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ABSTRACT 

Tao, Hongdan Ph.D., Purdue University, December 2013. Propagation of Sound in the 
Vicinity of Rigid Porous Interfaces. Major Professor: Kai Ming Li, School of Mechanical 
Engineering. 

Propagation of sound in the vicinity of rigid porous interfaces is investigated 

systematically to facilitate the acoustical characterization of sound absorption materials 

for noise reduction applications. Various rigid porous interfaces are considered: (1) a 

semi-infinite porous layer; (2) a porous hard-backed surface; and (3) a porous impedance-

backed layer. A closed-form solution and numerical methods are derived with respect to 

each rigid porous interface condition.  

A modified saddle-point method is exploited to investigate the sound field 

emanating from a monopole source above and below a rigid porous interface. The 

solutions can be expressed in a form that resembles the classical Weyl-Van der Pol 

formula. A heuristic method is then proposed to remove the singularity within the 

asymptotic solution via application of the double saddle-point method. Its relative 

simplicity and accuracy demonstrates the advantage of the double saddle-point method 

whenever the approximation is valid. Following this, the sound field within a hard-

backed rigid porous medium due to an airborne source is examined. The accuracy of the 

proposed asymptotic solutions has been confirmed by comparison with benchmark 

numerical solutions and through indoor sound propagation experiments. Measurement



xvii 

data and theoretical predictions suggest that when the receiver is positioned near the top 

surface of the hard-backed layer, the ground reflection of the refracted wave contributes 

greatly to the total sound field.  

Taking into account source characteristics, an asymptotic formula is derived for 

predicting the sound field from a dipole source above and below an extended reaction 

ground. The directional effect of the dipole source on each term within the asymptotic 

solutions is interpreted. Further analysis shows that an accurate asymptotic solution can 

provide a good starter field for the Parabolic Equation--Finite Element Method (PE/FEM). 

The PE/FEM marching schemes are derived based on linear and cubic finite element 

discretization along both the vertical and horizontal directions. The Perfectly Matched 

Layer (PML) technique is applied to the PE/FEM, resulting in a substantial reduction in 

computational time. Comparison with experimental data for snow covered grounds is 

made and good agreement was demonstrated, which validates the accuracy of the 

proposed PE/FEM approach.  
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CHAPTER 1: INTRODUCTION 

1.1  Motivation and Objective 

 Noise propagation from airports, roads, railways, and industrial has been of 

considerable interest to the environmental acoustics community. During the early days, 

simple models involving a homogenous and isotropic propagation medium with a 

perfectly reflecting ground surface were considered. More complexity was later 

introduced to model realistic propagation conditions. Effects such as ground properties, 

interference phenomena, mixed terrain topography, and atmospheric variations became 

increasingly important in the accurate prediction of noise over long distances.  

 In most of the earliest studies, the ground is typically considered as being locally 

reacting for ease of mathematical analysis. However, it was found that the locally 

reacting ground assumption is not accurate in certain practical applications. For example, 

rigid porous materials such as fiberglass or glass wool (modeled by a homogeneous 

dissipative fluid medium) do not exhibit locally reacting characteristics. These mediums 

are referred to as extended reaction or non-locally reacting. It is typically assumed that 

the layer thickness is infinite to simplify the initial analysis. More recently, multi-layered 

models with a rigid surface have been examined.   

There are several publications in the literature concerning the application of 

asymptotic solutions for sound field predictions near an extended reaction ground [1], 
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above a layered ground [2], and above an impedance-backed porous layer [3]. To the best 

of our knowledge, there is no study to derive an analytical formula for the sound field 

below a hard-backed porous layer and also an impedance-backed ground. This motivates 

our development of general and complete analytical solutions for the sound field near 

porous interfaces of various types.  

Much of the earlier asymptotic analyses [1-3] were based on a double saddle-

point method supplemented by the method of pole subtraction for the sound fields above 

a locally reacting or a non-locally reacting plane boundary. This asymptotic solution 

obtained is singular when the source lies directly above (or below) the receiver, or when 

the specific acoustic impedance of the boundary is equal to unity. Due to this singularity, 

the derived asymptotic formula cannot be used conveniently in more general applications. 

Hence, this dissertation aims to develop a more robust asymptotic formula for predicting 

sound field over a rigid porous medium.   

A physically meaningful solution where each term can be associated with a wave 

pheonomenon is desired. In situations where an analytical solution cannot be obtained, 

development of an accurate and efficient numerical approach becomes relavant. For 

example, a closed form solution cannot be obtained when atmospheric effects (e.g., 

refraction, turbulence, wind, etc.) and realistic boundary conditions (e.g., mixed 

impedance, irregular ground interfaces, etc.) are appreciable.  

 The goal of this dissertation is to accurately predict the sound propagation over 

rigid porous interfaces subject to various boundary conditions. Emphasis is given to both 

asymptotic solutions for simple cases and numerical solutions for more generalized 

environments. The asymptotic solutions proposed are capable of predicting the sound 
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field for a flat, layered porous ground with constant impedance. It is also suitable for 

applications as an accurate starting field for the Parabolic Equation (PE) model. The PE 

method is implemented to incorporate atmospheric effects and range-dependent 

propagation effects such as mixed-impedance ground surfaces and/or terrain variations.  

In addition, the Finite Element Model (FEM) techniques are applied in the discretization 

of the parabolic equation using either linear or cubic finite elements. Asymptotic 

solutions for the dipole source are also investigated. The analysis proves useful in the 

formulation of the starting field for higher ordered PE models.  

1.2  Background 

 Sound propagation outdoors near a ground surface has been studied extensively. 

Early work dates back to 1950s. Neglecting atmospheric effects involving wind, 

turbulence, attenuation, and scattering due to air as well as temperature gradients, the 

propagation phenomena can be simplified into three categories: ground effects, 

characterization of ground properties, and source characteristics. With respect to more 

complicated propagation environments, the study of the atmospheric effects becomes 

important.  

1.2.1  Ground Effects 

 The most general parameter of the ground is the complex impedance. It is defined 

as the ratio of the complex pressure amplitude to the normal component of complex 

velocity amplitude evaluated at the surface of the ground [4]. Note that there is an 

alternative definition for ground impedance called the characteristic impedance. The 

characteristic impedance of a ground surface is the ratio of the complex pressure 
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amplitude to the complex velocity amplitude for a sound wave traveling through a 

medium. In the situation when the speed of sound in the ground is much smaller than that 

in the air, the sound wave will travel into the ground in a direction normal to ground 

surface. It is called locally reacting ground (i.e., the angle of incidence does not influence 

the angle of refraction). For locally reacting grounds, the characteristic impedance of the 

ground can be used to approximate the impedance and represent its properties [4, 5]. 

 Prior to the mid-1960s, considerations of ground effects are quite rare. The 

physical interaction between the ground and the incident sound waves were not well 

understood. In 1965, Parkin and Scholes first published their study on jet engine noise 

propagation around airfields located in Radlett [6] and Hatfield [7]. Effects of vector 

wind speeds, ground surface interactions, as well as the influence of temperature on 

ground effects were considered. A semi-empirical model was developed Delaney and 

Bazley [8] specifically for the acoustical characterization of fibrous absorbent materials. 

In their model, the impedance can be obtained from curve fitting experimental data using 

a single parameter: the flow resistivity. Their formulation is also partially based on 

classical theory for the acoustical characteristics of rigid porous materials. Later Chessell 

[9] and Embleton, et al. [10] extended the model to use for a large variety of ground and 

propagation conditions. Chessell also recognized a discrepancy in the normalization used 

in the one-parameter model when applied to soils. The flow resistivity in Delaney and 

Bazley's one-parameter model can be regarded as an effective flow resistivity. 

Later Piercy el al. [11] investigated the ground effects under neutral atmospheric 

conditions (i.e., in the absence of wind) utilizing a subset of Parkins and Scholes' data. It 

was concluded that at low frequencies (below 300Hz), ground and surface waves are the 
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major carriers of environmental noise over long distances while air turbulence needs to 

be considered for frequencies above 1kHz. In 1988, Attenboroug [12] published a 

comprehensive review of ground effect models over a wide range of frequencies. The 

relationship between the shape and length of the ground effect region within the 

attenuation spectrum along with the acoustical properties of the ground are explored. It is 

suggested that a multi-layered structure impedance model could explain the ground effect 

dips at Radlett [6] or Hatfield [7]. 

For a simple layer-structure model, it consists of two layers. One is a single layer 

of finite thickness, and the other is a semi-infinite and acoustically rigid backing layer. 

For example, the fallen snow on hardened soil or an asphalt pavement can be modeled as 

a layer of rigid porous material resting on an acoustically rigid plane. In the case of a 

multiple-layered medium, the real part of the surface impedance (when computed from 

the Delaney and Bazley's model) sometimes yield a negative number at low frequency 

range. However, the impedance must be a positive-real function to be physical.  

Attenborough [13] developed a micro-structure based model for describing multi-

layered surface. A more accurate four-parameter model, which consists of: flow 

resistivity, shape factor, pore shape factor ratio, and tortuosity was proposed. The four-

parameter model can be reduced to Attenborough's one parameter model via 

simplifications for high flow resistivity (e.g., >100,000 MKS units) and low frequencies 

(e.g., <1 kHz). Miki [14, 15] discussed the characteristic impedance and propagation 

constant of porous material based on experimental data by Delaney and Bazley. Some 

modifications from Delaney and Bazley's model were made to satisfy the real and 

positive impedance restrictions. It is shown that the new model is useful for predicting 
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the acoustical behavior of porous materials, especially for the double-layer case. Recently, 

Attenborough [16] assessed seven impedance models for the purpose of ground 

impedance predictions. By using a fixed relationship between tortuosity and porosity, the 

required number of adjustable parameters can be reduced to two –parameters (flow 

resistivity and porosity). The accuracy of the different impedance models is validated, 

and the applicable porous surfaces for these impedance models aredescribed.    

 In fact, a homogeneous ground surface may be unrealistic. For example, aviation 

noise propagation may involve considering transitions between concrete runways and 

surrounding grassy fields. Hence, impedance discontinuities need to be addressed. There 

are a number of different models for studying the effect of ground impedance: the semi-

empirical models from De Jong [17] and Koers [18]; the Fresnel-zone approximation 

from Boulanger el al. [19]; and the Boundary Element Method (BEM) arpproach [20].  

Further research in the incorporation of impedance discontinuities into a Fast Field 

Program (FFP) formulation was performed by Taherzadeh el al. [21] for a stationary 

source in a variety of atmospheric configurations. The PE method enables impedance 

transitions to occur between rang ssteps. Hence it is the preferred method in our current 

investigation.  

1.2.2  Source Characteristics 

 Most of the above studies dealt with the sound field generated by a monopole 

point source. However, there are many noise sources that have directional characteristics, 

especially at close range. For instance, a dipole source is a suitable model for a fast 
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moving train [22] and a helicopter rotor [23]. The prediction of the sound field due to 

multi-pole sources deserves some consideration.  

 In 1957, Ingard and Lamb [24] began their work on computing the "power 

amplification factor" as a function of the distance between the source and the plane for 

monopoles, dipoles and longitudinal quadrupoles. The effect of the reflecting plane 

boundary on the power out of the source was studied. Later in 1960, Yildiz and Mawardi 

[25] made use of a Green's function constructed by spectral representations, and derived a 

general close form expression for the evaluation of the pressure distribution due to a 

multipole point source.  The explicit relations for the case of dipole and quadruple fields 

were also studied in detail. Following the work of Ref [24], Bies [26] generalized the 

expression of the power to an arbitrarily oriented multipole. The results showed that 

averaging over a distribution of multipoles would reduce the large variations of radiated 

power observed for a single multipole. Later in 1981, Meecham et al. [27] describes an 

experiment which directly confirms the predicted diffraction effects by Ref [25]. A 

dipole-baffle system was set up in an anechoic chamber and the sound intensity was 

measured. It showed that the baffle effectively amplified the sound radiated in all 

directions.   

 In 1993, Shen and Meecham [28] studied the aerodynamic sound generated by a 

subsonic jet at normal and oblique incidence, impinging on a large, rigid plate. The 

directivity results indicate that the correlation approach resulted in quadrupolelike 

directivity patterns. In 1994, Hu and Bolton [29] proposed a two-dimensional finite 

Hankel transform technique to predict sound propagation from arbitrarily oriented dipoles 

and quadrupoles. The results were found to be in excellent agreement with measurements 
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of sound propagation over a finite impedance surface from a small, unbaffled 

loudspeaker. Their results indicate that the presence of a dipole component has a 

significant effect on the total field which includes diffraction and ground reflection. Later 

in 1997, Li et al. [30] derived a close-form analytical solution for an arbitrarily oriented 

dipole placed above an impedance ground. The analytical solutions for horizontal and 

vertical dipoles agree well with FFP predictions, and the asymptotic results were also 

confirmed via laboratory measurements. It was shown that the analytical approximations 

had the combined advantages of being easier to interprete physically and greatly reduced 

computational time. A continuation of the work was also pursued by the same authors [31] 

on the sound field of an arbitrarily oriented quadrupole above an impedance ground by 

using the method of steepest descent path. The total sound pressure was shown to be 

augmented by two extra terms which were particularly important when the source and 

receiver was in close proximity. 

1.2.3  Numerical Techniques in Sound Propagation 

 Modeling outdoor sound propagation requires the consideration for ground effects, 

source characteristics, and atmospheric conditions. Atmospheric effects consist of two 

main aspects: atmospheric refraction and atmospheric turbulence. Atmospheric refraction 

results from gradients in temperature and/or wind speeds, which can have a large impact 

when long-range propagation is desired. It is especially important in low source, low 

receiver geometries. Atmospheric turbulence results from fluctuations in the temperature 

and/or wind velocity around some mean values. Analytical solutions exist only for the 

simplest cases while numerical solutions become necessary when more realistic 
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conditions are of interest. Different numerical approaches such as ray tracing, BEM, FFP 

and PE methods are commonly applied in outdoor sound propagation depending on the 

problem configuration. 

This section will introduce the basic concepts and recent studies of ray tracing, 

FFP and PE methods. The BEM is commonly used for sound propagation near sound 

barriers. However, noise barriers are not considered in current investigation and will not 

be explored further. 

a)  Ray Tracing  

 Atmospheric sound propagation can be modeled using acoustic rays. Two steps 

are needed in ray tracing: (1) calculation of the paths between the source and the receiver; 

(2) summation of the contribution from all acoustic ray paths. Ray tracing has been used 

extensively to predict outdoor sound levels in the presence of sound speed gradients even 

though the mathematical conditions for the applicability of the ray-based methods are 

seldom satisfied. The ray path is computed via numerical integration using small 

increments to ensure that the elevation angle at every point along the ray path satisfies 

Snell's law.  

 For the upward refracting atmosphere, a shadow zone exists where no sound rays 

can reach the receiver. Hence, the ray model predicts zero sound energy in this region 

[32]. In reality, due to the effect of diffraction and scattering by atmospheric turbulence, 

the sound energy is non-zero. Wave theory and wave extensions to ray theory (where a 

Gaussian beam or multiple rays is traced instead of individual ray [33]) improves the 

basic ray model predictions in the vicinity of the shadow zone boundary. For long ranges 
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or in the extreme downward refracting atmosphere, there can be multiple ground 

reflected paths. This makes it difficult to obtain a generalized ray-based solution. 

 Caustic singularies [34, 35] occur when at least two neighboring rays intersect 

one another (at a caustic point), resulting in an infinite sound amplitude prediction. To 

correct for caustics, an accurate computation of the caustic diffraction field (i.e., the 

difference between the actual sound field and the ray-based solution) is needed.  For the 

special case of a height dependent sound speed profile and a homogeneous ground 

surface, caustic singularities can be effectively eliminated by transformation from the 

spatial domain to the wave-number domain along the horizontal direction [36]. In general, 

the complex nature of the caustic diffraction field in realistic propagation conditions 

makes it difficult to obtain reliable predictions using ray theory alone. Hence, the 

development of approximate numerical schemes such as the FFP and the PE is pursued 

by the acoustic community.  

b)  The Fast Field Program (FFP) 

 The FFP employs a spatial Fourier transform to the wave equation which 

transforms spatial domain quantities into the wave number domain. The transformed 

wave equation is solved numerically in the wave number domain, and then an inverse 

Fourier transform is applied to obtain the physical sound field. The FFP method was first 

introduced for applications in underwater acoustics to study the effects of sound speed 

variations with depth [37, 38]. In the early 1980s, it was adapted for atmospheric sound 

propagation. An introduction to the FFP-type formulation is given for atmospheric sound 

propagation in Ref. [39-41]. The geometry is limited to a horizontally stratified and 
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stationary medium, which an approximation for the atmosphere in the absence of wind 

effects.  

A Hankel transform can be defined to relate the field quantities in the 

frequency—wavenumber domain to physical space quantities. The Hankel transform is 

evaluated numerically by approximating the continuous integral as a finite sum of the 

FFT variety, as shown by Candel [42].  To compensate for the finite truncation of the 

infinite series, correction factors were added to the formulation. Richards and 

Attenborough [39] introduced a pole in their asymptotic Bessel function expansion. The 

symmetry property of the Fourier coefficients allows a two-fold reduction in the FFT 

length compared to Candel's formulation.  

For sound propagation within the stratified layer, different numerical approaches 

have been developed to take into account horizontal stratification. DiNapoli and 

Deavenport [43] applied a Thomason-Haskell matrix method in their FFP formulation. 

West [39] applied a transfer matrix approach to involve a two-by-two matrix 

multiplication for wave transmission across different layers. Tooms et al. [44] evaluated 

the layer reflection coefficients by a global matrix approach to distribute the pressure at 

each layer in the wave number domain. The results are then transformed back into the 

space domain to obtain the physical sound field. 

 The FFP method provides an accurate representation of the sound field in the 

situation of a range-independent propagation environment (e.g., a horizontally stratified 

atmosphere) for most ranges of interest. Another method is required when horizontal 

variations along the propagation path are modelled.   

c)  The Parabolic Equation (PE) method 
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 In contrast to the FFP method, the PE method is not restricted to sound 

propagation in a horizontally stratified atmosphere or over a homogeneous ground 

surface. The PE method is based on the approximate form of the wave equation, 

parabolic equation. It was first introduced by Leontovich and Fock [45] for 

electromagnetic wave propagation. Since then, the PE method has been widely used in 

various fields ranging from quantum mechanics, optics, seismic wave propagation, and 

underwater acoustics to atmospheric sound propagation. By neglecting the back 

scattering of the sound waves, the basic parabolic equation can be formulated. The 

Green's Function Parabolic Equation (GFPE) method and the Crank-Nicholson Parabolic 

Equation (CNPE) method are the two main formulations. The GFPE method uses a 

transformed Green's function of a point source with Fourier transforms to propagate 

sound. It can use larger range step size, but it included the atmospheric refractive effect 

as a phase factor, which results in the errors if the change in sound speed with height is 

large. Even though it has faster computational speed, it does not allow a high degree of 

flexibility in modelling boundaries. For the CNPE method, a Crank-Nicholson finite 

difference scheme is used for numerical evaluation of each range step. The CNPE method 

requires much smaller steps in range, which increases the computation time. However, a 

more generalized terrain function, and complicated boundaries can be incorporated in 

CNPE. Because of its atmospheric effect, range-dependent effect modeling capabilities, 

and increased flexibility and ease in modeling boundaries, the CNPE formulation will be 

chosen as the basis of the current research.  

 In the 1970s, the standard narrow-angle (Tappert's) [46] and third-order wide 

angle (Claerbout's) [47] parabolic equations were applied successfully to underwater 
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acoustics. The finite difference scheme was always used for the numerical evaluation of 

the extrapolation step for parabolic equations applied underwater acoustics. Later Gilbert 

and White [48, 49] extended the wide angle PE model in predicting outdoor sound 

propagation in a steady atmosphere over locally reacting ground, and realistic 

atmospheric profiles with downward-refracting and upward-refracting cases. Good 

numerical agreement was achieved between the PE and FFP results, e.g. within 1 dB. 

Then the method, together with a two-dimensional atmospheric turbulence model, was 

extended to investigate the sound propagation with atmospheric turbulent effect. The 

method was also applied to outdoor sound propagation for the case with range-varying 

ground impedance. Note that the finite element techniques were applied in the vertical 

discretization for the parabolic equations, and an artificial attenuation layer was added to 

the top part of the sound speed profile to simulate a radiation boundary condition. Later, 

West et al. [50] used the PE model for long range sound propagation in the atmosphere 

with a finite difference numerical solution scheme. A second-order accurate ground 

boundary condition and an upper boundary condition was implemented and described to 

minimize reflections into the computational region. Robertson et al. [51] modeled the 

low-frequency sound propagation over a locally reacting boundary with parabolic 

approximation by an implicit finite-difference method. The continuous work was done by 

Robertson [52] for the sound propagation over impedance discontinuities. A nonlocal 

boundary condition at the upper surface to model a homogeneous, semi-infinite 

atmosphere was used instead of the artificial absorbing layer with artificial attenuation 

(which enlarges the computational domain). In Refs [53, 54], split-step Fourier 

discretization methods are used in the atmospheric sound propagation based on the 
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Green's function. The absorbing layer technique was used for the numerical treatment of 

the outgoing radiation condition in height. Recently, Dougalis and Kampanis [55] 

simulated the underwater sound propagation by applying a finite element method along 

with an analog transformation of coordinates to standard parabolic equation numerically. 

Malbequi [56] and Robertson [57] applied the parabolic equations to the numerical 

simulation of the propagation of sound in the atmosphere over irregular terrain. One of 

their difficulties is a delicate treatment of the interaction with the ground surface. 

Kampanis [58, 59] overcome the difficulty by using a transformation of coordinates, and 

discretization by a finite element method. The PE model was also used to study the sound 

propagation in an inhomogeneous turbulent atmosphere [60]. Coupled with a micro-

meteorological model, a wide-angle parabolic equation with a finite difference 

discretization was used for long range sound propagation over a complex terrain with 

mild topographic variants [61]. The comparison between measurements and predictions 

is presented over a valley with mild slope [62]. Very recently, Kampanis et al. [63] first 

transformed the problem into an orthogonal computational domain, and a linear finite 

element method with the nonlocal boundary condition was then used to compute the 

approximate solution. The Crank-Nicholson scheme was used to march the finite element 

solutions. The overall method was validated by testing on benchmark cases with irregular 

ground surface. The PE model shows its advantages over other methods for sound 

propagation over irregular boundaries and complex environments. 

 In almost all the above references, little attention has been received on the starting 

field. Since PE solves an initial value problem, the initial field is needed at the starting 

range. In general, the Gaussian starting field has been widely used as the starting field for 
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PE models. The reason is that it can be derived from the exact expression for a monopole 

source by applying far-field and small elevation angle approximations. It satisfies the 

requirement of the PE, which is a smooth function, finite at all points, as well as limited 

in energy at large vertical wave number. However, the Gaussian starting field is not good 

for near field prediction due to its far field approximation. Collins [64] developed an 

efficient PE starter called as self-starter. It is based on high-order parabolic 

approximations. And examples in the paper validate its accuracy for problems including 

wide propagation angle, low frequencies, continuous spectrum and so on. Cederberg and 

Collins [65] improved the self-starter using the operator of the split-step pade solution 

[66]. The improved self-starter has several advantages over the original starter involving 

the efficiency at long-range propagation and improved accuracy at relatively short ranges 

of interest. However, there's no standard for the short range of interest. Even for layered 

ground, a self-starter satisfying all boundary conditions at interfaces is harder to find, and 

efficiency will decrease due to the increase amount of the iterations. Hence, an accurate, 

yet efficient starter is required to be used for PE model, especially at short ranges. 

Furthermore, most of previous researches are using the Crank-Nicholson scheme, i.e. 

finite difference to march the vertical solutions in the range domain. In this dissertation, a 

Finite Element method will be used to march the sound field in the range domain, which 

can incorporate the boundary condition easily. 

1.3  Outline of the Dissertation 

 The dissertation is divided into nine chapters. The motivation and objective is 

explained in the first chapter. In Chapter 2, instead of using double saddle-point method 
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with pole subtraction method, a modified saddle-point method is exploited to study the 

sound field from a monopole source above a rigid porous medium. The solution is 

expressed in a form comparable to the classical Weyl-Van der Pol formula, which offers 

a physical understanding of the problem. 

Following Chapter 2, in Chapter 3, the modified saddle-point method is extended 

to predict sound penetration into a semi-infinite rigid porous medium due to a monopole 

source. It is shown that the solution gives higher accuracy of the sound fields even when 

the pole is located in close proximity to the saddle point. Both chapter 2 and chapter 3 

report an endeavor to apply the modified saddle-point method for studying the 

propagation of sound in the vicinity of the non-locally reacting porous medium. 

Chapter 4 explores a heuristic method based on asymptotic solutions by double 

saddle point to remove this singularity and suggests a comparable analytical form as the 

Weyl-Van der Pol formula. The improved formula offers a physically interpretable 

solution and allows accurate predictions of total sound fields above locally/non-locally 

reacting surfaces for all geometrical configurations.  

 Chapter 5 examines the sound fields within a hard-backed rigid porous medium 

due to an airborne monopole source. The accuracy of the asymptotic solutions has further 

been confirmed by comparing with indoor experimental results. Measurement data and 

theoretical predictions have suggested that when the receiver is located near the bottom 

of the hard-backed layer, the reflection of the refracted wave gives rise to a significant 

contribution to the total sound fields. 

In Chapter 6, an asymptotic formula is derived for predicting the sound field from 

a dipole source above and below an extended reaction ground. A double saddle-point 
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method supplemented by pole subtraction is used to evaluate the diffraction integral 

along the steepest descent path. The accuracy of the asymptotic solutions is confirmed by 

comparing them with computationally intensive, but more accurate, numerical schemes. 

Furthermore, the directional effect of the dipole source on each term of the asymptotic 

solutions is interpreted. The asymptotic solutions here are also a good starting field for 

the PE model in the next two chapters. 

Chapter 7 continues the study of sound propagation over rigid porous interfaces 

using the PE method combined with finite element discretization vertically. We define 

the method as the hybrid Parabolic Equation/Finite Element Method (PE/FEM). Linear 

interpolation and cubic interpolation are used for finite element discretization. The 

PE/FEM model is validated by comparing with already published results for benchmark 

cases. It also indicates that the analytical asymptotic solutions derived previously, as a 

starting field in PE/FEM model, give a better prediction than standard Gaussian starter. 

Finally, the PE/FEM model is applied to predict sound propagation over snow cover, and 

good agreements are obtained with experimental data. 

In Chapter 8, the PE/FEM model is extended to cubic PE/FEM model with cubic 

FEM basis function interpolation horizontally as well. Comparison with results for 

benchmark cases validated the derived solutions. It is also shown that the cubic PE/FEM 

model costs more computation time but gives good results of sound prediction not only 

from monopole, but also dipole sources.  

In the last chapter of the dissertation, a summary of the current research is given. 

Comments and future work is suggested. In summary, the dissertation is composed of 

two parts. The first part (chapter 2 to 6), is the study on the analytical solutions for sound 
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propagation over different types of rigid porous interfaces, and the second part (chapter 7 

and 8) is on the numerical solutions. The types of rigid porous interfaces cover semi-

infinite porous layer, hard-backed, and impedance-backed rigid porous layer. The 

analytical asymptotic solutions are not only able to predict the sound field near the 

different types of rigid porous interfaces in homogenous atmosphere accurately, but alsoo 

proved to be an accurate starting field for the numerical PE/FEM. For the numerical 

PE/FEM model, it is shown to be capable to take account of the atmospheric effects in its 

FEM discretization process, which makes it applicable for predicting sound propagation 

in complex atmosphere. Finally, based on the analytical and numerical solutions obtained 

in the dissertation, future work is suggested. 

 

Figure 1.1: Flow chart of the dissertation. 
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CHAPTER 2: A MODIFIED SADDLE POINT METHOD FOR PREDICTING SOUND 

FIELDS ABOVE A NON-LOCALLY REACTING POROUS MEDIUM 

2.1  Introduction 

 The study of sound propagation above a non-locally reacting plane boundary has 

been conducted for many decades. An exact formulation [88], precise asymptotic 

formulas [72, 1] and accurate numerical solutions were developed for the porous half-

space. A more difficult problem involves the presence of a porous layer where the porous 

frame is motionless. The porous layer is often set on a rigid backing that has an 

application for acoustical characterization of the non-locally reacting sound absorbing 

materials from the measured sound fields [89–91]. This technique depends critically on 

the availability of an accurate numerical solution that can be used in the inversion process. 

Allard et al. [92] derived an asymptotic formula for the sound field above a hard-backed 

porous layer. More recently, Li and Liu [3] extended their formula to include the 

prediction of sound fields above an impedance-backed porous layer. 

 Most of the earlier asymptotic analyses were based on a double saddle-point 

method [93] supplemented by the method of pole subtraction [71] for the sound fields 

above a locally reacting or a non-locally reacting plane boundary. This asymptotic 
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solution is apparently singular when the source lies directly above (or below) the receiver 

or when the specific acoustic impedance of the boundary is equal 1. Because of this 

singularity, the derived asymptotic formula cannot be used conveniently in a more 

general application. Hence, one of the motivations of the present study is to develop a 

more robust asymptotic formula for predicting sound fields above a non-locally reacting 

porous medium. 

 There is a less popular asymptotic approach, known as a modified saddle-point 

method developed by, Ott [82], Pauli [83] and Clemow [84]. This asymptotic method was 

subsequently used by Kawai et al. [85] who derived the monopole sound-field 

propagation above a locally reacting plane. Chandler-Wilde and Hothersall [86] 

generalized the procedure to give the solution for the cylindrical-wave reflection in the 

form of an asymptotic series with an accurate estimation of the error bound.  

 The present chapter aimed to use the modified saddle-point method for 

developing an asymptotic series to predict the sound fields above three types of non-

locally reacting porous media: half-space, hard-backed and impedance-backed rigid 

porous layers. In section 2.2, the derivation of the asymptotic solution is presented, and it 

is shown that the solution is expressed in a form comparable to the classical Weyl-Van 

der Pol formula, which offers a physical understanding of the problem.  

 In section 2.3, the asymptotic solutions are validated by comparing with those 

obtained by other computationally intensive, but more accurate, schemes for different 

source/receiver configuration. Finally, a summary is given in section 2.4. 
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2.2  Theoretical Formulation 

2.2.1  An Integral Formulation 

 Figure 2.1 shows the geometrical configuration of the problem for determining 

the sound fields due to a monopole source above a flat porous medium with a layered  

structure. The time dependent factor,
i te 

, is assumed and suppressed throughout the 

analysis. The wave number k, the density , and, the speed of sound c in the upper 

medium will be used in the following analysis. An axi-symmetric solution is sought 

where the sound fields can be conveniently split into three terms as follows [3]: 

1 2

1 24 4

ikR ikR

D

e e
p p

R R 
   .               (2.1) 

 

Figure 2.1: Illustration of a monopole source/receiver system above a layer of a porous medium. 
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Figure 2.2: Illustration of the original integration path C and the steepest descent path C. 

 The first and second terms of Eq. (2.1) are the sound fields due to the source and 

its image above a rigid ground with the respective distances of R1 and R2. The third term 

pD is the diffraction of sound by the flat porous surface. It is dependent on the acoustical 

properties and the thickness of each layer of the porous medium. The diffraction term can 

be represented in an integral form as 
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where the function  ( )m   is referred as the total admittance of the flat interface where 

the superscript (m) is used to denote the type of media. The integration variable   can be 

interpreted as a polar angle representing the incident angle of the reflected wave 

(measured from the vertical z-axis). The integration path C, shown in Figure 2.2, varies 
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from 2 i    to 2 i    and passes through 2 , the origin, the saddle point at   

and 2  in the complex -plane. The saddle point is denoted as Qs and the pertinent 

points at 2  and 2 , along C are marked, respectively as Q1 and Q2, see Figure. 2.2.  

 The oscillatory function, a(), is given by 

2( ) cos( )a ikR     ,            (2.3a) 

and the variable G() is a non-oscillatory term given by 

 (1) sin
0( ) sin ikrG H kr e    .          (2.3b) 

where (1)
0H  is the zeroth order Hankel function of the first kind, r is the horizontal range 

between the source and receiver, and  is the polar angle of the reflected wave given by   

1tan s rz z

r
   
  

 
,                          (2.4) 

with zs and zr as the source and receiver heights. For a ‘ground’ with a layered structure, 

m = –2 is taken as a perfectly rigid surface, m = –1 as a locally reacting surface of 

specific normalized admittance 1, m = 0 as a semi-infinite extended reaction porous 

medium. The extended reaction (either semi-infinite or layered) medium has complex 

density of 1, complex sound speed of c1 and complex propagation constant of k1. With 

these notations for m, it is clear that the lower medium is non-locally reacting when m  0.  
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Table 2.1: The total admittance and pole locations for different porous media. 

m Type of medium Total Admittance, (m)() 
Pole location, 

( )cos m
p

 

-2 Rigid 0 No pole 

-1 Locally reacting 1 – 1 

0 Extended reaction 2 2sinN n   
    2 21 1n   

 

1 Hard-backed  tani N kNd
 

No closed form solution 

2 Impedance-backed  
 

2

2

tan

1 tan

i N kNd

i kNd N

 

 




 

No closed form solution 

 

 Table 2.1 lists other types of non-locally reacting porous media and their 

respective total admittances that will be addressed in the analyses. In Table 2.1, the 

density ratio  
1

/   , the index of refraction  1/n c c  and the specific normalized 

admittance 2 for the second layer are used to characterize its acoustical properties. The 

variable N is used to denote the following function: 

  2 2sinN n    ,                       (2.5)  

which has been used in Table 2.1 for calculating the total admittance,  ( )m  . We also 

define the specific normalized characteristic admittance of the first layer by 1 (= n). 

 Brekhovskikh [34] explained that there were two branch points for N() denoted 

by B marked in Fig. 2.2. They are determined from Eq. (2.5) to give 

sin B n    .                          (2.6) 
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For the non-locally reacting ground (m  0), the kernel function of Eq. (2.2) can have two 

values for each . As a result, a two-sheeted Riemann surface can be constructed where 

the upper sheet is defined as   Im 0N    and the lower sheet is identified by 

  Im 0N   . The integration path for Eq. (2.2) resides in the upper sheet of this 

Riemann surface which implies that the positive root of N(), i.e.   2 2sinN n    , 

is selected in computing ( ) ( )m   for the non-locally reacting medium. The contour 

around this branch cut is represented by CB shown in Figure. 2.2. 

 The next step involves indenting the integration path from C to the steepest 

descent path C which is defined in the complex -plane by    

   cos cosh 1u v    ,                       (2.7a) 

where u and v are real numbers which represent the real and imaginary part of , i.e.  

u iv   .             (2.7b) 

The steepest descent path C passes through the saddle point Qs at  =  as shown in 

Figure. 2.2. Attenborough et al [72] showed that CB will not contribute to the closure 

between C and C for all source/receiver geometries provided that Re(n) > 1. The known 

properties of outdoor ground surfaces and most sound absorption materials can readily 

meet this condition, i.e. Re(n) > 1. With this closure, 

 2 res P

C C

i K


     ,             (2.8) 

where  res PK  is the residue from any poles within the closed contours, C and C. 

Hence, the diffraction term given in Eq. (2.2) can be recast as, 
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 2 resD Pp i K     ,             (2.9) 

where the integral () is defined by  

( )
( )

( )

sin ( ) ( )

4 cos ( )
a

m

m

C

ik G
e d



   


   


 
 ,         (2.10) 

and,  res PK  in Eq. (2.9) can be determined straightforwardly by the calculus of residues 

if the pole locations, p say, are known. The pole locations can be found by setting the 

denominator of the kernel function in Eq. (2.2) to zero, i.e. 

( )cos ( ) 0m     .           (2.11) 

Suppose ( )m
p  is the solution of the above transcendental function which gives the 

information of the pole location in the complex -plane. The subscript p is used to denote 

the corresponding parameters at the pole location.  

