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ABSTRACT

Tran, Phuong T. Ph.D., Purdue University, December 2013. Analysis and Opti-
mization of Cooperative Wireless Networks. Major Professor: James S. Lehnert.

Recently, cooperative communication between users in wireless networks has at-

tracted a considerable amount of attention. A significant amount of research has

been conducted to optimize the performance of different cooperative communication

schemes, subject to some resource constraints such as power, bandwidth, and time.

However, in previous research, each optimization problem has been investigated sep-

arately, and the optimal solution for one problem is usually not optimal for the other

problems.

This dissertation focuses on joint optimization or cross-layer optimization in wire-

less cooperative networks. One important obstacle is the non-convexity of the joint

optimization problem, which makes the problem difficult to solve efficiently. The first

contribution of this dissertation is the proposal of a method to efficiently solve a joint

optimization problem of power allocation, time scheduling and relay selection strat-

egy in Decode-and-Forward cooperative networks. To overcome the non-convexity

obstacle, the dual optimization method for non-convex problems [1], is applied by

exploiting the time-sharing properties of wireless OFDM systems when the number

of subcarriers approaches infinity.

The second contribution of this dissertation is the design of practical algorithms to

implement the aforementioned method for optimizing the cooperative network. The

difficulty of this work is caused by the randomness of the data, specifically, the ran-

domness of the channel condition, and the real-time requirements of computing. The

proposed algorithms were analyzed rigorously and the convergence of the algorithms

is shown.



xiv

Furthermore, a joint optimization problem of power allocation and computational

functions for the advanced cooperation scheme, Compute-and-Forward, is also ana-

lyzed, and an iterative algorithm to solve this problem is also introduced.
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1. INTRODUCTION

1.1 Motivation

One of the most important contributions to the evolution of wireless networks in

recent years has been the advent of MIMO technologies, which create the transmission

diversity by using multiple receive and transmit antennas. It has been shown that this

method can significantly improve the performance of transmission by exploiting the

spatial diversity to combat fading [2]. However, today wireless networks require small-

size and low-power devices, which cannot be equipped with multiple antennas. In this

setting, the cooperation between users in wireless networks becomes an attractive

idea.

The idea of cooperative communication has roots in the work of Cover and El

Gamal in 1979 [3], and then it is described more rigorously in some papers beginning

from 2003 ( [4], [5], [6], [7] and [8]). A concise tutorial about cooperative communi-

cation can be found in [9]. More theoretical analysis of this technique is introduced

in [10]. Briefly speaking, in cooperative communication systems, each wireless user

is assumed to transmit data as well as acting as a cooperative agent for another

user [9]. The data from each user can reach the base station (BS) by at least two

ways: direct transmission to the BS and relayed transmission via another user [1]. It

has been shown that this technique can help to enhance the capacity and reliability of

transmission systems by exploiting the spatial diversity gain inherent in a multi-user

wireless system without the need for multiple antennas at each node.

As mentioned above, the theory of cooperative communication is built from the

work of Cover and El Gamal [3] about the capacity of the relay channel, which has

been a challenging problem for a couple of decades. Inspired by the early work of

Cover and Gamal, many researchers have tried to solve problems involving general
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relay networks, but there is still no explicit solutions for these problems. Research has

also involved finding some communication schemes that can approach the capacity

limit while still being implementable with an acceptable complexity.

While solving the capacity problem for general relay networks and finding ad-

vanced and implementable schemes that can reach the maximum theoretical capacity

of relay networks is complicated and may require a long-term research, researchers

are also focusing on how to optimize the performance of current cooperative com-

munication schemes under the constraints of available resources such as transmission

power, bandwidth, data rate, etc. Over the last few years, convex optimization theory

has provided a powerful tool for the analysis and design of communication systems,

and cooperative networks are not the exception. However, not all problems can be

solved by the traditional convex optimization tools. One of main challenges is on

nonconvexity of the problems in these applications. Specifically, if we consider a joint

optimization problem which combines various objectives and constraints, most likely

it will be a non-convex problem.

