Recent findings support the hypothesis that novel regulation of intestinal Ca 

absorption and its adaptation to a low Ca diet remains to be found.  One such line of 

evidence is that current models do not explain the variation in Ca absorption observed in 

a diverse population mice (including the BXD parent lines).(4)  For example, in a study of 

11 inbred mouse lines, mRNA levels of facilitated diffusion model components were 

significantly related to each other and Ca absorption, but explained, at most, only 18% of 
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the variation in Ca absorption present in that population.(4)  CLDN2, CLDN12, and 

Cav1.3 were not significantly related to Ca absorption efficiency in that diverse mouse 

population.(4)  Similarly, Ca absorption efficiencies of TRPV6, CaBPD9k, and 

TRPV6/CaBPD9k double knockout mice were indistinguishable from wild-type mice on 

a high Ca diet.(9)  From these observations, genes proposed to mediate intestinal Ca 

absorption efficiency explain a limited amount, if any, of the variation observed in this 

trait.   

These studies also illustrate that the vitamin D endocrine axis does not fully 

explain the adaptation of intestinal Ca absorption to a low Ca diet.  Replogle et al. 

showed that subpopulations existed within the diverse 11 inbred line panel, including 

vitamin D-independent adaptors (i.e. lines that are able to increase Ca absorption 

efficiency without a corresponding increase in serum 1,25(OH)2D) and hyper-responders 

(i.e. those lines exhibiting a larger diet-induced increase in Ca absorption relative to the 

diet-induced increase in vitamin D), indicating multiple facets exist in the regulation of 

Ca absorption.(4)  When fed a low Ca diet, TRPV6 and TRPV6/CaBPD9k double 

knockout mice exhibited diminished, but not abolished, Ca absorption.(9)  In the present 

study only one Ca absorption QTL, CaAbs12 (chr 3, 30cM), coincided with a QTL our 

group had previously linked to serum 1,25(OH)2D levels (125D3, chr 3, 34cM) in the 

same BXD population (see Ch. 3).  This co-localization of genetic association between 

the two traits indicates a potential shared upstream regulator of 1,25(OH)2D serum level 

and intestinal Ca absorption adaptation.  However, the other fourteen QTLs linked to Ca 

absorption in this study do not track with those identified for vitamin D.  Taken together, 

these observations indicate that genetic variation in intestinal Ca absorption is not fully 
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dependent on variation in its accepted primary regulator, 1,25(OH)2D, or the facilitated 

diffusion model.   

Although a priori candidate genes and serum 1,25(OH)2D do not explain the 

majority of QTLs identified in this study, examination of genetic mapping of related 

biological functions can shed light on systems biology affecting Ca absorption.  Such is 

the case for CaAbs2 (chr 4, 47.35 cM), a QTL highly significant in 5 out of 6 analyses for 

intestinal Ca absorption efficiency.  Several bone-related traits map to this region of chr 4 

as well.  For example, femur cross-sectional area and cortical thickness mapped nearby 

(chr 4, 46.99 cM) in a heterogenous population derived from BALB/cJ, C3H/HeJ, B6, 

and DBA mice.(42)  Another study linked multiple vertebral trabecular bone traits (bone 

volume, bone volume fraction, trabecular thickness, and trabecular number) to this region 

of mouse chr 4 (45.76 cM) in an F2 cross between B6 and C3H/HeJ mice.(43) These 

results indicate that natural genetic variation which alters Ca absorption efficiency has 

downstream effects on bone health.  Additionally, a QTL for circulating thyroxine 

hormone was identified in this genomic region (chr 4, 46.99 cM) in the same 

heterogeneous mouse population as Volkman et al.(44)  Treatment with thyroid hormones 

has been shown to have a synergistic effect on 1,25(OH)2D-stimulated intestinal Ca 

absorption in cultured embryonic chick small intestine.(45)  Similarly, hyperthyroid 

hormone status has been shown to increase intestinal Ca transport in rats.(46)  These 

observations suggest that genetic variation affecting thyroid hormone is an upstream 

mediator of Ca absorption. 

