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ABSTRACT 

Tayyari, Fariba. Ph.D., Purdue University, December 2013. Development of Isotags for 
NMR Based Metabolite Profiling and Applications. Major Professor: Daniel Raftery. 

  

NMR spectroscopy is a powerful analytical tool for both qualitative and 

quantitative metabolite profiling analysis. However, accurate quantitative analysis of 

biological systems especially using one-dimensional NMR has been challenging due to 

signal overlap. In contrast, the enhanced resolution and sensitivity offered by 

chemoselective isotope tags have enabled new and enhanced methods for detecting 

hundreds of quantifiable metabolites in biofluids using NMR spectroscopy or mass 

spectrometry. In this thesis we show improved sensitivity and resolution of NMR 

experiments imparted by 15N and 13C isotope tagging which enables the accurate analysis 

of plasma metabolites.  

To date, isotope tagging has been used in conjunction with a single analytical 

platform. The inability to detect the same metabolites using the complementary analytical 

techniques of NMR and mass spectrometry has hindered the correlation of data derived 

from the two powerful platforms for applications such as biomarker discovery or the 

identification of unknown metabolites. To address this problem, we describe a smart 

isotope tag, 15N-cholamine, which possesses two important properties: an NMR sensitive 

isotope, and a permanent charge for MS sensitivity. Finally, we present a study on 



xvii 

metabolite profiling using intact breast cancer tissue samples in which we exploit the 

combined strength of NMR and multivariate statistical methods for metabolite profiling. 

 

 

 



CHAPTER 1.  INTRODUCTION TO METABOLITE PROFILING 

1.1 Introduction 

Metabolomics or metabolite profiling describes the advanced study of metabolism 

in biological systems. In one sense, metabolite profiling has been used for decades for 

human disease diagnosis,1 and the initial studies were actually introduced in early 1970s.2 

However, the instrumentation available at that time made definitive studies very 

challenging. The term “Metabonomics” was introduced 28 years later by Nicholson et al. 

as “the quantitative measurement of the dynamic multiparametric metabolic response of 

living systems to pathophysiological stimuli or genetic modification”,3 and represented a 

re-birth of the field in some sense.  Metabolomics has also been described as “a 

comprehensive and quantitative analysis of all metabolites” in biological systems and the 

"systematic study of the unique chemical fingerprints that specific cellular processes 

leave behind".4,5 Scientists are often used these terms interchangeably. The Metabolome 

was first introduced by Oliver et al. in 1998 as the complete set of metabolites 

synthesized by an organism.6  

Metabolites represent the downstream products of genes and proteins and as such 

they integrate the biological information and changes to that system that occur over time. 

Metabolites are not only building blocks of many other biological components such as 

proteins, they also have many other important roles in biological systems such as 

1



signaling, enzymes activity, and providing energy (ATP). The metabolome is dynamic, 

and the level of metabolites in a biological system respond sensitively to a variety of 

changes, including influences by drugs, disease or any other stress caused by a cell’s 

environment at a certain time.  

Given the sensitivity to cellular perturbations, metabolite profiling can be used to 

study a variety of biological questions, including the differences between groups such as 

disease and healthy at a molecular level and convey extensive information to the field of 

“molecular epidemiology.” Metabolomics has some advantages over other ‘omics such as 

genomics and proteomics. First metabolite profiling provides detailed information related 

on phenotype, while genomics and to a lesser extent the proteome provide more 

information about genotype.7 Second, the number of metabolites represented in the 

human metabolome is significantly less than the large number of genes and proteins in 

the human genome or proteome, which makes metabolomics more discriminating.8,9 

Also, since a given metabolite is same in different organisms, more generic techniques 

can be used for metabolomics and extended across species.8 Lastly, the technology 

involved in measuring metabolomics is faster and less expensive than for genomics or 

proteomics.8 

In this chapter, the entire workflow of metabolite profiling, as illustrated in Figure 

1.1, will be reviewed with a focus on human samples. 

1.2 Biological Samples and Sample Preparation 

Metabolomics approaches can be applied to a variety of different biological 

matrices, including biofluids, tissues, and cells. It is critical to choose an appropriate 

2



preparation method, including all the steps from the time the sample is collected until the 

data acquisition is started. The method has to be reliable and reproducible, and based on 

the type of the sample and technique to be used for analysis.  

Since the metabolome is dynamic, quenching of the metabolism is necessary, 

such as using cold methanol, trifluoroacetic acid, or even freezing with liquid nitrogen, 

followed by appropriate storage at cold temperatures. Other preparation steps are 

dependent on the analytical technique to be used and the type of the sample or organism 

of interest. These steps include extraction, separation, isolation, purification, 

derivatization, buffer addition, and etc. 

1.2.1 Samples 

Metabolite profiling studies have been reported on many different biological 

systems such as cells, tissues and a number of biofluids including plasma, serum, urine, 

bile, cerebrospinal fluid, seminal fluid, amniotic fluid, synovial fluid, and saliva.10-

18Among all the samples serum, plasma and urine have been most often targeted for 

metabolomics studies because the sample is non-invasively collected and thus easily 

obtained. 

1.2.1.1 Blood Samples 

  Blood is the most readily accessible biofluid and has been subjected to many 

metabolomics studies since it is rich in metabolites and potentially provides vital 

information on almost every type of cell. In a living organism blood serum or plasma 

provides a direct global view of the metabolic status. Blood has two parts, a cellular 

3



component including red and white blood cells and plasma, a liquid carrier in which these 

cells and other molecular species are suspended. 19 Differences between plasma and 

serum occur from the way they are prepared from blood. Plasma is obtained by adding 

anti-coagulants to the blood sample; then by centrifuging the mixture, the cellular portion 

is precipitated and the plasma supernatant is obtained. However, to obtain serum the 

blood is allowed to clot without adding any anti-coagulant. Plasma is more viscose 

compare to serum because the   clotting proteins remain in the supernatant.20 While serum 

and plasma have very similar metabolite profiles; however, differences in the 

distributions of specific metabolites and even the number of metabolites in each fluid has 

been reported.21 Soluble proteins still remain in both plasma and serum, and depending 

on the analytical technique used, additional preparation steps are required for further 

purification or deproteination.  

1.2.1.2 Urine Samples 

Ease and non-invasive sampling of urine add to the other advantages of urine 

including a relatively high concentration of metabolites and low concentration of 

proteins, which make urine a favorable target for metabolomics studies. However, urine 

suffers from high salt content that triggers problems in some analytical methods.  

A number of confounding factors can cause differences in the concentrations of 

urine metabolites between individuals, including the volume of urine, amount of the 

water and physiological conditions such as age, gender, weight, personal diet and 

environmental effects.22 Urinary metabolites also have different concentrations over time 

for a single individual since they reflect the conditions that have been introduced to the 
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body such as food intake, medication, and exercise. Nevertheless, the urinary metabolite 

profile can provide an immense amount of information on biological status. 

Urine sample preparation usually is minimal and can be performed after the 

sample is collected. However, if the urine samples need to be stored, they can be at or 

below −25 °C without preservatives. If sterility is difficult to maintain or unachievable, 

and for the case of temporary storage at 4 °C, the addition of preservatives is necessary. 

In these situations 0.1% sodium azide, is preferred over preservation with sodium 

fluoride. 22 

1.2.1.3 Tissue Samples 

Tissue samples have been used for metabolite profiling for a number of years.23-24 

However, metabolic profiling of intact tissue has become of increasing interest,25-27  as 

the study of intact tissues can help researchers better understand the molecular basis of 

diseases.25,28 Tissue extraction methods, such as using methanol/water/chloroform 

destruct the cell structure, and pull out the metabolites into either the aqueous or organic 

layer, depending on their solubility. Typically these two solutions are analyzed 

separately. In contrast, the analysis of intact tissue samples is non-destructive and 

preparation is fast and minimal (addition of deuterated water, buffer, etc.). In addition to 

the other advantages of using intact tissues, these samples can be used later for clinical 

studies. 
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1.2.1.4 Cell ad Cell Medium Samples 

  Metabolite profiling of cells have been used to discriminate between different 

type of tumors and cell lines.29,30 Cell samples also provide valuable information for 

studying biochemical pathways and mechanisms. Numerous studies has been conducted 

on different types of cancer cells and they show diverse biochemical pathways.31,32 To 

quench cell metabolism, liquid nitrogen or cold methanol are the most common 

methods.33,34 Cell sample preparation should be prudently done to save the integrity of the 

sample and to limit leakage of intracellular metabolites, especially for the types of cells 

that are highly sensitive to osmotic changes of medium.34,35 Metabolite profiling of cell 

culture medium are not as common as cells. It can be used to evaluate the impact of the 

medium on the cell culture performance.36  

1.2.2 Sample Preparation for NMR Experiments 

One of the main advantages of NMR over mass spectrometry is the ease of 

sample preparation. Except for experiments that require samples to be derivatized, 

sample preparation for NMR experiments is minimal. Blood samples including plasma 

and serum contain proteins and lipids which cause broad lines in the NMR spectrum. To 

detect small molecules several spectral editing methods are available and widely used. 

Only in some cases are samples deproteinized prior adding them into NMR tubes. Urine 

samples benefit from their low concentrations of proteins and high concentrations of low-

molecular-weight compounds; therefore sample preparation is minimized. Tissue 

preparation methods depend on the type of experiment performed, which group of 

metabolites are of interest, and the instrumentation used: liquid state NMR, HR-MAS, 
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solid state NMR, etc.25,37,38 Overall, and especially beyond NMR analysis, extraction has 

been the most common method for tissue sample preparation. Among the extraction 

methods solid-liquid extraction is more common. In this method a solvent, typically 

deuterated water, is added to the solid material, followed by shaking, vortexing or stirring 

to enhance the contact between them. For HR-MAS, intact tissues are used and only 

deuterated water or buffer, with or without reference, is added. Different protocols are 

available for quenching cell metabolism and perform cell lysis.  

1.3 NMR Spectroscopy for Metabolomics Applications 

  Among the techniques used for metabolomics studies, NMR and Mass 

spectrometry (MS) are the two most common.39 Both techniques have advantages and 

disadvantages, and i general they are complementary to each other. NMR is highly 

selective, non-destructive, requires minimal sample preparation, is robust, and the data 

generated by NMR are very quantitative and reproducible. However, NMR is costly, 

suffers from poor sensitivity, and the complex spectra typically show a high degree of 

spectral peak overlap. Later in this chapter and thesis, some the methods to enhance 

sensitivity and resolution will be discussed. 

1.3.1 Water Signal Suppression 

Water comprise abundantly in most of the biological samples. In NMR-based 

metabolomics studies overwhelming signal of the water resonance is the obstacle. 

Without water suppression, water gives rise to a large residual signal and attenuate or  
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eliminate metabolites signals. Therefore, it is very common and desirable in NMR 

metabolomics studies to suppress the water resonance signal.  

The water resonances can be suppressed by the use of appropriate standard NMR 

solvent suppression methods. Several pulse sequences exist for this purpose Including, 

Presaturation (PRESAT), water suppression enhanced through T1effects (WET) 

sequence, WATER suppression by GrAdient Tailored Excitation (WATERGATE), 

presaturation utilizing relaxation gradients and echoes (PURGE), and excitation 

sculpting, etc.40-44 

  Among these pulse sequences presaturation technique is more commonly used in 

metabolomics studies. The pulse sequence consists of two pulses, first a selective pulse to 

saturate water frequency (~ 4.8 ppm), it is a continuous low-power radio frequency pulse 

over the few second time period of an acquisition delay, usually 1-2 sec. Second one is a 

non-selective high power 90º pulse to excite other protons except saturated water 

protons.41 In a spectrum generated by this pulse sequence water signal is still exist, 

because of the water portion that is not perfectly irradiated, although it is highly 

suppressed.  

1.3.2 1D NMR Spectroscopy Pulse Sequences Used for Metabolomics 

In metabolomics studies it is important to select a proper NMR acquisitions are 

from available NMR experiments, including 1D NOESY with water suppression, CPMG 

1D 1H with water suppression, 1D selective TOCSY, DOSY, etc. These methods have 

advantages and disadvantages, therefore selection of a method depends on the origin of 

the sample and metabolite molecular groups of interest. 
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1.3.2.1 1D NOESY 

1D NOESY (nuclear Overhauser enhancement spectroscopy) is one of the most 

commonly used pulse sequences in metabolomics. 1D NOESY is usually coupled with 

PRESAT to attenuate the water peak and called NOESYPRESAT.45 In this sequence the 

water resonance is irradiated two times, first during relaxation delay, RD, (1-3 sec.), and 

again during the mixing time, tm, (100-150 msec.).45 With this method, the water signal in 

biofluid samples is attenuated by a factor of 105 or more. The spectra acquired by 

NOESY show broad signals from macromolecules such as proteins and lipids in addition 

to the narrow spectral features from small molecules. Therefore, the 1D NOESY 

sequence is more suitable for urine than serum or plasma samples, since urine contains a 

low concentration of proteins. 

1.3.2.2 1D CMPG 

Blood samples including plasma and serum, cells and tissue all contain 

macromolecules, which display broad lines in the NMR spectrum due to their slow 

tumbling rates that limit spectral averaging. Therefore, a more suitable pulse sequence for 

the analysis of these samples should be able to suppress the broad signals resulting from 

macromolecules. The most common sequence used to suppress macromolecular signals is 

the CPMG (Carr-Purcell-Meiboom-Gill) spin echo pulse.46 In this sequence there is a 90° 

phase shift between the 90° initial pulse along the x-axis and the following 180° pulses 

along the y-axis. This phase shift creates echoes that all form along y-axis and eliminate 

most errors of the 180° pulses. Fourier transformation of the CPMG free induction decay 

produces high resolution NMR spectra, which are highly reproducible and quantitative. 
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Much like the NOSEY sequence, most of the time CPMG is coupled with PRESAT, and 

is known as PRESAT-CPMG. 

1.3.2.3 1D Selective TOCSY 

1D NMR spectra of biological samples are crowded and highly congested; 

therefore some of the smaller signals are overlapped or buried under other, larger signals. 

Selective total correlation spectroscopy (Selective-TOCSY) is a NMR experiment that 

can be used to identify distinct spin-systems, i.e., a group of spins from the sample 

molecule which are connected by J-couplings.47 During the TOCSY evolution period, the 

NMR magnetization spreads from one 1H spin to the rest of members of the spin system 

via J-coupling, eventually throughout the molecule. Selective TOCSY, in which a single 

peak is excited and the coupled spins are revealed in the spectrum, has been used in 

biological samples and showed promising results.48,49 This technique can help to detect 

and quantify metabolites with concentrations 10–100 times below those of the major 

components.48 

1.3.3 2D NMR Spectroscopy Pulse Sequences Used for Metabolomics 

1D 1H NMR spectra are often complicated because of the overlapping signals due 

to the large number of metabolites in biological samples.50 2D NMR experiments are 

sometimes able to improve the resolution by dispersion signals in two different 

dimensions. Several 2D NMR experiments are used in metabolomics studies, including 

heteronuclear single quantum coherence spectroscopy (HSQC) and heteronuclear 

multiple bond correlation spectroscopy (HMBC), 2D J-resolved spectroscopy, correlation 
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spectroscopy (COSY), total correlation spectroscopy (TOCSY), etc. However, the 

disadvantages of 2D NMR experiments, including longer acquisition times, larger data 

size and difficult data analysis compared to 1D NMR decrease their use and interest for 

metabolomics studies.51 2D-HSQC is the only 2D NMR experiment used for the work in 

this thesis, and therefore only the 2D-HSQC experiment is discussed in this chapter. 

1.3.3.1 2D HSQC 

HSQC displays correlations between heteronuclear spins across a single chemical 

bond, and thus allows the identification of the directly connected nuclei.52 Usually, the 

detected correlation is between 1H and either 15N or 13C nuclei.  For instance, 2D 1H–15N 

HSQC NMR correlates 1H and 15N NMR resonances from the same molecule, and as a 

result only those nitrogen nuclei that are coupled to protons are visible in the 

spectrum.53,54 Several studies have been done for identification and quantification of 

metabolites by tagging them with 15N or 13C and using HSQC NMR experiments.55-57  

1.3.4  Enhancement in Sensitivity and Resolution 

Over the past 10 years a number of improvements in NMR instrumentation have 

provided significant gains in performance, both in resolution and sensitivity. Higher 

resolution and sensitivity are greatly improved by the use of higher magnetic field 

strengths,41 and higher magnetic fields such as 18.8 Tesla (800 MHz for 1H NMR) or 

above are attractive for metabolomics studies.58,59 In addition, cryogenic (cryo) probes 

can significantly increase the signal-to-noise ratio (SNR) by reducing the level of thermal 

noise in the detection coil circuit. By cooling the probe and its electronics from room 
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temperature to 20 K, the SNR improves almost four fold. One of the disadvantages of 

NMR compared to MS in metabolomics studies is the amount of sample required. Micro-

coil probes can be used to reduce the amount of sample required for NMR studies and 

thus limit this problem. Various micro-coil probes have been designed and constructed 

for metabolomics studies.60-62 Coupling the NMR instrument with liquid chromatography 

is another way to increase the resolution, while a combined LC-MS-NMR approach can 

assist the identification of unknown metabolites. In this approach LC fractions are split 

between MS and NMR instruments for parallel analysis.63  

 Quantifying and identifying metabolites are some of the most important and 

challenging aspects of metabolite profiling, and therefore methods that improve NMR 

resolution and sensitivity are of great interest. Since biological samples are rich in 

metabolites, conventional 1D NMR methods suffer from the often overwhelming overlap 

of metabolite signals. In many cases, low concentrated metabolites are not even detected 

since they are buried under the other, larger signals. The relatively small dispersion of the 

1H NMR chemical shifts and the large number of spin-spin couplings between 

metabolites are the main causes of signal overlap. One of the strategies that has been 

demonstrated to improve NMR chemical shift dispersion is to detect heteronuclei such as 

15N, 13C. 13C and 15N spectra are simpler, as they have fewer couplings; however, these 

nuclei have low natural abundances, and therefore conventional methods to detect these 

nuclei suffer from low sensitivity.  

In contrast, isotope labeling can enhance the sensitivity. Isotope labeling has been 

performed in vivo and in vitro in biological systems. In vivo isotope labeling has been 

accomplished by feeding animals with 13C-enriched diets,64 as well as numerous cell 
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studies that use 13C labeled glucose,65 for example, to provide detailed mechanistic 

information. In vitro isotope labeling studies are often easier to perform and focus on 

improving the measurement technology to differentiate biological samples. One attractive 

approach involves the labeling specific classes of metabolites in biofluids with 13C and 

15N, which has been performed with promising results.66,55-57  For example, an isotope-

labeled acetylation reaction using 13C-acetic anhydride can label the amines present in 

samples, and later the tagged metabolites are detected using 1H-13C 2D HSQC.66 Amino 

acids and carboxylic acids can labeled with 15N-ethanolamine, and the amide can be 

detected by 1H-15N 2D HSQC.55 This approach showed an improvement in the limit of 

detection such that over 100 metabolites in human urine and serum could be be detected. 

1.4 Data Processing and Statistics 

1.4.1. Pre- Data Processing 

NMR spectral data processing is a critical step in metabolomics profiling and 

should be done with care. However, before data processing to be subjected to 

multivariate and/or univariate analyses, it has to be preprocessed. Accurate results cannot 

be achieved without appropriate preprocessing.  

Preprocess steps after NMR data acquisition depend on the study and NMR 

experiment, but typically include phase and baselines correction, peaks alignment, 

bucketing (binning) or peak integration, normalization, and scaling.67-68 These steps help 

eliminate or decrease the undesired spectral variations over samples.  
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1.4.1.1 Phasing and Baseline Correction 

Phase and baseline corrections are the first steps in preprocessing following data 

acquisition. Baseline distortions can be corrected by automated baseline correction or 

manually, using a variety of processing software packages such as Topspin (Bruker 

Biospin, Billerica, MA), VnmrJ (Varian, Palo Alto, CA), MestReNova (Mestrelab 

Research, Santiago deCompostela, Spain), and KnowItAll (Bio-Rad Laboratories, 

Hercules, CA).  

1.4.1.2 Peak Alignment and Bucketing 

Small chemical shift changes can be caused by different factors, including 

instrumental effects (see below), changes in sample pH or ion concentrations, or the 

presence of other metabolites or macromolecules. It should be noted that the chemical 

shift changes caused by these factors do not affect all chemical shifts for all metabolites 

at the same level. Chemical shift offsets caused by the NMR instrument can be fixed and 

aligned by using a reference signal such as DSS (4,4-dimethyl-4-silapentane-1-sulfonic 

acid), TSP (trimethylsilyl propionate) at 0.00 ppm or a peak from one of the metabolites. 

For example some metabolomics studies use the methyl doublet peaks of alanine around 

1.48 ppm as a reference.69-71 Peak alignment can be performed manually or by using 

special algorithms such as RSPA (recursive segment-wise peak alignment).72 Usually, the 

next step following the peak alignment is either bucketing or peak integration.  For 

bucketing, the NMR spectrum is divided into a set of desired spectral width segments (a 

typical width is 0.04 ppm), which are known as a bucket or bin. Bucketing integrates the 

peak areas over that spectral segment, and ensures a consistent measurement of the same 
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resonance for all samples by reducing the effect of pH variations or ion concentrations on 

chemical shifts.73 A data matrix is produced by bucket segments, can be saved into a text 

file or exported to a worksheet directly to be used further data analysis. Data sets that use 

bucketed spectra are easier to work with, as they typically have only about 250 – 400 

buckets per spectrum. An alternative to bucketing is the direct integration of spectral 

peaks. Although this is more time consuming, it can be more accurate and used to derive 

absolute concentrations of specific metabolites. Typically, though, the number of 

integrated metabolites is less, ranging from 20-40 for serum or tissue samples and up to 

about 80 metabolites for urine.  

1.4.1.3 Normalization and Scaling 

Metabolomics data typically have to be normalized, otherwise the samples may 

not be comparable to each other. For the normalization process different approaches can 

be used.68,74 A common method for normalization is integral normalization known also as 

constant sum normalization. This approach normalizes each spectrum to a constant total 

integrated intensity across the whole region. Another method uses a standard with a 

known concentration that is to each sample; normalization of the spectrum is based on the 

standard.73 For tissue samples, the data can be normalized with respect to the weight of 

the tissue.68 

Metabolites in biological samples have a wide range of concentrations. The 

absolute variation in metabolite levels is related to their concentrations.68 Scaling is 

therefore used to avoid the selection of only high concentration metabolites as biomarker 

candidates because they tend to exhibit high variations. Scaling therefore helps to 
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emphasize lower concentration species that might otherwise be overlooked. A number of 

scaling methods are available to use such as Pareto scaling, variance scaling, Log scaling, 

range scaling, vast scaling, and level scaling.67,68,75,76  

1.4.2 Statistical Methods 

Two general approaches are used to perform statistical analysis on the rich 

metabolomics NMR data, exploratory analysis and confirmatory analysis. Exploratory 

data analysis is used to find patterns in the data set using methods such as principal 

component analysis (PCA) and hierarchical clustering analysis (HCA). However, 

confirmatory data analysis makes an implicit use of the group labels. Methods for 

confirmatory analysis include the univariate Student’s t-test, and multivariate methods 

that include partial least square-discriminant analysis (PLS-DA), orthogonal signal 

correction-PLS-DA (O-PLS-DA), logistic regression and many others.77 

1.4.2.1 Unsupervised Methods 

The exploratory methods commonly used in metabolomics are known as 

“unsupervised” since patterns are discovered without assigning the spectra to classes such 

as “disease” or “healthy.” This approach draws distinctions between groups of samples 

with respect to their chemical compositions, i.e., metabolite concentration level changes 

among the samples. The most commonly used multivariate method in metabolomics is 

PCA.78-83 PCA transforms the multidimensional data and builds linear multivariate 

models. The PCA model is built on the basis of orthogonal vectors (Eigenvectors). The 

principal components (PCs), are the eigenvectors of X, PCs are initially calculated from 

16



the original data set X by a diagonalization of the covariance data matrix. The PCs are 

then ranked by their eigenvalues in decreasing order. The first PC (PC1) thus describes 

the direction of the largest variations generated across the set of spectra, the second PC 

(PC2) then describes the direction for the largest portion of the remaining variation, and 

similarly for the rest of the PCs. Except for the first several PCs, the other remaining PCs 

mostly contain noise. Therefore, the first few PCs are typically used to display the 

variation in a  “score plot.” Separation of samples along a particular PC is explained 

using the loading plot; it shows the contribution of each variable in the original data to a 

principle component. Loading plot assists with the identification of potential biomarkers. 