Motivated by these unsolved problems, in this dissertation, algorithms, which

are numerically stable and computationally implementable, are proposed to jointly

optimize the cooperative communication systems.

1.2 Review of Previous Work

Since 1979, several cooperation strategies have been proposed and studied, includ-

ing Amplify-and-Forward, Decode-and-Forward, and Compress-and-Forward. De-

tailed analysis of the capacity of these strategies can be found in [11]. Also, before

the paper of Cover and El Gamal, the investigation of the capacity region of some

specific relay networks also had been done by R. Ahlswede ( [12], [13]) and E.C. van

der Meulen [14].

Solving the problems of the capacity region of more complex relay networks has

led to the idea of network coding [15]. Ideas from network coding theory have been



3

applied to cooperative communication networks to build good relaying techniques

that approach the capacity limit. Also, this has led to lot of research on coded

cooperative communications, in which, channel coding or network coding can be

used to implement the cooperation between transmitters and relays. Inspired by

the invention of LDPC codes [16], which has been proven to approach the Shannon

capacity, some coded cooperative communication schemes have been proposed. C. Li

and G. Yue proposed a cooperative communication system based on LDPC coding

and analyzed its performance [17]. Razaghi and Yu developed a theory that is called

parity-forwarding and proposed the Bilayer LDPC code to implement that theory

[18], [19]. However, the most recent approach that has attracted most interest from

researchers has been the exploiting of interference in multi-user communications by

using structured codes. This approach arose naturally from the idea of network

coding. In 2009, B. Nazer and M.Gastpar published their work on this problem

and proposed a new strategy for cooperative communication networks, namely, the

Compute-and-Forward strategy [20], [21]. However, in that paper they only showed

the existence of a class of structured codes that can be used to implement that

strategy, but they didn’t mention how to design those codes in practice.

In addition to the problem of finding new coding schemes for cooperative networks

to achieve the capacity limit, recent research in this field is also focusing on the

optimization problems in relay networks subject to some constraints on the available

wireless resources. Power allocation optimization at the PHY layer has been solved in

several papers, for example, [22] and [23]. In the first paper, the authors exploit the

convexity of the problems and solve them using dual method for convex optimization

problems; while in the latter their approach is based on the geometric programming

(GP), a well-studied class of nonlinear and nonconvex optimization that can be readily

transformed into an equivalent convex optimization problem. At the MAC layer,

the problem of optimizing the scheduling mechanism has been investigated in [24]

and [25]. Cross-layer routing optimization algorithm has also been introduced, for

instance, in [26]. The optimization problems formulated in these papers are also
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solved by well-studied convex optimization methods. However, the research on joint

optimization or cross-layer optimization is still moderate. One important obstacle is

due to the non-convexity of the joint optimization problem.

Several non-convex optimization methods have been proposed for some specific

problems. A dual optimization method for non-convex problems that arise in wireless

OFDM-based systems has been proposed by W.Yu and R.Lui [1] in 2006. The most

important result in this paper is that, if an optimization problem satisfies a special

property called the “time-sharing” property, then it can be solved efficiently using

the Lagrangian dual method.

The ideas used for optimization problems in Compute-and-Forward have also been

mentioned several times since this cooperation scheme was proposed. In [27], the au-

thors argue that the lattice property of the codes introduced by Nazer in his seminal

paper about Compute-and-Forward is only applied for integer combinations of code-

words, while the combination computed by the channel can be any real number.

Nazer solved this problem by scaling the received channel output so that it’s close

to an integer combination. However, while the larger scaling can make a better ap-

proximation, it also results in the amplification of noise. This suggests the problem

of optimizing the scaling. A special case of this problem was solved in [28]. In that

paper, the authors consider a Compute-and-Forward scheme for a multiple-access re-

lay channel, which includes 2 source nodes communicating with one destination with

the support of one relay node.

1.3 Contribution of this Dissertation

Some important contributions have been made in this dissertation. They are

outlined below.

