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ABSTRACT

Tayyari, Fariba. Ph.D., Purdue University, December 2013. Development of Isotags for
NMR Based Metabolite Profiling and Applications. Major Professor: Daniel Raftery.

NMR spectroscopy is a powerful analytical tool for both qualitative and
quantitative metabolite profiling analysis. However, accurate quantitative analysis of
biological systems especially using one-dimensional NMR has been challenging due to
signal overlap. In contrast, the enhanced resolution and sensitivity offered by
chemoselective isotope tags have enabled new and enhanced methods for detecting
hundreds of quantifiable metabolites in biofluids using NMR spectroscopy or mass
spectrometry. In this thesis we show improved sensitivity and resolution of NMR
experiments imparted by "’N and "*C isotope tagging which enables the accurate analysis
of plasma metabolites.

To date, isotope tagging has been used in conjunction with a single analytical
platform. The inability to detect the same metabolites using the complementary analytical
techniques of NMR and mass spectrometry has hindered the correlation of data derived
from the two powerful platforms for applications such as biomarker discovery or the
identification of unknown metabolites. To address this problem, we describe a smart
isotope tag, '’N-cholamine, which possesses two important properties: an NMR sensitive

isotope, and a permanent charge for MS sensitivity. Finally, we present a study on
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metabolite profiling using intact breast cancer tissue samples in which we exploit the

combined strength of NMR and multivariate statistical methods for metabolite profiling.



CHAPTER 1. INTRODUCTION TO METABOLITE PROFILING

1.1 Introduction

Metabolomics or metabolite profiling describes the advanced study of metabolism
in biological systems. In one sense, metabolite profiling has been used for decades for
human disease diagnosis,' and the initial studies were actually introduced in early 1970s.?
However, the instrumentation available at that time made definitive studies very
challenging. The term “Metabonomics” was introduced 28 years later by Nicholson et al.
as “the quantitative measurement of the dynamic multiparametric metabolic response of
living systems to pathophysiological stimuli or genetic modification”,” and represented a
re-birth of the field in some sense. Metabolomics has also been described as “a
comprehensive and quantitative analysis of all metabolites” in biological systems and the
"systematic study of the unique chemical fingerprints that specific cellular processes
leave behind".** Scientists are often used these terms interchangeably. The Metabolome
was first introduced by Oliver et al. in 1998 as the complete set of metabolites
synthesized by an organism.

Metabolites represent the downstream products of genes and proteins and as such
they integrate the biological information and changes to that system that occur over time.

Metabolites are not only building blocks of many other biological components such as

proteins, they also have many other important roles in biological systems such as



signaling, enzymes activity, and providing energy (ATP). The metabolome is dynamic,
and the level of metabolites in a biological system respond sensitively to a variety of
changes, including influences by drugs, disease or any other stress caused by a cell’s
environment at a certain time.

Given the sensitivity to cellular perturbations, metabolite profiling can be used to
study a variety of biological questions, including the differences between groups such as
disease and healthy at a molecular level and convey extensive information to the field of
“molecular epidemiology.” Metabolomics has some advantages over other ‘omics such as
genomics and proteomics. First metabolite profiling provides detailed information related
on phenotype, while genomics and to a lesser extent the proteome provide more
information about genotype.” Second, the number of metabolites represented in the
human metabolome is significantly less than the large number of genes and proteins in
the human genome or proteome, which makes metabolomics more discriminating.®’
Also, since a given metabolite is same in different organisms, more generic techniques
can be used for metabolomics and extended across species.® Lastly, the technology
involved in measuring metabolomics is faster and less expensive than for genomics or
proteomics.”

In this chapter, the entire workflow of metabolite profiling, as illustrated in Figure

1.1, will be reviewed with a focus on human samples.

1.2 Biological Samples and Sample Preparation

Metabolomics approaches can be applied to a variety of different biological

matrices, including biofluids, tissues, and cells. It is critical to choose an appropriate



preparation method, including all the steps from the time the sample is collected until the
data acquisition is started. The method has to be reliable and reproducible, and based on

the type of the sample and technique to be used for analysis.

Since the metabolome is dynamic, quenching of the metabolism is necessary,
such as using cold methanol, trifluoroacetic acid, or even freezing with liquid nitrogen,
followed by appropriate storage at cold temperatures. Other preparation steps are
dependent on the analytical technique to be used and the type of the sample or organism
of interest. These steps include extraction, separation, isolation, purification,

derivatization, buffer addition, and etc.

1.2.1 Samples
Metabolite profiling studies have been reported on many different biological
systems such as cells, tissues and a number of biofluids including plasma, serum, urine,
bile, cerebrospinal fluid, seminal fluid, amniotic fluid, synovial fluid, and saliva.'”
"Among all the samples serum, plasma and urine have been most often targeted for
metabolomics studies because the sample is non-invasively collected and thus easily

obtained.

1.2.1.1 Blood Samples

Blood is the most readily accessible biofluid and has been subjected to many
metabolomics studies since it is rich in metabolites and potentially provides vital
information on almost every type of cell. In a living organism blood serum or plasma

provides a direct global view of the metabolic status. Blood has two parts, a cellular



component including red and white blood cells and plasma, a liquid carrier in which these
cells and other molecular species are suspended. '’ Differences between plasma and
serum occur from the way they are prepared from blood. Plasma is obtained by adding
anti-coagulants to the blood sample; then by centrifuging the mixture, the cellular portion
is precipitated and the plasma supernatant is obtained. However, to obtain serum the
blood is allowed to clot without adding any anti-coagulant. Plasma is more viscose
compare to serum because the clotting proteins remain in the supernatant.20 While serum
and plasma have very similar metabolite profiles; however, differences in the
distributions of specific metabolites and even the number of metabolites in each fluid has
been reported.”’ Soluble proteins still remain in both plasma and serum, and depending
on the analytical technique used, additional preparation steps are required for further

purification or deproteination.

1.2.1.2 Urine Samples

Ease and non-invasive sampling of urine add to the other advantages of urine
including a relatively high concentration of metabolites and low concentration of
proteins, which make urine a favorable target for metabolomics studies. However, urine
suffers from high salt content that triggers problems in some analytical methods.

A number of confounding factors can cause differences in the concentrations of
urine metabolites between individuals, including the volume of urine, amount of the
water and physiological conditions such as age, gender, weight, personal diet and
environmental effects.”? Urinary metabolites also have different concentrations over time

for a single individual since they reflect the conditions that have been introduced to the



body such as food intake, medication, and exercise. Nevertheless, the urinary metabolite
profile can provide an immense amount of information on biological status.

Urine sample preparation usually is minimal and can be performed after the
sample is collected. However, if the urine samples need to be stored, they can be at or
below —25 °C without preservatives. If sterility is difficult to maintain or unachievable,
and for the case of temporary storage at 4 °C, the addition of preservatives is necessary.
In these situations 0.1% sodium azide, is preferred over preservation with sodium

)
fluoride.

1.2.1.3 Tissue Samples

Tissue samples have been used for metabolite profiling for a number of years.”>*

However, metabolic profiling of intact tissue has become of increasing interest,”>’ as
the study of intact tissues can help researchers better understand the molecular basis of

. 25,28
diseases.”™

Tissue extraction methods, such as using methanol/water/chloroform
destruct the cell structure, and pull out the metabolites into either the aqueous or organic
layer, depending on their solubility. Typically these two solutions are analyzed
separately. In contrast, the analysis of intact tissue samples is non-destructive and
preparation is fast and minimal (addition of deuterated water, buffer, etc.). In addition to

the other advantages of using intact tissues, these samples can be used later for clinical

studies.



1.2.1.4 Cell ad Cell Medium Samples

Metabolite profiling of cells have been used to discriminate between different
type of tumors and cell lines.®*° Cell samples also provide valuable information for
studying biochemical pathways and mechanisms. Numerous studies has been conducted

on different types of cancer cells and they show diverse biochemical pathways.’'”* T

0
quench cell metabolism, liquid nitrogen or cold methanol are the most common
methods.**~** Cell sample preparation should be prudently done to save the integrity of the
sample and to limit leakage of intracellular metabolites, especially for the types of cells

that are highly sensitive to osmotic changes of medium.****

Metabolite profiling of cell
culture medium are not as common as cells. It can be used to evaluate the impact of the

medium on the cell culture performance.*®

1.2.2 Sample Preparation for NMR Experiments

One of the main advantages of NMR over mass spectrometry is the ease of
sample preparation. Except for experiments that require samples to be derivatized,
sample preparation for NMR experiments is minimal. Blood samples including plasma
and serum contain proteins and lipids which cause broad lines in the NMR spectrum. To
detect small molecules several spectral editing methods are available and widely used.
Only in some cases are samples deproteinized prior adding them into NMR tubes. Urine
samples benefit from their low concentrations of proteins and high concentrations of low-
molecular-weight compounds; therefore sample preparation is minimized. Tissue
preparation methods depend on the type of experiment performed, which group of

metabolites are of interest, and the instrumentation used: liquid state NMR, HR-MAS,



solid state NMR, etc.”~"*® Overall, and especially beyond NMR analysis, extraction has
been the most common method for tissue sample preparation. Among the extraction
methods solid-liquid extraction is more common. In this method a solvent, typically
deuterated water, is added to the solid material, followed by shaking, vortexing or stirring
to enhance the contact between them. For HR-MAS, intact tissues are used and only
deuterated water or buffer, with or without reference, is added. Different protocols are

available for quenching cell metabolism and perform cell lysis.

1.3 NMR Spectroscopy for Metabolomics Applications

Among the techniques used for metabolomics studies, NMR and Mass
spectrometry (MS) are the two most common.” Both techniques have advantages and
disadvantages, and i general they are complementary to each other. NMR is highly
selective, non-destructive, requires minimal sample preparation, is robust, and the data
generated by NMR are very quantitative and reproducible. However, NMR is costly,
suffers from poor sensitivity, and the complex spectra typically show a high degree of
spectral peak overlap. Later in this chapter and thesis, some the methods to enhance

sensitivity and resolution will be discussed.

1.3.1 Water Signal Suppression
Water comprise abundantly in most of the biological samples. In NMR-based
metabolomics studies overwhelming signal of the water resonance is the obstacle.

Without water suppression, water gives rise to a large residual signal and attenuate or



eliminate metabolites signals. Therefore, it is very common and desirable in NMR
metabolomics studies to suppress the water resonance signal.

The water resonances can be suppressed by the use of appropriate standard NMR
solvent suppression methods. Several pulse sequences exist for this purpose Including,
Presaturation (PRESAT), water suppression enhanced through Tleffects (WET)
sequence, WATER suppression by GrAdient Tailored Excitation (WATERGATE),
presaturation utilizing relaxation gradients and echoes (PURGE), and excitation
sculpting, etc.*"**

Among these pulse sequences presaturation technique is more commonly used in
metabolomics studies. The pulse sequence consists of two pulses, first a selective pulse to
saturate water frequency (~ 4.8 ppm), it is a continuous low-power radio frequency pulse
over the few second time period of an acquisition delay, usually 1-2 sec. Second one is a
non-selective high power 90° pulse to excite other protons except saturated water
protons.*’ In a spectrum generated by this pulse sequence water signal is still exist,

because of the water portion that is not perfectly irradiated, although it is highly

suppressed.

1.3.2 1D NMR Spectroscopy Pulse Sequences Used for Metabolomics
In metabolomics studies it is important to select a proper NMR acquisitions are
from available NMR experiments, including 1D NOESY with water suppression, CPMG
1D 'H with water suppression, 1D selective TOCSY, DOSY, etc. These methods have
advantages and disadvantages, therefore selection of a method depends on the origin of

the sample and metabolite molecular groups of interest.



1.3.2.1 1D NOESY

1D NOESY (nuclear Overhauser enhancement spectroscopy) is one of the most
commonly used pulse sequences in metabolomics. 1D NOESY is usually coupled with
PRESAT to attenuate the water peak and called NOESYPRESAT.* In this sequence the
water resonance is irradiated two times, first during relaxation delay, RD, (1-3 sec.), and
again during the mixing time, t,, (100-150 msec.).*> With this method, the water signal in
biofluid samples is attenuated by a factor of 10° or more. The spectra acquired by
NOESY show broad signals from macromolecules such as proteins and lipids in addition
to the narrow spectral features from small molecules. Therefore, the 1D NOESY
sequence is more suitable for urine than serum or plasma samples, since urine contains a

low concentration of proteins.

1.3.2.2 1D CMPG

Blood samples including plasma and serum, cells and tissue all contain
macromolecules, which display broad lines in the NMR spectrum due to their slow
tumbling rates that limit spectral averaging. Therefore, a more suitable pulse sequence for
the analysis of these samples should be able to suppress the broad signals resulting from
macromolecules. The most common sequence used to suppress macromolecular signals is
the CPMG (Carr-Purcell-Meiboom-Gill) spin echo pulse.46 In this sequence there is a 90°
phase shift between the 90° initial pulse along the x-axis and the following 180° pulses
along the y-axis. This phase shift creates echoes that all form along y-axis and eliminate
most errors of the 180° pulses. Fourier transformation of the CPMG free induction decay

produces high resolution NMR spectra, which are highly reproducible and quantitative.
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Much like the NOSEY sequence, most of the time CPMG is coupled with PRESAT, and

1s known as PRESAT-CPMG.

1.3.2.3 1D Selective TOCSY

ID NMR spectra of biological samples are crowded and highly congested;
therefore some of the smaller signals are overlapped or buried under other, larger signals.
Selective total correlation spectroscopy (Selective-TOCSY) is a NMR experiment that
can be used to identify distinct spin-systems, i.e., a group of spins from the sample
molecule which are connected by J-couplings.*” During the TOCSY evolution period, the
NMR magnetization spreads from one 1H spin to the rest of members of the spin system
via J-coupling, eventually throughout the molecule. Selective TOCSY, in which a single
peak is excited and the coupled spins are revealed in the spectrum, has been used in

biological samples and showed promising results.***

This technique can help to detect
and quantify metabolites with concentrations 10-100 times below those of the major

48
components.

1.3.3 2D NMR Spectroscopy Pulse Sequences Used for Metabolomics
1D "H NMR spectra are often complicated because of the overlapping signals due
to the large number of metabolites in biological samples.”” 2D NMR experiments are
sometimes able to improve the resolution by dispersion signals in two different
dimensions. Several 2D NMR experiments are used in metabolomics studies, including
heteronuclear single quantum coherence spectroscopy (HSQC) and heteronuclear

multiple bond correlation spectroscopy (HMBC), 2D J-resolved spectroscopy, correlation
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spectroscopy (COSY), total correlation spectroscopy (TOCSY), etc. However, the
disadvantages of 2D NMR experiments, including longer acquisition times, larger data
size and difficult data analysis compared to 1D NMR decrease their use and interest for
metabolomics studies.”’ 2D-HSQC is the only 2D NMR experiment used for the work in

this thesis, and therefore only the 2D-HSQC experiment is discussed in this chapter.

1.3.3.1 2D HSQC

HSQC displays correlations between heteronuclear spins across a single chemical
bond, and thus allows the identification of the directly connected nuclei.’> Usually, the
detected correlation is between 'H and either '°N or '*C nuclei. For instance, 2D 'H-'"°N
HSQC NMR correlates 'H and "N NMR resonances from the same molecule, and as a
result only those nitrogen nuclei that are coupled to protons are visible in the
spectrum.”™* Several studies have been done for identification and quantification of

metabolites by tagging them with N or ’C and using HSQC NMR experiments.””’

1.3.4 Enhancement in Sensitivity and Resolution
Over the past 10 years a number of improvements in NMR instrumentation have
provided significant gains in performance, both in resolution and sensitivity. Higher
resolution and sensitivity are greatly improved by the use of higher magnetic field
strengths,*' and higher magnetic fields such as 18.8 Tesla (800 MHz for '"H NMR) or

. . . 5859
above are attractive for metabolomics studies.”™

In addition, cryogenic (cryo) probes
can significantly increase the signal-to-noise ratio (SNR) by reducing the level of thermal

noise in the detection coil circuit. By cooling the probe and its electronics from room
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temperature to 20 K, the SNR improves almost four fold. One of the disadvantages of
NMR compared to MS in metabolomics studies is the amount of sample required. Micro-
coil probes can be used to reduce the amount of sample required for NMR studies and
thus limit this problem. Various micro-coil probes have been designed and constructed
for metabolomics studies.®”** Coupling the NMR instrument with liquid chromatography
is another way to increase the resolution, while a combined LC-MS-NMR approach can
assist the identification of unknown metabolites. In this approach LC fractions are split
between MS and NMR instruments for parallel analysis.”

Quantifying and identifying metabolites are some of the most important and
challenging aspects of metabolite profiling, and therefore methods that improve NMR
resolution and sensitivity are of great interest. Since biological samples are rich in
metabolites, conventional 1D NMR methods suffer from the often overwhelming overlap
of metabolite signals. In many cases, low concentrated metabolites are not even detected
since they are buried under the other, larger signals. The relatively small dispersion of the
'"H NMR chemical shifts and the large number of spin-spin couplings between
metabolites are the main causes of signal overlap. One of the strategies that has been
demonstrated to improve NMR chemical shift dispersion is to detect heteronuclei such as
PN, *C. °C and "N spectra are simpler, as they have fewer couplings; however, these
nuclei have low natural abundances, and therefore conventional methods to detect these
nuclei suffer from low sensitivity.

In contrast, isotope labeling can enhance the sensitivity. Isotope labeling has been
performed in vivo and in vitro in biological systems. In vivo isotope labeling has been

accomplished by feeding animals with *C-enriched diets,** as well as numerous cell
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studies that use °C labeled glucose,” for example, to provide detailed mechanistic
information. In vitro isotope labeling studies are often easier to perform and focus on
improving the measurement technology to differentiate biological samples. One attractive
approach involves the labeling specific classes of metabolites in biofluids with *C and
N, which has been performed with promising results.®®>>>” For example, an isotope-
labeled acetylation reaction using "*C-acetic anhydride can label the amines present in
samples, and later the tagged metabolites are detected using 'H-">C 2D HSQC.®® Amino
acids and carboxylic acids can labeled with '’N-ethanolamine, and the amide can be
detected by 'H-"’N 2D HSQC.” This approach showed an improvement in the limit of

detection such that over 100 metabolites in human urine and serum could be be detected.

1.4 Data Processing and Statistics

1.4.1. Pre- Data Processing
NMR spectral data processing is a critical step in metabolomics profiling and
should be done with care. However, before data processing to be subjected to
multivariate and/or univariate analyses, it has to be preprocessed. Accurate results cannot
be achieved without appropriate preprocessing.
Preprocess steps after NMR data acquisition depend on the study and NMR
experiment, but typically include phase and baselines correction, peaks alignment,

67-68

bucketing (binning) or peak integration, normalization, and scaling. These steps help

eliminate or decrease the undesired spectral variations over samples.
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1.4.1.1 Phasing and Baseline Correction

Phase and baseline corrections are the first steps in preprocessing following data
acquisition. Baseline distortions can be corrected by automated baseline correction or
manually, using a variety of processing software packages such as Topspin (Bruker
Biospin, Billerica, MA), Vnmr] (Varian, Palo Alto, CA), MestReNova (Mestrelab
Research, Santiago deCompostela, Spain), and KnowltAll (Bio-Rad Laboratories,

Hercules, CA).

1.4.1.2 Peak Alignment and Bucketing

Small chemical shift changes can be caused by different factors, including
instrumental effects (see below), changes in sample pH or ion concentrations, or the
presence of other metabolites or macromolecules. It should be noted that the chemical
shift changes caused by these factors do not affect all chemical shifts for all metabolites
at the same level. Chemical shift offsets caused by the NMR instrument can be fixed and
aligned by using a reference signal such as DSS (4,4-dimethyl-4-silapentane-1-sulfonic
acid), TSP (trimethylsilyl propionate) at 0.00 ppm or a peak from one of the metabolites.
For example some metabolomics studies use the methyl doublet peaks of alanine around

1.48 ppm as a reference.®””!

Peak alignment can be performed manually or by using
special algorithms such as RSPA (recursive segment-wise peak alignment).”> Usually, the
next step following the peak alignment is either bucketing or peak integration. For
bucketing, the NMR spectrum is divided into a set of desired spectral width segments (a

typical width is 0.04 ppm), which are known as a bucket or bin. Bucketing integrates the

peak areas over that spectral segment, and ensures a consistent measurement of the same
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resonance for all samples by reducing the effect of pH variations or ion concentrations on
chemical shifts.”” A data matrix is produced by bucket segments, can be saved into a text
file or exported to a worksheet directly to be used further data analysis. Data sets that use
bucketed spectra are easier to work with, as they typically have only about 250 — 400
buckets per spectrum. An alternative to bucketing is the direct integration of spectral
peaks. Although this is more time consuming, it can be more accurate and used to derive
absolute concentrations of specific metabolites. Typically, though, the number of
integrated metabolites is less, ranging from 20-40 for serum or tissue samples and up to

about 80 metabolites for urine.

1.4.1.3 Normalization and Scaling

Metabolomics data typically have to be normalized, otherwise the samples may
not be comparable to each other. For the normalization process different approaches can
be used.®"* A common method for normalization is integral normalization known also as
constant sum normalization. This approach normalizes each spectrum to a constant total
integrated intensity across the whole region. Another method uses a standard with a
known concentration that is to each sample; normalization of the spectrum is based on the
standard.” For tissue samples, the data can be normalized with respect to the weight of
the tissue.®

Metabolites in biological samples have a wide range of concentrations. The
absolute variation in metabolite levels is related to their concentrations.®® Scaling is
therefore used to avoid the selection of only high concentration metabolites as biomarker

candidates because they tend to exhibit high variations. Scaling therefore helps to
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emphasize lower concentration species that might otherwise be overlooked. A number of
scaling methods are available to use such as Pareto scaling, variance scaling, Log scaling,

range scaling, vast scaling, and level scaling.®”¢%7>7

1.4.2 Statistical Methods

Two general approaches are used to perform statistical analysis on the rich
metabolomics NMR data, exploratory analysis and confirmatory analysis. Exploratory
data analysis is used to find patterns in the data set using methods such as principal
component analysis (PCA) and hierarchical clustering analysis (HCA). However,
confirmatory data analysis makes an implicit use of the group labels. Methods for
confirmatory analysis include the univariate Student’s t-test, and multivariate methods
that include partial least square-discriminant analysis (PLS-DA), orthogonal signal

correction-PLS-DA (O-PLS-DA), logistic regression and many others.”’

1.4.2.1 Unsupervised Methods

The exploratory methods commonly used in metabolomics are known as
“unsupervised” since patterns are discovered without assigning the spectra to classes such
as “disease” or “healthy.” This approach draws distinctions between groups of samples
with respect to their chemical compositions, i.e., metabolite concentration level changes
among the samples. The most commonly used multivariate method in metabolomics is
PCA.”*® PCA transforms the multidimensional data and builds linear multivariate
models. The PCA model is built on the basis of orthogonal vectors (Eigenvectors). The

principal components (PCs), are the eigenvectors of X, PCs are initially calculated from
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the original data set X by a diagonalization of the covariance data matrix. The PCs are
then ranked by their eigenvalues in decreasing order. The first PC (PC1) thus describes
the direction of the largest variations generated across the set of spectra, the second PC
(PC2) then describes the direction for the largest portion of the remaining variation, and
similarly for the rest of the PCs. Except for the first several PCs, the other remaining PCs
mostly contain noise. Therefore, the first few PCs are typically used to display the
variation in a “score plot.” Separation of samples along a particular PC is explained
using the loading plot; it shows the contribution of each variable in the original data to a

principle component. Loading plot assists with the identification of potential biomarkers.

1.4.2.2 Supervised Methods

Popular confirmatory methods include partial least square discriminant analysis
(PLS-DA), orthogonal signal correction partial least square discriminant analysis (O-
PLS-DA), t-test, logistic regression, k-nearest neighbor (KNN), and soft independent
modeling by class analogy (SIMCA). The class information for each sample is assigned
prior to the analysis, and therefore these methods are known as supervised analysis.

PLS is one of the most common used supervised methods. PLS fits the data
matrix of predictors X and class matrix or vector of responses Y, and find a linear
regression model to the new coordinate system. Equation 1.1 shows the general equation
for the linear regression model. Y is the predicted outcome value for the linear
regression model with the b, regression coefficients, 1 to z; by is the Y intercept while the

values for the X, predictor variables, are 1to z.

Y =b, + b1 X + by X5 +...+b, X, (eq. 1.1)
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Each orthogonal axis in PLS is named a latent variable (LV). PLS-DA is the
combination of PLS and discriminant analysis (DA), where DA is a statistical method for
determination of a linear combination of features to predict to which class a case (or

sample) belongs.***’

PLS-DA modeling can be used to find the difference between pre-
assigned sample groups and recognize variables responsible for the class separation.
Qualitative values including class or category of samples are included in Y matrix.
Typically, Y is set up as a “dummy matrix” where, for example, Disease = 1 and
Healthy = 0. The PLS-DA method in particular, and most supervised methods in general,
suffer from data over-fitting, therefore it is crucial to perform the result validation
otherwise.®® Cross validation is the most common method for validation, in which results
are applied to a new set of observations that was not used to build the model.*’ Leave-
one-out cross-validation (LOOCV) is one of the most commonly used validation methods

for PLS-DA models in metabolomics studies.®*°

In this technique one single observation
from the original sample set is used to evaluate the predictive accuracy of the model,

while all the other samples are used as the training data to build the model. Each sample

is used once as the validation data in the cross validation process.

1.4.2.3 Univariate Analysis

Univariate methods are often employed to identify significant metabolites that are
altered between different groups. To identify significant difference, P-values, calculated
from the Student’s t-test, Welch’s t-test, Mann-Whitney U test, or other variants are used
to explains the probability of two means, are used.”’ Values less than 0.05 are generally

considered statistically significant. However, the analysis of multiple metabolites results
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in a process of making multiple comparisons between the sample classes, which often
leads to an overly optimistic set of significant metabolites, of which many may be false
discoveries. A number of methods are used to try to correct for this effect and generally
involve the calculation of False Discovery Rate.”*™

Box-and-whisker plots (box plots) are a descriptive statistic for illustrating groups
of numerical data. Box plots show differences between populations with no assumptions
regarding the statistical distribution. Figure 2 illustrates a single box plot in some detail.
The receiver operating characteristic (ROC) curve describes the function of a variable in
binary classification. In binary classification tests, sensitivity and specificity are the key
statistical measurments.*”*"” Several additional terms are useful for defining sensitivity
and specificity, including the true positive (TP), true negative (TN), false negative (FN),
and false positive (FP) rates. If a disease is proven in a patient, and diagnostic test also
indicates the disease, the result from test is considered a true positive (TP). Similarly, if
the diagnostic test shows the patient does not have a disease and also proven that the
person does not have it, the result of the test is a true negative (TN). If the diagnostic test
indicates the disease in a person who does not actually have the disease, the result is a
false positive (FP). And the result is a false negative (FN) if a disease is proven in a
patient but the result of the diagnostic test indicates no disease. Equations 1.2, 1.3, and
1.4 describe sensitivity, specificity, and accuracy, respectively base on the terms of TP,

TN, FP, and FN.>*
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Sensitivity = TP/(TP + FN) (eq. 1.2)
Specificity = TN/(TN + FP) (eq. 1.3)
Accuracy = (TN + TP)/(TN+TP+FN+FP) (eq. 1.4)

The area under the ROC curve (AUC), measurement describes the overall
accuracy of a test. An AUC of 0.5 describes equal distribution between two groups, i.e., a
random result equivalent to flipping a coin, and the test based on it is valueless for
discrimination. An AUC of more than 0.9 is considered to be an excellent test, and more

than 0.8 considered good.”®

1.5 Thesis Summery

The rest of this thesis focuses on the development of new methods and
applications in NMR-based metabolomics. In Chapter 2, derivatization approaches were
used for quantitative analysis of human blood plasma. Improved sensitivity and
resolution of NMR experiments imparted by "N and'*C isotopes enhanced the metabolite
detection pool and accuracy of plasma metabolite analysis. Furthermore the approach can
be extended to many additional metabolites in almost any biological mixture for high

” “"N-cholamine, which possesses two

throughput analysis. A new “smart isotope tag,
important properties: an NMR sensitive isotope, and a permanent charge for MS
sensitivity, is discussed in Chapter 3. This unique approach enables effective detection of
the carboxyl-containing metabolome by both analytical methods. In Chapter 4, HR-MAS

was used in a metabolomics study to identify altered concentrations of small-molecule

metabolites in triple negative breast cancer (TNBC). In this chapter the metabolite
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profiles of African Americans and Caucasians were studied and compared. It is shown
that NMR-based metabolomics has good potential for identifying altered metabolism in

the aggressive TNBC that is observed especially in African American women.
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CHAPTER 2. QUANTITATIVE ANALYSIS OF BLOOD PLASMA METABOLITES
USING ISOTOPE ENHANCED NMR METHODS

2.1 Introduction

Nuclear magnetic resonance (NMR) spectroscopy is increasingly used in
metabolomics for the analyses of multiple metabolites in biofluids and tissue.
Metabolomics promises a number of important applications in biomedicine including a
more detailed understanding of biological processes, the discovery of the biomarkers
associated with numerous diseases, pharmaceutical development and toxicology.'® It is
increasingly recognized that NMR is a very attractive methodology for quantitative
metabolomics because of its high reproducibility and quantitative nature. In particular,
the improved resolution of two-dimensional (2D) NMR methods is considered very
useful for metabolomics applications’''. However, a major drawback of 2D NMR is that
the cross-peak volume in the spectrum is influenced by numerous experimental or
intrinsic parameters including the non-uniform excitation profile of the radio frequency
pulses, number and duration of the pulses, inter- pulse delays, relaxation times and the
magnitude of indirect spin-spin couplings. The high sensitivity of peak intensities (or
volumes) to these parameters has limited the use of 2D (particularly 'H homonuclear 2D)
experiments for quantitative analysis in metabolomics.

To overcome the limitations of quantitation and to improve the analysis, new

higher resolution 2D approaches utilizing 'H-">C heteronuclear 2D experiments (HSQC)
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have been proposed.'*"* One approach is to utilize the information from 2D 'H-">C NMR
spectra of standard compounds obtained under identical conditions and relate the peak
heights in the samples to standard mixtures'?; another is to utilize calibration curves
obtained using 'H-">C HSQC spectra for individual metabolites to determine the
metabolite concentrations.> Most recently, a more general approach that does not require
measurements of standard compounds was proposed.'* This method utilizes correction
factors derived theoretically from the solution of the Bloch equations and the analysis of
product operator formalism incorporating longitudinal (T;) and transverse (T,) relaxation
parameters, 'H-"C heteronuclear J-coupling and various delays used in the pulse
sequence.

A major drawback of using the 'H->C HSQC experiment for quantitative
analysis, is the lack of sensitivity arising from low metabolite concentration and natural
abundance of °C (1.1 % natural abundance). To compensate this limitation, unusually
long acquisition times (nearly 10 hrs or more) are typically required since the NMR
sensitivity scales with the square-root of the number of scans. Moreover, although 'H-">C
HSQC greatly enhances resolution when compared with 1D NMR, given the complexity
of the biological samples, the resolution obtainable from a single 2D experiment is not
always adequate for analyzing a large number of metabolites.

In the present study, with the goal of circumventing the current drawbacks of
limited resolution and sensitivity, we utilize a combination of isotope tagging approaches
and 2D NMR methods to accurately analyze human plasma metabolites. A number of the
most common metabolites in blood plasma were quantified using this approach after

validating the experimental protocols using a mixture of synthetic compounds.
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Metabolites containing carboxyl and amino groups were tagged with "N or "C,
respectively, before detection by 2D NMR. We have recently shown the proof-of-
principle approaches to introduce isotope tags using simple chemical derivatization

methods and that the NMR spectra of the tagged metabolites improve both resolution and

15-18
sensitivity. The combination of advanced isotope tagging methods with conventional
1D and 2D NMR methods as described in the present study enables the quantitative

analysis of a large number of metabolites in human blood on a routine basis.

2.2 Materials and Methods

2.2.1 Chemicals and Samples

Twenty-eight metabolite standards (Table 2.1), 4,4-dimethyl-4-silapentane-1-
sulfonic acid (DSS), maleic acid, ethanolamine (all from Sigma—Aldrich, St. Louis, MO),
4-(4,6- dimethoxy [1,3,5] triazin-2-yl)-4-methylmorpholinium chloride (DMT-MM)
(Acros, Geel, Belgium), '°N-cthanolamine, '*C-formic acid (Cambridge Isotope
Laboratories, Andover, MA), N, N-dicyclohexylcarbodiimide and N-hydroxysuccinimide
(Sigma-Aldrich) were used without further purification. An ultra-pure primary
quantitative standard, tris(hydroxymethyl)aminomethane, (99.9%) was obtained from
Mallinckrodt Baker Inc. Phillipsburg, NJ. Human blood plasma (10 x 1 mL) was
procured from the National Institute of Standards and Technology (NIST, Gaithersburg,
MD). Frozen plasma samples were transported to Purdue under dry ice and stored at

—80 °C until used for the analysis.
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2.2.2 Calibration of the Standard Solutions

Twenty-eight metabolites that commonly occur in human blood plasma were

selected based on entries in the human metabolite database (HMDB),19 the analysis of
isotope labeled 'H-">C HSQC and '"H-""N HSQC spectra, as well as 1D and 2D 'H-'H
TOCSY spectra of a human plasma sample. Stock solutions (20 mM) for the synthetic
analogues of all these 28 metabolites (Table 2.2) and internal standards, DSS (5 mM),
maleic acid (20 mM) and ethanolamine (20 mM), were prepared. The concentration of
the DSS solution was calibrated using '"H NMR against a primary stoichiometric
standard, tris(hydroxymethyl)aminomethane (22.4 mM), prepared in the lab. The
calibrated DSS solution was then used to calibrate all other standard solutions. Briefly,
solutions of the synthetic analogues of the 28 metabolites and internal standards were
divided into 5 groups as shown in Table 2.3. The grouping of samples in Table 2.3 was
such that the "H NMR peaks for at least one proton from each compound in the group
were isolated for the measurement of the peak integral. For each group, the one-
dimensional (1D) "H NMR spectrum was recorded, and based on the integrated area of
the isolated peaks with reference to DSS, exact concentrations of the standard solutions

were determined (Table 2.2).