1.4.2.2 Supervised Methods 

Popular confirmatory methods include partial least square discriminant analysis 

(PLS-DA), orthogonal signal correction partial least square discriminant analysis (O-

PLS-DA), t-test, logistic regression, k-nearest neighbor (KNN), and soft independent 

modeling by class analogy (SIMCA). The class information for each sample is assigned 

prior to the analysis, and therefore these methods are known as supervised analysis.  

PLS is one of the most common used supervised methods. PLS fits the data 

matrix of predictors X and class matrix or vector of responses Y, and find a linear 

regression model to the new coordinate system. Equation 1.1 shows the general equation 

 for the linear regression model. Y is the predicted outcome value for the linear 

regression model with the b, regression coefficients, 1 to z; b0 is the Y intercept while the 

values for the X, predictor variables, are 1to z. 

Y = bo + b1X1 + b2X2 +…+bzXz                  (eq. 1.1) 

17



Each orthogonal axis in PLS is named a latent variable (LV). PLS-DA is the 

combination of PLS and discriminant analysis (DA), where DA is a statistical method for 

determination of a linear combination of features to predict to which class a case (or 

sample) belongs.84,85 PLS-DA modeling can be used to find the difference between pre-

assigned sample groups and recognize variables responsible for the class separation. 

Qualitative values including class or category of samples are included in Y matrix. 

Typically, Y is set up as a “dummy matrix” where, for example, Disease = 1 and   

Healthy = 0. The PLS-DA method in particular, and most supervised methods in general, 

suffer from data over-fitting, therefore it is crucial to perform the result validation 

otherwise.86 Cross validation is the most common method for validation, in which results 

are applied to a new set of observations that was not used to build the model.87 Leave-

one-out cross-validation (LOOCV) is one of the most commonly used validation methods 

for PLS-DA models in metabolomics studies.88-90 In this technique one single observation 

from the original sample set is used to evaluate the predictive accuracy of the model, 

while all the other samples are used as the training data to build the model. Each sample 

is used once as the validation data in the cross validation process.  

1.4.2.3 Univariate Analysis 

Univariate methods are often employed to identify significant metabolites that are 

altered between different groups.  To identify significant difference, P-values, calculated 

from the Student’s t-test, Welch’s t-test, Mann-Whitney U test, or other variants are used 

to explains the probability of two means, are used.91
 Values less than 0.05 are generally 

considered statistically significant. However, the analysis of multiple metabolites results 
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in a process of making multiple comparisons between the sample classes, which often 

leads to an overly optimistic set of significant metabolites, of which many may be false 

discoveries. A number of methods are used to try to correct for this effect and generally 

involve the calculation of False Discovery Rate.92-95  

Box-and-whisker plots (box plots) are a descriptive statistic for illustrating groups 

of numerical data. Box plots show differences between populations with no assumptions 

regarding the statistical distribution. Figure 2 illustrates a single box plot in some detail. 

The receiver operating characteristic (ROC) curve describes the function of a variable in 

binary classification. In binary classification tests, sensitivity and specificity are the key 

statistical measurments.85,96,97 Several additional terms are useful for defining sensitivity 

and specificity, including the true positive (TP), true negative (TN), false negative (FN), 

and false positive (FP) rates. If a disease is proven in a patient, and diagnostic test also 

indicates the disease, the result from test is considered a true positive (TP). Similarly, if 

the diagnostic test shows the patient does not have a disease and also proven that the 

person does not have it, the result of the test is a true negative (TN). If the diagnostic test 

indicates the disease in a person who does not actually have the disease, the result is a 

false positive (FP). And the result is a false negative (FN) if a disease is proven in a 

patient but the result of the diagnostic test indicates no disease. Equations 1.2, 1.3, and 

1.4 describe sensitivity, specificity, and accuracy, respectively base on the terms of TP, 

TN, FP, and FN.94 
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Sensitivity = TP/(TP + FN)                                                   (eq. 1.2) 

Specificity = TN/(TN + FP)                                                  (eq. 1.3) 

Accuracy = (TN + TP)/(TN+TP+FN+FP)                            (eq. 1.4) 

 

The area under the ROC curve (AUC), measurement describes the overall 

accuracy of a test. An AUC of 0.5 describes equal distribution between two groups, i.e., a 

random result equivalent to flipping a coin, and the test based on it is valueless for 

discrimination. An AUC of more than 0.9 is considered to be an excellent test, and more 

than 0.8 considered good.98 

1.5 Thesis Summery  

The rest of this thesis focuses on the development of new methods and 

applications in NMR-based metabolomics. In Chapter 2, derivatization approaches were 

used for quantitative analysis of human blood plasma.  Improved sensitivity and 

resolution of NMR experiments imparted by 15N and13C isotopes enhanced the metabolite 

detection pool and accuracy of plasma metabolite analysis. Furthermore the approach can 

be extended to many additional metabolites in almost any biological mixture for high 

throughput analysis.  A new “smart isotope tag,” 15N-cholamine, which possesses two 

important properties: an NMR sensitive isotope, and a permanent charge for MS 

sensitivity, is discussed in Chapter 3. This unique approach enables effective detection of 

the carboxyl-containing metabolome by both analytical methods. In Chapter 4, HR-MAS 

was used in a metabolomics study to identify altered concentrations of small-molecule 

metabolites in triple negative breast cancer (TNBC). In this chapter the metabolite 
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profiles of African Americans and Caucasians were studied and compared. It is shown 

that NMR-based metabolomics has good potential for identifying altered metabolism in 

the aggressive TNBC that is observed especially in African American women. 

  

21



1.6 References 

1. Gates, S. C.; Sweeley, C. C.  Clin.  Chem. 1978, 24, 1663-1673. 

2. Horning, E. C.; Horning M. G. M Clin Chem. 1971, 17, 802–809. 

3. Nicholson, J. K.; Lindon J. C.; Holmes, E.  Xenobiotica. 1999, 29, 1181–1189. 

4. Fiehn, O. Comp. Funct. Genom.2001, 2, 155–168. 

5. Daviss B.The Scientist 2005, 19 (8), 25–28. 

6. Oliver, S.G.; Winson, M.K.; Kell, D.B.; Baganz, R. 1998.  Trends Biotechnol. 
1998, 16, 373–378. 

7. Gieger, C.; Geistlinger, L.; Altmaier, E.; Hrabé, M.; Kronenberg, F.; Meitinger, 
T.;Mewes H. W.; Wichmann, H.E.; Weinberger, K. M.; Adamski, J.; Illig, T.; 
Karsten, S.  PLoS Genet. 2008, 4(11), e1000282. 

8. Álvarez-Sánchez, B.; Priego-Capote, F.;  Luque de Castro, M. D.  Trends Anal. 
Chem. 2010, 29, 111–119. 

9. Bain, J. R.; Stevens, R. D.; Wenner, B. R.; Ilkayeva,  O.; Muoio, D. M.; Newgard, 
C.B. Diabetes 2009, 58, 2429-2443. 

10. Jain, M.; Nilsson, R.; Sharma, S.; Madhusudhan, N.; Kitami, T.; Souza, A. L.; 
Mootha, V. K. Science 2012, 336,1040–1044. 

11. Jung, K., Reszka, R., Kamlage, B., Bethan, B., Stephan, C., Lein, M. and 
Kristiansen, G. Int. J. Cancer. 2013. In Press. 

12. Liu, L.; Aa, J.; Wang, G.; Yan, B.; Zhang, Y.; Wang, X.; Zhao, C.; Cao, B.; Shi, 
J.; Li, M.; Zheng, T.; Zheng, Y.; Hao, G.; Zhou, F.; Sun, J.; Wu, Z. Anal. 
Biochem. 2010, 406 ( 2) 105– 112. 

13. Xie GX, Chen TL, Qiu YP, Shi P, Zheng XJ, Su MM, et al. Urine metabolite 
profiling offers potential early diagnosis of oral cancer. Metabolomics 2012, 8, 
220–231.  

14. Wishart, D. S.; Lewis, M. J.; Morrissey, J. A.; Flegel, M. D.; Jeroncic, K.; Xiong, 
Y.; Cheng, D.; Eisner, R.; Gautam, B.; Tzur, D.; Sawhney, S.; Bamforth, F.; 
Greiner, R.; Li, L.  J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2008, 
871,164-173. 

15. Lynch MJ, Masters J, Pryor JP, Lindon JC, Spraul M, Foxall PJD, Nicholson JK. 
Ultra high field NMR spectroscopic studies on human seminal fluid, seminal 
vesicle and prostatic secretions. J. Pharm. Biomed. Anal. 1994, 12, 5–19. 

22



16. Graça, G.; Duarte, I. F.; Goodfellow, B. J.; Carreira, I. M.; Couceiro, A. B.; 
Domingues, M. R.; Spraul, M.; Tseng, L. H.; Gil, A. M.  Anal. Chem. 2008, 80 
(15), 6085– 6092 

17. Damyanovich, A. Z.; Staples, J. R.; Marshall K. W.  Osteoarthr. Cartilage 1999, 
7,165–172. 

18. Wei, J., Xie, G., Zhou, Z., Shi, P., Qiu, Y., Zheng, X., Chen, T., Su, M., Zhao, A. 
and Jia, W. Int. J. Cancer 2011, 129, 2207–2217. 

19. Fox S. I. Human physiology. Boston, Mass.: WCB/McGraw-Hill. 1999, 364–367. 

20. West, J. B.; editor. Best and Taylor's Physiological Basis of Medical Practice. 
11th ed. Baltimore MD, USA: Waverly Press, Inc. 1985, 334–336. 

21. Wedge, D. C.; Allwood, J. W.; Dunn, W.; Vaughan, A. A.; Simpson, K.; Brown, 
M.; Priest, L.; Blackhall, F. H.; Whetton, A. D.; Dive, C.; Goodacre, R. Anal. 
Chem. 2011, 83, 6689– 669. 

22. Lauridsen, M.; Hansen, S. H.; Jaroszewski, J. W.; Cornett, C. Anal. Chem. 2007, 
79 (3), 1181-1186.  

23. Gribbestad, I. S.; Fjösne, H. E.; Haugen, O. A.; Nilsen, G.; Krane,  J.; Petersen, S. 
B.; Kvinnsland, S. . Anti. cancer Res. 1993, 13, 1973–1980. 

24. Beckonert, O.; Monnerjahn, J.; Bonk, U.; Leibfritz, D. NMR Biomed. 2003, 16, 1–
11. 

25. Sitter; B.; Bathen, T.; Hagen, B.; Arentz, C.; Skjeldestad, F. E.; Gribbestad, I. S. 
Magn. Res. Mater. Phy. 2004, 16, 174-181. 

26. Beckonert, O.; Coen, M.; Keun, H. C.; Wang, Y.; Ebbels, T. M.; Holmes, E.; 
Lindon, J. C.; Nicholson, J. K. Nat. Protoc. 2010, 5, 1019–1032. 

27. Li, M.; Song, Y.; Cho, N.; Chang, J.; Koo, H. R.; Yi, A.; Kim, H.; Park, S.; Moon 
W. K. PLoS ONE 2011, 6, e25563. 

28. Schenetti, L.; Mucci, A.; Parenti, F.; Cagnoli, R.; Righi, V.; Tosi, M. R.; Tugnoli, 
V.  Concept. Magnetic Res. 2006, 28A, 430-443. 

29. Tate, A. R.; Crabb, S.; Griffiths, J. R.; Howells, S. L.; Mazucco, R. A.; 
Rodrigues, L. M.; Watson, D.  Anticancer Res. 1996, 16, 1575–1579.  

30. Tate A. R.; Griffiths, J. R.; Martinez-Perez, I.; Moreno, A.; Barba, I.; Cabanas, M. 
E.; Watson, D.; Alonso, J.; Bartumeus, F.; Isamat, F.; Ferrer, I.; Vila, F.; Ferrer, 
E.; Capdevilla, A.; Arus, C. NMR Biomed. 1998,11, 177–191.  

23



31. Florian, C. L.; Preece, N. E.; Bhakoo, K. K.; Williams, S. R.; Noble M. D. NMR 
Biomed. 1995, 8, 253–264.  

32. Florian, C. L.; Preece, N. E.; Bhakoo, K. K.; Williams, S. R.; Noble M. D. Cancer 
Res. 1995, 55, 420–427.  

33. Winder, C. L.; Dunn, W. B.; Schuler, S.; Broadhurst, D.; Jarvis, R.; Stephens, G. 
M.; Goodacre, R. Anal. Chem. 2008, 80, 2939-2948.  

34. Bolten, C. J.; Wittmann, C. Biotechnol. Lett. 2008, 30, 1993-2000. 

35. Faijes, M.; Mars, A. E.; Smid, E. J. Microb. Cell Fact. 2007, 6, 27. 

36. Zang, L.; Frenkel, R.; Simeone, J.; Lanan, M.; Byers, M.; Lyubarskaya, Y. Anal. 
Chem.2011, 83(13), 5422–5430. 

37. Spratlin, J. L.; Serkova, N. J.; Eckhardt, S. G.; Clin. Cancer Res. 2009, 15(2), 
431-440. 

38. Wu, H.; Southam, A. D.; Hines, A.; Viant, M. R.  Anal.  Biochem. 2008, 372(2), 
204-212. 

39. Lindon, J. C.; Nicholson, J. K. Annu. Rev. Anal. Chem. 2008, 1, 45-69. 

40. Liu, M. L.; Mao, X. A.; Ye, C. H.; Huang, H.; Nicholson, J. K.; Lindon, J. C. J. 
Mag. Resonan. 1998, 132, 125-129. 

41. Hoult, D. I. J. Magn. Reson.1976, 21, 337- 347. 

42. Ogg, R. J.; Kingsley, P. B.; Taylor, J. S. J. Magn. Reson.1994,104(1), 1-10. 

43. Simpson, A. J;.  Brow, S. A. J. Magn. Reson., 2005, 175, 340–346 

44. Hwang, T. L.; Shaka, A. J. J. Mag. Resonan. A 1995,112, 275-279. 

45. Nicholson, J. K.; Foxall,  P. J. D.; Spraul, M.; Farrant  R. D.; Lindon,  J. C. Anal. 
Chem. 1995, 67, 793-811. 

46. Meiboom, S., Gill, D.  Rev.Sci. Instrum. 1958, 29, 688–691. 

47. Kessler, H.; Oschkinat, H.; Griesinger, C. J. Magn. Reson. 1986, 70, 106−133. 

48. Sandusky, P.; Raftery, D. Anal. Chem. 2005, 77, 7717-7723. 

49. Sandusky, P.; Raftery, D. Anal. Chem. 2005, 77, 2455-2463. 

50. Nicholson, J. K.; Wilson, I. D. Prog. Nucl. Mag. Res.  Sp. 1989, 21, 449-501. 

24



51. Beckonert, O.; Keun, H. C.; Ebbels, T. M.; Bundy, J.; Holmes, E.; Lindon, J. C.; 
Nicholson, J. K. Nat. Protoc. 2007, 2, 2692-2703. 

52. Bodenhausen, G.; Ruben, D.J. Chem. Phys. Lett. 1980, 69, 185–189. 

53. Koskela, H.; Heikkila ̈, O.; Kilpela ̈inen, I.; Heikkinen, S. J. Magn. Reson. 2010, 
202, 24–33. 

54. McKenzie,J. S.; Charlton,  A. J.; Donarski,   J. A.; MacNicoll,  A. D.; Wilson,   J. 
C. Metabolomics, 2010, 6, 574–582. 

55. Ye, T.; Mo, H.; Shanaiah, N.; Gowda, G. A.; Zhang, S.; Raftery, D. Anal. Chem. 
2009, 81, 4882-4888. 

56. Ye, T.; Zhang, S.; Mo, H.; Tayyari, F.; Gowda, G. A.; Raftery, D. Anal. Chem. 
2010, 82, 2303-2309. 

57. Gowda, G. A. N.; Tayyari, F.; Ye, T.; Suryani, Y.; Wei, S. W.; Shanaiah, N.; 
Raftery, D. Anal. Chem. 2010, 82, 8983-8990. 

58. Bertram, H. C.; Malmendal, A.; Petersen, B. O.; Madsen, J. C.; Pedersen, H.; 
Nielsen, N. C.; Hoppe, C.; Molgaard, C.; Michaelsen, K. F.; Duus, J. O. Anal. 
Chem. 2007, 79, 7110-7115. 

59. Bernini, P.; Bertini, I.; Luchinat, C.; Nepi, S.; Saccenti, E.; Schäfer, H.; Schütz, 
B.; Spraul, M.; Tenori, L. J. Proteome Res. 2009, 8, 4264-4271. 

60. Bergeron, S. J.; Henry, I. D.;Santini,  R. E.; Aghdasi, A.; Raftery, D. Magn. 
Reson. Chem. 2008, 46, 925-929. 

61. Henry, I. D.; Park, G. H. J.; R. Kc; Tobias, B.; Raftery, D. Concepts in Magnetic 
Resonance Part B-Magnetic Resonance Engineering 2008, 33B, 1-8. 

62. Kc, R.; Henry, I. D.; Park, G. H. J.; Raftery, D. J. Magn. Reson. 2009, 197, 186-
192. 

63. Lindon, J. C.; Nicholson, J. K.; Wilson, I. D. J. Chromatogr. B 2000, 748, 233-
258. 

64. Chikayama, E.; Suto, M.; Nishihara, T.; Shinozaki, K.; Kikuchi, J. PLoS One 
2008, 3, e3805. 

65. Cuperlovic-Culf, M.; Barnett, D. A.; Culf, A. S.; Chute, I. Drug Discov. Today 
2010, 15(15), 610-621. 

66. Shanaiah, N.; Desilva; M. A.; Gowda, G. A. N.; Raftery, M. A.; Hainline, B. E.;  
Raftery, D. P. Natl. Acad. Sci. USA 2007, 104, 11540-11544. 

25



67. Zhang, S. C.; Gowda, G. A. N.; Ye, T.; Raftery, D. Analyst 2010, 135, 1490-1498. 

68. Craig, A.; Cloarec, O.; Holmes, E.; Nicholson, J. K.; Lindon, J. C., Anal. Chem., 
2006, 78, 2262–2267. 

69. Monleón, D.; Morales, J. M.; Gonzalez-Segura, A.; Gonzalez-Darder, J. M.; Gil-
Benso, R.; Cerdá-Nicolás, M.; López-Ginés, C. Cancer Res. 2010, 70(21), 8426 –
8434. 

70. Zhang, J.; Liu, L.; Wei, S.; Gowda, G. A. N.; Hammoud, Z.; Kesler, K. A.; 
Raftery, D. J. Thorac. Cardiovasc. Surg. 2011, 141( 2), 469– 475. 

71. Zhang, J.; Bowers, J.; Liu, L.; Wei, S.; Gowda, G. A.; Hammoud, Z.; Raftery, D. 
PLoS One 2012, 12, e30181. 

72. Veselkov, K. A.; Lindon, J. C.; Ebbels, T. M. D.; Crockford, D.;Volynkin, V.; 
Holmes, E.; Davies, D. B.; Nicholson J. K. Anal. Chem. 2009, 81, 56-66. 

73. Lämmerhofer, M.; Weckwerth, W. Front Matter, in Metabolomics in Practice: 
Successful Strategies to Generate and Analyze Metabolic Data, Wiley-VCH 
Verlag GmbH & Co. KGaA, Weinheim, Germany 2013. 

74. Spraul, M.; Neidig, P.; Klauck, U.; Kessler, P.; Holmes, E.; Nicholson, J. K.; 
Sweatman, B. C.; Salman, S. R.; Farrant, R. D.; Rahr, E.; Beddell, C. R.; Lindon, 
J. C.  J. Pharmaceut. Biomed. 1994, 12(10), 1215-1225. 

75. Ebbels, T. M.; Lindon, J. C.; Coen, M. Methods Mol. Biol. 2011, 708, 365-388. 

76. Van den Berg, R. A.; Hoefsloot, H. C. J.; Westerhuis, J. A.; Smilde, A. K.; van 
der Werf, M. J.  BMC Genomics 2006, 7, 142. 

77. Zhang, S.; Zheng, C.; Lanza, I. R.; Nair, S.; Raftery, D.; Vitek, O. Anal. Chem. 
2009, 81,6080–6088. 

78. Krzanowski, W. J. Principles of Multivariate Analysis: A User's Perspective. 
Revised ed.; Oxford University Press, 1988. 

79. Duda, R. O.; Hart, P. E.; Stork, D. G. Pattern Classification. 2nd ed.; Wiley 2001. 

80. Sharaf, M. A.; Illman, D. L.;  Kowalski, B. R. Chemometrics. Wiley- Interscience 
1986. 

81. Holmes, E.; Foxall, P. J.; Nicholson, J. K.; Neild, G. H.; Brown, S. M.; Beddell, 
C. R.; Sweatman, B. C.; Rahr, E.; Lindon, J. C.; Spraul, M.; Neild, P. Anal. 
Biochem. 1994, 220(2), 284-296. 

26



82. Beckwith-Hall, B. M.; Nicholson, J. K.; Nicholls, A. W.; Foxall, P. J.; Lindon, J. 
C.; Connor, S. C.; Abdi, M.; Connelly, J.; Holmes, E. Chem. Res. Toxicol. 1998, 
11(4), 260-272. 

83. el-Deredy, W. NMR Biomed. 1997, 10(3), 99-124. 

84. Wold, S.; Sjostrom, M.; Eriksson, L. Chemometr. Intell. Lab. Syst. 2001, 58, 109-
130. 

85. Barker, M.; Rayens,W. J. Chemometr. 2003, 17, 166-173. 

86. Westerhuis, Johan, A.; Hoefsloot, H. C. J.; Smith, S.; Vis, D. J.; Smilde, A. K.; 
van Velzen, E. J.; van Duijnhoven, J. P. M.;van Dorsten, F. A. Metabolomics 
2008, 4,81–89. 

87. Anderssen, E., Dyrstad, K., Westad, F., & Martens, H. Reducing over-optimism 
in variable selectio n by cross-model validation. Chemometr. Intell. Lab. 2006, 
84(1–2), 69–74. 

88. Stretch, C.; Eastman, T.; Mandal, R.; Eisner, R.; Wishart, D. S.; Mourtzakis, M.; 
Prado, C. M.; Damaraju, S.; Ball, R. O.; Greiner, R.; Baracos, V. J. Nutr. 2012, 
142,14-21. 

89. Gu, H.; Pan, Z.; Xi, B.; Asiago, V.; Musselman, B.; Raftery, D. Anal. Chim. Acta. 
2011,686, 57–63. 

90. Guan, W.; Zhou, M.; Hampton, C. Y.; Benigno, B. B.; Walker, L. D.; Gray, A.; 
McDonald, J. F.; Fernández, F. M. BMC Bioinform. 2009, 10, 259. 