First, this research proposes a method to solve the non-convex joint optimization

problem of power allocation, scheduling, and the strategy for selecting relays in multi-

user relay networks. Several algorithms to implement these results are also proposed.
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Three conditions of the channel state information (CSI) are investigated: known CSI,

unknown CSI but perfect feedback, and unknown CSI with erroneous feedback.

Secondly, the detailed convergence analysis of the algorithms is also provided.

The convergence has been proved both mathematically and numerically. In addition,

the condition for the CSI to make the algorithms converge to the optimal solution is

established. If the CSI does not satisfy this condition, the error between the solution

obtained from the algorithm and the true optimal solution is evaluated.

Finally, the new cooperative scheme, Compute-and-Forward, is also studied. In

this dissertation, the optimization of power allocation (or scaling factor) and the se-

lection of the integer coefficients of the linear combination of the codewords computed

at the relay nodes is investigated. The network of interest has K source nodes and K

relay nodes, which is more general than the case mentioned in [28].

List of early publications from this work

Tran P.T., Lehnert James S., “Joint optimization of relay selection and power

allocation in cooperative OFDM networks with imperfect channel estimation,”

The Proceedings of the Wireless Communications and Networking Conference,

WCNC 2012, Paris, France, Apr. 2012.

Tran P.T., Lehnert James S., “Joint optimization of power allocation and co-

operation in wireless OFDM networks,” The Proceedings of the International

Conference on Advanced Technologies in Communications, ATC09’, Hai Phong,

Vietnam, Oct. 2009.

1.4 Organization of this Dissertation

The remainder of this dissertation is organized as follows. The theoretical back-

ground on cooperative communication and the capacity theorems about cooperative

relay networks are introduced in Chapter 2. The joint optimization problem for power

allocation, scheduling and relay selection in cooperative networks, as well as the so-

lutions and algorithms to implement those solutions, are provided in Chapter 3 and
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4. After that, the problem of optimization in Compute-and-Forward relay systems,

together with the proposed solution and algorithm, are introduced in Chapter 5. Fi-

nally, the conclusion of this thesis and the related ideas for future work are mentioned

in Chapter 6.
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2. THEORETICAL BACKGROUND

This chapter starts with some basic concepts of information theory, focusing on the

three-terminal channel, and then generalizing to relay networks. Cooperation strate-

gies and their performance are also briefly investigated. A review of convex optimiza-

tion theory is introduced at the end of this chapter.

2.1 Relay Channel

The wireless environment is broadcasting in nature. In other words, the signal

transmitted from a specific node in a wireless network is heard by all other nearby

nodes. Similarly, a destination node can receive the signals from multiple nodes in

the network. This process is called multiple access. By exploiting these properties,

some immediate nodes in the network (called relays) can help by forwarding the

information from source nodes to the destination nodes. This is the basic idea of

cooperative communication. This transmission basically happens in two phases: relay

nodes receive signals during the source broadcasting (phase 1), and forward them to

the destination during multiple access (phase 2). The above ideas are summarized by

the three-terminal channel model called the relay channel.

First, let’s review some basic concepts and definitions. Fig. 2.1 shows a simple

communication link, which consists of one source and one destination [29].

Fig. 2.1. A simple communication model
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Suppose that the source wants to transmit a message W that consists of B inde-

pendent and uniformly distributed bits. This message is first encoded by an encoder,

to form an encoded string Xn = (X1, X2, ..., Xn), and then this string is transmitted

via the channel to the receiver. The signal received at the receiver is denoted by

Y n = (Y1, Y2, ..., Yn). The discrete memoryless channel (DMC) is characterized by a

conditional distribution function PY |X(·), where X and Y are the random variables

representing the channel input and output, with alphabets X and Y, respectively. At

the receiver, the received signal Y n is decoded by the decoder to have an estimate Ŵ

that is a function of Y n.

Definition 2.1.1 The capacity of the discrete memoryless channel described above

is the maximum rate R = B/n bits per channel use for which, for sufficiently large

n, there exists a W − to − Xn mapping (an encoder) and a Y n − to − Ŵ mapping

(a decoder) so that the error probability Pr{Ŵ 6= W} can be made as close to 0 as

desired.