Identifying causative variation driving novel Ca absorption QTLs presents 

enormous challenges.  Bioinformatic analysis of QTL candidate regions in this study 
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indicated several functional candidates, but these were not supported by polymorphism 

data.  Thus, we are not able to definitively identify candidate genes driving the Ca 

absorption QTLs in this study.  Functional filtering of candidate genes included a wide 

variety of Gene Ontology (GO) terms, summarized by the following categories; ion 

homeostasis and transport, intestinal and renal integrity, intracellular trafficking, 

circulating factors, and regulation of gene expression.  This range of functions was 

chosen to encompass primary functions of genes involved in Ca homeostasis (i.e. TRPV6, 

CaBPD9k, and VDR) and general cellular ion homeostasis.  The addition of intracellular 

trafficking terms were included after a linkage mapping study of iron status implicated 

the gene Mon1a, as a novel factor influencing mineral homeostasis through intracellular 

trafficking.(47)  Several genes were highlighted by this functional filtering including: 

Zdhhc13, a magnesium transporter with palmitoyl acyltransferase activity(48); Rap2B, a 

Ras-like GTPase involved in the stimulation of phospholipase C-epsilon(49); potassium 

channels, Kcnab1 and Kcnk9; and Fat1, a protein in the cadherin superfamily that is 

involved in cell-cell junctions of podocytes in the renal glomerulus(50).  However, 

candidate genes from GO-term filtering contain no polymorphisms that would affect 

protein sequence or function (i.e. non-synonymous codon, splice site, frameshift, or stop 

codon changes).  Furthermore, with the exception of Kcnab1, the GO-term candidate 

genes did harbor polymorphisms within DNase1 HSS, suggesting that proximal 

regulation of mRNA expression of these genes is not variable in the BXD panel.  

However, this does not preclude the possibility that these QTLs represent distal 

regulatory elements of genes located outside of the support interval.(51)  Further study is 
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required to elucidate how genetic variation in the BXD RI panel affects Ca absorption 

regulatory pathways. 

In summary, this is the first study to examine the genetic architecture of intestinal 

Ca absorption efficiency.  Using a genetically and environmentally controlled mouse 

model, we demonstrate that Ca absorption is significantly affected by genetic background.  

In addition, Ca absorption is influenced significantly by a gene-by-diet interaction in the 

BXD RI panel.  The degree to which Ca absorption adapts in response to a low Ca diet is 

affected by genetic background, and independent from the variation controlling baseline 

efficiency.  Our study demonstrates that there is still much unknown about genetic 

regulation of Ca absorption and its adaptation to a low Ca diet.  The QTLs found in the 

BXD RI panel represent novel variation affecting Ca absorption, but we are unable to 

definitively identify the causal variants at this time.  The QTLs identified in this study are 

an important first step in identifying novel factors or pathways influencing intestinal Ca 

absorption, and will serve as a foundation for identifying individuals who are most at-risk 

to the detrimental effects of habitual low Ca intake. 
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Table 4.1  Significant QTLs Identified for Intestinal Ca Absorption 

Chr 
Point 

Estimate 
(cM) 

Point 
Estimate 

(Mb) 

Parental 
Influence 

3 19.43 40.36 B6 
3 29.55 61.17 B6 
4 47.35 103.10 DBA 
5 40.50 76.57 B6 
5 77.12 139.20 DBA 
6 48.01 103.49 DBA 
7 30.25 46.50 B6 
8 23.69 38.00 B6 
8 31.43 64.09 DBA 
8 66.02 120.90 DBA 
9 43.70 79.17 DBA 
10 64.60 115.57 B6 
12 6.90 13.86 DBA 
15 32.31 71.81 B6 
17 49.98 79.56 DBA 

QTLs in bold are prioritized for candidate 
region characterization 
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Table 4.2  Test Statistics for Significant Intestinal Ca Absorption QTLs Across Analyses 

Chr 
Peak 
(cM) 

Analyses Represented 

0.5% Ca 0.25% Ca Full1 Adaptation2 

C3 B4 C B C B C 
3 19 

   
2 

 
72 

 3 30 
      

6 
4 47 8 72 

 
21 6 12 

 5 41 
   

4 
 

7 
 5 77 

    
4 

  6 48 
  

2 
 

6 
  7 30 4 

  
2 

 
72 

 8 24 
      

5 
8 31 6 17 

     8 66 
   

3 
 

11 
 9 44 

  
4 

    10 65 4 7 
   

2 
 12 7 2 

 
4 

    15 32 
      

5 
17 50       23       

1"Full" denotes the full combined diet population 
 2 "Adaptation" denotes the calculated adaptation to a low Ca 

diet 
3 CIM results are given in LOD, significance determined at 3.7 
(0.5% Ca), 3.4 (0.25% Ca), 2.5 (adaptation), and 3.8 (full) LOD. 
4 Bayesian results are given in 2lnBF, significance determined 
at 2lnBF>6 
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Table 4.3  Characteristics of Intestinal Ca Absorption QTL Candidate Regions 