2.2.3 Mixture Analyzing
A mixture of the 28 synthetic analogues of the metabolites was prepared using the

stock solutions such that the final concentration of each standard compound was matched

19
approximately to its expected concentration in human blood plasma (Table 2.1). From
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this mixture, three identical sets of samples (Set 1, Set 2 and Set 3) were prepared, Figure
2.1 shows a flow diagram illustrating the steps followed in the analysis of the standard
metabolite mixture using isotope enhanced NMR methods; each set consisted of four
solutions, 2% 500 puL and 2x 1000 pL of the mixture. All solutions were then dried under
vacuum. To the samples from Set 1, maleic acid solution (92 nmol) was added as an
internal reference and the solutions were diluted to 500 pL using doubly distilled water.

The carboxylic acid class of metabolites was then tagged with ’N-labeled ethanolamine

following the established procedure.]7 To each sample from Set 2, ethanolamine solution
(200 nmol) was added as an internal reference and the solution diluted to 500 pL using
doubly distilled water. Amines and amino acids were subjected to ">C isotope tagging
using a "*C-formic acid reaction following the established procedure.18 Finally, to the
samples from Set 3, DSS (9.44 nmol) was added as an internal reference and
reconstituted in 560 pL of phosphate buffer (pH=7.4) in D,O and transferred to 5 mm

NMR tubes for 1D and 'H-"H 2D TOCSY NMR experiments.

2.2.4 General Procedure for Tagging Metabolites

2.2.4.1 >N-Ethanolamine Tagging Procedure

3 uL "*N-ethanolamine (50 umol) was added to the sample, the pH adjusted to 7.0

with 1 M HCl and DMT-MM (21 mg) was added to initiate the reaction.”>*' The mixture



36

was continuously stirred at room temperature for 4 hrs to complete the reaction. The pH
was then adjusted to 5.0 by adding 1 M HCI or NaOH and the solutions were diluted to

600 pL by adding water or D,O prior to detection by "H-""N 2D NMR.**!

2.2.4.2 C —formic Acid Tagging Procedure

2 uL of "*C-formic acid (0.05 mmol) and 5 mg of N-hydroxysuccinimide (0.04
mmol)  were dissolved in 100 pL  tetrahydrofuran. 9 mg  of
N, N-dicyclohexylcarbodiimide (0.04 mmol) in 50 pL tetrahydrofuran was added to the
mixture and stirred at room temperature.” After 15 min, the reaction mixture was
centrifuged to  remove  insoluble urea; the  supernatant  containing
BC-N-formyloxysuccinimide was then added to the mixture of synthetic analogues of the
metabolites along with 50 pL of 2 M NaHCO; (0.1 mmol) aqueous solution. The reaction
was stirred at room temperature for 4 h and dried under vacuum. The residue was
redispersed in 500 pL. D,O, the pH was adjusted to 7.0 by adding 1M HCI and then

transferred to a standard 5mm NMR tube for analysis using 'H-">C 2D NMR."®

2.2.5 Sample Prepration for NMR Experiments

2.2.5.1 Plasma Deproteination

Cold methanol (4° C; 9.6 mL) was added to 4.8 mL of the NIST plasma,
vortexed, and then kept for 30 min at -20 °C. The precipitated protein pellet was removed
after centrifuging at 13,200 g for 10 min. The supernatant was divided into 12 equal parts

and divided into three groups, each group consisting of four samples. Flow chart show in
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Figure 2.2 depicting the steps followed in the analysis of metabolites in the NIST plasma

sample using isotope enhanced NMR methods.

2.2.5.2 Isotope Tagging of Plasma Metabolites and Sample Preparation for NMR

In each group, two samples served as controls and the remaining two were spiked
with 400 pL of the stock solution mixture of 28 synthetic samples. All three groups of
samples were then dried in vacuum. One group was used to label metabolites containing
carboxylic acid groups with '*N-ethanolamine, and the second group was used to label
metabolites containing amine groups with BC-formic acid, after the addition of internal
standards, either maleic acid or ethanolamine, appropriately. Identical procedures were
used for isotope tagging the plasma metabolites. To the third group of samples, DSS
(9.44 nmol) was added as an internal reference and reconstituted in 560 pL of phosphate

buffer (pH=7.4) in D,0. Samples from all the three preparations were transferred to 5

mm NMR tubes after adjusting the pH and solution conditions as described earlier for the

mixture of standards.

2.2.6 NMR Experiments
NMR experiments were performed at 298 K on a Bruker Avance-III-800
equipped with a room temperature 'H inverse detection Z-gradient probe or a Bruker
DRX-500 spectrometer equipped with a 'H inverse detection Z-gradient cryo-probe. 1D
NMR experiments for the five groups of standard samples (Table 2.3), the mixture of 28
synthetic analogues, and the plasma extracts were performed using a one pulse sequence
with residual water signal suppression by pre-saturation during relaxation delay. Thirty-

two scans with 64k time domain data points were collected with a sufficiently long
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recycle delay (20 s) to ensure complete recovery of the magnetization between scans. For

the N isotope tagged samples, 'H -"N 2D HSQC experiments were performed

1
employing an INEPT transfer delay of 5.5 ms corresponding to a J;; of 90 Hz. Spectral
widths of approximately 10 kHz in 'H and 5 kHz in "°N dimensions were used for the
800 MHz experiments. For "°C isotope tagged samples, sensitivity-enhanced 'H-">C 2D

HSQC experiments were performed employing an INEPT transfer delay of 2.5 ms

corresponding to a 1JC_H of 200 Hz. Spectral widths of approximately 10 kHz for the 'H
dimension and 600 Hz for *C were used at 800 MHz. For both 'H-"*N HSQC and 'H-"C
HSQC 2D experiments, 128 free induction decays were collected along the indirect (t1)
dimensions using 4 transients per increment and 2s or 3s recycle delay, resulting in a total
acquisition time of 18 min for the "H-""N HSQC and 28 min for the 'H-">C HSQC.
Phase-sensitive data were obtained using echo-anti-echo mode with nitrogen (for 'H-""N
HSQC) or carbon (for 'H-">C HSQC) decoupling during acquisition (t, dimension) using
the GARP (Globally Optimized Alternating-phase Rectangular Pulses) sequence. 'H-'"H
2D TOCSY experiments were performed for the neat (non-derivatized) samples with a
spectral width of 6 kHz (500 MHz) or 12 kHz (800 MHz) in both the dimensions. The
residual water signal was suppressed by presaturation. 400 free induction decays were
collected with t, increments using 8 transients per increment and 2s recycle delay,
resulting in a total acquisition time of 116 min (500 MHz) or 111 min (800 MHz).

All 1D data were Fourier transformed with a 0.3 Hz line broadening function. The

2D data were zero-filled to 1,024 points in the t, dimension after forward linear

prediction to 512 points and Fourier-transformed after multiplying by a squared sine-bell
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window function shifted typically by n/4 or n/2 along both the dimensions. All NMR data
were processed with Bruker Topspin 2.0 on a Redhat Linux platform and Bruker
XWINNMR 3.5 on a SGI / IRIX platform. An automatic baseline correction using a
polynomial of degree 5 was used to correct the baseline in both 1D and 2D spectra.

Peaks in the 1D and 2D NMR spectra were assigned to various metabolites based

17-19
on literature reports. Integrals for well resolved peaks in 1D and 2D spectra were

obtained with respect to the peak for the internal standard DSS, maleic acid or
ethanolamine. Integral limits for each peak in the 2D spectra were selected such that the
selected region encompassed the whole peak and that no other peak interfered with the
selection. Once chosen for each type of 2D spectrum, the same sets of integral limits
were used for all other samples. Concentrations of the plasma metabolites were
determined by comparing the peak integrals from the spectra obtained with and without
spiking with the synthetic analogues, and also by directly comparing the peak integrals of
the plasma metabolites with those from the standards. The accuracy, reproducibility and
errors were estimated from two to eight measurements, depending on the detection of the
resolved peak for a particular metabolite in one or more types of spectra, for both
synthetic mixtures and plasma samples. The 'H-"’N HSQC, 'H-"*C HSQC and 'H-'H

TOCSY experiments and the data analyses were performed by independent persons.

2.3 Results
The standard solutions of the synthetic analogues of the plasma metabolites and
internal standards (maleic acid and ethanolamine), prepared based on their weights, were

calibrated using 1D 'H NMR. The actual concentration of the standard solutions prepared
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based on the weight varies depending on the purity and hygroscopic nature of the
compounds and hence, it is important to calibrate the standard solutions especially for
accurate quantitative analysis. The DSS solution, which was first calibrated using a
primary stoichiometric standard, tris(hydroxymethyl)aminomethane, was used for
calibrating all the standard solutions (Table 2.3). The difference between the
concentrations determined based on sample weight and calibration using 1D NMR varied
as much as 10% for all but three metabolites, which varied up to nearly 20% (Table 2.2)

due to hygroscopic nature of the metabolites or sample impurities.

2.3.1 Analysis of Synthetic Metabolite Mixture

A mixture of 28 metabolites was analyzed using both "N and "°C isotope tagging
approaches. Fig. 2.3 shows 2D spectra of the mixture of 28 compounds with "N and °C
isotope tagging, as well as without tagging. The integrated 2D peak volumes were
obtained and then used to calculate the metabolite concentrations. Fig. 2.4 shows the
concentration of the compounds thus determined. As can be seen in the figure, an
excellent match between the metabolite concentrations derived from NMR methods and
the actual values was obtained. Further, as shown in Figure 2.5, a correlation of the NMR

derived values with the expected values showed a very good agreement for all low and

2
high concentration metabolites (R > 0.99).
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2.3.2 Quantitation of Plasma Metabolites

The 1D '"H NMR spectrum of the plasma sample obtained without isotope
labeling is highly complex, with only a relatively small number of metabolite signals
being isolated from other signals as shown in figure 2.6. 2D HSQC spectra of plasma
samples tagged with "N and C isotopes provide resolved peaks for a much larger
number of carboxylic acid and amine containing metabolites. Fig. 2.7 shows 2D spectra
of the plasma obtained with and without '°N or Be tagging. The 2D TOCSY spectrum of
the same plasma sample also provided a number of well resolved peaks (Fig. 2.7c).
However, unlike the HSQC spectra, the TOCSY spectrum showed a number of redundant
peaks for the same metabolite, which increases the complexity of the spectrum.

Quantitation of the plasma metabolites followed an identical procedure used for
the determination of the concentrations of metabolites in the synthetic mixture. The
integrated peak areas/volumes in the 1D/2D spectra of the neat and the spiked plasma
samples were obtained and the metabolite concentrations determined. Twenty-seven
metabolites that were identified in human plasma were analyzed in duplicate
measurements with and without "N and "’C isotope tagging. Fig. 2.8 depicts the
concentration of the metabolites thus determined. The IH, 13C and °N chemical shifts for
the blood plasma metabolites analyzed in this study are shown in Table 2.4 and the
derived concentrations using a combination of four different NMR methods is shown in
Table 2.5. Further, the concentration of the carboxylic acid and amino metabolites were
also determined by directly comparing the 2D peak integrals with those for the

corresponding standard compound. Comparison of the metabolites concentration
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determined with and without spiking is shown in Fig. 2.8. Notably, the values determined

from both approaches agree well.

2.5 Discussion

"H NMR spectroscopy is an attractive tool for the quantitative analysis of multiple
metabolites from intact biological samples. Considering its ease of use, reproducibility,
and high- throughput capabilities, 1D 'H NMR spectroscopy is often used for
metabolomics-based studies. However, it is challenging to analyze the 1D NMR
spectrum of plasma for absolute quantitation as it contains a large number of overlapping
signals due to hundreds of metabolites present at variable concentrations. The multiplicity
of the signals due to J-coupling makes 1D 'H NMR spectra of plasma particularly
challenging. The interference from macromolecules such as proteins and lipids adds to
the complexity and causes baseline distortions in the spectra. Such overlap and baseline
issues substantially affect the accuracy of the quantitative analysis using 1D NMR. To
offset such limitations, a majority of the studies that use 1D NMR resort to comparisons
of the relative intensities of the 1D NMR signals between disease and healthy samples.
While the use of relaxation edited techniques such as the Carr-Purcell-Meiboom-Gill

(CPMG) experiment, serum/ plasma deproteinization, and line fitting approaches

24
significantly improves the analysis of metabolites, such methods are not ideal.

Diffusion-sensitized 1D NMR spectroscopy, which uses data from two separate 1D
experiments, one obtained using low diffusion gradients and the other using high

gradients to suppress macromolecular background signals effectively, was shown to be
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25
useful for the quantitative analysis of blood plasma metabolites. However, spectral

overlap still significantly limits the number of metabolites that can be analyzed. 2D NMR
promises quantitative analysis of a large number of metabolites on a routine basis. An
important requirement is that the cross-peaks in 2D spectra should be devoid of overlaps
for reliable quantitative results; however, this criterion is not often met for a large number
of metabolites by a single 2D experiment due to the extremely high complexity of
plasma. The advantage of the new 2D NMR approaches used here is that the use
chemoselective isotope tags greatly reduces the complexity of the spectra, since only a
single peak is observed for the metabolites with a single functional group (see Figures 2.3
and 2.7). The reduced complexity of the spectra due to the absence of less interesting
chemical signals is particularly important for the analysis of low- concentration
metabolites (Figures 2.4 and 2.8). This method, however, does not work for the analysis
of lipoproteins, which represents a major class of metabolites in blood plasma and which
have been effectively analyzed using a multivariate deconvolution approach.?%*’

An important criterion for the quantitative analysis method to be robust is that it
does not require the use of spiking standards for each sample. To test this, we also
determined the concentration of >N and '3C isotope tagged metabolites in plasma by
comparing the 2D peak integrals with those from the synthetic analogues. It may be
interesting to note that, as shown in Figure 2.9, the values determined using both N and
BC isotope tagging agree well with those determined on the basis of spiking with
synthetic analogues. Therefore, it is sufficient to obtain the integral for each synthetic
analogue only once, which can be used for the analysis of any number of samples.

Utilization of 2D HSQC experiments involving the isotopes has the additional advantage
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since both the magnitude of the coupling and the relaxation properties of the nuclear pairs
(’N/ BBC and 'H) do not appreciably vary across the metabolites of interest and, hence,
provide the relative cross peak intensities that are less sensitive to instrumental settings.

In this study, we quantified 27 metabolites with an average CV of 2.4% for 17
metabolites and 5.6% when all the metabolites were considered. When the results from
all the four NMR methods were combined for the same metabolites, the average CV’s
were 4.8% and 8.7%, respectively. We note that, as the metabolite library expands, we
can quantify additional metabolites from the same and already acquired 2D data by
comparison of the peak integrals with those from the standards. Mass spectrometry (MS),
another very useful method for quantitative analysis, is highly sensitive and provides
quantitative information on a larger number of metabolites. However, MS invariably
involves the combination of a separation method such as gas chromatography or liquid
chromatography for accurate analysis and often renders the obtained results to be
sensitive to the specific column and separation parameters and especially the ionization
conditions. In addition, a standard compound is needed for each quantified metabolite.

In conclusion, this investigation presents quantitative analysis of over 25 plasma
metabolites using N and '3C isotope tagging methods. Carboxylic acids and amines
represent a majority of the metabolites in body fluids, and their analysis by isotope
tagging significantly enhances the detectable metabolic pool for biomarker discovery
applications. The combination of improved sensitivity and resolution and the reduced
time required when compared to natural abundance heteronuclear NMR methods are
attractive for the routine and accurate analysis of metabolites in complex biological

samples. Although, the isotope tagging methods use 2D NMR experiments, each 2D
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experiment requires only 30 min or less (~10 min with a cryoprobe), and hence, the
approach can be useful for high throughput analysis of human plasma as well as other
biological fluids. Further, combination of the isotope tagging approach with the latest
advancements in NMR technology, such as detection using microcoil probes, for
example, can significantly minimize the volume of biofluid samples required for routine

analysis.
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Table. 2.1 Synthetic analogues of metabolites used for the quantitative analyses of human

plasma metabolites

Serial Standard Estimated approximate blood Actual NMR calibrated concentrations
number  compound plasma concentrations® (uM) in the mixture (UM) used for spikingb

1 3-hydroxybutyrate 60 59.2+0.9

2 acetate 80 73.7+1.1
3 l-alanine 300 287.1+4.5
4 l-arginine 80 90.1+14
5 citrate 30 28.1+0.4
6 creatinine 40 31.6+0.6
7 formate 40 32.5+0.5
8 l-glutamic acid 50 53.8+£0.3
9 l-glutamine 300 292.1+2.8
10 l-glycine 200 172.6+2.7
11 l-histidine 80 83.7+0.6
12 l-isoleucine 50 50.7+0.2
13 lactate 1000 959.5+15.1
14 I-leucine 80 80.7+1.2
15 1-lysine 100 753+2.3
16 I-methionine 20 19.2+0.03
17 l-phenylalanine 70 71.1+1.1
18 l-proline 100 933=£1.5
19 I-threonine 100 90.0£1.9
20 L-tryptophan 30 29.1+£0.4
21 1-tyrosine 80 80.9+0.3
22 l-valine 200 183.2+1.5
23 succinate 10 9.9+0.1
24 betaine 50 44.6+0.7
25 4-hydroxy proline 50 534+£0.8
26 l-serine 100 93.3+0.7
27 l-asparagine 40 43.9+0.7
28 taurine 30 27.7+0.1

a Obtained from the combination of database search and comparison of the relative peak integrals in the NMR spectra.
b The errors are standard deviations from two measurements.
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Table. 2.2 Concentration of synthetic analogues of human plasma metabolites before and
after calibration using '"H NMR

Serial Number

Metabolites

Concentration from

Concentration after calibration

the weight (mM)* by 1H NMR (mM)*

1 3-Hydroxybutyrate 20.02 20.69 +£0.32
2 Acetate 19.62 19.33 £0.30
3 L-Alanine 19.67 20.07 £0.31
4 L-Arginine 20 23.62+0.37
5 Citrate 20.09 19.67 £0.31
6 Creatinine 20.15 16.18 £0.30
7 Formate 20.38 17.02 £ 0.26
8 L-Glutamic acid 20.18 22.39+0.12
9 L-Glutamine 20.15 20.33 +£0.19
10 L-Glycine 20.58 18.09 £ 0.28
11 L-Histidine 20.1 21.83+0.17
12 L-Isoleucine 20.24 21.07 £0.09
13 Lactate 20.21 20.12+0.31
14 L-Leucine 20.37 21.16 £0.33
15 L-Lysine 20.11 15.98 £0.49
16 L-Methionine 19.95 19.96 + 0.03
17 L-Phenylalanine 20 21.29+0.33
18 L-Proline 20.16 19.57 £0.31
19 L-Threonine 19.98 18.95+ 041
20 L-Tryptophan 20 20.36 £ 0.32
21 L-Tyrosine 19.87 21.04 +£0.08
22 L-Valine 20.07 19.10 £0.15
23 Succinate 20.03 20.77 £0.33
24 Betaine 20.15 18.69 £ 0.30
25 4-hydroxy-proline 20 22.39+0.35
26 L-Serine 19.98 19.45+0.14
27 L-Asparagine 20.01 23.01+0.36
28 Taurine 19.94 19.17 £ 0.07
30 Ethanolamine 20 20.34 +£0.95
31 Maleic acid 20.07 20.85+£0.31
32 DSS 5 4.70 £ 0.02
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Table. 2.3 Synthetic analogues of human plasma metabolites grouped for concentration
calibration using '"H NMR

Group 1 Group 2 Group 3 Group 4 Group 5
3-Hydroxybutyrate L-Arginine L-Glutamine Creatinine Succinate
Acetate L-Histidine L-Isoleucine L-Glutamic acid L-Serine
L-Alanine Lactate L-Threonine L-Lysine Taurine
Citrate L-Phenylalanine L-Tryptophan L-Methionine

Formate L-Tyrosine Ethanolamine L-Proline

L-Glycine L-Valine

L-Leucine 4-Hydroxy-proline

Betaine Maleic acid

L-Asparagine




Table. 2.4 'H, '°C, and "N chemical shifts of the peaks used in the analysis of NIST
plasma metabolites

'H-""N HSQC 'H-""C HSQC
label metabolite 'H (ppm) | "N (ppm) label metabolite 'H (ppm) | “C (ppm)
2 acetate 8.01 120.93 3 l-alanine 7.96 163.4
3 l-alanine 8.23 113.7 10 1-glycine 8.03 164.15
5 citrate 8.04 122.62 11 I-histidine 7.97 163.56
8 I-glutamic acid 8.21 115.58 12 l-isoleucine 8.03 163.81
10 I-glycine 8.12 114.78 18 l-proline 8.1 163.1
11 1-histidine 8.25 116.42 19 I-threonine 8.12 164.12
17 I-phenylalanine 8.13 117.19 20 I-tryptophan 7.88 163.51
19 I-threonine 8.28 117.52 22 l-valine 8.05 163.88
4-hydroxy
20 I-tryptophan 8.03 116.9 25 proline 8.04 165.21
21 I-tyrosine 8.18 117.25 26 1-serine 8.07 163.92
22 l-valine 8.3 118.43 27 l-asparagine 8.01 163.57
24 betaine 8.57 124.28 28 taurine 7.99 164.23
'H 1D NMR 'H-'"H TOCSY
'H (ppm) 'H (ppm)
label | metabolite 'H (ppm) label metabolite F2 dimension F1 dimension

1 flydroxybutyrate 1.19 4 l-arginine 1.68 3.23

2 acetate 1.91 5 citrate 2.65 2.51

3 l-alanine 1.47 11 I-histidine 7.07 7.06

7 formate 8.45 12 l-isoleucine 3.66 0.98

9 I-glutamine 2.13 13 lactate 1.32 1.32

11 I-histidine 7.06 14 l-leucine 0.95 1.7

12 l-isoleucine 1.01 15 1-lysine 3.02 1.48

16 I-methionine 2.13 19 1-threonine 3.57 1.33

17 I-phenylalanine 7.42 20 1-tryptophan 7.53 7.72
20 I-tryptophan 7.74 21 I-tyrosine 6.9 7.18
21 I-tyrosine 6.89 22 l-valine 3.6 2.27
22 l-valine 1.03
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Table. 2.5 NIST plasma metabolite concentrations obtained using a combination of NMR

experiments with or without isotope tagging

NIST plasma NIST plasma
label  metabolite concentration (uM)*  label  metabolite concentration (uUM)a

1 3-hydroxybutyrate® 99.3+13.1 16  l-methionine® 16.6+2.8
2 acetate™ 142.0+3.0 17 l-phenylalanine™ 50.6+3.8
3 l-alanine®® 279.4+18.9 18 l-proline’ 127.6+13.1
4 l-arginine 155.9+16.0 19 I-threonine™ 107.3+16.7
5 citrate™ 40.1+2.3 20  I-tryptophan™® 459+8.1
7 formate® 512+2.1 21 l-tyrosine®® 58.9+7.2
8  l-glutamic acid® 69.3+5.3 22 l-valine™® 159.7+11.6
9 l-glutamine® 368.5+2.3 24 betaine” 273+2.8
10 l-glycine®™ 204.5+31.2 25 4-hydroxy proline®  11.5+1.3
11 Il-histidine™® 63.1+5.7 26 l-serine® 95.8+15.0
12 l-isoleucine®® 482+2.4 27 l-asparagine® 33.4+2.8
13 lactate? 2403.6+£127.6 28 taurine® 324+0.8
14 l-leucine® 100.1+0.1 29 glucose® 8778.5+62.8
15 I-lysine* 190.8+21.9

a The errors are standard deviations.
b Obtained from 'H-">N HSQC.

¢ Obtained from 'H-'*C HSQC.

d Obtained from '"H-'"H TOCSY.

¢ Obtained from 'H 1D NMR.

Two samples were used for each type of experiment resulting in two, four, six, or eight independent measurements for

each metabolite.
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Figure 2.3 2D spectra of mixtures of 28 synthetic compounds obtained with or without

isotope tagging: (a) "H-""N HSQC spectrum with'°N tagging of carboxylic acids,

(b)'H-"C HSQC spectrum with °C tagging of amines and amino acids, and (c¢) '"H-'H

TOCSY spectrum of the neat mixture. All the spectra were obtained on an 800 MHz

spectrometer. The labeled peaks correspond to the numbered metabolites in Table 2.1.
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Figure 2.4 Concentration of 28 standard metabolites obtained by combining 2D NMR
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obtained from 'H—"H TOCSY NMR of the neat mixture. The shaded bar on the right in
each pair represents the actual concentration of the metabolite.
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Figure 2.5 Correlation of the concentration of the metabolites determined by a
combination of 2D experiments with or without '°N or '°C tagging with the expected
values.
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Figure 2.6 1D 'H NMR spectrum of aqueous metabolites of NIST plasma obtained on a
Bruker 500 MHz NMR spectrometer.
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"H-""N HSQC spectrum obtained after '°N tagging of carboxylic acids, (b)'H-">C HSQC
spectrum obtained after °C tagging of amines and amino acids, and (c) '"H-'"H TOCSY
spectrum of the neat mixture. All the spectra were obtained on an 800 MHz spectrometer.

The labeled peaks correspond to the numbered metabolites in Table 2.1.
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Figure 2.8 Concentrations of metabolites in the NIST plasma obtained using 1D/2D
NMR experiments with and without isotope tagging: (a) obtained from 'H—""N HSQC
NMR after N tagging, (b) obtained from "H-"C HSQC NMR after 13C tagging, (c)
obtained from '"H-"H TOCSY NMR of neat plasma, and (d) obtained from 1D NMR of

the neat plasma sample.
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CHAPTER 3: METABOLITE PROFILING OF THE CARBOXYL-CONTAINING
METABOLITES WITH SMART ISOTOPE TAGGING

3.1 Introduction

The metabolomics field has witnessed an exponential growth since the last decade
due to its potential applications in numerous disciplines including biomedicine,
toxicology, food and nutrition, drug development and environmental science.'”
Commonly used analytical techniques such as nuclear magnetic resonance (NMR)
spectroscopy and/or mass spectrometry (MS) have evolved in response to the high
demand for resolving the complexity of biological mixtures and identifying the large pool
of quantifiable metabolites. However, despite numerous advances, the biological
complexity still often outweighs the capabilities of these advanced analytical methods; no
single technique currently is capable of detecting all metabolites in a single experiment.
Each analytical method is sensitive to certain classes of metabolites, and depending on
the nature of the metabolites of interest, generally one or sometimes a combination of
NMR or MS techniques are used to profile as many metabolites as possible and thereby
derive the biological meaning. A major hurdle of such an approach is that the metabolite
data obtained from NMR and LC-MS or GC-MS methods for the same or similar samples
are often not directly comparable. The inability to compare and correlate data from
different analytical techniques for the same or similar samples is a significant challenge

that prevents drawing meaningful conclusions from the vast amount of metabolite data
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existing in the literature and exploiting the combined strength of NMR and MS for
unknown metabolite identification. The main contributing factors for this bottleneck are
the limited NMR sensitivity, complex spectral signatures and variable MS ionization
efficiency or suppression.

The use of chemo-selective tags provides an avenue to improve the sensitivity of
metabolite detection by both NMR and MS methods. For example, the sensitivity of MS
detection is shown to be enhanced by three orders of magnitude or more by tagging
metabolites with a chemo-selective tags containing a permanent charge.*'® Because of
the permanent charge, the tagged metabolites are effectively detected with high
sensitivity and better quantitative accuracy, irrespective of the pH or nature of the
solvents used to separate metabolites before detection by MS. Separately, based on
differential dansylation using 'C/">C-dansyl chloride, absolute or relative quantitation of
amine and phenol containing metabolites has been achieved with a sensitivity
enhancement of three orders of magnitude.'"'* Similarly, NMR-sensitive isotope based
chemo-selective tags have been shown to detect many quantifiable metabolites with high

117 Using "’N-ethanolamine as the tag, for example,

sensitivity and resolution by NMR.
over a hundred carboxyl-containing metabolites have been detected by 'H-'"N two-
dimensional NMR with high resolution and sensitivity."> However, while metabolites can
be detected with high sensitivity by both MS and NMR separately using chemoselective
tags, the inability to compare and correlate the data from the two methods is a major
bottleneck in the metabolomics field.

The ability to more easily detect the same metabolites by both NMR and MS

methods would offer new avenues to compare data between MS and NMR platforms and
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to exploit the combined strength of the complimentary methods. Towards this goal, we
introduce a new “smart isotope tag” approach, using '’N-cholamine in this case, which
possesses the characteristics of high NMR sensitivity and resolution through its isotope
enrichment and high MS sensitivity through its permanent positive charge (see schematic
Figure 3.1). The tag combines the strengths of individual chemo-selective tags,
demonstrated previously and separately for NMR and MS detection,® ' and offers news
avenues to exploit the combined strength of these powerful and complementary

techniques for areas such as metabolite profiling and unknown metabolite identification.

3.2 Materials and Methods

3.2.1 Chemicals and Biofluids

A total of 48 carboxyl-containing metabolite standards (Table 1), (2-
bromoethyl)trimethylammonium bromide, dimethylformamide (DMF), methanol,
acetonitrile, isopropanol, acetone, hydrochloric acid (HCl), sodium hydroxide (NaOH)
(all from Sigma-Aldrich, St. Louis, MO), 4-(4,6-dimethoxy[1.3.5]triazin-2-yl)-4-
methylmorpholinium chloride (DMTMM) (Acros Organic, Pittsburgh, PA), "N-
phthalimide potassium and deuterium oxide (Cambridge Isotope Laboratories, Andover,
MA) were used without further purification. Human serum samples were obtained from
Innovative Research, Inc. (Novi, MI) and urine from healthy volunteers, in accordance
with the Internal Review Board at Purdue University. Deionized (DI) water was from in-

house Synergy Ultrapure Water System from Millipore (Billerica, MA).
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3.2.2 Design and Synthesis of the Smart Isotope Tag '*N-cholamine

Synthesis of '’N-cholamine involved a two-step reaction and followed the Gabriel
synthesis procedure with modifications as described below to yield the pure product.'®"
The first step  involved  reacting  potassium "N-phthalimide ~ with
(2-bromoethyl)trimethylammonium bromide in DMF to obtain the "N substituted
phthalimide intermediate (Scheme 1). The second step involved alkaline and acid

hydrolyses of the "N substituted phthalimide to yield the smart isotope tag,

>N-cholaimne (Scheme 2).

0 0 \/

Br

o™
B /\/
BNHK + \2/\/ ' _ DryDME 15y
/ 12 hrs reflux at 100°C
under nitrogen

0]

Scheme 3.1 Synthesis of '°N substituted phthalimide

0 \ /
N ®
o~ ® CO'SNH(CH,),N(CH3)s \N/ co
15N 1) NaOH 2) HCI — 2
R.T., 30 min . 70°C, 12hre. S~ * i
CO, H,'5N go
o]

Scheme 3.2 Alkaline and acid hydrolyses of the "N substituted phthalimide to yield
'>N-cholamine

Briefly, for the synthesis of "N substituted phthalimide (Scheme 1), (2-

bromoethyl)trimethylammonium bromide (9.5 mmol, 2.35 g) was mixed with
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""N-phthalimide potassium (10 mmol, 1.86 g) in a 250 mL round bottom flask and dry
DMF (100 mL) was added under nitrogen gas. The mixture was then refluxed at 100 °C
with stirring for 12 h. The supernatant from the reaction mixture was separated and the
solvent was removed using a rotary evaporator.'® The resulting crude residue was washed
thrice using acetonitrile (5 mL each time), twice with acetone (2 mL each time) followed
by washing again once with acetonitrile (3 mL) to obtain the pure '“N-substituted
phthalimide. "H NMR spectra in D,O at each step were monitored to assess the purity of
the intermediate product. For the synthesis of ’N-cholamine, in the second step, the
"N-substituted phthalimide (538 mg) (Scheme 1) was dissolved in DI water (24 mL);
I N NaOH (2.69 mL) was added to the solution and the mixture was left at room
temperature with stirring for 30 min to complete the alkaline hydrolysis (Scheme 2)."”
Subsequently, 12 N HCI (1.8 mL) was added to the solution, the temperature was raised
to 70°C and left for 12 h with stirring to complete the acid hydrolysis (Scheme 2)."” The
solvent was then removed using a rotary evaporator. The resulting crude residue was
washed thrice with acetonitrile (4 mL each time) followed by washing thrice with 25:75
water/acetone mixture (2 mL each time) to yield the pure product, '*N-cholamine. 'H

NMR spectra in D,0 at each step were monitored to assess the purity of the final product.

3.2.3 Tagging Metabolites Using the Smart Isotope Tag '*N-cholamine

'*N-cholamine (5mg, 50 pmol) was added to 500 pL sample in an eppendorf tube,

the pH of the mixture was adjusted to 7.0 with 1 M HCl or NaOH. 21 mg DMTMM was

13,20,21

added to initiate the reaction. The mixture was stirred at room temperature for 4 h

to complete the reaction. The general reaction for tagging metabolites with the smart
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isotope tag is shown in Scheme 3. To maintain "N amide protonation, the pH was
adjusted to 5.0 by adding 1 M HClI or 1 M NaOH, and the solution volume was adjusted
to 580 uL by adding DI water and 30 pL. of D,O prior to NMR detection. Serum was
deproteinized using methanol prior to metabolite tagging and urine was used with no

pretreatment. 13

o]

/“\ | - DMTMM ’L/
+ N >
R H, 15N /\/O\ R 15N /\/G\

H

HO

Scheme 3.3 General reaction for tagging carboxyl-containing metabolites with the smart
isotope tag- '“N-cholamine

3.2.4 NMR Spectroscopy

For each sample, 550 pl was mixed with 30 pl D,O and placed in a 5 mm NMR
tube. NMR experiments were performed on a Bruker DRX 500 MHz or Avance III 800
spectrometer equipped with a room temperature or cryoprobe probe, respectively,
suitable for 'H inverse detection with Z-gradients at 298 K. A one pulse sequence with or
without solvent signal suppression using presaturation was used for 'H 1D NMR
experiments. The sensitivity-enhanced 'H-""N 2D HSQC experiments employed an
INEPT transfer delay of 6 ms corresponding to the Jxu of 90 Hz. Spectral widths for the
'H and "N dimensions were approximately 8 kHz and 3 kHz, respectively. 128 free
induction decays of 1,024 data points each were collected in the indirect (t;) dimension

with 1 or 4 transients per increment. Nitrogen decoupling during the direct acquisition (t;
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dimension) was achieved with the GARP (Globally Optimized Alternating-Phase
Rectangular Pulses) sequence. The resulting 2D data were zero-filled to 1,024 points in
the t; dimension after forward linear prediction to 256 or 512 points. A 45° shifted sine-
bell window function was applied to both dimensions before Fourier transformation.
Chemical shifts were referenced to the 'H signal of TSP for the 1D spectra or the
derivatized formic acid signal (‘"H: 8.05 ppm; ""N: 123.93 ppm) in the HSQC spectra.
Bruker Topspin versions 3.0 or 3.1 software packages were used for NMR data

acquisition or processing.