91. Goodpaster, A. M.; Romick-Rosendale, L. E.; Kennedy, M. A. Anal. Biochem. 
2010, 401, 134-143. 

92. Bonferroni, C. E. In Studi in Onore del Professore Salvatore Ortu Carboni 1935, 
13-60. 

93. Bonferroni, C. E. Pubblicazioni del R Istituto Superiore di Scienze Economiche e 
Commerciali di Firenze 1936, 8, 3-62. 

94. Benjamini, Y.; Hochberg, Y. J. Roy. Stat. Soc. B. 1995, 57(1), 289–300. 

95. Storey J. D. J. Roy. Stat. Soc. Ser. B Met. 2002, 64, 479-498 

96. Metz, C. E. Semin. Nucl. Med. 1978, 8, 283-298. 

 

27



97. Raubertas, R. F.; Rodewald, L. E.; Humiston, S. G.; Szilagyi, P. G. Med. Decis. 
Making 1994, 14, 169-174. 

98. Zhu, W.; Zeng, N.; Wang, N. 2010, http://www.nesug.org/Proceedings/ 
nesug10/hl/hl07.pdf. Access Aug. 1st, 2013. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

28



	
  
	
  

Figure	
  1.1	
  The	
  general	
  scheme	
  of	
  metabolic	
  profiling	
  to	
  for	
  disease	
  biomarkers	
  
discovery	
  

Biological(Samples(
Serum,Urine,(Tissue,(Cell,(etc.(

(
(
(

Sample(Preparation(
Quenching,(Extraction,(Derivatization,(Buffer,(etc.(

(
(
(

Data(Acquisition(
NMR,(MS,(etc.(

(
(
(

Data(Preprocessing(
Phase(Correction,(Baseline(Correction,(Peak(Alignment,(Normalization,(Binning,(

Scaling,(etc(
(
(
(

Multivariate(Statistical(Analysis(
(
(
(

Unsupervised(Analysis((PCA,(HCA,etc.)((((((Supervised(Analysis((tKtest,(PLS,(etc.)(
(
(
(
(

Putative(Biomarkers(
Identification(and(Quantitation(

(
(
(

Validation(and(Biological(Understanding(
(
(
(

Clinical(Trails(
(
(
(
(
(
(

29



	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  

	
  
	
  

Figure 1.2 Box-and-whisker plot. Horizontal line in the middle portion of the box 
indicates the median value; bottom and top boundaries of the box indicate the lower and 
upper quartiles, respectively; whiskers at the bottom and top are 5th and 95th percentiles, 

respectively, and circle indicates an the outlier.	
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CHAPTER 2. QUANTITATIVE ANALYSIS OF BLOOD PLASMA METABOLITES 
USING ISOTOPE ENHANCED NMR METHODS 

2.1 Introduction 

Nuclear magnetic resonance (NMR) spectroscopy is increasingly used in 

metabolomics for the analyses of multiple metabolites in biofluids and tissue. 

Metabolomics promises a number of important applications in biomedicine including a 

more detailed understanding of biological processes, the discovery of the biomarkers 

associated with numerous diseases, pharmaceutical development and toxicology.1-6 It is 

increasingly recognized that NMR is a very attractive methodology for quantitative 

metabolomics because of its high reproducibility and quantitative nature. In particular, 

the improved resolution of two-dimensional (2D) NMR methods is considered very 

useful for metabolomics applications7-11. However, a major drawback of 2D NMR is that 

the cross-peak volume in the spectrum is influenced by numerous experimental or 

intrinsic parameters including the non-uniform excitation profile of the radio frequency 

pulses, number and duration of the pulses, inter- pulse delays, relaxation times and the 

magnitude of indirect spin-spin couplings. The high sensitivity of peak intensities (or 

volumes) to these parameters has limited the use of 2D (particularly 1H homonuclear 2D) 

experiments for quantitative analysis in metabolomics. 

To overcome the limitations of quantitation and to improve the analysis, new 

higher resolution 2D approaches utilizing 1H-13C heteronuclear 2D experiments (HSQC) 
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have been proposed.12,13 One approach is to utilize the information from 2D 1H-13C NMR 

spectra of standard compounds obtained under identical conditions and relate the peak 

heights in the samples to standard mixtures12; another is to utilize calibration curves 

obtained using 1H-13C HSQC spectra for individual metabolites to determine the 

metabolite concentrations.13 Most recently, a more general approach that does not require 

measurements of standard compounds was proposed.14 This method utilizes correction 

factors derived theoretically from the solution of the Bloch equations and the analysis of 

product operator formalism incorporating longitudinal (T1) and transverse (T2) relaxation 

parameters, 1H-13C heteronuclear J-coupling and various delays used in the pulse 

sequence. 

A major drawback of using the 1H-13C HSQC experiment for quantitative 

analysis, is the lack of sensitivity arising from low metabolite concentration and natural 

abundance of 13C (1.1 % natural abundance). To compensate this limitation, unusually 

long acquisition times (nearly 10 hrs or more) are typically required since the NMR 

sensitivity scales with the square-root of the number of scans. Moreover, although 1H-13C 

HSQC greatly enhances resolution when compared with 1D NMR, given the complexity 

of the biological samples, the resolution obtainable from a single 2D experiment is not 

always adequate for analyzing a large number of metabolites. 

In the present study, with the goal of circumventing the current drawbacks of 

limited resolution and sensitivity, we utilize a combination of isotope tagging approaches 

and 2D NMR methods to accurately analyze human plasma metabolites. A number of the 

most common metabolites in blood plasma were quantified using this approach after 

validating the experimental protocols using a mixture of synthetic compounds. 
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Metabolites containing carboxyl and amino groups were tagged with 15N or 13C, 

respectively, before detection by 2D NMR. We have recently shown the proof-of-

principle approaches to introduce isotope tags using simple chemical derivatization 

methods and that the NMR spectra of the tagged metabolites improve both resolution and 

sensitivity.
15-18 The combination of advanced isotope tagging methods with conventional 

1D and 2D NMR methods as described in the present study enables the quantitative 

analysis of a large number of metabolites in human blood on a routine basis. 

2.2 Materials and Methods 

2.2.1 Chemicals and Samples 

  Twenty-eight metabolite standards (Table 2.1), 4,4-dimethyl-4-silapentane-1-

sulfonic acid (DSS), maleic acid, ethanolamine (all from Sigma–Aldrich, St. Louis, MO), 

4-(4,6- dimethoxy [1,3,5] triazin-2-yl)-4-methylmorpholinium chloride (DMT-MM) 

(Acros, Geel, Belgium), 15N-ethanolamine, 13C-formic acid (Cambridge Isotope 

Laboratories, Andover, MA), N, N-dicyclohexylcarbodiimide and N-hydroxysuccinimide 

(Sigma-Aldrich) were used without further purification. An ultra-pure primary 

quantitative standard, tris(hydroxymethyl)aminomethane, (99.9%) was obtained from 

Mallinckrodt Baker Inc. Phillipsburg, NJ. Human blood plasma (10 × 1 mL) was 

procured from the National Institute of Standards and Technology (NIST, Gaithersburg, 

MD). Frozen plasma samples were transported to Purdue under dry ice and stored at   

−80 °C until used for the analysis. 
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2.2.2 Calibration of the Standard Solutions 

  Twenty-eight metabolites that commonly occur in human blood plasma were 

selected based on entries in the human metabolite database (HMDB),
19 the analysis of 

isotope�labeled 1H-13C HSQC and 1H-15N HSQC spectra, as well as 1D and 2D 1H-1H 

TOCSY spectra of a human plasma sample. Stock solutions (20 mM) for the synthetic 

analogues of all these 28 metabolites (Table 2.2) and internal standards, DSS (5 mM), 

maleic acid (20 mM) and ethanolamine (20 mM), were prepared. The concentration of 

the DSS solution was calibrated using 1H NMR against a primary stoichiometric 

standard, tris(hydroxymethyl)aminomethane (22.4 mM), prepared in the lab. The 

calibrated DSS solution was then used to calibrate all other standard solutions. Briefly, 

solutions of the synthetic analogues of the 28 metabolites and internal standards were 

divided into 5 groups as shown in Table 2.3. The grouping of samples in Table 2.3 was 

such that the 1H NMR peaks for at least one proton from each compound in the group 

were isolated for the measurement of the peak integral. For each group, the one-

dimensional (1D) 1H NMR spectrum was recorded, and based on the integrated area of 

the isolated peaks with reference to DSS, exact concentrations of the standard solutions 

were determined (Table 2.2). 

2.2.3 Mixture Analyzing 

  A mixture of the 28 synthetic analogues of the metabolites was prepared using the 

stock solutions such that the final concentration of each standard compound was matched 

approximately to its expected concentration in human blood plasma (Table 2.1).
19

 From 
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this mixture, three identical sets of samples (Set 1, Set 2 and Set 3) were prepared, Figure 

2.1 shows a flow diagram illustrating the steps followed in the analysis of the standard 

metabolite mixture using isotope enhanced NMR methods; each set consisted of four 

solutions, 2× 500 μL and 2× 1000 μL of the mixture. All solutions were then dried under 

vacuum. To the samples from Set 1, maleic acid solution (92 nmol) was added as an 

internal reference and the solutions were diluted to 500 μL using doubly distilled water. 

The carboxylic acid class of metabolites was then tagged with 15N-labeled ethanolamine 

following the established procedure.
17

 To each sample from Set 2, ethanolamine solution 

(200 nmol) was added as an internal reference and the solution diluted to 500 μL using 

doubly distilled water. Amines and amino acids were subjected to 13C isotope tagging 

using a 13C-formic acid reaction following the established procedure.
18

 Finally, to the 

samples from Set 3, DSS (9.44 nmol) was added as an internal reference and 

reconstituted in 560 μL of phosphate buffer (pH=7.4) in D2O and transferred to 5 mm 

NMR tubes for 1D and 1H-1H 2D TOCSY NMR experiments. 

2.2.4 General Procedure for Tagging Metabolites  

2.2.4.1 15N-Ethanolamine Tagging Procedure 

3 μL 15N-ethanolamine (50 μmol) was added to the sample, the pH adjusted to 7.0 

with 1 M HCl and DMT-MM (21 mg) was added to initiate the reaction.20,21 The mixture  
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was continuously stirred at room temperature for 4 hrs to complete the reaction. The pH 

was then adjusted to 5.0 by adding 1 M HCl or NaOH and the solutions were diluted to 

600 μL by adding water or D2O prior to detection by 1H-15N 2D NMR.22,17 

2.2.4.2 13C –formic Acid Tagging Procedure 

2 μL of 13C-formic acid (0.05 mmol) and 5 mg of N-hydroxysuccinimide (0.04 

mmol) were dissolved in 100 μL tetrahydrofuran. 9 mg of                        

N, N-dicyclohexylcarbodiimide (0.04 mmol) in 50 μL tetrahydrofuran was added to the 

mixture and stirred at room temperature.23 After 15 min, the reaction mixture was 

centrifuged to remove insoluble urea; the supernatant containing                        

13C-N-formyloxysuccinimide was then added to the mixture of synthetic analogues of the 

metabolites along with 50 μL of 2 M NaHCO3 (0.1 mmol) aqueous solution. The reaction 

was stirred at room temperature for 4 h and dried under vacuum. The residue was 

redispersed in 500 μL D2O, the pH was adjusted to 7.0 by adding 1M HCl and then 

transferred to a standard 5mm NMR tube for analysis using 1H-13C 2D NMR.18 

2.2.5 Sample Prepration for NMR Experiments 

2.2.5.1 Plasma Deproteination   

Cold methanol (4° C; 9.6 mL) was added to 4.8 mL of the NIST plasma, 

vortexed, and then kept for 30 min at -20 °C. The precipitated protein pellet was removed 

after centrifuging at 13,200 g for 10 min. The supernatant was divided into 12 equal parts 

and divided into three groups, each group consisting of four samples. Flow chart show in 
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Figure 2.2 depicting the steps followed in the analysis of metabolites in the NIST plasma 

sample using isotope enhanced NMR methods.  

2.2.5.2 Isotope Tagging of Plasma Metabolites and Sample Preparation for NMR  

 In each group, two samples served as controls and the remaining two were spiked 

with 400 μL of the stock solution mixture of 28 synthetic samples. All three groups of 

samples were then dried in vacuum. One group was used to label metabolites containing 

carboxylic acid groups with 15N-ethanolamine, and the second group was used to label 

metabolites containing amine groups with 13C-formic acid, after the addition of internal 

standards, either maleic acid or ethanolamine, appropriately. Identical procedures were 

used for isotope tagging the plasma metabolites. To the third group of samples, DSS 

(9.44 nmol) was added as an internal reference and reconstituted in 560 μL of phosphate 

buffer (pH=7.4) in D2O. Samples from all the three preparations were transferred to 5 

mm NMR tubes after adjusting the pH and solution conditions as described earlier for the 

mixture of standards. 

2.2.6 NMR Experiments 

NMR experiments were performed at 298 K on a Bruker Avance-III-800 

equipped with a room temperature 1H inverse detection Z-gradient probe or a Bruker 

DRX-500 spectrometer equipped with a 1H inverse detection Z-gradient cryo-probe. 1D 

NMR experiments for the five groups of standard samples (Table 2.3), the mixture of 28 

synthetic analogues, and the plasma extracts were performed using a one pulse sequence 

with residual water signal suppression by pre-saturation during relaxation delay. Thirty-

two scans with 64k time domain data points were collected with a sufficiently long 
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recycle delay (20 s) to ensure complete recovery of the magnetization between scans. For 

the 15N isotope tagged samples, 1H -15N 2D HSQC experiments were performed 

employing an INEPT transfer delay of 5.5 ms corresponding to a 
1
JNH of 90 Hz. Spectral 

widths of approximately 10 kHz in 1H and 5 kHz in 15N dimensions were used for the 

800 MHz experiments. For 13C isotope tagged samples, sensitivity-enhanced 1H-13C 2D 

HSQC experiments were performed employing an INEPT transfer delay of 2.5 ms 

corresponding to a 
1
JC-H of 200 Hz. Spectral widths of approximately 10 kHz for the 1H 

dimension and 600 Hz for 13C were used at 800 MHz. For both 1H-15N HSQC and 1H-13C 

HSQC 2D experiments, 128 free induction decays were collected along the indirect (t1) 

dimensions using 4 transients per increment and 2s or 3s recycle delay, resulting in a total 

acquisition time of 18 min for the 1H-15N HSQC and 28 min for the 1H-13C HSQC. 

Phase-sensitive data were obtained using echo-anti-echo mode with nitrogen (for 1H-15N 

HSQC) or carbon (for 1H-13C HSQC) decoupling during acquisition (t2 dimension) using 

the GARP (Globally Optimized Alternating-phase Rectangular Pulses) sequence. 1H-1H 

2D TOCSY experiments were performed for the neat (non-derivatized) samples with a 

spectral width of 6 kHz (500 MHz) or 12 kHz (800 MHz) in both the dimensions. The 

residual water signal was suppressed by presaturation. 400 free induction decays were 

collected with t1 increments using 8 transients per increment and 2s recycle delay, 

resulting in a total acquisition time of 116 min (500 MHz) or 111 min (800 MHz). 

All 1D data were Fourier transformed with a 0.3 Hz line broadening function. The 

2D data were zero-filled to 1,024 points in the t1 dimension after forward linear 

prediction to 512 points and Fourier-transformed after multiplying by a squared sine-bell 
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window function shifted typically by π/4 or π/2 along both the dimensions. All NMR data 

were processed with Bruker Topspin 2.0 on a Redhat Linux platform and Bruker 

XWINNMR 3.5 on a SGI / IRIX platform. An automatic baseline correction using a 

polynomial of degree 5 was used to correct the baseline in both 1D and 2D spectra. 

Peaks in the 1D and 2D NMR spectra were assigned to various metabolites based 

on literature reports.
17-19 Integrals for well resolved peaks in 1D and 2D spectra were 

obtained with respect to the peak for the internal standard DSS, maleic acid or 

ethanolamine. Integral limits for each peak in the 2D spectra were selected such that the 

selected region encompassed the whole peak and that no other peak interfered with the 

selection. Once chosen for each type of 2D spectrum, the same sets of integral limits 

were used for all other samples. Concentrations of the plasma metabolites were 

determined by comparing the peak integrals from the spectra obtained with and without 

spiking with the synthetic analogues, and also by directly comparing the peak integrals of 

the plasma metabolites with those from the standards. The accuracy, reproducibility and 

errors were estimated from two to eight measurements, depending on the detection of the 

resolved peak for a particular metabolite in one or more types of spectra, for both 

synthetic mixtures and plasma samples. The 1H-15N HSQC, 1H-13C HSQC and 1H-1H 

TOCSY experiments and the data analyses were performed by independent persons. 

2.3 Results 

The standard solutions of the synthetic analogues of the plasma metabolites and 

internal standards (maleic acid and ethanolamine), prepared based on their weights, were 

calibrated using 1D 1H NMR. The actual concentration of the standard solutions prepared 
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based on the weight varies depending on the purity and hygroscopic nature of the 

compounds and hence, it is important to calibrate the standard solutions especially for 

accurate quantitative analysis. The DSS solution, which was first calibrated using a 

primary stoichiometric standard, tris(hydroxymethyl)aminomethane, was used for 

calibrating all the standard solutions (Table 2.3). The difference between the 

concentrations determined based on sample weight and calibration using 1D NMR varied 

as much as 10% for all but three metabolites, which varied up to nearly 20% (Table 2.2) 

due to hygroscopic nature of the metabolites or sample impurities. 

2.3.1 Analysis of Synthetic Metabolite Mixture 

A mixture of 28 metabolites was analyzed using both 15N and 13C isotope tagging 

approaches. Fig. 2.3 shows 2D spectra of the mixture of 28 compounds with 15N and 13C 

isotope tagging, as well as without tagging. The integrated 2D peak volumes were 

obtained and then used to calculate the metabolite concentrations. Fig. 2.4 shows the 

concentration of the compounds thus determined. As can be seen in the figure, an 

excellent match between the metabolite concentrations derived from NMR methods and 

the actual values was obtained. Further, as shown in Figure 2.5, a correlation of the NMR 

derived values with the expected values showed a very good agreement for all low and 

high concentration metabolites (R
2 > 0.99). 
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2.3.2 Quantitation of Plasma Metabolites 

The 1D 1H NMR spectrum of the plasma sample obtained without isotope 

labeling is highly complex, with only a relatively small number of metabolite signals 

being isolated from other signals as shown in figure 2.6. 2D HSQC spectra of plasma 

samples tagged with 15N and 13C isotopes provide resolved peaks for a much larger 

number of carboxylic acid and amine containing metabolites. Fig. 2.7 shows 2D spectra 

of the plasma obtained with and without 15N or 13C tagging. The 2D TOCSY spectrum of 

the same plasma sample also provided a number of well resolved peaks (Fig. 2.7c). 

However, unlike the HSQC spectra, the TOCSY spectrum showed a number of redundant 

peaks for the same metabolite, which increases the complexity of the spectrum. 

Quantitation of the plasma metabolites followed an identical procedure used for 

the determination of the concentrations of metabolites in the synthetic mixture. The 

integrated peak areas/volumes in the 1D/2D spectra of the neat and the spiked plasma 

samples were obtained and the metabolite concentrations determined. Twenty-seven 

metabolites that were identified in human plasma were analyzed in duplicate 

measurements with and without 15N and 13C isotope tagging. Fig. 2.8 depicts the 

concentration of the metabolites thus determined. The 1H, 13C and 15N chemical shifts for 

the blood plasma metabolites analyzed in this study are shown in Table 2.4 and the 

derived concentrations using a combination of four different NMR methods is shown in 

Table 2.5. Further, the concentration of the carboxylic acid and amino metabolites were 

also determined by directly comparing the 2D peak integrals with those for the 

corresponding standard compound. Comparison of the metabolites concentration 
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determined with and without spiking is shown in Fig. 2.8. Notably, the values determined 

from both approaches agree well. 

2.5 Discussion 

1H NMR spectroscopy is an attractive tool for the quantitative analysis of multiple 

metabolites from intact biological samples. Considering its ease of use, reproducibility, 

and high- throughput capabilities, 1D 1H NMR spectroscopy is often used for 

metabolomics-based studies. However, it is challenging to analyze the 1D NMR 

spectrum of plasma for absolute quantitation as it contains a large number of overlapping 

signals due to hundreds of metabolites present at variable concentrations. The multiplicity 

of the signals due to J-coupling makes 1D 1H NMR spectra of plasma particularly 

challenging. The interference from macromolecules such as proteins and lipids adds to 

the complexity and causes baseline distortions in the spectra. Such overlap and baseline 

issues substantially affect the accuracy of the quantitative analysis using 1D NMR. To 

offset such limitations, a majority of the studies that use 1D NMR resort to comparisons 

of the relative intensities of the 1D NMR signals between disease and healthy samples. 

While the use of relaxation edited techniques such as the Carr-Purcell-Meiboom-Gill 

(CPMG) experiment, serum/ plasma deproteinization, and line fitting approaches 

significantly improves the analysis of metabolites,
24 such methods are not ideal. 

Diffusion-sensitized 1D NMR spectroscopy, which uses data from two separate 1D 

experiments, one obtained using low diffusion gradients and the other using high 

gradients to suppress macromolecular background signals effectively, was shown to be 
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useful for the quantitative analysis of blood plasma metabolites.
25 However, spectral 

overlap still significantly limits the number of metabolites that can be analyzed. 2D NMR 

promises quantitative analysis of a large number of metabolites on a routine basis. An 

important requirement is that the cross-peaks in 2D spectra should be devoid of overlaps 

for reliable quantitative results; however, this criterion is not often met for a large number 

of metabolites by a single 2D experiment due to the extremely high complexity of 

plasma. The advantage of the new 2D NMR approaches used here is that the use 

chemoselective isotope tags greatly reduces the complexity of the spectra, since only a 

single peak is observed for the metabolites with a single functional group (see Figures 2.3 

and 2.7). The reduced complexity of the spectra due to the absence of less interesting 

chemical signals is particularly important for the analysis of low- concentration 

metabolites (Figures 2.4 and 2.8). This method, however, does not work for the analysis 

of lipoproteins, which represents a major class of metabolites in blood plasma and which 

have been effectively analyzed using a multivariate deconvolution approach.26,27 

An important criterion for the quantitative analysis method to be robust is that it 

does not require the use of spiking standards for each sample. To test this, we also 

determined the concentration of 15N and 13C isotope tagged metabolites in plasma by 

comparing the 2D peak integrals with those from the synthetic analogues. It may be 

interesting to note that, as shown in Figure 2.9, the values determined using both 15N and 

13C isotope tagging agree well with those determined on the basis of spiking with 

synthetic analogues. Therefore, it is sufficient to obtain the integral for each synthetic 

analogue only once, which can be used for the analysis of any number of samples. 

Utilization of 2D HSQC experiments involving the isotopes has the additional advantage 
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since both the magnitude of the coupling and the relaxation properties of the nuclear pairs 

(15N/ 13C and 1H) do not appreciably vary across the metabolites of interest and, hence, 

provide the relative cross peak intensities that are less sensitive to instrumental settings. 