 For the semi-infinite extended reaction ground, the pole locations can be 

determined by substituting (0) ( ) N    (see Table 2.1) in Eq. (2.11). Its solution can be 

expressed as a pair of trigonometric functions [72, 3]: 

 ( ) ( ) ( )cos :m m m
p p p      ,         (2.12a) 

and 

2( ) ( )sin 1m m
p p       ,         (2.12b) 

where m = 0 and ( )m
p  is known as the apparent admittance for the semi-infinite porous 

medium.  

 There is a total of 4 poles in the complex -plane because there are two branch 

points for N which appears in Eq. (2.11). Only two of these four poles are of interest in 
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the present study because they reside in the upper sheet of the Riemann surface. For the 

known properties of most outdoor ground surfaces and sound absorption materials, 

experimental data [94-96] suggest, firstly that the magnitude of the density ratio is small, 

i.e., || << 1. Secondly, the sound speed in the porous media is faster than that in air and 

the porous media are dissipative, i.e. Re (n) > 1 and Im (n) > 0. Thirdly, the ground 

surfaces/porous media have a stiffness-type reactance, i.e. Im (1) < 0, Im (2), Im [ ( )m
p ] 

< 0, where the parameter ( )m
p  can be interpreted as the apparent admittance of the non-

locally reacting porous medium. Consequently, these properties place a further restriction 

on the solution for Eq. (2.11) such that a finite number of poles are located near the 

integration paths C and C for the non-locally porous medium.  

 In the case of the semi-infinite extended reaction medium, Attenborough et al [72] 

showed that there is only one pole which can be given in terms of the apparent 

admittance by 

   ( ) 2 21 1m
p n       .          (2.12c) 

For hard-backed (m = 1) and impedance-backed (m = 2) porous media, Eq. (2.11) 

becomes 

 cos tan 0i N kNd   ,          (2.13a) 

and 

 
 

2

2

tan
cos 0

1 tan

i N kNd

i kNd N

 


 


 


,        (2.13b) 

respectively. A careful assessment of these two equations indicates that the number of 

zeros is infinite because of the presence of the trigonometric term. Each of these poles is 
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associated with the free mode of a layered structure for m = 1 and 2. These extra modal 

contributions have led to a nonspecular reflection effect caused by the interaction of a 

light beam with an interface between two transparent media. This is often referred as a 

beam displacement phenomenon which was proved theoretically and verified 

experimentally by Goos and Hanchen [97] in the late 1940s. The analogous beam 

displacement effect can be observed in the propagation of acoustic waves: it was 

confirmed theoretically [98] and experimentally [99] in the 1950s for an ultrasonic ray 

incident on a liquid/solid interface.  

 In both situations mentioned above, the denominators of the respective kernel 

functions appeared in the diffraction integral [cf Eq. (2.2)] are more complicated than the 

equation shown in Eq. (2.11). The presence of these analogous modal poles has given rise 

to the extra contributions of the reflected fields due to the electromagnetic/acoustic beams. 

Detailed theoretical analyses of the bounded acoustic beams can be found in Sect. 14 of 

Ref. [34].  

 Here, the primary objective of the present study is to investigate the propagation 

of audio sound waves above a layered porous medium. A modified fluid approach with a 

complex sound speed and propagation constant [100] is used to model outdoor ground 

surfaces or a layer of sound absorption materials. Extensive experimental evidence and 

numerical analyses [89-92, 101, 102] have suggested that the modal poles for the layered 

porous medium are usually located far from the saddle point. Their contributions to the 

reflected sound fields are rather limited.  Furthermore, Allard and his co-workers 

indicated that there was only one pole lying close to  = /2 for a hard-backed porous 

layer. Experimental evidence [87] also supports the view that an impedance-backed 
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porous layer has the comparable property. In light of these studies, it is postulated that 

there is only one pole lying near the saddle that contributes significantly to the diffraction 

term.  

 One of the necessary conditions for the existence of the lateral waves is that the 

non-locally reacting porous medium has Re(n)  < 1 [34, 103].  As a result, the lateral 

waves cannot be generated because Re(n) is normally greater than 1 for most outdoor 

ground surfaces and sound absorption materials. On the other hand, the leaky waves are 

difficult, if not impossible to detect in a porous medium with high damping losses [104]. 

In most outdoor ground surfaces and sound absorbing materials, the damping loss is 

indeed very high because Im(n) is generally much greater than 0. Hence, it is reasonable 

to further stipulate that neither lateral waves nor leaky waves will be excited for the 

propagation of the audio sound waves above a non-locally reacting porous medium in the 

present study. 

 With the exclusion of the poles due to (1) the free mode of a layered structure, (2) 

lateral waves, and (3) leaky waves, the contribution from the second term of Eq. (2.8) is 

therefore limited to the maximum of one pole only (marked as P shown in Figure. 2.2). It 

is often referred as the surface wave pole where its contribution can be determined by 

solving Eq. (2.11) for its root, see also Eqs. (2.13a) and (2.13b) for hard-backed and 

impedance-backed porous layers respectively. These transcendental equations cannot be 

solved analytically leading to a closed form solution but the pole location can be tracked 

numerically by a standard Newton-Raphson method [90, 91, 3]. The numerical details for 

solving Eq. (2.11) to obtain ( )m
p  can be found elsewhere [3] and will not be repeated 

here. Substitutions of their values into Eqs. (2.12a) and (2.12b) give a unique numerical 
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parameter for the apparent admittance, ( )m
p . It will then be used in Eqs. (2.9) and (2.10) 

to determine res (Kp) and  respectively that furnishes a numerical solution for the 

diffraction wave term pD in Eq. (2.9).  

 To facilitate the analysis, it is convenient to introduce a complex variable W that 

is related to  by 

2
22 ( )aW ikR   .           (2.14a) 

Substitution of Eq. (2.3a) in Eq. (2.14a), application of differential calculus, and some 

algebraic manipulations furnish the following expression: 

2
2 2

1

sin( ) 4

d W

dW ikR ikR W



 
 

 
.       (2.14b) 

Hence, change of the variable from  to W in Eq. (2.10) leads to  

 
2

2( ) 2

4
W

ikR
m W

C

ike
W e dW




   ,         (2.15a) 

where the kernel function  ( )m W  is given by 

 
 

 

( )
( )

2 ( )
2

sin ( )

4 cos

m
m

m

G
W

ikR W

   

  
 

   

   ,      (2.15b) 

and  in the above equation can be transformed to W according to Eq. (2.14a). The 

integration path in the complex W-plane, which is denoted as CW, can also be determined 

by using Eq. (2.14a). This specific choice of W given in Eq. (2.14a) will become more 

apparent when the integral of Eq. (2.15a) is evaluated.  It is possible to trace CW by 

introducing the respective real and imaginary parts for W as follows: 

W X iY    ,             (2.16) 
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where X and Y are real variables. Making use of Eqs. (2.7b), (2.14a) and (2.16), we can 

then derive the corresponding expressions for X and Y in terms of u and v to confirm 

 2 1 cos coshX Y kR u v     ,         (2.17a) 

and  

2 2

2

1
sin( )sinh

2

Y X
u v

kR



  .         (2.17b) 

 

Figure 2.3: An illustration of the integration path CW and the steepest descent path CX in the complex 
W-plane for various angle of incidence, .  

For a given path C in the -plane, X and Y can be determined by solving the 

above pair of non-linear simultaneous equations for CW. Figure 2.3 shows the integration 

path for CW in the complex W-plane for various incident angles of 30,  45,  60,  90 

respectively. Along the integration path CW in the complex W-plane, the corresponding 

points (Q1 and Q2), can be determined from Eqs. (2.17a) and (2.17b) to give 

60 

45 

90 

30 

 2ReX W kR

 2ImY W kR

XC
sQ

WC

( )m
pW
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 2 (1 sin ) 1kR i    and  2 (1 sin ) 1kR i  , respectively. The line joining Q1 and 

Q2 passes through the saddle point (Qs) which is also the origin of the complex W-plane.  

 By obtaining the solution from Eq. (2.11) for the pole location in the -plane (i.e. 

( )m
p ) and substituting it into Eq. (2.14a), we can readily determine the pole location in 

the W-plane. The pole location, which is denoted as ( )m
pW , can be expressed in terms of  

and ( )m
p  as follows: 

( ) 2 ( ) ( ) 2
2[ ] 2 1 cos 1 [ ] sinm m m

p p pW ikR        
 

  .       (2.18) 

Because of the choice of W given in Eq. (2.14a), it is clear that the saddle path (marked as 

CX in Fig. 2.3) that lies along the real axis of W can be identified, i.e., the exponential 

function exp (–W2) has a constant phase along the path with Y = 0. This path corresponds 

to saddle path C in the complex -plane shown in Figure. 2.2.  

 When the path is changed from CW to WX , the second term of Eq. (2.9) is the 

contribution from the pole ( )m
p  if it is crossed. This term, which is known as the surface 

wave contribution, can be evaluated by the calculus of residues to yield 

    
( )

( )res Im
2

m
m

P p

P
K H W

i
  ,         (2.19a) 

where H, which is the Heaviside step function with a real argument, is defined by 

 
1        if  0 

0       othereise

X
H X

 
 


,         (2.19b) 

the contribution from the pole, ( )mP , is determined by, 
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 

( )( )cos( ) (1) ( )
0( )

( ) ( )

( sin )

2

m
s r pik z zm m

p pm

m m
p

H kr ek
P

E


 





  ,        (2.19c) 

with the denominator of the expression represented by, 

   ( ) ( )1
1 [ ]

sin
m md

E
d

  
 

  .         (2.19d) 

In Eq. (2.19a), the argument of the Heaviside function is used to determine whether the 

pole has been crossed when the integration path has been indented. In other words, by 

deforming the path from CW to CX, the diffraction integral given in Eq. (2.11) can be 

recast as 

    
2

2( ) 2 ( ) ( )Im
4

ikR
m X m m

D p

ike
p X e dX H W P









    ,       (2.20) 

where W in the integrand of Eq. (15a) is set as X along the saddle path and  ( )m X  can 

be determined by Eq. (2.15b) with W replaced by X.  

2.2.2  A Classical Asymptotic Solution by the Double Saddle-point Method 

The double saddle-point method supplemented by the pole subtraction method is 

often used to approximate the integral of Eq. (2.20). This will then provide a closed form 

asymptotic expression for pD. The details of the asymptotic analysis have been provided 

elsewhere [3]. A summary of the procedures and the final solution will be presented as 

follows. The first term of Eq. (2.20) may be approximated by replacing it with a reference 

integral in order to handle the singularity of the integrand more effectively. A correction 

term is then added to this approximate solution for improving its overall accuracy. This is 

also known as the pole subtraction method which is frequently found in numerical 



34 

quadratures for eliminating a removable singularity in an integrand [104]. In the present 

study, the reference integral, Iref, is specified by 

 
 

2

2

( ) 2

( )( )4

m X
p pikR

ref mm
pp

Gik e
I e dX

X WE

 

 

 



  
     

    
 ,       (2.21a) 

where  ( )m
m pE E  . Noting the integral representation of the scaled complementary 

error function, see Eq. (7.1.4) in Ref. [73], Iref can be simplified to 

  
( ) 2[ ] ( )

( ) ( ) ( )
2 ( )

erfc( )
2 2 Im

sin sin

m
pw m

pm m m
ref p pm

m p

e iw
I i ikR H W P

E
 

 




   ,    (2.21b) 

where erfc( ) is the complementary error function and ( )m
pw  is defined as  

( ) ( ) ( )
22 2 sin ( ) 2m m m

p p pw W ikR       .       (2.21c) 

The term ( )m
pw  in Eq. (2.21b), which is referred as the numerical distance [3, 20, 71, 96], 

is customarily used to replace Wp in the complementary error function.  

 Together with the reference integral Iref and a correction term m, it is possible to 

write 

 
2

2( ) 2

4

ikR
m X

ref m

ike
I X e dX









     .        (2.22a) 

Hence, m can be obtained by rearranging Eq. (2.22a) and substituting Eq. (2.21a) into 

the resulting equation to yield 

 
 2

2

( )

( ) 2

( )4 [ ]

mikR
p pm X

m m
m p

Gike
X e dX

E X W

 









 
   

  
 .     (2.22b) 

Making use of Eq. (2.21b), the diffraction term in Eq. (2.20) can now be rewritten in 

terms of m as 
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( ) 2[ ] ( )

( )
2 ( )

erfc( )
2 2

sin sin

m
pw m

pm
D p mm

m p

e iw
p i ikR

E
  

 




    .        (2.23) 

It is remarkable that the Heaviside step function terms shown in Eqs. (2.20) and (2.21b) 

have the same magnitude but of opposite signs. Their sum leads the cancellation of this 

term in Eq. (2.23). It is, somewhat, surprising to note that the surface wave term appear to 

‘vanish’ in the final expression. But a close scrutiny of the first term of Eq. (2.23) 

indicates that the contribution from the surface wave pole is actually present implicitly in 

the complementary error function term. Hence, the surface wave will still be excited if 

 ( )Im 0m
pW  . Attenborough and his co-workers [20, 96] discussed the region in the 

upper medium (air) where surface wave may be observed for a given acoustical property 

of a locally reacting ground surface. The same analysis will not be repeated here for 

brevity. 

 The substitution of Eq. (2.23) into Eq. (2.1) and manipulation with the resulting 

expression provide an analytical solution for approximating the total fields above a non-

locally reacting porous medium: 

( ) 2

1 2
[ ] ( )

( )
2 ( )

1 2

erfc( )
2 2

4 4 sin sin

m
pw mikR ikR

pm
p mm

m p

e iwe e
p i ikR

R R E
  

   




    ,     (2.24a) 

where m  [the integral in Eq. (22b)] can be computed numerically along the steepest 

descents path by using a Gaussian quadrature [35]. Alternatively, it can also be 

approximated asymptotically for the two terms in the square bracket. Details for the 

derivations of m with different types of ground can be found in Ref. [8]. The asymptotic 

solution is given below: 
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 2

( ) ( )
( )

( )( )
2

sin sin

2 cos2[1 cos( )]

m m
mikR p m p

m mm
p

Ee

R



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

   

 
  
    

  ,     (2.24b) 

where the effective admittance ( )m
  and the apparent admittance ( )m

p  are defined, 

respectively, by 

 ( ) ( )m m
  

  


    ,           (2.24c) 

and 

 ( ) ( )

p

m m
p  

  


   ,           (2.24d) 

with  ( )m   given in Table 2.1 for different types of ground surfaces. These two 

admittances can be calculated straightforwardly. 

 For a locally reacting ground (m = –1), it is noteworthy that three valuable 

approximations [71] may be made:  

(i) ( )sin sin 1m
p    ,          (2.25a) 

(ii)  ( )
2 22 cosm

pw ikR    ,        (2.25b) 

(iii) 0m              (2.25c) 

where these assumptions are valid for near grazing propagation of sound waves above a 

relatively hard ‘ground’. With these approximations, Eq. (2.24) can be simplified to the 

well-known Weyl-Van der Pol formula [11] as follows: 

 
1 2

( )

1 2

1 ( )
4 4

ikR ikR
m

p

e e
p V V F w

R R
 

 
      ,         (2.26) 

where  V  is often referred as the plane-wave reflection coefficient specified by 
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2

2

cos

cos
V

 

 





,            (2.27) 

( )m
pw  is the numerical distance defined by Eq. (2.24b) and ( )( )m

pF w  is recognized as the 

boundary loss factor: 

 
( ) 2[ ]( ) ( ) ( )( ) 1 erfc
m

pwm m m
p p pF w i w e iw


     .         (2.28) 

This approximate expression avoids the apparent singularity when   0 and/or 2   0 

at the expenses that the prediction of the diffraction wave term becomes inaccurate when 

the source is very close to the receiver. However, it is a less important issue because the 

near field sound pressure is normally dominated the first two terms of Eq. (2.1). Hence, 

Eq. (2.26) gives accurate predictions of the total sound fields above a locally reacting 

ground for all ranges. 

 Extensive numerical and experimental analyses [3, 89-92, 87, 100-102] have 

revealed that the approximations suggested in Eq. (2.25a) – (2.25c) are not suitable for 

predicting the sound fields above a non-locally reacting medium. In this case, all terms in 

Eq. (2.24) are needed in order to obtain an accurate prediction of the sound fields for kR2 

greater than about 1 [3]. It is apparent from Eq. (2.24) that the formula is unbounded 

when   0, i.e. the receiver lies directly above and below the receiver. Equation (2.24) 

also becomes singular when ( )m
p   0, i.e. for a very soft ‘ground’. 

 An in-depth analysis may be conducted to remove the above restrictions but these 

apparent singularities render Eq. (2.24) to be inconvenient to use for a more general 

application. As a result, an objective of the present study is to develop an alternative 

asymptotic formula that will preserve the form of the solution given in Eq. (2.26). More 
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importantly, the improved formulation will be applicable at all ranges for predicting the 

sound fields above the non-locally reacting porous medium. 

2.2.3  An Improved Asymptotic Solution – a Modified Saddle-point Method 

 In this section, a modified saddle-point method [83, 71] is exploited for deriving a 

uniform asymptotic solution for the diffraction wave term that is free from singularities. 

This asymptotic method starts by expanding  ( )m W  about the saddle-point W = 0. A 

direct Taylor’s expansion is not uniformly valid because the radius of convergence 

vanishes when |(m)|  0 and   /2. It is sought to replace   ( )m W  by  ( )m W  

where 

     ( ) 2 ( ) 2 ( )[ ]m m m
pW W W W    ,          (2.29) 

Thus, the Taylor expansion may be applied for  ( )m W  around the saddle-point to 

confirm 

 
( )

( )

0 !

m
jm j

j

W W
j





 
             (2.30a) 

where  

( )

0

( )
j

m m
j j

W

d
W

dW


    .         (2.30b) 

It is important to re-emphasize an important point as follows. Experimental and 

numerical evidence have suggested that there is only one pole located in the vicinity of 

the saddle point at W = 0. Other poles are located further away from the saddle point that 

causes ( )m W  to be an entire function in the vicinity of the saddle-point and the pole 

location in the W-plane. This function, can therefore be expanded in a Taylor series given 
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by Eq. (2.30a) where the first few terms of the series are finite and bounded in most, if 

not, all situations for the non-locally medium. This is a vital assumption because only a 

handful of leading terms are typical needed in most asymptotic analyses. It is also notable 

that the choice of the form given in Eq. (2.29) enables the provision of a rigorous error 

bound of the asymptotic analysis [86]. 

 The determination of ( )m W , ( )m
j  and the subsequent derivation of the 

asymptotic formulas will be provided in Appendix A for clarity and completeness. We 

only provide the final solution below for succinctness. Replacing  ( )m W  with its 

Taylor series, integrating terms by terms and combining the Heaviside step function term, 

pD in Eq. (2.20) can be expressed in the following form:  

 
2

( )
2 ( )

1
04 !( 4)

mikR J
j m

D j p Jj
j

ke
p I iw B

j




 
  


   ,         (2.31) 

where the integral series Ij(z) is given by Eqs. (A13) and (A14) and an error term, BJ+1, 

has been added explicitly in Eq. (2.31). It is based on Ref. [86] where the modified 

saddle-point method has been used to obtain an asymptotic formula for the sound field 

above a locally reacting surface due to a line source. It has been shown that the 

magnitude of the error term, |BJ+1|, is bounded and has an order proportional to (kR2)
-(J+3/2). 

Note also that he explicit contributions from the surface wave pole have been cancelled 

out exactly by the second term of the square bracket of Eq. (A10). These surface wave 

pole contributions are absorbed implicitly in Ij given in the series of Eq. (2.31). This 

condition is not identified by Kawai et al [85] and Chandler-Wilde and Hothersall [86] in 

their discussions of the relevant problems. 
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 Retaining the first two terms in the series, i.e., J is set to 1 in Eq. (2.31), 

substituting Eq. (2.15b) into Eq. (2.29), obtaining  ( )m W  and its second derivative at 

W = 0 from Eqs. (A2), (A3), and (A4) – (A6), replacing the Hankel function with its 

asymptotic approximation: 

 
1
2

(1)
0

2 izH z e
i z

 
  
 

  ,           (2.32) 

and simplifying the resulting algebraic expression, we can confirm an asymptotic formula 

for pD as 

  
2( )

( ) ( )
2( )

2

1
cos 2

m ikR
m m

D pm

e
p A F w B

R






  


  


,       (2.33a) 

where ( )mA  can be treated as augmented diffraction factor 

2
( ) ( ) ( )

2
m m m

pA b w ikR     .         (2.33b) 

and  ( )mb  in Eq. (2.33b) is defined in Eq. (A4) in Appendix A, ( )( )m
pF w is referred as the 

boundary loss factor given by Eq. (2.28) and |B2| is the error bound of the approximation 

which has an order of (kR2)
-5/2. 

From Table 2.1, we have ( )
1

m   for a locally reacting surface, i.e. m = –1. 

Hence, it is possible to show that 

 
 

1( )

2

1

2 1 cos

cos

mb
 

 





,            (2.34) 

where the details of its derivation are given in Appendix B. Substitution of Eq. (2.34) into 

Eq. (2.33a) leads to an asymptotic formula for calculating the diffraction wave term 
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above a locally reacting surface. This expression is identical to that derived by Kawai et 

al. [85]. 

 It is now possible to obtain the asymptotic formulas for computing the diffraction 

wave terms for different types of non-locally reacting porous media, with m = 0 for an 

extended reaction medium, m = 1 for a hard-backed layer and m = 2 for an impedance-

backed layer. However, the expressions for b(m) become increasingly more complicated as 

m increases. The details of these expressions are demoted to Appendix B for information. 

The sound field above an interface, either locally reacting or non-locally reacting, can be 

derived by substituting Eq. (2.33a) into Eq. (2.1) to yield 

1 2
( )

2

1 24 4

ikR ikR
me e

p Q B
R R 

   ,           (2.35) 

where the last term of Eq. (2.35), B2, is the error bound of the asymptotic formula that has 

an order of 5/2
2( )kR  , see Eq. (2.31). The parameter, Q(m), is the spherical-wave reflection 

coefficient given by 

  2
( ) ( ) ( ) ( ) ( ) ( )

21 ( )m m m m m m
p pQ V V b w ikR F w 

      ,      (2.36a) 

 ( )mV  is referred as the plane-wave reflection coefficient specified by 

( )
( )

( )

cos

cos

m
m

m
V 




 

 





,          (2.36b) 

( )m
 , which is known as the effective admittance of the medium [30], is determined by 

using Eq. (2.24c), ( )mw  is the numerical distance defined by Eq. (2.18), and ( )( )m
pF w  is 

the boundary loss factor that can be calculated by using Eq. (2.28).  
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 Equation (2.35) supplies an asymptotic formula for predicting the sound fields 

above a non-locally reacting porous medium. It is expressed in a closed form that can be 

used to compute the sound fields readily by using standard mathematical functions 

available in many commercial software packages.  

2.3  Comparisons and Validation of the Asymptotic Formulas 

 In the last section 2.2, the modified saddle-point approach has been used to derive 

the asymptotic formula for the sound fields above a layered porous medium. In summary, 

the asymptotic method leads to an analogous expression for the total sound field above a 

layered medium. It can be approximated asymptotically as 

   
1 2

( ) ( ) ( ) ( )

1 2

1
4 4

ikR ikR
m m m m

p

e e
p V V A F w

R R
 

 
        ,        (2.37) 

where the augmented diffraction factor A(m) is given in Eq. (2.33b). Comparing Eq. (2.37) 

with Eq. (2.26), it is apparent that the expression for predicting the sound fields above a 

non-locally reacting porous medium can be written in the classical Weyl-Van der Pol 

form. Its error bound has an order of 5/2
2( )kR  . The form of the solution given in Eq. 

(2.37) has not been identified in previous publication [85, 83] when the modified saddle-

point was applied to derive an asymptotic solution of the related problems.   

 An examination of Eq. (2.37) indicates that the first term is the direct wave 

contribution. The second term is the contribution from ground reflected waves which 

consists of two components as shown in the square bracket of Eq. (2.37). Its first 

component is the plane wave reflection term where effective admittance of the non-

locally medium, ( )m
  is used in the plane wave reflection coefficient. The second term of 
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the square bracket has been referred as the ground wave, which is comparable to the 

theory of AM radio reception. Note also that the presence of the A(m)
 in the ground wave 

term.  More interestingly, the ground wave term consists implicitly a surface wave 

component and its detail discussions can be found in Refs. [20, 96]. 

 

Figure 2.4: A comparison of solutions with Q  versus horizontal separation. (a): extended reaction 

porous medium, (b): hard-backed layer, (c): impedance-backed layer. The thickness of the hard and 
impedance layers is 0.05 m. The impedance-backed plane is with an effective flow resistivity of 300 
kPa s m-2. The Miki empirical model was used for the porous layer with the effective flow resistivity 

of 80 kPa s m-2, tortuosity of 1.1, and porosity of 0.9.  

For the present study, we are interested to validate the accuracy of Eq. (2.37) for 

different types of non-locally reacting grounds. Indeed, it is particularly convenient to 

show a direct comparison of the numerical results according to the asymptotic formula 

with those predicted by the accurate wave-based solution. The wave-based solution is 

developed as a combination of the fast field program (FFP) for the far-field solutions and 
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a direct numerical integration approach in the wavenumber domain for the near-field 

solutions. This hybrid approach is referred as the integrated exact solution (IES), the 

details of which is provided in Ref. [1] and will not be duplicated here. 

 To enable prediction of sound fields above a non-locally reacting porous medium, 

the Miki empirical model [14] is used to describe its acoustical characteristic. The index 

of refraction (propagation constant) and density ratio of a rigid porous medium can be 

determined as follows: 

0.618 0.6181 0.109( / ) 0.160 ( / )e en q f i f      ,       (2.38a) 

and 

10.632 0.632

2 0.618 0.618

1 0.07( / ) 0.107 ( / )

1 0.109( / ) 0.160 ( / )

e e

e e

f i f

q f i f

 


 


    
   

,      (2.38b) 

where q is tortuosity,  is the porosity, and e is the effective flow resistivity of the 

porous medium. Substituting Eqs. (2.38a) and (2.38b) into Eq. (2.12c), an analytical 

expression to calculate ( )m
p  for the semi-infinite rigid porous medium can be obtained. 

On the other hand, use of them in Eqs. (2.13a) and (2.13b) can lead the numerical 

solutions of ( )m
p  for the respective rigid porous layers. 

 Since the total sound field above a layered porous medium is dependent on Q(m), it 

is more illustrative to compare the asymptotic solution for Q(m) with the respective 

numerical solution obtained by the IES. Preliminary calculations indicate that the 

accuracy of Q(m) is dependent on the source and receiver heights. Its agreement with IES 

is excellent in all cases except when both the source and receiver are very close the 

interface and are separated at a small horizontal distance. To highlight the accuracy of the 
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modified saddle-point asymptotic solution, the source height is chosen as 0.2 m and the 

receiver height as 0.3 m above the layered porous medium in the following figure. 

Defining Q(m) as the logarithmic ratio of the IES and the asymptotic solution: 

 
 

( )

( ) IES
10 ( )

MSP

10 log

m

m

m

Q
Q

Q

 
  
  

   ,          (2.39) 

we show their comparisons in Figure 2.4  where the source is placed 0.2 m above a 

porous medium.  
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Figure 2.5: The Excess Attenuation (EA) versus horizontal separation for the receiver located at 0.02 
m and source at 0.04 m above the interface. The Miki empirical model was used for the porous layer 
with the effective flow resistivity of 50 kPa s m-2, tortuosity of 1.1, and porosity of 0.9. Solid line: 

modified saddle-point; circles: Integrated Exact Solution (IES). 

 Figure 2.4 displays three plots of Q(m) versus the horizontal range for low, mid, 

and high frequencies at 100 Hz, 1 kHz, and 10 kHz, respectively for all three different 

types of non-locally reacting porous media. At such low source/receiver heights (0.2 m 

and 0.3 m, respectively), the agreement of the modified saddle-point solutions with IES 
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are excellent when the horizontal range r is greater than about 0.3 m. This has been 

illustrated by the fact that the predicted Q(m) are very close to zero when r  0.3 m.  

Numerical simulations (not presented here for brevity) indicate that these agreements are 

generally better at a shorter range when either the source or receiver is elevated from the 

layered medium. Nevertheless, the predictions according to the method start to deviate 

from that predicted by the IES if the source and receiver get closer (i.e.,   0). This 

apparent inaccuracy is reflected by the fact that when   0 and at the same horizontal 

range, Q(m) is generally smaller for a higher source frequency. This is due to the fact that 

the error bound of the asymptotic analysis is given by B2, which has a magnitude 

proportional to (kR2)
-5/2.  
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Figure 2.6: Same as Fig. 2.5 except for a hard-backed layer, which has the same properties but it has a 
layer thickness of 0.05 m. The receiver is located at 0.1 m, and the source is at 0.2 m above the 

interface. 
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Figure 2.7: Same as Fig. 2.5 except for an impedance-backed layer, which has the same properties 
with a layer thickness of 0.05 m and with an effective flow resistivity of 300 kPa s m-2 at the 

impedance plane. Here, the receiver is located at 0.5 m and the source is at 1 m above the interface. 

 This level of accuracy for calculating Q(m) guarantees that the prediction of the 

total sound fields is excellent for all types of non-locally reacting porous media discussed 

in the present study. Figures 2.5 to 2.7 show the plots of an EA function against the 

horizontal range for an extended reaction porous medium, a hard-backed layer and an 

impedance-backed layer, respectively. Here, in these figures, EA is defined as  

1010log
4ikr

p
EA

e r

 
  

 
.           (2.40) 
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Figure 2.8: The Excess Attenuation (EA) versus the frequency for the receiver located at 0.02 m and 
source at 0.04 m above the interface. The Miki empirical model was used for the porous layer with the 

effective flow resistivity of 80 kPa s m-2, tortuosity of 1.1, and porosity of 0.9. Solid line: modified 
saddle-point; circles: Integrated Exact Solution (IES). The horizontal separation is set to be 0.01 m. 
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Figure 2.9: Same as Fig. 2.6 except for a hard-backed layer, which has the same properties but it has a 
layer thickness of 0.05 m. The receiver is located at 0.1 m and the source is at 0.2 m above the surface. 
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Figure 2.10: Same as Fig. 2.6 except for an impedance-backed layer, which has the same properties 
but it has a layer thickness of 0.05 m and with an effective flow resistivity of 300 kPa s m-2 at the 

impedance plane. Here, the source is located at 0.5 m and the receiver is at 1 m above the interface. 

 In addition, the same acoustic parameters as in Figure 4 are used to prepare the 

graphs. In Figs. 2.8 to 2.10, the EA spectra are presented where the same acoustic 

parameters as Figs. 2.5–2.7 are used. However, the source/receiver geometries are 

different in these figures for a wide range of conditions for small kR2 (see captions of 

each figure for these geometrical configurations). All these numerical results confirm that 

the numerical solutions according to the method agree very well with the IES that provide 

validations of the asymptotic formula given in Eq. (2.37). 

2.4  Summary 

In this chapter, an analytical closed-form solution for the sound field above a non-

locally reacting porous medium was derived. It was demonstrated that the approximate 
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solution could be expressed in the classical Weyl-Van der Pol form consisting of a direct 

wave term and a ground-reflected wave term. The second term consists of a spherical-

wave reflection coefficient where it can further be represented by a plane-wave reflection 

and the ground wave terms. An augmented diffraction term is needed to model different 

types of non-locally reacting porous surfaces. An earlier study has suggested that the 

absolute error of the asymptotic solution is bounded by a factor proportional to kR2 where 

k is the wavenumber of the incident sound wave and R2 is the geometrical distance 

measured from the image source to the receiver. The modified saddle-point method 

provides a uniform asymptotic expression for the sound field above the non-locally 

reacting porous medium for all receiver locations. The formula should find its application 

in the acoustical characterization of sound absorption materials from the measurements of 

the total sound field at near-grazing propagation. 
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CHAPTER 3: A MODIFIED SADDLE POINT METHOD FOR SOUND 

PENETRATION INTO A RIGID POROUS HALF-PLANE 

3.1  Introduction 

 In recent years, porous materials have increasingly been used in conjunction with 

a complex structure in support of sound absorption and sound insulation for passive noise 

control in enclosures. They have found applications in the automotive and aerospace 

industries, buildings, and many types of industrial machinery. Many numerical tools have 

been developed to assist the design of porous materials coupled with the strategic use of 

multilayer structures and cavities [106-109].  

The information on the acoustical characteristics of sound absorption materials 

has different levels of complexity depending on the models used in the analysis [106]. It 

varies from the most sophisticated poroelastic model based on Biot theory [110,111] to 

the simplest locally reacting impedance model. A commonly used model assumes the 

modified fluid approach where the frame of the porous material is motionless, i.e., a rigid 

porous medium. This model as well as the Biot model has an advantage in that the visco-

inertial and thermal dissipations can be modeled in the system. The acoustic and non-

acoustic (microscopic) properties of the porous materials are needed; these may be 

determined by an inversion method where the properties are adjusted in the model to
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match the acoustic measurement results. Most of these inverse methods [79, 80] are 

based on impedance tube measurements where only the macroscopic acoustic parameters 

at normal incidence can be determined. 

It is well known that the microscopic properties of the porous materials are 

dependent only on the geometry in the local scale of the micro-structural parameters 

[112].  It will be useful to deduce these macroscopic parameters from the measurement of 

sound fields at the near-grazing propagation both above and within the rigid materials 

[81]. An accurate computation of sound fields above and below the rigid porous material 

is therefore needed. To this end, an accurate and efficient Green’s function is frequently 

needed for use in many boundary element methods for calculating the sound field 

scattered by buried objects [76].  

Li and Liu [1] obtained an asymptotic solution for the sound penetration into the 

rigid porous ground by a double saddle-point method. They used the pole subtraction 

method to improve the accuracy of the asymptotic solution when the pole lies close to the 

saddle point. However, their solution has an irremovable singularity when the source is 

directly above (or below) the observer. In chapter 2, a modified saddle-point method is 

applied to predict the sound field above a non-locally reacting porous medium.  In this 

chapter, the modified saddle-point method is further exploited to study sound penetration 

into a rigid porous half-plane. The asymptotic solution based on the modified saddle-

point method is compared with numerical solutions, and good agreement validates its 

accuracy, which is presented in section 3.3. A summary is given in section 3.4. 
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3.2  Theoretical Formulation 

 Suppose an airborne source is placed above a porous half-plane where the upper 

medium is air with density  and sound speed c. The lower medium is a porous half-

space with complex density 1 and sound speed c1. The interface between the air and the 

porous half-plane is located at the z = 0 plane. Figure 3.1a shows a schematic diagram of 

the problem. It is useful to define the respective ratio of densities and sound speeds as 

1/    and 1/n c c .        (3.1a, b) 

Starting from the respective Helmholtz equation for the upper and lower media, 

Li and Liu [1] showed that the sound penetration into the porous half-space can be 

written in an integral form in terms of the horizontal propagation wave vector  where 

sink  ,              (3.1c) 

k is the wave number of the monochromatic sound and  is the angle of angle of 

incidence of all possible plane waves transmitted from the air in the upper medium to the 

rigid porous medium in the lower medium. Using  in favor of , the integral expression 

for sound penetration into the porous medium can be simplified as follows [15, 18]: 

( )
1

cos sin ( )

4 cos ( )
b

C

ik G
p e d  


   


 ,            (3.2) 

where () is the apparent admittance of the porous half-space which is given by 

( ) ( )N    ,              (3.3) 

the function N is defined as 

  2 2
1sin cosN n n     ,            (3.4) 
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and 1  can be interpreted as the refracted angle of the transmitted wave. The angle of 

incidence  and the angle of refraction 1  are measured from the positive z-axis. These 

two polar angles of plane waves are related according to Snell’s Law, i.e., 1sin sinn  .  