3.2.5 Mass spectrometry

LC-MS and LC-MS/MS experiments were performed using an Agilent 1200 SL-
LC system coupled online with an Agilent 6520 Q-TOF mass spectrometer (Agilent
Technologies, Santa Clara, CA). The sample (8 pL) was injected onto an Agilent
Poroshell 120 EC-C18 column (30x50 mm, 2.7-micron), which was heated to 50 °C. The
flow rate was 0.5 mL/min. Mobile phase A was 5 mM ammonium acetate in water, and
mobile phase B was 0.1% water in ACN. The mobile phase composition was initially
kept isocratic at 3% B for 1 min, then increased to 90% B over 4 min; after another 4 min
at 90% B, the mobile phase composition returned to 3% B. Electrospray ionization (ESI)
was used in positive mode, and the voltage was 3.5 kV. The mass analyzer was scanned
over a range of 50-1000 m/z. The collision energy for auto LC-MS/MS experiments was

fixed at 10 V, targeting pre-selected compounds.
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3.3 Results and Discussion

The smart isotope tag, ’N-cholamine, designed, developed and used in this study
retains all the characteristics of the '*N-ethanolamine tag including the solubility of the
tagged metabolites in aqueous media, large one-bond J-coupling between 'H and °N of
~90 Hz for efficient polarization transfer between 'H and "N nuclei, and wide chemical
shift dispersion for different metabolites in the resulting 2D NMR spectra." In addition,
and importantly, '’N-cholamine possesses a permanent positive charge, which enables
efficient positive mode detection of the same carboxyl-containing metabolites by MS,
irrespective of the pH or solvent conditions of the eluting media, commonly used for
chromatographic separation before detection by MS.°

Synthesis of '°N-cholamine involved a two-step reaction and followed the Gabriel
synthesis procedure with suitable modifications to yield the pure product.'® ' As seen in
the '"H NMR spectrum (Figure 3.2), the pure intermediate compound, "N substituted
phthalimide, was obtained after the first step of the synthesis. Hydrolysis of this
compound yielded the '*N-cholamine in pure form as can be ascertained from its 'H
NMR spectrum (Figure 3.3; peaks at 3.16; 3.48; 3.64 ppm). The accurate MS and
MS/MS spectra for ’N-cholamine, shown in Supplementary Figure 3.4, help further
verify the identity and purity of the synthesized smart isotope tag (m/z= 104.120).

The compound was then used to tag 48 metabolites that were selected for their
prominence as carboxyl-containing metabolites in biofluids that represent a variety of
metabolic pathways. The general reaction for tagging metabolites with the smart isotope
tag is shown in Scheme 3. To maintain '’N amide protonation, the pH was adjusted to 5.0

by adding 1 M HCI or 1 M NaOH, and the solution volume was adjusted to 580 pL by
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adding DI water and 30 pL of D,O prior to NMR detection. Serum was deproteinized
using methanol prior to metabolite tagging and urine was used with no pretreatment.'

The 'H and "°N chemical shift data derived from the 2D NMR experiments, after
tagging with '°N cholamine, are shown in Table 3.1. Because the '°N-cholamine and the
previously used '*N-ethanolamine differ only in their terminal group, the tagging
efficiency, reproducibility and chemical shift values for metabolites with '’N-cholamine
tag were similar to those obtained using the '’N-ethanolamine tag."

Importantly, as anticipated based on the '’N-ethanolimane tagging approach
shown earlier in our laboratory,"” the '"N-cholamine tagging of metabolites in human
serum provided a rich NMR spectrum due to the large number of carboxyl-containing
metabolites normally present in blood (Figure 3.5). The low natural abundance of "N
(0.37%) ensures that none of the nitrogen containing metabolites interferes with the
detection of carboxyl-metabolites through '’N-cholamine tag. Each peak in the spectrum
corresponds to different metabolite from the carboxylic acid class. However, metabolites,
which contain more than one carboxyl group, provide additional peaks depending on the
number of carboxyl groups and molecular symmetry. In addition, metabolites such as
lactate, which possess o-hydroxyl groups, show more than one peak for the same
metabolite as we described earlier using the '’N-ethanolmaine tag."> Some of the peaks
assigned based on the chemical shift values for the standard compounds are marked with
the corresponding number shown in Table 3.1 and Figure 3.6. Similarly, tagging of
metabolites in human urine with '’N-cholamine also enabled the detection of peaks

corresponding to well over a hundred carboxylic acid group containing metabolites
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(Figure 3.7). Peaks tentatively assigned based on the values for the standard compounds
are marked by their numbers shown in Table 3.1 and Figure 3.6.

The ""N-cholamine tagging of metabolites in aqueous media enabled a sensitivity
enhancement of up to three orders of magnitude or more in the MS detection of carboxyl
metabolites. The derivatized metabolites could be detected easily in positive ion mode as
compared to the same metabolites detected in negative ion mode without the tag. For
example, the sensitivity for pyruvic acid detected in positive ion mode after "*N-
cholamine tagging was enhanced by a factor of about 1500 when compared to that
detected for the same metabolite without the '’N-cholamine tag, in negative ion mode.
Figure 3.8 shows typical mass spectra for formic acid and pyruvic acid after tagging with
""N-cholamine. The enhancement in sensitivity is primarily due to the high ionization
efficiency imparted by the permanent positive charge of the 'N-cholamine and is in
agreement with results by Smith and co-workers for fatty acid analysis using the heavy
and light forms of cholamine.’ In that study, reactions of metabolites with cholamine
were made in organic solution in contrast to the aqueous media used here. The "N-
cholamine derivatized serum samples were then analyzed by LC-MS. As anticipated, due
to the presence of the permanent positive charge, tagged metabolites could be readily
detected in positive ion mode with high sensitivity. Sensitivity enhancement by a factor
of up to nearly 3000 could be achieved for tagged acids. The extracted ion
chromatograms for a few typical carboxylic acids detected in serum with "N-cholamine
tag are shown in the Supplementary Figure 3.9.

One potential issue is the effect on chromatographic retention time caused by the

addition of the cholamine tag. However, separation of the tagged metabolites using
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HILIC columns offers opportunity to effectively separate before detection using MS. For
example, the results of separation of a mixture of standard carboxylic and amino acids
performed using a HILIC column, without attempting to optimize chromatography
conditions, indicate that '’N-cholamine tagged metabolites can be separated effectively
(Figure 3.10). More broadly, we can contemplate the use of dual purpose smart tags for
other NMR-MS combinations. For GC-MS, the addition of a charged species will likely
cause problems related to reduced volatility; however, a different tag, such as ">C or even
8 labeled silyl-type tags can be c:ontemplated.23 Another alternative is the use of smart
tags for capillary electrophoresis (CE) coupled to MS, which is increasingly of interest in
metabolomics.” In fact, positively charged derivatization agents (based on pyridinum
containing compounds) have been demonstrated for the use of metabolite profiling of
carboxylic acids by CE-MS.” Thus, the potential for the use of smart tags such as

cholamine for CE-MS and NMR is quite promising.

In conclusion, we have developed a smart isotope tag, 'N-cholamine, which
possesses dual characteristics for metabolite profiling in complex biological mixtures
using the powerful analytical techniques of NMR and MS. By combining the individual
strengths of the '°N label and permanent charge, the smart isotope tag facilitates detection
of carboxyl-containing metabolome by both NMR and LC-MS techniques with high
sensitivity. Detection of the same metabolites by both NMR and MS (Figure 3.11),
effectively opens unique opportunities for identification of unknown metabolites and

direct comparison of metabolite data from the two powerful analytical platforms.
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Table. 3.1 'H and "N NMR chemical shifts for '’N-cholamine tagged carboxyl-containing

metabolites measured with reference to the formic acid peak

1 1
Label Name H 5 Label Name H N

(ppm)  (ppm) (ppm)  (ppm)

1 Cis-Aconitic acid 8.5 118.24 23 2-hydroxyisobutyric acid 7.95 117.51

8.14 121.47 24 DL-Isocitric acid 8.40 117.15

8.06 119.49 8.11 120.77

8.07 120.21 8.28 122.78

8.23 116.00 8.04 117.88

8.14 120.81 25 Isoleucine 8.37 118.19

2 Adipic acid 8.05 120.57 26 Isovaleric acid 8.07 121.92

3 DL-Alanine 8.30 114.39 27 a-Ketoglutaric acid 8.69 116.34

4 4-Aminobenzoic acid 8.25 111.35 8.63 111.84

5 Arginine 8.34 115.96 28 Lactic acid 8.23 114.18

6 Asparagine 8.31 116.03 8.49 114.45

7 Aspartic acid 8.15 120.01 29 Leucine 8.34 115.24

8.38 115.27 30 Lysine 8.33 115.88

8.31 115.6 31 Maleic acid 8.39 120.39

8.16 121.35 32 Malic acid 8.28 122.83

8 Betaine 8.55 122.69 8.29 115.14

9 Citric acid 8.20 121.46 33 Malonic acid 8.19 121.44

8.07 123.95 34 Methionine 8.36 116.08

7.87 121.88 35 Oxalic acid 8.47 117.13

10 Cysteine 8.35 115.93 36 Oxaloacetic acid 8.35 112.67

11 Cystine 8.5 115.22 8.63 111.40

12 Formic acid 8.05 123.93 37 L-phenylalanine 8.21 118.85

13 Fumaric acid 8.42 122.68 38 L-proline 8.35 115.58

8.56 124.24 39 Propionic acid 7.95 118.85

14 Glucuronic acid 8.38 119.54 40 Pyroglutamic acid 8.29 115.88

15 Glutamic acid 8.28 115.99 41 Pyruvic acid 8.63 111.39

8.05 120.42 8.35 112.72

16 Glutamine 8.35 115.90 42 Serine 8.17 117.63

17 Glycine 8.2 115.45 43 Succinic acid 7.97 119.56

18 Glycolic acid 8.22 114.97 44 Succinyl-COA 7.78 123.45

8.37 115.19 45 L-threonine 8.34 117.79

19 Hippuric acid 8.2 115.62 46 L-tryptophan 7.98 119.37

20 Histidine 8.36 116.60 47 Tyrosine 8.27 118.05

21 3-Hydroxybutyric acid 8.07 122.20 48 Valine 8.38 118.20
22 4-Hydroxy-L-proline 8.5 115.89
8.36 117.62
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Figure 3.1 Schematic figure illustrating the “smart isotope tag” approach used to detect
the same metabolites using NMR and MS with high sensitivity. Tagging carboxyl-
containing metabolites with '"N-cholamine enables their detection by both NMR and MS
with high sensitivity.
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Figure 3.2 "H NMR spectrum of '°N-substituted phthalimide intermediate compound,
obtained for the synthesis of '°N-cholamine, recorded on a Bruker DRX 499 MHz NMR
spectrometer.
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Figure 3.3 "H NMR spectrum of the synthesized '°N-cholamine obtained on a Bruker
Avance Il 800 MHz NMR spectrometer.
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Figure 3.4 MS and MS/MS spectra of the synthesized '*N-cholamine.
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Figure 3.5 A portion of the "H-">’N HSQC spectrum of human serum tagged with '*N-
cholamine. 1: aconitic acid; 2: adipic acid; 3: alanine; 7: aspartic acid; 8: betaine; 9: citric

acid; 11: cystine; 12: formic acid; 15: glutamic acid; 17: glycine; 20; histidine; 21: 3-

hydroxybutyric acid; 24: isocitric acid; 28: lactic acid; 29: leucine; 32: malic acid; 37:
phenylalanine; 40: pyroglutamic acid; 45: threonine; 46: tryptophan; 47: tyrosine; 48:

valine.
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Figure 3.6 A portion of the 'H-""N HSQC spectrum of a mixture of standard compounds
at various concentrations obtained after tagging with '°N-cholamine. The peak numbers

correspond to the compounds shown in Table 3.1.
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Figure 3.7 A portion of the "H-""N HSQC spectrum of human urine tagged with '°N-
cholamine. 1: aconitic acid; 2: adipic acid; 3: alanine; 5: arginine; 6: asparagine; 7:
aspartic acid; 9: citric acid; 12: formic acid; 15: glutamic acid; 18: glycolic acid; 19:
hippuric acid; 24: isocitric acid; 28: lactic acid; 33: malonic acid; 39: propionic acid; 40:
pyroglutamic acid; 43: succinic acid; 45: threonine; 46: tryptophan.
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Figure 3.8 Typical LC-QTOF-MS spectra for formic acid and pyruvic acid obtained after
tagging with the smart isotope tag, '’N-cholamine. The permanent charge on the tagged
metabolites enables their sensitive detection; the observed peak is from the intact tagged

metabolite.
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Figure 3.9 Accurate mass extracted ion chromatograms for a few carboxylic acids
detected in serum in positive ion mode after tagging with '’N-cholamine. The sensitivity
enhancement factor indicates the ratio of peak area obtained with '"N-cholamine tag to
the peak area for the same acid detected without tagging (in negative ion mode), in the
same serum sample.
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Figure 3.10 MRM chromatograms for a mixture of cholamine tagged carboxylic and
amino acids detected after separation using an HILIC column, without attempting to
optimize chromatography conditions. Considering that all metabolites have the same
permanently charged cholamine tag, the separation achieved in a quick experiment which
is still not well optimized may be remarkable.
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measurements, as seen in the two figures, suggest the potential of using the new tagging

approach for direct comparisons of the data from the two analytical platforms.
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CHAPTER 4. APPLICATION OF HIGH-RESOLUTION MAGIC ANGLE
SPINNING NUCLEAR MAGNETIC RESONANCE (HR-MAS NMR)
SPECTROSCOPY FOR BREAST CANCER METABOLITE PROFILING OF
AFRICAN AMERICAN COMPARE TO CAUCASIAN WOMEN

4.1 Introduction

Breast cancer is a heterogeneous group of diseases that are
immunohistochemically subtyped by cancer cell expression of estrogen receptor (ER),
progesterone receptor (PR), and human epidermal growth factor receptor-2 (HER-2).
These subtypes are recognized as: ER or PR positive and HER-2 negative subtype (ER+,
PR+, HER-2-); ER or PR positive and HER-2 positive subtype (ER+, PR+, HER-2+);
and ER, PR, and HER-2 negative (triple-negative breast cancer).'” These subtypes not
only differ in hormonal status and HER-2 expression but also clinically in their prognosis
and response to therapy” as well as incidence rates. The incidence rates of triple negative
cancer are higher in African American compared to Caucasian women, while Caucasian
women have higher rates of ER-positive subtypes.”

Triple negative breast cancer (TNBC) constitutes about 10-20% of diagnosed
breast cancer and is also more prevalent in younger women. Despite the small percentage
of TNBC, it causes a disproportionate number of breast cancer deaths. This high
mortality is due to the aggressive nature of the subtype that includes earlier relapses and a

distinct pattern of metastasis.’
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Because of the lack of hormonal receptors (ER and PR) and HER-2 receptor,
TNBC is not responsive to treatment with hormone or anti-HER-2 monoclonal antibody
therapy. Currently, TNBC treatment is limited to systemic cytotoxic chemotherapy.
Interestingly, patients with TNBC treated with neoadjuvant chemotherapy and who show
a pathologic complete response (pCR) show significant improvements in both disease-
free survival and overall survival compared with patients with residual invasive disease.
The prognosis for patients who experience pCR is excellent and equivalent to those with
other breast cancer types who experience pCR. However, patients with TNBC who did
not experience pCR with the same chemotherapy have a poorer prognosis.® In the pursuit
of identifying specific targeted therapies for TNBC, preclinical studies have recently
identified a few potential molecular targets such as epidermal growth factor receptor
(EGFR), SRC, MET and poly ADP ribose polymerase 1/2 (PARP1/2); however, drug
candidates developed for these targets have underperformed at some point during their
clinical testing.’

Therefore, it is important to find effective treatments for TNBC. A better
understanding of the biology of TNBC will aid in identifying new molecules for
specifically targeting this disease. Molecular targets such as protein and genes have been
explored for early detection and treatment of TNBC without much success; however,
recently metabolites are being examined as an alternative and promising approach.
Cancer metabolic profiling enables identification of small-molecule metabolites in
biofluids and tissues that are sensitive to altered pathology of stimuli including disease
processes. Small molecule metabolites in biological samples such as blood, urine and

tissues have been examined using the powerful analytical techniques of nuclear magnetic
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resonance (NMR) and mass spectrometry (MS) and their combination with multivariate
statistical methods.” Since these metabolites are sensitive to subtle differences in
pathological status, metabolites profiling may identify altered pathways and key enzymes
that could be targeted therapeutically.

In this study, we used a metabolomics approach to identify altered small-molecule
metabolites in TNBC. Intact cancer tissue samples (n=47) and normal adjacent tissue
(n=35) from 47 patients (30 African Americans, 17 Caucasian; normal adjacent 18
African Americans, 17 Caucasian) were obtained before neoadjuvant chemotherapy, and
were studied using high resolution magic angle spinning (HR-MAS) 'H-NMR and

multivariate statistics methods.

4.2 Materials and Methods

4.2.1 Chemicals and Patients Samples

Deuterium oxide (D,O, 99.9% D) was purchased from Cambridge Isotope
Laboratories, Inc. (Andover, MA).

A total of 82 human breast tissue samples (tumor and normal adjacent) were
collected from patients operated on at the Indiana University School of Medicine
Teaching Hospitals, Indianapolis IN, the University of Chicago, Chicago, IL and Arnett
Clinic in Lafayette, IN. Samples were frozen in liquid nitrogen prior to storage and

shipping to Purdue University for analysis.
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4.2.2 Sample Preparation

Frozen tissue samples were removed from their Eppendorf storage tubes using
tweezers, placed in a petri dish and kept on dry ice during the preparation. Tissues
samples were cut into an appropriate size, with weights between 11.4 and 22.4 mg, such
that they could fit into an HR-MAS NMR sample tube for analysis. To provide a field-
frequency lock and for air removal 50ul D,O was also transferred into each sample tube,

and then into the HR-MAS rotor and analysis.

4.3 NMR Experiments and Data Processing

4.3.1 NMR Experiments
1D '"H NMR experiments on the tissue samples were performed on a Bruker
Avance-III-800 spectrometer equipped with an HR-MAS probe. NMR data were
acquired using the 1D CPMG (Carr-Purcell-Meiboom-Gill) pulse sequence with water
presaturation and the following parameters: number of scan=128; number of dummy
scans=16; number of time domain points =32K; spectral width=15.24 ppm; relaxation

delay=2 sec; acquisition time=1.34 sec; number of CPMG 180° pulses=400.

4.3.2 Data Processing and Statistics
After acquisition, the NMR data were Fourier transformed after apodization, and
the spectra were then phased, baseline corrected and referenced to the lipid peak 6=0.909

ppm using Bruker Topspin 3.0 software. The data were then binned to 4K buckets of
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equal width (0.0034 ppm) to minimize errors due to any fluctuations of chemical shifts
arising from pH or ion concentration variations using MestReNova 7.0 software. The
resulting data generated from MestReNova were transferred into Excel (Microsoft Office
Excel 2011). Spectral regions within the range of 0 to 9.0 ppm were used for the analysis
after removing the residual water peak in the range of 4.5 to 5.0 ppm. To identify
significantly different spectral bins for each metabolite between tumors and normal
adjacent, the unpaired Student's t-test was used. P-values < 0.05 were considered to be
statistically significant. The binned NMR data were imported into Matlab (R2008a,
Mathworks, Natick, MA) installed with a PLS-DA toolbox (version 4.1, Eigenvector
Research, Inc., Wenatchee, WA) to classify tumor and normal adjacent groups. The R
statistical package (version 3.0.0) was used to generate box-and-whisker plots and

receiver operating characteristics (ROC) curves.

4.4 Results

4.4.1 Biomarker Discovery and Evaluation
Clinicopathological characteristics of patients and samples are summarized and
listed in Table 4.1. Representative HR-MAS NMR spectra of the 82 breast tissue samples
(47 tumors and 35 normal adjacent) are shown in Figure 4.1. The 29 metabolites
considered for multivariate classification models are listed in the Table 4.2 and indicated

in Figure 4.1.
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4.4.1.1 Effect of Age and Race

Supervised multivariate statistics using partial least squares discriminant analysis
(PLS-DA) models were developed to evaluate the combination of potential biomarker
candidates. The 29 metabolites in Table 4.2 were selected as the variables to build the
PLS-DA model. Leave-one-out cross-validation was performed to obtain the best model
and avoid over-fitting. Metabolites with p<0.05 are listed in Table 4.3 for tumor vs.
adjacent normal tissue for all ages, age>50, and age<50.. The PLS-DA score plots
derived from tumor versus normal adjacent tissue for all ages, age>50, and age<50 are
shown in Figure 4.2A, 4.2B, and 4.2C, respectively. Box-and-whisker plots for
metabolites with p<0.05 for the older and younger age groups are shown in Figure 4.3

and 4.4, respectively.

4.4.1.2 Effect of Estrogen Receptor Status

To study the effect of estrogen status on the breast cancer metabolite profile, PLS-
DA was again used to build a multivariate model to evaluate the combination of potential
biomarker candidates. To build the PLS-DA model the 29 metabolites in Table 4.2 were
again selected as the variables. Leave-one-out cross-validation was done to obtain the
best model and avoid over-fitting. Metabolites with p<0.05 are listed in Tables 4.5 and
4.6 for ER-negative and ER-positive tissue samples, respectively. The PLS-DA score
plots of tumor versus normal adjacent ER-negative and ER-positive tissue samples are
shown as in Figure 4.5A and 4.5B, respectively. Box-and-whisker plots are shown for the

metabolites with p<0.05 for both groups in Figure 4.6 and 4.7, respectively.
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For a better understanding of the effect of estrogen receptor status on the
metabolic profiles of African Americans and Caucasians, PLS-DA models consisting of
all the metabolites in Table 4.2 was constructed to compare tumor versus normal adjacent
tissues. Figure 4.8A and 4.8B are the PLS-DA metabolite profile score plots for African
Americans with ER-negative and ER-positive, respectively. Figure 4.8C and 4.8D show
ROC curves generated from the PLS-DA models of Figure 4.8A and 4.8B, respectively.
Box and whisker plots of the relative levels of metabolites with p<0.05 for ER-negative
and ER-positive African American women are shown in Figures 4.9 and 4.10,
respectively.

Uridine was the only metabolite in the group of ER-positive Caucasian women
with a p<0.05 (p = 1.06¥107); no significant p-value for ER-negative Caucasian women
was observed. The box and whisker plot for uridine in tissue samples from ER-positive

Caucasian women is shown in Figure 4.111.

4.5 Discussion
The feasibility of HR-MAS NMR spectroscopy of breast tissue was investigated
to distinguish the metabolic differences between tumor and normal adjacent tissue
classified based on estrogen receptor status, age and race. HR-MAS NMR has been used

. . . . . 8-11
before in several cancer studies including colon, brain, prostate and breast cancer.” " [

n
this study, we investigated this technique to be used as an adjunct tool for differentiation
of tumor from normal adjacent breast tissue. Based on our results, we believe this

methodology, when combined with multivariate statistical analysis, has the potential for

use as a powerful complementary tool to the current clinical histopathological methods
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for better diagnosis and prognosis of breast cancer. This method is fairly fast, and
therefore could be used to quickly assess tissue samples around the time of surgery; since
NMR is nondestructive technique, the same sample can be used later for histopathology.

Our results showed that more metabolites change significantly when comparing
tumor to normal adjacent in women with ages above 50 compared to those below 50
years old. Myo-inositol and phosphocholine were significantly (p<0.05) increased in
tumor compare to normal adjacent tissues in both age groups. Choline, lactate, glutamate,
taurine, methionine, alanine, threonine, glycine, tyrosine, ATP (adenosine triphosphate),
glutathione, unsaturated lipid, lipid, valine, phenyalanine, glutamine, and a-glucose were
significantly altered for patients above 50 years old. However, for patients below 50
years old only uridine in addition to myo-inositol and phosphocholine was changed.

Data from Caucasian and African American women were also studied separately.
For Caucasians, most metabolites were not changed significantly whereas they were for
African Americans. These results could be affected by the sample collection methods.
Samples obtained from the University of Chicago mainly belonged to African Americans,
and thus this set was most likely consistent.

Estrogen receptor (ER) refers to a group cytoplasmic proteins existing in normal
estrogen target tissues such as uterus and breast. The ER status in invasive carcinomas is
very important for breast cancer prognosis. Studies show that women with ER-positive

12.13 . .. . .
2 Moreover, in addition to the differences in

tumors generally have a better prognosis.
morphology, ER-positive and ER-negative tumor tissues they have different metabolite

profiles due differences in their altered metabolic pathways.'*'® Glutathion, myo-inositol,

taurine and lactate were significantly altered in tumor compare to normal adjacent tissues.



95

Our results show that fewer metabolites change concentration in tumor compared to
normal adjacent tissues for ER-negative patients. Signals from lipid (0.909 ppm),
unsaturated lipid (5.333ppm) and a-glucose decreased in ER-negative tumors , the rest of
the metabolites shown in Figure 4.6 and 4.7 for ER-negative and positive patients,
respectively, were increased in tumor compare to normal adjacent tissue samples.

Results from comparing metabolite p-values between races showed that these
changes mostly occurred between African Americans. Uridine was the only metabolite
that changed significantly (p<0.05) among ER-positive Caucasians. Lactate, taurine and
glutathione were elevated in tumor for both ER-positive and ER-negative Caucasians.
However, among African Americans, glutathione was just changed significantly in the
ER-positive group (p <0.05). Glutathione is an intracellular antioxidant, and plays an
important role in cellular defense.'” Perry et al. also reported that glutathione levels were
elevated in breast cancer tumor tissue compared to normal tissue.'® Previous studies have

1920 and our

also showed that taurine and lactate are elevated in breast cancer tumors,
study agrees with these results, especially for women above age 50.

Uridine was elevated in tumors among ER-positive Caucasians below 50;
however, our results do not support previous studies on human breast cancer tumors that
showed an increase in the activity of Uridine phosphorylase (UPase).”'*> UPase is the
enzyme responsible for the reversible phosphorolysis of uridine to uracil. Therefore,
based on the previous results uridine concentration should be lower in tumor tissues
compared to normal adjacent.

Higher concentrations of choline and phosphocholine in breast cancer tumors

23-26

have been reported by a number of studies. Eliyahu et al. showed elevated levels of
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phosphocholine in breast cancer cells occurs as more choline is transported into the cells.
The activity of intracellular choline kinase increases several fold above that of CTP:PCho
cytidylyltransferase, and converts phosphocholine to cytidyldiphosphate-choline (CDP-
choline).*® We did not find significant change in the intensity level of these two
metabolites for all patients with ER-negative tumors. However, for African Americans
with ER-negative tumors, we did see a statistically significant change for choline. A
study by Sitter et al. showed that the ratio of phosphocholine to choline is lower in ER-
negative compare to ER-positive tumors.”” A study by Shin et al. using Magnetic
Resonance (MR) spectroscopy showed significant differences in the total choline
compounds between ER-positive and ER-negative (p=0.007), as did a study by Choi et
al. using HR-MAS. But our results was not in agreement with their results (p=0.34 for

27,28

choline and p=0.74 for phosphocholine). Likewise, several studies also indicated no

significant change between for choline compounds in ER-positive versus ER-negative
tumors (p=0.23).'*%

Findings from this study showed the intensity of numerous metabolites were
changed (p<0.05) in tumors from African American women compared to Caucasians, but
not significant change between them. Nevertheless, using PLS-DA results, and
considering all the metabolites listed in Table 4.2, not just low p-value metabolites,
showed that the HR-MAS analysis combined with multivariate statistical analysis could
completely distinguish ER-negative and ER-positive tumors from normal adjacent tissues

(see Figure 4.8). This result indicates that there are many smaller changes that when

combined help define the altered metabolism observed in breast tumors.
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The approach described in this study has some limitations. Since samples were
collected in 3 locations by different individuals, differences in the collection
methodology may have affected our results. It is possible that with additional number of
samples and a tighter control of sample collection, better results could be achieved,
especially for age<50 for both African Americans and Caucasians.

In conclusion, we showed that HR-MAS 'H NMR combined with multivariate
statistical analysis can be used as a powerful technique for identifying metabolic
differences between different tumor types. Because of the effect called field
cancerization, characterizing the altered metabolite profiles of normal adjacent tissue is as
important as those for the tumor itself.’® This effect has been previously confirmed by

. 31,32
several studies.”™

Results from this study show a wide variation in the metabolite levels
for tumors whereas the distribution of metabolites in normal adjacent tissue samples are
much narrower. Further prospective studies with more number of samples especially for

ages below 50 are needed to identify out the differences between ages in different

hormone receptor status and races.
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Table 4.1 Clinicopathological characteristics of women with invasive breast cancer.

T: tumor.
N: Normal adjacent.
ER: Estrogen receptor

Patient Characteristics

Number

Total Patients
African American women

Caucasian women

47
30 (T=30; N=18)
17 (T=17; N=17)

Pathology

Invasive carcinoma grade | and DCIS 3
Invasive carcinoma grade 11 10
Invasive carcinoma grade 111 25
Unknown 9
Patient Age

<50 10
>50 37
African American women

<50 7
>50 23
Caucasian women

<50 3
>50 14
ER Status

ER- 18
ER+ 29
African American women

ER- 13
ER+ 17
Caucasian women

ER- 5
ER+ 12




Table. 4.2 Quantified metabolites used for multivariate classification models.
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Number Metabolite Chemical Shifts Number  Metabolite Chemical Shifts
(ppm) (ppm)
1 Acetate 1.927 15 Lactate 4.124
2 Alanine 1.479 16 Lipid 1 0.909493
3 Arginine/Lysine/ Leucine 1.786-1.649 17 Lipid 2 2.777
4 ATP 6.125 18 Methionine 2.648
5 a-glucose 5.238 19 Myo-inositol 3.536
6 B-glucose 4.652 20 Phenylalanine 7.448-7.298
7 Choline 3.21 21 Phosphocholine 3.229
8 Creatine 3.032 22 Taurine 3.431
9 Formate 8.411 23 Threonine 4.261
10 Glutamate 2.355 24 Tyrosine(1% peak) 6.891
11 Glutamine 2.455 25 Tyrosine(2 nd peak) 7.189
12 Glutathione 2.561 26 Unsaturated lipid 5.333
13 Glycine 3.567 27 Uridine 5.907
14 Isobutyrate 1.146 28 Valine 1.048
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Table. 4.3 Metabolites significantly (p<0.05) expressed between tumor and
adjacent normal tissues.

Metabbolites Tvs.N Metabbolites Tvs.N Metabbolites Tvs.N
(all ages) (above 50) (below 50)
myo-inositol 1.78E-04 choline 2.40E-04  uridine 2.17E-02
taurine 5.50E-04 lactate 2.69E-04  myo-inositol 3.99E-02
lactate 6.49E-04 glutamate 7.84E-04  phosphocholine 4.87E-02
phosphocholine 8.82E-04 myo-inositol 1.43E-03
glutathione 2.57E-03 taurine 3.43E-03
glutamine 4.67E-03 methionine 4.00E-03
ATP 6.22E-03 alanine 4.19E-03
glutamate 8.76E-03 phosphocholine 4.89E-03
choline 1.15E-02 threonine 6.50E-03
glycine 3.21E-02 glycine 6.90E-03
alanine 3.40E-02 tyrosine 2 1.15E-02
uridine 3.42E-02 tyrosine 1 1.16E-02
tyrosine 1 4.06E-02 ATP 1.17E-02
creatine 4.26E-02 glutathione 1.21E-02
tyrosine 2 4.60E-02 unsaturated lipid ~ 1.23E-02
lipid 1.45E-02
valine 1.53E-02
phenyalanine 1.64E-02
glutamine 2.31E-02
a-glucose 4.43E-02
T: tumor

N: normal adjacent
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Table 4.4 Metabolites significantly expressed (P<0.05) in African American women:
tumors vs. adjacent normal.

Metabolites Tumor African Americans vs. African American normal adjacent
lactate 6.90E-04
myo-inositol 1.15E-03
choline 1.16E-03
glutamate 1.21E-03
I-methionine 2.49E-03
taurine 3.82E-03
Alanine 4.52E-03
tyrosine 1 4.86E-03
glycine 5.27E-03
phosphcholine 5.53E-03
ATP 8.01E-03
tyrosine 2 8.13E-03
threonine 8.20E-03
lysine, leucine, arginine 8.74E-03
valine 1.08E-02
phenylalanine 1.15E-02
unsaturated lipid 1.29E-02
lipid 1.93E-02
glutamine 2.00E-02

glutathione 2.59E-02
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Table. 4.5 Metabolites differentially expressed (P<0.05) in ER-negative samples (tumor
vs. adjacent normal) regardless of race.

Metabolites ER- tumor vs. ER- normal adjacent
unsaturated lipid 7.60E-03
lipid 1.14E-02
myo-inositol 1.34E-02
glutathione 1.83E-02
taurine 1.96E-02
a-glucose 2.02E-02
ATP 2.62E-02
lactate 3.40E-02
creatine 4.59E-02

Table. 4.6 Metabolites significantly expressed (P<0.05) in ER-positive samples (Tumors
vs. adjacent normal) regardless of race

Metabolites ER" tumor vs. ER" normal adjacent
lactate 2.75E-03
choline 4.61E-03
phosphcholine 6.94E-03
myo-inositol 6.96E-03
glutamate 8.01E-03
methionine 8.21E-03
threonine 1.20E-02
taurine 1.49E-02
uridine 1.64E-02
Alanine 2.17E-02
glutamine 2.70E-02
glutathione 3.07E-02
glycine 3.29E-02
valine 4.51E-02

tyrosine 2 4.57E-02
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Table. 4.7 Metabolites significantly altered (P<0.05) in ER negative African American
women: tumor vs. adjacent normal tissues.