It has been shown that such a capacity exists and is given by the following formula:

C = max
PX(·)

I(X ; Y ) bits/use, (2.1)

where

I(X ; Y ) =
∑

a∈X,b∈Y:PXY (a,b)>0

PXY (a, b)log2
PXY (a, b)

PX(a)PY (b)
(2.2)

is the mutual information between X and Y. The function PXY represents the

joint density of X and Y. The functions PX and PY represent the marginal densities

of X and Y, respectively.

A very special case is the AWGN channel described by Y = X + Z with power

constraint given by
n∑

i=1

E
[
|Xi|2

]
/n ≤ P (2.3)

where Z is a real Gaussian random variable representing noise with variance N , and

E[·] denotes the expectation. The capacity of this channel is given by

C =
1

2
log2(1 + S) bits/use (2.4)
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where S = P
N

is the signal-to-noise ratio (SNR).

The simplest model of a relay channel is the three-terminal relay channel, which

includes one relay, in addition to the source node X and the destination node Y. It’s

assumed that the relay has data of its own to transmit. It’s only there to help the

receiver.

Even with only one relay, the relay channel capacity is now difficult to determine.

The capacity is known only for some special cases, e.g., the physically degraded relay

channel ( [30], [3]), and the Gaussian relay channel ( [31], [32]) (asymptotic capacity).

2.1.1 General Relay Channel

Fig. 2.2 shows a three-terminal relay channel. The channel consists of four finite

sets X,X1, Y, and Y1, and a collection of probability mass functions p(y, y1|x, x1).

The symbols x and y represent the input and output of the channel, respectively; y1

is the relay’s observation and x1 is the input chosen by the relay and depends only

on the past observations (y11, y12, ..., y1,i−1).

Fig. 2.2. Relay channel
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The coding for the relay channel is defined by a set of integers M = {1, 2, ...,M},
a source encoding function X : M → Xn, a set of relay encoding functions {fi}ni=1

such that

x1i = fi(Y11, Y12, ..., Y1,i−1), (2.5)

and a decoding function

g : Yn → M (2.6)

The channel is memoryless in the sense that (Yi, Y1i) depends on the past only

through the current transmitted symbols (Xi, X1i). Thus, for any choice of p(w), w ∈
M, code x : M → Xn and relay functions fi

n
i=1, the joint probability mass function

on M× Xn × Xn
1 ×Yn ×Yn

1 is given by

p(w, x, x1, y, y1) = p(w)
n∏

i=1

p(xi|w)p(x1i|y11, y12, ..., y1,i−1) (2.7)

The average probability of error is defined by the expression

P (n)
e =

1

2nR

∑

w∈M
Pr{g(Y ) 6= w|w sent} ,

1

2nR

∑

w∈M
λ(w) (2.8)

As mentioned above, this channel consists of a broadcast channel (X to Y and Y1)

and a multiple access channel (X1 and X to Y ). There is no exact capacity formula

for the channel capacity of this general relay channel. However, we can apply the

max-low-min-cut theorem for general multi-terminal networks to get an upper bound

on the capacity.

Theorem 2.1.1 For any relay channel, the capacity is bounded above by:

C ≤ sup
p(x,x1)

min{I(X,X1; Y ), I(X ; Y, Y1|X1)} (2.9)

The first term in (2.9) upper bounds the maximum rate of the multiple access channel

from X and X1 to Y , while the second term upper bounds the rate of the broadcast

channel from X to Y and Y1. However, the destination node Y should decode the

relay signalX1 prior to decoding X , which explains the appearance of the conditioning

term X1 in I(X ; Y, Y 1|X1). The detailed proof is introduced in [3].
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2.1.2 Degraded Relay Channel

A degraded relay channel is a relay channel in which the ultimate receiver y is a

degraded version of the relay receiver y1 (the relay receiver is better than the ultimate

receiver), and thus the relay can cooperate to send x. The other case is called the

reversely degraded relay channel, in which the relay y1 is worse than y. This case is

less interesting, because the relay has no contribution to the destination.