 

 

Figure 3.1: (a) A schematic diagram of the problem when the source is located above the porous 
medium, but the receiver is located below the rigid porous medium. (b) An illustration of different 

geometrical parameters used in the theoretical formulation. 
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 The non-oscillatory term G() in Eq. (3.2) is expressed in terms of the zeroth-

order Hankel function of the first kind, (1)
0H , as 

 (1) sin
0( ) sin ikrG H kr e    ,            (3.5) 

where  r is the horizontal range between the source and the receiver. The phase function 

b() in the exponential term of the diffraction integral is given by 

 1( ) sin cos cosb sik r z nD       ,            (3.6) 

where zs is the height of the source from the porous interface (measured positive upward), 

and D is the depth of the receiver measured positive downward from the porous interface.  

 

Figure 3.2: An illustration of the original integration path C and the steepest descent path C in the 
complex  plane. 
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Figure  3.2 shows the integration path C of the integral in Eq. (3.2), which starts at 

Q to reach the origin in the complex -plane en route to point Q1 (at -/2). It then 

arrives at Q2 (at /2) and ends at Q-. To evaluate the integral asymptotically, it is 

necessary to determine the steepest descent path and the saddle point. According to Li 

and Liu [1], the saddle point (say,  = ) is determined by setting b  



   to zero, 

which leads to a transcendental function of 

1tan tansr z D   ,              (3.7) 

where  and 1 can be interpreted as the incident and refracted angles measured from the 

vertical axis for the spherical sound wave transmitted from the upper medium to the 

porous half-plane lying below. Again, these two angles are associated by Snell’s Law: 

1sin sinn  .                                 (3.8) 

 For a given source/receiver geometry and refractive index of the porous half-

space,  and 1 can be obtained by solving Eqs. (3.7) and (3.8) simultaneously. Li and 

Liu [1] outlined a simple numerical scheme to compute  and 1 for a given index of 

refraction of the rigid porous medium. The index of refraction n is a complex variable for 

modeling the dissipative property of the lower medium. This renders the two angles,  

and 1, as complex variables. In other words, the sound waves transmitted from the upper 

to the lower media are both dissipative. An analysis of the numerical solution for the 

polar angle confirms that Re()  0. The horizontal ranges for the source and receiver can 

be expressed as 

tans sr z  , 1tanDr D  ,  and s Dr r r  .                 (3.9a-c) 
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Here, rs and rD are complex, but their sum gives r, which is a real variable. The total 

separations above (Rs) and below (RD) the porous interface can be written in terms of  

and 1 as 

coss sR z  , 1cosDR D  .                                       (3.10a,b) 

The phase function b in the exponential term of Eq. (3.2) can then be rewritten as 

 1 1( ) cos( ) cos( )b s Dik R nR         .        (3.11) 

Figure 3.1b shows a schematic diagram illustrating these geometrical parameters. 

 In the complex -plane, the steepest descent path can be found by tracing the path 

such that 

 Im ( ) 0bikL   ,            (3.12) 

where L is the acoustical path length [20] defined by 

1

( )

cos cos
b s

s D

z nD
L R nR

ik



 


     .         (3.13) 

The steepest descent path is sketched in Figure 3.2 as C . The asymptotic 

evaluation of Eq. (3.2) can be facilitated by introducing a new complex variable, W [1]: 

2 2 ( )bW ikL   .            (3.14) 

Hence, the original integration path C in the complex -plane can be transformed to WC  

in the complex W -plane. It is possible to trace WC  by introducing the respective real and 

imaginary parts for W ,  and 1, as follows: 

W X iY   , u iv   , and 1 1 1u iv   ,              (3.15a,b,c) 

where X, Y, u, v, u1, and v1 are real variables.  
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For a given path C in the -plane, X and Y can be determined by solving the 

above pair of nonlinear simultaneous equations for WC in the W -plane. It follows 

immediately from Eq. (3.15a) that 

 2 2 2 2W X Y i XY    .           (3.16) 

Making use of Eqs. (3.14) and (3.16), we can then derive the corresponding expressions 

for X and Y in terms of u and v to confirm that 

   Re Re ( ) ( )b

X Y
L ik

k
   ,         (3.17a) 

and 

   
2 21

Im Im ( ) ( )
2

b

Y X
L ik

k



   .       (3.17b) 

 

Figure 3.3: An illustration of the integration path CW and the steepest descent path CX in the complex 
W-plane. 

 
Re( )X W

Im( )Y W

XC

WC

,pW 

2Q

sQ

1Q
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 The steepest descent path, say CX, corresponds to the choice of an integration path 

along the real axis of the complex plane because 
2 2We   gives exponentially small values 

as X  and its phase term vanishes because Y = 0 along the path. These two paths, 

WC  and CX, are sketched in the complex W -plane as shown in Figure. 3.3.  

Replacing  with W , changing the integration path from C to WC , and splitting 

the integral into two parts, it is possible to rewrite Eq. (3.2) as [1]: 

1 e bp p p  ,             (3.18) 

where 

 
2

sin ( )
4

W

ikL
W

e

C

ike
p G d dW e dW

   


  ,        (3.19a) 

 
2sin ( ) ( )

4 cos ( )
W

ikL
W

b

C

ike G
p d dW e dW

 

   


   
 

 ,       (3.19b) 

and 

 1( ) cos tan tanb s

W Wd

dW ik z D r
 





   


 

  
.        (3.20) 

Since the integrand of pe [see Eq. (3.19a)] is an entire function, there is no pole 

contribution when the path is indented from WC  to the steepest descent path CX. Hence, 

Eq. (3.19a) can be transformed directly to 

 
2 2cos ( )

4
X

ikL
W

e

C

ike
p G d dW e dW

   


  .        (3.21) 

Expanding the integrand of Eq. (3.21) about the saddle point at 0W   and noting that  

=  at the saddle point, Li [1, 74] showed that pe can be evaluated asymptotically to yield 
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 1 1
2

ikL

e

e
p O kr


    

 ,           (3.22) 

where L is the acoustical path length defined in Eq. (3.13), and  can be interpreted as the 

effective physical path length determined by 

rR R  .             (3.23a) 

R  is the apparent distance of the sound ray traveling in the absence of the lower medium 

sin

r
R 

 ,           (3.23b) 

and rR  is the acoustical energy path length [34]: 

2

3
1

cos

cos cos
s

r

z D
R

n



 
  .          (3.23c) 

Equation (3.22) implies that the present asymptotic analysis is applicable when , 

i.e. a high frequency approximation when k is large or a far field approximation when r is 

large.  

The following identities related to b have been found to be useful in the above and 

the subsequent formulations: 

   
1 2

0
1 ( ) ( )b bW

d dW i


  



     ,        (3.24a) 

   
22 2

00

1
( ) ( )

3
b bb WW

d dW d dW


    


     ,     (3.24b) 

2 3
IV

3 3

0

0

( ) ( )1

4 ( ) ( )
bb b

W
bb b

W

d
d dW

dW







  


 



    
         

,      (3.24c) 

( )b s Dik L R nR    ,         (3.24d) 

( ) 0b   ,            (3.24e) 
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2

3
1

cos
( )

cos cos
s

bb r

z D
ik R

n




 

 
      

 
,        (3.24f) 

 2 3 5
1( ) 3(1 ) cos sin cosb ik n D n       ,      (3.24g) 

and 

4
2 2 2

IV 1
4 6

1 1 1

(1 )(4 7sin 11sin )cos
( )

cos cos cos cos
s

b

z nnD
ik

n n

 


   

     
     
   

,   (3.24h) 

where the primes denote the derivatives with respect to their argument, and IV is the 

fourth-order derivative.  

 Applying the same transformation [cf Eq. (3.14)] from  to W , the integral Eq. 

(3.19b) can be expressed as 

 
2 2

4
W

ikL
W

b

C

ike
p W e dW

  


  ,          (3.25) 

where the kernel function  W  is given by 

 
 

sin ( )

cos

G d
W

dW
 



   

 
 


.           (3.26) 

The integration path for the integral of Eq. (3.25) may now be indented from WC  to CX. 

However, there is a complication in the process because  W  has a singularity, i.e., a 

pole, when cos 0   . Noting Eqs. (3.3) and (3.4), the pole location can be 

determined analytically in the -plane as 

 12 cosp p    ,           (3.27) 

where the subscript p denotes the parameter at the pole location, and p [ (p)] can be 

treated as the apparent admittance of the porous layer. The pole can be determined 
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analytically to yield  

   2 2: 1 1p p n       .         (3.28a) 

The pole location in the W -plane can then be determined by substituting Eq. (3.27) into 

Eq. (3.12) to give, say, ,pW  . The pole location is marked schematically in Fig. 3.3, and 

its analytical expression can be derived from Eqs. (3.11) and (3.14) to give 

 
1

1/2

, 12 cos( ) cos( )p s p r pW ik L R nR           ,     (3.28b) 

where p  is given by Eq. (3.27), and 
1p is related to p  by Snell’s Law, i.e., 

1sin sinp pn  . 

 There is a saddle point at 0W   in the integral of Eq. (3.25). The use of the 

standard steepest descent method to evaluate the integral becomes inapplicable if the pole 

, 0pW   . This is because a direct Taylor expansion of  W  becomes increasingly 

inadequate when |p|  0 and   /2. In this paper, a modified saddle-point method 

[16-18] will be used to evaluate the integral asymptotically. The method starts by 

replacing  W  with 

     2 2
,pW W W W         ,          (3.29) 

where  W   is an entire function that is analytic near the saddle point and the pole 

location in the W -plane.  

 The Taylor expansion of  W   about the saddle point, 0W  , can be written 

as 
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 
0 0

( )
!

j j

j
j W

W d
W W

j dW



   





 

 
   

 
 .          (3.30) 

Thus, the substitution of Eqs. (3.29) and (3.30) into Eq. (3.25) and the retention of the 

first four terms in the series give a uniformly valid asymptotic expansion for pb: 

0 1

1
(0) (0)

4 2

ikL

b

ike
p I I 



       
 

 ,          (3.31) 

where the integral Ii can be written in a more general form as 

2 22

2 2
,W

Wi

i

pC

W e dW
I

W W



 

 




  , i = 0, 1, … ,         (3.32a) 

and the double primes are the second derivatives with respect to its argument. Here, there 

are only two terms left in the asymptotic expression given in Eq. (3.31) because all odd 

terms of j in the series of Eq. (3.30) vanish. 

 The two integrals, I0 and I1, can be expressed in terms of the complimentary error 

function and its related function as follows: 

 0 2

1
2 1 ( )

2
b

b

I F w
w

   ,          (3.33a)  

and 

1 2 ( )bI F w ,                (3.33b) 

where bw  is the effective numerical distance, 

 
1

1/2

, 12 cos( ) cos( )b p s p r pw W ik L R nR            ,       (3.34) 

and ( )bF w  is the boundary loss factor related to the complementary function, 

 
2

( ) 1 erfcbw
b b bF w i w e iw    .          (3.35) 



64 

The details of the derivation of Eqs. (3.33a) and (3.33b) are provided in the Appendix C. 

 To calculate pb in Eq. (3.31), analytical expressions for (0)  and (0)
  are 

needed in addition to I0 and I1. Noting Eqs. (3.29) and (3.24a-c), it is possible to verify 

that 

   
1 220 2 (0) ( )b biw  


     ,         (3.36a) 

and 

 
  2

2

2 0
0 1b

b r

bw

w ikR




  
   

 
,         (3.36b) 

where b is the modification factor given by  

 
2(0) (0) ( ) ( )1

( ) ( )
(0) (0) ( ) 4 ( )

IV
b b

b b

b b

b  

 

 
 

 

      
       

     
,      (3.37) 

and the effective numerical distance bw  is given by Eq. (3.34).  

 Now, the use of Eqs. (3.24a-h) and (3.26) leads to the corresponding expressions 

for  0  and (0)
  yielding  

 
 22 sin

0
cos

b

r

w G

ikR






  

 


 


,         (3.38a) 

and 

 
  2sin

0 1
cos

b

rr

G bw

ikRikR






  

 

 
   

  
,                   (3.38b) 

where G() is determined by Eq. (3.5), and   is defined as 

  2 2: cosn       ,          (3.38c) 

which can be interpreted as the effective admittance of the rigid porous medium. 
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Replacing G()  with its asymptotic expansion [22], Eqs. (3.38a, b) can be approximated 

further by 

 
22 2

0
cos

bw

ik






 

 


 

 
,         (3.39a) 

and 

 
22

0 1
cos

b

r

bw

ik ikR






 

 

 
   

   
.       (3.39b) 

 On the other hand, (0) (0) 
   and (0) (0) 

   in Eq. (3.37) can be 

expressed in terms of   by deriving from Eq. (3.26) to obtain  

 2

2

2 2 sin 1 cos sin (1 cos )(0)

(0) (cos )

 

 

        

 

         
 

 

 
 

  22 sin 1 1 1
sin cos cot

(cos ) 2 4  

   
   

   

   
    

 
 ,       (3.40a) 

and 

(0) sin 1
cot

(0) cos 2


  

  


  

   
  

 
,        (3.40b) 

where the first and second derivatives of  can be determined analytically from Eq. 

(3.38c) to verify that 

2 2sin cos sind d n           ,        (3.41a) 

and 

   
2 22 1

2
cos 2 sin 2d d               .      (3.41b) 

There are apparent singularities in Eqs. (3.40a) and (3.40b) when r  0 (i.e.,  0) 

because of the presence of the cot  term. This term is calculated by simply setting  at 
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/4 (i.e., cot  is set at 1) in the following numerical analyses. This assumption is 

consistent with an earlier study by Kawai et al. [23], who used the modified saddle point 

method to derive an asymptotic expression for the sound field above an impedance 

ground. With this approximation,  Eqs. (3.40a) and (3.40b) become 

 2

2

2 2 sin (1 sin )(1 cos ) 2 sin(0)

(0) (cos ) (cos )



   

         

    

           
  

   

  
1 1

sin cos
2 4 


  

 


   ,        (3.42a) 

and 

(0) sin 1

(0) cos 2


  

  

  

   
  

 
.        (3.42b) 

Substituting Eqs. (3.33a, 3.33b), (3.37), and (3.39a, 3.39b) and simplifying the resulting 

expressions, we obtain an asymptotic approximation for pb as follows: 

22
1 ( )

cos 4

ikL
b

b b

r

bwe
p F w

ikR






  

 
   

   
,         (3.43) 

where the modification factor b can be obtained by using Eqs. (3.24 e-g), (3.40a, b), and 

(3.41a-c) in Eq. (3.37). 

 The application of Eqs. (3.22) and (3.43) in Eq. (3.18) yields an asymptotic 

expression for the total sound penetration into the porous medium by a monopole source 

as follows: 

 1 (1 ) ( )
4

ikL

b

e
p T A V F w  

  


          (3.44) 

where T  is the effective plane wave transmission coefficient, 
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cos
T 






 



,             (3.45) 

V  is the effective plane wave reflection coefficient, 

cos

cos
V 




 

 





,             (3.46)  

and A is the augmented diffraction factor, 

2
b

r

bw
A

ikR
 ,               (3.47) 

and bw is defined in Eq. (3.34).  Equation (3.44) is the main result of the present study. It 

represents a uniform asymptotic expression for predicting the sound field below the 

porous medium by a monopole source. We can also see the linkage of T  and V , and the 

presence of the transmitted wave term T  and the boundary wave term that is used to 

model the diffracted waves. In the next section, we shall validate the asymptotic formula 

by comparing the predictions with other solutions obtained by the more accurate wave-

based numerical scheme. 

3.3  Validation of the Asymptotic Formula 

 In this section, the asymptotic solution derived above will be compared with the 

numerical results obtained by a more accurate wave-based numerical method. The 

integrated exact solution (IES) [15] is a hybrid numerical method based on a direct 

integration method and the fast field program (FFP) formulation. It has been shown to be 

able to provide accurate numerical results for sound fields above and below the porous 
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medium. In the following analysis, a series of comparisons is made between the 

computed results by the modified saddle point method and those by the IES method.  

 To facilitate the presentation of numerical results for comparison, an excess 

attenuation (EA) function is defined as 

1
1010log

4ikr

p
EA

e r

 
  

 
,             (3.48) 

where r is the horizontal distance between the source and the receiver. For the porous 

interface, the model by Johnson et al. [113] is used to approximate the complex density 

1. Here, the density ratio  is given by  
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,          (3.49) 

where  is the tortuosity; , the ratio of the specific heats; 0, the viscous permeability; 

, the viscous thermal characteristic length; , the porosity of the porous medium and  

the viscosity of air. The model according to Lafarge et al. [114] is used to calculate the 

dynamic compressibility C1 of the rigid porous medium:  
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,         (3.50) 

where 0   is the thermal permeability, ' is the thermal characteristic length and Pr is and 

Prandtl number of air. Consequently, the index of refraction n can be calculated by 

 
1

1 0 0

c C
n

c P K 
  ,            (3.51) 
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where P0 is the atmospheric pressure and K0(
2c ) is the bulk modulus of air. In 

addition, the viscous permeability 0  is related to the flow resistivity  of the porous 

material by 

0   .              (3.52) 

The specific impedance of the porous ground is customarily calculated by including the 

porosity in the porous ground [91]. We therefore need to replace m with m in the 

following computation of the sound fields below a rigid porous ground. 
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Figure 3.4: The Excess Attenuation (EA) versus horizontal separation. Solid line: modified saddle-
point; circles: Integrated Exact Solution (IES). 
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Figure 3.5: The Excess Attenuation (EA) spectra. The horizontal range is 0.1m. The same acoustic 
parameters as Fig. 4 are used but the numerical results with the effective flow resistivity of 50 kPa m 

s−2, 80 kPa m s−2, 120 kPa m s−2 are shown. Solid line: modified saddle-point; circles: Integrated Exact 
Solution (IES). 

Figure 3.4 displays the typical results of the predicted EA as a function of the 

horizontal separation at various frequencies in the modified saddle method and the IES 

method. Particularly, the source is chosen at 0.04 m and the receiver at 0.02 m below the 

rigid porous medium. The abscissa of the plots, which is the horizontal separation, varies 

from 0.0001 m to 1000 m in a logarithm scale. The rigid porous medium was 

characterized by Johnson’s model as having  = 0.98,  = 1.1,  = 70 m, ' = 210 m, 

0   = 6.110−10 m2 and  = 10 kPa m s−2 at frequencies of 100 Hz, 1 kHz, and 10 kHz. 

The numerical results calculated by the modified saddle-point method are in excellent 

agreement with those computed by the IES method, and they are indistinguishable from 

each other in these plots. More noticeably, the results agree with each other very well 

even when the horizontal range is reduced to 0.001 m. The modified saddle method 
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shows an advantage in predicting the sound field at a very short range. More 

computations were conducted with different flow resistivities, as shown in Figure 3.5. 

The EA spectrum is presented, with the source frequency varying from 100 Hz to 4000 

Hz and different flow resistivities of 50 kPa s m-2, 80 kPa s m-2, and 120 kPa s m-2. The 

respective parametric values for , , , ' and 0   were kept unchanged in this set of 

numerical simulations. Again, the agreements are very good for all these cases.  

 Figures 3.6 and 3.7 further show comparisons for different cases when the source 

is located at 0.4 m and the receiver is set at 0.02 m below the porous medium. The 

excellent agreement of the EA in both the horizontal range and the frequency domain 

proves the accuracy of the solutions by the modified saddle-point method.  
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Figure 3.6: Caption is same as Figure 3.4 except that the receiver is located at 0.02 m below the 
porous medium and source at 0.4 m above the porous medium. 
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Figure 3.7: Caption is same as Figure. 3.5 except that the receiver is located at 0.02 m below the 
porous medium and source at 0.4 m above the porous medium. 

 All the above comparisons show the validity of the asymptotic solution based on 

the modified saddle-point method. These comparisons also confirm the validity of the 

assumption for setting cot  to 1 in Eqs. (3.40a) and (3.40b). These approximations work 

well even, for example, when the horizontal separation is of the order of 10-2 m at 1 kHz, 

which corresponds to kr  < 0.1. 

3.4  Summary 

In this chapter, a modified saddle-point method was applied to derive an 

asymptotic solution for the propagation of sound from an airborne source penetrating into 

a rigid porous medium. The study demonstrated that the solution is composed of two 

terms: a plane wave transmitted term and a diffraction wave term. Comparisons of the 

numerical solutions with those computed by the more accurate wave-based solution 
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suggest that the asymptotic formula can give sufficiently accurate results for most 

practical calculations when kr > 0.1.  
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CHAPTER 4: HEURISTIC SOLUTIONS FOR SOUND FIELDS ON RIGID POROUS 

INTERFACES 

4.1  Introduction 

 Many studies (e.g. Refs. [3, 71, 72, 92]) have been devoted to derive different but 

compatible asymptotic formulas for predicting the sound fields above various types of 

plane interfaces. Applying the pole subtraction technique in the double saddle-point 

method, it is possible to obtain asymptotic solutions for the sound fields above an 

impedance-backed rigid porous layer [3], a hard-backed rigid porous layer [92], a semi-

infinite rigid porous medium [72] and a locally reacting impedance surface [71]. Li and 

Liu [3] showed that the asymptotic formula for the impedance-backed rigid porous layer 

was the most general one. It can be used as the basis to confirm appropriate solutions for 

other three types of interfaces mentioned above. 

 Using appropriate approximations, Chien and Soroka [71] indicated that the 

asymptotic formula for the monopole sound field above an impedance ground can be 

expressed as a sum of two terms comprising a direct wave and a reflected wave 

contributions. The latter contribution can be split further into two parts: a plane wave 

contribution supplemented by a ground wave component. This asymptotic solution is 
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frequently referred as the Weyl-Van der Pol formula. However, Attenborough et al [72], 

Allard and co-workers [92] and Li [3] were unable to provide analogous formulas for 

semi-infinite porous medium, a hard-backed rigid porous layer and an impedance backed 

rigid porous layer. More importantly, all of these asymptotic formulas have a singularity 

in their respective solutions. The prediction of the reflected wave fields is unbounded 

when the horizontal separation between the source and receiver vanishes. In this case, the 

method of a direct numerical integration is needed to compute the reflected sound fields 

in order to resolve this problem of apparent singularity at short ranges. 

 This chapter is a continuation of the study in the paper [3]. Two intriguing issues 

are addressed here. Is it possible to obtain an analogous WVPD formula for predicting 

the sound fields above a non-locally reacting interface? Can the analytical formula be 

modified to allow for accurate predictions of the total sound field even when the 

horizontal range is close to zero? A satisfactory resolution of these two issues enables one 

to develop an efficient, convenient and accurate Green’s function for predicting the 

spherical waves reflected from a non-locally reacting medium. Indeed, the accurate and 

rapid computation of the Green’s function should find its applications in the boundary 

element formulation near non-locally reacting media [89] and the acoustical 

characterization of sound absorbing materials [69]. 

 This chapter is arranged as follows. Section 4.2 describes a brief formulation of 

the problem providing necessary information to make this paper self-contained. In section 

4.3, the asymptotic solution in the classical Weyl-Van der Pol form is then developed 

offering physical interpretable terms. Next, a heuristic approach is initiated in section 4.4 

aiming to provide accurate near-field and far-field numerical solutions. They are then 
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compared with the accurate wave-based numerical solutions to validate this modified 

Weyl-Van der Pol formula. Finally, concluding remarks are presented in section 4.5. 

4.2  Theoretical Formulation  

 In a recent study [3], Li and Liu generalized the theory for predicting the 

monopole sound field above a plane interface that can either be a locally reacting ground 

or a non-locally reacting porous medium. The total sound field due to a monopole source 

can be expressed as a sum of three terms: 

1 2

1 24 4

ikR ikR

D

e e
p p

R R 
   ,             (4.1) 

where 1R  and 2R  are the respective distances from the source and its image to the 

receiver, k is the wavenumber of the source. The third term of the right side of Eq. (4.1) is 

known as the diffraction wave term that can be expressed in an integral form as 

  2

( )
cos( )(1) sin

0( )

sin ( )
sin

4 cos ( )

m
ikRikr

D m

C

ik
p H kr e e d  

 
   


    ,        (4.2) 

where ( ) ( )m   is referred as the total admittance of the ground surface with the 

superscript (m) representing the different types of ground surfaces. The incident angle of 

the reflected wave and the horizontal separation between the source and receiver are 

denoted by  and r, respectively. The square bracket term in the integrand is a non-

oscillatory function due to the fact that the zeroth order Hankel function of the first kind 

(1)
0H  is normalized with its associated exponential function. The integration variable  

can be treated as the polar angle which is used to characterize the propagation vector of 
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the plane wave reflected from the boundary surface. Both   and  are angles measured 

from the vertical axis aligned along the z-direction.  

 

Figure 4.1: A sketch of the steepest descent path C   and the pole location. 

Table 2.1 in Chapter 2 lists different types of ground surfaces and their respective 

( ) ( )m   where the density and the speed of sound in the upper medium (air) are denoted 

by  and c, respectively. They are, respectively, signified by 1 and c1 in the lower 

medium (ground/sound absorbing materials). The density ratio of the two media 

 1/   , the index of refraction  /n c c  and the specific normalized admittance 1 

are used to characterize the acoustical properties of the air/ground interface. The depth 

for a layer rigid porous medium is specified by d. The specific normalized admittance of 

the bottom layer for the impedance-backed porous layer is denoted by 2. The variable N 
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for the porous layer is defined by 

  2 2sinN n    ,            (4.3)  

which has also been used in Table 2.1.             

 The path C for the complex integral in Eq. (4.2) begins at  = -/2+i moving 

through the points, -/2, 0, /2 before reaching the end points at /2-i, see Fig. 4.1. In 

the passage, the exponential term traverses through a stationary point at  = . Generally 

speaking, the complex integral cannot be evaluated exactly but it can readily be handled 

by an asymptotic analysis known as the double saddle-point method [1]. It starts by 

indenting the path from C to the steepest descent path C that is specified by 

 2Im 0W    ,              (4.4a) 

where the complex variable, W, is defined as 

   2
22 1 cosW ikR       .          (4.4b) 

The steepest descent path C  is also shown in Figure. 4.1 for information. The method 

leads to an approximate solution for large kR2.  

 There is a pole (at the location of ( )m
p , say) in the integrand of Eq. (4.2) which 

can be determined by solving the transcendental function of 

 ( ) ( ) ( )cos 0m m m
p p    .            (4.5a) 

The subscript p denotes the corresponding parameter for the pole location. It should be 

stated that the presence of poles in the integrand has limited the applicability of the 

double saddle-point method. However, this deficiency can be removed by using the 

method of pole subtraction [9].  
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 Since the type of ground surface is known in the context of most discussions, the 

superscript (m) can conveniently be suppressed in the following presentation of results 

unless there is a conflict for its use. Let the apparent admittance of the air/ground 

interface be p  such that 

 :p p    ;  2Re 1 0p   .        (4.5b,c) 

The pole location p  can be defined uniquely in terms of p  by the following pair of 

trigonometrical functions: 

cos p p    and 2sin 1p p      ,       (4.6a,b) 

which implies that Re 2p      . By noting 1p   and writing 

2p p pu iv    ,               (4.7) 

where 0 2pu   , the range for pv  can then be determined as a function of pu  as 

follows:  

cos sinh cosp p pu v u             .           (4.8a) 

The assumption of 1p   is valid for most outdoor ground surfaces and sound absorbing 

materials.  

 By considering Eqs. (4.6), (4.7) and (4.8a), a region of all admissible values of 

p  can be mapped out in the complex  plane: 

cos sinh 0p pu v         ,           (4.8b) 
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where  represents the corresponding equations for the upper and lower bounds of the 

region. For instance, vp is bounded between  ln 1 2   and  ln 1 2  when up = 0. 

On the other hand, the lower and upper bounds of vp are identical at zero when 2pu  .  

This enclosed area is marked as Region I in Figure. 4.1.  

 Analytical solutions for ( )m
p p   are available for the locally reacting (m = -1) 

and the extended reaction (m = 0) grounds. In the contrary, numerical solutions are only 

available for hard-backed (m = 1) and impedance-backed (m = 2) porous layers. Table 2.1 

summarizes the results of the pole locations for different types of ground surfaces. 

 The pole described in the integrand of Eq. (4.2) is often referred as the surface 

wave pole. It leads to the generation of surface waves from the ground surface due to an 

airborne source. In addition to the acoustical characteristics, its existence and detection 

are also dependent on the angle of incidence of the reflected wave, . According to the 

analysis, the surface wave is excited when 2Im ( ) 0pW     . Consequently, a 

combination of Eq. (4.4a) with Eq. (4.8a) classifies a region of p  in the complex -

plane (marked as Region II in Figure. 4.1).  

  Upon using the double saddle-point nethod together with the pole subtraction 

method, the diffraction wave term [see Eq. (4.2)] can be evaluated asymptotically. The 

analytical solution [1] can be summarized as follows, 

erfcD sp P   .              (4.9a) 

where  
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and erfc( ) is the complementary error function term with a complex argument and aw  is 

identified as the apparent numerical distance. According to Eq. (4.4b), the apparent 

numerical distance is related to W() by  

  2a pw W     ,           (4.10a) 

which can be written in terms of p and  as  
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w

ikR
             .      (4.10b) 

 The definitions for Ep and s in Eq. (4.9b) will be explained in the following paragraphs. 

The first term of Eq. (4.9a), Perfc, is referred as the complementary error function term 

and the second term, s is called the correction term. 

 It is remarkable that the surface wave component does not appear explicitly as a 

separate term in expression for pD and Perfc. Rather, its contribution has been absorbed 

into the complementary error function shown in Eq. (4.9b). Additionally, pE  in Eq. (4.9b) 

can be determined for different types of ground surfaces as follows: 

(i) a locally reacting surface, m = -1  

( 1) 1p pE E   ,            (4.11a) 

(ii) an extended reaction surface, m = 0 

(0) 21p pE E      ,          (4.11b) 

(iii) a hard-backed porous layer, m = 1 
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(iv) an impedance-backed porous layer, m = 2 
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where ( )p pN N   with N() defined in Eq. (4.3).  

 The correction term in Eq. (4.9a) can be estimated asymptotically to yield 
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where erfcP  can be considered as an asymptotic approximation of the complementary error 

function term [see Eq. (4.9b)], V is often treated as the plane wave reflection coefficient: 
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and   is recognized as the effective admittance of the flat ground [10]: 

 :    ;  2Re 1 0   ,                 (4.13a,b) 

which is a different parameter in contrast with the apparent admittance, p given in Eq. 

(4.3). The asymptotic approximation of Perfc  can be determined by 
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It is noteworthy that the second term of s is written conveniently in terms of V. It 

should be straightforward to show that s is identical to that shown in Ref. [3].  

Substitution of Eqs. (4.9a) and (4.9b) into Eq. (4.1) verifies an asymptotic 

expression for the sound fields above a plane interface: 

1 2
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1 24 4

ikR ikR

s

e e
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 
    ,           (4.15) 

where erfcP  is given by Eq. (4.9b) and s is approximated asymptotically by Eq. (4.12a). 

An approximation may be applied for near-grazing propagation about a ground surface of 

small p. The correction factor, s  0 and the factor, sin sin 1p pE    . Hence, the 

sound field can be simplified by substituting Eq. (4.9b) into Eq. (4.15) to yield  
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where pV  is sometimes termed as the poles of reflection coefficient [13]:  
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,            (4.17) 

and the boundary loss factor F is defined by 

   
2

1 erfcaw
a a aF w i w e iw      .          (4.18) 

The poles of reflection coefficient resemble a similar form as the plane wave reflection 

coefficient except that  and p are used in the respective expressions, cf Eqs. (4.12b) 

and (4.17).  

 The approximations used for deriving Eq. (4.16) are only applicable for a ground 

type with high flow resistivity. A locally reacting ground can naturally meet all of these 
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conditions [71], but they become too stringent for some extended reaction ground 

surfaces and most layered grounds [3]. It is generally not possible to lay down a set of 

simple criteria for the geometrical locations, the acoustical characteristics of the ground, 

and the thickness of the layer such that Eq. (4.16) is sufficiently accurate to predict the 

total sound fields. As a result, the two terms in Eq. (4.12a) for s are needed in order to 

give an accurate and uniform asymptotic expression for predicting the sound fields above 

a layered ground. This allows the second order terms to be included in the asymptotic 

series giving a more accurate numerical solution. 

A closer examination of s in Eq. (4.12a) and erfcP  in Eq. (4.9b) indicates the 

asymptotic solution can be reorganized in the classical form as 

1 2

1 24 4

ikR ikRe e
p Q

R R 
    ,          (4.19a) 

where Q can be regarded as spherical reflection coefficient for different types of ground 

surfaces:  

wQ V g  .           (4.19b) 

where V   is furnished by Eq. (4.12b) and the ground wave term gw is given by 

erfc erfcwg P P    .           (4.19c) 

The two terms, erfcP  and erfcP , in Eq. (4.19c) are respectively defined by Eqs. (4.9b) and 

(4.14). Mathematically speaking, the difference between the complementary error 

function term and its asymptotic expression give rise to the ground wave term. 

Substitution of  Eqs. (4.9b) and (4.9c) into Eq. (4.19c) leads to 
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Replacing the first term of the curly bracket with the apparent numerical distance [see Eq. 

(4.10b)], gw can be expressed in terms of the boundary loss factor F(wa) as:  
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p p aa
w

p p p p a p

ikR F wF w
g

E E w

 

     
 

 
 ,    (4.20b) 

where F(wa) is the boundary loss  factor given in Eq. (4.18).   

 Three new terms, the approximate numerical distance w , the admittance ratio r  

and the ratio of numerical distances, rw are introduced. They are defined as follows: 

 2 2 cosw ikR     ,         (4.21a) 

pr   ,             (4.21b) 

and  

w ar w w .            (4.21c) 

It becomes clear that there is a need to define wa [see Eq. (4.10)] separately in order to 

differentiate it from w  given in Eq. (4.21a). They are, respectively, named as the 

apparent and approximate numerical distances which are not identified explicitly in the 

earlier publications [1-4, 11]. The two dimensionless ratios, r  and rw, are also found 

useful to simplify the resulting expression for the ground wave term. Making use of these 

three new terms, gw can be condensed further to a more recognizable form as, 

   1w ag A V F w  ,          (4.22a) 

where  
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 
sin sin

w

p p

r r
A

E



 
 ,          (4.22b) 

which is known as the augmented diffraction factor. 

 To summarize the mathematical analysis, the total sound fields above a plane 

interface (either locally reacting or non-locally reacting) can be obtained by substituting 

Eqs. (4.22a) and (4.22b) into Eq. (4.19b) which, in turn, into Eq. (4.19a) to yield 

 
1 2

1 2

1 ( )
4 4

ikR ikR

a

e e
p V A V F w

R R
 

 
        .         (4.23) 

It is enlightening to show that the monopole sound field above the plane interface can be 

cast in the classical form of Eq. (4.19a). The solution consists of a direct wave term plus 

the ground reflected wave term multiplied by the spherical wave reflection coefficient. 

Furthermore, the spherical wave reflection coefficient can be split to a plane wave 

reflection coefficient term plus a ground wave component. The spherical wave reflection 

coefficient is different for various types of ground surface owing to their differences in 

the apparent admittance p  and the augmented diffraction factor A. 

In the earlier study [3], Li and Liu correctly derived the formula shown in Eq. 

(4.15) but they were unable to reduce it to the form given in Eq. (4.23). Nevertheless, 

their numerical analyses indicated that the asymptotic formula is very accurate even for a 

relatively short horizontal separation. The close similarity between pV  and V  [see Eqs. 

(4.17) and (4.12b)] is notable. Their only difference lies on their use of either the 

apparent admittance, p  or the effective admittance,  . Use of pV  in Eq. (4.16) is 

accurate only for a limited class of ground surfaces [9]. On the other hand, use of  V  in 
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Eq. (19b) for Q permits a more accurate computation of the total monopole sound fields 

in Eq. (4.23). The improved formulation offers better physical interpretations for each 

term.  With limited comparisons, its use as the numerical solutions has been 

demonstrated to be accurate for kR2 >> 0.5, and, for most outdoor ground surfaces and 

sound absorbing materials [1]. 