Metabolites ER- tumor vs. ER- normal adjacent
unsaturated lipid 6.79E-03
a-glucose 7.97E-03
lipid 9.95E-03
lactate 2.04E-02
glycinne 2.17E-02
threonine 2.20E-02
Alanine 2.32E-02
glutamate 2.38E-02
glutathione 2.62E-02
taurine 2.84E-02
choline 2.90E-02
tyrosine 2 2.97E-02
tyrosine 1 3.27E-02
ATP 3.55E-02
valine 3.61E-02

Table. 4.8 Metabolites differentially altered (P<0.05) in ER-positive African Americans:
tumor vs. adjacent normal.

Metabolites ER" tumor vs. ER" normal adjacent
myoinositol 6.79E-03
phosphcholine 9.09E-03
choline 1.91E-02
lactate 1.96E-02
methionine 2.28E-02
glutamate 2.69E-02
taurine 3.97E-02
L-lysine, L-leucine, arginine 4.08E-02

tyrosine 1 4.32E-02
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Figure 4.1 Typical HR-MAS tissue spectra from (A) normal adjacent and (B, C, and D)

tumor breast cancer tissues.
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Figure 4.2 Results of PLS-DA models using the 29 metabolites from Table 2: (A) all
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Figure 4.8 Results of the PLS-DA model using the 29 metabolites for African Americans:
(A) ER-negative samples and (B) ER-positive samples. ROC curves using the cross-
validated predicted class values for African Americans: (C) ER-negative samples and (D)

ER-positive samples.
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Quantitative Analysis of Blood Plasma Metabolites
Using Isotope Enhanced NMR Methods
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NMR spectroscopy is a powerful analytical tool for both
qualitative and quantitative analysis. However, accurate
quantitative analysis in complex fluids such as human
blood plasma is challenging, and analysis using one-
dimensional NMR is limited by signal overlap. It is
impractical to use heteronuclear experiments involving
natural abundance '3C on a routine basis due to low
sensitivity, despite their improved resolution. Focusing
on circumventing such bottlenecks, this study dem-
onstrates the utility of a combination of isotope en-
hanced NMR experiments to analyze metabolites in
human blood plasma. 'H-°N HSQC and 'H-13C
HSQC experiments on the isotope tagged samples
combined with the conventional 'H one-dimensional
and "H-'H TOCSY experiments provide quantitative
information on a large number of metabolites in
plasma. The methods were first tested on a mixture of
28 synthetic analogues of metabolites commonly present
in human blood; 27 metabolites in a standard NIST
(National Institute of Standards and Technology) hu-
man blood plasma were then identified and quantified
with an average coefficient of variation of 2.4% for 17
metabolites and 5.6% when all the metabolites were
considered. Carboxylic acids and amines represent a
majority of the metabolites in body fluids, and their
analysis by isotope tagging enables a significant en-
hancement of the metabolic pool for biomarker dis-
covery applications. Improved sensitivity and resolu-
tion of NMR experiments imparted by °N and 3C
isotope tagging are attractive for both the enhancement
of the detectable metabolic pool and accurate analysis
of plasma metabolites. The approach can be easily
extended to many additional metabolites in almost any
biological mixture.

Nuclear magnetic resonance (NMR) spectroscopy is increas-
ingly used in metabolomics for the analyses of multiple metabolites
in biofluids and tissues. Metabolomics promises a number of
important applications in biomedicine including a more detailed
understanding of biological processes, the discovery of the
biomarkers associated with numerous diseases, pharmaceutical
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T Purdue University.

¥ MatrixBio, Inc.
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development, and toxicology.! ® It is increasingly recognized that
because of its high reproducibility and quantitative nature, NMR
is a very attractive analytical tool. In particular, the improved
resolution of two-dimensional (2D) NMR methods is considered
very useful for metabolomics applications.” ! However, a major
drawback of 2D NMR is that the cross-peak volume in the
spectrum is influenced by numerous experimental or intrinsic
parameters including the nonuniform excitation profile of the radio
frequency pulses, number and duration of the pulses, interpulse
delays, relaxation times, and the magnitude of indirect spin—spin
couplings. The high sensitivity of peak intensities (or volumes)
to these parameters has limited the use of 2D (particularly 'H
homonuclear 2D) experiments for quantitative analysis in
metabolomics.

To overcome the limitations of quantitation and to improve
the analysis, new higher resolution 2D approaches utilizing
'H—13C heteronuclear 2D experiments (HSQC) have been
proposed.'?'® One approach is to utilize the information from
2D 'H-C NMR spectra of standard compounds obtained
under identical conditions and relate the peak heights in the
samples to standard mixtures;'? another is to utilize calibration
curves obtained using 'H—3C HSQC spectra for individual
metabolites to determine the metabolite concentrations.'® Most
recently, a more general approach that does not require

(1) Nicholson, J. K.; Lindon, J. C.; Holmes, E. Xenobiotica 1999, 29, 1181-
1189.

(2) Clayton, T. A.; Lindon, J. C.; Cloarec, O.; Antti, H.; Charuel, C.; Hanton,
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measurements of standard compounds was proposed.'* This
method utilizes correction factors derived theoretically from
the solution of the Bloch equations and the analysis of product
operator formalism incorporating longitudinal (T;) and trans-
verse (T,) relaxation parameters, 'H—C heteronuclear J-
coupling, and various delays used in the pulse sequence.

A major drawback of the use of the 'H—"*C HSQC experiment
for quantitative analysis is the poor signal to noise ratio arising
from low metabolite concentration and natural abundance of
13C (1.1% natural abundance). To compensate this limitation,
unusually long acquisition times (nearly 10 h or more) are
required since the NMR sensitivity scales with the square-root
of the number of scans. Moreover, although 'H—C HSQC
greatly enhances resolution when compared with 1D NMR,
given the complexity of the biological samples, the resolution
obtainable from a single 2D experiment is not always adequate
for analyzing a large number of metabolites.

In the present study, with the idea of circumventing the
drawbacks of resolution and sensitivity, we utilize a combination
of isotope tagging approaches and 2D NMR methods to accurately
analyze human plasma metabolites. A number of the most
common metabolites in blood plasma were quantified using this
approach after validating the experimental protocols using a
mixture of synthetic compounds. Metabolites containing carboxyl
and amino groups were tagged with ®N and *C, respectively,
before detection by 2D NMR. We have recently shown the
proof-of-principle approaches to introduce isotope tags using
simple chemical derivatization methods and that the NMR
spectra of the tagged metabolites improve both resolution and
sensitivity.'> ' The combination of advanced isotope tagging
methods with conventional 1D and 2D NMR methods as described
in the present study enables the quantitative analysis of a large
number of metabolites in human blood on a routine basis.

EXPERIMENTAL SECTION

Chemicals and Blood Plasma. Twenty-eight metabolite
standards (Table 1), 4,4-dimethyl-4-silapentane-1-sulfonic acid
(DSS), maleic acid, ethanolamine (all from Sigma—Aldrich, St.
Louis, MO), 4-(4,6-dimethoxy [1,3,5] triazin-2-yl)-4-methylmor-
pholinium chloride (DMT-MM; Acros, Geel, Belgium), *C-formic
acid (Cambridge Isotope Laboratories, Andover, MA), °N-
ethanolamine, N,N-dicyclohexylcarbodiimide, and N-hydroxy-
succinimide (Sigma-Aldrich) were used without further puri-
fication. An ultrapure primary quantitative standard, tris-
(hydroxymethyl)aminomethane, (99.9%) was obtained from
Mallinckrodt Baker Inc. (Phillipsburg, NJ). Human blood
plasma (10 x 1 mL) was procured from the National Institute
of Standards and Technology (NIST, Gaithersburg, MD).
Frozen plasma samples were transported to Purdue University
under dry ice and stored at —80 °C until used for the analysis.
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11544.

(16) DeSilva, M. A.; Shanaiah, N.; Nagana Gowda, G. A.; Rosa-Pérez, K.; Hanson.,
B. A;; Raftery, D. Magn. Reson. Chem. 2009, 47, S74-S80.
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124

Table 1. Synthetic Analogues of Metabolites Used for
the Quantitative Analyses of Human Plasma
Metabolites

actual NMR
estimated calibrated
approximate blood  concentrations in
serial standard plasma the mixture (MMZ
number compound concentrations® (uM) used for spiking

1 3-hydroxybutyrate 60 59.2+0.9

acetate 80 73.7+1.1
3 L-alanine 300 287.1+45
4 L-arginine 80 90.1+14
5 citrate 30 28.1+04
6 creatinine 40 31.6+0.6
7 formate 40 325+05
8 L-glutamic acid 50 53.8+0.3
9 L-glutamine 300 292.1+2.8
10 L-glycine 200 172.6 + 2.7
11 L-histidine 80 83.7+0.6
12 L-isoleucine 50 50.7+£0.2
13 lactate 1000 959.5+ 15.1
14 L-leucine 80 80.7+1.2
15 L-lysine 100 753+2.3
16 L-methionine 20 19.2 £0.03
17 L-phenylalanine 70 71.1+1.1
18 L-proline 100 933+15
19 L-threonine 100 90.0+ 1.9
20 Lrtryptophan 30 29.1+04
21 L-tyrosine 80 80.9+0.3
22 L-valine 200 1832+ 1.5
23 succinate 10 99+0.1
24 betaine 50 44.6 £ 0.7
25 4-hydroxy proline 50 53.4+0.8
26 L-serine 100 93.3+0.7
27 L-asparagine 40 43.9+0.7
28 taurine 30 27.7+0.1

2 Obtained from the combination of database search and comparison
of the relative peak integrals in the NMR spectra. ® The errors are
standard deviations from two measurements.

Calibration of the Standard Solutions. Twenty-eight me-
tabolites that commonly occur in human blood plasma were
selected on the basis of entries in the human metabolite database
(HMDB) ! and the analysis of isotope labeled 'H—*C HSQC and
'H—N HSQC spectra, as well as 1D and 2D 'H—'H TOCSY
spectra of a human plasma sample. Stock solutions (20 mM)
for the synthetic analogues of all these 28 metabolites (Supple-
mentary Table S1, Supporting Information) and internal stan-
dards, DSS (5 mM), maleic acid (20 mM) and ethanolamine (20
mM), were prepared. The concentration of the DSS solution was
calibrated using 'H NMR against a primary stoichiometric
standard, tris(hydroxymethyl)aminomethane (22.4 mM), pre-
pared in the lab. The calibrated DSS solution was then used
to calibrate all other standard solutions. Briefly, solutions of
the synthetic analogues of the 28 metabolites and internal
standards were divided into five groups as shown in Supple-
mentary Table S2, Supporting Information. The grouping of
samples in Table S2 was such that the 'H NMR peaks for at least
one proton from each compound in the group were isolated
for the measurement of the peak integral. For each group, the
one-dimensional (1D) 'H NMR spectrum was recorded, and

(19) Wishart, D. S,; Tzur, D.; Knox, C.; Eisner, R.; Guo, A. C.; Young, N.; Cheng,
D.; Jewell, K,; Arndt, D.; Sawhney, S.; Fung, C.; Nikolai, L.; Lewis, M.;
Coutouly, M. A.; Forsythe, I; Tang, P.; Shrivastava, S.; Jeroncic, K.; Stothard,
P.; Amegbey, G.; Block, D.; Hau, D. D.; Wagner, J.; Miniaci, J.; Clements,
M.; Gebremedhin, M.; Guo, N.; Zhang, Y.; Duggan, G. E.; Macinnis, G. D.;
Weljie, A. M.; Dowlatabadi, R.; Bamforth, F.; Clive, D.; Greiner, R.; Li, L.;
Marrie, T.; Sykes, B. D.; Vogel, H. J.; Querengesser, L. Nucleic Acids Res.
2007, 35 (Database issue), D521-D526.
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on the basis of the integrated area of the isolated peaks with
reference to DSS, exact concentrations of the standard solutions
were determined (Supplementary Table S1, Supporting Infor-
mation).

Mixture Analysis. A mixture of the 28 synthetic analogues
of the metabolites was prepared using the stock solutions such
that the final concentration of each standard compound was
matched approximately to its expected concentration in human
blood plasma'® (Table 1). From this mixture, three identical sets
of samples (Set 1, Set 2, and Set 3) were prepared (see Supporting
Information; Flow Diagram 1); each set consisted of four solutions,
2 x 500 uL and 2 x 1000 uL of the mixture. All solutions were
then dried under vacuum. To the samples from Set 1, maleic acid
solution (92 nmol) was added as an internal reference and the
solutions were diluted to 500 L using doubly distilled water. The
carboxylic acid class of metabolites was then tagged with °N-
labeled ethanolamine following the established procedure'”
(see Supporting Information). To each sample from Set 2,
ethanolamine solution (200 nmol) was added as an internal
reference and the solution was diluted to 500 xL using doubly
distilled water. Amines and amino acids were subjected to *C
isotope tagging using a *C-formic acid reaction following the
established procedure'® (see Supporting Information). Finally,
to the samples from Set 3, DSS (9.44 nmol) was added as an
internal reference and reconstituted in 560 uL of phosphate buffer
(pH = 7.4) in D,0 and transferred to 5 mm NMR tubes for 1D
and 'H—'H 2D TOCSY NMR experiments.

Isotope Tagging of Plasma Metabolites. Cold methanol (4
°C; 9.6 mL) was added to 4.8 mL of the NIST plasma, vortexed,
and then kept for 30 min at —20 °C. The precipitated protein pellet
was removed after centrifuging at 13200 g for 10 min. The
supernatant was divided into 12 equal parts and divided into three
groups, each group consisting of four samples (see Supporting
Information; Flow Diagram 2). In each group, two samples served
as controls and the remaining two were spiked with 400 uL of
the stock solution mixture of 28 synthetic samples. All three
groups of samples were then dried in vacuum. One group was
used to label metabolites containing carboxyl groups with °N-
ethanolamine, and the second group was used to label
metabolites containing amino groups with *C-formic acid, after
the addition of internal standards, either maleic acid or
ethanolamine, appropriately. Identical procedures were used
for isotope tagging the plasma metabolites. To the third group
of samples, DSS (9.44 nmol) was added as an internal reference
and reconstituted in 560 uL of phosphate buffer (pH = 7.4) in
D,,0. Samples from all the three preparations were transferred
to 5 mm NMR tubes after adjusting the pH and solution
conditions as described earlier for the mixture of standards.

NMR Experiments. NMR experiments were performed at 298
K on a Bruker Avance-III 800 MHz spectrometer equipped with
a room temperature 'H inverse detection Z-gradient probe or a
Bruker DRX-500 spectrometer equipped with a 'H inverse
detection Z-gradient cryo-probe. 1D NMR experiments for the
five groups of standard samples (Supplementary Table S2,
Supporting Information), the mixture of 28 synthetic analogues,
and the plasma extracts were performed using a one pulse
sequence with residual water signal suppression by presaturation
during relaxation delay. Thirty-two scans with 64 k time domain
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Figure 1. 2D spectra of mixtures of 28 synthetic compounds
obtained with or without isotope tagging: (a) 'H—'5N HSQC spectrum
with'sN tagging of carboxylic acids, (b)'H—"3C HSQC spectrum with
3C tagging of amines and amino acids, and (c) '"H—'H TOCSY
spectrum of the neat mixture. All the spectra were obtained on a 800
MHz spectrometer. The labeled peaks correspond to the numbered
metabolites in Table 1.

data points were collected with a sufficiently long recycle delay
(20 s) to ensure complete recovery of the magnetization between
scans. For the N isotope tagged samples, 'H—*N 2D HSQC
experiments were performed employing an INEPT (insensitive
nuclei enhanced by polarization transfer) transfer delay of 5.5
ms corresponding to a Yyy of 90 Hz. Spectral widths of
approximately 10 kHz in the 'H and 5 kHz in the N
dimensions were used for the 800 MHz experiments. For 3C
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Figure 2. Concentration of 28 standard metabolites obtained by combining 2D NMR experiments with and without >N or '3C tagging: (a)
obtained from 'H—"*N HSQC NMR after '*N tagging; (b) obtained from 'H—"3C HSQC NMR after '*C tagging, and (c) obtained from 'H—'H
TOCSY NMR of the neat mixture. The shaded bar on the right in each pair represents the actual concentration of the metabolite.

isotope tagged samples, sensitivity-enhanced "H—'*C 2D HSQC
experiments were performed employing an INEPT transfer
delay of 2.5 ms corresponding to a }Jc_y of 200 Hz. Spectral
widths of approximately 10 kHz for the 'H dimension and
600 Hz for *C were used at 800 MHz. For both 'H—""N
HSQC and 'H—'¥C HSQC 2D experiments, 128 free induction
decays were collected along the indirect (¢;) dimensions
using four transients per increment and a 2 or 3 s recycle
delay, resulting in a total acquisition time of 18 min for the
'H—"N HSQC and 28 min for the 'H-*C HSQC. Phase-
sensitive data were obtained using echo-antiecho mode with

8986 Analytical Chemistry, Vol. 82, No. 21, November 1, 2010

nitrogen (for 'H—""N HSQC) or carbon (for 'H-"C HSQC)
decoupling during acquisition (f, dimension) using the GARP
(globally optimized alternating-phase rectangular pulses)
sequence. 'H—'H 2D TOCSY experiments were performed
on the neat (nonderivatized) samples with a spectral width
of 6 kHz (500 MHz) or 12 kHz (800 MHz) in both the
dimensions. The residual water signal was suppressed by
presaturation. Free induction decays (400) were collected
with #; increments using eight transients per increment and
a 2 s recycle delay, resulting in a total acquisition time of
116 min (500 MHz) or 111 min (800 MHz).



All 1D data were Fourier transformed with a 0.3 Hz line
broadening function. The 2D data were zero-filled to 1024 points
in the ¢; dimension after forward linear prediction to 512 points
and Fourier-transformed after multiplying by a squared sine-
bell window function shifted typically by /4 or /2 along both
the dimensions. All NMR data were processed with Bruker
Topspin 2.0 on a Redhat Linux platform and Bruker XWINNMR
3.5 on a SGI/IRIX platform. An automatic baseline correction
using a polynomial of degree 5 was used to correct the baseline
in both 1D and 2D spectra.

Peaks in the 1D and 2D NMR spectra were assigned to various
metabolites on the basis of literature reports.!” % Integrals for
well resolved peaks in the 1D and 2D spectra were obtained with
respect to the peak for the internal standard DSS, maleic acid or
ethanolamine. Integral limits for each peak in the 2D spectra were
selected such that the selected region encompassed the whole
peak and that no other peak interfered with the selection. Once
chosen for each type of 2D spectrum, the same sets of integral
limits were used for all other samples. Concentrations of the
plasma metabolites were determined by comparing the peak
integrals from the spectra obtained with and without spiking with
the synthetic analogues and also by directly comparing the peak
integrals of the plasma metabolites with those from the standards.
The accuracy, reproducibility, and errors were estimated from two
to eight measurements, depending on the detection of the resolved
peak for a particular metabolite in one or more types of spectra,
for both synthetic mixtures and plasma samples. The 'H—'°N
HSQC, 'H-¥C HSQC, and 'H—'H TOCSY experiments and
the data analyses were performed by independent persons.

127

RESULTS

The standard solutions of the synthetic analogues of the plasma
metabolites and internal standards (maleic acid and ethanolamine),
prepared on the basis of their weights, were calibrated using 1D
'H NMR. The actual concentration of the standard solutions
prepared on the basis of the weight varies depending on the
purity and hygroscopic nature of the compounds, and hence,
it is important to calibrate the standard solutions especially for
accurate quantitative analysis. The DSS solution, which was
first calibrated using a primary stoichiometric standard, tr-
is (hydroxymethyl)aminomethane, was used for calibrating all
the standard solutions (Supplementary Table S2, Supporting
Information). The difference between the concentrations deter-
mined on the basis of sample weight and calibration using 1D
NMR varied as much as 10% for all but three metabolites, which
varied up to nearly 20% (Supplementary Table S1, Supporting
Information) due to hygroscopic nature of the metabolites or
sample impurities.

Analysis of Synthetic Metabolite Mixture. A mixture of 28
metabolites was analyzed using both N and *C isotope tagging
approaches. Figure 1 shows 2D spectra of the mixture of 28
compounds with ®N and *C isotope tagging, as well as without
tagging. The integrated 2D peak volumes were obtained and
then used to calculate the metabolite concentrations. Figure 2
shows the concentration of the compounds, thus, determined. As
can be seen in the figure, an excellent match between the
metabolite concentrations derived from NMR methods and the
actual values was obtained. Further, as shown in Supplementary

Table 2. 'H, 3C, and >N Chemical Shifts of the Peaks Used in the Analysis of NIST Plasma Metabolites

experiment: 'H—"N HSQC

experiment: 'H—*C HSQC

label metabolite 'H (ppm) N (ppm) label metabolite H (ppm) 13C (ppm)
2 acetate 8.01 120.93 3 L-alanine 7.96 163.40
3 L-alanine 8.23 113.70 10 L-glycine 8.03 164.15
5 citrate 8.04 122.62 11 L-histidine 7.97 163.56
8 L-glutamic acid 8.21 115.58 12 L-isoleucine 8.03 163.81
10 L-glycine 8.12 114.78 18 L-proline 8.10 163.10
11 L-histidine 8.25 116.42 19 L-threonine 8.12 164.12
17 L-phenylalanine 8.13 117.19 20 L-tryptophan 7.88 163.51
19 L-threonine 8.28 117.52 22 Lvaline 8.05 163.88
20 L-tryptophan 8.03 116.90 25 4-hydroxy proline 8.04 165.21
21 L-tyrosine 8.18 117.25 26 L-serine 8.07 163.92
22 L-valine 8.30 118.43 27 L-asparagine 8.01 163.57
24 betaine 8.57 124.28 28 taurine 7.99 164.23
25 4-hydroxy proline 8.26 116.74

experiment: '"H 1D NMR experiment: '"H—'H TOCSY

label metabolite 'H (ppm) label metabolite 'H (ppm) F, dimension 'H (ppm) F; dimension
1 3-hydroxybutyrate 1.19 4 L-arginine 1.68 3.23

2 acetate 191 5 citrate 2.65 2.51
3 L-alanine 1.47 11 L-histidine 7.07 7.06
7 formate 8.45 12 L-isoleucine 3.66 0.98

9 L-glutamine 2.13 13 lactate 1.32 1.32
11 L-histidine 7.06 14 L-leucine 0.95 1.70
12 L-isoleucine 1.01 15 L-lysine 3.02 1.48
16 L-methionine 2.13 19 L-threonine 3.57 1.33
17 L-phenylalanine 7.42 20 L-tryptophan 7.53 7.72

20 L-tryptophan 7.74 21 L-tyrosine 6.90 7.18

21 L-tyrosine 6.89 22 L-valine 3.60 2.27

22 L-valine 1.03

29 glucose 5.23
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Figure 3. 2D spectra of NIST plasma obtained with and without
isotope tagging: (a) 'H—'N HSQC spectrum obtained after >N
tagging of carboxylic acids, (b)'H—"3C HSQC spectrum obtained after
8C tagging of amines and amino acids, and (c) 'H—'H TOCSY
spectrum of the neat mixture. All the spectra were obtained on an
800 MHz spectrometer. The labeled peaks correspond to the
numbered metabolites in Table 1.

Figure S1 (Supporting Information), a correlation of the NMR
derived values with the expected values showed a very good
agreement for all low and high concentration metabolites (R? >
0.99).

Quantitation of Plasma Metabolites. The 1D 'H NMR
spectrum of the plasma sample obtained without isotope
labeling is highly complex, with only a relatively small number
of metabolite signals being isolated from other signals (Supple-
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Figure 4. Concentrations of metabolites in the NIST plasma obtained
using 1D/2D NMR experiments with and without isotope tagging: (a)
obtained from 'H—SN HSQC NMR after "N tagging, (b) obtained
from "H—"3C HSQC NMR after '*C tagging, (c) obtained from 'H—'H
TOCSY NMR of neat plasma, and (d) obtained from 1D NMR of the
neat plasma sample.

mentary Figure S2, Supporting Information). 2D HSQC spectra
of plasma samples tagged with ®N and '*C isotopes provide
resolved peaks for a much larger number of carboxylic acid
and amine class of metabolites. Figure 3 shows 2D spectra of
the plasma obtained with and without N or *C tagging. The
2D TOCSY spectrum of the same plasma sample also provided
a number of well resolved peaks (Figure 3c). However, unlike
the HSQC spectra, the TOCSY spectrum showed a number of
redundant peaks for the same metabolite, which increases the
complexity of the spectrum.

Quantitation of the plasma metabolites followed an identical
procedure used for the determination of the concentrations of
metabolites in the synthetic mixture. The integrated peak areas/
volumes in the 1D/2D spectra of the neat and the spiked plasma
samples were obtained, and the metabolite concentrations were
determined. Twenty-seven metabolites that were identified in
human plasma were analyzed in duplicate measurements with and
without N and C isotope tagging. Figure 4 depicts the
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Table 3. NIST Plasma Metabolite Concentrations Obtained Using a Combination of NMR Experiments with or

without Isotope Tagging

NIST plasma
label metabolite concentration (uM)“

1 3-hydroxybutyrate® 99.3+13.1
2 acetate”’ 142.0 £ 3.0
3 L-alanine®** 279.4 +18.9
4 L-arginine? 155.9 + 16.0
5 citrate?? 40.1+23
7 formate® 51.2+2.1
8 L-glutamic acid® 69.3+5.3
9 1-glutamine® 368.5+2.3
10 L-glycine®* 204.5+31.2
11 L-histidine®*4¢ 63.1+5.7
12 L-isoleucine®®¢ 482+24
13 lactate? 2403.6 + 127.6
14 I-leucine? 100.1+0.1
15 Llysine? 190.8 +£21.9

NIST plasma
label metabolite concentration (uM)“

16 L-methionine® 16.6 + 2.8
17 I-phenylalanine®® 50.6 + 3.8
18 L-proline® 127.6 £13.1
19 I-threonine®“¢ 107.3 £ 16.7
20 I-tryptophan®©¢ 459+ 8.1
21 I-tyrosine®®¢ 589+7.2
22 L-valine?¢®¢ 159.7 £ 11.6
24 betaine® 273+2.8
25 4-hydroxy proline®* 11.5+13
26 L-serine’ 95.8 £ 15.0
27 L-asparagine® 33.4+28
28 taurine® 324+0.8
29 glucose’ 8778.5+62.8

@ The errors are standard deviations. ® Obtained from 'H—'*N HSQC. ¢ Obtained from 'H—"C HSQC. ¢ Obtained from 'H—H TOCSY. ¢ Obtained
from 'H 1D NMR. Two samples were used for each type of experiment resulting in two, four, six, or eight independent measurements for each

metabolite.
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Figure 5. Comparison of the concentrations of (a) carboxylic acid
and (b) amino group containing metabolites in the NIST plasma
obtained with spiking (left bars) and without spiking (right bars) with
the standard compounds.

concentration of the metabolites, thus, determined. The 'H, 13C,
and "N chemical shifts for the blood plasma metabolites
analyzed in this study are shown in Table 2, and the derived
concentrations using a combination of four different NMR
methods are shown in Table 3. Further, the concentration of the
carboxylic acid and amine class of metabolites were also deter-
mined by directly comparing the 2D peak integrals with those
for the corresponding standard compound. Comparison of the
metabolites concentration determined with and without spiking
is shown in Figure 5. Notably, the values determined from both
approaches agree well.

DISCUSSION
'H NMR spectroscopy is an attractive tool for the quantita-
tive analysis of multiple metabolites from intact biological

samples. Considering its ease of use, reproducibility, and high-
throughput nature, 1D 'H NMR spectroscopy is often used for
metabolomics-based studies. However, it is challenging to
analyze the 1D NMR spectrum of plasma in an absolute
quantitative fashion as it contains a large number of overlapping
signals due to hundreds of metabolites present at variable
concentrations. The multiplicity of the signals due to J-coupling
makes 1D 'H NMR spectra of plasma particularly challenging.
The interference from macromolecules such as proteins and
lipids adds to the complexity and causes baseline distortions
in the spectra. Such overlap and baseline issues substantially
affect the accuracy of the quantitative analysis using 1D NMR.
To offset such limitations, a majority of the studies that use
1D NMR resort to comparisons of the relative intensities of
the 1D NMR signals between disease and healthy samples.
While the use of relaxation edited techniques such as the
Carr—Purcell-Meiboom—Gill (CPMG) experiment, serum/
plasma deproteinization, and line fitting approaches significantly
improves the analysis of metabolites,?* such methods are not
ideal. Diffusion-sensitized 1D NMR spectroscopy, which uses
data from two separate 1D experiments, one obtained using
low diffusion gradients and the other using high gradients to
suppress macromolecular background signals effectively, was
shown to be useful for the quantitative analysis of blood plasma
metabolites.?! However, spectral overlap still significantly limits
the number of metabolites that can be analyzed.

2D NMR promises quantitative analysis of a large number of
metabolites on a routine basis. An important requirement is that
the cross-peaks in 2D spectra should be devoid of overlaps for
reliable quantitative results; however, this criterion is not often
met for a large number of metabolites by a single 2D experiment
due to the extremely high complexity of plasma. The advantage
of the new 2D NMR approaches used here is that the use
chemoselective isotope tags greatly reduces the complexity of the
spectra, since only a single peak is observed for the metabolites

(20) Weljie, A. M.; Newton, J.; Mercier, P.; Carlson, E.; Slupsky, C. M. Anal.
Chem. 2006, 78, 4430-4442.
(21) de Graaf, R. A.; Behar, K. L. Anal. Chem. 2003, 75, 2100-2104.
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with a single functional group (see Figures 1 and 3). The reduced
complexity of the spectra due to the absence of less interesting
chemical signals is particularly important for the analysis of low-
concentration metabolites (Figures 2 and 4). This method,
however, does not work for the analysis of lipoproteins, which
represents a major class of metabolites in blood plasma and which
have been effectively analyzed using a multivariate deconvolution
approach.?%3

An important criterion for the quantitative analysis method to
be robust is that it does not require the use of spiking standards
for each sample. To test this, we also determined the concentration
of N and C isotope tagged metabolites in plasma by
comparing the 2D peak integrals with those from the synthetic
analogues. It may be interesting to note that, as shown in
Figure 5, the values, thus, determined using both ®N and *C
isotope tagging agree well with those determined on the basis
of spiking with synthetic analogues. Therefore, it is sufficient
to obtain the integral for each synthetic analogue only once,
which can be used for the analysis of any number of samples.
Utilization of 2D HSQC experiments involving the isotopes has
the additional advantage since both the magnitude of the
coupling and the relaxation properties of the nuclear pairs (°N/
13C and 'H) do not appreciably vary across the metabolites of
interest and, hence, provide the relative cross peak intensities
that are less sensitive to instrumental settings.

In this study, we quantified 27 metabolites with an average
CV of 2.4% for 17 metabolites and 5.6% when all the metabolites
were considered. When the results from all the four NMR
methods were combined for the same metabolites, the average
CV's were 4.8% and 8.7%, respectively. We note that, as the
metabolite library expands, we can quantify additional metabolites
from the same and already acquired 2D data by comparison of
the peak integrals with those from the standards. Mass spectrom-
etry (MS), another very useful method for quantitative analysis,
is highly sensitive and provides quantitative information on a larger
number of metabolites. However, MS invariably involves the

(22) Otvos, J. D.; Jeyarajah, E. J.; Bennett, D. W. Clin Chem. 1991, 37 (3),
377-386.
(23) Otvos, J. D. Clin Lab. 2002, 48, 171-180.
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combination of a separation method such as gas chromatography
or liquid chromatography for accurate analysis and often renders
the obtained results to be sensitive to the specific column and
separation parameters and especially the ionization conditions. In
addition, a standard compound is needed for each quantified
metabolite.

In conclusion, this investigation presents quantitative analysis
of over 25 plasma metabolites using N and '*C isotope tagging
methods. Carboxylic acids and amines represent a majority of
the metabolites in body fluids, and their analysis by isotope
tagging significantly enhances the detectable metabolic pool
for biomarker discovery applications. The combination of
improved sensitivity and resolution and the reduced time
required when compared to natural abundance heteronuclear
NMR methods are attractive for the routine and accurate
analysis of metabolites in complex biological samples. Al-
though, the isotope tagging methods use 2D NMR experi-
ments, each 2D experiment requires only 30 min or less (<10
min with a cryoprobe), and hence, the approach can be useful
for high throughput analysis of human plasma as well as other
biological fluids. Further, combination of the isotope tagging
approach with the latest advancements in NMR technology,
such as detection using microcoil probes, for example, can
significantly minimize the volume of biofluid samples required
for routine analysis.
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ABSTRACT: Recently, the enhanced resolution and sensitivity
offered by chemoselective isotope tags have enabled new and
enhanced methods for detecting hundreds of quantifiable
metabolites in biofluids using nuclear magnetic resonance
(NMR) spectroscopy or mass spectrometry. However, the
inability to effectively detect the same metabolites using both
complementary analytical techniques has hindered the correlation
of data derived from the two powerful platforms and thereby the
maximization of their combined strengths for applications such as

Smart Isotope Tag
Abundant Isotope |

MSs [ (o]
LY "
S~ghe

11 67 |

Permanent charge

biomarker discovery and the identification of unknown metabolites. With the goal of alleviating this bottleneck, we describe a
smart isotope tag, "N-cholamine, which possesses two important properties: an NMR sensitive isotope and a permanent charge
for MS sensitivity. Using this tag, we demonstrate the detection of carboxyl group containing metabolites in both human serum
and urine. By combining the individual strengths of the "N label and permanent charge, the smart isotope tag facilitates effective
detection of the carboxyl-containing metabolome by both analytical methods. This study demonstrates a unique approach to

exploit the combined strength of MS and NMR in the field of metabolomics.

he metabolomics field has witnessed exponential growth

over the past decade due to its capabilities for systems
biology research and potential applications in numerous
disciplines including biomedicine, toxicology, food and
nutrition, drug development, and environmental science.'™®
Commonly used analytical techniques such as nuclear magnetic
resonance (NMR) spectroscopy and/or mass spectrometry
(MS) have evolved in response to the high demand for
resolving the complexity of biological mixtures and identifying
the large pool of quantifiable metabolites. However, despite
numerous advances, the biological complexity still often
outweighs the capabilities of these advanced analytical methods;
no single technique currently is capable of detecting all
metabolites in a single experiment. Each analytical method is
sensitive to certain classes of metabolites, and depending on the
nature of the metabolites of interest, generally one or
sometimes a combination of NMR or MS techniques are
used to profile as many metabolites as possible and thereby
derive the biological meaning. A major hurdle of such an
approach is that the metabolite data obtained from NMR and
LC-MS or GC-MS methods for the same or similar samples are
often not directly comparable. The inability to compare and
correlate data from different analytical techniques for the same
or similar samples is a significant challenge that prevents
drawing meaningful conclusions from the vast amount of
metabolite data existing in the literature and exploiting the
combined strength of NMR and MS for unknown metabolite

v ACS Publications © XXXX American Chemical Society

identification. The main contributing factors for this bottleneck
are the limited NMR sensitivity, complex spectral signatures,
and variable MS ionization efficiency or suppression.