In this study, we quantified 27 metabolites with an average CV of 2.4% for 17 

metabolites and 5.6% when all the metabolites were considered. When the results from 

all the four NMR methods were combined for the same metabolites, the average CV’s 

were 4.8% and 8.7%, respectively. We note that, as the metabolite library expands, we 

can quantify additional metabolites from the same and already acquired 2D data by 

comparison of the peak integrals with those from the standards. Mass spectrometry (MS), 

another very useful method for quantitative analysis, is highly sensitive and provides 

quantitative information on a larger number of metabolites. However, MS invariably 

involves the combination of a separation method such as gas chromatography or liquid 

chromatography for accurate analysis and often renders the obtained results to be 

sensitive to the specific column and separation parameters and especially the ionization 

conditions. In addition, a standard compound is needed for each quantified metabolite. 

In conclusion, this investigation presents quantitative analysis of over 25 plasma 

metabolites using 15N and 13C isotope tagging methods. Carboxylic acids and amines 

represent a majority of the metabolites in body fluids, and their analysis by isotope 

tagging significantly enhances the detectable metabolic pool for biomarker discovery 

applications. The combination of improved sensitivity and resolution and the reduced 

time required when compared to natural abundance heteronuclear NMR methods are 

attractive for the routine and accurate analysis of metabolites in complex biological 

samples. Although, the isotope tagging methods use 2D NMR experiments, each 2D 



45 

experiment requires only 30 min or less (~10 min with a cryoprobe), and hence, the 

approach can be useful for high throughput analysis of human plasma as well as other 

biological fluids. Further, combination of the isotope tagging approach with the latest 

advancements in NMR technology, such as detection using microcoil probes, for 

example, can significantly minimize the volume of biofluid samples required for routine 

analysis. 
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Table. 2.1 Synthetic analogues of metabolites used for the quantitative analyses of human 
plasma metabolites 

Serial 
number 

Standard 
compound 

Estimated approximate blood 
plasma concentrationsa (μM) 

Actual NMR calibrated concentrations  
in the mixture (μM) used for spikingb 

1 3-hydroxybutyrate 60 59.2 ± 0.9 
2 acetate 80 73.7 ± 1.1 
3 l-alanine 300 287.1 ± 4.5 
4 l-arginine 80 90.1 ± 1.4 
5 citrate 30 28.1 ± 0.4 
6 creatinine 40 31.6 ± 0.6 
7 formate 40 32.5 ± 0.5 
8 l-glutamic acid 50 53.8 ± 0.3 
9 l-glutamine 300 292.1 ± 2.8 

10 l-glycine 200 172.6 ± 2.7 
11 l-histidine 80 83.7 ± 0.6 
12 l-isoleucine 50 50.7 ± 0.2 
13 lactate 1000 959.5 ± 15.1 
14 l-leucine 80 80.7 ± 1.2 
15 l-lysine 100 75.3 ± 2.3 
16 l-methionine 20 19.2 ± 0.03 
17 l-phenylalanine 70 71.1 ± 1.1 
18 l-proline 100 93.3 ± 1.5 
19 l-threonine 100 90.0 ± 1.9 
20 L-tryptophan 30 29.1 ± 0.4 
21 l-tyrosine 80 80.9 ± 0.3 
22 l-valine 200 183.2 ± 1.5 
23 succinate 10 9.9 ± 0.1 
24 betaine 50 44.6 ± 0.7 
25 4-hydroxy proline 50 53.4 ± 0.8 
26 l-serine 100 93.3 ± 0.7 
27 l-asparagine 40 43.9 ± 0.7 
28 taurine 30 27.7 ± 0.1 

a Obtained from the combination of database search and comparison of the relative peak integrals in the NMR spectra. 
b The errors are standard deviations from two measurements. 
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Table. 2.2 Concentration of synthetic analogues of human plasma metabolites before and 
after calibration using 1H NMR 

Serial Number  
 

Metabolites  
 

Concentration from 
the weight (mM)*   

Concentration after calibration 
by 1H NMR (mM)*  

1 3-Hydroxybutyrate 20.02 20.69 ± 0.32  
2 Acetate  19.62 19.33 ± 0.30  
3 L-Alanine  19.67 20.07 ± 0.31  
4 L-Arginine  20 23.62 ± 0.37  
5 Citrate   20.09 19.67 ± 0.31  
6 Creatinine  20.15 16.18 ± 0.30  
7 Formate 20.38 17.02 ± 0.26  
8 L-Glutamic acid  20.18 22.39 ± 0.12 
9 L-Glutamine  20.15 20.33 ± 0.19  
10 L-Glycine  20.58 18.09 ± 0.28  
11 L-Histidine 20.1 21.83 ± 0.17  
12 L-Isoleucine  20.24 21.07 ± 0.09  
13 Lactate  20.21 20.12 ± 0.31  
14 L-Leucine  20.37 21.16 ± 0.33  
15 L-Lysine  20.11 15.98 ± 0.49  
16 L-Methionine 19.95 19.96 ± 0.03  
17 L-Phenylalanine  20 21.29 ± 0.33  
18 L-Proline  20.16 19.57 ± 0.31  
19 L-Threonine  19.98 18.95 ± 0.41  
20 L-Tryptophan  20 20.36 ± 0.32  
21 L-Tyrosine  19.87 21.04 ± 0.08  
22 L-Valine   20.07 19.10 ± 0.15  
23 Succinate  20.03 20.77 ± 0.33  
24 Betaine  20.15 18.69 ± 0.30  
25 4-hydroxy-proline  20 22.39 ± 0.35  
26 L-Serine  19.98 19.45 ± 0.14  
27 L-Asparagine   20.01 23.01 ± 0.36  
28 Taurine   19.94 19.17 ± 0.07  
30 Ethanolamine  20 20.34 ± 0.95  
31 Maleic acid  20.07 20.85 ± 0.31  
32 DSS    5 4.70 ± 0.02  
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Table. 2.3 Synthetic analogues of human plasma metabolites grouped for concentration 
calibration using 1H NMR 

Group 1  Group 2  Group 3 Group 4 Group 5 

3-Hydroxybutyrate  L-Arginine  L-Glutamine  Creatinine  Succinate  

Acetate  L-Histidine  L-Isoleucine  L-Glutamic acid L-Serine  

L-Alanine  Lactate  L-Threonine  L-Lysine Taurine 

Citrate L-Phenylalanine   L-Tryptophan  L-Methionine 

Formate L-Tyrosine   Ethanolamine   L-Proline  

L-Glycine  L-Valine  

L-Leucine  4-Hydroxy-proline  

Betaine Maleic acid  

L-Asparagine  
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Table. 2.4 1H, 13C, and 15N chemical shifts of the peaks used in the analysis of NIST 
plasma metabolites 

1H−15N HSQC 1H−13C HSQC 

label metabolite 1H (ppm) 15N (ppm) label metabolite 1H (ppm) 13C (ppm) 

2 acetate 8.01 120.93 3 l-alanine 7.96 163.4 

3 l-alanine 8.23 113.7 10 l-glycine 8.03 164.15 

5 citrate 8.04 122.62 11 l-histidine 7.97 163.56 

8 l-glutamic acid 8.21 115.58 12 l-isoleucine 8.03 163.81 

10 l-glycine 8.12 114.78 18 l-proline 8.1 163.1 

11 l-histidine 8.25 116.42 19 l-threonine 8.12 164.12 

17 l-phenylalanine 8.13 117.19 20 l-tryptophan 7.88 163.51 

19 l-threonine 8.28 117.52 22 l-valine 8.05 163.88 

20 l-tryptophan 8.03 116.9 25 
4-hydroxy 
proline 8.04 165.21 

21 l-tyrosine 8.18 117.25 26 l-serine 8.07 163.92 

22 l-valine 8.3 118.43 27 l-asparagine 8.01 163.57 

24 betaine 8.57 124.28 28 taurine 7.99 164.23 
1H 1D NMR 1H−1H TOCSY 

label metabolite 1H (ppm) label metabolite 

1H (ppm) 1H (ppm)  

F2 dimension F1 dimension 

1 
3-
hydroxybutyrate 1.19 4 l-arginine 1.68 3.23 

2 acetate 1.91 5 citrate 2.65 2.51 

3 l-alanine 1.47 11 l-histidine 7.07 7.06 

7 formate 8.45 12 l-isoleucine 3.66 0.98 

9 l-glutamine 2.13 13 lactate 1.32 1.32 

11 l-histidine 7.06 14 l-leucine 0.95 1.7 

12 l-isoleucine 1.01 15 l-lysine 3.02 1.48 

16 l-methionine 2.13 19 l-threonine 3.57 1.33 

17 l-phenylalanine 7.42 20 l-tryptophan 7.53 7.72 

20 l-tryptophan 7.74 21 l-tyrosine 6.9 7.18 

21 l-tyrosine 6.89 22 l-valine 3.6 2.27 

22 l-valine 1.03 
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Table. 2.5 NIST plasma metabolite concentrations obtained using a combination of NMR 
experiments with or without isotope tagging 

label metabolite 
NIST plasma 
concentration (μM)a label metabolite 

NIST plasma 
concentration (μM)a 

1 3-hydroxybutyratee 99.3 ± 13.1 16 l-methioninee 16.6 ± 2.8 

2 acetatebe 142.0 ± 3.0 17 l-phenylalaninebe 50.6 ± 3.8 

3 l-alaninebce 279.4 ± 18.9 18 l-prolinec 127.6 ± 13.1 

4 l-arginined 155.9 ± 16.0 19 l-threoninebcd 107.3 ± 16.7 

5 citratebd 40.1 ± 2.3 20 l-tryptophanbcde 45.9 ± 8.1 

7 formatee 51.2 ± 2.1 21 l-tyrosinebde 58.9 ± 7.2 

8 l-glutamic acidb 69.3 ± 5.3 22 l-valinebcde 159.7 ± 11.6 

9 l-glutaminee 368.5 ± 2.3 24 betaineb 27.3 ± 2.8 

10 l-glycinebc 204.5 ± 31.2 25 4-hydroxy prolinebc 11.5 ± 1.3 

11 l-histidinebcde 63.1 ± 5.7 26 l-serinec 95.8 ± 15.0 

12 l-isoleucinecde 48.2 ± 2.4 27 l-asparaginec 33.4 ± 2.8 

13 lactated 2403.6 ± 127.6 28 taurinec 32.4 ± 0.8 

14 l-leucined 100.1 ± 0.1 29 glucosee 8778.5 ± 62.8 

15 l-lysined 190.8 ± 21.9 
a The errors are standard deviations. 
b Obtained from 1H−15N HSQC. 
c Obtained from 1H−13C HSQC. 
d Obtained from 1H−1H TOCSY. 
e Obtained from 1H 1D NMR.  
Two samples were used for each type of experiment resulting in two, four, six, or eight independent measurements for 
each metabolite. 
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Figure 2.1 Flow chart depicting the steps followed in the analysis of the standard 

metabolite mixture using isotope enhanced NMR methods. 
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Figure 2.2 Flow chart depicting the steps followed in the analysis of metabolites in the 
NIST plasma sample using isotope enhanced NMR methods. 
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Figure 2.3 2D spectra of mixtures of 28 synthetic compounds obtained with or without 
isotope tagging: (a) 1H−15N HSQC spectrum with15N tagging of carboxylic acids, 

(b)1H−13C HSQC spectrum with 13C tagging of amines and amino acids, and (c) 1H−1H 
TOCSY spectrum of the neat mixture. All the spectra were obtained on an 800 MHz 

spectrometer. The labeled peaks correspond to the numbered metabolites in Table 2.1. 
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Figure 2.4 Concentration of 28 standard metabolites obtained by combining 2D NMR 
experiments with and without 15N or 13C tagging: (a) obtained from 1H−15N HSQC NMR 

after 15N tagging; (b) obtained from 1H−13C HSQC NMR after 13C tagging, and (c) 
obtained from 1H−1H TOCSY NMR of the neat mixture. The shaded bar on the right in 

each pair represents the actual concentration of the metabolite. 
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Figure 2.5 Correlation of the concentration of the metabolites determined by a 
combination of 2D experiments with or without 15N or 13C tagging with the expected 

values. 
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Figure 2.6 1D 1H NMR spectrum of aqueous metabolites of NIST plasma obtained on a 
Bruker 500 MHz NMR spectrometer. 
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Figure 2.7 2D spectra of NIST plasma obtained with and without isotope tagging: (a) 
1H−15N HSQC spectrum obtained after 15N tagging of carboxylic acids, (b)1H−13C HSQC 
spectrum obtained after 13C tagging of amines and amino acids, and (c) 1H−1H TOCSY 

spectrum of the neat mixture. All the spectra were obtained on an 800 MHz spectrometer. 
The labeled peaks correspond to the numbered metabolites in Table 2.1. 
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Figure 2.8 Concentrations of metabolites in the NIST plasma obtained using 1D/2D 
NMR experiments with and without isotope tagging: (a) obtained from 1H−15N HSQC 
NMR after 15N tagging, (b) obtained from 1H−13C HSQC NMR after 13C tagging, (c) 

obtained from 1H−1H TOCSY NMR of neat plasma, and (d) obtained from 1D NMR of 
the neat plasma sample. 
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Figure 2.9 Comparison of the concentrations of (a) carboxylic acid and (b) amino group 
containing metabolites in the NIST plasma obtained with spiking (left bars) and without 

spiking (right bars) with the standard compounds. 
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CHAPTER 3: METABOLITE PROFILING OF THE CARBOXYL-CONTAINING 
METABOLITES WITH SMART ISOTOPE TAGGING 

3.1 Introduction 

The metabolomics field has witnessed an exponential growth since the last decade 

due to its potential applications in numerous disciplines including biomedicine, 

toxicology, food and nutrition, drug development and environmental science.1-5  

Commonly  used analytical techniques such as nuclear magnetic resonance (NMR) 

spectroscopy and/or mass spectrometry (MS) have evolved in response to the high 

demand for resolving the complexity of biological mixtures and identifying the large pool 

of quantifiable metabolites. However, despite numerous advances, the biological 

complexity still often outweighs the capabilities of these advanced analytical methods; no 

single technique currently is capable of detecting all metabolites in a single experiment. 

Each analytical method is sensitive to certain classes of metabolites, and depending on 

the nature of the metabolites of interest, generally one or sometimes a combination of 

NMR or MS techniques are used to profile as many metabolites as possible and thereby 

derive the biological meaning. A major hurdle of such an approach is that the metabolite 

data obtained from NMR and LC-MS or GC-MS methods for the same or similar samples 

are often not directly comparable. The inability to compare and correlate data from 

different analytical techniques for the same or similar samples is a significant challenge 

that prevents drawing meaningful conclusions from the vast amount of metabolite data 
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existing in the literature and exploiting the combined strength of NMR and MS for 

unknown metabolite identification. The main contributing factors for this bottleneck are 

the limited NMR sensitivity, complex spectral signatures and variable MS ionization 

efficiency or suppression. 

The use of chemo-selective tags provides an avenue to improve the sensitivity of 

metabolite detection by both NMR and MS methods. For example, the sensitivity of MS 

detection is shown to be enhanced by three orders of magnitude or more by tagging 

metabolites with a chemo-selective tags containing a permanent charge.6-10 Because of 

the permanent charge, the tagged metabolites are effectively detected with high 

sensitivity and better quantitative accuracy, irrespective of the pH or nature of the 

solvents used to separate metabolites before detection by MS. Separately, based on 

differential dansylation using 12C/13C-dansyl chloride, absolute or relative quantitation of 

amine and phenol containing metabolites has been achieved with a sensitivity 

enhancement of three orders of magnitude.11,12 Similarly, NMR-sensitive isotope based 

chemo-selective tags have been shown to detect many quantifiable metabolites with high 

sensitivity and resolution by NMR.13-17 Using 15N-ethanolamine as the tag, for example, 

over a hundred carboxyl-containing metabolites have been detected by 1H-15N two-

dimensional NMR with high resolution and sensitivity.13 However, while metabolites can 

be detected with high sensitivity by both MS and NMR separately using chemoselective 

tags, the inability to compare and correlate the data from the two methods is a major 

bottleneck in the metabolomics field. 

The ability to more easily detect the same metabolites by both NMR and MS 

methods would offer new avenues to compare data between MS and NMR platforms and 
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to exploit the combined strength of the complimentary methods. Towards this goal, we 

introduce a new “smart isotope tag” approach, using 15N-cholamine in this case, which 

possesses the characteristics of high NMR sensitivity and resolution through its isotope 

enrichment and high MS sensitivity through its permanent positive charge (see schematic 

Figure 3.1). The tag combines the strengths of individual chemo-selective tags, 

demonstrated previously and separately for NMR and MS detection,6, 13 and offers news 

avenues to exploit the combined strength of these powerful and complementary 

techniques for areas such as metabolite profiling and unknown metabolite identification. 

3.2 Materials and Methods 

3.2.1 Chemicals and Biofluids 

  A total of 48 carboxyl-containing metabolite standards (Table 1), (2-

bromoethyl)trimethylammonium bromide, dimethylformamide (DMF), methanol, 

acetonitrile, isopropanol, acetone, hydrochloric acid (HCl), sodium hydroxide (NaOH) 

(all from Sigma-Aldrich, St. Louis, MO), 4-(4,6-dimethoxy[1.3.5]triazin-2-yl)-4-

methylmorpholinium chloride (DMTMM) (Acros Organic, Pittsburgh, PA), 15N-

phthalimide potassium and deuterium oxide (Cambridge Isotope Laboratories, Andover, 

MA) were used without further purification. Human serum samples were obtained from 

Innovative Research, Inc. (Novi, MI) and urine from healthy volunteers, in accordance 

with the Internal Review Board at Purdue University. Deionized (DI) water was from in-

house Synergy Ultrapure Water System from Millipore (Billerica, MA). 
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3.2.2 Design and Synthesis of the Smart Isotope Tag 15N-cholamine 

Synthesis of 15N-cholamine involved a two-step reaction and followed the Gabriel 

synthesis procedure with modifications as described below to yield the pure product.18,19 

The first step involved reacting potassium 15N-phthalimide with                        

(2-bromoethyl)trimethylammonium bromide in DMF to obtain the 15N substituted 

phthalimide intermediate (Scheme 1). The second step involved alkaline and acid 

hydrolyses of the 15N substituted phthalimide to yield the smart isotope tag,                     

15N-cholaimne (Scheme 2).  

 

 

Scheme 3.1 Synthesis of 15N substituted phthalimide  

 

Scheme 3.2 Alkaline and acid hydrolyses of the 15N substituted phthalimide to yield   
15N-cholamine 

Briefly, for the synthesis of 15N substituted phthalimide (Scheme 1), (2-

bromoethyl)trimethylammonium bromide (9.5 mmol, 2.35 g) was mixed with             
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15N-phthalimide potassium (10 mmol, 1.86 g) in a 250 mL round bottom flask and dry 

DMF (100 mL) was added under nitrogen gas. The mixture was then refluxed at 100 °C 

with stirring for 12 h. The supernatant from the reaction mixture was separated and the 

solvent was removed using a rotary evaporator.18 The resulting crude residue was washed 

thrice using acetonitrile (5 mL each time), twice with acetone (2 mL each time) followed 

by washing again once with acetonitrile (3 mL) to obtain the pure 15N-substituted 

phthalimide. 1H NMR spectra in D2O at each step were monitored to assess the purity of 

the intermediate product.  For the synthesis of 15N-cholamine, in the second step, the  

15N-substituted phthalimide (538 mg) (Scheme 1) was dissolved in DI water (24 mL);     

1 N NaOH (2.69 mL) was added to the solution and the mixture was left at room 

temperature with stirring for 30 min to complete the alkaline hydrolysis (Scheme 2).19 

Subsequently, 12 N HCl (1.8 mL) was added to the solution, the temperature was raised 

to 70C and left for 12 h with stirring to complete the acid hydrolysis (Scheme 2).19 The 

solvent was then removed using a rotary evaporator. The resulting crude residue was 

washed thrice with acetonitrile (4 mL each time) followed by washing thrice with 25:75 

water/acetone mixture (2 mL each time) to yield the pure product, 15N-cholamine. 1H 

NMR spectra in D2O at each step were monitored to assess the purity of the final product.   

3.2.3 Tagging Metabolites Using the Smart Isotope Tag 15N-cholamine 

15N-cholamine (5mg, 50 μmol) was added to 500 μL sample in an eppendorf tube, 

the pH of the mixture was adjusted to 7.0 with 1 M HCl or NaOH. 21 mg DMTMM was 

added to initiate the reaction.13,20,21 The mixture was stirred at room temperature for 4 h 

to complete the reaction.  The general reaction for tagging metabolites with the smart 
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isotope tag is shown in Scheme 3. To maintain 15N amide protonation, the pH was 

adjusted to 5.0 by adding 1 M HCl or 1 M NaOH, and the solution volume was adjusted 

to 580 μL by adding DI water and 30 μL of D2O prior to NMR detection. Serum was 

deproteinized using methanol prior to metabolite tagging and urine was used with no 

pretreatment.13  

 

Scheme 3.3 General reaction for tagging carboxyl-containing metabolites with the smart 
isotope tag- 15N-cholamine 

3.2.4 NMR Spectroscopy 

  For each sample, 550 μl was mixed with 30 μl D2O and placed in a 5 mm NMR 

tube. NMR experiments were performed on a Bruker DRX 500 MHz or Avance III 800 

spectrometer equipped with a room temperature or cryoprobe probe, respectively, 

suitable for 1H inverse detection with Z-gradients at 298 K. A one pulse sequence with or 

without solvent signal suppression using presaturation was used for 1H 1D NMR 

experiments. The sensitivity-enhanced 1H-15N 2D HSQC experiments employed an 

INEPT transfer delay of 6 ms corresponding to the JNH of 90 Hz. Spectral widths for the 

1H and 15N dimensions were approximately 8 kHz and 3 kHz, respectively. 128 free 

induction decays of 1,024 data points each were collected in the indirect (t1) dimension 

with 1 or 4 transients per increment. Nitrogen decoupling during the direct acquisition (t2 
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dimension) was achieved with the GARP (Globally Optimized Alternating-Phase 

Rectangular Pulses) sequence. The resulting 2D data were zero-filled to 1,024 points in 

the t1 dimension after forward linear prediction to 256 or 512 points. A 45° shifted sine-

bell window function was applied to both dimensions before Fourier transformation. 

Chemical shifts were referenced to the 1H signal of TSP for the 1D spectra or the 

derivatized formic acid signal (1H: 8.05 ppm; 15N: 123.93 ppm) in the HSQC spectra. 

Bruker Topspin versions 3.0 or 3.1 software packages were used for NMR data 

acquisition or processing. 

3.2.5 Mass spectrometry 

LC-MS and LC-MS/MS experiments were performed using an Agilent 1200 SL-

LC system coupled online with an Agilent 6520 Q-TOF mass spectrometer (Agilent 

Technologies, Santa Clara, CA). The sample (8 µL) was injected onto an Agilent 

Poroshell 120 EC-C18 column (30x50 mm, 2.7-micron), which was heated to 50 °C. The 

flow rate was 0.5 mL/min. Mobile phase A was 5 mM ammonium acetate in water, and 

mobile phase B was 0.1% water in ACN. The mobile phase composition was initially 

kept isocratic at 3% B for 1 min, then increased to 90% B over 4 min; after another 4 min 

at 90% B, the mobile phase composition returned to 3% B. Electrospray ionization (ESI) 

was used in positive mode, and the voltage was 3.5 kV. The mass analyzer was scanned 

over a range of 50–1000 m/z. The collision energy for auto LC-MS/MS experiments was 

fixed at 10 V, targeting pre-selected compounds. 
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3.3 Results and Discussion 

The smart isotope tag, 15N-cholamine, designed, developed and used in this study 

retains all the characteristics of the 15N-ethanolamine tag including the solubility of the 

tagged metabolites in aqueous media, large one-bond J-coupling between 1H and 15N of 

~90 Hz for efficient polarization transfer between 1H and 15N nuclei, and wide chemical 

shift dispersion for different metabolites in the resulting 2D NMR spectra.13 In addition, 

and importantly, 15N-cholamine possesses a permanent positive charge, which enables 

efficient positive mode detection of the same carboxyl-containing metabolites by MS, 

irrespective of the pH or solvent conditions of the eluting media, commonly used for 

chromatographic separation before detection by MS.6 

Synthesis of 15N-cholamine involved a two-step reaction and followed the Gabriel 

synthesis procedure with suitable modifications to yield the pure product.18, 19 As seen in 

the 1H NMR spectrum (Figure 3.2), the pure intermediate compound, 15N substituted 

phthalimide, was obtained after the first step of the synthesis. Hydrolysis of this 

compound yielded the 15N-cholamine in pure form as can be ascertained from its 1H 

NMR spectrum (Figure 3.3; peaks at 3.16; 3.48; 3.64 ppm). The accurate MS and 

MS/MS spectra for 15N-cholamine, shown in Supplementary Figure 3.4, help further 

verify the identity and purity of the synthesized smart isotope tag (m/z= 104.120). 