4.3  A Heuristic Approximation of the Ground Wave Term at Short Ranges with kR2 < 

0.5 

 For the near grazing propagation above a locally reacting ground, Chien and 

Soroka [4] suggested that aw w  , i.e. 1wr  . In addition, 1pE  , 1r   and 

sin sin 1p   . Consequently, 1A   that leads to an approximate expression for wg  as 

   1wg V F w     ,           (4.24a) 

Substitution Eq. (4.24a) into (4.20) and its subsequent employment in Eq. (4.19a) give 

the sound field in the classical form of the Weyl-Van der Pol formula:  

 
1 2

1 2

1 ( )
4 4

ikR ikRe e
p V V F w

R R
  

 
        ,       (4.24b) 

It should be emphasized that the term in Eq. (4.24a) is different from the ‘exact’ formula 

for gw, see Eq. (4.20b), on two aspects. First, A is approximately set at 1. Secondly, the 

approximate numerical distance w  is used instead of the apparent numerical distance wa 

in the calculation of the boundary loss term. The approximate numerical distance was 

simply identified as the numerical distance in all previous publications, [e.g. 4-6]. Despite 

these two approximations, the Weyl-Van der Pol formula has proved to be accurate for 
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predicting the sound fields above an impedance ground for all source/receiver geometries 

[5]. 
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Figure 4.2: The prediction of ground wave term versus the horizontal separation above a locally 
reacting ground. Solid line: Weyl-Van der Pol formula; circles: Integrated Exact Solution (IES); 

dotted line: full asymptotic solution; dashed line: approximate solution with the 1 sin  term 

removed. 

 To examine the validity of the classical Weyl-Van der Pol formula, we compare 

in Figs. 4.2 and 4.3 the predictions of gw and p above a typical locally reacting ground. 

Prior numerical simulations, have suggested that the effect of the ground wave term is 

more pronounced if the source and receiver are both close to the air/ground interface. 

Consequently, the source and receiver are chosen at 0.02 m and 0.04 m above the ground 

in all numerical simulations presented below unless stated otherwise. 
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Figure 4.3: The prediction of Excess Attenuation (EA) versus horizontal separation above a locally 
reacting ground. The same geometrical configuration as Figure 4.2 is used. The captions are the same 

as Figure 4.2. 

 For convenience, a 2-parameter model [14] is used to calculate the specific 

normalized impedance of a locally reacting ground as follows: 

0.436(1 ) / 19.74 ( / )c e eZ c i f i f     ,         (4.25) 

where e is the effective flow resistivity given in Pa m s−2 and e is the effective rate of 

change of porosity in depth given in m-1. The respective parametric value of 300 kPa m 

s−1 and 100 m-1 for e and e, which are representative of a typical ground surface, are 

chosen in the numerical simulations shown in Figs. 4.2 and 4.3. For different horizontal 

ranges, the magnitude of gw is plotted and shown in Fig. 4.2.  Comparisons are made for 

gw calculated by the wave-based numerical solutions, the Weyl-Van der Pol formula [see 

Eq. (24b)] and the full asymptotic solution given in Eq. (4.20b). The numerical solutions 

according to wave-based method are referred as the integrated exact solutions (IES) 
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where the details of its implementation is provided in Ref. [1]. The simulation results for 

other different frequencies have comparable forms. Hence, selected results for the source 

frequency at 1 kHz are only shown in Fig. 4.2 and simulations for other frequencies are 

not displayed in this paper for succinctness. The numerical solutions computed by the 

Weyl-Van der Pol formula for different ranges are displayed in solid line. The accurate 

solutions computed by the IES scheme are shown in black circles. The numerical results 

according to the full asymptotic solution are plotted in dotted line. 

 For this particular ground surface, the specific normalized admittance, , has an 

approximate magnitude of 0.082 and a lagging phase angle of 0.9 radian at the source 

frequency of 1 kHz. Hence, the assumption of sin 1p   is valid for all source/receiver 

geometrical configurations. Furthermore, the presence of surface wave component is 

evinced with this choice of ground parameters and source frequency. It is because, as 

shown in Fig. 4.2, the ground wave term gw is greater than 0 dB for a horizontal range 

between 1.2 m and 12 m. This ‘positive’ excess attenuation indicates an enhancement of 

the total sound fields which is largely due to the presence of the surface wave component 

[5]. The prediction of gw according to the Weyl-Van der Pol formula agrees very well 

with IES at ranges greater than about 0.3 m (  78). Extending beyond this range (r  

0.3 m  and   78), the assumptions of sin 1  , aw w  and kR2  are all valid. 

Thus, Weyl-Van der Pol formula can give an accurate calculation of gw that leads to an 

excellent agreement with IES for the prediction of the total sound fields at long ranges.  

 The numerical error becomes more noticeable for the horizontal range r < 0.1 (  

 60). In the intermediate range where the horizontal range lies between 0.1 and 0.3 m 
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(60     78), the presence of the 1 sin  term is essential in the prediction of gw but 

the assumption of sin 1   is not sufficiently accurate to give precise predictions (to 

within 0.2 dB) in this range. In contrast, the assumption of  aw w  still holds in this 

intermediate range. As a result, the prediction according to the Weyl-Van der Pol formula 

agrees reasonably well with the IES predictions in the intermediate range.  

 For the near field when r  0.1 m (   60), the assumption of near-grazing 

propagation and large kR2 are not strictly valid. Hence, the numerical error gradually 

increases as the horizontal range reduces. According to the IES predictions, the horizontal 

range can be treated effectively as zero when r is less than 110-3 (or  is less than 1). 

This limiting value of 20log10 |gw| is predicted to be constant at about – 23 dB when r  

0.1 mm. On the other hand, the Weyl-Van der Pol formula underpredicts it by about 3 dB 

because of the assumptions of near-grazing propagation and large kR2 cannot be met. In 

this situation, the asymptotic method fails. A numerical evaluation of the integral is 

needed in order to calculate gw precisely. Although there is a significant error in the 

prediction of gw in the near field, the Weyl-Van der Pol formula can still give accurate 

predictions of the total sound fields at short ranges. It should be noted at the near field 

that w   0, F(w)  1 and, hence, gw   << 0 for a locally reacting ground surface. 

As a result, the contribution from the ground wave term is much smaller than the 

contributions from the direct sound field. Hence, the error in predicting gw does not have 

any significant impacts on the prediction of the total sound fields. Figure 4.3 presents the 

comparison of the predicted results according to different numerical schemes. Here, the 

excess attenuation (EA), which is defined as the ratio of total field to the free field, is 
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presented for four frequencies at 100 Hz, 500 Hz, 1 kHz and 10 kHz. The agreement 

between IES and Weyl-Van der Pol formula are excellent in all predictions for all 

frequencies at all ranges.  

 Based on the Weyl-Van der Pol formula, it is apparent that it is advantageous to 

remove the 1 sin  term in the asymptotic solution because its inclusion causes a non-

removable singularity when   0. In fact, the presence of the 1 sin  term in A [see 

Eq. (4.22b)] somewhat limits the general applicability of Eq. (4.23) for computing the 

total fields above a locally and non-locally reacting grounds. As shown in Fig. 4.2, the 

predictions of gw according to Eq. (4.22a) are also presented for comparison with the IES 

and the Weyl-Van der Pol scheme. It becomes clear of the superiority for using Eq. 

(4.22a) to calculate the sound fields in the intermediate and long ranges when r > 0.02 m 

(  > 18). However the numerical solution becomes divergence at the near field. This 

error becomes too excessive in the near field that can affect the accuracy when Eq. (4.23) 

is applied to predict the total sound fields, see the dotted line in Figure. 4.4.  

 For the near grazing propagation, a simple approximation may be suggested that 

the  1 sin  term can be set to 1 in Eq. (4.22b). Again, Figure. 4.2 shows a comparison 

of this simple approximate scheme (shown in dashed line) with other methods. It has 

been demonstrated that the ‘removal’ of the 1 sin  term is only satisfactory for long 

ranges. Noticeable discrepancies in the predictions are observed for the intermediate 

range and the near field. The numerical results computed by this simple approximate 

scheme are even inferior to that according to the Weyl-Van der Pol scheme for this set of 

the source/receiver geometry and the acoustical characteristic of the ground. On the other 
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hand, the replacement of wa with w as per the Weyl-Van der Pol formula has led to a 

better numerical agreement with the IES method by comparing the numerical results 

shown in solid and dashed lines in Figure 4.2.  

 To devise a better and uniform scheme at all ranges, it is important to examine the 

characteristic of the ground wave term gw. An assessment of Eq. (4.20b) indicates that gw 

can be more conveniently be expressed in a logarithm form as 

1020log wB g  

 
 1020 log 4.343 ln sin ln 1 cos( )

sin

p a

p

p p

F w

E


  



 
          

.     (4.26) 

At the near field (  0), wa   0 and F(wa)  1. Hence the first term of Eq. (4.26) is 

independent of   at the close range. It is then straightforward to determine the stationary 

point of B by setting 0B     to yield the following transcendental function: 

   cosh cos sin 2 0p pv u              (4.27) 

where Eq. (4.7) is used to replace p in Eq. (4.26) in order to obtain the above equation. 

The solution of Eq. (4.27) leads to the stationary point min.  

 No closed form solution is available for min but it can be determined by 

rearranging Eq. (4.27) as 

   1
min mincos cos 2 2 coshp pu v        .        (4.28) 

The first approximation may be obtained by assuming vp = 0 to give min = up/3. The 

second approximation can be obtained by substituting the first approximation into Eq. 

(4.28) to give an improved approximation as 
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   1
min cos cos 2 3 coshp pu v      .         (4.29) 

This iteration process can be repeated recursively to give a converged solution for min 

that satisfies Eq. (4.28). A second derivative of B with respect to  may be applied 

straightforwardly to confirm that min represents a local minimum value. These details are 

not shown for brevity. 
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Figure 4.4: The comparison of ground wave terms computed by the asymptotic solution (shown in 
solid lines) and the Integrated Exact Solution (IES shown in circles).  

 To see the characteristic of B at the stationary point min, it is instructive to plot B 

versus the horizontal range for different types of ground surfaces. For the locally reacting 

ground, the two-parameter impedance model [see Eq. (4.25)] is used. An empirical model 

[13] is employed to model the acoustical characteristics of the non-locally reacting 

interface such that the index of refraction (propagation constant), and density ratio are 

given respectively by Eqs.(2.38a) and (2.38b). Again, the parametric values of e = 300 
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kPa m s−1 and e = 100 m-1 are used to model the normalized characteristic impedance of 

the locally reacting interface. On the other hand, the parametric values of e = 50 kPa m 

s-2, q = 1.39, and  = 0.269 are selected for the extended reaction interface. For a rigid 

porous layer, its thickness is set at 0.05 m. These parametric values are used in the 

numerical simulations of the following graphs with the source and receiver heights fixed 

respectively at 0.04 m and 0.02 m above the air/ground interface. In the numerical 

simulations shown in Fig. 4.4, an individual frequency is used for each ground type 

because the results can be generalized as follows: the value of B decreases as r reduces, 

i.e. , increases. Regardless of the ground type, a local minimum point min can therefore 

be identified such that the solution for gw starts to diverge when   < min. It is known that 

approximate solution for gw by the asymptotic method is invalid at the short range but the 

contribution of gw to the total sound field is negligibly small in comparison with the 

direct wave term. It may be concluded as follows. So long as the error is not more than a 

few dB in gw, it will not affect the accuracy for the prediction of the total sound fields. 

Hence, an acceptable solution may be simply recast from Eq. (4.23) to give 

 
1 2

1 2

( )
4 4

ikR ikR

w

e e
p V G

R R
 

 
     ,         (4.30a) 

where 
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( )        if    
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g

  

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
 


 ,       (4.30b) 

and gw( ) is given by Eq. (4.22a). Equation (4.30a) represents a uniformly valid solution 

that can be used to calculate the total sound field above a locally and non-locally reacting 

ground. Figure 4.5 presents the comparison of simulation results according to IES and 



96 

those calculated by Eq. (4.30a). In these graphs, typical results are shown for different 

types of ground surfaces where EA is plotted against the horizontal range. The agreement 

between the modified Weyl-Van der Pol formula and IES is excellent for all situations.  
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Figure 4.5: Same as Figure. 4.4 except the excess attenuation function is used to plot against the 
horizontal separation. 

4.4  Summary 

 In this chapter, a modified Weyl-Van der Pol formula, see Eq. (4.30), has been 

presented for predicting the sound fields reflected from a plane interface. The interface 

can be a locally reacting ground or a non-locally rigid porous medium including a semi-

infinite extended reaction ground, a hard-backed rigid porous layer and an impedance-

backed rigid porous layer. The solution is based on an asymptotic analysis although a 

simple approximate scheme has been applied that allows an accurate prediction of the 

total sound fields at short ranges. Numerical comparisons have been conducted to 

confirm the validity of the formula. The modified Weyl-Van der Pol formula is valid for 
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all frequencies and all geometrical configurations. Unlike other computationally intensive 

schemes, the implementation of the modified Weyl-Van der Pol should allow real-time 

computations of the total sound fields even at high frequencies for all ranges.
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CHAPTER 5: SOUND PENETRATION INTO A HARD-BACKED RIGID POROUS 

LAYER: THEORY AND EXPERIMENT 

5.1  Introduction 

 Numerous studies have been conducted on sound propagation above a flat ground. 

There were also related studies for sound penetration into the porous half-space with an 

application for acoustic detection of buried objects [70, 76-78]. The acoustical properties 

of sound absorption materials, such as fiberglass and glass wool, are conveniently 

modeled as a rigid porous medium [89, 90] with a semi-infinite extent [1]. However, a 

model using multiple layers with finite thicknesses backed by a rigid plane is found 

necessary in many practical situations. Indeed, the acoustical properties of these layered 

structures were closer in modeling many realistic outdoor grounds. This type of ground 

surfaces is often referred as a hard-backed layer ground.  

 The sound propagation above a hard-backed porous ground was studied by 

Thomasson in mid 70s [95]. He found that the problem was analogous to the study of the 

propagation of sound above a locally reacting ground if the refractive index of the layer 

was sufficiently large. Allard and his coworks [89, 90] conducted a series studies 

exploring the phenomenon for the propagation of sound above a hard-backed porous 

layer in which they referred it as a non-locally reacting gound. More recently, Li and 
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 Liu [2, 3] developed accurate asymptotic formulas for predicting the sound fields above 

a hard-backed and impedance-backed porous layer. They showed that the proposed 

formulas are numerically more efficient than other exact wave-based computational 

schemes, especially at long ranges and at high source frequencies. However, to the best 

of our knowledge, there are no related studies devoted to consider the sound fields within 

a hard-backed rigid porous medium. Indeed, a better understanding of this type of 

problems is one of the pre-requisites for an improved formulation to model the sound 

absorption characteristics of a multi-layer porous material placed above a perfectly-

reflecting plane. This information will be particularly useful for the design of sound 

absorption materials by noise control engineers. We therefore see that there is a need to 

develop an accurate asymptotic formula for calculating the sound field within a hard-

backed rigid porous medium. 

 In the chapter, the sound penetration into the hard-backed rigid porous medium 

due to a point monopole source will be investigated by means of a standard asymptotic 

method. A double saddle-point asymptotic method and the pole subtraction scheme will 

again be used in the present study. The asymptotic formula will be presented in section 

5.2 with the detail mathematical analysis provided in the Appendix D. Numerical 

comparisons between the asymptotic solutions and the accurate wave-based numerical 

solutions will be provided for several cases in section 5.3. A set of precise laboratory 

measurements have been conducted to offer experimental data for validating the 

asymptotic formula. These details can be found in section 5.3. Finally, conclusions are 

provided in Section 5.4. 
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5.2  Theory 

 A rectangular co-ordinate system O-x-y-z is used in the following analysis where 

a layer of rigid porous medium is placed on a perfectly-reflecting ground. The thickness 

of the rigid porous medium is d. Its upper surface is set to coincide with the z = 0 plane 

and the hard ground is located at the plane of z = –d. 

 Suppose a monopole source with the angular frequency of   is placed at 

(0,0, )sz  above the layered porous medium. The upper medium z > 0, is filled with air 

with density   and the speed of sound, c. The lower layer, –d  z  0, is occupied by a 

homogeneous, rigid-frame porous material with the complex density, 1  and the complex 

sound speed, 1c . The subscript 1 denotes the respective properties of the rigid porous 

medium. 

 The characteristic impedance of the rigid porous medium can be expressed in 

terms of the complex density ratio, , and the index of refraction, n, as 

1 1 1Z =1/c c n   ,             (5.1a) 

where 

1   ,             (5.1b) 

and 

1n c c  .              (5.1c) 

In an earlier study,18 Li and Liu investigated the propagation of sound above an 

impedance-backed layered ground from a monopole source in the air. In the present study, 

we are interested in predicting the sound fields within the rigid porous medium. The time 
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dependent factor i te  is understood and omitted throughout the analysis. Figure 5.1(a) 

shows the rectangular coordinate system used in the analysis and the geometrical 

configuration of the problem.  

 The sound fields above a hard-backed layered medium can be modeled by the 

Helmholtz equation: 

2 2 ( ) ( ) ( )sp k p x y z z                   (5.2) 

where p is the sound pressure, ( )k c is the wave number and delta function at the 

right side of Eq. (5.1) represents a monopole source locating at (0, 0, zs). The sound 

pressure p1 within the rigid porous medium is given by 

2 2
1 1 1 0p k p     ,              (5.3) 

where k (= /c1) is also known as the propagation constant of lower medium. The 

boundary conditions at the two interfaces require that (i) the acoustic pressure and normal 

particle velocity are continuous at z = 0, and, (ii) the normal particle velocity goes to zero 

due to the presence of the hard ground at z d  . It is considered that the receiver is 

situated at ( , , )x y D  in the porous medium where d  D  0 and r ( 2 2x y  ) is the 

horizontal separation between the source and receiver, see Figure. 5.1(b). 

 By using the method of Fourier transformation in Eqs. (5.2) and (5.3) and 

imposing the required boundary conditions at the two interfaces, p and p1 can be solved 

that can subsequently be expressed in terms of their respective inverse Fourier integrals. 

In particular, the sound fields within the rigid porous medium can be written as the sum 

of a pair of inverse Fourier integrals as, 
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1(0, | , ) ( ) (2 )s C Cp z r D I D I d D    ,          (5.4a) 

where IC, which is a canonical integral, is given by 
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I Z J r e e d
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
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 





 ,        (5.4b) 

in which the dummy argument Z is the depth specifying the location of an arbitrary 

receiver with the same range r. In Eq. (5.4b), J0 as the zero-order Bessel function and the 

integral variable  taken as the horizontal components of the wave vectors for the upper 

and lower media. The parameters, K and K1, are defined by 

2 2K k      ,             (5.5a) 

and 

2 2
1 1K k    .            (5.5b) 

They can be interpreted as the vertical components of the propagation wave vectors in the 

upper and the lower media, respectively. The choice of positive roots for K and K1 

guarantees that both Im(K) and Im(K1) are greater than zero. These two conditions permit 

bounded and finite solutions for the inverse Fourier integrals as z  – for all K and K1.
5 
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Figure 5.1: The schematic diagram of the problem. (a) The co-ordinate system used in the study; (b) A 
two-dimensional view of the source/receiver configuration. 
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 The reason for this specific choice of branch cuts can be illustrated further by 

considering a limiting case when d  , i.e. an extended reaction ground. In this 

situation, the integrand of the second integral vanishes because the term 1 (2 )iK d De   

becomes exponentially small. Hence, p1 can then be reduced from Eq. (5.4) to an 

identical expression given for the penetration of sound into a semi-infinite extended 

reaction ground [1] in this limiting case. However, it is important to note that the 

canonical integral [see Eq. (5.4b)] is different from the corresponding expression for the 

penetration of sound into a semi-infinite extended reaction ground even when all other 

parameters are identical in these two different types of rigid porous media. It is because 

the term    1 1 11 tan tani K d K i K K d   in Eq. (5.4b) is replaced by  11 K K  for 

the latter case. Hence, the refracted sound fields are fundamentally different in these two 

cases.  

 In the current study, we are primarily interested in the sound fields within the 

hard-backed rigid porous layer. According to Eq. (5.4), p1 consists of two terms due to 

the source and its image. As shown in Fig. 5.1b, the hard ground creates an image 

receiver. It is possible to trace the sound rays emanating from the source to the receiver 

and its image. The first integral can therefore be identified as the contribution from the 

transmitted wave travels from air to the receiver directly. The second integral is then 

recognized as the refracted wave broadcasts through the rigid porous medium that hits the 

hard ground before it reaches the receiver. It is then possible to interpret this refracted 

wave reaches the image receiver as shown in Fig. 1b. For ease of reference, the first 

integral is referred as the D-refracted wave term while the second is named as the R-
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refracted wave term. Hence, the pair of inverse Fourier integrals can be represented 

suitably by the canonical integral shown in Eq. (5.4b). 

 Exact analytical solutions for the D-refracted and R-refracted wave terms are 

difficult, if not impossible, to obtain. However, the integral of Eq. (5.4b) can be evaluated 

quite conveniently by a standard asymptotic technique using the saddle path method [1]. 

To assist subsequent presentation, it is convenient to introduce a pair of complex polar 

angles  and 1 in the upper and lower medium respectively. They are measured from the 

vertical z-axis which are used to characterize the directions of the incident waves 

propagated in the upper medium and the refracted wave transmitted into the lower 

medium. These two angles are related according to Snell’s law by 

1sin sinn  .             (5.6a) 

They can also be written in terms of the horizontal propagation vector, , as  

1 1sin sink k     .           (5.6b) 

It follows immediately from Eqs. (5.5a) and (5.5b) that the vertical components of the 

propagation wave vectors can be shown to give, 

cosK k    ,              (5.7a) 

and 

1 ( )K kN   ,             (5.7b) 

where  

2 2( ) sinN n     ,            (5.7c) 

and the positive root of the branch point is chosen for N. 
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Figure 5.2: The integration paths in the complex  plane. The label C is the original path, C is the 
steepest descent path and Qs is the saddle point. 

 Substitution of Eqs. (5.6) and (5.7) into Eq. (5.4b) gives  

 

(1)
( , )0( ) sin cos ( )

( )
4 cos

b
ikf Z

C

C

Gik
I Z e d

    


   


  ,          (5.8) 

where () is specified by 

 ( ) 1 tan 2i kNd       ,            (5.9a) 

which is introduced to facilitate the presentation of the analytical formulas. The “non-

oscillatory” Hankel function of the first kind (1)
0 ( )G   is defined as 

   (1) (1) sin
0 0 sin ikrG H kr e     ,          (5.9b) 

fb() is the oscillatory part of the integral in Eq. (5.8) : 



107 

1( , ) sin cos cosb sf Z r z Z        ,          (5.9c) 

and () is the total admittance of the hard-backed layered medium: 

   tani N kNd               (5.9d) 

where N() is given in Eq. (5.7c).  

 The integration path C can be stipulated by starting  at –/2 + i  moving 

parallel to the imaginary axis to the point –/2. It is then traversed along the real axis to 

/2 before following the path parallel to the imaginary axis again to arrive at /2 – i . 

Figure 5.2 shows the schematic diagram of the integration path C in the complex  plane. 

The ray path linking the source and receiver can be determined by using Snell’s Law. 

Alternatively, it can also be found by locating the stationary point of the oscillatory 

function, fb, given in Eq. (5.9b). This involves solving the following function, 

( , )
0bf Z







            (5.10a) 

for the stationary point at the complex angle,  =  and 1 =.  Substituting Eq. (5.9c) 

into Eq. (5.10a), it is possible to set up a trigonometric function    

tan sinsr z Z   ,          (5.10b) 

for determining the ray path. Li and Liu [1] outlined a straightforward method to 

determine  and  numerically where these two complex angles are related according to 

the Snell’s law, see Eq. (5.6a). They can be interpreted as the polar angles of the sound 

ray in the upper (air) and lower (rigid porous) media, respectively. It is handy to 

introduce the following distances to aid physical interpretation of the ray paths at 

different segments in the upper and lower media. Figure 5.3 shows a schematic diagram 
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for these geometrical configurations. The separations above (Rs) and below (RZ) the 

porous interface can be written in terms of  and  as 

coss sR z   and cosZR Z  .                  (5.11a,b) 

The apparent distance of the sound ray traveling in the absence of the lower 

medium is denoted by 

sin

r
R 

 .            (5.11c) 

With these physical parameters, the acoustical path length (L), the energy path length (Rr) 

and the physical path length () can be written as,20  

 ( ) b s ZL Z f R nR    ,          (5.12a) 

2

3

cos

cos cos
s

r

z Z
R

n



 
            (5.12b) 

and 

( ) rZ R R   .           (5.12c) 

The acoustical and physical path lengths are found to be useful to construct an 

asymptotic solution for the total sound fields within the porous medium. 
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Figure 5.3: A schematic diagram show different geometrical terms used in the analytical solution. 

 The asymptotic solution for IC can be derived in a straightforward manner and its 

details are provided in Appendix D for completeness. Indeed, IC can be stated in a rather 

compact form by introducing the plane wave reflection coefficient V(), the plane wave 

transmission coefficient T(), and, the spherical wave refraction coefficient q(): 

 
cos

cos
V 



 


 





,            (5.13a) 

   
2cos

1
cos

T V 




 

 
  


  ,        (5.13b) 

and 

       ( ) ( ) ( ) 1p pq Z T A V F w             ,       (5.13c) 

where  is the effective admittance  given by 

   2 2 2 2sin tan sini n kd n            ,      (5.14a) 
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p is the zero for the denominator in the integrand of Eq. (5.8), i.e. 

 cos 0p p    .          (5.14b) 

which can be solved numerically by a standard Newton Rasphson method.18 Once p is 

determined, the apparent admittance of the hard-backed rigid porous medium p can be 

established as, 

  cosp p p      .          (5.14c) 

In Eq. (5.12c), the function F is known as the boundary loss factor: 

   
2

1 erfcwF w i we iw      ,         (5.15a) 

where w  is the apparent numerical distance below the air/ground interface: 

    
1

2cos coss p r pw ik L R nR          ,      (5.15b) 

and the approximate numerical distance w  is defined by 

 
1

cos
2

rw ikR    .          (5.15c) 

The augmented diffraction factor A is defined as 

 
( )

sin sin

p w

p p

r r
A

E


 
 ,          (5.16a) 

where rp is the admittance ratio and rw is ratio of the numerical distances: 

 p pr      ,          (5.16b) 

and 

 wr w w   .                                 (5.16c) 

The parameter Ep in Eq. (5.18a) is given by 
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 2
cos

1 tan ( ) ( ) sec ( )
( )

p

p p p p

p

i
E kN d kN d kN d

N

 
  


             .    (5.16d) 

 With all necessary terms defined in Eqs. (5.11) – (5.16), the canonical integral for 

the sound transmitted between a hard-backed rigid porous medium can be calculated by 

( )

( ) ( )
4 ( )

ikL Z

C

e
I Z q Z

Z



 .           (5.17) 

Making use of Eq. (5.17) to calculate the sound fields at the receiver and image receiver 

locations respectively, it is possible to calculate the total field between within the hard-

backed rigid porous medium as 

1(0, | , )
4 4

D RikL ikL

s D R

D R

e e
p z r D q q

 
  

 
  .         (5.18) 

where subscripts D and R denote the corresponding terms for D-refracted and R-refracted 

waves. They are calculated by setting the depth parameter Z in Eqs. (5.11) – (5.16) to D 

and 2d – D respectively. 

 Furthermore, a similar procedure can be used to derive the sound fields within an 

impedance-backed porous interface. which is 

     1 2(0, | , ) 2 2 2s C Cp z r D I D I d D I d D                              (5.19) 

where IC, which is a canonical integral, is given by 

 

(1)
( , )0sin cos ( )

( )
8 cos

b
ikf Z

C

C

Gik N
I Z e d

N

    


    

 
    

       (5.20a) 

and  

   

(1)
( , )0

2

sin cos ( )
( )

8 cos
b

ikf Z

C

Gik N
I Z e d

N N





    


     

 
     


                               

(5.20b) 
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and 2  is the specific normalized admittance of the backing layer.  As seen in Eq.(5.20b), 

there's another pole basides the pole calculated by Eq.(5.14b), which  satisfied 

 
22

,2 2sin 0pn                                                                          (5.21) 

i.e. 

 
21 2

,2 2cos 1
2

p n


       
 

 
 .        

                                  
(5.22) 

 The asymptotic solution for the sound fields below the impedance-backed 

interface is derived as  

1(0, | , )
4 4

D RikL ikL

s D R

D R

e e
p z r D q q

 
  

 
                                         (5.23) 

where 

       ( ) ( ) 1D D D p D pq T V A F w                                  (5.24a) 

           2 2( ) ( ) 1R R R R p p R pq V T V V A F w              

       ,2 ,2 2 ,2 2( ) 1p p R pT V A F w                                    (5.24b) 

2 2
2

2 2 2
2

cos

cos

R

R

n
V

n

  

  

 


 
    .                                                                    (5.24c) 

Note that Eq. (5.23) can be simplified to Eq.(5.18) when the specific normalized 

admittance of the backing layer goes to zero, which is the case of hard-backed porous 

interfac. 
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5.3  Numerical Comparisons and Experimental Validation 

 The direct numerical integration scheme and the fast field formulation [39] are 

well known for yielding accurate numerical results in many situations. We shall combine 

these two accurate numerical approaches leading to a hybrid scheme known as the 

integrated exact solution (IES). It will be used to validate the asymptotic formula derived 

in the present study. To facilitate the comparison, an excess attenuation (EA) function is 

defined as  

1
1020 log

4ikr

p
EA

e r

 
  

 
           (5.25) 

where r is the horizontal separation between the source and receiver. The Miki model [14] 

is used to characterize the acoustical property of the ground surface. It is chosen for its 

simplicity but yet it reveals sufficient details for accurate modeling of ground surfaces. 

 Figure 5.4 displays the comparisons between the asymptotic solution and IES for 

the EA versus the horizontal range at various frequencies. The source and receiver are 

respectively chosen at 0.04 m above and 0.02 m below the porous interface. An effective 

flow resistivity (e) of 50 kPa s m-2, tortuosity (q) of 1.1 and the porosity () of 0.9 are 

selected to represent the rigid porous medium with a layer thickness of 0.03 m. Four 

different frequencies of 100 Hz, 1 kHz, 5 kHz and 10 kHz are used in the numerical 

simulations to produce four EA spectra. The predictions according to the asymptotic 

formulas agree very well with those predicted by the IES. We can see in Figure. 5.4 that 

both predictions agree to within the thickness of the lines. Other computations have been 
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conducted with different ground parameters and they all show good agreement between 

IES and the asymptotic solutions. These comparisons are not shown here for brevity.  
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Figure 5.4: Predicted excess attenuation of the sound field versus the frequency. Solid line: asymptotic 
solution; circles: Integrated Exact Solution (IES). 

 Next, Figure. 5.5 shows plots of the EA spectra for the monopole source placed at 

0.04 m above the hard-backed porous layer of thickness 0.03 m. The receiver is also 

chosen to be 0.02 m below the porous interface and the horizontal range is set at 1 m. The 

predicted results are for different values of e at 50, 100, and 150 kPa s m-2 but q and 

 are set constant at 1.1 and 0.9 respectively. The EA spectra predicted by asymptotic 

formulas are in excellent agreement with the numerical results calculated by IES. These 

two typical sets of comparisons serve to highlight the validity of the derived asymptotic 

formulas for computing the sound penetration into the hard-backed rigid porous medium.  
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Figure 5.5: Predicted excess attenuation of the sound field versus the frequency. Solid line: asymptotic 
solution; circles: Integrated Exact Solution (IES). 

 A set of laboratory measurements was conducted in an anechoic chamber (about 

3.5 m  3.5 m  3.5 m) for validating the proposed asymptotic formulas of sound 

penetration into a hard-backed layer ground. A CIE 30 w Tap Loudspeaker, connected to 

a brass tube with a length of 1 m and an internal diameter of 0.03 m, was used to simulate 

a point monopole source. The receiver used in the measurement was a Bruel & Kjaer type 

4189 pre-polarized free field 1/2-inch microphone. A pool of uniform spherical glass 

beads with average diameters varying from 0.3 mm to 0.4 mm was used to model a rigid 

porous medium. They are placed in a wooden container of size 2 m  2 m  0.2 m (depth)  

which provided a rigid backing for the porous materials. The upper surface of the pool of 

glass beads was located at a nominal height of 0.038m from the bottom of the wooden 

container. Figure 5.6 shows a photograph for the experimental setup of the present study 
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in an anechoic chamber. As a precaution, some sound absorption materials were used to 

cover the edges of the wooden box to minimize unwanted reflections from its edges. 

 

Figure 5.6: Photograph of the measurement setup when the microphone is buried inside the glass bead 
in an anechoic chamber. 

 A PC based Maximum-Length Sequence  System Analyzer (MLSSA)23 was used 

as a signal generator for the source to generate a pseudorandom sequence of pulses as the 

source output which allows measurements of wideband long duration impulse response. 

The MLSSA has the advantage that no correction of background noise is necessary for a 

signal-to-noise ratio of 0 dB. After the impulse response was measured in the time 

domain, it was then exported to MatLab program for the subsequent processing. The 

signal was processed with a right sized Hamming window and the Fast Fourier 

Transform (FFT) technique. Each spectral level was normalized by the prerecorded direct 

field measurement signals taken without the impedance floor.  The final output was then 

the excess attenuation spectrum.  
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 Several measurements were conducted at various source and receiver heights. The 

speaker driver was supported by a tripod with the center of the brass tube located at a 

height of 0.09m above the surface of the porous ground. Two microphones were used in 

order to reduce any disturbances on the surface of glass beads for each set of 

measurements. One microphone was supported by a tripod at 0.09m above the surface 

and the second microphone was buried with its center at a depth of 0.0075 m below the 

surface of the glass beads. The second microphone was then moved to a deeper depth of 

0.014 m, 0.0175 m, and 0.0225 m below the surface. The surface roughness of the rigid 

porous ground was identical for the measured sound field above and below ground for a 

fixed source/receiver location. A set of measurements was conducted when the source 

and receiver were separated by a horizontal distance of 0.6 m. Care was taken to avoid 

contacts with the surface of the glass beads when the source was positioned for the next 

set of measurements.  

 To characterize the impedance of the ground, data from the measurement above 

the porous surface were used. In the measurements, the source and receiver were 

suspended at the height of 0.09 m above the rigid porous surface with a horizontal 

separation of 0.6 and 1.0 m respectively. The two measurements were subsequently fitted 

by means of Attenborough’s four parameters impedance model. There are four resulting 

microscopic parameters which describe the acoustical properties of a homogeneous 

porous material: flow resistivity , porosity , tortuosity 2q  and pore shape factor fs . 

The expression for the index of refraction and the density ratio are given by 

          
11 1

2 2 1 2 1 2 1p p pr p pr pn q i T i N i T N i    
     

  
 ,    (5.26) 
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   
12 1

1 2 p p

q
i T i  

  
  

 ,                     (5.27) 

where 

  21 8 ( )p fs q     ,                           (5.28a) 

and 

1 0( ) ( ) ( )T x J x J x ,                   (5.28b) 

 is the density of air,  is the ratio of specific heats, prN is Prandtl’s number. 