Definition 2.1.2 The relay channel (X× X1, p(y, y1|x, x1,Y×Y1) is said to be de-

graded if:

p(y, y1|x, x1) = p(y1|x, x1)p(y|y1, x1) (2.10)

Equivalently, a relay channel is degraded if p(y|y1, x, x1) = p(y|y1, x1), i.e., X →
(X1, Y1) → Y form a Markov chain.

Theorem 2.1.2 The capacity C of the degraded relay channel is given by

C = sup
p(x,x1)

min{I(X,X1; Y ), I(X ; Y1|X1)} (2.11)

By using the degradedness I(X ; Y, Y1|X1) = I(X ; Y1|X1), the proof of the converse

directly follows from Theorem 2.1.1. For the achievability part of the proof, see [3].

Gaussian Degraded Relay Channel

Here, we consider an important case of a degraded relay channel, the Gaussian

degraded relay channel, which is illustrated in Fig. 2.3. In this figure, Z1 and Z2 rep-

resent the sequences of i.i.d. normal random variables with zero mean and variances

N1 and N2, respectively. The ultimate received signal Y is a corrupted version of the

relay Y1, conditioning on X1.

Y1 = X + Z1

Y = Y1 +X1 + Z2
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Fig. 2.3. Gaussian degraded relay channel

We also assume that the transmitted power is constrained by

1

n

n∑

i=1

x2
i (w) ≤ P, w ∈ {1, 2, ...,M} (2.12)

and
1

n

n∑

i=1

x2
1i(y11, y12, ..., y1,i−1) ≤ P1, (y11, y12, ..., y1n) ∈ R

n (2.13)

Theorem 2.1.3 The capacity C∗ of the Gaussian degraded relay channel is given by:

C∗ = max
0≤α≤1

min

{

C

(
P + P1 + 2

√
αPP1

N1 +N2

)

, C

(
αP

N1

)}

(2.14)

where α = 1− α and C(x) = 1
2
log(1 + x).

We can find a sketch of the random code that achieves C∗ in [3].

Remark 1 1. If P1/N2 ≥ P/N1, then I(X,X1; Y ) ≥ I(X ; Y1|X1). The relay

can forward the cooperative information s to the receiver without error. The capacity

C∗ = C(P/N1) is achieved when α = 1, which implies that the transmitter does not

need to allocate power to send the partition index s. The channel appears to be noise-

free after the relay, the rate without the relay C(P/(N1 + N2)) is increased by the

relay to C(P/N1).
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2. If P1/N2 < P/N1, then I(X,X1; Y ) < I(X ; Y1|X1). The relay cannot guaran-

tee perfect transmission of the cooperative information s, then the transmitter must

cooperate to send s. Clearly the maximizing α = α∗ is strictly less than one, and the

capacity is C∗ = C(α∗P1/N1), where α∗ is given by solving

1

2
ln

(

1 +
P + P1 + 2

√
αPP1

N1 +N2

)

=
1

2
ln

(

1 +
αP

N1

)

(2.15)

The capacity region of the degraded Gaussian relay channel with multiple relays

can be obtained by building an inductive argument based on the single-relay capacity

Theorem 2.1.3. The details are given in [33].

2.1.3 General Relay Channel with Feedback

In this case, the relay is provided with the information about the y sequence

through the feedback link. Therefore, it can decode the x sequence with more relia-

bility than the destination does. In other words, y is a degraded version of the relay

signal y1 with feedback y. Hence, we can consider this as a degraded relay channel

with one modification: Y1 should be replaced by (Y, Y1).

Theorem 2.1.4 The capacity CFB of an arbitrary relay channel with feedback is

given by

CFB = sup
p(x,x1)

min{I(X,X1; Y ), I(X ; Y, Y1|X1)} (2.16)

In particular, if the channel is degraded or reversely degraded, then feedback does

not increase the capacity.