The use of chemo-selective tags provides an avenue to
improve the sensitivity of metabolite detection by both NMR
and MS methods. For example, the sensitivity of MS detection
is shown to be enhanced by three orders of magnitude or more
by tagging metabolites with chemoselective tags containing a
permanent charge.®"'° Because of the permanent charge, the
tagged metabolites are effectively detected with high sensitivity
and better quantitative accuracy, irrespective of the pH or
nature of the solvents used to separate metabolites before
detection by MS. Separately, based on differential dansylation
using ¢y 13C-dansyl chloride, absolute or relative quantitation
of amine and phenol containing metabolites has been achieved
with a sensitivity enhancement of three orders of magni-
tude."™"* Similarly, NMR-sensitive isotope based chemo-
selective tags have been shown to detect many quantifiable
metabolites with high sensitivity and resolution by NMR."*~"
Using "*N-ethanolamine as the tag, for example, over a hundred
carboxyl-containing metabolites have been detected by '"H—""N
two-dimensional NMR with high resolution and sensitivity."?
However, while metabolites can be detected with high
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Figure 1. Schematic figure illustrating the “smart isotope tag” approach used to detect the same metabolites using NMR and MS with high
sensitivity. Tagging carboxyl-containing metabolites with '*N-cholamine enables their enhanced detection by both NMR and MS.

sensitivity by both MS and NMR separately using chemo-
selective tags, the inability to compare and correlate the data
from the two methods is a major bottleneck in the
metabolomics field.

The ability to more easily detect the same metabolites by
both NMR and MS methods would offer new avenues to
compare data between MS and NMR platforms and to exploit
the combined strength of the complementary methods. Toward
this goal, we introduce a new “smart isotope tag” approach,
using '*N-cholamine in this case, which possesses the
characteristics of high NMR sensitivity and resolution through
its isotope enrichment and high MS sensitivity through its
permanent positive charge (see schematic Figure 1). The tag
combines the strengths of individual chemoselective tags,
demonstrated previously and separately for NMR and MS
detection,®'® and offers news avenues to exploit the combined
strength of these powerful and complementary techniques for
areas such as metabolite profiling and unknown metabolite
identification.

B EXPERIMENTAL SECTION

Chemicals and Biofluids. A total of 48 carboxyl-containing
metabolite standards (Table I), (2-bromoethyl)-
trimethylammonium bromide, dimethylformamide (DMEF),
methanol, acetonitrile, acetone, hydrochloric acid (HCI),
sodium hydroxide (NaOH) (all from Sigma-Aldrich, St.
Louis, MO), 4-(4,6-dimethoxy[ 1,3,5]triazin-2-yl)-4-methylmor-
pholinium chloride (DMTMM) (Acros Organic, Pittsburgh,
PA), *N-phthalimide potassium, and deuterium oxide (Cam-
bridge Isotope Laboratories, Andover, MA) were used without
further purification. Human serum samples were obtained from
Innovative Research, Inc., (Novi, MI) and urine from healthy
volunteers, in accordance with the Internal Review Board at
Purdue University. Deionized (DI) water was from in-house
Synergy Ultrapure Water System from Millipore (Billerica,

Design and Synthesis of the Smart Isotope Tag—"°N-
Cholamine. Synthesis of *N-cholamine involved a two-step
reaction and followed the Gabriel synthesis procedure with

modifications as described below to yield the pure product.'®"®

The first step involved reacting potassium '*N-phthalimide with
(2-bromoethyl)trimethylammonium bromide in DMF to
obtain the '*N-substituted phthalimide intermediate (Scheme
1). The second step involved alkaline and acid hydrolyses of the
!SN-substituted phthalimide to yield the smart isotope tag, "*N-
cholamine (Scheme 2).

Briefly, for the synthesis of '*N-substituted phthalimide
(Scheme 1), (2-bromoethyl)trimethylammonium bromide (9.5
mmol, 2.35 g) was mixed with '*N-phthalimide potassium (10
mmol, 1.86 g) in a 250 mL round-bottom flask and dry DMF
(100 mL) was added under nitrogen gas. The mixture was then
refluxed at 100 °C with stirring for 12 h. The supernatant from
the reaction mixture was separated, and the solvent was
removed using a rotary evaporator."® The resulting crude
residue was washed thrice using acetonitrile (S mL each time),
twice with acetone (2 mL each time) followed by washing again
once with acetonitrile (3 mL) to obtain the pure “N-
substituted phthalimide. 'H NMR spectra in D,0 at each
step were monitored to assess the purity of the intermediate
product. For the synthesis of *N-cholamine, in the second
step, the "N-substituted phthalimide (538 mg) (Scheme 1)
was dissolved in DI water (24 mL); 1 N NaOH (2.69 mL) was
added to the solution, and the mixture was left at room
temperature with stirring for 30 min to complete the alkaline
hydrolysis (Scheme 2)." Subsequently, 12 N HCI (1.8 mL)
was added to the solution, the temperature was raised to 70 °C,
and left for 12 h with stirring to complete the acid hydrolysis
(Scheme 2)."® The solvent was then removed using a rotary
evaporator. The resulting crude residue was washed thrice with
acetonitrile (4 mL each time) followed by washing thrice with
25:7S water/acetone mixture (2 mL each time) to yield the
pure product, *N-cholamine. "H NMR spectra in D,0 at each
step were monitored to assess the purity of the final product.

Tagging Metabolites Using the Smart Isotope
Tag—">N-Cholamine. "*N-Cholamine (5 mg, 50 ymol) was
added to 500 uL sample in an eppendorf tube, and the pH of
the mixture was adjusted to 7.0 with 1 M HCl or NaOH. A 21
mg portion of DMTMM was added to initiate the
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Table I. 'H and "N-NMR Chemical Shifts for '*N-Cholamine Tagged Carboxyl-Containing Metabolites That Were Measured
with Reference to Smart Tagged Formic Acid

label name 'H (ppm) N (ppm) label name 'H (ppm) 5N (ppm)

1 cis-aconitic acid 8.5 118.24 23 2-hydroxyisobutyric acid 7.95 117.51

8.14 121.47 24 DL-isocitric acid 8.40 117.1§

8.06 119.49 8.11 120.77

8.07 120.21 25 isoleucine 8.37 118.19

823 116.00 26 isovaleric acid 8.07 121.92

8.14 120.81 27 a-ketoglutaric acid 8.69 116.34

2 adipic acid 8.05 120.57 8.63 111.84

3 pL-alanine 8.30 114.39 28 lactic acid 823 114.18

4 4-aminobenzoic acid 825 11135 8.49 114.45

S arginine 8.34 115.96 29 leucine 8.34 115.74

6 asparagine 831 116.03 30 lysine 8.33 115.88

7 aspartic acid 8.1S 120.01 31 maleic acid 8.39 120.39

8.38 115.27 32 malic acid 828 122.83

8.31 115.6 8.29 122.15

8.08 115.14

8.16 121.3§ 33 malonic acid 8.19 121.44

8 betaine 8.55 122.69 34 methionine 8.36 116.08

9 citric acid 8.20 121.46 35 oxalic acid 8.47 117.13

8.07 123.95 36 oxaloacetic acid 8.35 112.67

7.87 121.88 8.63 111.40

10 cysteine 8.35 115.93 37 L-phenylalanine 821 118.85

11 cystine 8.5 115.22 38 L-proline 8.3S 115.58

12 formic acid 8.05 123.93 39 propionic acid 7.95 118.85

13 fumaric acid 8.42 122.68 40 pyroglutamic acid 829 115.88

8.56 12424 41 Pyruvic acid 8.63 11139

14 glucuronic acid 8.38 119.54 835 112.72

15 glutamic acid 8.28 115.99 42 serine 8.17 117.63

8.05 120.42 43 succinic acid 7.96 119.16

8.01 119.64

16 glutamine 8.35 115.90 44 succinyl-COA 8.03 119.17

8.11 119.67

17 glycine 82 115.45 45 L-threonine 8.34 117.79

18 glycolic acid 822 114.97 46 L-tryptophan 7.98 119.37

8.37 115.19 47 tyrosine 8.27 118.05

19 hippuric acid 82 115.62 48 valine 8.38 118.20
20 histidine 8.36 116.60
21 3-hydroxybutyric acid 8.07 122.20
22 4-hydroxy-L-proline 8.5 115.89
8.36 117.62

Scheme 1. Synthesis of 'SN-Substituted Phthalimide

0O (o} \
Br N/\
®
BNH K + \(:/\/Br %’ 15N/\/
e 12 hrs reflux at 100°C

under nitrogen

Scheme 2. Alkaline and Acid Hydrolyses of the *N-Substituted Phthalimide to Yield **N-Cholamine

o \ s
N ®
/\/ o = CO'™NH(CH2),N(CH3)3 \N/ cOo,
15N 1) NaOH __2Ha ~
R.T., 30min ) 70°C, 1ohre. ~© *
CO, H,'5N CO,
0
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Scheme 3. General Reaction for Tagging Carboxyl-Containing Metabolites with the Smart Isotope Tag '*N-Cholamine
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reaction. """ The mixture was stirred at room temperature

for 4 h to complete the reaction. The general reaction for
tagging metabolites with the smart isotope tag is shown in
Scheme 3. To maintain N amide protonation, the pH was
adjusted to 5.0 by adding 1 M HCl or 1 M NaOH, and the
solution volume was adjusted to 580 yL by adding DI water.
Serum was deproteinized using methanol prior to metabolite
tagging and urine was used with no pretreatment."®

NMR Spectroscopy. For each sample, 580 yL was mixed
with 30 L D,O and placed in a S mm NMR tube. NMR
experiments were performed on a Bruker DRX 500 MHz or
Avance III 800 spectrometer equipped with a room temper-
ature probe or cryoprobe, respectively, suitable for 'H inverse
detection with Z-gradients at 298 K. A one pulse sequence with
or without solvent signal suppression using presaturation was
used for 'H 1D NMR experiments. The sensitivity-enhanced
"H—"SN 2D heteronuclear single quantum coherence (HSQC)
experiments employed an INEPT transfer delay of 6 ms
corresponding to the Jyy of 90 Hz. Spectral widths for the 'H
and N dimensions were approximately 8 and 3 kHz,
respectively. Here, 128 free induction decays of 1024 data
points each were collected in the indirect (¢;) dimension with 1
or 4 transients per increment. Nitrogen decoupling during the
direct acquisition (¢, dimension) was achieved with the GARP
(globally optimized alternating-phase rectangular pulses)
sequence. The resulting 2D data were zero-filled to 1024
points in the ¢, dimension after forward linear prediction to 256
or 512 points. A 45° shifted sine-bell window function was
applied to both dimensions before Fourier transformation.
Chemical shifts were referenced to the "H signal of TSP for the
1D spectra or the derivatized formic acid signal ("H 8.05 ppm;
N 123.93 ppm) in the HSQC spectra. Bruker Topspin
versions 3.0 or 3.1 software packages were used for NMR data
acquisition or processing.

Mass Spectrometry. LC-MS and LC-MS/MS experiments
were performed using an Agilent 1200 SL-LC system coupled
online with an Agilent 6520 Q-TOF mass spectrometer
(Agilent Technologies, Santa Clara, CA). The sample (8 uL)
was injected onto an Agilent Poroshell 120 EC-C18 column
(30 mm X 50 mm, 2.7 um), which was heated to 50 °C. The
flow rate was 0.5 mL/min. Mobile phase A was S mM
ammonium acetate in water, and mobile phase B was 0.1%
water in ACN. The mobile phase composition was initially kept
isocratic at 3% B for 1 min, then increased to 90% B over 4
min; after another 4 min at 90% B, the mobile phase
composition returned to 3% B. Electrospray ionization (ESI)
was used in positive mode, and the voltage was 3.5 kV. The
mass analyzer was scanned over a range of 50—1000 m/z. The
collision energy for auto LC-MS/MS experiments was fixed at
10 V, targeting preselected compounds.

B RESULTS AND DISCUSSION

The smart isotope tag, '“N-cholamine, designed, developed,
and used in this study retains all the characteristics of the '*N-

ethanolamine tag including the solubility of the tagged
metabolites in aqueous media, large one-bond J-coupling
between 'H and "N of ~90 Hz for efficient polarization
transfer between 'H and N nuclei, and wide chemical shift
dispersion for different metabolites in the resulting 2D NMR
spectra.’® In addition, and importantly, 'N-cholamine
possesses a permanent positive charge, which enables efficient
positive mode detection of the same carboxyl-containing
metabolites by MS, irrespective of the pH or solvent conditions
of the eluting media, commonly used for chromatographic
separation before detection by MS.®

Synthesis of *N-cholamine involved a two-step reaction and
followed the Gabriel synthesis procedure with suitable
modifications to yield the pure product.'®'? As seen in the
"H NMR spectrum (Supporting Information Figure S1), the
pure intermediate compound, '*N substituted phthalimide, was
obtained after the first step of the synthesis. Hydrolysis of this
compound yielded the "N-cholamine in pure form as can be
ascertained from its 'H NMR spectrum (Supporting
Information Figure S2; peaks at 3.16; 3.48; 3.64 ppm). The
accurate MS and MS/MS spectra for *N-cholamine, shown in
Supporting Information Figure S3, help further verify the
identity and purity of the synthesized smart isotope tag (m/z =
104.120).

The compound was then used to tag 48 metabolites that
were selected for their prominence as carboxyl-containing
metabolites in biofluids that represent a variety of metabolic
pathways. The 'H and N chemical shift data derived from the
2D NMR experiments, after tagging with '*N cholamine, are
shown in Table I Because the '*N-cholamine and the
previously used "*N-ethanolamine differ only in their terminal
group, the tagging efficiency, reproducibility and chemical shift
values for metabolites with '*N-cholamine tag were similar to
those obtained using the '*N-ethanolamine tag."®

Importantly, as anticipated based on the “N-ethanolamine
tagging approach shown earlier in our laboratory," the 'N-
cholamine tagging of metabolites in human serum provided a
rich NMR spectrum due to the large number of carboxyl-
containing metabolites normally present in blood (Figure 2).
The low natural abundance of >N (0.37%) ensures that none
of the nitrogen containing metabolites interferes with the
detection of carboxyl-metabolites through the '*N-cholamine
tag. Each peak in the spectrum corresponds to different
metabolite from the carboxylic acid class. However, metabolites,
which contain more than one carboxyl group, provide
additional peaks depending on the number of carboxyl groups
and molecular symmetry. In addition, metabolites such as
lactate, which possess a-hydroxyl groups, show more than one
peak for the same metabolite as we described earlier using the
15N-ethanolamine tag."*> Some of the peaks assigned based on
the chemical shift values for the standard compounds are
marked with the corresponding number shown in Table I and
Figure 2b. Similarly, tagging of metabolites in human urine with
!SN-cholamine also enabled the detection of peaks correspond-

dx.doi.org/10.1021/ac401712a | Anal. Chem. XXXX, XXX, XXX—XXX



Analytical Chemistry

135

(@)

ppm
1144 o0

1154

116 °

1174

118+

1194

120

1214

122

1234

1244

88 87 8.6 85 B84 83 82 81 80 79 ppm

(b)
pPm
7 Q 3 Qs
v° g
1154 20y 3,018
. 11 g 0 Q17,19
27 22 16 557 15
3s° 20034
1174 u0
42045
1184 - 047
48 0 o44 e
110 037 l"a" D46, 39
014 44, O o8
120 {
4] 70,00
31 p B
121 33 150
Q 27 32 .
1224 4
32 %21
ol3
, @ P
124
O3 12
T T T T T T T T T

a.8 8.7 8.6 8.5 8.4 8.3 8.2 8.1 8.0 7.9 ppm

Figure 2. (a) Portion of the '"H—'*N HSQC spectrum of human
serum tagged with "*N-cholamine: (1) aconitic acid; (2) adipic acid;
(3) alanine; (7) aspartic acid; (8) betaine; (9) citric acid; (11) cystine;
(12) formic acid; (15) glutamic acid; (17) glycine; (20) histidine; (21)
3-hydroxybutyric acid; (24) isocitric acid; (28) lactic acid; (29)
leucine; (32) malic acid; (37) phenylalanine; (40) pyroglutamic acid;
(45) threonine; (46) tryptophan; (47) tyrosine; (48) valine. (b)
Portion of the 'H—"N HSQC spectrum of a mixture of standard
compounds at various concentrations obtained after tagging with '*N-
cholamine. The peak numbers correspond to the compounds shown in
Table 1.

ing to well over a hundred carboxylic acid group containing
metabolites (Figure 3). Peaks tentatively assigned based on the
values for the standard compounds are marked by their
numbers shown in Table I and Figure 2b.
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Figure 3. Portion of the 'H-""N HSQC spectrum of human urine
tagged with '*N-cholamine: (1) aconitic acid; (2) adipic acid; (3)
alanine; (S) arginine; (6) asparagine; (7) aspartic acid; (9) citric acid;
(12) formic acid; (15) glutamic acid; (18) glycolic acid; (19) hippuric
acid; (24) isocitric acid; (28) lactic acid; (33) malonic acid; (39)
propionic acid; (40) pyroglutamic acid; (43) succinic acid; (4S)
threonine; (46) tryptophan.

The "*N-cholamine tagging of metabolites in aqueous media
enabled a sensitivity enhancement of up to 3 orders of
magnitude or more in the MS detection of carboxyl
metabolites. The derivatized metabolites could be detected
easily in positive ion mode as compared to the same
metabolites detected in negative ion mode without the tag.
For example, the sensitivity for pyruvic acid detected in positive
ion mode after '*N-cholamine tagging was enhanced by a factor
of about 1500 when compared to that detected for the same
metabolite without the '“N-cholamine tag, in negative ion
mode. Figure 4 shows typical mass spectra for formic acid and
pyruvic acid after tagging with '*N-cholamine. The enhance-
ment in sensitivity is primarily due to the high ionization
efficiency imparted by the permanent positive charge of the
“N-cholamine and is in agreement with results by Smith and
co-workers for fatty acid analysis using the heavy and light
forms of cholamine.® In that study, reactions of metabolites
with cholamine were made in organic solution in contrast to
the aqueous media used here. The "N-cholamine derivatized
serum samples were then analyzed by LC-MS. As anticipated,
due to the presence of the permanent positive charge, tagged
metabolites could be readily detected in positive ion mode with
high sensitivity. Sensitivity enhancement by a factor of up to
nearly 3000 could be achieved for tagged acids. The extracted
ion chromatograms for a few typical carboxylic acids detected in
serum with "*N-cholamine tag are shown in the Supporting
Information Figure S4.

One potential issue is the effect on chromatographic
retention time caused by the addition of the cholamine tag.
However, separation of the tagged metabolites using HILIC
columns offers an opportunity to effectively separate before
detection using MS. For example, the results of separation of a
mixture of standard carboxylic and amino acids performed
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Figure 4. Typical LC-QTOF-MS spectra for formic acid and pyruvic acid obtained after tagging with the smart isotope tag, '*N-cholamine. The
permanent charge on the tagged metabolites enables their sensitive detection; the observed peak is from the intact tagged metabolite.

using a HILIC column, without attempting to optimize
chromatography conditions, indicate that *N-cholamine tagged
metabolites can be separated effectively (Supporting Informa-
tion Figure SS). More broadly, we can contemplate the use of
dual purpose smart tags for other NMR-MS combinations. For
GC-MS, the addition of a charged species will likely cause
problems related to reduced volatility; however, a different tag,
such as C or even *Si labeled silyl-type tags can be
contemplated.”” Another alternative is the use of smart tags
for capillary electrophoresis (CE) coupled to MS, which is
increasingly of interest in metabolomics.”® In fact, positively
charged derivatization agents (based on pyridinum containing
compounds) have been demonstrated for the use of metabolite
profiling of carboxylic acids by CE-MS.** Thus, the potential
for the use of smart tags such as cholamine for CE-MS and
NMR is quite promising.

In conclusion, we have developed a smart isotope tag, *N-
cholamine, which possesses dual characteristics for metabolite
profiling in complex biological mixtures using the powerful
analytical techniques of NMR and MS. By combining the
individual strengths of the "N label and permanent charge, the
smart isotope tag facilitates detection of carboxyl-containing
metabolome by both NMR and LC-MS techniques with high
sensitivity. Detection of the same metabolites by both NMR
and MS (Supporting Information Figure S6), effectively opens
unique opportunities for identification of unknown metabolites
and direct comparison of metabolite data from the two
powerful analytical platforms.
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ABSTRACT: Metabolite identification in the complex NMR
spectra of biological samples is a challenging task due to
significant spectral overlap and limited signal-to-noise. In this
study we present a new approach, RANSY (ratio analysis NMR
spectroscopy), which identifies all the peaks of a specific
metabolite on the basis of the ratios of peak heights or integrals.
We show that the spectrum for an individual metabolite can be
generated by exploiting the fact that the peak ratios for any
metabolite in the NMR spectrum are fixed and proportional to
the relative numbers of magnetically distinct protons. When the

Driving peak

3

|
Jek.

Creatinine

peak ratios are divided by their coefficients of variation derived from a set of NMR spectra, the generation of an individual metabolite
spectrum is enabled. We first tested the performance of this approach using one-dimensional (1D) and two-dimensional (2D) NMR
data of mixtures of synthetic analogues of common body fluid metabolites. Subsequently, the method was applied to 'H NMR
spectra of blood serum samples to demonstrate the selective identification of a number of metabolites. The RANSY approach, which
does not need any additional NMR experiments for spectral simplification, is easy to perform and has the potential to aid in the
identification of unknown metabolites using 1D or 2D NMR spectra in virtually any complex biological mixture.

Nuclea.r magnetic resonance (NMR) based metabolomics is
increasingly used in numerous studies and applications that
include drug response, early disease diagnosis, toxicity and
nutritional studies, and basic systems biology using a variety of
complex biological samples.' '" A number of reviews have been
published that describe advancements in the field."'~'® NMR
spectroscopy is an important analytical technique in metabolo-
mics primarily because of its quantitative nature and high repro-
ducibility. Due to the complexity of the NMR spectra of biological
samples, however, obtaining information on low-concentration
metabolites is challenging due to the high degree of spectral
overlap. Nevertheless, these species are important to analyze
because their changing concentrations may distinguish biological
status, such as health and disease.

Numerous advances in NMR methods and databases have so
far been made to aid the analysis of complex NMR spectra, as well
as to identify specific metabolites and pathways associated with
the onset of various diseases.'” >’ Some important approaches
for peak assignments in the complex NMR spectra using NMR
databases include targeted profiling of complex NMR spectra
using mathematical modeling of the pure compound spectra to fit
the experimental data,”' the COLMAR approach that screens
chemical shift lists or cross-sections of multidimensional NMR
spen:l:ra,22 and annotation of metabolites using a statistical index
called spin-assign p-value.”

v ACS Publications «© 2011 American chemical society
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Methods such as statistical total correlation spectroscopy
(STOCSY),24 selective TOCSY,”*** and isotope enhanced
methods™ ~** offer approaches to simplify NMR spectra of
complex samples such as biofluids and cells. In addition, spectral
simplification in terms of increased resolution along the indirect
dimension can be achieved through covariance NMR spectros-
copy, introduced by Zhang and Bruschweiler.** %

Among the methods applicable to metabolomics, STOCSY**
has proven to be a very useful and general data analysis method to
identify related metabolite peaks from complex spectra. The
autocorrelation matrix of a set of NMR spectra identifies peaks
from the same metabolite because these peaks show high
correlation, which can simplify assignments. In addition, from
the STOCSY analysis, peaks from other metabolites in the
same or different pathways that are also correlated appear in
the spectrum, which provides benefits but also complicates the
analysis. STOCSY has successfully been extended to analyze
spectra obtained from different nuclei®® and even different
analytical techniques, such as NMR, cryoflow LC-NMR, and
UPLC-MS.** Correlation was also used to group variables in
complex spectra and prove interpretability of latent variables for
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metabolic biomarker recovery.’® However, due to the often
substantial number of high correlation values, it can be difficult
to find the meaningful correlations without choosing a threshold
empirically. Clean spectra for individual metabolites are some-
times difficult to achieve.

Here we propose an alternative method to detect metabolite
signals selectively from the complex one-dimensional (1D)
and two-dimensional (2D) spectra. The new approach in-
volves an analysis of the ratio between a selected peak and all
of the other peaks in the spectrum. The mean of each ratio is
calculated across the multiple spectra in the data set and is
then divided by the standard deviation of this ratio to
generate a spectrum that clearly illustrates the relationship
among the peaks from the same molecular species. The newly
generated spectrum contains clean peaks with good signal-to-
noise; identification can then be easily performed by compar-
ing the ratio spectrum with a standard spectrum from a
database. The RANSY method therefore allows easier identi-
fication of individual molecules in overlapped spectral regions
without the need for additional experiments. The same
methodology can also be applied to simplify 2D spectra.
For example, in the spectra generated by isotope tagging methods,
metabolites with multiple functional groups can be identified
easily.” Because of intrinsic characteristics of the calculated ratio,
no data normalization is needed.

B THEORY

RANSY is based on the fact that the ratio between two NMR
peak intensities or areas from the same metabolite will be equal to
the relative number of magnetically nonequivalent spins and will
be constant across all spectra; and therefore the standard
deviation of this ratio will in theory be zero, or very close to
zero. Although spectral noise contributes to some variation in
this ratio, the noise contribution is still relatively small. Of course,
in highly overlapped spectra, it is the contributions to the peaks in
the spectra from a particular metabolite that will have fixed ratios.
On the other hand, if the two peaks originate from different
metabolites, their ratio should vary across different spectra. Thus,
the standard deviation of the ratio of peaks from separate
molecules across all of the spectra will be typically large, except
in those rare cases where these metabolites are very highly
correlated.

To obtain the ratio spectrum of an unknown metabolite with
only one known peak, the ratios between all of the other points in
each spectrum and the known peak are calculated. The mean
of each ratio is then divided by its standard deviation to get
its reciprocal coefficient of variation (1/CV). Since the ratio’s
standard deviation is used as the denominator, small standard
deviations will produce a very large reciprocal value, generating
a peak, but large standard deviations will give small numbers,
similar to noise values, The reciprocal of the CV is used instead
of the standard deviation because CV is dimensionless and
standard deviations can only be compared in the context of the
mean value.

The RANSY algorithm is as follows. We denote the ith
spectrum of a set of n spectra as a vector X;. The jth data point
of m total points in that spectrum is denoted as X; . We designate
one peak of interest from a given metabolite (the kth point in
spectrum i, X, ;) as the “driving” peak. The first step is to calculate
all of the ratios between all of the other points and the driving
peak; we can denote the ratio matrix as D, which is an n x m

7617

matrix. Each point in that matrix is defined as follows:
p. £

D'j _xil

(1)
Next, to generate a ratio spectrum, which is an m-element vector
R, the quotient of means and standard deviations across columns
of D are calculated. Thus, the jth element of the 1D RANSY
spectrum (vector R) is calculated as follows:

(1/n) 3D,

R = = (2)

\/(uu) > ( ~/m § D)

However, since the standard deviation is zero for the driving peak
itself, the corrected ratio for the driving peak X is infinite, To not
sacrifice the driving peak, we assign the corrected ratio of that
peak equal to the maximum of R. So the final RANSY spectrum is
given by eq 2 except for the driving peak Ry, which is given by

R; = max(Ry, Ry, .. Ryy)

All ratio analyses were performed on a personal computer using
R version 2.10.0 software.

B EXPERIMENTAL METHODS

Chemicals. Thirty-three synthetic analogues of human serum
metabolites (see Supporting Information Table S-1) and the
NMR standard, TSP (trimethylsilylpropionic acid-d,, sodium
salt), were purchased from Sigma-Aldrich (St. Louis, MO).
Deuterium oxide (D,0, 99.9% D) was purchased from Cam-
bndge Isotope Laboratories, Inc. (Andover, MA). Chemicals for

!*N-ethanolamine tagging, 4-(4,6-dimethoxy[ 1,3, S}tmzm 2-y1)-
4-met.hy1rncrphohmum chloride (DMT-MM), and '*N-ethanol-
amine were purchased from Cambridge Isotope, and Isotech
(Miamisburg, OH), respectively. All chemicals were used without
further purification.

Serum Samples. 100 serum samples for 1D NMR were
obtained from Innovative Research, Inc. (Novi, MI), and 550 uL
of each sample was used for the Carr—Purcell-Meiboom—
Gill (CPMG) experiment.

For 1D RANSY experiments, 15 standard samples were
prepared by mixing 15 uL of TSP (5 mM in D,0) with stock
solutions of the 33 metabolites (20 mM each). Volumes for each
of the standards were chosen randomly within a range, and their
final concentrations can be found in Supporting Information
Table S-1. Concentrations of the standards were varied by nearly
2 orders of magnitude (0.03—2 mM) and were chosen to match
roughl{ with their physiological concentrations in blood or
urine.”” A 285 uL solution of 0.5 M phosphate buffer in DO
(pH =7.4) was added to each standard mixture to minimize peak
shifts. After mixing, S50 uL of each sample was used to acquire
the NMR spectra. A second set of 10 sample mixtures containing
15 different metabolites was also prepared in a similar manner,
except that the concentration ranges for each of these metabo-
lites was varied from 0.03 to 2 mM (see Supporting Information
Table §-2).

For 2D RANSY experiments, 15 standard mixtures were
prepared by mixing 100 4L of water with stock solutions of the
33 metabolites (20 mM each) to obtain the final concentrations.
These 15 samples were derivatized with 'SN-ethanolamine,

dx.doi.org/10.1021/ac201625f |[Anal. Chem. 2011, 83, 7616-7623
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according to the procedure described previously.” Briefly, 3 uL
of "*N-ethanolamine (50 #M) was added to each sample. After
adjustment to pH 7.0 with 1 M HCI, 21 mg of DMT-MM was
added to the solution. The reaction mixture was kept at room
temperature for 4 h with stirring to complete the reactions. To
maintain '*N amide protonation, the pH was adjusted to 5.0 and
the solution volume was adjusted to 600 1L by adding water prior
to 2D NMR experiments, of which 550 uL was used for NMR
experiments, A blank sample was also prepared by the same
procedure as above but without adding any metabolites.

NMR Spectroscopy. One-dimensional NMR experiments for
the 15 standard mixture samples were performed on a Bruker
Avance-111-800 spectrometer equipped with a room-temperature
'H inverse detection Z-gradient probe. NMR data were acquired
using the 1D NOESY pulse sequence with water presaturation. A
set of 128 scans with 16 k time domain data points was collected
using a spectral width of 12 800 Hz. An exponential weighting
function corresponding to 1.0 Hz line broadening was applied to
the free induction decay (FID) before Fourier transformation.
The spectra were then phased, baseline corrected, and referenced
to TSP (& = 0.000 ppm) using Bruker Topspin 3.0 software.

'H NMR experiments were obtained for 100 commercial
serum samples using a standard 1D CPMG pulse sequence coupled
with water presaturation on a Bruker Avance-500 spectrometer
equipped with a TXI gradient cryoprobe. A set of 128 scans with
16 k time domain data points was collected using a spectral width
of 6000 Hz. An exponential weighting function corresponding to
1.0 Hz line broadening was applied to the FIDs before Fourier
transformation. The acquired spectra were then phased, baseline-
corrected, and referenced to alanine (0 = 1.479 ppm) using
Bruker's Topspin 3.0 software.

Two-dimensional experiments for standard samples were
performed at 298 K on a Bruker Avance-III-800 spectrometer
as well. '"H=""N 2D heteronuclear single quantum coherence
(HSQC) experiments employed an INEPT transfer delay of 5.5 ms
corresponding to a 'Jyu coupling of 90 Hz. Spectral widths
of approximately 10 kHz for the "H dimension and $ kHz for
'*N were used at 800 MHz. A total of 128 free induction decays
of 2048 data points each were collected in the indirect (t;)
dimension with 32 transients per increment. '*N decoupling in
the direct detection dimension (t,) was achieved using globally
optimized alternating-phase rectangular pulses (GARP). The
resulting 2D data were zero-filled to 1024 points in the t
dimension after forward linear prediction to 512 points. The
spectra were then phased, baseline-corrected, and integrated using
Bruker Topspin 3.0 software as described earlier.****

B RESULTS AND DISCUSSION

The RANSY approach was first applied to analyze a set of 15
standard metabolite mixtures, and some of these results are
shown in Figure 1. The 1D NMR spectrum of a mixture of 33
standard compounds can be seen in Figure 1a. Some regions in
this spectrum are quite crowded even in this relatively simple
mixture of standard compounds, RANSY was applied to the
collection of 15 samples by selecting one of the isolated
metabolite peaks as the “driving peak”. For example, in Figure 1b
the driving peak is at 3.26 ppm and corresponds to the upfield
peak of the methyl singlet of betaine. The other singlet at 3.91
ppm also appears in the RANSY spectrum at the correct position.
In Figure lc, the driving peak is at 3.18 ppm and corresponds to
the downfield triplet of S-alanine. The other triplet appears in the
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RANSY spectrum at the expected position (2.56 ppm) and
intensity. Both betaine and S-alanine are quite low in concentra-
tion, and their resonances sit in relatively crowded regions, as
shown in the expanded region of Figure 1a. Nevertheless, one can
easily generate their spectra by RANSY. The example shown in
Figure 1d is hippuric acid, which has several peaks in the aromatic
region, and a doublet at 3.96 ppm. Three multiplets could
be found in the aromatic region, centered at 7.81, 7.64, and
7.54 ppm, corresponding to hydrogens located on the phenyl ring.
Using the center peak at 7.64 ppm as the driving peak, the
RANSY spectrum reveals the other two peaks plus a doublet
centered at 3.96 ppm, which is due to hippuric acid’s CH, group,
and also had its correct chemical shift. In the spectra of Figure 1,
the noise levels are significantly lower when compared with the
peaks generated by RANSY, and the RANSY spectra are very
similar to standard spectra of these metabolites. The relative peak
heights are also close to those for the standards, indicating that
the standard deviations for the ratios from the same compounds
are small and very similar to one another. As will be shown below,
using a larger number of samples will further improve the signal-
to-noise ratio (vide infra). To investigate RANSY on mixtures in
which the signals vary over a larger dynamic range, we also record
spectra of 10 mixtures of 15 metabolites where the concentra-
tions all varied over a (nonbiological) range of 0.03—2 mM
(Table §-2). The RANSY spectra of the same three metabolites
(betaine, -alanine, and hippuric acid) were calculated by the
driving peaks mentioned above and shown in Supplorting
Information Figure S-1. Similar RANSY results were obtained
with this larger concentration range, with the one difference
being that the noise appeared to be more evenly distributed in
this case.