QTL ID Chr 

1-LOD 
Candidate 

Region 
(Mb) 

Total 
Polymorph.1 

Total 
Genome 
Features2 

Protein-
Coding 
Genes 

Functional 
Polymorph.3 

Dnase1 
HSS 
Peaks 

Polymorph. 
in Dnase1 

HSS 

Polymorph. 
in Dnase1 

HSS 
associated 
with genes  

CaAbs2 4 
100.6-
104.7 5744 46 26 11 271 152 78 

CaAbs5 7 41.1-49.0 20333 275 220 0 177 3 2 
CaAbs12 3 58.9-66.6 12608 79 49 8 761 260 116 
CaAbs13 8 36.1-47.7 31268 117 67 104 2406 2499 1677 
CaAbs14 15 69.1-75.9 17052 91 57 10 1017 362 362 
1 Polymorphisms 
2 Genome features include; protein-coding genes, non-coding RNA genes, gene fragments, and unclassified genes  
3 The Functional Polymorphism category contains non-synonymous, splice site, frameshift, and stop site 
polymorphisms 

 

 

 

 

  

 



138 
138 

Table 4.4  Classification of Polymorphisms in Ca Absorption QTLs 

     

Exon-associated 
Polymorphisms 

  

QTL ID Chr 

1-LOD 
Candidate 

Region 
(Mb) 

5kb 
Promoter1 Intronic 

Synonymous 
Codon 

Non-
Synonymous 

Codon 
5' 

UTR 
3' 

UTR 
CaAbs2 4 100.6-104.7 79 208 0 0 0 0 
CaAbs5 7 41.1-49.0 3 26 0 0 0 1 
CaAbs12 3 58.9-66.6 306 2683 17 8 9 24 
CaAbs13 8 36.1-47.7 2248 25855 129 104 42 201 
CaAbs14 15 69.1-75.9 507 3785 31 10 21 36 

1Numbers indicate total number of polymorphisms per category in each QTL candidate region 
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Table 4.5  Candidate Genes Remaining for Ca Absorption QTLs After IBD Filtering 
CaAbs2 CaAbs5 CaAbs12 

Pde4b* Mrgpra6# Mrgprb13# Serp1 4930449A18Rik Gpr149* Vmn2r6 
4921539E11Rik* Mrgpra9 Mrgprb8# Eif2a Gm16527 Gm22433 Vmn2r7 
4930456L15Rik* Mrgpra1 Mrgprb1 6720482G16Rik Gm8298# Mme* Kcnab1* 
Oma1* Gm25326# Mrgprx2 Selt C130079G13Rik Gm24946 A330015K06Rik* 
4931409D07Rik# Mrgpra2a# Mrgprb2# Fam194a Aadacl2 Plch1 A730090N16Rik* 
Gm12718* Mrgpra3 Mrgprb3# AU022133 Aadac Gm23500# Ssr3* 
Gm23064* Gm22427# Zdhhc13 Siah2 Sucnr1 Gm24227 4931440P22Rik* 
Gm12720# Mrgpra4# Csrp3 4930593A02Rik Mbnl1 E130311K13Rik Gm22279 
Gm25877# Mrgprx1 E2f8* A930028O11Rik Gm19816# Slc33a1* Tiparp* 
Dab1* 2700078K13Rik# Gm2788* Fam188b2 P2ry1 Gm20031# Lekr1 
2900034C19Rik* Mrgprb5# Mrgpra2b Clrn1 B430305J03Rik Gm26850# Ccnl1 
  Mrgprb4 Ptpn5 Gm22491 Rap2b# Gmps Veph1* 
      Gm10071 Gm22162* Vmn2r1 Gm26442 

  
 

  Med12l 9330121J05Rik# Gm22165 Ptx3 
  

 
  Gm19372# Arhgef26* Vmn2r4   

      Gm5538 Dhx36* Vmn2r5   
Genes are listed in ascending order of 5' top strand start site bp location (given by Mouse Genome Informatics 
Database) 
1Genes containing at least one functional polymorphism are in bold  

  *indicates the presence of a polymorphism within a DNase1 HSS within the gene, # indicates a gene with no 
polymorphisms 

 

Table 4.5 is continued on the next page. 
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Table 4.5 (continued)  Candidate Genes Remaining for Ca Absorption QTLs After IBD Filtering 
CaAbs13 CaAbs14 