2.1.4 Gaussian Relay Network

In general, the Gaussian relay channel may not be degraded, or may consist of

more than one relay (Fig. 2.4(a) shows an example of this case) [31], [34]. The exact

capacity region for such general networks is still unknown. However, an asymptotic

capacity in the general Gaussian relay network with multiple relays can be derived
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as in [31]. The “asymptotic” means that the difference between the upper bound

and the lower bound of the capacity asymptotically approaches zero as the number

of relays goes to infinity. Two additional assumptions are needed for this analysis,

however. Firstly, there is a “dead zone” of nonzero radius around the source and the

destination node in which there may not be any other node. Secondly, the source

node may only send half of the time.

Fig. 2.4. General Gaussian relay network

The upper bound is derived from the max-low-min-cut theorem. The “broadcast

cut”, which separates the source node from all other nodes, is considered (Fig. 2.4(b)).

The lower bound follows from a consideration of almost uncoded transmission of a

particular source across the Gaussian relay channel.

Theorem 2.1.5 (Upper bound) For any particular realization of the random geom-

etry of the network, the capacity of the considered relay network is upper bounded

by:

C ≤ Cupper =
1

4
log2

(

1 +
‖β‖2 P

N

)

(2.17)
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where β is a vector accounting for the fading process, and P is the power constraint

for the source signal.

Theorem 2.1.6 (Lower bound) For any particular realization of the random geome-

try of the network, the capacity of the considered relay network is at least:

C ≥ Clower =
1

4
log2

P

D1
(2.18)

where D1 is the mean-square error of the decoded signal.

It is proved that the capacity C lies between Cupper and Clower, which meet asymp-

totically. Hence, the asymptotic capacity of the considered relay network is

C∞ =
1

4
log2

(

1 +
‖β‖2P
N

)

(2.19)

2.2 Network Models and Capacity

In this section, some popular multi-node network models are introduced and their

capacity regions are analyzed. Although the problem of finding the capacity region

of general relay networks is still unsolved, there have been several significant results

for certain networks with AWGN.

2.2.1 Relay Network Models

Depending on the method of relay assistance, different kinds of relay networks

can exist. The following are some popular examples of relay networks. For more

classification of relay network models, see [35].

a. One-way relay channel: For this model, the information only flows one-

way from the source node to the destination node (i.e., the roles of source node and

destination node do not change during the communication process).

b. Two-way relay channel: Two nodes can exchange their message with the

assistance of a relay node (or maybe several relay nodes). This channel may be

half-duplex or full-duplex.
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Fig. 2.5. Popular relay networks

c. Multiple-access channel with cooperation: This network has one sink and

multiple sources, and the sources can cooperate, that is, some source nodes can act

as relays for another source at a specific time. This kind of network includes the relay

channel as a special case, by letting node 1 transmit but not receive, and node 2 only

forwards the information received from node 1.

d. Parallel relay channel: This network has one source, one sink, and multiple

relays. The relays help forwarding the messages from source to sink by one of two

mechanisms:

- Simultaneous relaying: At first, the source transmits its signal to all of the relays,

then the relays forward this message simultaneously to the sink.

- Successive relaying: In the bth time slot (b = 1, 2,..., B), a non-empty subset

of relays is chosen to listen to the source, while the others are sending the new

information to the sink. During each time slot, except the first and the last one, both

the transmitter and receiver links are active.
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2.2.2 Capacity Regions of Some Relay Networks

We extend the concept of channel capacity to general relay networks. Consider a

network with M sources, where source m wants to transmit the message Wm including

Bm bits, m = 1, 2, ...,M , independent of other sources’ messages. Let Dm be the set

of nodes that want to decode Wm. We divide the time into n time slots, and denote

by Xu,i the signal transmitted by node u during time slot i; similarly, Yu,i denotes the

signal received by node u during time slot i. Hence, the rate of source message Wm

is Rm = Bm/n bits per time slot.

Definition 2.2.1 The capacity region of the network described above is the closure

of the set of rate-tuples (R1, R2, ..., RM) for which, for sufficiently large n, there exist

encoders and decoders so that the error probability

Pr

[
M⋃

m=1

⋃

u∈Dm

{

Ŵm(u) 6= Wm

}
]

(2.20)

can be made as close to 0 as desired (but not necessarily exactly 0).