RANSY was then applied to a set of 100 serum samples. In
Figure 2a the CPMG spectrum of serum is shown prior to the
application of RANSY. Subsequently, RANSY was applied to the
upfield peaks of creatinine and creatine centered at 3.03 and
3.02 ppm, respectively, as shown in Figure 2a. These two meta-
bolites were chosen because their upfield peaks are very close to
one another. They are somewhat difficult to identify in serum
since they both often have overlapping singlets, and these signals
are somewhat weak due to their low concentrations in serum
(~30 uM for adults). The RANSY spectra for both metabolites
are shown in Figure 2b,c; it is very clear that the low-field singlet
centered at 4.05 ppm is associated with creatinine, and the singlet
at 3.92 ppm is associated with creatine. While the RANSY spectra
for both metabolites are clear, there is some noise generated by
the large number of small peaks in the baseline of the serum
spectra. One can, however, distinguish the RANSY peaks from
baseline noise by applying a minimum threshold value across the
spectrum. A threshold of R = 6 for the calculated ratio of eq 2 can
be applied to the spectrum of Figure 2b,c, and indicated by the
dashed line. It can be seen that the all of the noise peaks in both
figures are below that threshold.

To test RANSY further in serum samples, the method was also
applied to identify resonances from valine and leucine. Both of
the upfield peaks for valine and leucine come from methyl groups
that overlap with isoleucine. In addition, leucine’s upfield triplet
centered at 0.95 ppm overlaps with the tail of a strong, broad lipid
peak. The chosen driving peaks were at 1,02 ppm for valine and
0.94 ppm for leucine. Correlation spectra were also calculated
using the same driving peak for comparison. The valine RANSY
spectrum shown in Figure 3b shares two upfield doublets from
the two methyl groups, and another doublet at around 3.6 ppm,

dx.dolorg/10.1021/ac201625( |Anal. Chem. 2011, 83, 7616-7623
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Figure 1. (a) 'H NMR spectrum of a mixture of 33 standard compounds. (b—d) Selective detection of (b) betaine, (c) -alanine, and (d) hippuric acid
by the RANSY method. Panels b—d were generated from 15 'H NMR spectra of mixtures, and the driving peaks are indicated by an asterisk, plus sign,
and letter X, respectively. The inset in a shows the crowded region for driving peaks of betaine and S-alanine.

which was from the «-CH proton. The RANSY method is not
perfect, as the multiplet at 2.25 ppm (R = 3.1) was missing due to
its low intensity and some peak shifting observed in the CPMG
spectra, For the RANSY spectrum calculated for leucine, we can
see in Figure 3d that another multiplet centered at 1.70 ppm appears
for leucine, which comes from the 3-CH, and y-CH protons.
However, the multiplet centered at 3.71 ppm was missing (R =
0.69) compared with its standard spectrum, because of the very
strong signal intensity and overlap from glucose. To compare
RANSY with the conventional statistical correlation method,

7619

correlation spectra based on Pearson correlation coefficients
were calculated using the same driving peaks for valine and
leucine. Peaks in the spectra as shown in Figure 3c,e thus represent
correlation coeflicients between the vector of the driving peak
and those of all other peaks. While the RANSY results are not
perfect in these cases, they are still much better than the corre-
lation method calculated and shown in Figure 3¢,e, in which most
of the peaks can hardly be seen.

In general, to calculate the RANSY spectra, it is necessary
to use multiple spectra to calculate the relative CV values.

dx.doi.org/10,1021/ac201625( |Anal. Chem. 2011, B3, 7616-7623
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Figure 2. (a) '"H NMR spectrum of serum, obtained using the CPMG pulse sequence. (b) Selective detection of creatine by the RANSY method. The
driving peak is at 3.02 ppm (indicated by the plus sign). (c) Selective detection of creatinine driven by the singlet at 3.03 ppm (indicated by the asterisk).
The noise threshold value of R = 6 is indicated by the dashed horizontal line in both b and ¢. The inset in a shows the two very closely spaced peaks for

creatine and creatinine used as driving peaks.

To evaluate the effect of limited sample numbers, an analysis of
the RANSY spectra of serum was performed using different
numbers of spectra. The RANSY spectrum for valine was calcu-
lated by averaging the results from using each of the four peaks
from the two valine doublets located at 1.04 and 0.98 ppm as the
driving peaks. First, five samples were randomly picked from the
100 commercial serum samples. Next, additional and randomly
chosen samples were added to the original five samples and the
RANSY spectrum was recalculated. The results of applying
RANSY to different numbers of spectra, from 5 to 80 are shown
in Supporting Information Figure S-2. When only five samples
were used, the two doublets were not of the same height and at
least one peak was distorted. The addition of two spectra in the
RANSY calculation (a total of seven spectra) resulted in much
better resolution for the two doublet peaks and the peak shape
also improved. When 20 samples or more were used, the peaks
became well-shaped and showed no additional changes when

additional samples were added to the RANSY calculation. Over-
all, the differences in the RANSY spectra between 20 and 80
samples were minor and not easy to identify. From this
example, we expect that 20 samples would often be sufficient
to deconvolute metabolites well even in complex samples such
as serum,

RANSY was also applied to 2D HSQC spectra of isotope-
tagged metabolite mixtures. Fifteen mixtures each containing
different concentrations of the same 33 metabolites were tagged
with '*N-ethanolamine, as described in Experimental Methods.
Of these 33 metabolites, three metabolites (isocitric acid, citric
acid, and cis-aconitic acid) have three carboxyl groups, and three
metabolites (L-glutamic acid, oxalic acid, and malic acid) have
two carboxyl groups, while the remaining metabolites have
only one carboxyl group each. Compared with the library,* all
peaks were observed as expected except for one peak each for
1-glutamic acid and oxalic acid. A typical isotope-enhanced 2D

7620 dx.doiorg/10.1021/2c201625f |Anal. Chem. 2011, 83, 7616-7623
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(a)

Figure 3. 'H NMR spectrum of serum (a), obtained using the CPMG pulse sequence. (b) Selective detection of valine from the serum 'H NMR
spectrum by RANSY. The identified peaks around 3.6 ppm are from the a-CH proton. (c) Selective detection of valine from the serum 'H NMR
spectrum by statistical correlation. (d) Selective detection of leucine from the complex serum 'H NMR spectrum by RANSY. The identified multiplet
around 1.70 ppm is from the 3-CH, and -CH protons. (e) Selective detection of leucine from the complex serum 'H NMR spectrum by statistical

correlation. The driving peaks are indicated by asterisks.

HSQC spectrum is shown in Figure 4a. A few minor peaks can
also be seen, which we determined to be due to the impurities
present in the starting materials, or in a few cases, incomplete
derivatization of standard compounds with multiple functional
groups (especially OH groups). Similar issues are sometimes
present in GC-MS analysis employing derivatization as well. All
47 metabolite peaks detected in every spectrum were integrated,
and the RANSY analysis was performed for all pairs of peaks by
an in-house-developed R code (see the Supporting Information).
Whether the two peaks are associated with the same metabolite
can be determined by the RANSY method. The algorithm used
to calculate individual metabolite spectra is as follows: if two
peaks showed a RANSY R value above the threshold mutually, we
regard them as associated with a single metabolite. And a third
peak will be added to that metabolite if and only if it showed high
R values when using both peaks as the driving peak. Following
this approach, 2D spectra of individual metabolites could then be
generated. In a few examples as shown in Figure 4b—i, the peaks
labeled as 1,2, and 47 in Figure 4a were identified as coming from
lactic acid; peaks 3 and 4 from glucuronic acid; peaks 5—7 from
citric acid; peaks 11—14 from isocitric acid (including its OH
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group that was also derivatized); peaks 17 and 18 from malic
acid; and peaks 20—22 from cis-aconitic acid. All of these
peaks were detected with a threshold value, R = 6.5. Two
examples of single-peak metabolites, leucine (peak 15) and
betaine (peak 24), are also shown here. Interestingly, the ratio
threshold of 6.5 is close to what we have used for 1D RANSY,
which indicates at least some generality of this threshold value.
Overall, 30 out of 33 metabolites can be assigned correctly from
this approach (Supporting Information Table S-3). The metabo-
lites not detected correctly were oxalic acid, -glutamic acid, and
4-hydroxyl-L-proline. The first two metabolites only showed one
peak in some of the spectra due to low concentration and
incomplete reaction. One of the two peaks of 4-hydroxyl-1-
proline (peak 10 in Figure 4a) overlapped with a background
peak and became distorted, The other peaks thus identified from
RANSY match very well with the peak assignments for the
metabolites using the '*N tagging.”® By this method, the spectra
can be substantially simplified, leading to better assignments.
Considering that 20 samples or more improve the RANSY
analysis, as discussed before, a larger sample set will improve
the discrimination between peaks from the same metabolite and

dx.doi.org/10.1021/ac201625f |Anal. Chem. 2011, 83, 74616-7623
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Figure 4. (a) "H—"*N HSQC spectrum of a standard mixture containing 33 metabolites with identifications and concentrations given in Table S-1.
Examples of metabolites detected by RANSY: (b) lactic acid (peaks 1, 2, and 47); () glucurenic acid (peaks 3 and 4); (d) citric acid (peaks 5—7); (e)
isocitric acid (peaks 11—14); (f) malic acid (peaks 17 and 18); (g) cis-aconitic acid (peaks 20—22); (h) leucine (peak 15); and (i) betaine (peak 24).
Individual HSQC spectra b—i were generated by thresholding the RANSY ratio of peaks above a value, R = 6.5.

background peaks, and thus metabolites with multiple functional
groups will be easier to identify.

B CONCLUSIONS

NMR spectra of complex biosamples can pose difficulties in
assignment and analysis. On the basis of the relationship of spin-
correlated peaks, RANSY can provide a useful approach to help
solve this problem. Using peak ratios to analyze the relationship
between intrinsically correlated signals is a new approach that can be
applied to complex spectral analysis problems. While a variety of
correlation methods have been proved to be quite useful in this
effort, the RANSY approach is quite complementary and has some
advantages. For example, no additional experiments are needed to
apply the RANSY method; it is computationally efficient and does
not require enormous numbers of samples. The clearly visible
spectra generated by RANSY compare well with correlation calcula-
tions. No normalization is needed before analysis. And, in principle,
RANSY should be applicable to the identification of unknown
species, even those which are not present in spectral libraries. As
shown here, RANSY analysis results in an efficient recovery of
metabolite peak information from complex 1D and 2D spectra of
standard mixtures as well as blood samples. Peak identification can
be facilitated with the development of RANSY,
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13C-Formylation for Improved Nuclear Magnetic
Resonance Profiling of Amino Metabolites in
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An increased interest in metabolite profiling is driving the
need for improved analytical techniques with greater
performance for a variety of important applications.
Despite their limited sensitivity, nuclear magnetic reso-
nance (NMR) methods are attractive because of their
simplicity, reproducibility, quantitative nature, and wide
applicability. The use of chemoselective isotopic tags has
the potential to advance the application of NMR for
analyzing metabolites in complex biofluids by allowing
detection of metabolites down to the low micromoalr level
with high resolution and specificity. Here, we report a new
13C-tagging method using ?C-formic acid that delivers
high sensitivity, good quantitation, and excellent reso-
lution for 'H-"'3C 2D NMR profiling of amino metabo-
lites. High reproducibility (coefficient of variation (CV)
= 2%) was observed for metabolites in urine with
concentrations down to 10 M. As amino compounds
comprise an important class of metabolites and small
molecules of biological roles, this new method there-
fore should be amenable to a variety of applications.

The study of the metabolite profile or metabolome can reveal:

the status of biological systems from a variety of perspectives,
including insights into the normal and abnormal (or disease) states
of an organism. For example, concentrations and fluxes of
metabolites are constrained to a certain extent by their metabolic
pathways and related enzymes under homeostasis, but these
metabolite quantities are also subject to stresses such as envi-
ronmental factors and disease. A quantitative measurement of the
metabolome therefore provides an important snapshot of the
ongoing normal and abnormal processes in complex biological
systems.!~” A more accurate, precise, and rapid profile of the
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metabolome in an organism will lead to a better understanding
of the systems biology and potentially a series of biomarkers that
can be used for a variety of practical purposes, including diag-
nostics, drug development, nutrition, and environmental studies.® "
As the importance of metabolic profiling has grown, the need for
advanced analytical methods that deliver higher sensitivity,
resolution, and throughput has become recognized.

It is believed that most eukaryotic organisms possess at least
3000-5000 metabolites with very diversified molecular structures
and physical/chemical properties.” The quantitative determination
of so many compounds in a single analysis remains out of reach
for current technologies. Only a small fraction, normally the most
abundant species, of the metabolites can currently be accurately
and precisely detected. The information derived from this small
sampling of metabolites is very often too superficial and nonspe-
cific to reveal enough biochemical detail. Alternatively, one can
measure a larger number of metabolites semiquantitatively;
however, this approach is often limiting as well.

The primary analytical methods used for metabolic profiling
are mass spectrometry (MS) and nuclear magnetic resonance
spectroscopy (NMR) due to their ability to provide rich informa-
tion of complex mixtures at high throughput.'® MS is very
attraclive because of its high sensitivity, experimental flexibility,
and ability to determine unknown molecules. While a high number
of metabolites can be detected and identified by MS (typically a
few hundred), far fewer can be quantified to better than 10%
coefficient of variation (CV) on a routine basis because of ion
suppression and other matrix effects. Compared to MS, NMR is
much less sensitive but produces data that is more easily
reproduced and quantified using a single internal standard. The
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same nuclei (usually 'H) are detected with the same sensitivity
in one NMR experiment, irrespective of molecular origin.

Nevertheless, serious impediments to more widespread use
of NMR for quantitative metabolite profiling, especially for lower
concenlration species, are the severe spectral overlap and com-
plexity. The signals of metabolites with low concentrations are
often buried under nearby strong signals due to insufficient
resolution. These species become nondetectable unless selective
methods'® or multidimensional experiments®®* are used.
Methodological innovations that significantly improve the resolv-
ing power of NMR would reduce a current bottleneck and greatly
advance the application of NMR in metabolic profiling.

Toward this goal, we recently introduced several methods for
in vitro chemical tagging of biofluids.** % A molecular tag
containing an enriched or high-abundance isotope such as *C/
15N or *'P can be introduced to the biofluid; it selectively reacts
with metabolites with a certain functional group and therefore
tags these metabolites with that isotope. The subsequent
heteronuclear 2D NMR experiment selectively detects the tags
and provides a simple spectrum free of the background signals
from the rest of the tagged molecule as well as the untagged
molecules. Instead of the crowded and coupled signals from
all the protons into one dimension of ~10 ppm, one can easily
resolve a smaller number of signals (each metabolite has only
one crosspeak unless multiply tagged) in two dimensions.
Since every metabolite molecule has at least one functional
group in order to function in its involved biological processes,
one can in principle use different isotopic tags to profile all
metabolites in selective classes. The improved resolving power
comes from the high-resolution heteronuclear 2D NMR, the
chemoselective tagging, and the reduced complexity and
number of signals. It should be noted that chemoselective tags
including the isotopic variant tags have also been successfully
adopted for metabolic or proteomic profiling with MS for
separation or quantification purposes.”®** Previously we have
reported the *C-tagging of amino metabolites with ®C-acetic
anhydride for 'H—"C heteronuclear single quantum coherence
(HSQC) 2D NMR profiling,* *N-tagging of carboxyl-contain-
ing metabolites with *N-ethanolamine for 'H-"N HSQC 2D
NMR profiling,** and *'P-tagging of active hydrogen moieties
in lipid extracts with 2-chloro-4,4,5,5tetramethyldioxaphos-
pholane for *'P NMR analysis.** Because of the closeness of
the tag to the metabolite molecule and the relatively strong
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'H=5N Jcoupling, the use of !®N-ethanolamine has been
especially successful for profiling over 100 carboxyl-containing
metabolites in biofluids with 2D NMR. Here, **C-formic acid
is applied as the isotopic tag to further improve the performance
of 2D NMR in profiling amino metabolites. Amino acids are
the most important and common amino metabolites; they are
not only the building blocks for proteins but also the precursors
for nucleotides,* and they provide an energy source through
transamination, the urea cycle, the citric acid cycle, and
gluconeogenesis.*** Other common amino metabolites include
derivatives of amino acids, taurine, dimethylamine, methylamine,
and many neurotransmitters such as dopamine, serotonin, and
histamine. Drugs such as amphetamine, procaine, rimantadine,
and their metabolites also belong to this group of compounds.

EXPERIMENTAL SECTION

Chemicals and Biological Samples. All metabolite stan-
dards, N,N-dicyclohexylcarbodiimide (DCC), N-hydroxysuccin-
imide (HOSu) (Sigma-Aldrich), and *C-formic acid (Cambridge
Isotope Laboratories) were purchased and used without further
purification. Human serum and urine samples were obtained
either from commercial sources (Innovative Research, Novi,
MI) or from healthy volunteers in accordance with the
Institutional Review Board at Purdue University.

General Procedure for **C-Formylation. *C-formic acid
(2 uL, 0.05 mmol) and N-hydroxysuccinimide (5 mg, 0.04
mmol) were dissolved in tetrahydrofuran (100 xL). N,N-
Dicyclohexylcarbodiimide (9 mg, 0.04 mmol) in tetrahydrofuran
(50 ul) was added to the mixture and stirred at room
temperature.® After 15 min, the reaction mixture was centri-
fuged to remove the insoluble urea; the supernatant containing
BC—N-formyloxysuccinimide was then added to the biofluid
sample (500 L) along with 2 M NaHCO; (50 «L, 0.1 mmol)
aqueous solution, The reaction mixture was stirred at room
temperature for 4 h and dried under vacuum. After redispersing
the dried product mixture in D,0 (500 xL), the pH of the
solution was adjusted to 7.0 by adding 1 M HCI and then
transferred to a standard 5 mm NMR tube for analysis. *C—N-
formyloxysuccinimide can also be purified by recrystallization
in ethanol® and used for the tagging reaction instead of in
situ generation.

NMR Spectroscopy and Data Processing. NMR experi-
ments were carried out at 298 K on a Bruker Avance-1II-800
spectrometer equipped with a room temperature 'H inverse
detection Z-gradient probe. 'H NMR spectra were obtained
using the water Pre-SAT180 sequence.*® The sensilivity-
enhanced 'H—"*C 2D HSQC experiments employed an INEPT
transfer delay of 2.5 ms corresponding to a ‘Jc_y; of 200 Hz.
Spectral widths were approximately 10 kHz for the 'H dimen-
sion and 3 kHz for C. A total of 128 or 256 free induction
decays of 2 048 data points each were collected in the indirect
(t;) dimension using 4 or 8 transients per increment. “C
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Figure 1. Amino metabolites in biofluids are isotopically tagged by
"“C-formylation. The tagged metabolites are subsequently detected
using sensitivity-enhanced 2D 'H—"C correlation NMR.

decoupling during the direct detection dimension (t,) was
achieved with the globally optimized alternating-phase rectan-
gular pulses (GARP) sequence. The resulling 2D data were
zero-filled to 1 024 points in the t; dimension after forward linear
prediction to 512 points. A 45°shifted sinebell window function
was then applied to both dimensions before Fourier transfor-
mation. NMR data were processed using Bruker Topspin 3.0
spectrometer software on a Redhat Linux platform. The
reproducibility of the method was evaluated using peak vol-
umes generated through the automatic peak picking routine
of Topspin; the 2D signals in three spectra were then compared
individually after normalization with respect to the most intense
signal (L-alanine) in order to reduce errors from volumetric
measurements and probe tuning.

Calibration. Stock solutions of nine standard compounds were
made individually at 50 mM with their precise concentrations
determined using 1D *H NMR against a calibrated sodium 2,2-
dimethyl-2-silapentane-5-sulfonate-d; (DSS) solution. The indi-
vidual stock solutions were then mixed at equal volumes and
diluted with water to make a mixed stock solution at 4 mM,
which was further diluted to make a calibration series ranging
from 5 M to 2 mM. A fixed amount of ethanolamine (0.5 #mol,
1 mM internal reference) was added to 500 uL of each
calibration solution to make the final calibration samples, which
were then subjected to “*C-formylation and 'H—*C HSQC
analysis. The 2D peaks were integrated and referenced to the
integration volume of *C-formylated ethanolamine and plotted
against the concentrations previously determined by 1D 'H
NMR.

RESULTS

After conversion to the active NHS (N-hydroxysuccinimidyl)
ester, ¥C-formic acid readily reacted with amino metabolites
and introduced a ‘H—"C pair with a one-bond j-coupling of
200 Hz into the metabolite molecule as shown in Figure 1. The
newly introduced HCO-moiety was highly polar and therefore
retained good solubility in water. An HSQC experiment was then
applied to provide a highly resolved spectrum of the *H—**C pairs
in the tagged metabolite molecules. The stuctural variations
of the metabolites led to a good dispersion of the 2D signals
in both 'H and *C dimensions. At the same time, the J-
couplings and relaxation rates do not vary significantly across
different metabolites, which is essential for unbiased detection
of all tagged amino metabolites.

The performance of the method was first evaluated with
standard compounds that are commonly seen in biofluids. A
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Figure 2. (a) The '"H-"3C HSQC spectrum of a mixture of 32
standard amino compounds after "*C-formylation (pH 7.0, 298 K).
Inset shows the expanded view of the boxed region ('H, 8.00-8.05
ppm; **C, 163.65—164.00 ppm). (b) 1D 'H NMR spectrum of the same
mixture in water before '*C-formylation (pH 7.0, 298 K).

mixture of 32 standard compounds with amino groups was
isotopically tagged by “C-formylation and analyzed using a
'H—-"C HSQC experiment at 800 MHz. The resulting spectrum
is shown in Figure 2 with peak assignments, and the chemical
shifts for signals of the tagged standard compounds are listed in
Table 1. Each compound has one signal in the ‘H—"C 2D
spectrum except for metabolites such as lysine and spermidine
that have more than one unique amino group. Proline, 4-hy-
droxyproline, and sarcosine also have two signals due to the
cis- and trans-isomers formed by *C-formylation. The signals
of the *C-fomylated compounds are dispersed over 4 ppm in
the *C dimension and over 0.3 ppm in the 'H dimension with
good spectral separation.** By comparison, the 1D 'H NMR
detection of the same mixture before “C-tagging produces a
complex spectrum with significant signal overlap (Figure 2b).

Because of the reproducibility and good sensitivity due to the
strong J-coupling between 'H and *C, HSQC detection of the
1C-formylated amines is quantitative as shown in Figure 3.
Good linearity (R* > 0.995) and quantitation (average deviation
from the trend line for the 9 standard compounds was 6% for
concentrations above 10 uM and 12% for concentrations below
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Table 1. Chemical Shifts for 32 '*C-Formylated Amino Metabolites Standard Compounds (D.0, pH 7.0, 298 K)

label name H (ppm) HC (ppm)
A L-alanine 7.972 163.521
1 f-alanine 7.951 164.252
2 L-2-aminoadipic acid 8.023 163.841
3 L-2-aminobutyric acid 8.020 163.807
4 L-2-aminoisobutyric acid 7.856 163.025
5 4-aminophenol 8.147 162.699
R L-arginine 8.026 163.783
N L-asparagine 8.026 163.695
D L-aspartic acid 8.007 163.738
6 Lcitrulline 8.017 163.772
C Lcysteine 8.069 163.986
7 ethanolamine 8.032 164.723
E L-glutamic acid 8.026 163.872
Q L-glutamine 8.037 163.887
G glycine 8.044 164.272
H L-histidine 7.964 163.644
8 4-hydroxy-L-proline 8.130 163.645
8.054 165.331
I L-isoleucine 8.041 163.935

label name 'H (ppm) BC (ppm)
L L-leucine 8.009 163.803
K L-lysine 8.013 163.754
7.953 164.299
M t-methionine 8.034 163.862
9 t-norleucine 8.008 163.771
F -phenylalanine 7.905 163.544
P L-proline 8.109 163.224
8.008 164.545
10 sarcosine 7.958 165.178
7.893 166.057
S L-serine 8.086 164.042
11 spermidine 7.965 165.521
7.942 165.494
12 taurine 8.002 164.353
T L-threonine 8.134 164.24
w L-tryptophan 7.895 163.635
Y L-tyrosine 7.910 163.534
v Lvaline 8.069 164.000

10 #M) was observed using the integrated 2D signal intensities
for the standard compounds over a large range of concentra-
tions. The strong J-coupling also ensures sensitive detection
of trace amounts of metabolites. The *H—*C HSQC experiment
run at 800 MHz can detect “*C-formylated alanine with a
concentration down to 4 4uM (SNR ~4) within 8 min (1 scan,
128 increments). Though conventional 1D 'H NMR can detect
substances at low micromolar levels, its performance is often
reduced by *H—'H couplings and spectral overlap in complex
samples, as well as residual solvent signals. As a result, 'H
NMR is normally utilized for profiling metabolites above 100
#M. The improved sensitivity and excellent detection linearity
for the ¥*C-formylated amines result in part from the relatively
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large 200 Hz Jy coupling between the 'H and *C of the formyl
tag.

YC-formylation was then applied to profile amino metabo-
lites in human biofluid samples. More than 40 signals, mostly
of amino acids, were clearly seen and well resolved from a
human serum sample as shown in Figure 4a. The urine
spectrum (Figure 4b) showed not only the presence of most amino
acids that were found in serum at different levels but also
additional signals representing unidentified amino metabolites.
However, as a collection of biowastes and byproducts rather than
a circulating body fluid, urine has a much greater variation in
chemical content compared to blood.*” Very often the urinary
metabolites are reflections of what has been introduced into the
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Figure 3. Calibration curves for nine standard amino compounds detected by 'H-'3C HSQC after "*C-formylation, with an expanded view of
the 0—25 M concentration range shown in the right panel, The 2D peaks were integrated and referenced to the integration volume of '3C-
formylated ethanolamine (internal standard) and plotted against the concentrations previously determined by 1D 'H NMR. The integration volume
of *C-formylated 1 uM ethanolamine serves as the unit for the vertical axis. The trend lines were generated by linear regression; R° values
were greater than 0.995 for all 9 compounds. Good guantitation was observed: the average deviation from the calibration trend line is 6% for
concentrations above 10 uM and 12% for concentrations below 10 uM.
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Figure 4. 'H-'3C HSQC spectra of a healthy human serum sample (a) and a healthy human urine sample (b) after *C-isotopic tagging with
13C-formic acid. A total of 18 metabolites were indentified and quantified in each spectrum. Cencentrations for amino metabolites identified and
quantified using the 2D 'H-"°C HSQC spectra for the serum sample (c) and the urine sample (d) after 13C-formylation. Metabolites that have
resolved 1D 'H signals are marked in red and others are marked in light blue.

human body. Therefore, the extra signals in the studied urine
spectrum could arise from amino compounds generated via the
metabolism of nitrogen-containing dietary intake.

The assignment of 2D '"H—'3C signals could be accomplished
by simply comparing the 'H and "C chemical shifts of a
particular peak with the library of 32 compounds (Table 1).
This is in contrast to the sometimes challenging and often time-
consuming assignment of low level 1D 'H NMR signals in
complex samples that involves checking chemical shifts,

(37) Saude, E. J; Adamko, D.; Rowe, B. H.; Marrie, T.; Sykes, B. D. Metabolomics
2007, 3, 439-451.

coupling constants, integrations, or even spiking standard
compounds. Quantification of these amino metabolites is
straightforward as the integration volume of a 2D NMR signal
is proportional to the number of protons. A total of 18 amino
metabolites were identified and quantified in both serum and
urine samples with their concentrations shown in parts ¢ and
d of Figure 4, respectively. Taurine and 16 amino acids were
identified from both samples; in addition, aspartic acid was
quantified in the serum and cysteine was quantified in the urine.
In general, the observed metabolite concentrations in serum were
within the healthy concentration ranges appearing in the Human

Analytical Chemistry, Vol. 82, No. 6, March 15, 2010 2307



Metabolome Database.*® Profiling of amino metabolites using 1D
'H spectra was challenging especially for metabolites of low
concentrations that appeared in crowded spectral regions. As
a result, more than half of the amino-metabolites profiled using
the ¥C tagging and 2D detection approach could not be
identified and quantified using 1D 'H detection (parts ¢ and d
of Figure 4 and Figures S1 and S2 in the Supporting Information).
Most of the signals that were clearly resolved and quantifiable in
the 1D *H spectrum had relatively high intensities and appeared
either in the methyl region (~1-2 ppm) where signals had
narrow line widths and simple splitting patterns or the aromatic
region (~6—8 ppm) where fewer signals were present.

The reproducibility of the method was tested in triplicate
experiments on a split sample of the same urine. As shown in
Figures S3 and S$4 in the Supporting Information, the three spectra
are very similar. Peak integrations indicated that the average
coefficient of variation (CV) was 2% for 12 metabolites above 10
M and 11% for 6 metabolites below 10 #M (signal to noise ratios
(SNR) are less than 8 for 3 metabolites below 4 xM). Again, only
7 of the 18 amino metabolites had recognizable 1D 'H NMR
signals (Figure S5 in the Supporting Information). This high
reproducibility results from the quantitative nature of both the
NMR detection and the “C-tagging reaction, which is essential
for metabolic profiling.

DISCUSSION

Successful metabolic profiling methods rely on the sensitive
and unbiased detection of numerous metabolites. The combination
of C-formyl tagging and 2D *H—*C HSQC detection provides
a sensitive, unbiased method with excellent quantitation and
resolution. In the *C-formylated metabolite molecule, the large
one-bond J-coupling (200 Hz) between the labeled *C and its
attached 'H significantly improves polarization transfer that is
essential for the HSQC experiments. The Insensitive Nuclei
Enhanced by Polarization Transfer (INEPT) delay of 2.5 ms
in the current method is significantly shorter than the 83 ms
delay (corresponding to the 2fc_y of 6 Hz) that was used in
our previous work involving acetic anhydride tagging.*® The
faster polarization transfer significantly reduces polarization
losses due to relaxation or competing transfer pathways
involving %Jc_y; or *Jc_y; of 2—4 Hz and therefore leads to better
detection sensitivity, reproducibility, and linearity.

To further improve the resolving ability of 'H—"*C HSQC 2D
NMR for metabolic profiling, one can improve the performance
of the spectrometer (i.e., using higher magnelic fields, more
increments in the indirect *C dimension), or make the 2D
signals disperse in a wider region of chemical shifts across
different metabolites. Chemical shifts originate from the impact
of varying local electronic environments on the resonance
frequency of the nuclear spin. For the *C-tagged molecules,
the chemical shifts of the 2D 'H—'*C signals vary because of
the structural differences among metabolites. The close dis-
tance between the isotope labeled *H—'*C nuclear pair and the
rest of the metabolite leads to an increase in the chemical shift
sensitivity of the tag, a better dispersion of signals in two
dimensions, and less chance for spectral overlap. In addition,

(38) Wishart, D.; Knox, C.; Guo, A.; et al. Nucleic Acids Res. 2009, 37, D603
610,
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the lagging reaction is now carried out in a simple mix-and-
stir procedure that is easy to repeat using the NHS ester. The
reaction time for this mild tagging reaction is longer than the
previous acetylation using acetic anhydride; however, no acetic
acid is generated during the reaction and there is no need to
control the pH by addition of NaOH throughout the reaction.
Therefore both the time and labor for setting up one reaction
are reduced. Moreover “C-enriched formic acid is relatively
inexpensive and has a long shelf life, making the method
economically attractive.

Though the assignments of 2D signals for known metabolites
can be easily accomplished by comparing chemical shifts to the
library, the identification of unknown signal remains challenging.
Efforts are currently underway to expand this library and to
identify unassigned peaks in the spectrum using high-performance
liquid chromatography (HPLC)-NMR and microcoil NMR
approaches. ™ * While 1D 'H NMR metabolic profiling primarily
emphasizes signals from highly concentrated (millimolar)
species that are often too nonspecific to be used as biomarkers,
the new method allows the quantitative NMR profiling of
metabolites at lower levels (micromolar) that should lead to
new findings in future applications. The limit of detection may
be further improved using preconcentration methods and
microcoil NMR,***! or potentially new technologies such as
dynamic nuclear polarization* and para-hydrogen induced polar-
ization.* Though 2D NMR experiments can require longer times
than simple 1D NMR experiments, the experiments here could
be conducted in only 8 min per sample. In addition, advanced
data collection and processing algorithms such as ultrafast 2D
NMR,* covariance NMR,*® nonlinear sampling, and forward
maximum entropy reconstruction*® can greatly reduce the acquisi-
tion time for 2D NMR experiments and allow high-throughput
operation.

In conclusion, a new method to incorporate “C nuclei into
metabolites in vitro has been introduced for conducting
quantitative 2D NMR metabolic profiling with improved resolu-
tion and sensitivity stemming from the structure of *C-formic
acid. The performance of method has been demonstrated with
a mixture of 32 standard compounds, human urine, and serum.
High reproducibility and detection linearity were observed for
metabolites down to 10 4M; therefore, we anticipate that this
method will be a useful tool for quantitative profiling of low-
concentration amino metabolites in complex mixtures. As
amino-containing compounds constitute an important class of

(39) Djukovic, D; Liu, S; Henry, L; Tobias, B.; Raftery, D. Anal. Chem. 20086,
78, T154-7160.