The compound was then used to tag 48 metabolites that were selected for their 

prominence as carboxyl-containing metabolites in biofluids that represent a variety of 

metabolic pathways. The general reaction for tagging metabolites with the smart isotope 

tag is shown in Scheme 3. To maintain 15N amide protonation, the pH was adjusted to 5.0 

by adding 1 M HCl or 1 M NaOH, and the solution volume was adjusted to 580 μL by 
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adding DI water and 30 μL of D2O prior to NMR detection. Serum was deproteinized 

using methanol prior to metabolite tagging and urine was used with no pretreatment.13 

The 1H and 15N chemical shift data derived from the 2D NMR experiments, after 

tagging with 15N cholamine, are shown in Table 3.1. Because the 15N-cholamine and the 

previously used 15N-ethanolamine differ only in their terminal group, the tagging 

efficiency, reproducibility and chemical shift values for metabolites with 15N-cholamine 

tag were similar to those obtained using the 15N-ethanolamine tag.13 

Importantly, as anticipated based on the 15N-ethanolimane tagging approach 

shown earlier in our laboratory,13 the 15N-cholamine tagging of metabolites in human 

serum provided a rich NMR spectrum due to the large number of carboxyl-containing 

metabolites normally present in blood (Figure 3.5). The low natural abundance of 15N 

(0.37%) ensures that none of the nitrogen containing metabolites interferes with the 

detection of carboxyl-metabolites through 15N-cholamine tag. Each peak in the spectrum 

corresponds to different metabolite from the carboxylic acid class. However, metabolites, 

which contain more than one carboxyl group, provide additional peaks depending on the 

number of carboxyl groups and molecular symmetry. In addition, metabolites such as 

lactate, which possess -hydroxyl groups, show more than one peak for the same 

metabolite as we described earlier using the 15N-ethanolmaine tag.13 Some of the peaks 

assigned based on the chemical shift values for the standard compounds are marked with 

the corresponding number shown in Table 3.1 and Figure 3.6. Similarly, tagging of 

metabolites in human urine with 15N-cholamine also enabled the detection of peaks 

corresponding to well over a hundred carboxylic acid group containing metabolites 
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(Figure 3.7). Peaks tentatively assigned based on the values for the standard compounds 

are marked by their numbers shown in Table 3.1 and Figure 3.6. 

The 15N-cholamine tagging of metabolites in aqueous media enabled a sensitivity 

enhancement of up to three orders of magnitude or more in the MS detection of carboxyl 

metabolites. The derivatized metabolites could be detected easily in positive ion mode as 

compared to the same metabolites detected in negative ion mode without the tag. For 

example, the sensitivity for pyruvic acid detected in positive ion mode after 15N-

cholamine tagging was enhanced by a factor of about 1500 when compared to that 

detected for the same metabolite without the 15N-cholamine tag, in negative ion mode. 

Figure 3.8 shows typical mass spectra for formic acid and pyruvic acid after tagging with 

15N-cholamine. The enhancement in sensitivity is primarily due to the high ionization 

efficiency imparted by the permanent positive charge of the 15N-cholamine and is in 

agreement with results by Smith and co-workers for fatty acid analysis using the heavy 

and light forms of cholamine.6 In that study, reactions of metabolites with cholamine 

were made in organic solution in contrast to the aqueous media used here. The 15N-

cholamine derivatized serum samples were then analyzed by LC-MS. As anticipated, due 

to the presence of the permanent positive charge, tagged metabolites could be readily 

detected in positive ion mode with high sensitivity. Sensitivity enhancement by a factor 

of up to nearly 3000 could be achieved for tagged acids. The extracted ion 

chromatograms for a few typical carboxylic acids detected in serum with 15N-cholamine 

tag are shown in the Supplementary Figure 3.9. 

One potential issue is the effect on chromatographic retention time caused by the 

addition of the cholamine tag. However, separation of the tagged metabolites using 



72 

HILIC columns offers opportunity to effectively separate before detection using MS. For 

example, the results of separation of a mixture of standard carboxylic and amino acids 

performed using a HILIC column, without attempting to optimize chromatography 

conditions, indicate that 15N-cholamine tagged metabolites can be separated effectively 

(Figure 3.10). More broadly, we can contemplate the use of dual purpose smart tags for 

other NMR-MS combinations. For GC-MS, the addition of a charged species will likely 

cause problems related to reduced volatility; however, a different tag, such as 13C or even 

29Si labeled silyl-type tags can be contemplated.23 Another alternative is the use of smart 

tags for capillary electrophoresis (CE) coupled to MS, which is increasingly of interest in 

metabolomics.24 In fact, positively charged derivatization agents (based on pyridinum 

containing compounds) have been demonstrated for the use of metabolite profiling of 

carboxylic acids by CE-MS.25 Thus, the potential for the use of smart tags such as 

cholamine for CE-MS and NMR is quite promising. 

In conclusion, we have developed a smart isotope tag, 15N-cholamine, which 

possesses dual characteristics for metabolite profiling in complex biological mixtures 

using the powerful analytical techniques of NMR and MS. By combining the individual 

strengths of the 15N label and permanent charge, the smart isotope tag facilitates detection 

of carboxyl-containing metabolome by both NMR and LC-MS techniques with high 

sensitivity. Detection of the same metabolites by both NMR and MS (Figure 3.11), 

effectively opens unique opportunities for identification of unknown metabolites and 

direct comparison of metabolite data from the two powerful analytical platforms. 
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Table. 3.1 1H and 15N NMR chemical shifts for 15N-cholamine tagged carboxyl-containing 
metabolites  measured  with reference to the formic acid peak 

 

 

Label Name 
1H 

(ppm) 

15N 
Label Name 

1H 
(ppm) 

15N 

(ppm) (ppm) 

 

    1 

 

Cis-Aconitic acid 

 

8.5 

 

118.24 

 

23 

 

2-hydroxyisobutyric acid 

 

7.95 

 

117.51 

8.14 121.47 24 DL-Isocitric acid  8.40 117.15 

8.06 119.49   8.11 120.77 

8.07 120.21   8.28 122.78 

8.23 116.00   8.04 117.88 

8.14 120.81 25 Isoleucine 8.37 118.19 

2 Adipic acid 8.05 120.57 26 Isovaleric acid 8.07 121.92 

3 DL-Alanine 8.30 114.39 27 α-Ketoglutaric acid 8.69 116.34 

4 4-Aminobenzoic acid 8.25 111.35   8.63 111.84 

5 Arginine 8.34 115.96 28 Lactic acid 8.23 114.18 

6 Asparagine 8.31 116.03   8.49 114.45 

7 Aspartic acid 8.15 120.01 29 Leucine 8.34 115.24 

8.38 115.27 30 Lysine 8.33 115.88 

8.31 115.6 31 Maleic acid 8.39 120.39 

8.16 121.35 32 Malic acid 8.28 122.83 

8 Betaine 8.55 122.69   8.29 115.14 

9 Citric acid 8.20 121.46 33 Malonic acid 8.19 121.44 

8.07 123.95 34 Methionine 8.36 116.08 

7.87 121.88 35 Oxalic acid 8.47 117.13 

10 Cysteine 8.35 115.93 36 Oxaloacetic acid 8.35 112.67 

11 Cystine 8.5 115.22   8.63 111.40 

12 Formic acid 8.05 123.93 37 L-phenylalanine 8.21 118.85 

13 Fumaric acid 8.42 122.68 38 L-proline 8.35 115.58 

8.56 124.24 39 Propionic acid 7.95 118.85 

14 Glucuronic acid 8.38 119.54 40 Pyroglutamic acid 8.29 115.88 

15 Glutamic acid 8.28 115.99 41 Pyruvic acid 8.63 111.39 

8.05 120.42   8.35 112.72 

16 Glutamine 8.35 115.90 42 Serine 8.17 117.63 

17 Glycine 8.2 115.45 43 Succinic acid 7.97 119.56 

18 Glycolic acid 8.22 114.97 44 Succinyl-COA 7.78 123.45 

8.37 115.19 45 L-threonine 8.34 117.79 

19 Hippuric acid 8.2 115.62 46 L-tryptophan 7.98 119.37 

20 Histidine 8.36 116.60 47 Tyrosine 8.27 118.05 

21 3-Hydroxybutyric acid 8.07 122.20 48 Valine 8.38 118.20 

22 4-Hydroxy-L-proline 8.5 115.89  

8.36 117.62  
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Figure 3.1 Schematic figure illustrating the “smart isotope tag” approach used to detect 
the same metabolites using NMR and MS with high sensitivity. Tagging carboxyl-

containing metabolites with 15N-cholamine enables their detection by both NMR and MS 
with high sensitivity. 

 

 

 

 

 

 

Pe
rm
an
en
t	ch

arg
e 

Abundant Isotope 

MS NMR 

 

 

 

 

 

 

 

 



77 

 

 

 

 

Figure 3.2 1H NMR spectrum of 15N-substituted phthalimide intermediate compound, 
obtained for the synthesis of 15N-cholamine, recorded on a Bruker DRX 499 MHz NMR 

spectrometer. 
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Figure 3.3 1H NMR spectrum of the synthesized 15N-cholamine obtained on a Bruker 

Avance III 800 MHz NMR spectrometer. 
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Figure 3.4 MS and MS/MS spectra of the synthesized 15N-cholamine. 
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Figure 3.5 A portion of the 1H-15N HSQC spectrum of human serum tagged with 15N-
cholamine. 1: aconitic acid; 2: adipic acid; 3: alanine; 7: aspartic acid; 8: betaine; 9: citric 

acid; 11: cystine; 12: formic acid; 15: glutamic acid; 17: glycine; 20; histidine; 21: 3-
hydroxybutyric acid; 24: isocitric acid; 28: lactic acid; 29: leucine; 32: malic acid; 37: 
phenylalanine; 40: pyroglutamic acid; 45: threonine; 46: tryptophan; 47: tyrosine; 48: 

valine. 
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Figure 3.6  A portion of the 1H-15N HSQC spectrum of a mixture of standard compounds 
at various concentrations obtained after tagging with 15N-cholamine. The peak numbers 

correspond to the compounds shown in Table 3.1. 

 

 

 

 

 

ppm

7.98.08.18.28.38.48.58.68.78.8 ppm

115

116

117

118

119

120

121

122

123

124
12 13

13

32

31

14

7

33

9

21
9

2 
15

24
7

44
46, 39 

37

3 2828

18

17,19

34

24

11

22

35

27 

29
30

48
25

47

40 
15

32

45

7
5,10
16

20

42

38 6

1

32

43 
44



82 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.7 A portion of the 1H-15N HSQC spectrum of human urine tagged with 15N-
cholamine. 1: aconitic acid; 2: adipic acid; 3: alanine; 5: arginine; 6: asparagine; 7: 

aspartic acid; 9: citric acid; 12: formic acid; 15: glutamic acid; 18: glycolic acid; 19: 
hippuric acid; 24: isocitric acid; 28: lactic acid; 33: malonic acid; 39: propionic acid; 40: 

pyroglutamic acid; 43: succinic acid; 45: threonine; 46: tryptophan. 
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Figure 3.8 Typical LC-QTOF-MS spectra for formic acid and pyruvic acid obtained after 
tagging with the smart isotope tag, 15N-cholamine. The permanent charge on the tagged 
metabolites enables their sensitive detection; the observed peak is from the intact tagged 

metabolite. 
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Figure 3.9 Accurate mass extracted ion chromatograms for a few carboxylic acids 
detected in serum in positive ion mode after tagging with 15N-cholamine. The sensitivity 
enhancement factor indicates the ratio of peak area obtained with 15N-cholamine tag to 
the peak area for the same acid detected without tagging (in negative ion mode), in the 

same serum sample. 
 
 
 

 

3-hydroxybutyric acid; Sensitivity enhancement factor: 2717

Lactic acid; Sensitivity enhancement factor: 1327

Oxalic acid; Sensitivity enhancement factor: 317

Pyruvic acid; Sensitivity enhancement factor: 286

Citraconic acid; Sensitivity enhancement factor: 61

Counts vs. Acquisition Time (min) 

1 10 20 5 15

4.9 x10
4
 

1.0 x10
4
 

2.35 x10
5
 

1.00 x10
5
 

1.1 x10
6
 

0.55 x10
6
 

1.6 x10
6
 

0.9 x10
6
 

1.05 x10
5
 

0.5 x10
5
 

 



85 

 

Figure 3.10  MRM chromatograms for a mixture of cholamine tagged carboxylic and 
amino acids detected after separation using an HILIC column, without attempting to 
optimize chromatography conditions. Considering that all metabolites have the same 

permanently charged cholamine tag, the separation achieved in a quick experiment which 
is still not well optimized may be remarkable. 

 
 
 
 
 
 
 
 
 
 
 
 

 

 

Formic acid 

Acetic acid 

Glycine

Pyruvic acid 

Lactic acid 

Threonine 

Lysine

Phenylalanine 

Tyrosine



86 

 
 

 

 

 

 

 

 

 

 

                                                                    

 

 

 

 

 

 

Figure 3.11 Two examples comparing the MS and NMR peak integral intensities for 
formic and pyruvic acids at different concentrations. Eight mixtures with random 

concentrations of various synthetic compounds were tagged with 15N-cholamine and 
analyzed using NMR and MS methods. Good correlation between the NMR and MS 

measurements, as seen in the two figures, suggest the potential of using the new tagging 
approach for direct comparisons of the data from the two analytical platforms. 
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CHAPTER 4. APPLICATION OF HIGH-RESOLUTION MAGIC ANGLE 
SPINNING NUCLEAR MAGNETIC RESONANCE (HR-MAS NMR) 

SPECTROSCOPY FOR BREAST CANCER METABOLITE PROFILING OF 
AFRICAN AMERICAN COMPARE TO CAUCASIAN WOMEN 

4.1 Introduction 

Breast cancer is a heterogeneous group of diseases that are 

immunohistochemically subtyped by cancer cell expression of estrogen receptor (ER), 

progesterone receptor (PR), and human epidermal growth factor receptor-2 (HER-2).  

These subtypes are recognized as: ER or PR positive and HER-2 negative subtype (ER+, 

PR+, HER-2-); ER or PR positive and HER-2 positive subtype (ER+, PR+, HER-2+); 

and ER, PR, and HER-2 negative (triple-negative breast cancer).1,2 These subtypes not 

only differ in hormonal status and HER-2 expression but also clinically in their prognosis 

and response to therapy3 as well as incidence rates. The incidence rates of triple negative 

cancer are higher in African American compared to Caucasian women, while Caucasian 

women have higher rates of ER-positive subtypes.4 

Triple negative breast cancer (TNBC) constitutes about 10-20% of diagnosed 

breast cancer and is also more prevalent in younger women. Despite the small percentage 

of TNBC, it causes a disproportionate number of breast cancer deaths.  This high 

mortality is due to the aggressive nature of the subtype that includes earlier relapses and a 

distinct pattern of metastasis.5 
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Because of the lack of hormonal receptors (ER and PR) and HER-2 receptor, 

TNBC is not responsive to treatment with hormone or anti-HER-2 monoclonal antibody 

therapy. Currently, TNBC treatment is limited to systemic cytotoxic chemotherapy. 

Interestingly, patients with TNBC treated with neoadjuvant chemotherapy and who show 

a pathologic complete response (pCR) show significant improvements in both disease-

free survival and overall survival compared with patients with residual invasive disease. 

The prognosis for patients who experience pCR is excellent and equivalent to those with 

other breast cancer types who experience pCR. However, patients with TNBC who did 

not experience pCR with the same chemotherapy have a poorer prognosis.6 In the pursuit 

of identifying specific targeted therapies for TNBC, preclinical studies have recently 

identified a few potential molecular targets such as epidermal growth factor receptor 

(EGFR), SRC, MET and poly ADP ribose polymerase 1/2 (PARP1/2); however, drug 

candidates developed for these targets have underperformed at some point during their 

clinical testing.5  

Therefore, it is important to find effective treatments for TNBC. A better 

understanding of the biology of TNBC will aid in identifying new molecules for 

specifically targeting this disease. Molecular targets such as protein and genes have been 

explored for early detection and treatment of TNBC without much success; however, 

recently metabolites are being examined as an alternative and promising approach. 

Cancer metabolic profiling enables identification of small-molecule metabolites in 

biofluids and tissues that are sensitive to altered pathology of stimuli including disease 

processes. Small molecule metabolites in biological samples such as blood, urine and 

tissues have been examined using the powerful analytical techniques of nuclear magnetic 
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resonance (NMR) and mass spectrometry (MS) and their combination with multivariate 

statistical methods.7 Since these metabolites are sensitive to subtle differences in 

pathological status, metabolites profiling may identify altered pathways and key enzymes 

that could be targeted therapeutically.  

In this study, we used a metabolomics approach to identify altered small-molecule 

metabolites in TNBC. Intact cancer tissue samples (n=47) and normal adjacent tissue 

(n=35) from 47 patients (30 African Americans, 17 Caucasian; normal adjacent 18 

African Americans, 17 Caucasian) were obtained before neoadjuvant chemotherapy, and 

were studied using high resolution magic angle spinning (HR-MAS) 1H-NMR and 

multivariate statistics methods.   

4.2 Materials and Methods 

4.2.1 Chemicals and Patients Samples 

Deuterium oxide (D2O, 99.9% D) was purchased from Cambridge Isotope 

Laboratories, Inc. (Andover, MA).  

A total of 82 human breast tissue samples (tumor and normal adjacent) were 

collected from patients operated on at the Indiana University School of Medicine 

Teaching Hospitals, Indianapolis IN, the University of Chicago, Chicago, IL and Arnett 

Clinic in Lafayette, IN. Samples were frozen in liquid nitrogen prior to storage and 

shipping to Purdue University for analysis. 
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4.2.2 Sample Preparation 

Frozen tissue samples were removed from their Eppendorf storage tubes using 

tweezers, placed in a petri dish and kept on dry ice during the preparation. Tissues 

samples were cut into an appropriate size, with weights between 11.4 and 22.4 mg, such 

that they could fit into an HR-MAS NMR sample tube for analysis. To provide a field-

frequency lock and for air removal 50l D2O was also transferred into each sample tube, 

and then into the HR-MAS rotor and analysis.  

4.3 NMR Experiments and Data Processing 

4.3.1 NMR Experiments 

1D 1H NMR experiments on the tissue samples were performed on a Bruker 

Avance-III-800 spectrometer equipped with an HR-MAS probe. NMR data were 

acquired using the 1D CPMG (Carr-Purcell-Meiboom-Gill) pulse sequence with water 

presaturation and the following parameters: number of scan=128; number of dummy 

scans=16; number of time domain points =32K; spectral width=15.24 ppm; relaxation 

delay=2 sec; acquisition time=1.34 sec; number of CPMG 180° pulses=400.  

4.3.2 Data Processing and Statistics 

After acquisition, the NMR data were Fourier transformed after apodization, and 

the spectra were then phased, baseline corrected and referenced to the lipid peak δ=0.909 

ppm using Bruker Topspin 3.0 software. The data were then binned to 4K buckets of 
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equal width (0.0034 ppm) to minimize errors due to any fluctuations of chemical shifts 

arising from pH or ion concentration variations using MestReNova 7.0 software. The 

resulting data generated from MestReNova were transferred into Excel (Microsoft Office 

Excel 2011). Spectral regions within the range of 0 to 9.0 ppm were used for the analysis 

after removing the residual water peak in the range of 4.5 to 5.0 ppm. To identify 

significantly different spectral bins for each metabolite between tumors and normal 

adjacent, the unpaired Student's t-test was used. P-values ≤ 0.05 were considered to be 

statistically significant. The binned NMR data were imported into Matlab (R2008a, 

Mathworks, Natick, MA) installed with a PLS-DA toolbox (version 4.1, Eigenvector 

Research, Inc., Wenatchee, WA) to classify tumor and normal adjacent groups. The R 

statistical package (version 3.0.0) was used to generate box-and-whisker plots and 

receiver operating characteristics (ROC) curves. 

4.4 Results 

4.4.1 Biomarker Discovery and Evaluation 

Clinicopathological characteristics of patients and samples are summarized and 

listed in Table 4.1. Representative HR-MAS NMR spectra of the 82 breast tissue samples 

(47 tumors and 35 normal adjacent) are shown in Figure 4.1. The 29 metabolites 

considered for multivariate classification models are listed in the Table 4.2 and indicated 

in Figure 4.1. 
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4.4.1.1 Effect of Age and Race 

Supervised multivariate statistics using partial least squares discriminant analysis 

(PLS-DA) models were developed to evaluate the combination of potential biomarker 

candidates. The 29 metabolites in Table 4.2 were selected as the variables to build the 

PLS-DA model. Leave-one-out cross-validation was performed to obtain the best model 

and avoid over-fitting. Metabolites with p<0.05 are listed in Table 4.3 for tumor vs. 

adjacent normal tissue for all ages, age>50, and age<50.. The PLS-DA score plots 

derived from tumor versus normal adjacent tissue for all ages, age>50, and age<50 are 

shown in Figure 4.2A, 4.2B, and 4.2C, respectively. Box-and-whisker plots for 

metabolites with p<0.05 for the older and younger age groups are shown in Figure 4.3 

and 4.4, respectively.  

4.4.1.2 Effect of Estrogen Receptor Status 

To study the effect of estrogen status on the breast cancer metabolite profile, PLS-

DA was again used to build a multivariate model to evaluate the combination of potential 

biomarker candidates.  To build the PLS-DA model the 29 metabolites in Table 4.2 were 

again selected as the variables. Leave-one-out cross-validation was done to obtain the 

best model and avoid over-fitting. Metabolites with p<0.05 are listed in Tables 4.5 and 

4.6 for ER-negative and ER-positive tissue samples, respectively. The PLS-DA score 

plots of tumor versus normal adjacent ER-negative and ER-positive tissue samples are 

shown as in Figure 4.5A and 4.5B, respectively. Box-and-whisker plots are shown for the 

metabolites with p<0.05 for both groups in Figure 4.6 and 4.7, respectively. 
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For a better understanding of the effect of estrogen receptor status on the 

metabolic profiles of African Americans and Caucasians, PLS-DA models consisting of 

all the metabolites in Table 4.2 was constructed to compare tumor versus normal adjacent 

tissues. Figure 4.8A and 4.8B are the PLS-DA metabolite profile score plots for African 

Americans with ER-negative and ER-positive, respectively. Figure 4.8C and 4.8D show 

ROC curves generated from the PLS-DA models of Figure 4.8A and 4.8B, respectively. 