 For the glass beads with the size of 0.3 mm to 0.4 mm used in the measurement, 

we started from these trial values shown in these previous studies. The aim is to search 

for a set of parametric values that best fit the agreement between the experimental data 

and the analytical predictions for sound fields above a hard-backed impedance ground 

with the properties of the glass beads calculated by Eqs. (5.26) and (5.27). Best fit 

parameters were found to be as follows: flow resistivity  = 140 kPa s m-2, porosity  = 

0.4, tortuosity q2 = 1.6 and pore shape factor sf = 0.8. Typical examples of the measured 

and fitted excess attenuation measurements are shown in Figures. 5.7 and 5.8. These 

parameters have been used in the following part together with the measurement 

geometries to obtain the predictions of sound propagation from a monopole into an 

impedance plane backed by a hard ground with the measured data.  
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Figure 5.7: Measured(circle) and fitted(solid line) excess attenuation spectrum due to a monopole 
source above a hard-backed 0.038 m glass bead. 0.09s rz z  m, range 0.6r  m. The ground 

parameters are flow resistivity 140   kPa s m-2, porosity 0.4  , tortuosity 2 1.6q   and pore 
shape factor 0.8fs  . 
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Figure 5.8: Caption same as Figure 5.7 except that the range was chosen as 1.0 m. 
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Figure 5.9 shows the measured and predicted total sound fields at the horizontal 

separation of 0.6 m as a function of frequency with the source at a height of 0.09 m above 

the porous surface and the receiver located at various locations of 0.75 cm, 1.4 cm, 1.75 

cm and 2.25 cm below the surface. The agreement between measured data and 

predictions according to Eq. (5.18) is good. Also shown is the prediction for the sound 

field due to a monopole source inside a semi-infinite extended reaction ground for source 

and receiver location at 0.09 m above and 2.25 cm below the surface respectively with 

the same horizontal separation. There are significant differences between the sound fields 

below the hard-backed impedance ground and the semi-infinite extended reaction ground 

especially . The compared results indicate that the existence of the hard-backed ground 

have a significant effect on the total sound fields inside the porous layer. When the 

receiver is located near the bottom of the hard-backed layer, the reflection of the refracted 

wave gives rise to a significant contribution to the total sound fields. 
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Figure 5.9: Measured (circle) and predicted (solid line) excess attenuation spectrum due to a monopole 

source below a hard-backed 0.038 m glass bead, range 0.6r  m. Predicted (dashed line) excess 
attenuation spectrum below a semi-finite extended reaction ground when receiver height was chosen 

to be 2.25cm and 3.5cm below the surface. 

5.4  Summary 

 In this chapter, the study of sound transmission and reflection from a layer of 

sound absorption materials placed on a hard plane has been investigated. A uniform 

asymptotic solution has been derived for the penetration of sound into the hard-backed 

layer porous materials. The numerical results obtained by the asymptotic formula agree 

very well with those calculated by the more exact wave-based numerical solutions. It has 

also been shown that the asymptotic solution provides a convenient means for rapid and 

accurate computations of sound fields in the hard-backed rigid porous layer. A set of 

precise laboratory measurements was conducted for validating the asymptotic formulas 

experimentally.  It has been shown that the effect of the reflecting backing is particularly 

important for the total sound fields when the receiver is located near the rigid backing. 
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The R-refracted wave term, i.e., the second term of Eq. (5.18) provides a significant 

contribution to the sound field that cannot be ignored in the calculations of the sound 

penetration into the rigid porous medium. 
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CHAPTER 6: REFLECTION AND TRANSMISSION OF SOUND FROM A DIPOLE 

NEAR A RIGID POROUS MEDIUM 

6.1  Introduction 

 The reflection of sound from a porous half-space has been the subject of interest 

for many decades [1, 72]. There have also been related studies on the transmission of 

sound through an interface into a porous half-space. An application of these studies is the 

acoustic detection of buried objects [70, 76-78]. Most of these studies were based on the 

sound fields generated by a point monopole source. Other studies considered a directional 

noise source but these were mainly restricted to the analysis of sound fields above a 

locally reacting ground [29, 30, 67].  

 The purpose of this study is to develop accurate numerical solutions for predicting 

the sound fields above and below a porous half-space due to a dipole source placed above 

the interface since many noise sources have directional characteristics. For instance, a 

fast moving train [22] and a helicopter rotor [23] can be modeled as dipole noise sources. 

The analytical and numerical solutions developed in this paper will be beneficial in the 

accurate assessment of the noise impacts from directional sources. It should be pointed 

out that there were comparable studies on the propagation of electromagnetic waves over 

a conducting half-plane due to an electric dipole in recent decades [93]. However, 
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these analytical results cannot be applied directly without further adaptations to most 

acoustic problems.  

 Indeed, the problem of predicting the sound fields due to a point monopole source 

above a plane interface, and also the related problem for a dipole source, is of great 

theoretical interest. It is because they can be posed as an exactly solvable canonical 

problem with a rich structure. Their analytical solutions are also of considerable practical 

importance in, for instance, the implementation of noise mapping software. There are 

many exact computational schemes, such as the fast field program [39], finite element 

method [75], offering accurate numerical solutions for predicting sound fields for the 

canonical problems. However, the computational costs of these numerical schemes are 

prohibitively expensive for high source frequencies. These numerical solutions do not 

yield physically interpretable terms to enhance a better understanding of the problem. An 

alternative route is pursued in the present study where an asymptotic method is applied to 

derive an approximate solution for the dipole sound fields of the classical two-medium 

problem. Previous studies [34, 71, 72, 74] have shown that the method of steepest descent 

is a versatile mathematical technique that offers accurate and fast asymptotic solutions for 

computation of sound fields above a flat interface. The present study generalizes this 

mathematical technique to tackle the problem of the sound field due to a dipole source 

placed above a rigid porous medium. 

 Another application of the present study is its provision of an accurate Green’s 

function that can be used to calculate the pressure gradient at any arbitrary field point 

above a rigid porous ground. Accurate Green’s functions for calculating the pressure and 

the pressure gradients are normally required in the boundary integral equation (BIE) 
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formulation for predicting the combined effects of a porous road surface and the 

application of sound absorbing materials on a barrier’s surface. In the absence of 

appropriate Green’s functions, Anfosso-Ledee et al. [69] used a two-domain BIE 

approach to impose the continuity of pressure and velocity at the porous interface. Their 

BIE approach invariably increases the number of elements needed in the formulations, 

which limits its suitability as a three-dimensional boundary element model. On the other 

hand, an analytical solution below ground facilitates the acoustical characterization of 

sound absorbing materials and has an application in the acoustic detection of buried 

objects by means of a BIE formulation [76]. 

It is well known that the sound field above a rigid porous medium consists of 

three terms: a direct wave, a reflected wave, and a component due to sound diffracted at 

the interface. In a recent study, Li and Liu [1] showed that the sound field below the 

porous interface consists of two terms: a sound transmission component and a diffracted 

wave term. This paper reports a continuation of these efforts to develop asymptotic 

formulas for predicting the sound field above and below a rigid porous medium. A 

double saddle-point method [71] will be used to evaluate the diffraction integral along the 

steepest descent path. The method of pole subtraction is then applied to provide a 

uniform asymptotic solution for the sound fields above and below the porous interface. In 

this paper, we shall interpret the directional effect of the dipole source on each term of 

the asymptotic solutions. The accuracy of the asymptotic solutions will be confirmed by 

comparing them with computationally intensive, but more accurate, numerical schemes. 
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6.2  Review of the Diffraction Integrals from a Monopole Above a Rigid Porous 

Medium 

 A rectangular coordinate system is used with the vertical z-axis passing through 

the source, i.e., the coordinate of the source is (0, 0, zs). The frequency of the dipole 

source is f, the corresponding wave number is k, and the speed of sound in air (upper 

medium) is c. A receiver is placed at z above the porous interface where the height z is 

measured positive upward. Alternatively, the receiver may be placed at a depth –D below 

the interface where D > 0. A horizontal coordinate of r = (x, y) is used where its scalar 

horizontal distance from the source is 2 2r x y   and the corresponding azimuthal 

angle is  1tan y x  . The parameters, R1 and R2, are defined as the respective 

distances from the source and its image to the receiver, i.e., the distances of the direct and 

reflected waves. The ground is assumed to have a complex sound speed and complex 

density of c1 and 1, respectively. Figure 6.1a shows the geometrical configuration. 

 According to a recent study, Li and Liu [1] showed that the sound fields above (at 

height of z > 0) and below (at depth of D > 0) the porous interface can be expressed as 

 
1 2

( ) ( )

1` 2

, ,
4 4

ikR ikR
m m

s a

e e
p r z z p

R R 
   ,           (6.1a) 

and 

 ( ) ( ), ,m m
s bp r z D p              (6.1b) 

where  ( ) ( ) , ,m m
a a sp p r z z    and  ( ) ( ) , ,m m

b b sp p r z D    are the respective integrals to 

calculate the contribution of the diffracted wave terms above and below the porous 

interface. The superscript (m) represents the sound field due to a monopole source i.e., a 
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zeroth order multipole. 

      (a) 

 

(b)                  (c) 

    

Figure 6.1: (a) Schematic diagram showing a source located in the air in the upper medium, a receiver 
situated at height zr above the interface, and another receiver located at depth D below the incident 

angle for the refracted ray, and 1  is the refracted angle. The distance Rs is measured from the source 
to the ground and 

2
R  is measured from the source to the apparent receiver below the ground. The 

schematic diagrams of dipole sources are shown in (b) a horizontal dipole, and (c) a vertical dipole. A 
pair of monopole sources of opposite signs are aligned accordingly and placed at a height of zs above 

the rigid porous medium. 
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 Li and Liu showed that the diffraction integrals due to a monopole source can be 

written as 

 
   2 2

0( )

2 2

sin sin exp ( )
, ,

4 cos sin

am
a s

C

n G ikfik
p r z z d

n

    


   




 
 ,       (6.2a) 

and 

   0( )

2 2

cos sin exp ( )
( , , )

4 cos sin

bm
b s

C

G ikfik
p r z D d

n

   


   


 
 ,       (6.2b) 

where 1    is the complex density ratio, 1n c c  is the index of refraction from the 

upper medium to the lower medium, and  jG   [where j = 0, 1, …], is the corresponding 

jth order Hankel function (1)
jH  normalized with the exponential factor, sinikre  : 

   (1) sinsin ikr
j jG H kr e    .           (6.3a) 

The asymptotic form for  jG   can be expressed as [73]   

   
1
2 22 4 1

1
sin 8 sin

j

j

j
G i

i kr ikr


  

   
     

   
 .                         (6.3b) 

Here, j is set at zero for a monopole source. The variable  in the diffraction integrals can 

be interpreted as the angle of incidence of the reflected plane wave [34] in the upper 

medium. The exponential factor fa() in Eq. (6.2a) and fb() in Eq. (6.2b) are defined, 

respectively, by 

      2sin cos cosa sf r z z R         ,         (6.4a) 

and 

  2 2sin cos sinb sf r z D n       ,         (6.4b) 
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where zs, z, D  0. 

 The integration path for the two diffraction integrals is shown as C in Fig. 6.2. 

The integration path for  varies from 2 i    to 2  to 2  to 2 i   . It is 

remarkable that the pole p is the same for both integrands shown in Eqs. (6.2a) and 

(6.2b). It can be determined by setting the denominators of the respective integrands to 

zero, i.e. 2 2cos sin 0n     . Its solution gives a pair of trigonometrical functions 

defining its location at the complex -plane as follows: 

   2 2cos 1 1p pn         ,          (6.5a) 

and  

   2 2 2 2sin 1 1 1p pn         ,         (6.5b) 

where the subscript p stands for the parameter at the pole. Figure 6.2 also shows the 

schematic location of the pole in the complex -plane. The term p, which is introduced 

in Eqs. (6.5a) and (6.5b), can be treated as the apparent admittance of the rigid porous 

medium. 

 It should be pointed out that accurate asymptotic solutions [1] were available to 

compute the diffraction integrals, ( )m
ap  and ( )m

bp . In principle, the dipole sound fields 

could be obtained directly by taking directional derivatives of these asymptotic solutions. 

However, the spatial derivatives of the diffraction integral lead to more complex 

expressions [93]. A preliminary analysis suggests that this direct approach leads to a set 

of complicated asymptotic solutions which is tedious to apply for computing the dipole 

sound fields. We are therefore refrained from providing the approximate solutions due to 
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a monopole source in this section. The diffraction integrals described above will be used 

instead as a basis for the derivation of the dipole sound fields in the following sections. 

 2

 2
 

 C

 

Figure 6.2: Sketch of the integration paths. The original integration path is denoted by C, whereas 

C and C are the steepest descent paths for the sound fields above and below the rigid porous ground, 

respectively. 

6.3  Dipole Sound Fields above a Rigid Porous Medium  

6.3.1  Integral Expressions for the Diffracted Wave Term 

 Suppose a dipole is placed at a height of zs above a semi-infinite plane interface. 

Figures 1b and 1c show schematic diagrams for a horizontal dipole and a vertical dipole. 

The dipole sources may be considered as a pair of opposite monopole sources separated 

by a small distance  (where  0) along the dipole axis.  

 The dipole axis is specified by the polar and azimuthal angles ( L  and L ). The 

direction cosines l = (lx, ly, lz) of the dipole axis can be specified by 
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sin cosx L Ll   ; sin siny L Ll   ; cosz Ll  .          (6.6) 

The horizontal and vertical components for the dipole orientation are introduced such 

that  , h vl l l , where lh = (lx, ly) and lv = (lz). The use of these two components can 

simplify the expression given in our analytical solution. It is because the two planar 

direction cosines, lx and ly, can be grouped together as a single term for the sound field 

due to the horizontal dipoles. On the other hand, the polar direction cosine lz gives rise to 

the contribution due to the vertical dipole. Unless stated otherwise, the subscripts h and v 

are used to denote the horizontal and vertical components of the variable.  

 Taking directional derivatives [72], the sound fields due to an arbitrarily oriented 

dipole source can be written in terms of  ( )mp  as 

     ( ) ( ), , sin cos cos , ,d m
s L L r L z sp r z z p r z z           ,        (6.7) 

where r and   are the magnitude and direction of the receiver in the azimuthal plane. 

The superscripts (d) and (m) represent the parameters for a dipole source (i.e., the first 

order multi-pole) and a monopole source (i.e., the zero order multi-pole) respectively. 

The subscripts r and z in   represent the spatial derivatives r   and z  , respectively. 

Differentiation the first two terms of Eq. (6.1a) with respect to r and z, substitution of the 

resulting expressions into Eq. (6.7) and manipulation of the algebraic terms lead to 

      1 2( ) ( )1 2
2 2
1 2

1 1
, ,

4 4
ikR ikRd d

s a

ikR ikR
p r z z e e p

R R 

    
     

   
1 2l u l u� � ,       (6.8a) 

where the diffracted wave term ( )d
ap  is given by 

 ( ) ( )sin cos cosd m
a L L r L z ap p           ,        (6.8b) 
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and the unit vectors 1u  and 2u  are the respective directions pointing from the source and 

its image to the receiver. Centering at the source and image source, 1u  and 2u  can be 

written in terms of the polar and azimuthal angles as 

 sin cos ,sin sin ,cos    1u            (6.9a) 

and 

 sin cos ,sin sin , cos    2u           (6.9b) 

where  and  are the respective polar angles of the direct and reflected waves, and  is 

the azimuthal angle for both the direct and reflected wave. 

 We can see that the diffracted wave term for the dipole ( )d
ap  can also be split into 

its horizontal and vertical components. Straightforward directional derivatives of the 

asymptotic solution for ( )m
ap  in Eq. (6.8b) will result in a more complicated asymptotic 

solution [29]. Here, we shall take an alternative approach by reversing the order of 

differentiation and integration for ( )m
r ap  and ( )m

z ap  to yield, 

 
   2 2 2( ) 2
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aikfm
m a

r a

C

n G ep ik
p d

r n

   


   


  

  
 ,     (6.10a) 

and 
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aikfm
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p d

z n

    


   
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  
 ,    (6.10b) 

where  jG   [where j = 0, 1, …] is defined by Eqs. (6.3a,b) and the exponential function 

fa above the rigid porous medium is given by Eq. (6.4a).  

It is important to mention that the diffracted sound fields above a rigid porous 
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medium due to the horizontal and vertical dipoles can be obtained from Eqs. (6.10a) and 

(6.10b). In the special case where n  , i.e., a locally reacting ground, these integral 

expressions can be reduced to the analogous forms given by Li et al. [29] which can be 

evaluated asymptotically leading to a closed form solution. However, to the best of our 

knowledge, the corresponding asymptotic solutions are not available for the arbitrarily 

oriented dipole. One of the objectives of the present study is to derive such asymptotic 

formulas for providing fast and accurate numerical solutions to predict the dipole sound 

fields above a rigid porous medium. The details of the derivation will be given in the 

following sections. 

6.3.2  Diffracted Wave Fields due to a Horizontal Dipole 

 In this section, an analytical method [1] will be used to derive an asymptotic 

solution for the horizontal dipole ( )m
r ap . The corresponding solution for the vertical 

dipole ( )m
z ap  will be discussed in the next section. The sum of these two solutions, 

( )m
r ap  and ( )m

z ap , leads to an analytical formula for the diffracted wave term due to an 

arbitrarily oriented dipole. 

 The main steps for evaluating the integrals asymptotically are described for the 

sake of completeness. First, the integration path C is deformed to the steepest descent 

path C (see Figure. 6.2) that passes through the saddle point at  = . The steepest 

descent path can then be determined by setting 

  Im 1 cos( ) 0i     .           (6.11) 

Figure 6.2 shows both integration paths in the complex  plane.  
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By indenting the path from C to C, the contribution from the pole is included, 

which yields an expression for ( )m
r ap  as 

   
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2 cos22
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(6.12a) 

where H is the Heaviside step function and ( )d
hP  is the pole contribution that can be 

determined by the calculus of residue to confirm 
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      (6.12b) 

The evaluation of the integral in Eq. (6.12a) is facilitated by introducing a complex 

variable W to replace  by 

 2
2

1
1 cos

2
W ikR       .          (6.13a) 

The pole location Wp in the W-plane can then be determined, but it is usually written in 

terms of the numerical distance w as follows: 

22 2 sin ( ) 2p pw W ikR       .       (6.13b) 

Because the steepest descent path in the W-plane corresponds to the integration 

path along its real axis, Eq. (6.12a) can therefore be transformed to 

 ( ) ( )
1 Imm d
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X = Re(W), and  can be converted to W according to Eq. (6.13a). 

 Essentially, the method of pole subtraction is needed when the pole p is 

positioned very close to the saddle point, i.e., when Wp is very close to 0. In this case, 

the apparent singularity of the integrand in Eq. (6.12a) can be removed by the method of 

pole subtraction [71]. Specifically, Eq. (6.12a) can be rewritten as 

 ( ) ( ) ( )
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and 
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By noting ( )d
hP  in Eq. (6.12b), an asymptotic expression for G1 [see Eq. (6.3b)] in Eq. 

(6.15c), and, an integral expression for the complementary error function [73],  
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the integral I2 can be simplified to confirm  
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where  is defined in terms of the complimentary error function as     
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  The application of the Taylor’s series expansion to the integrand of Eq. (6.14b), 

retention of the first term in the series, and, evaluation of the resulting integral yield a 

closed form asymptotic solution for I1 as follows: 
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where A is given by 
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 and 

 2 2sine n    .          (6.20b) 

The asymptotic representation for I2 can be derived using the following asymptotic 

formula for the complimentary error function: 

 
2 /2

2

1 1
erfc( 2) 2 [ Im( )] 1

/ 2

pW

p p

pp

e iW H W
WiW 

   
      

   


 .     (6.21) 

The substitution of Eq. (6.21) into Eq. (6.17) yields 

 
2

2

2

sin
4

ikR

B p

e
I ik

R
 


 ,          (6.22a) 

where B is given by 
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   2

2 2sin sin

1 1 cos

p p

B

p

  


  




  
,        (6.22b) 

The subtraction of I2 from I1 leads to an asymptotic expression for the correction 

term ( )d
h  as follows: 

   
2

( )

2

sin sin
4

ikR
d

h A p B

e
ik ik

R
    


    .         (6.23) 

This is the correction term that has been modified to take into account a spatial derivative 

with respect to r for the horizontal dipole. Namely, the multiplication factors of (ik sin ) 

and (ik sin p) appear in the first and the second term of the square bracket of Eq. (6.23), 

respectively. Substituting Eqs. (6.17) and (6.23) into Eq. (6.15a), an asymptotic 

expression to calculate ( )m
r ap  can be obtained to confirm  

2
( )

2

sin sin
4

ikR
m

r a A a p

e
p ik

R
  


      ,                 (6.24a)  

where the correction term, a , is referred as the diffraction factor: 

 a B       

          21 2 1 2

22

2
2 1 cos ( ) 2 erfc( )

(1 ) sin sin

p w
p

p

i ikR e iw


  
  


      

.  

(6.24b) 

6.3.3  Diffracted Wave Fields due to a Vertical Dipole 

 In this section, the derivation of an asymptotic solution for the diffracted wave 

term due to a vertical dipole, ( )m
z ap , will be shown. Its exact solution can be specified in 

an integral form, as shown in Eq. (6.10b). By indenting the integration path from C to C 
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(see Fig. 6.2), splitting the integral into two parts, replacing  with W according to Eq. 

(6.13a), and evaluating the integral along the steepest descent path (i.e., along the real 

axis of W), the integral solution for ( )m
z ap  can be transformed into 

( )m
z a A Bp I I    ,              (6.25a) 

where 

 
2

2

22
0

2
2

( ) sin

4 4

X
ikR

A

N G ek
I e dX

ikR X

   










 ,         (6.25b) 

  ( )
3 Im d

B p vI I H W P     ,          (6.25c) 

2
2

2
( ) 2

3
4

ikR d X
v

k
I e e dX








   ,          (6.26a) 

 

 

2 2
0( )

2
2

( ) sin
( )

cos ( ) 4

d
v

N G
X

N ikR X

   


  


 
,       (6.26b) 

and 

 
2

2
/20( )

2

( )

2 1

pWp p ikRd
v p

Gk
P ik e e

 








.         (6.26c) 

When deforming the integration path from C to C, the contributions from the 

poles are required. Because the integrand of the first term in Eq. (6.25a) is an entire 

function [see also Eq. (6.25b)], there is no pole contribution from this term. The integral 

IA can therefore be evaluated asymptotically to yield, 

2

22

ikR

A e

e
I ik

R



   .            (6.27) 

However, there is a pole in the second term of Eq. (6.25a), see also Eqs. (6.25c), (6.26a) 
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and (1) ( )v X  in Eq. (6.26b). Hence, the pole contribution is calculated by the second term 

of Eq. (6.25c). It can be determined by using the same method as described in the last 

section to give an analytical expression for (1)
vP shown in Eq. (6.26c). 

 Using the same procedure as detailed in the last section, I3 can be evaluated by the 

pole subtraction method to verify 

  ( ) ( )
4 Im d d

B p v vI I H W P       ,             (6.28) 

where  

2
2

2
( ) 2

4 ( )
4

ikR d X
v

k
I e X e dX








     ,         (6.29a) 
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2 2
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2
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1
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v

p

N G
X

X W

  
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  
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,        (6.29b) 

and 

2
2

2
( ) ( ) ( ) 2

3 4 ( ) ( )
4

ikRd d d X
v v v

k
I I e X X e dX 








       .      (6.29c) 

 Using Eq. (6.17), the integral I4 can be represented exactly in terms of , cf Eq. 

(6.18), to give 

 
2

( )
4

2

( cos ) Im
4

ikR
d

p p v

e
I ik H W P

R



       .       (6.30a) 

The asymptotic solution for I3 can be derived by a straightforward application of 

asymptotic analysis to give 

 
2

3

2

cos
4

ikR

A e

e
I ik

R
 


 ,          (6.30b) 

where e is defined in an analogous form as the pole location p as 
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cos 0e e     ,           (6.30c) 

with e defined in Eq. (6.20b)). The asymptotic representation of I4 can be obtained 

readily by using Eq. (6.21) to yield, 

2

4

2

( cos )
4

ikR

B p

e
I ik

R
 


 ,           (6.31) 

where B is defined in Eq. (6.22b). Hence, the substitution of Eqs. (6.30b) and (6.31) into 

Eq. (6.29c) yields an asymptotic expression for the correction term as 

 
2

( )

2

cos ( cos )
4

ikR
d

v e A p B

e
ik ik

R
    


    .         (6.32) 

Finally, the diffracted wave term above a rigid porous medium, due to a vertical 

dipole can be derived by first substituting Eq. (6.32) into Eq. (6.28). Then, the resulting 

asymptotic expressions for IA and IB [cf Eqs. (6.27) and (6.28)] are used in Eq. (6.25a) to 

obtain 

2
( )

2

(2 )cos cos
4

ikR
m

z a A e a p

e
p ik

R
  


       ,        (6.33) 

where A  and a  are given respectively by Eq. (6.20a) and Eq. (6.24b). 

6.3.4  Sound Fields due to an Arbitrarily Oriented Dipole 

 For an arbitrarily oriented dipole with its dipole axis aligned according to Eq. 

(6.6), the diffracted wave term can be obtained by substituting Eqs. (6.24a) and (6.33) 

into Eq. (6.8b) to verify 

 ( ) sin sin cos (2 )cos cosd
a A L L A e Lp ik                
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  

2

2

sin cos cos
4

ikR

a L L L

e

R
   


     .         (6.34) 

Using the spatial unit vectors l and u2 [see Eqs. (6.6) and (6.9b)] and introducing a unit 

vector us that characterizes the propagation direction of the boundary wave, Eq. (6.34) 

can be written in a more compact form as 

   2 2( ) 2 2
2 2
2 2

1 1

4 4
ikR ikRd

a A s a

ikR ikR
p e e

R R


 

    
       

   
2l u l u ,       (6.35) 

where  

 sin cos ,sin sin , cosp p p    su .         (6.36) 

In Eq. (6.35), an assumption of kR2 >> 1 is used such that the parameter ikR2 is 

approximated by (1 – ikR2) in each of the two square bracket terms of the asymptotic 

formula. These modifications will not cause significant errors in the asymptotic 

expressions at the far-field, and its introduction can provide a more convenient solution 

for the total near-field sound pressure given above.  

The substitution of Eq. (6.35) into Eq. (6.8a) leads to a uniform asymptotic 

solution for the total sound field of 

       1 2( ) 1 2
2 2
1 2

1 1
, ,

4 4
ikR ikRd

s s a

ikR ikR
p r z z e V e
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 

    
           

   
1 2l u l u l u , (6.37a) 

where V can be identified readily as the plane wave reflection coefficient, which is given 

by 

cos

cos
e

e

V

 

 





.          (6.37b) 
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Equation (6.37a) is the main result of section 6.2. It offers a closed form analytical 

formula for rapid computation of sound fields due to an arbitrarily oriented dipole placed 

above a rigid porous medium. This asymptotic solution will be implemented numerically 

and compared with other more accurate wave-based numerical solutions. Their 

validations will be offered in section 6.5 but the simplified expressions for two special 

cases will be presented as follows. 

 An interesting situation arises when the rigid porous medium has a relatively high 

flow resistivity. In this case, Allard et al. [92] suggested that the factor sin sin 1pE     

if both  and p are close to /2. Then, the total sound field can be reduced to 

       1 2( ) 1 2
2 2

1 2

1 1
, , (1 ) ( )

4 4
ikR ikRd

s p s p

ikR ikR
p r z z e V V F w e

R R 

    
           

   
1 2l u l u l u , 

             (6.38a) 

where Vp is referred to as the poles of reflection coefficient, 

cos

cos

p

p

p

V
 

 





,          (6.38b) 

and F(w) is the boundary loss factor calculated by 

2

( ) 1 erfc( )wF w i we iw    ,         (6.38c) 

with the numerical distance w approximated by  

0 2 / 2(cos )pw ik R    .         (6.38d) 

In the next special case, we have n >> 1 for a locally reacting ground. Hence, 

e n    , which can be interpreted as the specific normalized admittance of the 

ground surface. Then, it is possible to show that 
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2

cos
A




 





,           (6.39a) 

 

2 2sin sin

1 cos

p

B

p

  


 




 
,         (6.39b) 

 
21 2

22 2 erfc( ) sin sinw
pi ikR e iw      ,        (6.40) 

 2 22 sin ( ) 2 2 cospw ikR ikR         ,       (6.41a) 

12 cos ( )p    ,          (6.41b) 

and 

pV V .             (6.42) 

Using Eqs. (6.39)–(6.42), assuming  and p are close to /2, and taking 0A B   , we 

can transform Eq. (6.38a) into the same equation derived by Li et al. [30], who studied 

the sound field due to an arbitrarily oriented dipole located above an impedance ground. 

6.4  Sound Penetration into a Rigid Porous Medium 

 In an earlier study, Li and Liu showed that the penetration of sound due to an 

airborne monopole source can be written in terms of the boundary wave term given 

earlier in Eq. (6.1b). The diffracted wave term below the ground can be written in an 

integral form given in Eq. (6.2b). In their analysis for a monopole source, Li and Liu 

evaluated the integral of Eq. (6.2b) asymptotically along the steepest descent path C  

(see Fig. 6.2). Their solution can be written in an analogous form to yield [cf Eq. (61) of 

Ref. (1)], 
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, , 2 2 2

4 1 sin sin

wikL
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b s r

p

e iwe
p r z D i ikR


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   

 
    

   

,     (6.43) 

where D > 0 is the depth below the interface, the overbar represents the corresponding 

parameters in the rigid porous medium, L is the acoustical path length and  is the 

physical path length where  

 b s DL f R nR   ,           (6.44a) 

and 

2 rR R  .           (6.44b) 

The separations between the source and the receiver, Rs and RD, are respectively given by 

coss sR z   ,            (6.45a) 

and 

1cosDR D  .          (6.45b) 

In Eqs. (6.43) and (6.44b), the apparent distance of the sound ray traveling in the absence 

of the lower medium, which is denoted by 2R , is defined as 

2 sinR r  ,            (6.46a) 

and the acoustical energy path length [34] rR  is calculated by 

  
2

1cos cosr s DR R R n              (6.46b) 

where  is the incident angle and 1 is the refracted angle. These two angles are related 

according to Snell’s Law, i.e. sin  = n sin 1. The representations of these physically 

interpretable parameters are shown in Fig. 6.1. Li and Liu [1] outlined a simple numerical 

scheme to determine  and 1 numerically for a given source/receiver configuration and 
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the acoustical characteristic of the ground surface. 

 In Eq. (6.43), the numerical distance of the refracted wave w  is given by, 

    
1

2
1 1cos coss p D pw ik L R nR                  (6.47) 

where p  and 1p is the pole in the respective complex -plane and 1 -plane. Again, 

these two angles are related according to the Snell Law, i.e., 1sin sinp pn  . 

Furthermore, the correction factor ( )m  in Eq. (6.43) can be written in a familiar form as 

 
( )m

A B    .            (6.48a) 

where 

2
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






 





,          (6.48b) 
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p p

B
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  


  



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,        (6.48c) 

and the effective admittance   of the rigid porous medium is given by 

2 2sinn    .          (6.48d) 

 In light of the analysis shown in the Appendix E, it is possible to rewrite the 

diffracted wave term below the rigid porous medium, i.e., Eq. (6.43), in a comparable 

form as follows: 

 ( )

4

ikL
m

b b

e
p T
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

           (6.49a) 

where the plane wave transmission coefficient can be defined as 

 2 2 cos cosAT        ,        (6.49b) 
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the diffraction factor below the ground is given by 

b B    ,            (6.49c) 

and the variable  , cf Eq. (6.18), can be calculated by 

 
 
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
.       (6.49d) 

 By noting Eq. (6.4), it is possible to write the dipole sound field below the porous 

ground in terms of ( )m
bp  as follows: 

 
( ) ( )

( ) sin cos cos
m m

d b b
b L L L

s s

p p
p

r z
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  

 
,        (6.50) 

where the first term is the sound field due to the horizontal dipole and the second term is 

that due to the vertical dipole. Using the expression in Eq. (6.2b) for ( )m
bp , we can write 

the horizontal and vertical dipole terms in the respective integral forms as 

   ( ) 2
1( ) cos sin exp ( )

4 cos ( )

m
bm b

r b

C

G ikfp ik
p d

r N

   


   


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  ,      (6.51a) 

and 
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m
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z N

  


   
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  .     (6.51b) 

 Using the same procedures as described in Sec 6.3, Eqs. (6.51a) and (6.51b) can 

be evaluated asymptotically to yield 

( ) 2sin sin sin sin
4

ikL
m

r b p A B p

e
p ik      


       

      (6.52a) 

and 
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( ) 2cos cos cos cos
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ikL
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z b p A B p

e
p ik      


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.     (6.52b) 

Noting Eq. (6.37a), it is useful to derive a comparable expression for the sound field 

below the ground. The dipole sound pressure can be obtained by an alternative approach 

( ) ( )m m
r b bp p

r


    

, ( ) ( )m m
z b bp p

z


    

.                  (6.53a,b) 

The respective near-field components can then be derived to yield  

 ( )

24

ikL
bm

r b

T e
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and 

 ( )
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T e
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z




  
  

 
,         (6.54b) 

where only the ( 21  ) term remains in the above equations when r  0, i.e., 1 0   . 

It then follows from Eq. (6.44a) that the acoustical energy path length can be 

approximated by 2sinrR r R  . Thus, the physical length [see Eq. (6.44b)] can be 

reduced to 2sinr R   . Consequently, it can be easily shown that 

sinr    , cosz                      (6.55a,b) 

at the near-field. 

By matching Eqs. (6.54a) and (6.54b) with the corresponding asymptotic solution 

given in Eqs. (6.52a) and (6.52b), we can establish a generalized solution that is both 

accurate at the near-field and far-field as follows. For the sound field due to a horizontal 

dipole, the asymptotic solution is given by  
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4 4

pm ikL ikL
r b b

ikik
p T e e

 


 

    
          

.     (6.56a) 
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For a vertical dipole, the sound field is expressed as 
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2 2

cos cos1
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4 4

pm ikL ikL
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           

.    (6.56b) 

Substituting Eqs. (6.56a) and (6.56b) into Eq. (6.50) and assuming k >> 1, we can 

obtain an asymptotic expression for the dipole sound field below the ground as 

   
   ( )

2 2

1
, ,

4 4
sd ikL ikL

b s b

ikik
p r z D T e e  

    
          

2
2

l u l u
l u

� �
�      (6.57) 

where 2u  and su  are the unit vectors that characterize the direction of the transmitted 

wave and the boundary wave propagation, respectively. The unit vector 2u  is given by 

 sin cos ,sin sin , cos    2u            (6.58) 

and su  defined in Eq. (6.36). 

Equation (6.57) presents an analytical solution for predicting sound penetration into 

porous ground due to an arbitrarily oriented dipole source. This asymptotic formula, 

which has not been published elsewhere, is the main result of this section. The validity of 

Eq. (6.57) will be confirmed in Section 6.5.  

6.5  Validation of Asymptotic Formulas 

 The asymptotic formulas derived in the last section can be used to efficiently 

calculate the sound fields due to an arbitrarily oriented dipole. For the present study, it is 

sufficient to use a simple empirical Miki model [14] for modeling the acoustical 

characteristics of the ground surfaces. The numerical solutions computed by the 

asymptotic formulas are compared with the exact numerical solutions calculated by a 
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combination of the fast field program (FFP) and the direct numerical integration method 

in the wave number space. This exact computation scheme is referred to as the integrated 

exact solution (IES) in the following paragraphs. To present the numerical results, an 

excess attenuation function is used, which is defined as 

  1020log
4ikr

G
EA G

e r


 

 
  

 
,          (6.59) 

and G is the function of interest that can be the diffracted wave terms for the horizontal 

dipole placed above and below the rigid porous medium, i.e., ( )m
r ap  and ( )m

r bp . It can 

also be used to represent the respective diffracted wave terms (above and below the 

ground) due to the vertical dipole, which are ( )d
z ap  and ( )d

z bp , respectively. 

 Extensive computations have been conducted for a series of source/receiver 

geometries and for a wide range of ground surfaces. It is found that all the numerical 

results based on the asymptotic formulas agree well (to within about 0.5 dB) with the IES 

when kr  1. The agreements are generally even better for large values of kr (to within 

0.1 dB). Unless stated otherwise, the parametric values of 50 kPa s m-2, 1.1, and 0.9 were 

selected for the effective flow resistivity (e), tortuosity (q) and porosity (), respectively, 

in all the numerical simulations. They represent typical values for a rigid porous interface. 