D8Ertd82e* 9330187G09Rik Gm26584# AY512931# Ufsp2# 4930573C08Rik 3100002H20Rik* 
3010031K01Rik* Gm23128 Slc7a2* Mtnr1a# Ankrd37# 4930504C09Rik* Peg13* 
4933430A20Rik* Tusc3* Pdgfrl* Gm6329# Lrp2bp# n-Tm3# Gm3150* 
Lonrf1* 6430500C12Rik Mtus1* F11# Snx25 Gm24232 Chrac1* 
Gm26150* Gm6213* B430010I23Rik* Klkb1# Gm24684# Gm23433 Ago2* 
6430573F11Rik* Msr1* Gm16192* Cyp4v3# Gm23030# Gm25330 Ptk2* 
Dlc1* Gm10682 Gm16193* Fam149a 4933411K20Rik# Gm24058 8030476L19Rik* 
9530004P13Rik* Fgf20* Fgl1* Tlr3# Gm15634# Gm23987 1700085D07Rik* 
9430047G12Rik* Micu3* Gm16348* Gm19634# Slc25a4# Gm19782 Mir151 
Gm19274* Zdhhc2* Pcm1* Sorbs2 Gm23812# Fam135b* Gm24787 
G630064G18Rik* Cnot7* Asah1* Gm23604# Gm24669# Gm22519# C130079B09Rik* 
AI429214* Vps37a* Frg1# Gm16351# Helt# Col22a1* Gm10362* 
Gm10683 Mtmr7* 2810404M03Rik D330022K07Rik Acsl1 Gm16308# Dennd3* 
1700016D18Rik* Gm2085* Zfp353# Gm16352# Mlf1ip# Gm19794 Slc45a4* 
Gm25126 Adam24* Gm23531# Gm25309# Ccdc111 Gm23217 1700010B13Rik* 
Sgcz* Adam25 Gm9908# Pdlim3 Casp3# Gm24390* Gpr20* 
n-Tl14# Adam20 Fat1 Ccdc110# Gm16675# A930009L07Rik Ptp4a3* 
Mir383 Adam39 Gm2366# 1700029J07Rik# Irf2# Kcnk9 Gm22106* 
  

   
  Trappc9* Mroh5* 

            Gm6569* 
Genes are listed in ascending order of 5' top strand start site bp location (given by Mouse Genome Informatics Database) 
1Genes containing at least one functional polymorphism are in bold  
*indicates the presence of a polymorphism within a DNase1 HSS within the gene, # indicates a gene with no 
polymorphisms 
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Figure 4.1  Composite Interval Mapping (CIM) identified multiple QTLs affecting 
intestinal Ca absorption.  (A) 0.5% Ca, (B) 0.25% Ca, and (C) full combined diet 
population, and (D) adaptation to low Ca diet.  Significance was determined separately 
for each data set by permutation (n=500), LOD cutoff shown as solid horizontal line. 
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CHAPTER 5. FUTURE DIRECTIONS 
 

5.1 Research Summary 

Calcium (Ca) is a vital nutrient that is necessary for cell signaling and structural 

integrity of the skeleton.  Sufficient dietary Ca is recommended for maintenance of 

proper bone health.  Intestinal Ca absorption mediates the availability of dietary Ca for 

these purposes and is affected by environmental (e.g. dietary Ca) and genetic factors.  

This dissertation has focused on characterizing the natural genetic variation affecting 

intestinal Ca absorption efficiency and its primary regulator, serum 1,25(OH)2D under 

normal and low dietary Ca conditions. 

 The influence of genetics on Ca absorption has been suggested by observations 

between racial groups in clinical studies.(1,2) Serum 25(OH)D has been mapped in 

genome-wide association studies which pointed to regulation by genes known to function 

in vitamin D biology.(3)  Serum 1,25(OH)2D, although heritable, has not been 

significantly linked to genetic loci in the limited studies available.  These studies are 

limited by the fact that they cannot separate complex phenotypes such as Ca absorption 

and 1,25(OH)2D from the myriad physiological and environmental factors that are 

present in free-living human populations.  We have overcome this limitation by using 

genetically well-defined mouse models in a controlled environment.
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We have clearly shown that natural genetic variation influences intestinal Ca 

absorption and vitamin D metabolites in these controlled animal models.  Intestinal Ca 

absorption, serum 25(OH)D, and serum 1,25(OH)2D were significantly variable across a 

diverse population of 11 inbred mouse lines (Ch. 2&3).  Interestingly, Ca absorption 

efficiency was significantly correlated to femoral trabecular bone volume in the 11 inbred 

mouse line population (Ch. 2).  These same parameters were also significantly affected 

by genetics in the BXD RI panel (Ch. 3&4).  The heritability of serum vitamin D 

metabolites compared well with estimates in human populations.  The study in Chapter 4 

is the first to estimate the heritability of Ca absorption, and shows it is moderately 

heritable (h2 = 0.37-0.4). 