Box and whisker plots of the relative levels of metabolites with p<0.05 for ER-negative 

and ER-positive African American women are shown in Figures 4.9 and 4.10, 

respectively. 

Uridine was the only metabolite in the group of ER-positive Caucasian women 

with a p<0.05 (p = 1.06*10-2 ); no significant p-value for ER-negative Caucasian women 

was observed. The box and whisker plot for uridine in tissue samples from ER-positive 

Caucasian women is shown in Figure 4.111. 

4.5 Discussion 

The feasibility of HR-MAS NMR spectroscopy of breast tissue was investigated 

to distinguish the metabolic differences between tumor and normal adjacent tissue 

classified based on estrogen receptor status, age and race. HR-MAS NMR has been used 

before in several cancer studies including colon, brain, prostate and breast cancer.8-11 In 

this study, we investigated this technique to be used as an adjunct tool for differentiation 

of tumor from normal adjacent breast tissue. Based on our results, we believe this 

methodology, when combined with multivariate statistical analysis, has the potential for 

use as a powerful complementary tool to the current clinical histopathological methods 
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for better diagnosis and prognosis of breast cancer. This method is fairly fast, and 

therefore could be used to quickly assess tissue samples around the time of surgery; since 

NMR is nondestructive technique, the same sample can be used later for histopathology. 

Our results showed that more metabolites change significantly when comparing 

tumor to normal adjacent in women with ages above 50 compared to those below 50 

years old. Myo-inositol and phosphocholine were significantly (p<0.05) increased in 

tumor compare to normal adjacent tissues in both age groups. Choline, lactate, glutamate, 

taurine, methionine, alanine, threonine, glycine, tyrosine, ATP (adenosine triphosphate), 

glutathione, unsaturated lipid, lipid, valine, phenyalanine, glutamine, and α-glucose were 

significantly altered for patients above 50 years old. However, for patients below 50 

years old only uridine in addition to myo-inositol and phosphocholine was changed.  

Data from Caucasian and African American women were also studied separately. 

For Caucasians, most metabolites were not changed significantly whereas they were for 

African Americans. These results could be affected by the sample collection methods. 

Samples obtained from the University of Chicago mainly belonged to African Americans, 

and thus this set was most likely consistent.  

Estrogen receptor (ER) refers to a group cytoplasmic proteins existing in normal 

estrogen target tissues such as uterus and breast. The ER status in invasive carcinomas is 

very important for breast cancer prognosis. Studies show that women with ER-positive 

tumors generally have a better prognosis.12,13 Moreover, in addition to the differences in 

morphology, ER-positive and ER-negative tumor tissues they have different metabolite 

profiles due differences in their altered metabolic pathways.14-16 Glutathion, myo-inositol, 

taurine and lactate were significantly altered in tumor compare to normal adjacent tissues. 
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Our results show that fewer metabolites change concentration in tumor compared to 

normal adjacent tissues for ER-negative patients. Signals from lipid (0.909 ppm), 

unsaturated lipid (5.333ppm) and α-glucose decreased in ER-negative tumors , the rest of 

the metabolites shown in Figure 4.6 and 4.7 for ER-negative and positive patients, 

respectively, were increased in tumor compare to normal adjacent tissue samples. 

Results from comparing metabolite p-values between races showed that these 

changes mostly occurred between African Americans. Uridine was the only metabolite 

that changed significantly (p<0.05) among ER-positive Caucasians. Lactate, taurine and 

glutathione were elevated in tumor for both ER-positive and ER-negative Caucasians. 

However, among African Americans, glutathione was just changed significantly in the 

ER-positive group (p <0.05). Glutathione is an intracellular antioxidant, and plays an 

important role in cellular defense.17 Perry et al. also reported that glutathione levels were 

elevated in breast cancer tumor tissue compared to normal tissue.18 Previous studies have 

also showed that taurine and lactate are elevated in breast cancer tumors,19,20 and our 

study agrees with these results, especially for women above age 50.  

Uridine was elevated in tumors among ER-positive Caucasians below 50; 

however, our results do not support previous studies on human breast cancer tumors that 

showed an increase in the activity of Uridine phosphorylase (UPase).21,22 UPase is the 

enzyme responsible for the reversible phosphorolysis of uridine to uracil. Therefore, 

based on the previous results uridine concentration should be lower in tumor tissues 

compared to normal adjacent.  

Higher concentrations of choline and phosphocholine in breast cancer tumors 

have been reported by a number of studies.23-26 Eliyahu et al. showed elevated levels of 
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phosphocholine in breast cancer cells occurs as more choline is transported into the cells. 

The activity of intracellular choline kinase increases several fold above that of CTP:PCho 

cytidylyltransferase, and converts phosphocholine to cytidyldiphosphate-choline (CDP-

choline).26 We did not find significant change in the intensity level of these two 

metabolites for all patients with ER-negative tumors. However, for African Americans 

with ER-negative tumors, we did see a statistically significant change for choline. A 

study by Sitter et al. showed that the ratio of phosphocholine to choline is lower in ER-

negative compare to ER-positive tumors.25 A study by Shin et al. using Magnetic 

Resonance (MR) spectroscopy showed significant differences in the total choline 

compounds between ER-positive and ER-negative (p=0.007), as did a study by Choi et 

al. using HR-MAS. But our results was not in agreement with their results (p=0.34 for 

choline and p=0.74 for phosphocholine).27,28 Likewise, several studies also indicated no 

significant change between for choline compounds in ER-positive versus ER-negative 

tumors (p=0.23).14,29  

Findings from this study showed the intensity of numerous metabolites were 

changed (p<0.05) in tumors from African American women compared to Caucasians, but 

not significant change between them. Nevertheless, using PLS-DA results, and 

considering all the metabolites listed in Table 4.2, not just low p-value metabolites, 

showed that the HR-MAS analysis combined with multivariate statistical analysis could 

completely distinguish ER-negative and ER-positive tumors from normal adjacent tissues 

(see Figure 4.8).  This result indicates that there are many smaller changes that when 

combined help define the altered metabolism observed in breast tumors. 
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The approach described in this study has some limitations.  Since samples were 

collected in 3 locations by different individuals, differences in the collection 

methodology may have affected our results. It is possible that with additional number of 

samples and a tighter control of sample collection, better results could be achieved, 

especially for age<50 for both African Americans and Caucasians.  

In conclusion, we showed that HR-MAS 1H NMR combined with multivariate 

statistical analysis can be used as a powerful technique for identifying metabolic 

differences between different tumor types.  Because of the effect called field 

cancerization, characterizing the altered metabolite profiles of normal adjacent tissue is as 

important as those for the tumor itself.30 This effect has been previously confirmed by 

several studies.31,32 Results from this study show a  wide variation in the metabolite levels 

for tumors whereas the distribution of metabolites in normal adjacent tissue samples are 

much narrower. Further prospective studies with more number of samples especially for 

ages below 50 are needed to identify out the differences between ages in different 

hormone receptor status and races. 
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Table 4.1 Clinicopathological characteristics of women with invasive breast cancer. 

Patient Characteristics Number  

Total Patients  47 

African American women 30 (T=30; N=18) 

Caucasian women 17 (T=17; N=17) 

Pathology   

Invasive carcinoma grade I and DCIS 3 

Invasive carcinoma grade II 10 

Invasive carcinoma grade III 25 

Unknown  9 

Patient Age   

<50 10 

>50 37 

African American women 

<50 7 

>50 23 

Caucasian women 

<50 3 

>50 14 

ER Status   

ER- 18 

ER+ 29 

African American women 

ER- 13 

ER+ 17 

Caucasian women 

ER- 5 

ER+ 12 

T: tumor. 
N: Normal adjacent. 
ER: Estrogen receptor  
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Table. 4.2 Quantified metabolites used for multivariate classification models. 

Number 
 

Metabolite 
 

Chemical Shifts 
(ppm) 

Number 
 

Metabolite 
 

Chemical Shifts 
(ppm) 

1 Acetate 1.927 15 Lactate        4.124 

2 Alanine  1.479 16 Lipid 1 0.909493 

3 Arginine/Lysine/ Leucine 1.786-1.649 17 Lipid 2 2.777 

4 ATP  6.125 18 Methionine 2.648 

5 α-glucose       5.238 19 Myo-inositol 3.536 

6 β-glucose       4.652 20 Phenylalanine 7.448-7.298 

7 Choline 3.21 21 Phosphocholine 3.229 

8 Creatine 3.032 22 Taurine 3.431 

9 Formate     8.411 23 Threonine 4.261 

10 Glutamate 2.355 24 Tyrosine(1st peak) 6.891 

11 Glutamine 2.455 25 Tyrosine(2nd peak) 7.189 

12 Glutathione 2.561 26 Unsaturated lipid 5.333 

13 Glycine           3.567 27 Uridine 5.907 

14 Isobutyrate 1.146 28 Valine                    1.048 
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Table. 4.3 Metabolites significantly (p<0.05) expressed between tumor and 
adjacent normal tissues. 

 
 

Metabbolites 

                            

T vs. N  
(all ages) 

 
Metabbolites 

                           

T vs. N 
(above 50) 

 
Metabbolites 

                           

T vs. N  
(below 50) 

 myo-inositol 1.78E-04 choline 2.40E-04 uridine 2.17E-02 

taurine 5.50E-04 lactate 2.69E-04 myo-inositol 3.99E-02 

lactate 6.49E-04 glutamate  7.84E-04 phosphocholine 4.87E-02 

phosphocholine 8.82E-04 myo-inositol 1.43E-03    
glutathione 2.57E-03 taurine 3.43E-03 

glutamine 4.67E-03 methionine 4.00E-03 

ATP 6.22E-03 alanine 4.19E-03 

glutamate  8.76E-03 phosphocholine 4.89E-03 

choline 1.15E-02 threonine 6.50E-03 

glycine 3.21E-02 glycine 6.90E-03 

alanine 3.40E-02 tyrosine 2 1.15E-02 

uridine 3.42E-02 tyrosine 1 1.16E-02 

tyrosine 1 4.06E-02 ATP 1.17E-02 

creatine 4.26E-02 glutathione 1.21E-02 

tyrosine 2 4.60E-02 unsaturated lipid 1.23E-02 

lipid 1.45E-02 

valine  1.53E-02 

phenyalanine 1.64E-02 

glutamine 2.31E-02 

α-glucose 4.43E-02 

T: tumor 
N: normal adjacent 
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Table 4.4 Metabolites significantly expressed (P<0.05) in African American women: 
tumors vs. adjacent normal. 

 

Metabolites Tumor African Americans vs. African American normal adjacent 

lactate 6.90E-04 

myo-inositol 1.15E-03 

choline 1.16E-03 

glutamate  1.21E-03 

l-methionine 2.49E-03 

taurine 3.82E-03 

Alanine 4.52E-03 

tyrosine 1 4.86E-03 

glycine 5.27E-03 

phosphcholine 5.53E-03 

ATP 8.01E-03 

tyrosine 2 8.13E-03 

threonine 8.20E-03 

lysine, leucine, arginine 8.74E-03 

valine  1.08E-02 

phenylalanine 1.15E-02 

unsaturated lipid 1.29E-02 

lipid  1.93E-02 

glutamine 2.00E-02 

glutathione 2.59E-02 
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Table. 4.5 Metabolites differentially expressed (P<0.05) in ER-negative samples (tumor 
vs. adjacent normal) regardless of race. 

Metabolites ER- tumor vs. ER- normal adjacent 

unsaturated lipid 7.60E-03 

lipid  1.14E-02 

myo-inositol 1.34E-02 

glutathione 1.83E-02 

taurine 1.96E-02 

α-glucose 2.02E-02 

ATP 2.62E-02 

lactate 3.40E-02 

creatine 4.59E-02 

Table. 4.6 Metabolites significantly expressed (P<0.05) in ER-positive samples (Tumors 
vs. adjacent normal) regardless of race 

Metabolites ER+ tumor vs. ER+ normal adjacent 

lactate 2.75E-03 

choline 4.61E-03 

phosphcholine 6.94E-03 

myo-inositol 6.96E-03 

glutamate  8.01E-03 

methionine 8.21E-03 

threonine 1.20E-02 

taurine 1.49E-02 

uridine 1.64E-02 

Alanine 2.17E-02 

glutamine 2.70E-02 

glutathione 3.07E-02 

glycine 3.29E-02 

valine  4.51E-02 

tyrosine 2 4.57E-02 
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Table. 4.7 Metabolites significantly altered (P<0.05) in ER negative African American 
women: tumor vs. adjacent normal tissues. 

Metabolites ER- tumor vs. ER- normal adjacent 

unsaturated lipid 6.79E-03 

a-glucose 7.97E-03 

lipid  9.95E-03 

lactate 2.04E-02 

glycinne 2.17E-02 

threonine 2.20E-02 

Alanine 2.32E-02 

glutamate  2.38E-02 

glutathione 2.62E-02 

taurine 2.84E-02 

choline 2.90E-02 

tyrosine 2 2.97E-02 

tyrosine 1 3.27E-02 

ATP 3.55E-02 

valine  3.61E-02 

Table. 4.8 Metabolites differentially altered (P<0.05) in ER-positive African Americans: 
tumor vs. adjacent normal. 

Metabolites ER+ tumor vs. ER+ normal adjacent 

myoinositol 6.79E-03 

phosphcholine 9.09E-03 

choline 1.91E-02 

lactate 1.96E-02 

methionine 2.28E-02 

glutamate  2.69E-02 

taurine 3.97E-02 

L-lysine, L-leucine, arginine 4.08E-02 

tyrosine 1 4.32E-02 
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Figure 4.1 Typical HR-MAS tissue spectra from (A) normal adjacent and (B, C, and D) 

tumor breast cancer tissues. 

A B 
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Figure 4.1, continued 
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Figure 4.2 Results of PLS-DA models using the 29 metabolites from Table 2: (A) all 
samples (B) samples with age above 50 years old and (C) samples with age below 50 

years old. ROC curves using the cross-validated predicted class values for (D) all samples 
(E) samples with age above 50 years old and (F) samples with age below 50 years old. 
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Figure 4.3 Box-and-whisker plots of metabolites with p<0.05 illustrating discrimination 
between tumor and normal adjacent above 50 years old. Horizontal line in the middle 
portion of the box indicates the median Top and bottom boundaries of boxes show the 
75th and 25th percentiles, respectively. Upper and lower whiskers show 95th and 5th 

percentiles, respectively. Open circles show outliers. 
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Figure 4.3, Continued. 
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Figure 4.4 Box-and-whisker plots of metabolites with p<0.05 illustrating discrimination 
between tumor and normal adjacent tissues for samples from women below 50 years old. 

Horizontal line in the middle portion of the box indicates the median. Top and bottom 
boundaries of boxes show the 75th and 25th percentiles, respectively. Upper and lower 

whiskers show 95th and 5th percentiles, respectively, and the open circles show outliers. 
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Figure 4.5 Results of the PLS-DA model from the 29 metabolites (A) ER-negative 

samples, and (B) ER-positive samples. ROC curves using the cross-validated predicted 
class values for (D) ER-negative samples and (E) ER-positive samples. 
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Figure 4.6 Box-and-whisker plots of metabolites with p<0.05 illustrating discrimination 
between tumor and normal adjacent tissues for ER-negative samples. Horizontal line in 
the middle portion of the box indicates the median. Top and bottom boundaries of boxes 
show the 75th and 25th percentiles, respectively. Upper and lower whiskers show 95th 

and 5th percentiles, respectively. Open circles show outliers. 
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Figure 4.7 Box-and-whisker plots of metabolites with p<0.05 illustrating discrimination 
between tumor and normal adjacent tissues for ER-positive samples. Horizontal line in 

the middle portion of the box indicates the median. Top and bottom boundaries of boxes 
show the 75th and 25th percentiles, respectively. Upper and lower whiskers show 95th 

and 5th percentiles, respectively. Open circles show outliers. 
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Figure 4.7, Continued. 

 

 

0e
+

00
2e

+
09

4e
+

09
6e

+
09

8e
+

09
1e

+
10

myo‐inositol 

0.
0
e+

00
5.

0e
+

09
1
.0

e+
10

1.
5e

+
1
0

glycine

0.
0
e+

00
5.

0e
+

08
1
.0

e+
09

1
.5

e+
09

2.
0e

+
09

2.
5e

+
09

3.
0e

+
09

threonine

.0
e
+
00

5.
0e

+
08

1.
0e

+
09

1
.5

e+
09

2.
0e

+
09

uridine

0.
0
e+

00
5.

0
e+

07
1
.0

e+
08

1
.5

e+
08

2
.0

e+
08

ATP

0.
0
e+

00
4.

0
e+

08
8.

0
e+

08
1.

2
e+

09

tyrosine	2

0e
+
0
0

1
e+

10
2e

+
10

3e
+

10
4e

+
10

lactate

             Tumor                           Normal adjacent                Tumor                           Normal adjacent               Tumor                           Normal adjacent  

             Tumor                           Normal adjacent                Tumor                           Normal adjacent               Tumor                           Normal adjacent  

             Tumor                           Normal adjacent  



117 

 

 

Figure 4.8 Results of the PLS-DA model using the 29 metabolites for African Americans: 
(A) ER-negative samples and (B) ER-positive samples. ROC curves using the cross-

validated predicted class values for African Americans: (C) ER-negative samples and (D) 
ER-positive samples. 
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Figure 4.9 Box-and-whisker plots of metabolites with p<0.05 illustrating discrimination 
between tumor and normal adjacent tissues for ER-negative African Americans. 

Horizontal line in the middle portion of the box indicates the median. Top and bottom 
boundaries of boxes show the 75th and 25th percentiles, respectively. Upper and lower 

whiskers show 95th and 5th percentiles, respectively. Open circles show outliers. 
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Figure 4.9, Continued. 

 

 

 

e
+
00

5.
0
e
+
09

1.
0
e
+
10

1
.5

e
+
10

2
.0

e
+
10

0
e+

0
0

1
e
+
11

2e
+
1
1

3
e+

11
4e

+
11

5e
+
1
1

6
e+

11

0
.0

e+
0
0

5
.0

e
+
07

1
.0

e
+
0
8

1
.5

e+
08

2
.0

e
+
0
8

2
.5

e+
08

3
.0

e
+
08

0e
+
00

2
e
+
0
8

4
e+

0
8

6e
+
08

8
e
+
08

0e
+
0
0

2e
+
0
8

4e
+
0
8

6e
+
0
8

0e
+
0
0

1
e+

1
0

2e
+
1
0

3
e+

1
0

4e
+
1
0

α-glucose unsaturated lipid ATP 

tyrosine 1 tyrosine 2 lactate 

             Tumor                           Normal adjacent                Tumor                           Normal adjacent  

             Tumor                           Normal adjacent   

             Tumor                           Normal adjacent  

             Tumor                           Normal adjacent               Tumor                           Normal adjacent  



120 

 

 

Figure 4.10 Box-and-whisker plots of metabolites with p<0.05 illustrating discrimination 
between tumor and normal adjacent tissues for ER-positive African Americans. 

Horizontal line in the middle portion of the box indicates the median. Top and bottom 
boundaries of boxes show the 75th and 25th percentiles, respectively. Upper and lower 

whiskers show 95th and 5th percentiles, respectively. Open circles show outliers. 
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Figure 4.11 Box-and-whisker plots of uridine illustrating discrimination between tumor 
and normal adjacent tissues for ER-positive Caucasians. Horizontal line in the middle 
portion of the box indicates the median. Top and bottom boundaries of boxes show the 
75th and 25th percentiles, respectively. Upper and lower whiskers show 95th and 5th 

percentiles, respectively. Open circles show outliers. 
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NMR spectroscopy is a powerful analytical tool for both
qualitative and quantitative analysis. However, accurate
quantitative analysis in complex fluids such as human
blood plasma is challenging, and analysis using one-
dimensional NMR is limited by signal overlap. It is
impractical to use heteronuclear experiments involving
natural abundance 13C on a routine basis due to low
sensitivity, despite their improved resolution. Focusing
on circumventing such bottlenecks, this study dem-
onstrates the utility of a combination of isotope en-
hanced NMR experiments to analyze metabolites in
human blood plasma. 1H-15N HSQC and 1H-13C
HSQC experiments on the isotope tagged samples
combined with the conventional 1H one-dimensional
and 1H-1H TOCSY experiments provide quantitative
information on a large number of metabolites in
plasma. The methods were first tested on a mixture of
28 synthetic analogues of metabolites commonly present
in human blood; 27 metabolites in a standard NIST
(National Institute of Standards and Technology) hu-
man blood plasma were then identified and quantified
with an average coefficient of variation of 2.4% for 17
metabolites and 5.6% when all the metabolites were
considered. Carboxylic acids and amines represent a
majority of the metabolites in body fluids, and their
analysis by isotope tagging enables a significant en-
hancement of the metabolic pool for biomarker dis-
covery applications. Improved sensitivity and resolu-
tion of NMR experiments imparted by 15N and 13C
isotope tagging are attractive for both the enhancement
of the detectable metabolic pool and accurate analysis
of plasma metabolites. The approach can be easily
extended to many additional metabolites in almost any
biological mixture.

Nuclear magnetic resonance (NMR) spectroscopy is increas-
ingly used in metabolomics for the analyses of multiple metabolites
in biofluids and tissues. Metabolomics promises a number of
important applications in biomedicine including a more detailed
understanding of biological processes, the discovery of the
biomarkers associated with numerous diseases, pharmaceutical

development, and toxicology.1-6 It is increasingly recognized that
because of its high reproducibility and quantitative nature, NMR
is a very attractive analytical tool. In particular, the improved
resolution of two-dimensional (2D) NMR methods is considered
very useful for metabolomics applications.7-11 However, a major
drawback of 2D NMR is that the cross-peak volume in the
spectrum is influenced by numerous experimental or intrinsic
parameters including the nonuniform excitation profile of the radio
frequency pulses, number and duration of the pulses, interpulse
delays, relaxation times, and the magnitude of indirect spin-spin
couplings. The high sensitivity of peak intensities (or volumes)
to these parameters has limited the use of 2D (particularly 1H
homonuclear 2D) experiments for quantitative analysis in
metabolomics.

To overcome the limitations of quantitation and to improve
the analysis, new higher resolution 2D approaches utilizing
1H-13C heteronuclear 2D experiments (HSQC) have been
proposed.12,13 One approach is to utilize the information from
2D 1H-13C NMR spectra of standard compounds obtained
under identical conditions and relate the peak heights in the
samples to standard mixtures;12 another is to utilize calibration
curves obtained using 1H-13C HSQC spectra for individual
metabolites to determine the metabolite concentrations.13 Most
recently, a more general approach that does not require
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measurements of standard compounds was proposed.14 This
method utilizes correction factors derived theoretically from
the solution of the Bloch equations and the analysis of product
operator formalism incorporating longitudinal (T1) and trans-
verse (T2) relaxation parameters, 1H-13C heteronuclear J-
coupling, and various delays used in the pulse sequence.

A major drawback of the use of the 1H-13C HSQC experiment
for quantitative analysis is the poor signal to noise ratio arising
from low metabolite concentration and natural abundance of
13C (1.1% natural abundance). To compensate this limitation,
unusually long acquisition times (nearly 10 h or more) are
required since the NMR sensitivity scales with the square-root
of the number of scans. Moreover, although 1H-13C HSQC
greatly enhances resolution when compared with 1D NMR,
given the complexity of the biological samples, the resolution
obtainable from a single 2D experiment is not always adequate
for analyzing a large number of metabolites.