It is possible to use the asymptotic formula due to an arbitrarily oriented dipole for 

comparison with the IES. However, it is more convenient to separately validate each of 

the asymptotic formulas for the horizontal and vertical dipoles. 
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Figure 6.3: Predicted excess attenuation of the diffracted wave term against horizontal separation. The 
Miki empirical model was used for the porous layer with the effective flow resistivity of 50 kPa s m-2, 

tortuosity of 1.1, and porosity of 0.9. (a) a horizontal dipole; (b) a vertical dipole. Solid line: 
asymptotic formulas; circles: Integrated exact solution (IES). 
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Figure 6.4: Predicted excess attenuation spectrum of the diffracted wave term.  (a) a horizontal dipole; 
(b) a vertical dipole. Solid line: the asymptotic formulas. Circles: Integrated exact solution (IES). 

First, we present the numerical results for the dipole sound fields above a rigid 

porous medium. Figures 6.3a and 6.3b show the comparisons of the diffracted wave 
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terms due to a horizontal dipole and a vertical dipole, respectively. The corresponding 

excess attenuation functions, see Eq. (6.61), are plotted against the horizontal separation r. 

The numerical results for frequencies at 100 Hz (low), 1 kHz (mid), and 10 kHz (high) 

are shown in these two plots. We found that the diffracted wave terms became more 

critical when the source and receiver was close to the ground surface. Hence, the source 

and receiver were respectively chosen at 0.04 m and 0.02 m above the ground surface to 

highlight the accuracy of the asymptotic formulas in these presentations. Generally, the 

predictions according to the asymptotic formulas agreed very well with those predicted 

by the IES, provided that kR2 is greater than approximately 1, which may be treated as a 

heuristic condition for the asymptotic formulas. 

Figures 6.4a and 6.4b display the corresponding EA spectra for the horizontal 

dipole and vertical dipole. In these two plots, the source and receiver remained at 0.04 m 

and 0.02 m above the ground but the horizontal range was set at 1 m. In addition, we also 

show the predicted results for different values of e at 50, 80, and 120 kPa s m-2.; 

however, q and  were set constant at 1.1 and 0.9, respectively. Excellent agreements are 

shown in these two EA spectra for the respective diffracted wave terms above the rigid 

porous medium due to the horizontal and vertical dipoles. 

In the next two sets of figures, we show the validation of the asymptotic formulas 

for the prediction of the dipole sound fields below the air/ground interface. Because there 

was no direct wave term as the interface shielded the direct line of sight between the 

source and receiver, the diffracted wave term represented the total sound field in each of 

the respective situations for the horizontal and vertical dipoles.  
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Figure 6.5: Predicted excess attenuation of the diffracted wave terms is plotted against the horizontal 
separation: (a) a horizontal dipole; (b) a vertical dipole. The ground parameters and other captions are 

the same as for Fig. 6.3 except that the receiver is located 0.02 m below the ground. 
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Figures 6.5a and 6.5b are the numerical results for the diffracted wave terms 

plotted against the horizontal range. The same type of ground surfaces were used in the 

simulations, which were identical to those used in Figs. 6.3a and 6.3b. However, in 

Figures. 6.5a and 6.5b, the source was located at the same height of 0.04 m above the 

air/ground interface but the receiver was located 0.02 m below the interface. The 

acoustical characteristics of the ground surface used were the same as those used for the 

simulations for Figs. 6.4a and 6.4b. With the matched asymptotic solutions, we can see 

that both formulas agreed very well with the predictions according to the IES, provided 

that kR2 was greater than approximately 1.  

Figures 6.6a and 6.6b are the corresponding EA spectra for the sound fields due to 

the horizontal dipole and the vertical dipole, respectively. In this set of simulations, the 

source was located 0.2 m above ground but the receiver was situated 0.03 m below the 

interface. The horizontal separation between the source and receiver was 1 m. As shown 

in this set of figures, the agreements between the asymptotic solutions and the IES were 

reasonably good.  

It is of interest to point out that the IES method is based on the summation of the 

contributions from a large number of sampling points in order to achieve the required 

accuracy in the calculation of the sound fields. For instance, a total of about 400,000 

sampling points is typically needed for a source frequency of 10 kHz and a 

source/receiver separation of 100 m. On the other hand, the calculations of the asymptotic 

sound fields can usually be achieved in real time at all frequencies. 
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Figure 6.6: Predicted excess attenuation spectrum for (a) a horizontal dipole; (b) a vertical dipole. The 
parameters and other captions are the same as for Fig. 6.4 except that the receiver is located 0.03 m 

below the ground. 
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6.6  Summary 

The asymptotic formulas developed in this chapter provide an efficient means for 

calculating the sound fields due to an arbitrarily oriented dipole placed above a rigid 

porous medium. There are separate analytic formulas to predict the contributions from 

the diffracted wave terms accounting for the sound reflected from and transmitted 

through a fluid-fluid interface. The validity of these asymptotic formulas has been 

confirmed by comparison with an accurate, but computational intensive wave-based 

numerical scheme. The asymptotic solutions can be applied in the boundary element 

formulation by providing an appropriate Green’s function for modeling a more complex 

environment with the presence of non-locally reacting sound absorbing materials. 
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CHAPTER 7: A PARABOLIC EQUATION/FINITE ELEMENT METHOD FOR 

PREDICTING SOUND PROPAGATION NEAR RIGID POROUS INTERFACES 

7.1  Introduction 

In the previous chapters, sound propagation above and below a porous interface 

has been investigated via asymptotic analysis. Accurate closed-form solutions are derived 

for various rigid porous interfaces. These interfaces are restricted to be planar, 

homogeneous ground surfaces. The atmosphere is assumed to be homogeneous as well. 

In reality, typical ground interfaces are non-planar and may exhibit mixed impedances. 

The above ground environment can be further complicated by atmospheric effects such as 

turbulence, boundary layer effects, and wind velocities. An accurate and robust numerical 

approach is needed to address these complexities and to model more realistic propagation 

conditions.  

The Parabolic Equation (PE) method can be implemented to address some of 

these complex propagation conditions. In the PE method, backscattered waves are 

neglected, thus information propagates only in one direction. A marching algorithm can 

be implemented to propagate wavefronts away from the source. Using an initial starting 

field, the PE method advances the wavefront in the horizontal direction. Horizontal 

changes in environmental conditions are permissible in between steps. 
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Application of the PE methods for atmospheric acoustics [48-66] has been 

investigated by many researchers since the late 80’s. Much of the research applied a 

linear finite element or finite difference approximation along the vertical direction to 

solve the parabolic equation. These approaches tend to ignore the continuity of slope in 

the pressure field. Typically, a physical absorbing layer is used to absorb sound energy 

reaching the top of the numerical grid in order to reduce undesired reflections when 

modeling a semi-infinite atmosphere. Unfortunately, this approach requires a large 

number of grid points which makes the computation highly inefficient for long-range 

computations. 

The intent of this chapter is to extend the work of Gilbert et al. [48] to more 

general cases. In section 7.2, the linear and cubic finite element discretization process is 

reviewed. An arbitrary function can be written as the sum of the finite element basis 

functions, which is the basis for solving the parabolic equation in the subsequent sections. 

Section 7.3 outlines the derivation of the range dependent parabolic equation with either 

narrow-angle or wide-angle propagation. Following that, the numerical implementation 

of solving the parabolic equation is detailed in section 7.4. The finite element 

discretization, boundary conditions, and the starting fields are discussed in this section to 

complete the Parabolic Equation (PE) and/or Finite Element Method (FEM) formulation. 

The numerical results using PE/FEM are displayed in section 7.5, which including 

predictions for the sound field above an impedance ground, an extended reaction ground, 

and a hard-backed porous layer. The numerical accuracy of the proposed method is 

validated against classical asymptotic solutions using benchmark cases found in the 
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literature and through experimental investigation. A brief summary is provided in section 

7.6. 

7.2  Review of Finite Element Discretization 

 In this section, the steps for applying the finite element method to discretize a 

function are outlined. Both linear and cubic finite element shape functions will be 

reviewed. 

a) Linear finite element shape functions 

 To begin, the finite element mesh on ( , )b tx x  is defined  

 1 2: :h i b N tX x x x x x x      .           (7.1) 

The interval 1[ , ]j j je x x   for 1, 2, 1j N   is called the finite elements, and we say 

that the mesh is uniform if all the elements have the same size 1h N . For each element, 

we will use the notation ,j i , 1, 2i   to denote the linear local node basis functions 

defined over the element 1[ , ]j jx x  . 

 First, we consider the following local nodal basis functions in each element je , 

,1( ) 1j x   and ,2 ( )j x  ,        (7.2a,b) 

where  

1,
j

j j j

j

x x
h x x

h
 


   .         (7.3a,b) 

Then a set of hat functions defined for 1j   by 

1,1 1 2
1

, [ , ]
( )

0.

x x x
x

elsewhere





 


            (7.4) 
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for 2, 1j N   by 

1,2 1

,1 1

, [ , ]

( ) , [ , ]

0.

j j j

j j j j

x x x

x x x x

elsewhere



 
 






 



            (7.5) 

and for j N  by 

,2 1, [ , ]
( )

0.
N N N

N

x x x
x

elsewhere


 

 


.            (7.6) 

These basis functions on (0,1)   are illustrated in Figure 7.1. 

 

Figure 7.1: The hat functions for linear finite element basis function. 

 Hence, we can expand an arbitrary function  in terms of linear finite element 

basis functions, 

1

( ) ( ) ( )
N

j j
j

W z W z z


              (7.7) 

where ( )jW z  are the expansion coefficients, which are unknown.   
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b) Cubic Hermite finite elements 

 As we can see in the last part of the linear finite element basis function, such an 

interpolation preserves continuity between the elements but fails to preserve continuity in 

the slope. Alternatively, we can apply the Hermite cubic finite element functions to solve 

the problem. The procedures are similar to those found for the linear finite element 

functions, but with additional complications. Instead of defining two local nodal basis 

functions in each element, we define four local node basis functions 

2
,1( ) (1 ) (2 1)j z     ; 2

,2 ( ) ( 1)j jz h    ,      (7.8a,b) 

2
,3( ) (3 2 )j z    ; 2

,4 ( ) ( 1)j jz h    .       (7.8c,d) 

These are plotted in Figure 7.2. 

 

Figure 7.2: Four nodal basis functions for cubic finite elements. 

 Then, a set of functions defined for 1j   by 
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1,1 1 2
1

( ), [ , ],
( )

0

z z z z
z

elsewhere





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

 and        (7.9a) 

1,2 1 2
2

( ), [ , ],
( )

0

z z z z
z

elsewhere





 


.          (7.9b) 

For 2, 1j N   by 

1,3 1

2 1 ,1 1

( ), [ , ],

( ) ( ), [ , ],

0 .

j j j

j j j j

z z z z

z z z z z

elsewhere



 
 

 



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


and         (7.10a) 

1,4 1

2 ,2 1

( ), [ , ],

( ) ( ), [ , ]

0

j j j

j j j j

z z z z

z z z z z

elsewhere


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 





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


.       (7.10b) 

For j N  by 

,3 1
2 1

( ), [ , ],
( )

0
N N N

N

z z z z
z

elsewhere


 




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

        (7.11a) 

,4 1
2

( ), [ , ],
( )

0
N N N

N

z z z z
z

elsewhere


 

 


        (7.11b) 

The nodal value for ( )k jz , 1, 2, 2 1, 2k N N  and 1, 2, ,j N  is given by 

2 1

1, ,
( )

0.
j i

i

z z
z

elsewhere
 


 


         (7.12a) 

for 1,2, ,i N  , and 

2
1, ,( )

0.
j ii

z zz

elsewherez

 
 

 
        (7.12b) 

for 1,2, ,i N  . 
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 Notice that the properties of the Hermite cubic local nodal functions 

, ( )k i z , 1,2,3, 4i   determine the nodal values for k , 1, 2, 2 1, 2k N N  . Here, we 

plot the standard Hermite cubic basis functions with several nodes on the interval [0, 1] to 

help visualize these global basis functions (shown in Figure 7.3). 

 

Figure 7.3: Global basis functions on the interval [0, 1]. 

 In this case, we can expand an arbitrary function  in terms of Hermite cubic 

linear finite element basis functions, 

2 1 2
1

( )
( ) ( ) ( ) ( )

N
j

j j j
j

W z
W z W z z z

z
 




 


          (7.13) 

where ( )jW z , 
( )jW z

z




are the expansion coefficients, which are unknown.  

 In summary, based on finite element discretization, an arbitrary function can be 

expanded as the sum of linear basis functions as seen in Eq.(7.7). It can also be expanded 
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as the sum of cubic basis functions as seen in Eq.(7.13). In the following sections, the 

linear and cubic finite element basis functions are used to discretize the field quantities.  

7.3  Theoretical Formulation 

Consider the 3-D Helmholtz equation for a constant-density medium in 

cylindrical coordinates ( , , )r z  in terms of the acoustic pressure P: 

2 2 2

2 2 2 2

1 1
0.

( , , )

P P P
r P

r r r r z c r z



 

    
        

        (7.14)  

Assuming azimuthal symmetry and hence no dependence on the  coordinate, 

this reduces to the standard 2-D Helmholtz equation: 

2 2 2
2 2
02 2 2 2

1
0

P P P
k n P

r r r z

  
   

  
                                                                                   (7.15) 

where 0 0 0k c  is a reference wavenumber, where 0 is the angular frequency and 0c is 

the sound speed in air; and 0( , ) ( , )n r z c c r z  is the index of refraction, where ( , )c r z  is 

the sound speed. By making far-field approximation of 0 1k r  , the associated far-field 

equation for the variable u rP  (a form of the acoustic pressure that excludes 

attenuation from cylindrical spreading) is given by 

2

2
0Q u

r

 
  

 
            (7.16) 

and 2 2 2 2
0Q z k n    . Eq.(7.16) can be interpreted as the product of incoming and 

outgoing wave operators, r i Q   . The (+) and (-) presents the wave propagating in 

the forward or backward direction. If only the outgoing component is considered (i.e., 
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little back scattering), the one-way wave equation exclusively for a forward-going wave 

is obtained: 
u

i Q
r





.  

 For the purpose of numerical implementation, it is convenient to remove a 

“carrier wave” by defining a new, more slowly varying wave , where 0exp( )q ik r   , 

and where 0k is set to be equal to the wave number in the air above the surface. Hence, 

0( ) .r i Q k                 (7.17)  

Let 
2

2

2 2

1
1

o

q n
k z


  


, then Eq.(7.4) becomes  

0 ( 1 1) .r ik q               (7.18)  

Eq.(7.18) is the parabolic equation of interest. The finite element method is used to solve 

this problem.  

For simplicity in continued analysis, the sound field   is normalized using non-

dimensional parameters such as 0r k r , 0r k r   ,  0 ,z k z  and 0c c c . In this case, 

Eq.(7.18) can be written as 

( 1 1)r i q      .           (7.19) 

The over-bar is implied in subsequent discussions. 

 To set up the finite element method to solve the problem, our first step is to 

rewrite Eq.(7.19) in its weak form. We begin by multiply Eq.(7.19) by a test function  , 

and integrating to obtain: 

2 2

1 1

( ) ( 1 1) ( )
r r

r r
r r dr q r dr                    (7.20) 
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where  1 2,r r r , 1r and 2r is  starting point and the end point for each marching step 

respectively. In addition, any arbitrary function can be represented as the sum of linear or 

cubic basis functions based on the finite element discretization in Section 7.1. Here, we 

start with a range-dependent function ( )W r  in  1 2,r r r . For a small enough range step, 

( )W r  can be discretized into 

1 2( ) (1 )W r W W      .           (7.21)  

where 

1
2 1,

r r
r r r

r



   


,                   (7.22a,b) 

1 1( )W W r , 2 2( )W W r .                    (7.22c,d) 

 Hence, the function ( )W r  can be used as the test function to solve our problem: 

1 1

0 0
( ) ( 1 1) ( ) .W r d i q W r d

r


  


    

           (7.23) 

Integrating by part, the left-hand side and right-hand side of Eq. (7.23) can be written as: 

   
1

2 2 1 10
2 2Wd W r W W r W

r


  


        


,      (7.24a) 

 
1

1 20 2
a b

r
Wd W W   


             (7.24b) 

where 2 1W W W   ,  1 22 3aW W W   and  2 12 3bW W W  . It is interesting to note 

that when W is in the same direction as r, W goes to zero while both aW  and bW  tends 

towards unity. 

 By substituting Eqs. (7.24a) and (7.24b), it can be shown that 
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 2 2 1 1 1 2

( 1 1)

2 2 2
a b

i r qr r
W W W W W W   

      
           

   
.   (7.25) 

For the special case when the function W is range-independent in the horizontal direction, 

Eq.(7.25) can be simplified:   

 2 1 1 2( 1 1) .
2

i r
q   


               (7.26) 

That is, 

2 11 ( 1 1) 1 ( 1 1)
2 2

i r i r
q q 

    
         

   
 ,        (7.27) 

which is exactly the same as the expression for the split-step finite-element based 

parabolic-equation propagation[66]. 

 Expanding the square root while neglecting higher ordered q terms (i.e., 

linearization), Eq.(7.27) can be rewritten as: 

2 11 1
4 4

i r i r
q q 

    
     

   
,           (7.28) 

which is the narrow-angle approximation for the PE marching scheme. The marching 

scheme is proven to be accurate when the propagation angle is up to 10o [4]. A more 

accurate expansion for 1 q is given by Claerbout’s method [47], which is 

1
A Bq

q
C Dq


 


,            (7.29) 

where A, B, C and D are real constants, and  1 C Dq means the inverse of  C Dq .  

By choosing A=1, B=3/4, C=1, D=1/4, the wide-angle PE propagation can be obtained: 

2 1

1 1
1 1 .

4 4 4 4

i r i r
q q q q 

    
       

   
         (7.30) 
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This approximation has quadratic accuracy in q and represents a considerable 

improvement over the narrow-angle PE propagation, which has a high accuracy with 

propagation angle up to 35o. The narrow-angle PE propagation scheme can be recovered 

by selecting A=1, B=1/2, C=1, D=0. In the following analysis, we use A, B, C, D to derive 

the final formulation for ease of distinguishing the narrow-angle from the wide-angle PE 

propagation schemes. Hence, substitution of Eq.(7.29) into Eq.(7.27) gives the following 

operator equation for advancing  from r to r r  : 

( ) ( )b aM r r rM    ,           (7.31) 

where 

     2
2 2

b
b

i rWr W
M W C Dq A C B D q

  
          
 

,   (7.32a) 

     1
2 2

a
a

i rWr W
M W C Dq A C B D q

  
          
 

.    (7.32b) 

Using  2 2 2 2
0 1q z k k      gives  

2
2

2 1 2 2 3 4 22 2 2 2
b b

b

i rW i rWr W r W
M W A A W A A n

z

           
                  

, 

2
2

1 1 2 1 3 4 22 2 2 2
b a

a

i rW i rWr W r W
M W A A W A A n

z

           
                  

, 

(7.33a,b) 

where 1A C D  , 2 ( ) ( )A A C B D    , 3A D and 4A B D  . Since 

2 1W W W   , Eqs.(7.33a) and (7.33b) can be reorganized: 

 
2

* * * * 2
1 1 2 2 1 1 2 2 2bM B W B W E W E W n

z

 
     

 
,       (7.34a) 
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 
2

2
2 1 1 2 2 1 1 2 2aM B W BW E W E W n

z

 
     

 
,      (7.34b) 

where 

1 1 2
2 6

r i r
B A A

 
  , 2 1 21

2 3

r i r
B A A

  
   

 
,               (7.35a,b) 

1 3 4
2 6

r i r
E A A

 
  , 2 3 41

2 3

r i r
E A A

  
   

 
,               (7.36a,b) 

and “*” denots the complex conjugate of a complex number. If the horizontal density 

variation is taken into consideration, 1W and 2W  represents the respective density at the 

range location r and r r  . If there’s also density variations in the vertical direction, the 

operator 2 2z  will be replaced with  1 ( )z z      . By making this replacement 

and dividing by  , slightly modified forms for bM and aM  can be obtained.  

2 2
* * * *
1 2 1 2

1 2 1 1 2 2

1 1 1 1
b

n n
M B B E E

z z z z     

         
                       

,               (7.37a) 

2 2

2 1 2 1

1 2 1 1 2 2

1 1 1 1
a

n n
M B B E E

z z z z     

         
                       

 .   (7.37b) 

Here 1 and 2  represents the density at the location of r and r r  respectively. They 

can be expressed as  

1 ( , )r z  , 2 ( , )r r z   .        (7.38) 

7.4  Numerical Implementation 

 A numerical approach for solving Eq. (7.31) is outlined in this section. By 

discretizing the vertical dependence of the acoustic field, the operator-function equations 
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become matrix-vector equations. Instead of using finite difference approximations, we 

employ finite elements. This approach enables small-scale vertical variations in both 

density and speed of sound to be present during the propagation steps. Furthermore, non-

uniform vertical point spacing in the numerical grid can be treated more effectively. First, 

consider the linear finite element discretization as an example.  

7.4.1  Finite Elements 

 As stated in section 7.2, ( )r r  and ( )r can be expanded in terms of linear 

finite element basis functions, ( )j z as below 

1

( , ) ( , ) ( )
N

j j
j

r r z r r z z  


    ,       (7.39a) 

and 

1

( , ) ( , ) ( )
N

j j
j

r z r z z  


 ,                    (7.39b) 

where ( , )jr r z    and ( , )jr z are the expansion coefficients. Note that expanding 

( , )r r z  and ( , )r z in terms of the linear basis function is equivalent to linear 

interpolation of the function between the grid points jz , which is defined as 

 1 2: :h j b N tZ z z z z z z                (7.40) 

where bz and tz represents the value of z at the bottom layer and top layer. To obtain the 

matrix expression for the marching scheme, the hat function expansion for  is 

sustitutited into Eq. (7.31): 

1 1

( , ) ( ) ( , ) ( )
N N

b j j a j j
j j

M r r z z r z zM   
 

    .      (7.41) 
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To solve the above equation, we multiply by ( )i z and integrate over z . For convenience, 

at the range location r, we define  
1

( , )r z


as ( )af z  and  
12 ( , ) ( , )n r z r z


as ( )ag z . At 

the range location r r  , we define  
1

( , )r r z


  as ( )bf z  and 

 
12 ( , ) ( , )n r r z r r z


    as ( )bg z . The following matrix elements are obtained:  

( ) ( ) ( ) ( )
t

b

z

ij i jz
F f z f z z dz   ,          (7.42a) 

( ) ( ) ( ) ( )
t

b

z

ij i jz
G g z g z z dz    ,        (7.42b) 

( )( )
( ) ( )

t

b

z ji
ij z

zz
J f f z dz

z z

 
 

  ,         (7.42c) 

to allow a more convenient expression for aM and bM . Note that the basis function 

( )i z overlaps only with its nearest neighbor, the matrix elements ( )ijF f , ( )ijG g  and 

( )ijJ f are tridiagonal, symmetric matrices. To obtain simple analytical expressions for 

these matrices, we take f and g to be linear function of z between the grid points, and 

assume to be continuous at the grid points. Hence, for the element 1[ , ]j jz z  , we 

approximate ( )f z  as 

1

1

( ) ( )
( ) ( ) ( ) j j

j j

j j

f z f z
f z f z z z

z z





 
      

.         (7.43) 

Inserting the linear approximation for ( )f z  into Eq. (7.42a) yields  

    , 1 1

1
( )

6
i i i i i i i iF f z f f z f f        for 2 i N  ,      (7.44a) 

, 1

1
( )

6
i i i iF f z f   ,          (7.44b) 
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, 1 1 1

1
( )

6
i i i iF f z f     .           (7.44c) 

where if is defined as the value of f at the location iz z for 1,2,i N  . And we 

introduce the mean value if as the average value of if and 1if  .When 1i  and i N , the 

respective expression for 1,1( )F f and , ( )N NF f  needs to be calculated separately. That is, 

 1,1 1 1 1

1
( )

6
F f z f f   ,          (7.45a) 

and 

 , 1

1
( )

6
N N N N NF f z f f   .          (7.45b) 

Similarly, the expression for ( )ijG g is the same as ( )ijF f except that replacing f with g. 

Furthermore, substitution of the linear approximation for ( )f z  into Eq. (7.42c) yields,  

1
,

1

( ) i i
i i

i i

f f
J f

z z




 
   

  
   for 2 i N  ,        (7.46a) 

, 1( ) i
i i

i

f
J f

z
 


 ,          (7.46b) 

1
, 1

1

( ) i
i i

i

f
J f

z









 ,           (7.46c) 

1
1,1

1

( )
f

J f
z

 


,          (7.46d) 

, ( ) N
N N

N

f
J f

z
 


 ,           (7.46e) 
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Hence, the respective structure of bM and aM is shown to be           

1,1 1,2

2,1 2,2 2,3

3,2 3,3 3,4

0 0

0

0

0 0

b b

b b b

b b b b

N N

K K

K K K
M

K K K



 
 
 
 
 
 







  

,        (7.47a) 

and 

1,1 1,2

2,1 2,2 2,3

3,2 3,3 3,4

0 0

0

0

0 0

a a

a a a

a a a a

N N

K K

K K K
M

K K K



 
 
 
 
 
 







  

.       (7.47b) 

Here, 

   * * * *
, 1 2 1 2( ) ( ) ( ) ( ) ( ) ( )b

i j ij a ij b ij a ij a ij b ij bK B F f B F f E G g J f E G g J f      ,    (7.48a) 

   , 2 1 2 1( ) ( ) ( ) ( ) ( ) ( )a
i j ij a ij b ij a ij a ij b ij bK B F f B F f E G g J f E G g J f      ,   (7.48b) 

where the subscript a and b denotes the position r and r r  . For range-independent 

case, where f and g are constant at position r and r r  , the expression for ,
b
i jK and 

,
a
i jK can be simplified to be  

    * * * *
, 1 2 1 2( ) ( ) ( )b

i j ij ij ijK B B F f E E G g J f     ,       (7.49a) 

     , 1 2 1 2( ) ( ) ( )a
i j ij ij ijK B B F f E E G g J f     ,       (7.49b) 

where 1 2 1 2
2

i r
B B A A


   , and 1 2 3 4

2

i r
E E A A


   . 

The above derivations are based on the linear FEM discretization of the function in 

the vertical direction. However, when a cubic FEM discretization is used, the forms are 
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similar except the matrix elements for ( )ijF f , ( )ijG f , ( )ijJ f are no longer constants—

they each become a 2 2 matrices. Appendix F gives the expression for these matrices. 

 Note that the matrix form of bM and aM are tri-diagnoal with N diagonal elements 

and N-1 off-diagonal elements and symmetric, the formation of the matrices can be done 

by vectorization of the diagonal and off-diagonal matrices. Hence, Eq. (7.31) can be 

solved by 

  1
( ) ( )b ar r M M r 


   ,        (7.50) 

where  
1

b aM M


can be obtained by Gauss elimination. Further investigation of the 

above expressions indicates that boundary conditions have yet to be incorporated.  

7.4.2  Boundary Conditions 

We start by considering part of boundary conditions at the horizontal position r, as 

seen in Eq.(7.37b): 

2 2

1 1 1

( )1 1 ( , ) 1 ( , )
( , ) ( ) ( )

( ) ( )

t
t t

b bb

zz z

i
i i

z zz

zr z r z
E r z z dz E z dz

z z z z z z z

 
  

  

           
        

             
  . 

(7.51) 

After a series of simplifications, Eq.(7.51) is shown to be 

 2 2 1 1 2

1

1
( , ) ( ) ( )

t

b

z

i N z N z ij

z

E r z z dz E f f E J f
z z

   


   
      

   
 .     (7.52a) 

Here, f represents 11  , and fN =f(zt), f1 =f(zb), z is the abbreviated representation of 

z  . In a similar way, all other boundary conditions can be incorporated into the 

equations: 
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 1 1 1 1 1

2

1
( , ) ( ) ( )

t

b

z

i N z N z ij

z

E r z z dz E f f E J f
z z

   


   
      

   
 .    (7.52b) 

Here, f represents 21  , and fN =f(zt), f1 =f(zb). 

(a) Impedance boundary condition 

For the impedance ground, the relationship between the pressure and velocity is 

p
Z c

u
 ,              (7.53) 

where Z is the normalized impedance of the locally ground surface, c is the impedance 

of the air, p is the complex pressure, and u is the complex velocity. According to Euler's 

Equation, the velocity and pressure have the relationship like 

1 dp
u

j dz
  .             (7.54) 

By substituting Eq.(7.54) into Eq.(7.53), we obtain 

0 0
dp

ik p
dz

  ,            (7.55) 

at the impedance surface. The admittance   is the normalized admittance and it is equal 

to 1 Z . If the bottom layer is impedance ground, by relating p with  , the bottom 

boundary conditions can be written as  

0( , ) ( , ) 0z b br z ik r z    ,          (7.56a) 

0( , ) ( , ) 0z b br r z ik r r z       .       (7.56b) 

Eqs.(7.56a) and (7.56b), as the boundary conditions, can be incorporated directly into 

Eqs.(7.52a) and (7.52b). 

(b) Radiation boundary condition 
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 Near the top of the vertical grid, we essentially wish to terminate the solution 

domain in tz z  by a radiation boundary condition. The usual approach is to use an 

absorbing layer of approximately 50 wavelengths at the top of the vertical grid to ensure 

that no significant energy is reflected from the top boundary which can interfere with our 

solution. Let's define the height of where the absorbing layer begins as .az  The absorbing 

layer is implemented by adding an imaginary term to the wave number for a tz z z   to 

provide a gradual attenuation. The imaginary term used in this paper is selected as [4]    

2 2( ) ( )t a t aiA z z z z   ,           (7.57) 

where tA is a constant. The optimum choice of tA  varies with frequency, which is set to 

be 1, 0.5, 0.4 and 0.2 for frequencies of 1000, 500, 125, 30Hz respectively. Values of tA  

are linearly interpolated between these frequencies for other intermediate frequencies.  

 For the very top boundary tz z , unity impedance is used since it corresponds to 

the normalized impedance of air: 

0 0
dp

ik p
dz

  ,             (7.58) 

at the top boundary tz z . Similar to the bottom boundary condition, we can rewrite the 

top boundary condition as  

0( , ) ( , ) 0z t tr z ik r z    ,          (7.59a) 

0( , ) ( , ) 0z t tr r z ik r r z       ,        (7.59b) 

which can be directly used in Eq.(7.52). This completes the requirement for the boundary 

conditions in PE marching algorithm.  

(c) Intermediate boundary condition 
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 In the case of non-locally reacting porous ground interfaces, the sound fields 

above and below the interface needs to be solved simultaneously. Since the properties of 

the medium above and below the ground are different, not only the continuity of the 

pressure, but also the continuity of the particle velocity needs to be accounted. In the 

linear finite elements approach, the pressure continuity is already present in the 

construction of the matrices. That is, 

( ) ( , ) ( ) ( , )b above above a above aboveM r r z M r z    ,        (7.60a) 

( ) ( , ) ( ) ( , )b below below a below belowM r r z M r z    ,      (7.60b) 

where ( , )above r r z   , ( , )below r r z   , ( , )above r z  and ( , )below r z  are vectors depending 

on the number of grids discretized in the z direction. For instance, if we defines the 

number of grids as 1N  for the vertical grids of nodes below ground, and the number of 

grids for nodes above ground as 2N , ( , )above r r z   and ( , )above r z  become a 1 1N   

vector, while ( , )below r r z    and ( , )below r z become a 2 1N   vector.  Since they have the 

common node at the ground interface, the two set of grids for above and below grounds 

can be added directly, which makes the total number of the grids be 1 2 1N N N   . 

However, the linear finite element fails to consider the continuity of velocity. At the 

interface, it also satisfies velocity continuity besides pressure continuity, which is 

0 0
( ) ( )z z   ,           (7.61a) 

0 0

0 0

( ) ( )1 1

( ) ( )

z z

z z z z

 

 

 

 

 


 
.        (7.61b) 
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By using cubic finite elements, the pressure and velocity continuity can be guaranteed at 

the same time since the velocity is related to the slope of pressure based on Euler's 

equation in Eq.(7.54). 

 Applying the cubic finite element discretization discussed in Section 7.2, ( , )r z  

and ( , )r r z   can be written as  

2 1 2
1

1
( , ) ( , ) ( ) ( , ) ( )

( )

N

j j z j j
j j

r z r z z r z z
z

    




   ,        (7.62) 

and  

2 1 2
1

1
( , ) ( , ) ( ) ( , ) ( )

( )

N

j j z j j
j j

r r z r r z z r r z z
z

    




        .       (7.63) 

At each node jz , there are two properties: ( , )jr z  and 
1

( , )
( )

z j

j

r z
z




 . The column 

vector related to the three nodes near the ground surface is:     

1 1 0 0 1 1

1 0 1

1 1 1
( , ), ( , ), ( , ), ( , ), ( , ), ( , )

( ) ( ) ( )

T

z z zr z r z r z r z r z r z
z z z

     
   



 
   

 
,    (7.64) 

since Eq.(7.61a) and (7.61b) are satisfied at the interface. 

 The matrices ( )b aboveM  and ( )a aboveM are expanded into 2 22 2N N  matrices, and 

( )b belowM  and ( )a belowM are expanded into 1 12 2N N  matrices. To form the global matrix, 

we need to first expand the matrices ( )b aboveM , ( )a aboveM from a 2 22 2N N matrix to a 

2 2N N by simply adding zeros at the nodes related to those of below ground with the 

exception of the node at the ground surface. Second, the same operations are applied to  

( )b belowM , ( )a belowM , where zeros are added to the nodes related to those above the 

ground surface. Then the two matrices can be added up to form the new matrices:  
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         ( ) ( ) ( , ) ( ) ( ) ( , ).b below b above a below a aboveM M r r z M M r z                   (7.65) 

Figure 7.4 shows the combination of the nodes for above ground and below ground. The 

interface is the ground surface where node 0z is located. 

 

Figure 7.4: The combination process of the finite elements at the node of the porous interfaces. 

 From Eq. (7.52a), the two extra terms from the nodes are from the sound field 

above ground 

2 0

0

1 1
( , ) ( , )

( ) ( )
z t z

t

E r z r z
z z

 
 





  
   

  
,        (7.66a) 

and the two extra terms from the nodes below ground due to the finite element 

discretilization 

2 0

0

1 1
( , ) ( , )

( ) ( )
z z b

b

E r z r z
z z

 
 





  
   

  
.       (7.66b) 

Adding Eqs.(7.66a) and (7.66b) together and using the relationship in Eq.(7.61), the four 

terms become 
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2

1 1
( , ) ( , )

( ) ( )
z t z b

t b

E r z r z
z z


 

 
   

 
,          (7.67) 

which represents the top and below boundaries of the vertical grid. The boundary 

conditions in Eqs.(7.56a),  (7.56b) and Eqs.(7.59a),  (7.59b) are substituted into Eq.(6.67) 

directly. Figure 7.5 shows the geometry of the vertical grids in more detail. 

   

Figure 7.5: The geometry of the vertical grids. 