Another goal of this dissertation was to examine if natural genetic variation 

influenced the adaptation of Ca homeostasis to the common dietary insufficiency of low 

Ca intake.  We observed that gene-by-diet interactions affect both 1,25(OH)2D and Ca 

absorption in the 11 inbred line population as well as the BXD RI panel.  This result 

concurs with observations between racial groups.(4,5)  Adaptation to a low Ca diet of both 

1,25(OH)2D and Ca absorption was significantly affected by genetic background in both 

mouse populations studied.  This is the first study to characterize the effect of genetic on 

1,25(OH)2D and Ca absorption using the relevant physiological condition of habitual low 

Ca intake. 

The study of 11 inbred mouse lines in Chapter 2 highlights that gaps remain in 

our understanding of intestinal Ca absorption and its regulation.  Regulation of intestinal 

Ca absorption is proposed to occur through low dietary Ca triggering an increase in 

serum 1,25(OH)2D, which initiates genomic events that lead to increased active intestinal 
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Ca absorption.  This model holds true in B6 mice (the standard reference inbred line) and 

129S mice, but not in the other 9 lines studied.  In the whole population, variation in 

facilitated diffusion component mRNA levels explained only a small portion of variation 

in Ca absorption. Additionally, adaptation of Ca absorption was not fully explained by 

adaptation in 1,25(OH)2D.(Ch. 2)  These results, along with data from TRPV6 and 

CaBPD9k knockout mice(6), point to the existence of novel compensatory mechanisms of 

Ca absorption regulation. 

The forward genetics studies in Ch. 3&4 address these gaps in our knowledge and 

highlight novel variation affecting serum 1,25(OH)2D and intestinal Ca absorption.  

Linkage mapping results indicate that genetic control of each phenotype is multifocal and 

complex. The vitamin D receptor emerged as a candidate gene for one QTL affecting 

1,25(OH)2D.  Additionally, genetic regulation of each phenotype is, for the most part, 

independent.  For example, genetic regulation of serum 1,25(OH)2D was independent 

from that regulating serum 25(OH)D.  Genetic loci linked to Ca absorption did not 

overlap those linked to 1,25(OH)2D, with one exception, indicating that genetic 

regulation of these two traits is independent.  In both Ca absorption and 1,25(OH)2D, 

genetic regulation of the diet-induced adaptation was independent from that controlling 

baseline trait levels. 

These studies illustrate that natural genetic variation is a significant contributor to 

Ca absorption physiology.  We have mapped this genetic variation to specific loci in the 

mouse genome.  All but one QTL identified in these studies represent novel genetic 

factors affecting Ca absorption or vitamin D metabolites.  Although some promising 

candidates have emerged through bioinformatic analysis, further study is needed to 
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identify the causal variants affecting our traits of interests.  Identification of the novel 

factors influencing Ca absorption and vitamin D metabolites will further our knowledge 

of these systems and inform personalized dietary recommendations in the future. 

 

5.2 Future Directions 

The studies in this dissertation have identified QTLs which affect intestinal Ca 

absorption and serum vitamin D metabolites. However, the causal variants driving these 

loci could not be definitively determined.  Therefore, future studies should focus on 

determining and characterizing the causative genes and variants.  This question could be 

addressed by physically narrowing the QTL region by fine-mapping in additional mouse 

crosses such as advanced intercross or congenic mouse lines.  However, I believe further 

analysis of the BXD RI panel by transcriptomics and transcription factor analysis will 

yield functional information for candidate gene identification. 