(40) Djukovic, E.; Appiah-Amponsah, E.; Shanaiah, N.; Gowda, G. A. N,; Henry,
1; Everly, M.; Tobias, B.; Raftery, D. /. Pharm. Biomed. Anal. 2008, 47,
328-334,

(41) Ke, R; Henry, L; Park, G. H. ].; Raftery, D. J. Magn. Reson. 2009, 197,
186-192.

(42) Wilson, D. M.; Hurd, R. E; Keshari, K.; Van Criekinge, M.; Chen, A. P,;
Nelson, S. J.; Vigneron, D. B.; Kurhanewicz, ]. Proc. Natl. Acad. Sci. US.A.
2009, 106, 5503-5507,

(43) Adams, R. W.; Aguilar, J. A.; Atkinson, K. D.; Cowley, M. J; Elliott, P. 1. P.;
Duckett, S. B.; Green, G. G. R.; Khazal, . G.; Lopez-Serrano, J.; Williamson,
D. C. Science 2009, 323, 1708-1711.

(44) Frydman, L.; Blazina, D. Nat. Phys. 2007, 3, 415419,

(45) Zhang, F. L; Briischweiler, R. /. Am. Chem. Soc. 2004, 126, 13180-13181.

(46) Hyberts, S. G.; Heffron, G. J.; Tarragona, N. G.; Solanky, K.; Edmonds,
K. A; Luithardt, H.; Fejzo, ].; Chorev, M.; Aktas, H.; Colson, K.; Falchulk,
K. H.; Halperin, J. A.; Wagner, G. J. Am. Chem. Soc. 2007, 129, 5108-
5116,



molecules in biological processes, this new method is expected
to find a number of applications in the quantitative analysis of
these molecules.

ACKNOWLEDGMENT

This work was supported by the National Institutes of Health
Grant 1 RO1IGM085291-01. D.R. is a member of the Purdue Center
for Cancer Research and Oncological Sciences Center.

151

SUPPORTING INFORMATION AVAILABLE
Additional information as noted in text. This material is

available free of charge via the Internet at http://pubs.acs.org.

Received for review November 1, 2009. Accepted February
11, 2010.

AC9024818

Analytical Chemistry, Vol. 82, No. 6, March 15, 2010 2309



MOLECULAR CARCINOGENESIS

Altered Glucose Metabolism in Harvey-ras Transformed
MCF10A Cells
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Metabolic reprogramming that alters the utilization of glucose including the “Warburg effect” is critical in the
development of a tumorigenic phenotype. However, the effects of the Harvey-ras (H-ras) oncogene on cellular energy
metabolism during mammary carcinogenesis are not known. The purpose of this study was to determine the effect of H-ras
transformation on glucose metabolism using the untransformed MCF10A and H-ras oncogene transfected (MCF10A-ras)
human breast epithelial cells, a model for early breast cancer progression. We measured the metabolite fluxes at the cell
membrane by a selective micro-biosensor, [*Cglglucose flux by '*C-mass isotopomer distribution analysis of media
metabolites, intracellular metabolite levels by NMR, and gene expression of glucose metabolism enzymes by quantitative
PCR. Results from these studies indicated that MCF10A-ras cells exhibited enhanced glycolytic activity and lactate
production, decreased glucose flux through the tricarboxylic acid (TCA) cycle, as well as an increase in the utilization of
glucose in the pentose phosphate pathway (PPP). These results provide evidence for a role of H-ras oncogene in the

metabolic reprogramming of MCF10A cells during early mammary carcinogenesis. © 2013 Wiley Periodicals, Inc.

Key words: glucose; breast cancer; ras; metabolism

INTRORUCTION

The increased glycolytic metabolism and pyruvate
oxidative phosphorylation noted in tumors termed
the “Warburg effect” was described decades ago [1].
This shift in cellular metabolism describes an in-
creased glucose uptake and a shift of the pyruvate
oxidative phosphorylation in the mitochondria to-
wards a more rapid aerobic glycolysis even in a
normoxic environment, and increased conversion of
pyruvate to lactate [1]. The resulting lactate may also
serve as an energy source for tumor cells [2]. It is now
known that this metabolic reprogramming also
occurs in proliferating cells [3]. These increased rates
of glucose uptake and metabolism provide an advan-
tage to proliferating and cancer cells by favoring
utilization of the most abundant energy and carbon
sources. For example, glucose metabolism yields
ribose for nucleic acid synthesis and NADPH through
the pentose phosphate pathway (PPP) while greater
glycolysis provides intermediates to maintain anaple-
rosis and supply biosynthetic intermediates [3]. The
biological importance of this metabolic shift is
supported by the high rate of glycolysis and an over
expression of glucose transporters and glycolytic
enzymes in many types of solid tumors [4]. Depriva-
tion of glucose can induce oxidative stress and other
defects in metabolism which leads to cancer cell

© 2013 WILEY PERIODICALS, INC.

apoptosis [5,6). Further, inhibitors of glucose trans-
porters and glycolytic inhibitors have been imple-
mented as effective anticancer treatments and can
also sensitize the tumor cells to other chemothera-
peutic drugs [7,8]. Unlike in the normal proliferating
cells, such metabolic reprogramming in cancer cells is
controlled by oncogenes which lead to the growth
factor independent, chronic activation of the prolif-
erative pathways [3].

The Ras subfamily of proteins is a group of small
GTPases which serve as an important effector
essential for the signal transduction induced by
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numerous growth factors to stimulate cell prolifera-
tion. The ras proto-oncogene is frequently mutated
in cancers [9,10] and affects a variety of processes
involved in cancer progression. The oncogenic ras
drives cellular proliferation in the transformed cells
by promoting pro-growth and inhibiting anti-
growth signals in a growth factor independent
manner [9]. Although mutations in the ras gene
are not common in breast cancers [11,12], Ras may
be pathologically activated in breast cancer by
overexpression of growth factor receptors signaling
through Ras such as the ErbB2 receptor, which is
activated in 30% of breast cancers [13,14]. Harvey-
ras (H-ras)-induced tumors are characterized by
activation of mitogen-activated protein kinase sig-
naling [15] and is associated with early neoplasia
and poor prognosis [13,16]. Although K-ras trans-
fection has been shown to alter cellular metabolism
in fibroblast cells [17], the impact of H-ras in
epithelial cells in models representative of early
progression has not been studied.

The purpose of the current study was to determine
the effect of the Harvey-ras oncogene (H-ras) on cellular
energy metabolism in untransformed MCF10A and H-
ras transfected MCF10A (MCF10A-ras) human breast
epithelial cells, which serve as a model for studying
early mammary carcinogenesis. The hypothesis of the
study is that MCF10A-ras cells have increased glycolytic
activity and lactate production as well as reduced flux
through the tricarboxylic acid (TCA) cycle. These
results will contribute to understanding the effect of
H-ras on the regulation of cellular energy metabolism
during early breast cancer progression.

MATERIALS AND METHODS

Chemicals and Reagents

Dulbecco’s modified Eagle medium (DMEM/F12),
horse serum, trypsin and penicillin/streptomycin
were obtained from Life Technologies, Gibco-BRL
(Rockville, MD). Cholera toxin was purchased from
Calbiochem (Darmstadt, Germany). Protein assay
reagents were obtained from Pierce (Rockford, IL).
Protease inhibitors cocktail, trypan blue, insulin,
epidermal growth factor, and hydrocortisone were
purchased from Sigma (St. Louis, MO). All reagents for
gas chromatography-mass spectrometry (GC-MS)
analyses were from Pierce. p-['*Cg)Glucose was
purchased from Cambridge Isotope labs (Woburn,
MA). Mass spectrometry analysis confirmed its
chemical and isotopic purity (92.7% [“*Cglglucose
and 6.9% [**Cs]glucose).

Cell Culture

MCF10A human breast epithelial cellsand MCF10A-
ras cells were a gift from Dr. Michael Kinch, Purdue
University. The phenotypes of the two cell lines which
were originally derived from human fibrocystic
mammary tissue have been well characterized in the
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literature. The MCF10A cells are spontaneously
immortalized but otherwise normal, which do not
form colonies in soft agar or grow in immuno-
compromised mice [18], but undergo a well-defined
program of proliferation and differentiation in three-
dimensional (3-D) reconstituted basement membrane
culture, forming acinar structures that recapitulate
many aspects of mammary architecture in vivo
[19]. The MCF10A-ras cells were premalignant breast
epithelial cells generated by transfecting the MCF10A
cells with constitutively active T24 Harvey-ras onco-
gene. They can form complex multi-acinar structures
that produce a basement membrane but undergo
delayed cell cycle arrest and have incomplete luminal
development when grown in 3-D culture [19].
Therefore, these two cell lines with the same genetic
background serve as a unique model to represent early
breast cancer progression. The MCF10A and MCF10A-
ras cells were cultured in DMEM/F12 (1:1) containing
5% horse serum and supplemented with 10mg/L
insulin, 20pg/L epidermal growth factor, 50pug/L
cholera toxin, 50mg/L hydrocortisone, 100 units/mL
penicillin, and 0.1 mg/mL streptomycin in a humidi-
fied environment at 37°C with 5% CO; Cells were
maintained in fresh media changed every 24 h for 4d
before measurement or harvest.

RNA Isolation and Analysis

RNA was isolated with TriReagent (Molecular
Research Center, Cincinnati, OH) following the
manufacturer’s instructions. Reverse transcription of
total RNA was performed using MMLV reverse
transcriptase (Promega, Madison, WI). Real-time
quantitative PCR was performed using the Brilliant
ITSYBR Green QPCR Master Mix (Agilent, Santa Clara,
CA). The mRNA abundances of enzymes involved in
glucose metabolism were determined from the
threshold cycle (Ct) value. The mRNA expression
was normalized to 185 expression and results were
expressed as arbitrary units. The primers used are
shown in Table 1.

Metabolomics

Cells were washed with calcium and magnesium
free-phosphate buffer saline (CMF-PBS) and were
harvested on ice into doubly distilled water and the
intracellular metabolites were extracted following
freeze-thaw procedure specially optimized for mam-
malian cell cultures [20]. Cell debris was pelleted by
centrifugation at 12,000 RPM for 2 min at 4°C. The
supernatant was collected for metabolite profiling
analysis using nuclear magnetic resonance (NMR)
spectroscopy and mass spectrometry (MS) [21-23]. For
metabolites analysis using NMR, water was removed
by freeze-drying and the resulting residue reconsti-
tuted in 100 mM phosphate buffer (pH 7.4) prepared
using deuterated water, Metabolite levels were nor-
malized to protein content, which was determined by
protein assay (Pierce).
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Table 1. Primers Used in QPCR Analysis of Gene Expression

Genes Primer information

GLUT1 Forward: 5'-TATCGTCAACACGGCCTTCACTGT-3
Reverse: 5'-CACAAAGCCAAAGATGGCCACGAT-3'

SGLT1 Forward: 5'-GCTCATGATTGCCGGAAGGTTGTT-3'
Reverse: 5'-AATGGGTGGTCCCAAGTAACTGGT-3'

HK2 Forward: 5-CTGCAGCGCATCAAGGAGAACAAA-3'
Reverse: 5'-ACGGTCTTATGTAGACGCTTGGCA-3

PGK1 Forward: 5'-TCACTCGGGCTAAGCAGATTGTGT-3'

Reverse: 5'-CGTGTTCCATITGGCACAGCAAGT-3'
PKM1 Forward: 5'-AGAACTTGTGCGAGCCTCAAGTCA-3
Reverse: 5'- CATTCATGGCAAAGTTCACCCGGA-3'
PKM2 Forward: 5'-ATTATTTGAGGAACTCCGCCGCCT-3'
Reverse: 5'-CATTCATGGCAAAGTTCACCCGGA-3'
LDHA Forward: 5'-TGGTCCAGCGTAACGTGAACATCT-3'
Reverse: 5'-TTGCAACCGCTTCCAATAACACGG-3'
PDK1 Forward: 5'-TCATGTCACGCTGGGTAATGAGGA-3'
Reverse: 5'-AACACGAGGTCTTGGTGCAGTTGA-3'
PEPCK Forward: 5'-AGATCATCTCCTITGGCAGTGGGT-3'
Reverse: 5'-GTGCGTCAAACTTCATCCAGGCAA-3'

GEPD Forward: 5-TGCCTTCCATCAGTCGGATACACA-3'
Reverse: 5'-GCATAGCCCACGATGAAGGTGTTT-3'
185 Forward: 5-TTAGAGTGTTCAAAGCAGGCCCGA-3'

Reverse: 5'-TCTTGGCAAATGCTTTCGCTCTGG-3

"*C-Metabolite Flux Analysis

Two hours before cell harvest, media were changed
to fresh media containing equal concentrations of
unlabelled and labeled glucose, and media collected
after incubation for 2h and stored at -80°C.
Subsequently, media was used to monitor the "*C-
mass isotopomer distribution in metabolites using
GC-MS. To 1mL of media was added 0.2mL of
sulfosalicylic acid (50%w:v). The acid-supernatant
was desalted by cation (AG SOW-X8, H+ form)
exchange, and amino acids, pyruvate and lactate
eluted with 2mol/L NH,OH followed by water. The
frozen eluate was lyophilized to dryness, and analytes
converted to their t-butyldimethylsilyl derivative
prior to GCMS (HP 5973N Mass Selective Detector,
Agilent, Palo Alto, CA). Fragment ions containing all
carbons of an analyte (lactate, pyruvate, aspartate,
and glutamate) were monitored under electron
impact mode. Normalized crude ion abundances of
the enriched analytes were corrected for the measured
natural abundance of stable isotopes present in the
original molecule and that contributed by the
derivative using the matrix approach [24].

Flux calculations were based on tracer:tracee ratios
(TTR) in the form mol '*C-isotopomer (M+n) per
100mol '*C analyte (M+0), where n equals the
number of '*C-labelled carbons in the analyte, for
example [M+1], [M+2] and [M+3]pyruvate. Catabo-
lism of ["*Cglglucose via the glycolytic pathway
results in distinctive *C-labelling patterns in metab-
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olites that provide information on the contributions
of glucose to pathway fluxes and the activity of the
enzymatic pathways through which the '*C-skeleton
traversed (25]. Catabolism of [*Cglglucose via the
glycolytic pathway leads to the synthesis of [M+3]
phosphoglycerate, thus [M+3]serine. It is important
to note that the DMEM media contains serine, thus
results are expressed as relative flux. Catabolism of
["*Cglglucose leads to [M+3]pyruvate (and [M+3]
lactate) which is readily released into the media after
synthesis. It is important to note that the DMEM/F12
media does not contain pyruvate and lactate, thus the
appearance and *C-labelling of these metabolites in
media directly measures their activity in the intracel-
lular pool. Thus, the contribution of glucose to the
flux of pyruvate (and lactate) can be assessed from the
ratios [M+3]pyruvate to [M+6]glucose. For measure-
ment of pyruvate dehydrogenase (PDH) activity, we
took advantage of the unique labeling patterns that
result when [M-+3]pyruvate is metabolized in the
tricarboxylic acid (TCA). First, metabolism of the
[M-+3]pyruvate isotopomer via pyruvate carboxylase
(PC) introduces the [M-+3]oxaloacetate isotopomer
into the TCA cycle and that this [M+3]oxaloacetate
eventually leads to formation of [M+3]a-ketogluta-
rate, Second, the [M+3]pyruvate isotopomer can also
be metabolized via PDH to yield [M+2]acetyl-CoA
and thence [M+2]a-ketoglutarate. However, the
[M-2]a-ketoglutarate isotopomer can also arise as a
consequence of the equilibrium reaction between
oxaloacetate and fumarate. This metabolic cycle
yields an equal mixture of two positional isotopomers
of [M+3]oxaloacetate, one labeled in carbons 1-3 and
the other in carbons 2—4. In consequence, because the
decarboxylation step between citrate and a-ketoglu-
tarate leads to the loss of carbon 1 of oxaloacetate (i.e.,
half of [M+3]oxaloacetate contributes to [M+2]a-
ketoglutarate enrichment), a correction must be made
to the [M+2]a-ketoglutarate enrichment [26]. Direct
measurement of intracellular oxaloacetate and «o-
ketoglutarate enrichments is technically challenging,
particularly in the current study with cells in culture.
As an alternative, we measured [M+2], [M+3]aspar-
tate and [M+2], [M+3]glutamate in media since these
isotopomers can only arise from intracellular synthe-
sis from oxaloacetate and a-Ketoglutarate, respective-
ly. And, even though the DMEM/F12 media
contained unlabelled aspartate and glutamate, the
dilution of the '*C-isotopomers of these amino acids
will not alter the relative labeling of the [M+2] and
[M+3]isotopomers. In consequence, the relative
contribution of [M+3|pyruvate to [M+2]acetyl-CoA,
that is, PDH activity, can be assessed by the ratio of
[M+2]acetyl-CoA to [M+3]pyruvate [26].

Membrane Metabolite Fluxes

A sensitive and selective enzyme-based micro-
biosensor decorated with platinum nanoparticle was
employed in self-referencing mode to measure real-
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time physiological glucose, oxygen and lactate flux
across the cell membrane [27]. Self-referencing
involves oscillation of a single microsensor via
computer-controlled stepper. This non-invasive tech-
nique provides direct measurement of trans-mem-
brane analyte flux, reviewed in detail by McLamore
and Porterfield [28].

Statistical Analysis

Data were analyzed by ANOVA to account for the
effects of treatment and experiment replication.
Values are presented as means and standard errors
(SEM). Means were compared using the Student's
t-test and by analysis of variance (ANOVA) and means
were considered different when P <0.05.

RESULTS

MCF10A-ras Cells Have Greater Aerobic Glycolysis

The impact of the activated H-ras gene on glucose
uptake and glycolytic activity was investigated in the
MCF10A and MCF10A-ras cells. The flux of glucose
into the glycolytic pathway was assessed by the flux
contribution of '*Cg-labeled glucose to the glycolytic
intermediates 3-phosphoglycerate and pyruvate. Re-
sults showed that glucose flux into 3-phosphoglycer-
ate was increased 94% in MCF10A-ras cells compared
to MCF10A cells (Figure 1A), while pyruvate flux
from glucose was not different in the two cell lines
(Figure 1A), suggesting an increased flux of glucose
through the glycolytic pathway in the H-ras trans-
formed MCF10A cells.

Basal glucose influx at the cell membrane from
the media was measured by the nano-biosensor as
described previously. Glucose influx at the cell
membrane was more than two-fold greater in the
MCF10A-ras cells (328 + 17 pmol/cm?/sec) than in the
MCF10A cells (15619 pmol/cm?/sec, P<0.01;
Figure 1B), suggesting an increase in glucose uptake
in ras transformed MCF10A cells, a hallmark of the
Warburg effect during cancer progression. However,
mRNA expression of the glucose transporter 1
(GLUT1) gene, the major glucose transporter in
mammalian cells, was 35% lower in the MCF10A-ras
cells (Figure 1C). In addition, expression of the sodium
dependent glucose transporter (SGLT1) gene in the
MCF10A-ras cells was also significantly lower than in
the MCF10A cells (Figure 1C). These results suggest
that the increase in glucose uptake in the MCF10A-ras
cells is not due to an induction of the expression of
these two glucose transporters by the ras oncogene.

Expression of genes for key enzymes in the
glycolytic pathway were also measured in both cell
lines. The expression of hexokinase 2 (HK2), the
enzyme mediating the first step of phosphorylation of
glucose during glycolysis, was not significantly
different in the MCF10A-ras and MCFI0A cells
(Figure 1D). Phosphoglycerate kinase 1 (PGKI1)
catalyzes the seventh step of glycolysis, where 1,3-
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bisphosphoglycerate is converted to 3-phosphoglyc-
erate with the formation of one ATP molecule. The
MCF10A-ras cells have 20% greater expression of
PGK1 (Figure 1D), consistent with the increase of flux
into 3-phosphoglycerate from glucose (Figure 1A).
Pyruvate kinase M1 (PKM1) and M2 catalyze conver-
sion of phosphoenclpyruvate (PEP) to pyruvate, the
rate-limiting final step of glycolysis. PKM2 is the
predominant isoform expressed in both MCF10A and
MCF10A-ras cells, and the switch of PKM1 to PKM2
has been shown to be important for the shift in
cellular metabolism to aerobic glycolysis which
promotes tumor growth [29]. There was a 47% greater
expression of PKM1 but not PKM2 in the MCF10A-ras
cells (Figure 1D). In addition, the enzyme activity
assay of total pyruvate kinase (PK) showed that PK
activity was not different between the two cell types
(Figure 1E). Moreover, metabolic profiling showed
that the intracellular PEP level was not different in
the two cell types (Figure 1F), suggesting that the
increased glucose flux into glycolysis may not be
due to an increased conversion of PEP to pyruvate in
the MCF10A-ras cells.

MCF10A-ras Cells Have Greater Lactate Production

One of the results of the Warburg effect in cells
during cancer progression is the increased conversion
of pyruvate to lactate. To determine whether there is
an increase in lactate production in the H-ras trans-
formed cells, the mRNA expression of lactate dehy-
drogenase A (LDHA), the enzyme which converts
pyruvate to lactate, was examined in both cell types.
There was a 34% increase in LDHA gene expression in
the MCF10A-ras cells compared to the MCF10A cells
(Figure 2A). Consistent with the increased LDHA
expression in MCF10A-ras cells, metabolic profiling of
the cells showed that intracellular lactate level was
2.4-fold higher in MCF10A-ras than in MCF10A cells
(Figure 2B).

MCF10A-ras Cells Have Reduced TCA Cycle Activity

Since our results suggest that H-ras transformed
cells have increased aerobic glycolysis and lactate
production in progression to cancer, the activity of
tricarboxylic acid (TCA) cycle was examined in both
MCF10A and MCF10A-ras cells. The flux of glucose
into the TCA cycle was assessed by the flux contribu-
tion of "*Cg-glucose to the intermediates in the TCA
cycle. Although there was no significant reduction in
the Cg-glucose flux to TCA cycle intermediates such
as acetyl-CoA and oxaloacetate, the enzyme activity
of pyruvate dehydrogenase (PDH), the mitochondrial
enzyme complex converting pyruvate to acetyl-CoA
for entering the TCA cycle, was reduced by 12%
in MCF10A-ras cells compared to MCF10A cells
as assessed by the '’Cg-glucose tracer kinetics
(Figure 3A), suggesting a reduction in TCA cycle
flux from glucose. Furthermore, the mRNA expression
of pyruvate dehydrogenase kinase 1 (PDK1), which
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Figure 1. Assessment of glycolysis in MCF10A and MCF10A-ras
cells. MCF10A and MCF10A-ras cells were cultured for 4d before
measurement or harvest. (A) Relative flux contributions of '*Ce-labeled
glucose to 3-phosphoglycerate and pyruvate shown in percent
metabolite flux from glucose (mean 4+ SEM, n=4), (B) Basal glucose
influx at the cell membrane (pmolcm*/sec) in normal culture
conditions. Results are expressed as mean = SEM (n = 3). (C) mRNA
expressions of glucose transporters GLUT1 and SGLT1 are expressed
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relative to mRNA expression in the MCF10A cells as mean + SEM
(n=3). (D) mRNA expression of glycolytic enzymes are expressed
relative to mRNA expression in the MCF10A cells as mean - SEM
(n=3). (E) Specific activity of pyruvate kinase are shown in mU enzyme
activity per mg total protein (mean + SEM, n= 3). (F) Intracellular level
of phosphoenolpyruvate (PEP) relative to that in the MCF10A cells
(mean £ SEM, n=4). *Significant difference between the two cell
types (P< 0.05).
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expression in the MCF10A cells as mean + SEM (n = 3). (B) Intracellular level of lactate relative to that in the MCF10A
cells (mean + SEM, n =4). *Significant difference between the two cell types (P < 0.05).

acts to inactivate PDH by phosphorylation, was 54%
higher in MCF10A-ras cells (Figure 3B), further
supporting a reduced flux of glucose into the TCA
cycle through the PDH.

MCF10A-ras Cells Have Greater G6PD Expression

One explanation for the shift to aerobic glycolysisis
to provide metabolic intermediates as precursors and
NADPH as reducing equivalent for the synthesis of
fatty acids, protein and nucleic acids for rapid cell
proliferation [3]. The PPP is an anabolic alternative to
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glycolysis, which produces NADPH and ribose-5-
phosphate used in the synthesis of nucleotides. To
determine the impact of the ras oncogene on the PPP,
the expression of glucose-6-phosphate dehydro-
genase (G6PD) was examined. The gene expression
of G6PD was 45% higher in the MCF10A-ras cells
(Figure 4). Since G6PD is the rate limiting enzyme in
the PPP and is also important in maintaining NADPH
levels against oxidative damage (30], this result
indicates that the ras transformed cells may have
increased PPP activity and thus potentially increased
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Figure 3. TCA cycle activity in MCF10A and MCF10A-ras cells. MCF10A and MCF10A-ras cells were cultured for
4d before harvest. (A) Relative enzyme activity of pyruvate dehydrogenase (PDH) in arbitrary units, determined from
flux contribution of "*Cg-labeled glucose (mean = SEM, n=4). (B) mRNA expression of pyruvate dehydrogenase
kinase 1 (PDK1) is expressed relative to mRNA expression in the MCF10A cells as mean + SEM (n = 3). *Significant

difference between the two cell types (P < 0.05).
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expressed relative to mRNA expression in the MCF10A cells as
mean £ SEM (n=3). *Significant difference between the two cell
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Figure 5. Summary of altered glucose metabolism in MCF10A-ras
cells, MCF10A-ras cells exhibited enhanced glycolytic activity and
lactate production, decreased glucose flux through the tricarboxylic
acid (TCA) cycle, as well as a potential increase in glucose utilization in
the pentose phosphate pathway. GLUT1, glucose transporter 1; SGLT1,
sodium dependent glucose transporter1; HK2, hexokinase 2; PGK1,
phosphoglycerate kinase1; PK, pyruvate kinase; PKM1, pyruvate kinase
isoform M1; LDHA, lactate dehydrogenase A; PDH, pyruvate dehydro-
genase; PDK1, pyruvate dehydrogenase kinase 1; GEPD, glucose-6-
phosphate dehydrogenase.
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nucleotides and NADPH synthesis, which promotes
the survival and proliferation of these cells in early
progression to cancer.

DISCUSSION

Alteration in cellular energy metabolism, especially
glucose metabolism, is a signature characteristic of
cancer cells. These alterations drive cell proliferation
through increasing bivenergetics and cellular biosyn-
thesis, maintaining anaplerosis and redox potential, as
well as through initiating signal transductions which
are controlled by changes in cellular metabolism
[3,31,32]. Interventions targeting metabolic pathways
are now emerging as potential preventive or thera-
peutic approaches for cancer [33,34]. In the current
study, these data support the hypothesis that com-
pared to the untransformed MCF10A cells, MCF10A-
ras cells have greater glycolytic activity and glucose
uptake, increased lactate, as well as reduced TCA cycle
flux from glucose at an early stage of cancer progres-
sion. These results together suggest that MCF10A-ras
cells, which are in the early stage of cancer progres-
sion, have a dramatic alteration in energy metabolism
compared to the untransformed MCF10A cells. To our
knowledge, these results are the first evidence of an
early shift in energy metabolism mediated by a single
H-ras oncogene in epithelial cells.

Our results are consistent with previous literature
that an increase in glycolysis may be mediated by only
the activity of the activated K-Ras gene in mouse and
human cells [17], similar to cancer cells [3,4]. Previous
literature demonstrates that the increase in glycolysis
in the Warburg effect in cancer cells is mediated by
increases in multiple enzymes in the glycolytic
pathway, including GLUT1, HK2, PGK1, and PKM2
[4,29,35-41] and an increase in oxygen flux [42].
Similarly, the results of the current study, summarized
in Figure 5, demonstrate the reprogramming of
glucose metabolism that occurs in the MCF10A-ras
breast epithelial cells. In the MCF10A-ras cells,
glucose influx to the cells is upregulated (Figure 5,
solid black arrow). The flux of glucose to the glycolytic
intermediate 3-phosphoglycerate was increased (Fig-
ure 5, solid grey arrow), and consistent with this, the
expression of glycolytic enzyme PGK1 was increased
(Figure 5, dashed upward arrows). However, PKM1 is
increased in the ras-transformed MCF10A cells,
whereas the PKM2 isoform is predominantly ex-
pressed in the MCF10A and MCF10A-ras cells, and it
is the switch of PKM1 to PKM2 that has been shown to
associate with the shift in cellular metabolism to
aerobic glycolysis which promotes tumor growth
[3,29]. However, the enzyme activity of total PK was
not different between the two cell types (Figure 5,
open box). Therefore, the current results support an
increase in glycolytic activity, with a potential
difference in the mechanism underlying this meta-
bolic reprogramming.
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Anunderlying mechanism by which glucose uptake
is increased in cancer cells is by an increase in
expression of the GLUT1 membrane transporter
[43]. In contrast, in the current study the expression
of major glucose transporters in mammary epithelial
cells GLUT1 and SGLT1 are decreased significantly
in the ras-transformed cells (Figure 5, dashed down-
ward arrows), suggesting that the increased glucose
uptake is not a result of increased expression of
glucose transporters but may be due to increased
glucose flux into the glycolytic pathway. It is possible
that with the increased rate of glycolysis in the
MCF10A-ras cells, which was reflected by increased
expression of glycolytic enzymes (Figure 1D), and
the increased glucose flux to 3-phosphoglycerate
(Figure 1A), there may be increased activity of the
glucose transporters to accommodate the increased
glycolytic activity downstream. More work is needed
to investigate the molecular mechanism such as how
ras oncogene may regulate the GLUT1 activity, to
explain the dramatic increase in glucose uptake in the
MCF10A-ras cells.

Consistent with the classic Warburg effect that the
cancer cells have increased production of lactate as a
result of the increased glycolysis [4], our results
showed increases in both the expression of LDHA
and the intracellular lactate level (Figure 5, dashed
upward arrows) in the MCF10A-ras cells, indicating a
similar effect in lactate production mediated by the
single ras gene activation and that in the cancer cells.
Interestingly, the proliferation rates of the MCF10A
and MCF10A-ras cells are not different (data not
shown), suggesting that the ras-oncogene mediated
shifts in glucose metabolism occur at earlier stage
during tumor progression before the increase in cell
proliferation [43,44].

Another key feature of the classic Warburg effect
is a decrease in glucose flux into the TCA cycle, which
is controlled by the key enzyme PDH and its
inhibitory kinase PDK1 [45,46]. The current results
show that PDH activity is lower (Figure 5, solid box),
concomitant with a substantially increased PDK1
expression (Figure 5, dashed upward arrow) in
the MCF10A-ras cells, suggesting a decrease in
glucose utilization through the TCA cycle. This
decrease is consistent with previous studies showing
a significantly lower mitochondrial Complex 1 activi-
ty in K-Ras transformed mouse and human cells
[17,47,48].

Evidence suggests that the transcription factors
HIF-1 and Myc, both of which are the key transcrip-
tion factors in the Warburg effect and tumorigenesis,
regulate the expression of the enzymes involved in
the classic Warburg effect, including GLUT1, HK2,
PGK1, LDHA, PDK1, and PK [45,46,49]. The results of
the current study suggest that the increase flux of
glucose through the glycolytic pathway and lactate
production may involve the increased expression of
PGK1, PKMI1, and LDHA, and the decreased flux of
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glucose into the TCA cycle may involve the increased
expression of PDKI1, consistent with regulation by
HIF-1 and Myc. However, the expression of GLUTI1
and HK2 were not altered in the MCF10A-ras cells,
which suggests there may be a difference in regulators
of the effect compared to more advanced stage cancer
cells. Therefore, these results suggest that the ras-
oncogene may mediate the shift in glucose metabo-
lism at least in part through the transcription
regulation by HIF-1 and Myc, but may also involve
other regulatory elements.

The expression of G6PD fis also increased in the
MCF10A-ras cells (Figure 5, dashed upward arrow),
which is consistent with the literature that G6PD was
particularly overexpressed in some human cancer cell
lines, and its overexpression can result in the neoplas-
tic transformation [50]. Since G6PD is the rate limiting
enzyme in the PPP and plays an important role in cell
growth and proliferation [30], these result may suggest
a ras-oncogene mediated increase in the activity of
the PPP and potentially an increased production of
reducing equivalents (NADPH) and nucleotides to
promote the survival and proliferation of these cells in
early progression to cancer.

In conclusion, Harvey-ras transformed MCF10A
human breast epithelial cells have altered glucose
metabolism including increased glycolytic activity,
lactate production, as well as reduced glucose
flux through the TCA cycle. These alterations in
glucose metabolism, consistent with the classic
Warburg effect, may promote cell proliferation and/
or survival during early breast cancer progression
mediated by the initiating event of the activation of
the H-ras gene [3]. Further research is needed to
determine the mechanism by which H-ras oncogene
regulates the shifts in glucose metabolism. The results
of this study may aid in the identification of targeting
points in the metabolic pathways to contribute to
the development of effective agents for breast cancer
prevention.
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This study was designed to investigate the impact of 1,25-dihydroxyvitamin D (1,25(0H).D) on glucose
metabolism during early cancer progression. Untransformed and ras-oncogene transfected (ras) MCF10A
human breast epithelial cells were employed to model early breast cancer progression. 1,25(0H); D mod-
ified the response of the ras cells to glucose restriction, suggesting 1,25(0H); D may reduce the ras cell
glucose addiction noted in cancer cells. To understand the 1,25(0H),; D regulation of glucose metabolism,

Keywords: following four-day 1,25(0H); D treatment, metabolite fluxes at the cell membrane were measured by a
Vi D be bi 1iCgJglucose flux by 1*C-mass i distribution analysis of media metabo
Cancer prevention r?anop_ro e biosensor, [ 5_]3 ucose flux by '*C-mass isotopomer distribution analysis of media metabo-
Breast cancer lites, intracellular metabolite levels by NMR, and gene expression of related enzymes was assessed.
Clucose Treatment with 1,25(0H);D reduced glycolysis as flux of glucose to 3-phosphoglycerate was reduced
Energy metabolism by 15% (P=0.017) and 32% (P<0.003) in MCF10A and ras cells respectively. [n the ras cells, 1,25(0H),D

reduced lactate dehydrogenase activity by 15% (P<0.05) with a concomitant 10% reduction in the flux of
glucose to lactate (P=0.006), and reduction in the level of intracellular lactate by 55% (P=0.029). Treat-
ment with 1,25(0H); D reduced flux of glucose to acetyl-coA 24% (P=0.002) and 41% (P <0.001), and flux
to oxaloacetate 33% (P=0.003) and 34% (P=0.027) in the MCF10A and ras cells, respectively, suggesting a
reduction in tricarboxylic acid (TCA) cycle activity. The results suggest a novel mechanism involving the
regulation of glucose metabolism by which 1,25(0H); D may prevent breast cancer progression.