In the present study, with the idea of circumventing the
drawbacks of resolution and sensitivity, we utilize a combination
of isotope tagging approaches and 2D NMR methods to accurately
analyze human plasma metabolites. A number of the most
common metabolites in blood plasma were quantified using this
approach after validating the experimental protocols using a
mixture of synthetic compounds. Metabolites containing carboxyl
and amino groups were tagged with 15N and 13C, respectively,
before detection by 2D NMR. We have recently shown the
proof-of-principle approaches to introduce isotope tags using
simple chemical derivatization methods and that the NMR
spectra of the tagged metabolites improve both resolution and
sensitivity.15-18 The combination of advanced isotope tagging
methods with conventional 1D and 2D NMR methods as described
in the present study enables the quantitative analysis of a large
number of metabolites in human blood on a routine basis.

EXPERIMENTAL SECTION
Chemicals and Blood Plasma. Twenty-eight metabolite

standards (Table 1), 4,4-dimethyl-4-silapentane-1-sulfonic acid
(DSS), maleic acid, ethanolamine (all from Sigma-Aldrich, St.
Louis, MO), 4-(4,6-dimethoxy [1,3,5] triazin-2-yl)-4-methylmor-
pholinium chloride (DMT-MM; Acros, Geel, Belgium), 13C-formic
acid (Cambridge Isotope Laboratories, Andover, MA), 15N-
ethanolamine, N,N-dicyclohexylcarbodiimide, and N-hydroxy-
succinimide (Sigma-Aldrich) were used without further puri-
fication. An ultrapure primary quantitative standard, tris-
(hydroxymethyl)aminomethane, (99.9%) was obtained from
Mallinckrodt Baker Inc. (Phillipsburg, NJ). Human blood
plasma (10 × 1 mL) was procured from the National Institute
of Standards and Technology (NIST, Gaithersburg, MD).
Frozen plasma samples were transported to Purdue University
under dry ice and stored at -80 °C until used for the analysis.

Calibration of the Standard Solutions. Twenty-eight me-
tabolites that commonly occur in human blood plasma were
selected on the basis of entries in the human metabolite database
(HMDB)19 and the analysis of isotope labeled 1H-13C HSQC and
1H-15N HSQC spectra, as well as 1D and 2D 1H-1H TOCSY
spectra of a human plasma sample. Stock solutions (20 mM)
for the synthetic analogues of all these 28 metabolites (Supple-
mentary Table S1, Supporting Information) and internal stan-
dards, DSS (5 mM), maleic acid (20 mM) and ethanolamine (20
mM), were prepared. The concentration of the DSS solution was
calibrated using 1H NMR against a primary stoichiometric
standard, tris(hydroxymethyl)aminomethane (22.4 mM), pre-
pared in the lab. The calibrated DSS solution was then used
to calibrate all other standard solutions. Briefly, solutions of
the synthetic analogues of the 28 metabolites and internal
standards were divided into five groups as shown in Supple-
mentary Table S2, Supporting Information. The grouping of
samples in Table S2 was such that the 1H NMR peaks for at least
one proton from each compound in the group were isolated
for the measurement of the peak integral. For each group, the
one-dimensional (1D) 1H NMR spectrum was recorded, and
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11544.
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Table 1. Synthetic Analogues of Metabolites Used for
the Quantitative Analyses of Human Plasma
Metabolites

serial
number

standard
compound

estimated
approximate blood

plasma
concentrationsa (μM)

actual NMR
calibrated

concentrations in
the mixture (μM)
used for spikingb

1 3-hydroxybutyrate 60 59.2 ± 0.9
2 acetate 80 73.7 ± 1.1
3 L-alanine 300 287.1 ± 4.5
4 L-arginine 80 90.1 ± 1.4
5 citrate 30 28.1 ± 0.4
6 creatinine 40 31.6 ± 0.6
7 formate 40 32.5 ± 0.5
8 L-glutamic acid 50 53.8 ± 0.3
9 L-glutamine 300 292.1 ± 2.8
10 L-glycine 200 172.6 ± 2.7
11 L-histidine 80 83.7 ± 0.6
12 L-isoleucine 50 50.7 ± 0.2
13 lactate 1000 959.5 ± 15.1
14 L-leucine 80 80.7 ± 1.2
15 L-lysine 100 75.3 ± 2.3
16 L-methionine 20 19.2 ± 0.03
17 L-phenylalanine 70 71.1 ± 1.1
18 L-proline 100 93.3 ± 1.5
19 L-threonine 100 90.0 ± 1.9
20 L-tryptophan 30 29.1 ± 0.4
21 L-tyrosine 80 80.9 ± 0.3
22 L-valine 200 183.2 ± 1.5
23 succinate 10 9.9 ± 0.1
24 betaine 50 44.6 ± 0.7
25 4-hydroxy proline 50 53.4 ± 0.8
26 L-serine 100 93.3 ± 0.7
27 L-asparagine 40 43.9 ± 0.7
28 taurine 30 27.7 ± 0.1

a Obtained from the combination of database search and comparison
of the relative peak integrals in the NMR spectra. b The errors are
standard deviations from two measurements.
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on the basis of the integrated area of the isolated peaks with
reference to DSS, exact concentrations of the standard solutions
were determined (Supplementary Table S1, Supporting Infor-
mation).

Mixture Analysis. A mixture of the 28 synthetic analogues
of the metabolites was prepared using the stock solutions such
that the final concentration of each standard compound was
matched approximately to its expected concentration in human
blood plasma19 (Table 1). From this mixture, three identical sets
of samples (Set 1, Set 2, and Set 3) were prepared (see Supporting
Information; Flow Diagram 1); each set consisted of four solutions,
2 × 500 μL and 2 × 1000 μL of the mixture. All solutions were
then dried under vacuum. To the samples from Set 1, maleic acid
solution (92 nmol) was added as an internal reference and the
solutions were diluted to 500 μL using doubly distilled water. The
carboxylic acid class of metabolites was then tagged with 15N-
labeled ethanolamine following the established procedure17

(see Supporting Information). To each sample from Set 2,
ethanolamine solution (200 nmol) was added as an internal
reference and the solution was diluted to 500 μL using doubly
distilled water. Amines and amino acids were subjected to 13C
isotope tagging using a 13C-formic acid reaction following the
established procedure18 (see Supporting Information). Finally,
to the samples from Set 3, DSS (9.44 nmol) was added as an
internal reference and reconstituted in 560 μL of phosphate buffer
(pH ) 7.4) in D2O and transferred to 5 mm NMR tubes for 1D
and 1H-1H 2D TOCSY NMR experiments.

Isotope Tagging of Plasma Metabolites. Cold methanol (4
°C; 9.6 mL) was added to 4.8 mL of the NIST plasma, vortexed,
and then kept for 30 min at -20 °C. The precipitated protein pellet
was removed after centrifuging at 13 200 g for 10 min. The
supernatant was divided into 12 equal parts and divided into three
groups, each group consisting of four samples (see Supporting
Information; Flow Diagram 2). In each group, two samples served
as controls and the remaining two were spiked with 400 μL of
the stock solution mixture of 28 synthetic samples. All three
groups of samples were then dried in vacuum. One group was
used to label metabolites containing carboxyl groups with 15N-
ethanolamine, and the second group was used to label
metabolites containing amino groups with 13C-formic acid, after
the addition of internal standards, either maleic acid or
ethanolamine, appropriately. Identical procedures were used
for isotope tagging the plasma metabolites. To the third group
of samples, DSS (9.44 nmol) was added as an internal reference
and reconstituted in 560 μL of phosphate buffer (pH ) 7.4) in
D2O. Samples from all the three preparations were transferred
to 5 mm NMR tubes after adjusting the pH and solution
conditions as described earlier for the mixture of standards.

NMR Experiments. NMR experiments were performed at 298
K on a Bruker Avance-III 800 MHz spectrometer equipped with
a room temperature 1H inverse detection Z-gradient probe or a
Bruker DRX-500 spectrometer equipped with a 1H inverse
detection Z-gradient cryo-probe. 1D NMR experiments for the
five groups of standard samples (Supplementary Table S2,
Supporting Information), the mixture of 28 synthetic analogues,
and the plasma extracts were performed using a one pulse
sequence with residual water signal suppression by presaturation
during relaxation delay. Thirty-two scans with 64 k time domain

data points were collected with a sufficiently long recycle delay
(20 s) to ensure complete recovery of the magnetization between
scans. For the 15N isotope tagged samples, 1H-15N 2D HSQC
experiments were performed employing an INEPT (insensitive
nuclei enhanced by polarization transfer) transfer delay of 5.5
ms corresponding to a 1JNH of 90 Hz. Spectral widths of
approximately 10 kHz in the 1H and 5 kHz in the 15N
dimensions were used for the 800 MHz experiments. For 13C

Figure 1. 2D spectra of mixtures of 28 synthetic compounds
obtained with or without isotope tagging: (a) 1H-15N HSQC spectrum
with15N tagging of carboxylic acids, (b)1H-13C HSQC spectrum with
13C tagging of amines and amino acids, and (c) 1H-1H TOCSY
spectrum of the neat mixture. All the spectra were obtained on a 800
MHz spectrometer. The labeled peaks correspond to the numbered
metabolites in Table 1.
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isotope tagged samples, sensitivity-enhanced 1H-13C 2D HSQC
experiments were performed employing an INEPT transfer
delay of 2.5 ms corresponding to a 1JC-H of 200 Hz. Spectral
widths of approximately 10 kHz for the 1H dimension and
600 Hz for 13C were used at 800 MHz. For both 1H-15N
HSQC and 1H-13C HSQC 2D experiments, 128 free induction
decays were collected along the indirect (t1) dimensions
using four transients per increment and a 2 or 3 s recycle
delay, resulting in a total acquisition time of 18 min for the
1H-15N HSQC and 28 min for the 1H-13C HSQC. Phase-
sensitive data were obtained using echo-antiecho mode with

nitrogen (for 1H-15N HSQC) or carbon (for 1H-13C HSQC)
decoupling during acquisition (t2 dimension) using the GARP
(globally optimized alternating-phase rectangular pulses)
sequence. 1H-1H 2D TOCSY experiments were performed
on the neat (nonderivatized) samples with a spectral width
of 6 kHz (500 MHz) or 12 kHz (800 MHz) in both the
dimensions. The residual water signal was suppressed by
presaturation. Free induction decays (400) were collected
with t1 increments using eight transients per increment and
a 2 s recycle delay, resulting in a total acquisition time of
116 min (500 MHz) or 111 min (800 MHz).

Figure 2. Concentration of 28 standard metabolites obtained by combining 2D NMR experiments with and without 15N or 13C tagging: (a)
obtained from 1H-15N HSQC NMR after 15N tagging; (b) obtained from 1H-13C HSQC NMR after 13C tagging, and (c) obtained from 1H-1H
TOCSY NMR of the neat mixture. The shaded bar on the right in each pair represents the actual concentration of the metabolite.
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All 1D data were Fourier transformed with a 0.3 Hz line
broadening function. The 2D data were zero-filled to 1024 points
in the t1 dimension after forward linear prediction to 512 points
and Fourier-transformed after multiplying by a squared sine-
bell window function shifted typically by π/4 or π/2 along both
the dimensions. All NMR data were processed with Bruker
Topspin 2.0 on a Redhat Linux platform and Bruker XWINNMR
3.5 on a SGI/IRIX platform. An automatic baseline correction
using a polynomial of degree 5 was used to correct the baseline
in both 1D and 2D spectra.

Peaks in the 1D and 2D NMR spectra were assigned to various
metabolites on the basis of literature reports.17-19 Integrals for
well resolved peaks in the 1D and 2D spectra were obtained with
respect to the peak for the internal standard DSS, maleic acid or
ethanolamine. Integral limits for each peak in the 2D spectra were
selected such that the selected region encompassed the whole
peak and that no other peak interfered with the selection. Once
chosen for each type of 2D spectrum, the same sets of integral
limits were used for all other samples. Concentrations of the
plasma metabolites were determined by comparing the peak
integrals from the spectra obtained with and without spiking with
the synthetic analogues and also by directly comparing the peak
integrals of the plasma metabolites with those from the standards.
The accuracy, reproducibility, and errors were estimated from two
to eight measurements, depending on the detection of the resolved
peak for a particular metabolite in one or more types of spectra,
for both synthetic mixtures and plasma samples. The 1H-15N
HSQC, 1H-13C HSQC, and 1H-1H TOCSY experiments and
the data analyses were performed by independent persons.

RESULTS

The standard solutions of the synthetic analogues of the plasma
metabolites and internal standards (maleic acid and ethanolamine),
prepared on the basis of their weights, were calibrated using 1D
1H NMR. The actual concentration of the standard solutions
prepared on the basis of the weight varies depending on the
purity and hygroscopic nature of the compounds, and hence,
it is important to calibrate the standard solutions especially for
accurate quantitative analysis. The DSS solution, which was
first calibrated using a primary stoichiometric standard, tr-
is(hydroxymethyl)aminomethane, was used for calibrating all
the standard solutions (Supplementary Table S2, Supporting
Information). The difference between the concentrations deter-
mined on the basis of sample weight and calibration using 1D
NMR varied as much as 10% for all but three metabolites, which
varied up to nearly 20% (Supplementary Table S1, Supporting
Information) due to hygroscopic nature of the metabolites or
sample impurities.

Analysis of Synthetic Metabolite Mixture. A mixture of 28
metabolites was analyzed using both 15N and 13C isotope tagging
approaches. Figure 1 shows 2D spectra of the mixture of 28
compounds with 15N and 13C isotope tagging, as well as without
tagging. The integrated 2D peak volumes were obtained and
then used to calculate the metabolite concentrations. Figure 2
shows the concentration of the compounds, thus, determined. As
can be seen in the figure, an excellent match between the
metabolite concentrations derived from NMR methods and the
actual values was obtained. Further, as shown in Supplementary

Table 2. 1H, 13C, and 15N Chemical Shifts of the Peaks Used in the Analysis of NIST Plasma Metabolites

experiment: 1H-15N HSQC experiment: 1H-13C HSQC

label metabolite 1H (ppm) 15N (ppm) label metabolite 1H (ppm) 13C (ppm)

2 acetate 8.01 120.93 3 L-alanine 7.96 163.40
3 L-alanine 8.23 113.70 10 L-glycine 8.03 164.15
5 citrate 8.04 122.62 11 L-histidine 7.97 163.56
8 L-glutamic acid 8.21 115.58 12 L-isoleucine 8.03 163.81
10 L-glycine 8.12 114.78 18 L-proline 8.10 163.10
11 L-histidine 8.25 116.42 19 L-threonine 8.12 164.12
17 L-phenylalanine 8.13 117.19 20 L-tryptophan 7.88 163.51
19 L-threonine 8.28 117.52 22 L-valine 8.05 163.88
20 L-tryptophan 8.03 116.90 25 4-hydroxy proline 8.04 165.21
21 L-tyrosine 8.18 117.25 26 L-serine 8.07 163.92
22 L-valine 8.30 118.43 27 L-asparagine 8.01 163.57
24 betaine 8.57 124.28 28 taurine 7.99 164.23
25 4-hydroxy proline 8.26 116.74

experiment: 1H 1D NMR experiment: 1H-1H TOCSY

label metabolite 1H (ppm) label metabolite 1H (ppm) F2 dimension 1H (ppm) F1 dimension

1 3-hydroxybutyrate 1.19 4 L-arginine 1.68 3.23
2 acetate 1.91 5 citrate 2.65 2.51
3 L-alanine 1.47 11 L-histidine 7.07 7.06
7 formate 8.45 12 L-isoleucine 3.66 0.98
9 L-glutamine 2.13 13 lactate 1.32 1.32
11 L-histidine 7.06 14 L-leucine 0.95 1.70
12 L-isoleucine 1.01 15 L-lysine 3.02 1.48
16 L-methionine 2.13 19 L-threonine 3.57 1.33
17 L-phenylalanine 7.42 20 L-tryptophan 7.53 7.72
20 L-tryptophan 7.74 21 L-tyrosine 6.90 7.18
21 L-tyrosine 6.89 22 L-valine 3.60 2.27
22 L-valine 1.03
29 glucose 5.23

8987Analytical Chemistry, Vol. 82, No. 21, November 1, 2010

127



Figure S1 (Supporting Information), a correlation of the NMR
derived values with the expected values showed a very good
agreement for all low and high concentration metabolites (R2 >
0.99).

Quantitation of Plasma Metabolites. The 1D 1H NMR
spectrum of the plasma sample obtained without isotope
labeling is highly complex, with only a relatively small number
of metabolite signals being isolated from other signals (Supple-

mentary Figure S2, Supporting Information). 2D HSQC spectra
of plasma samples tagged with 15N and 13C isotopes provide
resolved peaks for a much larger number of carboxylic acid
and amine class of metabolites. Figure 3 shows 2D spectra of
the plasma obtained with and without 15N or 13C tagging. The
2D TOCSY spectrum of the same plasma sample also provided
a number of well resolved peaks (Figure 3c). However, unlike
the HSQC spectra, the TOCSY spectrum showed a number of
redundant peaks for the same metabolite, which increases the
complexity of the spectrum.

Quantitation of the plasma metabolites followed an identical
procedure used for the determination of the concentrations of
metabolites in the synthetic mixture. The integrated peak areas/
volumes in the 1D/2D spectra of the neat and the spiked plasma
samples were obtained, and the metabolite concentrations were
determined. Twenty-seven metabolites that were identified in
human plasma were analyzed in duplicate measurements with and
without 15N and 13C isotope tagging. Figure 4 depicts the

Figure 3. 2D spectra of NIST plasma obtained with and without
isotope tagging: (a) 1H-15N HSQC spectrum obtained after 15N
tagging of carboxylic acids, (b)1H-13C HSQC spectrum obtained after
13C tagging of amines and amino acids, and (c) 1H-1H TOCSY
spectrum of the neat mixture. All the spectra were obtained on an
800 MHz spectrometer. The labeled peaks correspond to the
numbered metabolites in Table 1.

Figure 4. Concentrations of metabolites in the NIST plasma obtained
using 1D/2D NMR experiments with and without isotope tagging: (a)
obtained from 1H-15N HSQC NMR after 15N tagging, (b) obtained
from 1H-13C HSQC NMR after 13C tagging, (c) obtained from 1H-1H
TOCSY NMR of neat plasma, and (d) obtained from 1D NMR of the
neat plasma sample.
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concentration of the metabolites, thus, determined. The 1H, 13C,
and 15N chemical shifts for the blood plasma metabolites
analyzed in this study are shown in Table 2, and the derived
concentrations using a combination of four different NMR
methods are shown in Table 3. Further, the concentration of the
carboxylic acid and amine class of metabolites were also deter-
mined by directly comparing the 2D peak integrals with those
for the corresponding standard compound. Comparison of the
metabolites concentration determined with and without spiking
is shown in Figure 5. Notably, the values determined from both
approaches agree well.

DISCUSSION
1H NMR spectroscopy is an attractive tool for the quantita-

tive analysis of multiple metabolites from intact biological

samples. Considering its ease of use, reproducibility, and high-
throughput nature, 1D 1H NMR spectroscopy is often used for
metabolomics-based studies. However, it is challenging to
analyze the 1D NMR spectrum of plasma in an absolute
quantitative fashion as it contains a large number of overlapping
signals due to hundreds of metabolites present at variable
concentrations. The multiplicity of the signals due to J-coupling
makes 1D 1H NMR spectra of plasma particularly challenging.
The interference from macromolecules such as proteins and
lipids adds to the complexity and causes baseline distortions
in the spectra. Such overlap and baseline issues substantially
affect the accuracy of the quantitative analysis using 1D NMR.
To offset such limitations, a majority of the studies that use
1D NMR resort to comparisons of the relative intensities of
the 1D NMR signals between disease and healthy samples.
While the use of relaxation edited techniques such as the
Carr-Purcell-Meiboom-Gill (CPMG) experiment, serum/
plasma deproteinization, and line fitting approaches significantly
improves the analysis of metabolites,20 such methods are not
ideal. Diffusion-sensitized 1D NMR spectroscopy, which uses
data from two separate 1D experiments, one obtained using
low diffusion gradients and the other using high gradients to
suppress macromolecular background signals effectively, was
shown to be useful for the quantitative analysis of blood plasma
metabolites.21 However, spectral overlap still significantly limits
the number of metabolites that can be analyzed.

2D NMR promises quantitative analysis of a large number of
metabolites on a routine basis. An important requirement is that
the cross-peaks in 2D spectra should be devoid of overlaps for
reliable quantitative results; however, this criterion is not often
met for a large number of metabolites by a single 2D experiment
due to the extremely high complexity of plasma. The advantage
of the new 2D NMR approaches used here is that the use
chemoselective isotope tags greatly reduces the complexity of the
spectra, since only a single peak is observed for the metabolites

(20) Weljie, A. M.; Newton, J.; Mercier, P.; Carlson, E.; Slupsky, C. M. Anal.
Chem. 2006, 78, 4430–4442.

(21) de Graaf, R. A.; Behar, K. L. Anal. Chem. 2003, 75, 2100–2104.

Table 3. NIST Plasma Metabolite Concentrations Obtained Using a Combination of NMR Experiments with or
without Isotope Tagging

label metabolite
NIST plasma

concentration (μM)a label metabolite
NIST plasma

concentration (μM)a

1 3-hydroxybutyratee 99.3 ± 13.1 16 L-methioninee 16.6 ± 2.8
2 acetateb,e 142.0 ± 3.0 17 L-phenylalanineb,e 50.6 ± 3.8
3 L-alanineb,c,e 279.4 ± 18.9 18 L-prolinec 127.6 ± 13.1
4 L-arginined 155.9 ± 16.0 19 L-threonineb,c,d 107.3 ± 16.7
5 citrateb,d 40.1 ± 2.3 20 L-tryptophanb,c,d,e 45.9 ± 8.1
7 formatee 51.2 ± 2.1 21 L-tyrosineb,d,e 58.9 ± 7.2
8 L-glutamic acidb 69.3 ± 5.3 22 L-valineb,c,d,e 159.7 ± 11.6
9 L-glutaminee 368.5 ± 2.3 24 betaineb 27.3 ± 2.8
10 L-glycineb,c 204.5 ± 31.2 25 4-hydroxy prolineb,c 11.5 ± 1.3
11 L-histidineb,c,d,e 63.1 ± 5.7 26 L-serinec 95.8 ± 15.0
12 L-isoleucinec,d,e 48.2 ± 2.4 27 L-asparaginec 33.4 ± 2.8
13 lactated 2403.6 ± 127.6 28 taurinec 32.4 ± 0.8
14 L-leucined 100.1 ± 0.1 29 glucosee 8778.5 ± 62.8
15 L-lysined 190.8 ± 21.9

a The errors are standard deviations. b Obtained from 1H-15N HSQC. c Obtained from 1H-13C HSQC. d Obtained from 1H-1H TOCSY. e Obtained
from 1H 1D NMR. Two samples were used for each type of experiment resulting in two, four, six, or eight independent measurements for each
metabolite.

Figure 5. Comparison of the concentrations of (a) carboxylic acid
and (b) amino group containing metabolites in the NIST plasma
obtained with spiking (left bars) and without spiking (right bars) with
the standard compounds.
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with a single functional group (see Figures 1 and 3). The reduced
complexity of the spectra due to the absence of less interesting
chemical signals is particularly important for the analysis of low-
concentration metabolites (Figures 2 and 4). This method,
however, does not work for the analysis of lipoproteins, which
represents a major class of metabolites in blood plasma and which
have been effectively analyzed using a multivariate deconvolution
approach.22,23

An important criterion for the quantitative analysis method to
be robust is that it does not require the use of spiking standards
for each sample. To test this, we also determined the concentration
of 15N and 13C isotope tagged metabolites in plasma by
comparing the 2D peak integrals with those from the synthetic
analogues. It may be interesting to note that, as shown in
Figure 5, the values, thus, determined using both 15N and 13C
isotope tagging agree well with those determined on the basis
of spiking with synthetic analogues. Therefore, it is sufficient
to obtain the integral for each synthetic analogue only once,
which can be used for the analysis of any number of samples.
Utilization of 2D HSQC experiments involving the isotopes has
the additional advantage since both the magnitude of the
coupling and the relaxation properties of the nuclear pairs (15N/
13C and 1H) do not appreciably vary across the metabolites of
interest and, hence, provide the relative cross peak intensities
that are less sensitive to instrumental settings.