7.4.3  Perfectly Matched Layer (PML) 

 The absorbing layer methods in section 7.3.2 to model radiation boundary 

condition requires the length of approximately 50 wavelengths, which makes the 

computation time consuming. Herein, the perfectly matched layer (PML) technique [115] 

is adopted for use with parabolic equation propagation. It incorporates an imaginary 
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component into the transverse coordinate that mimics the introduction of a fictitious 

absorber on the edge of the computational domain. For the parabolic equation of interest, 

the PML corresponds to changing the depth z to the complex variable ẑ : 

0
ˆ ( )

z

z z i d     ,            (7.68) 

where ( ) 0z   for 0 z H  , and ( ) 0z   for z H . From Eq.(7.68), it’s shown that  

 ˆ 1 ( )z i z z    .             (7.69) 

By replacing z in Eqs.(7.37a) and (7.37b) by Eq.(7.69), we obtain the following 

modified expression for bM  and aM : 

2 2
* * * *
1 2 1 2

1 2 1 1 2 2

1 1 1 1
b

n n
M B B E E

z z z z        

         
                       

,     (7.70a) 

2 2

2 1 2 1

1 2 1 1 2 2

1 1 1 1
a

n n
M B B E E

z z z z        

         
                       

,   (7.70b) 

where 1 ( )i z   . By multiplying both sides of Eq.(7.37) by , the new expression for 

the wide-angle parabolic equation is changed by new bM and aM , i.e., 

2 2
* * * *
1 2 1 2

1 2 1 1 2 2

1 1
b

n n
M B B E E

z z z z

   

      

         
                       

,    (7.71a) 

  
2 2

2 1 2 1

1 2 1 1 2 2

1 1
a

n n
M B B E E

z z z z

   

      

         
                       

.   (7.71b) 

After reorganizing the matrix representation, Eq.(7.48a) and (7.48b) become 

   * * * *
, 1 2 1 2( ) ( ) ( ) ( ) ( ) ( )b

i j ij a ij b ij a ij a ij b ij bK B F f B F f E G g J f E G g J f           ,

   , 2 1 2 1( ) ( ) ( ) ( ) ( ) ( )a
i j ij a ij b ij a ij a ij b ij bK B F f B F f E G g J f E G g J f           .    
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(7.72a, b) 

For numerical computations, it is necessary to truncate the variable z to a finite interval, 

say b tz z z  , where tz H . The interval  , tH z is then the actual PML layer. By 

reference to PML used in the paper [115], we define 1 ( ) ( )z i z     , and have 

3

2

200
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1
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
,
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2

100
( )

1
z








,

t

z H

z H






.             (7.73a,b,c) 

7.4.4  Starting Field 

 As shown in Eq. (7.31), the value of  at range ( r r  ) is computed from the 

value at range r . The PE algorithm marches results forward in range by extrapolating 

from vertical vectors of results from previous range steps. Therefore, an initial sound 

field 0 is required at the starting range 0r  for all elevations. (Typically, 0 0r  is used.) 

Ideally, we would like to specify a spatial   function ( )sz z  for the source at height sz . 

This would have a constant vertical zk  space transform with all k  components of equal 

modulus. As the delta function cannot be accommodated in the process of solving Eq. 

(7.31) at each range step, a spatial Gauss function centered on sz z  will be used. The 

sharper the function is in the z domain, the more broadly spread is the transform in the kz 

domain. A Gaussian starter field, originally proposed by Tappert [46] is given as: 

2

2

( )

(0, ) .
sz z

Wz Ae




             (7.74) 

 By using appropriate numerical techniques such as complex Fourier transform, 

integration by parts, expansion of the exponential function, and/or normalized point-
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source field in a homogeneous medium, it is easily verified that a field matching is 

achieved by using the following values for A and W: 

0

0

2
, .A k W

k
              (7.75) 

Figure 7.6 shows that starting field corresponding to an arbitrary starting at origin.         

 

Figure 7.6: The standard Gaussian Starter. 

 The starting field given in Eq. (7.74) can now be written as  

2 2
0 ( )

2
0(0, )

sk z z

z k e




 ,           (7.76) 

which is known as the standard Gaussian source. 

 The Gaussian source has been used extensively as a starter field for the numerical 

implementation of the standard PE method since it can be generated with minimal 

computational effort. However, a more wide-angled starter field is required for the wide-

angle propagation problems. For this, a Green's source [4] can be implemented: 
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2 2
0 ( )

2 2 3.0512
0 0(0, ) 1.4467 0.4201 ( )

sk z z

sz k k z z e



     .        (7.77) 

The main advantages of the Gaussian starter includes: (i) it is a good approximation for a 

cylindrical or spherical source within the constraints of the small angle approximation 

used in PE; (ii) it has minimal side lobes in z and none in k-space; (iii) its phase and its 

depth dependence to second order in sz z x are close to that of a point source in a 

homogeneous medium. Its main disadvantage are its omission of boundary effects in the 

starting plane and its slow roll-off in wavenumber space which allows energy at high 

angles to propagate, which does not occur with a true point source. 

 If the source is located at position ( , ) (0, )sr z z above a finite-impedance ground 

surface at 0z  , the following starting field can be used:  

0 0(0, ) ( ) ( )s sz z z C z z      ,          (7.78) 

where the function 0 ( )z is defined as the starting field for a source at position 

( , ) (0,0)r z  in an unbounded atmosphere, and C is a reflection coefficient. For narrow 

angle parabolic equation, Eq. (7.61) can be used for the function 0 ( )z . For the wide-

angle parabolic equation, Eq. (7.62) can be used. 

 The first term on the right-hand side of Eq.(7.78) represents the direct field of the 

source; the second term represents the field reflected by the ground surface or, 

equivalently, the field of the image source at position (0,-zs). Since the Gaussian starting 

field assumes we are interested in the far field solution, it is not suitable for near field 

sound predictions. In this disertation, we apply the analytical asymptotic solutions 
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obtained in previous chapters as the starting field. The starting field is chosen to start at a 

certain separation distance from the origin. The pressure is related to the starting field by 

0( , ) ( , ) .ik rr z r p r z e             (7.79) 

For linear finite elements method, the pressure field is only required at the location of the 

starting field. However, for the cubic finite elements method, the pressure and the slope 

of pressure along the z-direction are both required. Because the definition for the pressure 

field from a dipole source is equal to the slope of the pressure along the z-direction, the 

asymptotic solutions we obtained in Chapter 6 can be reused. This provides an approach 

for implementing a cubic finite element interpolation to solve the parabolic equation. In 

summary, the starting fields based on the asymptotic solutions for different rigid porous 

interfaces are listed as follows. 

 For sound fields above the ground, the relevant ground types consists of: 

impedance ground, extended reaction ground, hard-backed ground, and impedance-

backed ground, whose sound fields are expressed as 

 
1 2

1 2

(1 ) ( )
4 4

ikR ikRe e
p V A V F w

R R
 

 
    ,         (7.65) 

where ( )F w  is the boundary loss factor, is given by 

2( ) 1 exp( ) ( )F w i w w erfc iw    ,         (7.66a) 

and V is the plane wave reflection coefficient, 

cos

cos
V

 

 





.          (7.66b) 

And A is known as the augmented diffraction factor. 
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 
sin sin
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p p

r r
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E



 
 ,           (7.67a) 

For impedance ground,  

1A  ;           (7.67b) 

For extended-reaction ground,  

21pE   ;          (7.67c) 

For hard-backed ground,  

       2
0 0 01 tan secp p p p p pE i N k N d k N d k N d      ;    (7.67d) 

For impedance-backed ground, 
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.      (7.67e) 

The sound fields below the ground can be expressed as  

1(0, | , )
4 4

D RikL ikL

s D R

D R

e e
p z r D q q

 
  

 
;         (7.68) 

For extended-reaction ground, 0Rq   and 

       ( ) 1pq Z T A V F w       ;        (7.69a) 

For hard-backed ground, 

       ( ) ( ) ( ) 1p pq Z T A V F w           ;      (7.69b) 

For impedance-backed ground, 
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       ( ) ( ) 1D D D p D pq T V A F w           ,       (7.70a) 

           2 2( ) ( ) 1R R R R p p R pq V T V V A F w                  

                                                         ,2 ,2 2 ,2 2( ) 1p p R pT V A F w        ,   (7.70b) 
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 .           (7.70c) 

7.5  Numerical Results 

7.5.1  Sound Propagation for Benchmark Cases 

 The PE methods have been used extensively in the computation of sound fields. 

There are several established benchmark results [32] available for verification of the 

models. Comparisons were made between model-produced and published results for 

various PE methods. In this section, we are interested in comparing the results for 

frequencies of 10Hz and 100 Hz with source and receiver height at 5m and 1m 

respectively. Test case 1 is a homogeneous medium with a constant speed of sound 0c . 

Test case 2 models sound propagation in a downward refracting situation with positive 

sound speed gradient. The sound speed gradient is held constant at 0.1 s-1. Test case 3 

represents the upwind propagation condition where the sound speed gradient changes its 

sign from case 2 (i.e., -0.1 s-1). The Transmission Loss (TL) function is defined as the 

following to facilitate the comparisons: 

1
1020log

4ikr

p
TL

e r

 
  

 
,           (7.71) 

where r=1 m  is chosen as the free-field reference. 
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As shown in Figure 7.7, Figure 7.8 and Figure 7.9, the results using the PE/FEM 

method agree well with those found in the benchmark cases in Ref. [32]. 
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Figure 7.7: Transmission loss for benchmark case 1 using PE/FEM. 
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Figure 7.8: Transmission loss for benchmark case 2 using PE/FEM. 
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Figure 7.9: Transmission loss for benchmark case 3 using PE/FEM. 
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7.5.2  Sound Fields Above an Impedance Ground  

 In this section, we will apply the PE/FEM method to predict the sound fields 

above an impedance ground for homogeneous atmosphere. First, the contour plot for the 

sound fields above an impedance ground will be shown by using PE/FEM method based 

on both narrow-angle and wide-angle propagation. Since the impedance of the ground 

depends on the frequency, we selected a hard ground as a special case for illustrative 

purposes to identify the differences between the narrow-angle and wide-angle 

propagation. Figure 7.10 displays the contour plot of the sound field above a hard ground 

for a monopole source. The source height was set at a normalized height of kz = 5, or 

2 z   = 5, where  is the wavelength. The results are also compared with that by using 

the classical Weyl-Van der Pol formulation. In figure 7.10, the propagation angle ranges 

are marked seperately to show its respective accuracy by comparison with the accurate 

asymptotic solution provided by the WVP formulation. It is apparent that the  

propagation angle for the narrow-angle PE/FEM propagation is accurate up to 10o
 while 

the wide-angle PE/FEM method extends up to 35o. 

 Furthermore, the computation time for the numerical PE/FEM method and the 

WVP formulation are compared. For the computation domain, where  0,100kr   and 

 0,35kz ,  the PE/FEM computation time is 10 seconds while WVP computational 

time goes to 47.5 seconds.  Next, the comparison of the computation time is performed in 

terms of the area of the computational domain.  



192 

 

 

 

Figure 7.10: The contour plot for Transmission Loss (dB) at a normalized source height kz of 5. (a) 
Weyl-Van der Pol formula; (b) Narrow-angle parabolic equation; (c) Wide-angle parabolic equation. 
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 For the narrow-angle propagation, the accurate computation domain is calculated 

as the shade area of plot (a) in Figure 7.11. Based on the total area and the propagation 

angle, the shaded area of plot is calculated as 1,310.9 with respect to the total area 3500 

of the computation domain, which corresponds to 37.35% of the total computation 

domain. In the same way, for the wide-angle propagation, the shade area of plot (b) in 

Figure 7.11 is calculated to be 2,838.8, which is 81.11% of the total computation domain. 

With the accurate WVP formulation, it takes 47.5s to compute the sound field for the 

entire computation domain. In contrast, the PE/FEM method with either narrow-angle or 

wide-angle propagation will predict the sound fields faster than the classical WVP 

formulation since the PE/FEM method is capable of calculating the sound field for 

different receiver heights at a fixed horizontal separation distance simultaneously. 

 

Figure 7.11: An illustration of the computation domain by PE/FEM method (a) Narrow-angle 
Parabolic equation; (b) Wide-angle Parabolic equation. 
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Figure 7.12: Transmission Loss (TL) versus normalized horizontal separation. Solid line: Weyl-Van 
der Pol formulation; dashed line: PE/FEM with PML; dot line: PE/FEM with absorbing boundry layer. 

 Next, we will discuss the advantage of using the PML technique. The comparison 

is made between using the classical absorbing boundary condition and PML boundary 

conditions. The same normalized source height of 5 as Fig 7.10 is used. With the 

absorbing boundary layer, a length of 50 wavelengths is required to model the radiation 

boundary condition, which could absorbs sound reaching the top of the numerical grids, 

and reduces the reflection off the top end. However, with the PML, the length of the layer 

can be reduced to be a quarter wavelengths. Note that the number of points per 

wavelength is set to be 20 except the one for PML is 200 points per wavelength. Based 

on the same geometry as Figure 7.10, the transsmission loss is plotted against the 

normalized horizontal separation in Figure 7.12. The results by using absorbing boundary 

layer and PML layer are compared with classical WVP formulation. Good agreement is 

achieved when the normalized horizontal separation goes up to 6,000. However, after 
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zooming out, we could tell that the sound field with PML is much more accurate than the 

one with the absorbing boundary layer when the normalized horizontal separation gets 

closer to 6,000. Furthermore, the computation time when using PML is 15.9s while the 

time with absorbing boundary layer is 4,912 s. The computation time is reduced 

significantly when the PML is implemented. Hence, it is concluded that the application of 

the PML in the PE/FEM formulation not only increases accuracy at a long range, but also 

reduces the computation time significantly. 

 Another advantage of the PE/FEM method in this chapter is in the selection of the 

starting field. As discussed in section 7.3.4, the PE/FEM method is a marching scheme 

which relies on information from previous range steps. The starting field plays a crucial 

role in the accuracy of predicting the sound fields. Figure 7.13 displays the transmission 

loss above a hard ground at 5 different source heights when using Gaussian starter and 

the asymptotic solution as the starting field. Different normalized source heights are used 

from 2 to 10, with a step of 2, for comparison. By comparison with the Weyl-Van der Pol 

formula, the two starter fields are both good for far field sound predictions. However, for 

near field sound prediction, it is apparent that the asymptotic solution starter is better than 

the Gaussian starter based on the results in Figure 7.13. Because the wide-angle PE/FEM 

propagation is used, the accuracy starts at a different normalized horizontal separation kr 

with a normalized source height. Detailed study shows the results are accurate within its 

wide-angle propagation angle, which is 35o. 
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Figure 7.13: Transmission Loss (TL) versus the normalized horizontal separatin kr for different 
normalized source height kzs. (a) kzs=10; (b) kzs=8; (c) kzs=6; (d) kzs=4; (e) kzs=2; Solid line: Weyl-

Van der Pol formula; dashed line: Gauss starter; dot line: Asymptotic solution starting field. 

7.5.3  Sound Propagation Above and Below Extended Reaction Ground 

 In this section, we extend the PE/FEM method to the sound propagation above 

and below an extended reaction groun. The Miki empirical model [14] is used to describe 

the acoustic characteristics of the ground surface. A flow resistivity ( e ) of 100 kPa s m-2, 

tortuosity ( q ) of 1.1 and the porosity ( ) of 0.9 are selected to calculate the acoustical 

characteristics of the porous layer. The excess attenuation (EA) function is defined to 

facilitate the comparison, 

1
1020 log

4ikr

p
EA

e r

 
  

 
,           (7.72) 

where r is the horizontal separation between the source and receiver. 
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Figure 7.14: EA versus the horizontal separation using Gaussian Starter with the source height of 5m 
above ground. The receiver height is choosen to be 1m above ground, and 0.02m below the ground. 
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Figure 7.15: EA versus the horizontal separation using the asymptotic solution starter with the source 
height of 5 m above ground. The receiver height is choosen to be 1 m above ground, and 0.02 m 

below the ground. 
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 Figure 7.14 and Figure 7.15 displays the EA versus the horizontal range in the 

homogeneous atmosphere for linear and cubic finite element discretization using the 

Gaussian starter and the asymptotic solution starter respectively. First we choose the 

source height to be 5m, and the receiver height above the ground to be 1.0m while the 

receiver height below ground is set to be 0.02m from the interface. The results using 

either linear finite elements or cubic finite elements agree well with one another. Further 

comparison indicates that the results from the asymptotic solution starter at the range of 

less than 10m are much smoother than those obtained from a Gaussian starter. 

 Next, we choose the source height to be 0.05m and the receiver height above the 

ground to be 1m while the receiver below the ground is set to be 0.02m away from the 

interface. The results are shown in Fig 7.16 and Fig 7.17. As shown in Fig 7.16, when a 

Gaussian starter is used, large fluctuations in the sound field are observed—particularly 

in the below ground far-field regions. However, when the asymptotic solution starter field 

is applied, the fluctuations disappear. The results obtained agree well with the asymptotic 

solutions in the homogeous case. Perhaps the reason why the Gaussian starter is 

ineffective in predicting the sound field when the source height is very close to the 

ground is because it cannot fully account for the diffraction term, which becomes an 

important contributor to the below ground sound field. Because the asymptotic solution 

formulation includes the diffraction term by construction, much better accuracy is 

achieved. 
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Figure 7.16: EA versus the horizontal separation using Gaussian Starter with the source height of 0.05 
m above ground. The receiver height is choosen to be 1 m above ground, and 0.02 m below the 

ground. 
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Figure 7.17: EA versus the horizontal separation using the asymptotic solution starter with the source 
height of 0.05 m above ground. The receiver height is choosen to be 1 m above ground, and 0.02 m 

below the ground. 
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 In the previous discussion, the PE/FEM method has been applied to predict the 

sound fields above and below the extended reaction ground. The linear finite element 

basis function and cubic finite element basis function have been applied along the vertical 

direction to discretize the pressure. However, the comparison between the linear and the 

cubic basis function has not yet been considered. A comparison between these two basis 

functions in terms of computational time and numerical accuracy is explored.  

Consider the source height at 5m and the receiver height at 1m above ground. 

Note that for the cubic basis functions, the asymptotic solution for a dipole source is 

required as an accurate starting field, which makes Chapter 6 worthwhile. As shown in 

Figure 7.15, using the accurate asymptotic solution as the starting field, yields results 

which are almost indistinguishable from the desired solution. The number of elements 

was chosen to be 17,004 elements for both basis funtions. Table 7.1 shows the 

comparison in terms of the computational time and the average error relative to the 

accurate asymptotic solution. As shown in Table 7.1, the computational time for the cubic 

basis functions is three times greater than linear basis functions, but the error is 

correspondingly lower. For the cubic basis function interpolation, the size of the matrix is 

twice the size of the linear basis function. The increased accuracy of the cubic basis 

function is due to the additional consideration for velocity continuity.  

The relative error for the linear case is more than twice that of the cubic 

interpolation method. If the same 1.1% error is wanted for the linear interpolation, the 

number of 68,006 elements is needed, and the computation time increases to 95.6s.  

Another aspect is that when using the cubic interpolation, the pressure and velocity can 

be computed at the same time. But for linear interpolation, only pressure is obtained. In 



201 

conclusion, the cubic basis function discretization in the vertical direction has more 

advantages over the linear interpolation including higher accuracy and the simultaneous 

calculation of pressure and velocity.  

Table 7.1: Comparison for the PE/FEM using cubic and linear finite elements. 

 

7.5.4  Prediction of Sound over Snow Cover 

 In this section, the PE/FEM method here will be applied to predict the sound 

propagation over snow cover. The experimental data was provided by Donald G.Albert 

from Cold Regions Research and Engineering Laborator and through private email 

communication. Attenborough’s four-parameter model of ground impedance is used to 

describe the effect of the porous snow cover. The four parameters in the ground 

impedance model are the flow resistivity , the porosity , the tortuosity 2q  and the 

pore shape factor fs . The expression for the index of refraction and the density ratio are 

given by Eqs. (5.26) and (5.27) in Chapter 5. From the earlier publications by Donald G. 

Albert [116-118], the snow behaves like a hard-backed layer ground, and an initial guess 

of the parametric values for  ,  , 2q  and fs is given. The experimental data are 

presented in terms of normalized Transmission Loss (TL), which is normalized by the 
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maximum value of TL in the frequency range from 0 Hz to 5k Hz. In the experiment, 

blank pistol shots were used as the source to perform the acoustic pulse measurement. An 

exponentially decaying source pulse form is presented in the paper [117]. Since the 

results here are presented with the normalized TL value, the source information will not 

be discussed further. In the experiment data, four sets of data are collected.  The source 

height is set to be 1.0m. Two sets of data are for sound fields above snow, whose receiver 

height is set to be 0.68m and 0.18m.The other two sets of data, are for sound fields just 

beneath the snow. The horizontal separation between the source and the receiver is 30m. 

The thickness of the snow is 0.12m. The data was collected at no wind condition. Hence, 

The PE/FEM method in this chapter is used for the homogenous case. It is used to predict 

TL near the snow cover with the asymptotic solution for sound fields near hard-backed 

porous interfaces, and compared with the experimental data. 

 First, the aim is to search for a set of parametric values that result in the best 

agreement between the experimental data and the PE/FEM prediction for TL above a 

hard-backed rigid porous medium. By fitting the parameters of the ground impedance for 

the sound field above ground, the best fit parameters were found to be as follows:  = 

21.5 kPa s m-2,  = 0.8, q2 = 1.95 and sf = 0.8. Typical examples of the best fit data are 

shown in Figure. 7.18. Note that the comparison for the frequency range is from 0 Hz to 

1.5 kHz because the result by PE/FEM model could not fit well with the experimental 

data beyond 1.5 kHz. The data at frequencies greater than 1.5 kHz may be unreliable 

because of poor signal-to-noise ratio. However, when the same parameters for the ground 

impedance of the snow are used, the predicted normalized TL for the receiver just below 
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the snow agree tolerably well with the experimental data, seen in Figure 7.19. It is shown 

that the PE/FEM method is good to predict sound propagation near a hard-backed ground. 
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Figure 7.18: Comparison of experimental data and the PE/FEM prediction of the normalized 
transmission loss above the snow. From top to bottom, the receiver height is 0.68 m and 0.18 m 
respectively. Solid line: Experimental data by Donald G.Albert; dashed line: PE/FEM method. 
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Figure 7.19: Comparison of experimental data and the PE/FEM prediction of the normalized 
transmission loss below the snow. The receiver height for PE/FEM model is 0.01 m. Solid line: 

Experimental data by Donald G.Albert; dashed line: PE/FEM method. 
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7.6  Summary 

 In this chapter, sound propagation over a porous interface is investigated using PE 

methods combined with the finite element discretization along the vertical direction. The 

PML technique is applied to model the free-radiation boundary condition, which reduces 

the reflection from the top layer and improves the computation efficiency substantially 

compared to the absorbing layer method. The analytical asymptotic solutions are used as 

the starting field to obtain improved predictions in the near field compared to those 

achieved with a Gaussian starter field under various test cases. Additional comparisons 

are made between the PE/FEM method described in this chapter and benchmark cases 

found in the literature. It has been shown that the PE/FEM method with cubic finite 

elements is capable of producing more accurate solutions, albeit at a greater 

computational expense. The PE method was also validated against experimental results 

for snow covered ground.  
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CHAPTER 8: A CUBIC PE/FEM METHOD FOR PREDICTING RANGE 

INDEPDENT SOUND PROPAGATION 

8.1  Introduction 

 In the previous chapter, a PE/FEM method was presented for studying sound 

propagation near rigid porous interfaces. A linear FEM discretization is first applied to an 

arbitary function in the horizontal direction to derive the parabolic equation for the sound 

fields near the interfaces. Later, the linear and cubic FEM discretization was applied to a 

function in the vertical direction to solve the parabolic equation respectively. A uniform 

step-size marching scheme is obtained for the two discretizations. The only difference in 

the solution is the size of the matrices that march forward as seen in the F, G, J matrices 

in Eqs. (7.42a), (7.42b) and (7.42c). Based on the PE/FEM analysis, a cubic FEM 

discretization is applied to an arbitrary function in the horizontal direction. Using the 

cubic FEM discretization both in the horizontal and vertical direction, a cubic PE/FEM 

formulation is presented in this chapter. The proposed method takes into account the 

change in slope of a function both horizontally and vertically, which can be generalized 

to more rigid porous interface conditions. 

 Section 8.2 outlines the theory behind the cubic PE/FEM formulation.  Section 

8.3 presents the numerical implementation. Using the cubic discretization of a function in  
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the vertical direction, the vectorized function at each point is listed as four terms, which 

includes the pressure p, the slope of pressure horizontally p r  , the slope of pressure 

vertically p z  , and a cross-term 
2

.
p

r z



 
 Hence, the cubic PE/FEM computes not only 

the pressure, but also the pressure from a dipole source as well. Validation of the cubic 

PE/FEM formulation is performed by comparing the analytical asymptotic solution for 

sound propagation near an extended reaction ground in section 8.4. A summary is given 

in section 8.5. 

8.2  Theoretical Formulation 

 The current study in this section starts by solving the one-way wave equation for a 

forward-going wave given in Eq. (7.19). By omitting the over-bar, Eq. (7.19) can be 

written as 

( 1 1)r i q      ,               (8.1) 

where  

2
2

2
1.q n

z


  


                (8.2) 

Instead of using linear finite elements in the horizontal range, we start by using the 

cubic finite element to express the sound pressure: 

1 2
1 1 2 3 2 4( ) ( ) ( ) ( )

d d

dr dr

 
              ,          (8.3) 

where 

2
1( ) (1 ) (2 1)      , 2

2( ) ( 1)r       , 
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2
3( ) (3 2 )     , 2

4( ) ( 1)r       ,            (8.4) 

with the same definition of  at Eq.(7.22a,b), which is  

1
2 1,

r r
r r r

r



   


.         (8.5a, b) 

 Next, we start by writing Eq. (8.1) in its weak form. We begin by multiplying Eq. 

(8.1) by a test function v(r) and integrating to get 

( ) ( 1 1) ( )
r r r r

r r

r v r dr q v r dr 
 

        .            (8.6) 

Integrating the term on the left hand side by parts,                                       

( ) ( ) ( ) ( ) ( ) ( ) ( 1 1) ( )
r r r r

r r

r r v r r r v r dv r dr r dr q v r dr   
 

            .        (8.7) 

Hence, the weak formulation for the problem is to find   such that 

1 1

0 0

(1) (1) (0) (0) ( ) ( ) ( 1 1) ( )v v dv d d q v rd                          (8.8) 

holds for all v .  Here, we start by choosing the four cubic basis functions as the test 

function, and substitution into Eq. (8.8), we get   

 
1 1

1
1 2 1 1 1

0 0
(1) (0) 1 1 ( )

d
d i q rd

d


        


       ,        (8.9a) 

 
1 1

2
2 2 2 1 2

0 0
(1) (0) 1 1 ( )

d
d i q rd

d


        


       ,       (8.9b) 

 
1 1

3
3 2 3 1 3

0 0
(1) (0) 1 1 ( )

d
d i q rd

d


        


       ,        (8.9c) 

 
1 1

4
4 2 4 1 4

0 0
(1) (0) 1 1 ( )

d
d i q rd

d


        


       ,        (8.9d) 
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where 1 ( )r  , and 2 ( )r r    . 

By substituting Eq.(8.3) into Eqs.(8.9a), (8.9b), (8.9c), and (8.9d), they are expressed as        

 
1 1

1 1 2 1 2
1 1 1 2 3 2 4 1 1 2 3 2 4 1

0 0
1 1

d d d d d
d i q rd

d dr dr dr dr

    
               



   
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 
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
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  (8.10a-d) 

By averaging Eq. (8.10a) and (8.10c), we get              

2 1
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d dd d d
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Since 1 3 0
d d

dr dr

 


   
 

, and  1 3
1   , Eq.(8.11) can be simplified as 

 
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2 1 1 1 2 3 2 40 0 0 0

1 21 1i q d d d d
d d

r r r r
dr dr
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         (8.12) 

That is, 

 2 1 1 2

1 21 1
1 1 1 1

2 12 2 12
i q

d d
r r r

dr dr
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 
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 
      

.         (8.13) 
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By using Claerbout's method to get the rational approximation for 1 q  in Eq. (7.29), and 

substituting into Eq.(8.13), Eq.(8.13) becomes 

2

2
2

1 2 3 4 3 4 22 2 2

i r i r i r
A A A A n A A

z


         
           

      
 

                                  
     

2

2 2 2 2
2

2 4 4 212 12 12

i r i r i r d
A A n A

z dr

    
  

  

 

                              
1

2
2

1 2 3 4 3 4 22 2 2

i r i r i r
A A A A n A A

z


         
                  

 

                                       
     

1

2 2 2 2
2

2 4 4 212 12 12

i r i r i r d
A A n A

z dr

    
  

  

.     (8.14) 

 Similarly, after averaging Eq. (8.10b) and Eq. (8.10d) and reorganizing, we can 

obtain 

2

2
2

2 4 4 2

3 3 3

7 7 7

i i i
A A n A

z


 
  

 
 

                    2

2
2

2 1 4 3 4 3 2

1 1 1

21 3 21 3 21 3

di r i r i r
A A A A n A A

z dr

         
                 

 

                     
1

2
2

2 4 4 2

3 3 3

7 7 7

i i i
A A n A

z


 
   

 
 

                        1

2
2

2 1 4 3 4 3 2

1 1 1

21 3 21 3 21 3

di r i r i r
A A A A n A A

z dr

         
                    

. (8.15) 

Hence, Eqs. (8.14) and (8.15) can be rewritten in matrix form as follows: 

2 1
1 2 1 2

2 1
3 4 3 4

M M M M
d d

M M M M
dr dr

 

 
 

 

   
               

   

,           (8.16) 
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where 

2
2

1 1 1 1 2
M B E n E

z
 
  


, 

2
* * 2 *

1 1 1 1 2
M B E n E

z
 
  


;               (8.17a,b) 

2
2

2 2 2 2 2
M B E n E

z


  


; 

2
2

3 3 3 3 2
M B E n E

z


  


;                (8.17c,d) 

2
2

4 4 4 4 2
M B E n E

z
 
  


, 

2
* * 2 *

4 4 4 4 2
M B E n E

z
 
  


;               (8.17e,f)   

and 

1 1 2
2

i r
B A A


  , 1 3 4

2

i r
E A A


  ;                  (8.18a,b) 

 
2

2 2
12

i r
B A


 , 

 
2

2 4
24

i r
E A


 ;                  (8.18c,d) 

3 2

3

7

i
B A , 3 4

3

7

i
E A ;                    (8.18e, f) 

4 2 1

1

21 3

i r
B A A


   , 4 4 3

1

21 3

i r
E A A


  .                  (8.18g, h) 

That is, 

1 2 1 2

( , ) ( , )
( , ) ( , )

d r r z d r z
M r r z M M r z M

dr dr

 
   

      ;      (8.19a) 

3 4 3 4

( , ) ( , )
( , ) ( , )

d r r z d r z
M r r z M M r z M

dr dr

 
   

     .       (8.19b) 

8.3  Numerical Implementation 

 Since the functions ( , )r r z   and ( , )r z  are vertical dependent, the method in 

Chapter 7, i.e. cubic finite element discretization, is used to discretize them. Here, we 
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define 2 ( , )r r z     , and 1 ( , )r z  . The function 1  and 2 can be expressed in terms of 

cubic finite element basis functions as                                   

1
1 1 1

1 1 1 2 3 1 1 4
1

( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( )

N
j j

j j j j j j
j

d z d z
z z z

dz dz

 
          







 
    

 
 ,   (8.20a) 

1
2 2 1

2 1 2 2 3 2 1 4
1

( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( )

N
j j

j j j j j j
j

d z d z
z z z

dz dz

 
          







 
    

 
            (8.20b) 

where 

2
1( ) (1 ) (2 1)j j j      , 2

2 ( ) ( 1)j j j jh       ,                 (8.21a,b) 

2
3( ) (3 2 )j j j     , 2

4 ( ) ( 1)j j j jh       .                  (8.21c,d) 

and  

1,
j

j j j j

j

z z
z z z

z
 


   


            (8.22) 

in  1 2: :h i b N tz z z z z z z      . Here, N is the number of elements over z. 

 After derivation with respect to r, Eqs. (8.20a) and (8.20b) become                        

2 21
1 1 1 1 1 11

1 2 3 4
1

( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( )

N
j j j j

j j j j
j

d z d z d z d zd z

dr dr dzdr dr dzdr

   
       


 



 
    

  
  (8.23a) 

2 21
2 2 2 1 2 12

1 2 3 4
1

( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( )

N
j j j j

j j j j
j

d z d z d z d zd z

dr dr dzdr dr dzdr

   
       


 



 
    

  
   

(8.23b) 

Substituting Eqs. (8.20a), (8.20b) and (8.23a), (8.23b) into Eqs. (8.19a) and (8.19b), we 

obtain 

1

1
1 1 1

1 1 2 3 1 1 4
1

( ) ( )
( ) ( ) ( ) ( ) ( ) ( )

N
j j

j j j j j j
j

M
d z d z

z z
dz dz

 
         








 

   
 

   
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2

2 21
1 1 1 1 1 1

1 2 3 4
1

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

N
j j j j

j j j j
j

M
d z d z d z d z

dr dzdr dr dzdr

   
       


 



 
   

  


1

1
2 2 1

1 2 2 3 2 1 4
1

( ) ( )
( ) ( ) ( ) ( ) ( ) ( )

N
j j

j j j j j j
j

M
d z d z

z z
dz dz

 
         








 

    
 

  

2

2 21
2 2 2 1 2 1

1 2 3 4
1

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

N
j j j j

j j j j
j

M
d z d z d z d z

dr dzdr dr dzdr

   
       


 



 
   

  
  

(8.24a) 

1
1 1 1

3 1 1 2 3 1 1 4
1

( ) ( )
( ) ( ) ( ) ( ) ( ) ( )

N
j j

j j j j j j
j

M
d z d z

z z
dz dz

 
         








 

   
 

   

2 21
1 1 1 1 1 1

4 1 2 3 4
1

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

N
j j j j

j j j j
j

M
d z d z d z d z

dr dzdr dr dzdr

   
       


 



 
   

  


1
2 2 1

3 1 2 2 3 2 1 4
1

( ) ( )
( ) ( ) ( ) ( ) ( ) ( )

N
j j

j j j j j j
j

M
d z d z

z z
dz dz

 
         








 

    
 

  

2 21
2 2 2 1 2 1

4 1 2 3 4
1

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

N
j j j j

j j j j
j

M
d z d z d z d z

dr dzdr dr dzdr

   
       


 



 
   

  
  

(8.24b) 

Then, we multiply by ( )i z  and integrate over z. When the vertical density variations is 

considered, 2 2z  can be replaced by    1z z     . The integration requires the 

computation of integrals of the form: 

( ) ( ) ( ) ( )ij j mF f z f z z dz   ,          (8.25a) 

( ) ( ) ( ) ( )ij j mG g z g z z dz   ,          (8.25b) 

( )( )
( ) ( ) ji

ij

zz
J f f z dz

z z

 


  .           (8.25c) 



213 

The computation of the integrals in Eqs.(8.25a), (8.25b) and (8.25c) are similar to the 

computation of Eqs.(7.42a), (7.42b) and (7.42c). Here, the cubic finite element basis function is 

used, and the results are the same as in Appendix F. If a cubic interpolation is applied to the 

density function, the results can be found in Appendix G. 