1.  Identify Genetic Loci Linked to Differential Gene Expression in the BXD Panel 

The majority of QTLs identified in Ch. 3&4 pointed to differences in gene 

regulation, rather than protein function.  Consequently, transcript levels of the candidate 

gene should differ across the BXD panel.  However, a large number of transcripts will be 

variable in this population but have no relationship to our phenotypes of interest, Ca 

absorption or serum vitamin D metabolites.  It is therefore necessary to link transcript 

variation to genetic variation, and these results can be compared to the Ca absorption and 

serum vitamin D metabolite QTLs identified in this dissertation.  This goal can be 

accomplished by using a method called expression QTL (eQTL) mapping. 
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eQTL mapping uses mRNA transcript levels in a target tissue as linkage mapping 

phenotypes.  Specific, individual transcripts can be used but this requires prior knowledge 

of the gene affected.  The majority of QTLs identified for Ca absorption and vitamin D 

metabolites represent novel variation, so the target transcripts are not known.  Instead, I 

would recommend an “omic” approach that consists of measuring the transcriptome of a 

target tissue by microarray and mapping these results to the mouse genome.  eQTL 

mapping results can then be compared with Ca absorption and vitamin D metabolite 

results in two ways.  eQTLs that overlap with previous identified Ca homeostasis QTLs 

indicate that the target transcript may be influencing the Ca homeostatic trait of interest.  

Transcript values can also be correlated to the trait of interest (e.g. Ca absorption) across 

the BXD panel to confirm a direct relationship. Differential gene expression has been 

used successfully to identify candidate genes in bone-related QTLs.(7,8) 

eQTL mapping has advantages that will move the identification of causal genes in 

the BXD RI panel forward.  Primarily, eQTL mapping allows for identification of both 

cis and trans genetic loci affecting a given transcript level.  Cis regulation of a gene 

occurs at the gene’s location in the genome and may include alterations of the proximal 

promoter or intergenic enhancer elements.  Trans regulation occurs at a secondary site, 

far away (possibly even on different chromosomes) from the target gene’s coding 

sequence. Examples of trans regulation include distal regulatory elements and 

transcription factors.  This method can also be used to assess the gene-by-diet interaction 

observed in Ca absorption and 1,25(OH)2D by mapping the fold change of transcripts 

between the 0.5% and 0.25% Ca diet.   
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However, this method is limited by the small sample size of the BXD RI panel in 

relation to the large number of comparisons present in transcriptome analysis (>24,000).  

The choice of target tissue is also limiting.  Duodenal mRNA is an intuitive choice to 

relate to intestinal Ca absorption, and while it will likely be informative one must not 

assume is will be all-inclusive.  The choice of tissue for comparison to vitamin D 

metabolite QTLs is slightly more problematic because multiple tissues participate in 

vitamin D metabolism (e.g. parathyroid, liver, kidney, bone, and intestine).  I would 

profile and map the kidney transcriptome because it is downstream of most vitamin D 

metabolic signals, and is therefore most likely to harbor transcript variation in candidate 

genes. 

In summary, eQTLs represent genetic loci linked to differential gene expression 

of a specific transcript.  Our expected results would be overlap between an eQTL and a 

QTL identified in previous studies for Ca absorption or serum vitamin D metabolites.  

With this link between a specific transcript and our trait of interest we can begin to assign 

biological function to the variation driving Ca homeostasis QTLs and hypothesize 

specific interactions and pathways influencing our trait of interest. 

2.  Examine Transcription Factor Binding Sites for Variation 

 The results of eQTL mapping show genetic loci that contain genetic variation 

which influences a specific transcript level.  If those eQTLs co-localize in the genome 

and correlate to our traits of interest (i.e. “candidate eQTLs”), it gives an indication of 

what gene pathway may be affecting our traits of interest, but will not definitively 

determine the causal variation.  In order to more clearly understand the mechanisms 
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altering candidate transcript levels, I would examine transcription factor binding sites 

within candidate eQTLs. 

 This process would begin with a detailed literature search for known transcription 

factors of the candidate transcript.  The genome sequence underlying candidate eQTLs 

will be queried for the binding motifs of these transcription factors.  Numerous software 

packages exist to retrieve binding motifs and align sequences.  Alternatively, 

transcription factor binding sites for 119 human transcription factors have been 

characterized genome-wide by ChIP-seq in 72 cell types as part of the ENCODE 

project.(9)  This dataset is valuable because it represents actual binding of transcription 

factors to the genome, but is limited by the selection of transcription factors and cells 

chosen by the investigators.  Transcription factor binding motifs are highly conserved 

evolutionarily(9), but data gathered from human sources would of course need to be 

confirmed in mouse.   

Following identification of transcription factor binding sites in candidate eQTLs, 

sequence polymorphisms between the BXD parent lines B6 and DBA will be examined.  

We would expect to see polymorphisms in the transcription factor binding sites which 

lead to dysregulation of the candidate transcript with downstream effects on our trait of 

interest.  Ultimately, the hypotheses generated from these genomic tools and databases 

will need to be directly tested.  
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