In this study, we quantified 27 metabolites with an average
CV of 2.4% for 17 metabolites and 5.6% when all the metabolites
were considered. When the results from all the four NMR
methods were combined for the same metabolites, the average
CV’s were 4.8% and 8.7%, respectively. We note that, as the
metabolite library expands, we can quantify additional metabolites
from the same and already acquired 2D data by comparison of
the peak integrals with those from the standards. Mass spectrom-
etry (MS), another very useful method for quantitative analysis,
is highly sensitive and provides quantitative information on a larger
number of metabolites. However, MS invariably involves the

combination of a separation method such as gas chromatography
or liquid chromatography for accurate analysis and often renders
the obtained results to be sensitive to the specific column and
separation parameters and especially the ionization conditions. In
addition, a standard compound is needed for each quantified
metabolite.

In conclusion, this investigation presents quantitative analysis
of over 25 plasma metabolites using 15N and 13C isotope tagging
methods. Carboxylic acids and amines represent a majority of
the metabolites in body fluids, and their analysis by isotope
tagging significantly enhances the detectable metabolic pool
for biomarker discovery applications. The combination of
improved sensitivity and resolution and the reduced time
required when compared to natural abundance heteronuclear
NMR methods are attractive for the routine and accurate
analysis of metabolites in complex biological samples. Al-
though, the isotope tagging methods use 2D NMR experi-
ments, each 2D experiment requires only 30 min or less (<10
min with a cryoprobe), and hence, the approach can be useful
for high throughput analysis of human plasma as well as other
biological fluids. Further, combination of the isotope tagging
approach with the latest advancements in NMR technology,
such as detection using microcoil probes, for example, can
significantly minimize the volume of biofluid samples required
for routine analysis.
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ABSTRACT: Recently, the enhanced resolution and sensitivity
offered by chemoselective isotope tags have enabled new and
enhanced methods for detecting hundreds of quantifiable
metabolites in biofluids using nuclear magnetic resonance
(NMR) spectroscopy or mass spectrometry. However, the
inability to effectively detect the same metabolites using both
complementary analytical techniques has hindered the correlation
of data derived from the two powerful platforms and thereby the
maximization of their combined strengths for applications such as
biomarker discovery and the identification of unknown metabolites. With the goal of alleviating this bottleneck, we describe a
smart isotope tag, 15N-cholamine, which possesses two important properties: an NMR sensitive isotope and a permanent charge
for MS sensitivity. Using this tag, we demonstrate the detection of carboxyl group containing metabolites in both human serum
and urine. By combining the individual strengths of the 15N label and permanent charge, the smart isotope tag facilitates effective
detection of the carboxyl-containing metabolome by both analytical methods. This study demonstrates a unique approach to
exploit the combined strength of MS and NMR in the field of metabolomics.

The metabolomics field has witnessed exponential growth
over the past decade due to its capabilities for systems

biology research and potential applications in numerous
disciplines including biomedicine, toxicology, food and
nutrition, drug development, and environmental science.1−5

Commonly used analytical techniques such as nuclear magnetic
resonance (NMR) spectroscopy and/or mass spectrometry
(MS) have evolved in response to the high demand for
resolving the complexity of biological mixtures and identifying
the large pool of quantifiable metabolites. However, despite
numerous advances, the biological complexity still often
outweighs the capabilities of these advanced analytical methods;
no single technique currently is capable of detecting all
metabolites in a single experiment. Each analytical method is
sensitive to certain classes of metabolites, and depending on the
nature of the metabolites of interest, generally one or
sometimes a combination of NMR or MS techniques are
used to profile as many metabolites as possible and thereby
derive the biological meaning. A major hurdle of such an
approach is that the metabolite data obtained from NMR and
LC-MS or GC-MS methods for the same or similar samples are
often not directly comparable. The inability to compare and
correlate data from different analytical techniques for the same
or similar samples is a significant challenge that prevents
drawing meaningful conclusions from the vast amount of
metabolite data existing in the literature and exploiting the
combined strength of NMR and MS for unknown metabolite

identification. The main contributing factors for this bottleneck
are the limited NMR sensitivity, complex spectral signatures,
and variable MS ionization efficiency or suppression.
The use of chemo-selective tags provides an avenue to

improve the sensitivity of metabolite detection by both NMR
and MS methods. For example, the sensitivity of MS detection
is shown to be enhanced by three orders of magnitude or more
by tagging metabolites with chemoselective tags containing a
permanent charge.6−10 Because of the permanent charge, the
tagged metabolites are effectively detected with high sensitivity
and better quantitative accuracy, irrespective of the pH or
nature of the solvents used to separate metabolites before
detection by MS. Separately, based on differential dansylation
using 12C/13C-dansyl chloride, absolute or relative quantitation
of amine and phenol containing metabolites has been achieved
with a sensitivity enhancement of three orders of magni-
tude.11,12 Similarly, NMR-sensitive isotope based chemo-
selective tags have been shown to detect many quantifiable
metabolites with high sensitivity and resolution by NMR.13−17

Using 15N-ethanolamine as the tag, for example, over a hundred
carboxyl-containing metabolites have been detected by 1H−15N
two-dimensional NMR with high resolution and sensitivity.13

However, while metabolites can be detected with high
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sensitivity by both MS and NMR separately using chemo-
selective tags, the inability to compare and correlate the data
from the two methods is a major bottleneck in the
metabolomics field.
The ability to more easily detect the same metabolites by

both NMR and MS methods would offer new avenues to
compare data between MS and NMR platforms and to exploit
the combined strength of the complementary methods. Toward
this goal, we introduce a new “smart isotope tag” approach,
using 15N-cholamine in this case, which possesses the
characteristics of high NMR sensitivity and resolution through
its isotope enrichment and high MS sensitivity through its
permanent positive charge (see schematic Figure 1). The tag
combines the strengths of individual chemoselective tags,
demonstrated previously and separately for NMR and MS
detection,6,13 and offers news avenues to exploit the combined
strength of these powerful and complementary techniques for
areas such as metabolite profiling and unknown metabolite
identification.

■ EXPERIMENTAL SECTION

Chemicals and Biofluids. A total of 48 carboxyl-containing
metabol i te standards (Table I) , (2-bromoethyl)-
trimethylammonium bromide, dimethylformamide (DMF),
methanol, acetonitrile, acetone, hydrochloric acid (HCl),
sodium hydroxide (NaOH) (all from Sigma-Aldrich, St.
Louis, MO), 4-(4,6-dimethoxy[1,3,5]triazin-2-yl)-4-methylmor-
pholinium chloride (DMTMM) (Acros Organic, Pittsburgh,
PA), 15N-phthalimide potassium, and deuterium oxide (Cam-
bridge Isotope Laboratories, Andover, MA) were used without
further purification. Human serum samples were obtained from
Innovative Research, Inc., (Novi, MI) and urine from healthy
volunteers, in accordance with the Internal Review Board at
Purdue University. Deionized (DI) water was from in-house
Synergy Ultrapure Water System from Millipore (Billerica,
MA).
Design and Synthesis of the Smart Isotope Tag15N-

Cholamine. Synthesis of 15N-cholamine involved a two-step
reaction and followed the Gabriel synthesis procedure with

modifications as described below to yield the pure product.18,19

The first step involved reacting potassium 15N-phthalimide with
(2-bromoethyl)trimethylammonium bromide in DMF to
obtain the 15N-substituted phthalimide intermediate (Scheme
1). The second step involved alkaline and acid hydrolyses of the
15N-substituted phthalimide to yield the smart isotope tag, 15N-
cholamine (Scheme 2).
Briefly, for the synthesis of 15N-substituted phthalimide

(Scheme 1), (2-bromoethyl)trimethylammonium bromide (9.5
mmol, 2.35 g) was mixed with 15N-phthalimide potassium (10
mmol, 1.86 g) in a 250 mL round-bottom flask and dry DMF
(100 mL) was added under nitrogen gas. The mixture was then
refluxed at 100 °C with stirring for 12 h. The supernatant from
the reaction mixture was separated, and the solvent was
removed using a rotary evaporator.18 The resulting crude
residue was washed thrice using acetonitrile (5 mL each time),
twice with acetone (2 mL each time) followed by washing again
once with acetonitrile (3 mL) to obtain the pure 15N-
substituted phthalimide. 1H NMR spectra in D2O at each
step were monitored to assess the purity of the intermediate
product. For the synthesis of 15N-cholamine, in the second
step, the 15N-substituted phthalimide (538 mg) (Scheme 1)
was dissolved in DI water (24 mL); 1 N NaOH (2.69 mL) was
added to the solution, and the mixture was left at room
temperature with stirring for 30 min to complete the alkaline
hydrolysis (Scheme 2).19 Subsequently, 12 N HCl (1.8 mL)
was added to the solution, the temperature was raised to 70 °C,
and left for 12 h with stirring to complete the acid hydrolysis
(Scheme 2).19 The solvent was then removed using a rotary
evaporator. The resulting crude residue was washed thrice with
acetonitrile (4 mL each time) followed by washing thrice with
25:75 water/acetone mixture (2 mL each time) to yield the
pure product, 15N-cholamine. 1H NMR spectra in D2O at each
step were monitored to assess the purity of the final product.

Tagging Metabolites Using the Smart Isotope
Tag15N-Cholamine. 15N-Cholamine (5 mg, 50 μmol) was
added to 500 μL sample in an eppendorf tube, and the pH of
the mixture was adjusted to 7.0 with 1 M HCl or NaOH. A 21
mg portion of DMTMM was added to initiate the

Figure 1. Schematic figure illustrating the “smart isotope tag” approach used to detect the same metabolites using NMR and MS with high
sensitivity. Tagging carboxyl-containing metabolites with 15N-cholamine enables their enhanced detection by both NMR and MS.
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Table I. 1H and 15N-NMR Chemical Shifts for 15N-Cholamine Tagged Carboxyl-Containing Metabolites That Were Measured
with Reference to Smart Tagged Formic Acid

label name 1H (ppm) 15N (ppm) label name 1H (ppm) 15N (ppm)

1 cis-aconitic acid 8.5 118.24 23 2-hydroxyisobutyric acid 7.95 117.51
8.14 121.47 24 DL-isocitric acid 8.40 117.15
8.06 119.49 8.11 120.77
8.07 120.21 25 isoleucine 8.37 118.19
8.23 116.00 26 isovaleric acid 8.07 121.92
8.14 120.81 27 α-ketoglutaric acid 8.69 116.34

2 adipic acid 8.05 120.57 8.63 111.84
3 DL-alanine 8.30 114.39 28 lactic acid 8.23 114.18
4 4-aminobenzoic acid 8.25 111.35 8.49 114.45
5 arginine 8.34 115.96 29 leucine 8.34 115.74
6 asparagine 8.31 116.03 30 lysine 8.33 115.88
7 aspartic acid 8.15 120.01 31 maleic acid 8.39 120.39

8.38 115.27 32 malic acid 8.28 122.83
8.31 115.6 8.29 122.15

8.08 115.14
8.16 121.35 33 malonic acid 8.19 121.44

8 betaine 8.55 122.69 34 methionine 8.36 116.08
9 citric acid 8.20 121.46 35 oxalic acid 8.47 117.13

8.07 123.95 36 oxaloacetic acid 8.35 112.67
7.87 121.88 8.63 111.40

10 cysteine 8.35 115.93 37 L-phenylalanine 8.21 118.85
11 cystine 8.5 115.22 38 L-proline 8.35 115.58
12 formic acid 8.05 123.93 39 propionic acid 7.95 118.85
13 fumaric acid 8.42 122.68 40 pyroglutamic acid 8.29 115.88

8.56 124.24 41 Pyruvic acid 8.63 111.39
14 glucuronic acid 8.38 119.54 8.35 112.72
15 glutamic acid 8.28 115.99 42 serine 8.17 117.63

8.05 120.42 43 succinic acid 7.96 119.16
8.01 119.64

16 glutamine 8.35 115.90 44 succinyl-COA 8.03 119.17
8.11 119.67

17 glycine 8.2 115.45 45 L-threonine 8.34 117.79
18 glycolic acid 8.22 114.97 46 L-tryptophan 7.98 119.37

8.37 115.19 47 tyrosine 8.27 118.05
19 hippuric acid 8.2 115.62 48 valine 8.38 118.20
20 histidine 8.36 116.60
21 3-hydroxybutyric acid 8.07 122.20
22 4-hydroxy-L-proline 8.5 115.89

8.36 117.62

Scheme 1. Synthesis of 15N-Substituted Phthalimide

Scheme 2. Alkaline and Acid Hydrolyses of the 15N-Substituted Phthalimide to Yield 15N-Cholamine
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reaction.13,20,21 The mixture was stirred at room temperature
for 4 h to complete the reaction. The general reaction for
tagging metabolites with the smart isotope tag is shown in
Scheme 3. To maintain 15N amide protonation, the pH was
adjusted to 5.0 by adding 1 M HCl or 1 M NaOH, and the
solution volume was adjusted to 580 μL by adding DI water.
Serum was deproteinized using methanol prior to metabolite
tagging and urine was used with no pretreatment.13

NMR Spectroscopy. For each sample, 580 μL was mixed
with 30 μL D2O and placed in a 5 mm NMR tube. NMR
experiments were performed on a Bruker DRX 500 MHz or
Avance III 800 spectrometer equipped with a room temper-
ature probe or cryoprobe, respectively, suitable for 1H inverse
detection with Z-gradients at 298 K. A one pulse sequence with
or without solvent signal suppression using presaturation was
used for 1H 1D NMR experiments. The sensitivity-enhanced
1H−15N 2D heteronuclear single quantum coherence (HSQC)
experiments employed an INEPT transfer delay of 6 ms
corresponding to the JNH of 90 Hz. Spectral widths for the 1H
and 15N dimensions were approximately 8 and 3 kHz,
respectively. Here, 128 free induction decays of 1024 data
points each were collected in the indirect (t1) dimension with 1
or 4 transients per increment. Nitrogen decoupling during the
direct acquisition (t2 dimension) was achieved with the GARP
(globally optimized alternating-phase rectangular pulses)
sequence. The resulting 2D data were zero-filled to 1024
points in the t1 dimension after forward linear prediction to 256
or 512 points. A 45° shifted sine-bell window function was
applied to both dimensions before Fourier transformation.
Chemical shifts were referenced to the 1H signal of TSP for the
1D spectra or the derivatized formic acid signal (1H 8.05 ppm;
15N 123.93 ppm) in the HSQC spectra. Bruker Topspin
versions 3.0 or 3.1 software packages were used for NMR data
acquisition or processing.
Mass Spectrometry. LC-MS and LC-MS/MS experiments

were performed using an Agilent 1200 SL-LC system coupled
online with an Agilent 6520 Q-TOF mass spectrometer
(Agilent Technologies, Santa Clara, CA). The sample (8 μL)
was injected onto an Agilent Poroshell 120 EC-C18 column
(30 mm × 50 mm, 2.7 μm), which was heated to 50 °C. The
flow rate was 0.5 mL/min. Mobile phase A was 5 mM
ammonium acetate in water, and mobile phase B was 0.1%
water in ACN. The mobile phase composition was initially kept
isocratic at 3% B for 1 min, then increased to 90% B over 4
min; after another 4 min at 90% B, the mobile phase
composition returned to 3% B. Electrospray ionization (ESI)
was used in positive mode, and the voltage was 3.5 kV. The
mass analyzer was scanned over a range of 50−1000 m/z. The
collision energy for auto LC-MS/MS experiments was fixed at
10 V, targeting preselected compounds.

■ RESULTS AND DISCUSSION

The smart isotope tag, 15N-cholamine, designed, developed,
and used in this study retains all the characteristics of the 15N-

ethanolamine tag including the solubility of the tagged
metabolites in aqueous media, large one-bond J-coupling
between 1H and 15N of ∼90 Hz for efficient polarization
transfer between 1H and 15N nuclei, and wide chemical shift
dispersion for different metabolites in the resulting 2D NMR
spectra.13 In addition, and importantly, 15N-cholamine
possesses a permanent positive charge, which enables efficient
positive mode detection of the same carboxyl-containing
metabolites by MS, irrespective of the pH or solvent conditions
of the eluting media, commonly used for chromatographic
separation before detection by MS.6

Synthesis of 15N-cholamine involved a two-step reaction and
followed the Gabriel synthesis procedure with suitable
modifications to yield the pure product.18,19 As seen in the
1H NMR spectrum (Supporting Information Figure S1), the
pure intermediate compound, 15N substituted phthalimide, was
obtained after the first step of the synthesis. Hydrolysis of this
compound yielded the 15N-cholamine in pure form as can be
ascertained from its 1H NMR spectrum (Supporting
Information Figure S2; peaks at 3.16; 3.48; 3.64 ppm). The
accurate MS and MS/MS spectra for 15N-cholamine, shown in
Supporting Information Figure S3, help further verify the
identity and purity of the synthesized smart isotope tag (m/z =
104.120).
The compound was then used to tag 48 metabolites that

were selected for their prominence as carboxyl-containing
metabolites in biofluids that represent a variety of metabolic
pathways. The 1H and 15N chemical shift data derived from the
2D NMR experiments, after tagging with 15N cholamine, are
shown in Table I. Because the 15N-cholamine and the
previously used 15N-ethanolamine differ only in their terminal
group, the tagging efficiency, reproducibility and chemical shift
values for metabolites with 15N-cholamine tag were similar to
those obtained using the 15N-ethanolamine tag.13

Importantly, as anticipated based on the 15N-ethanolamine
tagging approach shown earlier in our laboratory,13 the 15N-
cholamine tagging of metabolites in human serum provided a
rich NMR spectrum due to the large number of carboxyl-
containing metabolites normally present in blood (Figure 2).
The low natural abundance of 15N (0.37%) ensures that none
of the nitrogen containing metabolites interferes with the
detection of carboxyl-metabolites through the 15N-cholamine
tag. Each peak in the spectrum corresponds to different
metabolite from the carboxylic acid class. However, metabolites,
which contain more than one carboxyl group, provide
additional peaks depending on the number of carboxyl groups
and molecular symmetry. In addition, metabolites such as
lactate, which possess α-hydroxyl groups, show more than one
peak for the same metabolite as we described earlier using the
15N-ethanolamine tag.13 Some of the peaks assigned based on
the chemical shift values for the standard compounds are
marked with the corresponding number shown in Table I and
Figure 2b. Similarly, tagging of metabolites in human urine with
15N-cholamine also enabled the detection of peaks correspond-

Scheme 3. General Reaction for Tagging Carboxyl-Containing Metabolites with the Smart Isotope Tag 15N-Cholamine
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ing to well over a hundred carboxylic acid group containing
metabolites (Figure 3). Peaks tentatively assigned based on the
values for the standard compounds are marked by their
numbers shown in Table I and Figure 2b.

The 15N-cholamine tagging of metabolites in aqueous media
enabled a sensitivity enhancement of up to 3 orders of
magnitude or more in the MS detection of carboxyl
metabolites. The derivatized metabolites could be detected
easily in positive ion mode as compared to the same
metabolites detected in negative ion mode without the tag.
For example, the sensitivity for pyruvic acid detected in positive
ion mode after 15N-cholamine tagging was enhanced by a factor
of about 1500 when compared to that detected for the same
metabolite without the 15N-cholamine tag, in negative ion
mode. Figure 4 shows typical mass spectra for formic acid and
pyruvic acid after tagging with 15N-cholamine. The enhance-
ment in sensitivity is primarily due to the high ionization
efficiency imparted by the permanent positive charge of the
15N-cholamine and is in agreement with results by Smith and
co-workers for fatty acid analysis using the heavy and light
forms of cholamine.6 In that study, reactions of metabolites
with cholamine were made in organic solution in contrast to
the aqueous media used here. The 15N-cholamine derivatized
serum samples were then analyzed by LC-MS. As anticipated,
due to the presence of the permanent positive charge, tagged
metabolites could be readily detected in positive ion mode with
high sensitivity. Sensitivity enhancement by a factor of up to
nearly 3000 could be achieved for tagged acids. The extracted
ion chromatograms for a few typical carboxylic acids detected in
serum with 15N-cholamine tag are shown in the Supporting
Information Figure S4.
One potential issue is the effect on chromatographic

retention time caused by the addition of the cholamine tag.
However, separation of the tagged metabolites using HILIC
columns offers an opportunity to effectively separate before
detection using MS. For example, the results of separation of a
mixture of standard carboxylic and amino acids performed

Figure 2. (a) Portion of the 1H−15N HSQC spectrum of human
serum tagged with 15N-cholamine: (1) aconitic acid; (2) adipic acid;
(3) alanine; (7) aspartic acid; (8) betaine; (9) citric acid; (11) cystine;
(12) formic acid; (15) glutamic acid; (17) glycine; (20) histidine; (21)
3-hydroxybutyric acid; (24) isocitric acid; (28) lactic acid; (29)
leucine; (32) malic acid; (37) phenylalanine; (40) pyroglutamic acid;
(45) threonine; (46) tryptophan; (47) tyrosine; (48) valine. (b)
Portion of the 1H−15N HSQC spectrum of a mixture of standard
compounds at various concentrations obtained after tagging with 15N-
cholamine. The peak numbers correspond to the compounds shown in
Table I.

Figure 3. Portion of the 1H−15N HSQC spectrum of human urine
tagged with 15N-cholamine: (1) aconitic acid; (2) adipic acid; (3)
alanine; (5) arginine; (6) asparagine; (7) aspartic acid; (9) citric acid;
(12) formic acid; (15) glutamic acid; (18) glycolic acid; (19) hippuric
acid; (24) isocitric acid; (28) lactic acid; (33) malonic acid; (39)
propionic acid; (40) pyroglutamic acid; (43) succinic acid; (45)
threonine; (46) tryptophan.
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using a HILIC column, without attempting to optimize
chromatography conditions, indicate that 15N-cholamine tagged
metabolites can be separated effectively (Supporting Informa-
tion Figure S5). More broadly, we can contemplate the use of
dual purpose smart tags for other NMR-MS combinations. For
GC-MS, the addition of a charged species will likely cause
problems related to reduced volatility; however, a different tag,
such as 13C or even 29Si labeled silyl-type tags can be
contemplated.22 Another alternative is the use of smart tags
for capillary electrophoresis (CE) coupled to MS, which is
increasingly of interest in metabolomics.23 In fact, positively
charged derivatization agents (based on pyridinum containing
compounds) have been demonstrated for the use of metabolite
profiling of carboxylic acids by CE-MS.24 Thus, the potential
for the use of smart tags such as cholamine for CE-MS and
NMR is quite promising.
In conclusion, we have developed a smart isotope tag, 15N-

cholamine, which possesses dual characteristics for metabolite
profiling in complex biological mixtures using the powerful
analytical techniques of NMR and MS. By combining the
individual strengths of the 15N label and permanent charge, the
smart isotope tag facilitates detection of carboxyl-containing
metabolome by both NMR and LC-MS techniques with high
sensitivity. Detection of the same metabolites by both NMR
and MS (Supporting Information Figure S6), effectively opens
unique opportunities for identification of unknown metabolites
and direct comparison of metabolite data from the two
powerful analytical platforms.
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