 Hence, the respective structure of 1M  , 2M , 3M and 4M   are shown to be 

   

     

     

1 11,1 1,2

1 1 12,1 2,2 2,3
1

1 1 13,2 3,3 3,4

2 2

0 0

0

0

0 0
N N

K K

K K K
M

K K K

 

  



  



 
 
 
 
 
 
 
 







  

 ,                  (8.26a) 

   

     

     

2 21,1 1,2

2 2 22,1 2,2 2,3
2

2 2 23,2 3,3 3,4

2 2

0 0

0

0

0 0
N N

K K

K K K
M

K K K



 
 
 

  
 
 
 







  

 ,      (8.26b) 

   

     

     

3 31,1 1,2

3 3 32,1 2,2 2,3
3

3 3 33,2 3,3 3,4

2 2

0 0

0

0

0 0
N N

K K

K K K
M

K K K



 
 
 

  
 
 
 







  

  ,                  (8.26c) 

   

     

     

4 41,1 1,2

4 4 42,1 2,2 2,3
4

4 4 43,2 3,3 3,4

2 2

0 0

0

0

0 0
N N

K K

K K K
M

K K K

 

  



  



 
 
 
 
 
 
 
 







  

 ,     (8.26d) 

where 

   * *
1 1 1,

( ) ( ) ( )ij ij iji j
K B F f E G g J f


    ;    1 1 1,

( ) ( ) ( )ij ij iji j
K B F f E G g J f


   ; (8.27a,b) 
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   2 2 2,
( ) ( ) ( )ij ij iji j

K B F f E G g J f    ;    3 3 3,
( ) ( ) ( )ij ij iji j

K B F f E G g J f   ;(8.27c,d) 

   * *
4 4 4,

( ) ( ) ( )ij ij iji j
K B F f E G g J f


    ;    4 4 4,

( ) ( ) ( )ij ij iji j
K B F f E G g J f


   .(8.27e,f) 

Note that all K matrices are sparse and symmetric. By vertical discretization, we obtain: 

 11 2

1 2 1

1, 1,1, 1,

1 1, 1, 1, 1,
N N

N N

T

z zz z

z z z z

d dd d

dz dz dz dz

  
   



 
   

 
    ,             (8.28a) 

1 11 1 2 2

2 22 2
1, 1, 1, 1,1, 1, 1, 1,1 N N N N

T

z z z zz z z z d d d dd d d dd

dr dr dzdr dr dzdr dr dzdr dr dzdr

      
 

 
  
  

      

                (8.28b) 

11 2

1 2 1

2, 2,2, 2,

2 2, 2, 2, 2,
N N

N N

T

z zz z

z z z z

d dd d

dz dz dz dz

  
   



 
   

 
             (8.28c) 

1 11 1 2 2

2 22 2
2, 2, 2, 2,2, 2, 2, 2,2 N N N N

T

z z z zz z z z d d d dd d d dd

dr dr dzdr dr dzdr dr dzdr dr dzdr

      
 

 
  
  

   

(8.28d) 

By combining the two vectors together, we have the following information for the whole 

points in the vertical direction 

 2 2( )
TTTr r d dr      

 
    ,         (8.29a) 

 1 1( )
TTTr d dr    

 
.           (8.29b) 

And for each point, four terms are presented and computed, that is, 

2 T

d d d

dz dr dzdr

  

 
 
 

 .                            (8.30) 

Therefore, Eq. (8.16) can be rewritten as 
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   
4 1 4 14 4 4 4

( ) ( )
N NN N N N

M r r M r 

  
            ,           (8.31) 

where 

 

 

1 2

3 4

K K
M

K K







    
    

, and
 

 

1 2

3 4

K K
M

K K







    
    

 .         (8.32) 

Once the starting field is given, Eq.(8.31) can be marched horizontally. The above derivation has 

not yet accounted for the boundary conditions. Here, we take the impedance ground as an 

example to incorporate the boundary condition effects. More complicated boundary conditions 

can be incorporated as discussed in Chapter 7. 

 For the impedance ground, we have the following boundary conditions:  

( )
( ) 0b

b

d z
i z

dz


  ,            (8.33a) 

( )
( ) 0t

t

d z
i z

dz


  .             (8.33b) 

Adding the boundary condition into the global matrix in the matrix form, we have 

     
4 1 4 14 4 4 4 4 4 4 4
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(8.34) 

where the matrix C  and C  are both sparse matrix with only two non-zero terms: 
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At the same time, an abosorbing boundary layer is also needed to apply near the top of 

the numerical grid, to attenuate the amplitudes of waves reflecting off the top end of the 
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grid. For the extended reaction ground, the intermediate boundary conditions have been 

discussed in Chapter 7, which can be used directly. 

8.4  Numerical Results 

 In the above discussion, the PE/FEM marching scheme has been derived based on 

cubic FEM discretization along both the horizontal and vertical directions. To validate its 

accuracy, the cubic PE/FEM method is applied to predict sound propagation above an 

impedance ground for the homogeneous atmosphere benchmark case. As seen in Figure 

8.1, TL is plotted against the horizontal range for two different frequencies: 10 Hz and 

100 Hz. Good agreements with published results for benchmark case 1 validates the 

accuracy of the proposed cubic PE/FEM marching scheme. 

Furthermore, the cubic PE/FEM method is applied to predict the sound field 

above and below the extended reaction ground. Figure 8.2 displays the comparison of the 

excess attenuation for the source location at 5m above the ground, and the receiver 

location is set to be 0.1 above ground and 0.1 below the ground. The results are compared 

with the results by the linear PE/FEM method. Here, the Gaussian starter field is used in 

both methods. Good agreements between the two methods are observed. In another 

comparison using the same number of elements, the computation time for the linear 

PE/FEM method took 66.6s while the time for the cubic took 344.7s. The cubic method 

requires more computation time since the matrices are four times larger than those found 

in the linear method. However, the cubic PE/FEM method is able to compute four terms 

simultaneously (e.g., pressure, pressure from horizontal dipole and vertical dipole).  
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Figure 8.1: Transmission Loss (TL) versus horizontal range (m). (a) the source frequency at 10 Hz; 
(b)the source frequency at 100 Hz. 
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Figure 8.2: EA versus the horizontal separation using Gaussian Starter with the source height of 5 m 
above the ground. The receiver height is chosen to be 0.1 m above the ground, and the other receiver 

is at 0.1 m below the ground. 

8.5  Summary 

 In this chapter, a cubic PE/FEM method is proposed based on the PE/FEM 

method described in Chapter 7. The derivation of higher ordered marching scheme is 

discussed in detail. The matrix representation for FEM discretization enables greater 

insight and facilitates efficient numerical implementation. Four terms are related at each 

grid point: the pressure p, the slope of pressure horizontally p r  , the slope of pressure 

vertically p z  , and
2 p

r z



 
. The four terms at each point with the same horizontal 

separation march forward simultaneously, which increases the computation time several 

folds. However, additional field information is obtained beyond the pressure field values. 
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The cubic PE/FEM implementation is validated against the benchmark cases and several 

numerical examples. 
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CHAPTER 9: SUMMARY AND FUTURE WORK 

 In this dissertation, the propagation of sound in the vicinity of rigid porous 

interfaces has been investigated systematically. Sound propagation near various rigid 

porous interfaces has been considered: impedance ground; semi-infinite extended 

reaction ground; hard-backed ground; and impedance-backed ground. The analytical 

solutions and the numerical solutions are compared where applicable.  

 Because the double saddle-point method [1-3] becomes singular when the source 

lies directly above (or below) the receiver or when the specific acoustic impedance of the 

boundary is unity, a modified saddle-point method is first exploited to study the sound 

field from a monopole above and below a rigid porous medium (Chapter 2 and Chapter 

3). The solutions are expressed in a form comparable to the classical Weyl-Van der Pol 

formula, which offers a physical understanding of the problem. The validaty of the 

asymptotic solution is confirmed by comparison with the numerical results computed by 

the fast-field formulation and the direct evaluation of the integral. However, the 

expression of the asymptotic solution based on the modified saddle-point method 

becomes complicated, especially for the impedance-backed porous ground. A heuristic 

method based on the asymptotic solution via the double saddle-point method is then 

proposed to remove any singularity (Chapter 4) and a comparable analytical form as 

Weyl-Van der Pol formula is suggested. The improved formula offers physically 
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meaningful solution and allows accurate predictions of total sound fields above a locally 

or non-locally reacting surface for all possible geometrical configurations. Following this, 

the double saddle-point method is then applied to obtain a uniform asymptotic solution 

allowing predictions of sound fields within a hard-backed rigid porous medium due to an 

airborne source (Chapter 5).  

It is shown that the total sound fields consist of a transmitted wave component 

arriving at the receiver directly through the porous interface, and a second transmitted 

wave component reflecting from the rigid backing plane before reaching the receiver. 

They can be expressed in an integral form that is amenable to analytical and numerical 

analysis. The validity of the asymptotic formula is verified by comparison with numerical 

results obtained using a more accurate wave-based numerical scheme. The accuracy of 

the numerical solutions has also been verified through experiments in an anechoic 

chamber.  

The proposed model predictions suggest that when the receiver is located near the 

bottom of the hard-backed layer, the reflection of the refracted wave represents a 

significant contribution to the total sound field.  Furthermore, an asymptotic analysis is 

conducted to examine the sound fields due to an arbitrarily oriented dipole that is placed 

above a rigid porous medium. In Chapter 6, the diffraction of sound owing to the effect of 

spherical wavefronts and the presence of the porous interface has been explored. Using a 

double saddle-point analysis technique supplemented by the pole subtraction method, an 

asymptotic solution for the dipole sound field reflected from and transmitted through the 

porous interface has been derived. The diffracted wave contributions in both situations 

can be expressed conveniently in terms of a standard complementary error function that 
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can be computed efficiently. These asymptotic formulas lead to accurate numerical 

solutions for calculating the total sound field above and below a non-locally reacting 

medium. So far, the analysis has been restricted to homogeneous propagation conditions 

in which environmental properties do not vary with range. 

  In Chapter 7, a hybrid PE/FEM method is proposed to study sound propagation 

near rigid porous interfaces. The procedure for using the linear and cubic finite element 

basis function to discretize an arbitrary function is reviewed. Next, the derivation of the 

PE method is demonstrated. The FEM method is then used to discretize the function in 

the vertical direction, and then solve the parabolic equation. A PML technique is applied 

to the PE/FEM method with great success in terms of computational time and numerical 

accuracy.  

Issues regarding the selection of various starting fields were discussed in detail. 

Using the analytical asymptotic solutions derived in the previous chapters as the starting 

field tends to improve the near-field results compared to various Gaussian starter fields. 

In particular, for the extended reaction ground, the analytical starting field is able to 

predict the sound fields above and below the ground accurately even when the source is 

close to the ground surface. Since the cubic finite element discretization is used in the 

PE/FEM method, the analytical asymptotic solution from the dipole is necessary for the 

starting field. The asymptotic solution for the dipole source in Chapter 6 is a prerequisite 

to studying the PE/FEM method. The PE/FEM method is applied to predict the sound 

field near snow covered ground where good agreement is observed.  

In Chapter 8, the PE/FEM method is extended to a cubic PE/FEM method where 

FEM cubic interpolation is applied in both the vertical and horizontal directions. 
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Comparison with results for the sound field above an impedance ground validates the 

formulation. It is shown that the cubic PE/FEM is more expensive computationally but 

more accurate sound predictions for the monopole and dipole sources can be achieved. 

The cubic PE/FEM method proposed in Chapter 8 can be applied to more complicated 

propagation conditions and guide future studies. 

Potential future research topics into this subject area may include: (1) 

implementation of higher ordered finite element basis functions; (2) considerations for 

range-dependent geometries (e.g., sloped ground interfaces, mixed impedances, etc.); (3) 

considerations for atmospheric effects (e.g., wind, temperature, turbulence, etc.); (4) 

acoustical characterization of multi-layered porous materials. 
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Appendix A: Main Steps in the Modified Saddle-point Method 

In Chapter 2, the asymptotic solution according to the modified saddle-point method has 

been presented. The essential steps for obtaining the solution will be offered as follows. 

Knowing the Taylor series for  ( )m W , it is found particularly useful to derive an 

analytical expression for  ( )m W  and its second derivative at W = 0 (i.e., at  = ). They 

will shape the structure of the asymptotic solution given in Eq. (2.35). It is tedious but 

straightforward to show that  ( ) ( )
00m m      is furnished by 

 ( ) ( ) 2 ( )
0 1 ( ) 2[ ]m m m

a pw         ,           (A1)  

where  ( ) ( )

0;

m m

X
X   

   . Noting Eq. (15b), it can then be shown that 

 ( ) ( ) 2 sin (1)
0 0( )
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1 sin
2[ ] ( sin )
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m m ikr
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w e H kr

ikR
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 

 
       

.         (A2) 

The second derivative of  ( )m W  at X = 0 can be expressed in terms of  ( ) 0m  as 

 
2 2

( ) ( ) ( ) ( )
0 22 ( ) 2
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1
( ) 2 1
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d
W b w ikR

dW w
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  ,        (A3)  

where  
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( ) ( )

1
2( ) ( )

sin
cot

cos

m m

m m

E 

 




 
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 
 ,            (A6) 

 ( ) ( ) ( )1 [ ] sinm m mE E      ,                (A7) 

( ) ( ) ( ) ( ) 2[ ] [ ( )] [ ] sin [ ] cos sinm m m mE E              ,         (A8) 

and the subscript  denotes these parameters are evaluated at  =  , i.e., at X = 0. The 

prime and double primes are the first and the second derivatives with respect to  . It 

should be noted that Eqs. (A7) and (A8) are derived by starting from Eq. (2.19d). At the 

far field when   /2, the isolated term involving csc2  in Eq. (A5) and cot  in Eq. 

(25c) may be dropped without affecting the accuracy of the numerical solution. These 

two terms are kept in Eqs. (A5) and (A6) for preciseness and for future comparison. 

Substitution of Eqs. (2.29) and (2.30a) into Eq. (2.15a) leads to 

 

2
2

( ) 2 2
2

2 ( ) 2
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    ,            (A9) 

where all the integrals for the odd terms in the series of Eq. (2.30a) vanish. It is because 

the kernels of these integrals are odd functions about W = 0 along the integration path CW. 

Deforming the integration to the saddle path CX, Eq. (A9) can be rewritten as 

 
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,              (A10) 

where the second term in the square bracket is the pole contribution from each term in the 

series of Eq. (A9) when the integration path has been transformed from CW to CX. These 

terms are often referred as the surface wave pole contributions. 
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 The integral of Eq. (A10) can be evaluated by noting the following identities for 

the complementary error function, erfc(z) , 

 

2 22 2 2 2
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and 
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where the integral series Ij(z) is given by 
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with I0(z) = erfc(z). The integrals Ij(z) satisfy the recurrent relation, 
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By noting Eqs. (A12) and (A14) and by using mathematical induction, it is possible to 

show that  
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              (A15) 

Hence, the diffraction integral pD can be simplified from Eq. (A10) to the equation given 

in Eq. (2.31) in the main text. 
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Appendix B: Associated Functions for Calculating b(m) Given in Eq. (A4) 

To calculate b(m) for different types of non-locally reacting porous media, it is sufficient 

to provide analytical expressions for ( )m , ( )m  , and ( )m   as b(m) can be computed from 

Eq. (A4) – (A6) with E(m) given by Eq. (2.19d) in the main text.  Here, the primes 

represent the derivatives with respect to its argument, i.e.,   in this case. The following 

expressions can be derived by straightforward differentiations and tedious algebraic 

manipulations: 

 

(i) A locally reacting ground (m = -1) 

( 1)
1    = constant  ,            (B1a) 

( 1) ( 1)[ ] [ ] 0      ,              (B1a) 

( 1) 0E
    ,              (B1c) 

which implies  
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  
  

 
,         (B1d) 

where the subscript  in a parameter denotes that the parameter is to be evaluated at  = , 

i.e. at the saddle-point of X= 0. For instance,  ( ) ( )m m
   , etc. The prime and double 

primes are the first and second derivatives with respect to . 

 

(ii) a semi-infinite extended reaction porous medium (m = 0) 
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(0) N   ,               (B2a) 

(0)[ ] N    ,              (B2b) 

(0)[ ] N                   (B2c) 

where 
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       .                           (B3c) 

By the use of Eqs. (B2 a–c) and (B3 a–c) in Eq. (A4) b(0) can be obtained and, this can be 

used, in term, in Eq. (A4) to obtain an asymptotic expression for computing the 

diffraction term pD. 

 

(iii) A hard-backed porous layer (m = 1) 

(1) (0)
1tan( )i kN d     ,                             (B4a) 
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where 
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and 

     
1

2 2
1 1 1 1tan sec 2 ( ) tankN d kd kN d N kd N kN d    

       
.                  (B5b) 

Consequently, b(1) can be determined from the above equations, which can then be 

applied in Eqs. (A4) for computing the diffraction term pD above a hard-backed porous 

layer.  

(iv)  An impedance-backed porous layer (m = 2) 

With the knowledge of (0)
 , (0)[ ]  , (0)[ ]  , (1)

 , (1)[ ]  , and (1)[ ]  , it is possible to 

determine the following formulas: 
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   .               (B6c) 

Hence, b(2) can be computed numerically and, that can be used in Eq. (A4) to calculate 

the diffraction wave term for the impedance-backed porous layer. 
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Appendix C: The Details of the Derivation of Eqs. (3.33a) and (3.33b) 

To find an approximate series solution for pb [see Eq. (3.25)], it is useful to replace the 

kernel function  W   with  W  , which is a Taylor series expansion about the 

saddle point, W = 0. These two kernel functions,  W   and  W  , are related 

according to Eq. (3.29). The substitution of Eqs. (3.29) and (3.30) into Eq. (3.25) yields 
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where  
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The integrals I0 and I1 can be evaluated by indenting the path from CW to CX to give 
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where H is the Heaviside step function. The second term in either Eq. (C3a) or (C3b) is 

the contribution from the pole when it is crossed while the integration path is changed 
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from CW to CX. The parameters ,pW   and bw  shown in the above equations are given in 

Eq. (3.34). 

 Since the steepest path (i.e., CX) is chosen along the real axis, we can rewrite the 

integrals in Eq. (A3a,b) as 
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By noting the following identities [20], the integrals can be represented in terms of the 

complementary error function as follows: 
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     ,    j = 0, 1, 2, …        (C5a) 

and 

      
2

2
2

2
2

,

erfc Imb

X
w

b b

p

e dX
i e iw H w kR

X W 


 





    
  ,        (C5b) 

where the complementary error function of complex argument z is defined as 

22
erfc( ) X

z

z e dX



  .              (C6) 

It is then straightforward to show that 

 
   

2 22
2

22 2
,

erfc( ) Im
2

b

X

W w

b b

C p b

e dW e
i iw H w kR

W W w





 


 

         ,       (C7a) 

and 

 
     

2

2
22

2
22 2

,

2 2 Imb

X

W
w

b b b

C p

W e dW
F w i w e H w kR

W W



 

 

 


       ,       (C7b) 
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where  bF w  is the boundary loss factor [see Eq. (3.35)]. The substitution of Eq. (C7a) 

into (C3a) leads to Eq. (3.33a) and the replacement of the integral term in Eq. (C3b) with 

that given in (C7b) yields Eq. (3.33b).
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 Appendix D: Details for Asymptotic Evaluation of the Integral in Eq. (5.8) 

The main idea for its asymptotic evaluation has been provided earlier in Ref. 1 in which 

the penetration of sound into an extended reaction ground has been considered. 

Essentially, a double saddle-point method enhanced by the pole subtraction scheme is 

employed in the analysis. Initially, the saddle path is determined by requiring 

 Im ( ) ( ) 0b bikf ikf                (D1) 

where  =  is the stationary point which can be found by solving  

1( ) cos sin sin 0b s

d
f r z nZ

d 
 


   




     .          (D2) 

The stationary point at the lower medium, 1 = , can be found by using Snell’s law, viz  

Eq. (5.6a), for a known incident angle, . The saddle path, C , in addition to the original 

integration path are sketched in Fig. 5.2. A new complex variable W is then introduced 

to replace   by defining 

 2 2 ( )bW ik L f    ,           (D3b) 

where L [= fb()] is the acoustical path length which may be determined by Eq. (5.11a). It 

follows from Eq. (D3a) that the derivative of W with respect to  is given by 

 ( )bd dW W ikf               (D3b) 

Using W in Eq. (5.8), the canonical integral can be rewritten as 

1 2( )CI Z I I               (D4a) 

where 
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 
2(1)

1 0( ) sin ( ) ( ) ( )
4

W

ikL
W

b

C

e
I Z G W f e dW

     


   ,       (D4b) 

and 

2
(1)
0

2

( ) ( ) ( )sin
( )

4 cos ( ) ( )
W

ikL
W

bC

G We
I Z e dW

f




     

    




 .        (D4c)

  The kernel function of Eq. (D4b) is an entire function because there are no 

poles in the integrand. Hence, the asymptotic evaluation of I1(Z) can be conducted 

straightforwardly to yield, 

1 ( )
2

ikLe
I  





,              (D5) 

where the function  is defined in Eq. (5.9a) and  is the physical path length determined 

by Eq. (5.12c) for a given depth Z. On the other hand, there are poles in the integrand of 

I2 which can be located in the complex -plane by finding the zeros of Eq. (5.14b). 

Suppose that the pole locations, is determined at p in the complex -plane and Wp in the 

complex W plane. According to Eqs. (5.7c), (5.9d) and (5.14b), it can be inferred that 

cos ( ) tan ( )p p pi N kN d       .            (D6) 

Then, making use of Eq. (D3b), the pole location in the complex W plane is determined 

as 

2pW w                (D7) 

where the apparent numerical distance w  [see Eq. (5.15b)] is customarily used instead of 

WP in the final asymptotic solution for the sound fields given in Eq. (5.17). The 

approximate numerical distance, w  [see Eq. (5.15c)] is also needed for determining q(Z) 
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[see Eq. (5.13c)] in Eq. (5.17). 

 When the pole is close to the saddle point, the radius of convergence of the 

asymptotic series will be limited. Hence, the pole subtraction scheme is needed to remove 

the apparent singularity of the integrand of I2 shown in Eq. (D4c). Following the analysis 

detailed in Ref. [3], it is straightforward to derive a uniform asymptotic solution for I2 to 

yield, 

   2

2

cos 4

ikL

p

e
I 



  
 

  

 
   

  
            (D8) 

where  is known as the effective admittance [see Eq. (5.14a)], the function () is 

defined by Eq. (5.9a) with N specified by Eq. (5.7c), and the parameter   is  determined 

by 

 
2

1 2
2 2sin sin

2 ( 2)
sin sin 1 cos( )

w
p pp

r

p p p p

e erfc iw
i ikR

E E

  


   

 
  

 
.      (D9) 

In the above equation, Rr is the energy path length defined by Eq. (5.12b), erfc( ) is the 

complementary error function, and, Ep is determined by Eq. (5.16d). This parameter  

can be treated mathematically as the difference between the complementary error 

function term and its asymptotic approximation. Substituting Eq. (5.15b) in the second 

term of Eq. (D9), and noting Eqs. (5.15a), (5.15c), (5.16a), (5.16b) and (5.16c), we can 

obtain an expression for I2 as follows: 

        2 ( ) 1 ( ) 1
4

ikL

p p

e
I V A V F w      


           

.      (D10) 
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Use of Eq. (D5) and (D10) in Eq. (D4a) yield the asymptotic solution for the total sound 

fields within the rigid porous medium. This expression is the same as that given in Eq. 

(5.17) in Chapter 5.
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Appendix E: Diffracted Wave Fields and Total Sound Field from a Monopole 

Li and Liu [1] showed that the diffracted wave term ( )m
ap  due to the monopole source can 

be evaluated asymptotically to yield a sum of the main term  and its correction factor 

( )m : 

2
( ) ( )

24

ikR
d m

a

e
p

R



     ,            (E1a) 

where  is dependent on the complimentary error function term defined by Eq. (6.18) and 

the correction term is specified by 

( )m
A B    ,              (E1b) 

with A and B given in Eqs. (6.20a) and (6.22b), respectively. By taking inspiration from 

the form of solutions for a diffracted wave term for the dipole source, it is possible to 

express the diffracted wave term of the monopole sound fields by  

 
2

( )

24

ikR
m

a A a

e
p

R



   ,              (E2) 

where the diffraction factor a  is defined by Eq. (6.24b). The substitution of Eq. (E2) 

into Eq. (6.3a) leads to an asymptotic expression for the total sound field: 

 
1 2

( )

1` 24 4

ikR ikR
m

a

e e
p V

R R


 
    .             (E3) 

This expression provides a better physical insight of the asymptotic solution given 

above. The first term of Eq. (E3) is the direct wave term and the second term is the 

reflected wave term. There are two components for the reflected wave term: the first 
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component in the curly bracket of Eq. (E3) is the plane wave reflection term, and the 

second component is the diffraction factor. The second term vanishes when the value of 

w is high, i.e., a condition when the plane wave term is sufficient for representing the 

reflected wave term. A re-examination of Eq. (6.38a) suggests that the same 

interpretation holds true for the sound field due to an arbitrarily oriented dipole, although 

extra factors,  1l u� ,  2l u� , and,  sl u� , are needed to account for the source orientation 

relative to the receiver location. These interpretations facilitate the development of the 

asymptotic formula for sound penetration into the porous ground given in Chapter 6.
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Appendix F: Expressions for ijF , ijG , and ijJ  Matrices with Cubic Basis Functions 

Here is to derive the expression for the following three integrations  

( ) ( ) ( ) ( )
t

b

z

ij i jz
F f z f z z dz   ,              (F1) 

( ) ( ) ( ) ( )
t

b

z

ij i jz
G g z g z z dz   ,              (F2)  

( )( )
( ) ( )

t

b

z ji
ij z

zz
J f f z dz

z z

 
 

  ,               (F3)  

where f is defined in Eq.(7.43). For computing each term of ( )ijJ f , the derivatives of the 

cubic finite element basis functions is needed.  By doing derivations for the cubic basis 

functions, it is obtained that 

,1 6(1 )j jh     
;
  ,2 (1 )(1 3 )j     

;
       (F4a,b) 

,3 6(1 )j jh    
;
  ,4 (3 2)j    

.
             (F5) 

Inserting the linear approximation for ( )f z , seen in Eq.(7.43), into Eq. (F1) and (F3) 

yields expressions for  each term in Eq.(F1) and Eq.(F3) as follows. Note that the ijF , 

ijG and ijJ matrices are symmetric, the expressions for 1,j jF  will be calculated as the same 

way like , 1j jF    by replacing the corresponding functions with the ones over the element 

1[ , ]j jz z z . 

(a) For F  in Eq. (F1) 

(1,1) 2
, 1,1 1( ) ( )j j j jF f z dz     (1,2)

, 1,3 1,4 1( ) ( )j j j j jF f z dz      
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       2
,3( ) ( )j jf z dz  ,1 ,2( ) ( )j j jf z dz   

      
(2,1)
, 1,3 1,4 1( ) ( )j j j j jF f z dz      

                          ,1 ,2( ) ( )j j jf z dz   

            
(2,2) 2
, 1,4 1( ) ( )j j j jF f z dz     

         
2

,2( ) ( )j jf z dz  

(1,1)
, 1 ,1 ,3( ) ( )j j j j jF f z dz     (1,2)

, 1 ,1 ,4( ) ( )j j j j jF f z dz     

(2,1)
, 1 ,2 ,3( ) ( )j j j j jF f z dz     (2,2)

, 1 ,2 ,4( ) ( )j j j j jF f z dz     

 

(b) For J  in Eq.(F3)  

(1,1) 2
, 1,1 1( ) ( )j j j jJ f z dz  

   

          2
,3 1( ) ( )j jf z dz 
  

(1,2)
, 1,3 1,4 1( ) ( )j j j j jJ f z dz   

    

      ,1 ,2( ) ( )j j jf z dz    

  (2,1)
, 1,3 1,4 1( ) ( )j j j j jJ f z dz   

    

        ,1 ,2( ) ( )j j jf z dz    

(2,2) 2
, ,4 1( ) ( )j j j jJ f z dz 

   

            2
,2( ) ( )j jf z dz   

(1,1)
, 1 ,1 ,3( ) ( )j j j j jJ f z dz 

    (1,2)
, 1 ,1 ,4( ) ( )j j j j jJ f z dz 

    

(2,1)
, 1 ,2 ,3( ) ( )j j j j jJ f z dz 

    (2,2)
, 1 ,2 ,4( ) ( )j j j j jJ f z dz 

    

 

After a set of integration, we obtain each term of the F, J matrices. Note that at the first 

node and the end node, there's only one neighbor node. The elements related to the first 

node and the end node have a different expression as others. They will be represented 

separately in the following section. 

For 2,3, 1j N  , 
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1,1 1,2
, ,

, 2,1 2,2
, ,

j j j j

j j

j j j j

F F
F

F F

 
  
  

, where 

 1,1
, 1 1

1
(2 ) ( ) (2 ) ( )j j j j j j j jF z B f A B f z B f A B f

C
 

              ; 

 1,2 2 2
, 1 1

1
(2 ) ( ) (2 ) ( )j j j j j j j jF z B f A B f z B f A B f

C
 

             ; 

2,1 1,2
, ,j j j jF F ;  2,2 3 3

, 1 1

1
(2 ) ( ) (2 ) ( )j j j j j j j jF z B f A B f z B f A B f

C
 

              . 

For 1,1F , the first term in the above expression is kept, while for ,N NF  the second term is 

kept. And 

1,1 1,2
, 1 , 1

, 1 2,1 2,2
, 1 , 1

j j j j

j j

j j j j

F F
F

F F
 



 

 
  
  

, where 

 1,1
, 1

1
(2 ) ( )j j j j jF z B f A B f

C


      ;  1,2 2
, 1

1
(2 ) ( )j j j j jF z B f A B f

C


      ; 

2,1 1,2
, 1 , 1j j j jF F  ;  2,2 3

, 1

1
(2 ) ( )j j j j jF z B f A B f

C


      . 

In  a similar way, the expression for J is listed as follows. 

1,1 1,2
, ,

, 2,1 2,2
, ,

j j j j

j j

j j j j

J J
J

J J

 
  
  

, where 

1,1
, 1

1

1 1 1
(2 ) ( ) (2 ) ( )j j j j j j

j j

J B f A B f B f A B f
C z z





  
               

; 

 1,2
, 1

1
(2 ) ( ) (2 ) ( )j j j j j jJ B f A B f B f A B f

C


            ; 

2,1 1,2
, ,j j j jJ J ;  2,2

, 1 1

1
(2 ) ( ) (2 ) ( )j j j j j j j jJ z B f A B f z B f A B f

C
 

              .
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And 

1,1 1,2
, 1 , 1

, 1 2,1 2,2
, 1 , 1

j j j j

j j

j j j j

J J
J

J J
 



 

 
  
  

, where 

1,1
, 1

1 1
(2 ) ( )j j j j

j

J B f A B f
C z



  
       

;  1,2
, 1

1
(2 ) ( )j j j jJ B f A B f

C


     ;
 

 2,1
, 1

1
(2 ) ( )j j j jJ B f A B f

C


     ;  2,2
, 1

1
(2 ) ( )j j j j jJ z B f A B f

C


      . 

The value of A, B, C for each term is listed in the following table for reference. 

Table F.1: Values of A, B, C with linear interpolation of fn(z). 

 A  B  C   A  B  C  

1,1
,j jF  10 3 35 

1,1
, 1j jF   9 9 140 

1,2
,j jF  15 7 420 

1,2
, 1j jF   7 6 -420 

2,1
,j jF  15 7 420 

2,1
, 1j jF   7 6 -420 

2,2
,j jF  5 3 840 

2,2
, 1j jF   1 1 -70 

1,1
,j jJ  3 3 5 

1,1
, 1j jJ   3 3 5 

1,2
,j jJ  1 1 10 

1,2
, 1j jJ   2 0 20 

2,1
,j jJ  1 1 10 

2,1
, 1j jJ   0 -2 20 

2,2
,j jJ  3 1 30 

2,2
, 1j jJ   1 1 60 
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Appendix G: Expression for ijF , ijG , and ijJ  Matrices with Cubic fn(z) Interpolation 

 When we approximate ( )nf z  over the element 1[ , ]j jz z z   as the combination of 

two neighbor grid points using the cubic interpolation, it is given by  

2 2 2 2
1 1( ) (1 ) (2 1) ( ) ( 1) ( ) (3 2 ) ( ) ( 1) ( )n n j j n j n j j n jf z f z h f z f z h f z        

          .
 

(G1)
 

The expressions for the ijF  and ijJ matrices are calculated as follows. 

For 2,3, 1j N  , 

1,1 1,2
, ,

, 2,1 2,2
, ,

j j j j

j j

j j j j

F F
F

F F

 
  
 

 

 1,1
, 1 1

1
(2 ) ( ) (2 ) ( )j j j j j j j jF z B f A B f z B f A B f

C
 

               

             2 2
1 1

1
(2 ) ( ) (2 ) ( )

'
j j j j j jz B f A B f z B f A B f

C
 

                      ; 

 1,2 2 2
, 1 1

1
(2 ) ( ) (2 ) ( )j j j j j j j jF z B f A B f z B f A B f

C
 

              

            3 3
1 1

1
(2 ) ( ) (2 ) ( )j j j j j jz B f A B f z B f A B f

C
 

                      
; 

2,1 1,2
, ,j j j jF F ;  2,2 3 3

, 1 1

1
(2 ) ( ) (2 ) ( )j j j j j j j jF z B f A B f z B f A B f

C
 

              

             4 4
1 1

1
(2 ) ( ) (2 ) ( )j j j j j jz B f A B f z B f A B f

C
 

                      . 

For 1,1F , the first term in the above expression is kept, while for ,N NF  the second term is 

kept. And 
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1,1 1,2
, 1 , 1

, 1 2,1 2,2
, 1 , 1

j j j j

j j

j j j j

F F
F

F F
 



 

 
  
 

 

   1,1 2
, 1 1

1 1
(2 ) ( ) (2 ) ( )j j j j j j j jF z B f A B f z B f A B f

C C
 

                 
; 

   1,2 2 3
, 1 1

1 1
(2 ) ( ) (2 ) ( )j j j j j j j jF z B f A B f z B f A B f

C C
 

                 
; 

   2,1 2 3
, 1

1 1
(2 ) ( ) (2 ) ( )j j j j j j j jF z B f A B f z B f A B f

C C


                 
; 

   2,2 3 4
, 1 1

1 1
(2 ) ( ) (2 ) ( )j j j j j j j jF z B f A B f z B f A B f

C C
 

                 
. 

In a similar way,  

1,1 1,2
, ,

, 2,1 2,2
, ,

j j j j

j j

j j j j

J J
J

J J

 
  
  

 

1,1
, 1

1

1 1 1
(2 ) ( ) (2 ) ( )j j j j j j

j j

J B f A B f B f A B f
C z z





  
               

 

             1

1
(2 ) ( ) (2 ) ( )j j j jB f A B f B f A B f

C


                    
; 

 1,2
, 1

1
(2 ) ( ) (2 ) ( )j j j j j jJ B f A B f B f A B f

C


             

             1 1

1
(2 ) ( ) (2 ) ( )j j j j j jz B f A B f z B f A B f

C
 

                      
; 

2,1 1,2
, ,j j j jJ J ;  2,2

, 1 1

1
(2 ) ( ) (2 ) ( )j j j j j j j jJ z B f A B f z B f A B f

C
 

               

              2 2
1 1

1
(2 ) ( ) (2 ) ( )j j j j j jz B f A B f z B f A B f

C
 

                     
. 

1,1 1,2
, 1 , 1

, 1 2,1 2,2
, 1 , 1

j j j j

j j

j j j j

J J
J

J J
 



 

 
  
  
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 1,1
, 1

1 1 1
(2 ) ( ) (2 ) ( )j j j j j j

j

J B f A B f B f A B f
C z C



  
                  

; 

   1,2
, 1 1

1 1
(2 ) ( ) (2 ) ( )j j j j j j jJ B f A B f z B f A B f

C C
 

                
; 

   2,1
, 1 1

1 1
(2 ) ( ) (2 ) ( )j j j j j j jJ B f A B f z B f A B f

C C
 

                
;  

   2,2 2
, 1 1

1 1
(2 ) ( ) (2 ) ( )j j j j j j j jJ z B f A B f z B f A B f

C C
 

                 
.
 

The value of A, B, C for each term is listed in the following table for reference. 

Table G.1: Values of A, B, C with cubic interpolation of fn(z). 

 A  B  C  A  B  C  

1,1
,j jF  774 162 2520 97 -43 2520 

1,2
,j jF   97 35 2520 16 -9 2520 

2,1
,j jF  97 35 2520 16 -9 2520 

2,2
,j jF  16 8 2520 3 -2 2520 

1,1
, 1j jF   162 162 2520 35 -35 2520 

1,2
, 1j jF   -43 -35 2520 -9 8 2520 

2,1
, 1j jF   35 43 2520 8 -9 2520 

2,2
, 1j jF   -9 -9 2520 -2 2 2520 

1,1
,j jJ  504 504 840 108 -108 840 

1,2
,j jJ

 -12 96 840 6 -18 840 

2,1
,j jJ

 -12 96 840 6 -18 840 
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Table G.1: Continued. 

1,1
, 1j jJ   -504 -504 840 -108 108 840 

1,2
, 1j jJ   96 -12 840 18 -6 840 

2,1
, 1j jJ   12 -96 840 -6 18 840 

2,2
, 1j jJ   -14 -14 840 -1 1 840 
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