© 2013 Elsevier Ltd. All rights reserved.
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1. Introduction

Breast cancer is the second leading cancer among women in
the US, with devastating consequences physically, emotionally and
financially. Approximately 15% of cancer deaths in women result
from breast cancer [1]. A growing body of evidence suggests that
vitamin D may play a role in preventing the development of breast
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cancer [2-6]. For example, areas with higher latitudes and lower
solar radiation, which leads to lower vitamin D synthesis in the
skin, have increased mortality from breast cancer [3]. Substantial
literature also supports that better vitamin D status is associated
with reduced risk of breast cancer [2,4,5], but the mechanism is not
clear.

The major circulating form of vitamin D, 25(0H)D, produced
in the liver, is hydroxylated by la-hydroxylase in the kid-
ney to the bioactive form of vitamin D, 1a,25-dihydroxyvitamin
D (1,25(0H);D). Research supports that 1,25(0OH);D has anti-
neoplastic effects in colon, prostate, ovarian and breast cancer[2,7].
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1,25(0H)> D is proposed to prevent cancer progression through the
modulation of expression of many genes involved in cell growth,
apoptosis, angiogenesis and immune responses [8,9]. However, the
mechanisms in progression of breast cancer in particular and the
effect of oncogenes on the action of 1,25(0OH);D in early cancer
progression are not fully understood.

One of the critical shifts in progression to tumorigenesis is in
cellular energy metabolism [10]. The metabolic switch that occurs
during carcinogenesis (including the Warburg effect) is a gen-
eral characteristic of proliferating cells [10,11], which may lead to
increased glucose metabolism and the dependence of cells on glu-
cose (addiction)[12]. Proliferating cells not only require energy, but
also nutrients in amounts greater than their bioenergetic needs in
order to provide biosynthetic precursors, such as lipids, proteins
and nucleic acids, for continued cell proliferation [11]. In nonpro-
liferating cells, most of the pyruvate generated by glycolysis can
be completely metabolized through the TCA cycle to produce large
amount of ATPs in the presence of oxygen. In contrast, in rapidly
proliferating cells and cancer cells, there is an increased glucose
uptake and a shift of the pyruvate oxidative phosphorylation in
the mitochondria toward a more rapid aerobic glycolysis, evenina
normoxic environment, as described in the classic Warburg effect
[10,11]. This decrease in glucose flux into the TCA cycle, which
is controlled by the key enzyme pyruvate dehydrogenase (PDH)
and its inhibitory kinase pyruvate dehydrogenase kinase (PDK), is
another key feature of the classic Warburg effect [13,14]. These
alterations in glucose metabolism result in dramatically reduced
production of ATP and increased conversion of pyruvate to lac-
tate, which allows glycolysis to continue by regenerating NAD+.
The resulting lactate may also serve as an energy source for tumor
cells [15]. Further, the rate of glucose metabolism in this metabolic
switch increases dramatically. In fact, cancer cells divert about
10% of the glucose into biosynthetic pathways upstream of pyru-
vate production [11], which provides an advantage to cancer cells
by favoring utilization of the most abundant energy and carbon
sources, For example, glucose metabolism yields ribose for nucleic
acid synthesis and NADPH through pentose phosphate pathway
(PPP) while greater glycolysis provides intermediates to maintain
anaplerosis and supply of biosynthetic intermediates [11] for the
synthesis of fatty acids, nucleic acids and amino acids for continued
cellular growth and replication. Further, the high rate of NADPH
generation also aids in the anti-oxidant defense mechanisms of
the cancer cells. Thus, deprivation of glucose can induce oxidative
stress and other defects in metabolism which leads to cancer cell
apoptosis [16,17]. Inhibitors of glucose transporters and glycoly-
sis have been implemented as effective anticancer treatments and
can also sensitize the tumor cells to other chemotherapeutic drugs
[18,19]. Unlike in untransformed proliferating cells, the metabolic
reprogramming in cancer cells is controlled by growth factor inde-
pendent, chronic activation of the proliferative pathways [11].
Previous studies demonstrate that the increase in glycolysis in
the Warburg effect in cancer cells is at least in part mediated by
increases in multiple enzymes in the glycolytic pathway [19]. In
order to establish strategies for cancer prevention by vitamin D,
it is critical to determine whether and through which mechanism
it regulates energy metabolism in normal cells and prevents the
metabolic switch in cells containing oncogenes such as the acti-
vated ras gene.

The ras proto-oncogene is frequently mutated in cancer and
affects a variety of tumorigenic processes including proliferation
[20,21]. 1t encodes four distinct RAS proteins (HRAS, NRAS, KRAS4A
and KRAS4B) which are small GTPases essential for the signal trans-
duction induced by numerous growth factors to stimulate cell
proliferation. The oncogenic RAS promotes both pro-growth and
inhibits anti-growth signals in a growth factor independent manner
[20]. The oncogenic RAS may also aid in metabolic reprogramming

toward glycolysis in transformed cells. Previous studies show
that K-ras transformed fibroblast cells have increased glycolytic
activity and altered cellular glucose metabolism [22]. Furthermore,
research supports that vitamin D receptor (VDR) transcriptional
activity is down-regulated in the presence of ras oncogene [23-25],
potentially disrupting the effect of 1,25(0H);D to inhibit tumori-
genesis. Therefore, it is important to study the effect of 1,25(0H), D
on cellular energy metabolism in ras oncogene transformed cells.

The effect of 1,25(0H)z D on cellular glucose metabolism and its
biological outcomes in early breast cancer progression have not
been studied. The purpose of the current study was to investi-
gate the effect of 1,25(0H )2 D regulation of cellular glucose energy
metabolism in human breast epithelial cells with and without the
Harvey-ras oncogene. The hypothesis of the current study is that
1,25(0H); D shifts glucose utilization toward reduced glycolysis and
lactate production as well as reduced flux through the TCA cycle in
Harvey-ras transfected breast epithelial cells but not in untrans-
formed cells. These results will contribute to the understanding of
1,25(0H ), D action on breast tissue during mammary carcinogene-
sis.

2. Materials and methods
2.1. Chemicals and reagents

The1,25(0H),;D was purchased from Biomol (Plymouth Meet-
ing, PA). Dulbecco's modified Eagle medium: Nutrient Mixture
F-12 (DMEM/F12) media, horse serum, trypsin and peni-
cillin/streptomycin were obtained from Life Technologies, Gibco-
BRL (Rockville, MD). Cholera toxin was purchased from Calbiochem
(Darmstadt, Germany). Bicinchoninic acid (BCA) protein assay
reagents were obtained from Pierce (Rockford, IL). Protease
inhibitor cocktail, trypan blue, insulin, epidermal growth factor,
and hydrocortisone were from Sigma (St. Lois, MO). Tris-HCl
Bio-Rad Ready Gels were purchased from Bio-Rad Laborato-
ries (Hercules, CA). The QuantiChrom Lactate Dehydrogenase Kit
was from BioAssay Systems (Hayward, CA). All reagents for gas
chromatography-mass spectrometry (GC-MS) analyses were from
Pierce (Rockford, IL). D-['3Cg|Glucose was purchased from Cam-
bridge Isotope labs (Woburn, MA). Mass spectrometry analysis
confirmed its chemical and isotopic purity (92.7% [ '3Cgglucose and
6.9% ['3Cs|glucose).

2.2, Cell culture

MCF10A human breast epithelial cells and MCF10A cells sta-
bly transfected with the Harvey-ras oncogene (MCF10A-ras cells)
were a gift from Dr. Michael Kinch, Purdue University. MCF10A
and MCF10A-ras cells were cultured in the standard media recom-
mended for these cells [26], the Dulbecco’s Modified Eagle Medium:
Nutrient Mixture F-12 (DMEM/F12, 1:1) containing 17 mM glucose,
and supplemented with 5% horse serum, 10 mg/L insulin, 20 pg/L
epidermal growth factor, 50 pg/L cholera toxin, 50 mg/L hydrocor-
tisone, 100 units/ml penicillin, and 0.1 mg/mL streptomycin in a
humidified environment at 37 °C with 5% CO;, DMEM/F12 (1:1)
containing 17 mM glucose was used in all assays except for the
MTT and flow cytometry analysis as indicated in Fig. 1. Cells were
maintained in fresh media changed every 24 h during the 4-day
treatment period. The 1,25(0H ), D treatment was delivered to cells
in 100% ethanol at a final ethanol concentration <1%.

2.3, MTT cell proliferation assay
Cells were cultured in media containing 5mM glucose and the

media changed that containing different glucose levels (0.1, 1,
5, and 17mM) for the last 24 h. Relative viable cell levels were
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Fig. 1. 1,25(0H),D reduces glucose addiction. MCF10A and MCF10A-ras cells were
treated with vehicle or 1,25(0H);D (10 nM) for 4 days before analysis. Cells were
switched from media containing 5 mM glucose to the indicated glucose levels for
the last 24 h. (A) Relative amount of MCF10A and MCF10A-ras cells compared to
vehicle treated cells in 5 mM glucose media assessed by MTT assay. (B) Percentage
of MCF10A-ras cells arrested in G1 cell cycle, analyzed by flow cytometry. Groups
with the same letters are not significantly different (P<0.05),

determined by the MTT assay according to the manufacturer's rec-
ommendations. Results were expressed as the relative absorbance
compared to that in the vehicle treated cells in media containing
5 mM glucose,

2.4. Cell cycle analysis

From each sample, 1 x 10° cells were harvested with phosphate
buffered saline (PBS) in single cell suspension. Cells were fixed with
ice cold ethanol, pretreated with 0.2 mg/ml Rnase A, and stained

with 10 ug/ml propidium iodide. Flow cytometry analysis was per-
formed with a Beckman Coulter FC500 flow cytometer equipped
with 488 nm laser. The results were analyzed using Flow]o (Tree
Star, Inc., Ashland, OR). Results were expressed as percentage of
total cells arrested in G1 phase in the cell cycle.

2.5. LDH assay

Cells were washed with calcium and magnesium free-
phosphate buffered saline (CMF-PBS) and harvested on ice into
buffer containing 100 mmol/L potassium phosphate (pH 7.0),
2mmol/LEDTA, and 1% protease inhibitor cocktail and phosphatase
inhibitar cocktail. Cells were briefly sonicated and cell debris was
removed by centrifugation at 12,000 RPM for 15min at 4"C. Col-
arimetric kinetic determination of lactate dehydrogenase (LDH)
activity in the cell lysate was measured using the QuantiChrom
Lactate Dehydrogenase Kit (DLDH-100, BioAssay Systems). Values
are expressed as LDH activity/total protein (specific activity).

2.6. Metabelomics

Cells were washed with CMF-PBS and harvested on ice into
doubly distilled water. Cell lysates were obtained by freezing the
cells in dry ice/ethanol bath for 5min, and thawing them in 37 C
water bath for 1 min. Cell debris was pelleted by centrifugation
at 12,000RPM for 2min at 4°C. The supernatant was collected
for metabolite profiling analysis using nuclear magnetic resonance
(NMR) spectroscopy and mass spectrometry (MS) as described
previously [27-29]. Metabolite levels were normalized to protein
content.

2.7. 3C-metabolite flux analysis

Twao hours prior to cell harvest, media were changed to fresh
media with equal concentrations of unlabelled and '*Cg-labeled
glucose, and collected after incubation for two hrs. Cells were rinsed
with CMF-PBS, harvested on ice into lysis buffer and briefly soni-
cated. The cell lysates were saved for protein and DNA analysis, and
media was used to determine the '*C-mass isotopomer distribu-
tion analysis of metabolites and amino acids using GC-MS. Briefly,
0.2 mL of sulfosalicylic acid (50%, w:v) was added to 1 mL of media.
The acid-supernatant was desalted by cation (AG 50W-X8, H+form)
exchange, and amino acids and lactate eluted with 2 mol/L NH4OH
followed by water. The frozen eluate was lyophilized to dryness,
and amino acids converted to their t-butyldimethylsilyl derivative
prior to GC-MS (HP 5973N Mass Selective Detector, Agilent, Palo
Alto, CA). Fragment ions containing all carbons of an analyte (lac-
tate, pyruvate, serine, aspartate and glutamate) were monitored
under electron impact mode. Normalized crude ion abundances
of the enriched analytes were corrected for the measured natural
abundance of stable isotopes present in the original molecule and
that contributed by the derivative using the matrix approach [30].

Flux calculations were based on tracer:tracee ratios (TTR) in
the form mol '3C-isotopomer (M+n) per 100mol '2C analyte
(M+0), where n equals the number of '*C-labeled carbons in
the analyte, e.g. [M+1], [M+2] and [M +3]lactate. Catabolism of
[3Cg]glucose via the glycolytic pathway results in distinctive '3C-
labeling patterns in metabolites that provide information on the
contributions of glucose to pathways fluxes and the activity of
the enzymatic pathways through which the '*C-skeleton traversed
[31]. Under steady-state conditions, catabolism of ['*Cg|glucose
leads to [M +3]pyruvate and then [M+ 3]lactate. Thus, the contri-
bution of glucose to the flux of pyruvate and lactate can be assessed
from the ratios [M+ 3|pyruvate to [M +6]glucose and [M + 3]lactate
to [M+6]glucose, respectively. Further, since lactate derives
from cytosolic pyruvate, appearance of [M+1] and [M+ 2]lactate
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represents metabolism of | ' Cg]glucose via the PPP. Thus, the ratio
[M +3]lactate to [M + 1]lactate provides a crude measure of the rel-
ative activities of glycolysis versus the PPP.

Metabolism of the [M+3]pyruvate isotopomer via pyruvate
carboxylase (PC) introduces the [M+3]oxaloacetate isotopomer
into the Krebs cycle which, subsequently, reaches a metabolic
equilibrium with its transamination partner [M + 3]aspartate [32].
Similarly, [M+ 3]oxaloacetate eventually leads to formation of
[M + 3]a-ketoglutarate, which is in metabolic equilibrium with
its transamination partner [M+3]glutamate. Alternatively, the
|M + 3]pyruvate isotopomer can be metabolized via pyruvate dehy-
drogenase (PDH) to yield [M+2]acetyl-CoA and thence [M+2]a-
ketoglutarate and [M + 2]glutamate. However, the [M + 2]glutamate
also arises as a consequence of the equilibrium reaction between
oxaloacetate and fumarate. This metabolic cycle yields an equal
mixture of 2 positional isotopomers of [M+3]oxaloacetate, one
labeled in carbons 1-3 and the other in carbons 2-4. In conse-
quence, because the decarboxylation step between citrate and
«-ketoglutarate leads to the loss of carbon 1 of oxaloacetate (i.e.
half of [M+3]oxaloacetate contributes to [M+2]a-ketoglutarate
enrichment), a correction to the [M +2]glutamate enrichment was
made. In consequence, the contribution of glucose to oxaloacetate
and acetyl-CoA fluxes can be assessed by the ratios [M + 3]aspartate
to [M +6]glucose and corrected [M +2]glutamate to [M +6]glucose,
respectively. Furthermore, the relative activities of PDH vs. PC can
be assessed from the ratio of [M +2|glutamate to [M + 3]glutamate.

2.8. Membrane metabolite fluxes

A highly sensitive and selective glucose oxidase-based micro
biosensor decorated with platinum nanoparticle was employed
in self-referencing mode to measure real-time physiological glu-
cose flux across the cell membrane [33]. Self-referencing involves
oscillation of a single microsensor via computer-controlled stepper
motors within the concentration boundary layer near cells/tissues.
This non-invasive technique provides direct measurement of trans-
membrane analyte flux, and is reviewed in detail by McLamore and
Porterfield [34].

2.9. RNA isolation and analysis

RNA was isolated with TriReagent (Molecular Research Center,
Cincinnati, OH) following the manufacturer's instructions. Reverse
transcription of total RNA was performed using MMLV reverse tran-
scriptase (Promega, Madison, WI). Real-time quantitative PCR was
performed using the Brilliant 11 SYBR Green QPCR Master Mix (Agi-
lent, Santa Clara, CA). The mRNA abundances of enzymes involved
in glucose metabolism were determined from the threshold cycle
(Ct) value. The mRNA expression was normalized to 18S expression
and results were expressed as arbitrary units. The primers used are
shown Table 1.

2.10. Statistical analysis
Values are presented as mean+ SEM. Results are expressed
compared to the vehicle within the same cell line, by the Student’s

t-tests (LSD), or by analysis of variance (ANOVA), with P<0.05 con-
sidered statistically significant.

3. Results
3.1. 1,25(0H),D reduces glucose addiction

The impact of 1,25(0H);D treatment on glucose addiction of
the cells was examined by MTT cell proliferation assay and flow

Table 1
Primers used in QPCR analysis of gene expression.
Genes Primer information
GLUT1 Forward: 5'-TATCGTCAACACGGCCTTCACTGT-3

Reverse: 5'-CACAAAGCCAAAGATGGCCACGAT-3'

HK2 Forward: 5'-CTGCAGCGCATCAAGGAGAACAAA-3
Reverse: 5-ACGGTCTTATGTAGACGCTTGGCA-3"

PGK1 Forward: 5'-TCACTCGGGCTAAGCAGATTGTGT-3"
Reverse: 5'-CGTGTTCCATITGGCACAGCAAGT-3'

PKM2 Forward: 5'-ATTATTTGAGGAACTCCGCCGCCT-3
Reverse: 5'-CATTCATGGCAAAGTTCACCCGGA-3'

PDK1 Forward: 5'-TCATGTCACGCTGGGTAATGAGGA-3"
Reverse: 5'-AACACGAGGTCTTGGTGCAGTTGA-3"

185 Forward: 5'-TTAGAGTGTTCAAAGCAGGCCCGA-3

Reverse: 5'-TCTTGGCAAATGCTTTCGCTCTGG-3"

cytometry analysis. 1,25(0H);D reduced the number of MCF10A-
ras cells but not MCF10A cells by 44% and 37% in media containing
5 and 17mM glucose, respectively (Fig. 1A). Glucose restriction
at 0.1 and 1 mM reduced the number of MCF10A-ras cell by 60%
and 39%, respectively (Fig. 1A), indicating the cell dependence on
glucose (addiction). However, 1,25(0H);D prevented the reduc-
tion in cell number at 1 mM glucose, suggesting 1,25(0H);D may
reduce the cell glucose addiction of MCF10A-ras cells. Consistent
with these results, cell cycle analysis by flow cytometry showed
that 1,25(0OH),D increased the percentage of MCF10A-ras cells in
G1 phase from 63% to 70% and from 48% to 64% in 1 and 5 mM glu-
cose, respectively (Fig. 1B). Glucose restriction at 1 mM caused 30%
more ras cells in G1 phase, but 1,25(0H);D treatment prevented
the increase in G1 arrest (Fig. 1B), which suggest that 1,25(0H),D
may reduce glucose addiction. These results suggest 1,25(0H);D
reduces the MCF10A-ras cell glucose addiction, supporting the reg-
ulation of glucose metabolism by 1,25(0H); D during early cancer
progression.

3.2. 1,25(0H),D reduces glucose uptake and aerobic glycolysis

To investigate the impact of 1,25(0H ), D on glucose uptake and
glycolytic activity, MCF10A and MCF10A-ras cells were treated
with vehicle or 1,25(0H);D for 4 days. Glucose influx across the
cell membrane in response to increasing concentrations of glu-
cose in the media was measured employing a bio-nanosensor
[33]. There was a glucose concentration dependent increase in
glucose influx for both 1,25(0H);D and vehicle treated MCF10A-
ras cells (Fig. 2A). At high glucose concentration (15 mM), glucose
influx was reduced in cells treated with 1,25(0OH),D compared to
cells treated with vehicle (P<0.05). The effects of 1,25(0H);D on
the expression of proteins and enzymes in the glycolytic path-
way were also examined. Glucose transporter 1 (GLUT1) is the
major glucose transporter expressed in the human breast epithe-
lial cells. Results showed that mRNA expression of GLUT1 was
reduced by 28% in the 1,25(0H);D treated MCF10A cells, but
not for the MCF10A-ras cells compared to vehicle treated cells
(Fig. 2B), suggesting that the reduction of glucose uptake by
1,25(0H); D treated MCF10A-ras cells may not be mediated through
a decrease in expression of GLUT1. In contrast, mRNA expres-
sion of hexokinase 2 (HK2), the enzyme mediating the first step
of phosphorylation of glucose during glycolysis, was induced by
23% by 1,25(0H);D in MCF10A cells, but not MCF10A-ras cells
(Fig. 2C), Phosphoglycerate kinase 1 (PGK1) catalyzes the seventh
step of glycolysis, where 1,3-bisphosphoglycerate is converted to
3-phosphoglycerate. 1,25(0H),;D reduced the expression of PGK1
by 13% in MCF10A cells but not in MCF10A-ras cells (Fig. 2D).
Consistent with the latter, results from the analysis of the flux
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Fig. 2. 1.25(0H):D reduces glucose uptake and aerobic glycolysis. MCF10A and MCF10A-ras cells were treated with vehicle or 1,25(0H); D (10nM) for 4 days before mea-
surement or harvest. (A) Glucose influx at the cell membrane (pmol/cm?/s) in response to increasing doses of added glucose in the media in MCF10A-ras cells (n =4). The
mRNA expression is shown for GLUT1 (B), HK2 (C), and PGK1 (D) relative to vehicle in each cell type (n=3). Flux contributions of *Cs-labeled glucose to 3-phosphoglycerate
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A 14 contribution of '*Cg-labeled glucose to glycolytic intermediates
1 Vehicle showed that following 1,25(0H);D treatment, the contribution of
k) 12 | mmmm 1,25(0H),0 glucose to 3-pho_sph9g]ycerate flux was reduced by 15% and. 32%
= compared to vehicle in MCF10A and MCF10A-ras cells, respectively
ﬁ (Fig. 2E). Moreover, the proportion of pyruvate flux from glucose
> 104 was reduced by 9% in MCF10A-ras cells, but was not altered in
L= * MCF10A cells (Fig. 2F), suggesting that glycolysis is reduced by
o 1,25(0H), D only in the MCF10A-ras cells.
k= 0.8 ~ Phosphoenolpyruvate (PEP) is a glycolytic intermediate con-
o verted to pyruvate via pyruvate kinase (PK) in the rate-limiting final
X g6 - step of glycolysis. But metabolic profiling of MCF10A and MCF10A-
2 ras cells showed that compared to vehicle treated cells, intracellular
= levels of PEP was ~1.5-fold higher in MCF10A and MCF10A-ras cells
3 0.4 + treated with 1,25(0H), D (Fig. 2G). However, the mRNA expression
-+ of pyruvate kinase M2 (PKM2) (Fig. 2H), the predominant iso-
0 02- form of PK expressed in the MCF10A cells that promotes metabolic
- programming for tumor growth [35], was not different in vehicle
and 1,25(0H); D treated MCF10A and MCF10A-ras (Fig. 2H). Fur-
0.0 ther, total activity of PK was not affected by 1,25(0H); D treatment
18 (Fig. 21), suggesting that the accumulation of PEP is not a result of
B L reduced PK activity by 1,25(0OH ); D. Collectively, these data support
that 1,25(0H), D may reduce glucose uptake and glycolytic activity
5 1.6 1 in MCF10A-ras cells at an early stage of cancer progression.
g 149 3.3. 1,25(0H, i
B .3. 1,25(0H);D reduces lactate production
35 12 i i
5E One of the components of the Warburg effectin tumor cells is the
= g 10 4 increased conversion of pyruvate to lactate. To determine whether
e 1,25{0H), D impacts lactate production, the activity of lactate dehy-
3 s drogenase (LDH) was examined in MCF10A and MCF10A-ras cells
= g 08 following 4 days of 1,25(0H), D treatment. There was a 15% reduc-
58 * tion in LDH activity by 1,25(0H);D in MCF10A-ras cells, but not
@ & 06 in MCF10A cells, compared to vehicle (Fig. 3A). Consistent with the
2 reduction in LDH activity, 1,25(0H); D reduced the intracellular lac-
= 0.4 1 tate by 55% in MCF10A-ras cells, but not in MCF10A cells (Fig. 3B).
— 13Cs-Glucose kinetics also showed that 1,25{(0H);D reduced the
0.2 1 contribution of glucose to lactate flux by 10% in MCF10A-ras
cells, but not in MCF10A cells (Fig. 3C). These results suggest that
0.0 1,25(0H); D may reduce lactate production in MCF10A-ras cells
cC 50 during cancer progression, but not in untransformed MCF10A cells.
3.4. 1,25(0H);D reduces TCA cycle activity
o
40 - The impact of 1,25(0H);D on TCA cycle activity in cells in pro-
3 gression to tumor were examined. The contribution of glucose
8 % to TCA cycle intermediate fluxes was assessed. Following 4 days
2 304 of 1,25(0H);D treatment, there were 24% and 41% reductions in
0] the contribtion of glucose to acetyl-CoA flux in MCF10A and
£ MCF10A-ras cells, respectively, compared to vehicle (Fig. 4A). Fur-
o ther, 1,25(0H); D treatment reduced the contribution of glucose to
'; 20 4 oxaloacetate flux by 33% and 34% (Fig. 4B) in MCF10A cells and
= MCF10A-ras cells, respectively, suggesting an overall reduction of
L glucose metabolism in the TCA cycle. Consistent with these results,
% the '*C-tracer kinetics indicated a reduction in pyruvate dehydro-
B 10 4 genase (PDH) activity by 22% and 24% in MCF10A and MCF10A-ras
L cells treated with 1,25(0H); D (Fig. 4C). In addition, metabolic pro-
filing showed there was a 29% reduction in the intracellular level of
0 succinate, an intermediate of the TCA cycle, by 1,25(0H);D treat-

MCF10A MCF10A-ras

Fig. 3. 1,25(0H);D reduces lactate production. MCF10A and MCF10A-ras cells were
treated with vehicle or 1,25(0H);D (10 nM) for 4 days before harvest. (A) Lactate
dehydrogenase (LDH) activity relative to vehicle treatment in the same cell type
(n=3).(B)Intracellular levels of lactate relative to vehicle treatment in each cell type
(n=4). (C) Flux contributions of *Cg-labeled glucose to lactate shown in percent
metabolite flux from glucose (n=4), Results are expressed as mean=SEM. An

mentin the MCF10A-ras cells, but not in MCF10A cells, compared to
vehicle (Fig. 4D). The latter provides further support of the overall
reduction in TCA cycle activity in response to 1,25(0OH),D in cells
during early progression to tumors. In contrast, mRNA expression

asterisk (*) indicates a significant difference between vehicle and 1,25{0H); D treat-
ments within the same cell type (P<0.05).
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Fig. 4. 1,25(0H); D reduces TCA cycle activity. MCF10A and MCF10A-ras cells were treated with vehicle or 1,25(0H),D (10nM) for 4 days before measurement or harvest.
Flux contributions of *Ce-labeled glucose to (A) acetyl-CoA and (B) oxaloacetate shown in percent metabolite flux from glucose. (C) Pyruvate dehydrogenase activity shown
in arbitrary units (n=4). (D) Intracellular levels of succinate relative vehicle in each cell type (n=4). (E) The mRNA expression of PDK1 relative to vehicle in each cell type
(n=3). Results are expressed as mean == SEM. An asterisk (*) indicates a significant difference between vehicle and 1,25(0H ), D treatments within the same cell type (P<0.05).
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of pyruvate dehydrogenase kinase 1 (PDK1) (Fig. 4E), the inhibit-
ing kinase of PDH that regulates the flux of pyruvate into the TCA
cycle, was not altered by 1,25(0OH);D in MCF10A or MCF10A-ras
cells, suggesting that the reduced PDH activity and flux of glucose
into the TCA cycle induced by 1,25(0H);D may not be mediated
through upregulation of PDK1.

4. Discussion

Alteration in cellular glucose metabolism is a signature charac-
teristic of tumor cells which drives cell proliferation by increasing
bioenergetics and biosynthesis, maintaining redox potential, and
via initiation of signal transduction controlled by changes in cel-
lular metabolism [11,36,37]. Interventions that target metabolic
pathways are now emerging as potential preventive or therapeutic
approaches for the treatment of cancers [18,19,38,39]. In the cur-
rent study, the effects of 1,25(0H); D on cellular energy metabolism
were explored in untransformed and H-ras oncogene transfected
MCF10A cells, a human breast epithelial cell model for studying
early mammary carcinogenesis. The results support the hypothesis
that 1,25(0H); D reduces the glucose addiction of cells in progres-
sion to cancer, as a consequence of the shift in glucose metabolism
toward reduced glycolysis and lactate production (reversal of the
classic Warburg effect) as well as reduced TCA cycle activity in
H-ras transfected MCF10A cells, suggesting a preventive effect of
1.25(0H), D on glucose utilization for rapid cell proliferation during
breast cancer progression. To our knowledge, these results are the
first to show that 1,25(0H ), D regulates cellular glucose metabolism
which may be a potential mechanism for preventing early breast
cancer progression,

Previous studies suggested that activity of the activated K-ras
gene alone may lead to an increase in glycolysis in mouse and
human cells [22], similar to that seen in cancer cells [11,40]. Results
from our laboratory support these results. The MCF10A-ras cells,
which represent an initiation stage of tumor progression, show
changes in several energy status parameters that are characteris-
tic of tumors, including the increased glucose uptake (by 2.1 fold,
P<0.01) [41] and lactate accumulation (by 2.4 fold, P<0.05, data
not shown), which is consistent with the Warburg effect [40.42],
supporting the hypothesis that very early changes in energy sta-
tus may occur during cancer progression in the presence of the
H-ras oncogene. The current study suggests that 1,25(0H);D may
reverse the alterations in glucose metabolism during early breast
cancer progression mediated by the H-ras oncogene. One of the
outcomes for the altered glucose metabolism by 1,25(0H),D was
the reduced glucose addiction via reducing G1 cell cycle arrest at
glucose restriction. It has been suggested that part of the chemo-
preventive effects of 1,25(0H)2D against cancer is mediated by G1
cell-cycle arrest, as a result of the upregulation of proteins sup-
pressing cyclin-dependent kinase activity [43-45]. Consistently,
the current study showed that 1,25(0H); Dinduced the G1 cell cycle
arrest of MCF10A-ras cells but prevented the increase in G1 arrest
(Fig. 1B) at glucose restriction, suggesting 1,25(0H);D may reduce
the glucose addiction of MCF10A-ras cells through the regulation
of G1 cell cycle arrest.

Results suggesting a reduction in glycolysis by 1,25(0H),D are
supported by the reduced flux of glucose to 3-phosphoglycerate
by 1,25(0H)2D in MCF10A and MCF10A-ras cells respectively. In
the MCF10A-ras cells, 1,25(0H);D was shown to reduce lactate
production, and a reduction of intracellular lactate levels, as well
as a reduction in lactate dehydrogenase activity. 1,25(0H):D-
induced reduction in TCA cycle activity was observed as reduced
glucose flux to acetyl-coA and to oxaloacetate in the MCF10A and
MCF10A-ras cells, respectively. It is also intriguing that one of the
glycolytic intermediates, PEP, was increased by 1,25(0H);D in the

MCF10A-ras cells. One mechanism that may contribute to the accu-
mulation of PEP may be due to the reduced activity of the enzyme
downstream of this metabolite in the glycolytic pathway, PK. PK
regulates the rate-limiting and final step of glycolysis, the conver-
sion of PEP to pyruvate. The M2 isoform (PKM2) is a critical enzyme
expressed predominantly in tumor tissues that promotes aerobic
glycolysis [35]. The accumulation of PEP suggests a potentially
decreased activity of PKM2 by 1,25(0H),D. However, the mRNA
expression of PKM2 was not different in vehicle and 1,25(0H};D
treated MCF10A and MCF10A-ras cells (Fig. 2H); and neither was
the total activity of PK enzyme (Fig. 21), suggesting that accumu-
lation of PEP is not a result of reduced PK activity by 1,25(0H);D.
Regulation of the activity of other enzymes in hexogenesis, gly-
colysis or flux into the TCA cycle may contribute to the increased
accumulation of PEP mediated by 1,25(0OH),D. There are differen-
tial effects of 1,25(0OH}, D on energy metabolism and cell growth in
the untransformed and ras oncogene transformed MCF10A cells.
Overall, our results suggest that 1,25(0OH);D has a greater effect
on metabolic parameters in the MCF10A-ras cells than in MCF10A
cells, which may contribute to the growth inhibitory effects in dif-
ferent glucose concentrations (Fig. 1A lower panel). Although there
are changes in some of the metabolic parameters by 1,25(0H);D in
MCF10A cells (Figs. 2 and 4), there are no changes in the biological
consequences (growth) in these cells (Fig. 1A, upper panel). These
differences in quantitative impact of 1,25(0H); D may suggest that
the effects in MCF10A cells were not great enough to lead to a
change with respect to growth in different glucose concentrations.
Further investigations are needed to understand how the changes
in metabolic parameters contribute to the biological consequences
such as growth and glucose dependence.

Overall, the results of the current study support our hypothesis
that 1,25(0OH);D regulates the metabolic reprogramming during
early breast cancer progression. Specifically, 1,25(0H);D reduces
cell glucose addiction, shifts glucose utilization toward reduced
glycolysis and lactate production as well as reduced flux through
the TCA cycle in H-ras transformed MCF10A breast epithelial cells.
To our knowledge, this is the first study to demonstrate that
1,25(0H);D regulates cellular energy metabolism in a model of
early breast cancer progression. These results indicate that vitamin
D, as a potential chemopreventive agent, has multiple functions
during cancer progression. Acquiring a better understanding of
vitamin D regulation of glucose metabolism during cancer progres-
sion should allow the identification of its targeted regulatory points
in the metabolic pathways and its interaction with oncogenes such
as ras, so as to contribute to the development of effective strategies
for breast cancer prevention.
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