Unfortunately, there are still no explicit formulas for the capacity region of general

relay networks. However, for some specific cases, especially for AWGN channels, there

are several results in capacity analysis of relay networks. This section summarizes

those results.

First, we state the common assumptions for our analysis. We consider real-number

signals only. The transmitted signals are assumed to have limited power

n∑

i=1

E
[
|Xu,i|2

]
/n ≤ Pu, u = 1, 2 (2.21)

where the expectation is over the codewords. The Gaussian noise at the receiver v

is denoted as Zv. It has a variance of Nv. The signal-to-noise ratio (SNR) at receiver

u is defined as

Su =

(
Pu

N

)

|hu|2 (2.22)

For convenience, we introduce the Gaussian capacity function C(x) = 1
2
log2(1+x).
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Gaussian Multiple-access Channel

Consider the Gaussian MAC channel with 2 sources:

Y = h1X1 + h2X2 + Z (2.23)

Theorem 2.2.1 (Capacity region of Gaussian MAC channel) The capacity region of

the Gaussian MAC channel is the set of non-negative pairs (R1, R2) that satisfy the

following bounds [30]

R1 ≤ C(S1) (2.24a)

R2 ≤ C(S2) (2.24b)

R1 +R2 ≤ C(S1 + S2) (2.24c)

Fig. 2.6. Gaussian MAC channel: (a) model (b) capacity region

Gaussian Broadcast Channel

Although this may not be considered as a relay network, it plays an important

role in the capacity analysis of relay networks.

Y1 = h1X + Z1 (2.25a)

Y2 = h2X + Z2 (2.25b)
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Fig. 2.7. Gaussian broadcast channel: (a) model (b) capacity region

Theorem 2.2.2 (Capacity region of Gaussian broadcast channel) The capacity region

of the Gaussian broadcast channel is the set of non-negative pairs (R1, R2) such that

R1 ≤ C(αS1) (2.26a)

R2 ≤ C(
(1− α)S2

αS2 + 1
) (2.26b)

for some α ∈ [0, 1], where C(x) is the Gaussian capacity function.

Gaussian Interference Channel

This model consists of 2 sources, which interfere with each other; and 2 sinks,

each of which tries to decode the message from the respective source.

Y1 = h11X1 + h12X2 + Z1 (2.27a)

Y2 = h21X1 + h22X2 + Z2 (2.27b)

Let’s denote I1 = h2
12P2/N1 and I2 = h2

21P1/N2. A Gaussian interference channel

is said to have strong inteference if |h21| ≥ |h11| and |h12| ≥ |h22|.

Theorem 2.2.3 (Capacity region of Gaussian inteference channel with strong intef-

erence)
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The capacity region of the Gaussian interference channel with strong interference

is the set of non-negative pairs (R1, R2) such that

R1 ≤ C(S1) (2.28a)

R2 ≤ C(S2) (2.28b)

R1 +R2 ≤ min{C(S1 + I1), C(S2 + I2)} (2.28c)

Cut-Set Bound on Capacity

Because finding the capacity regions of general relay networks is a difficult prob-

lem, some researchers have tried to find the capacity bounds. The lower bound can

be found by designing protocols and/or codes to achieve some desired rate-tuples. It’s

more complicated to find the upper bound, because we have to show that this bound

holds for all protocols and codes. There is an upper bound that can be applied for

most large networks, called the cut-set bound [30].

Consider a set N of network nodes (excluding the sources and the sinks). Let U

and V be two disjoint subsets of N. Let (U,V) denote the set of edges connecting from

U to V. Consider a set S ∈ N and denote S as the complement of S in N.

Definition 2.2.2 A cut separating the message Wm from one of its estimates Ŵm(u)

is a pair (S, S) where the Wm message node is connected to a node in S but not in S,

and where the Ŵm(u) message-estimate node is connected to a node in S.

Let XS = {Xu : u ∈ S}, YS = {Yu : u ∈ S}, where s and t denote the source node

and the destination node, respectively.

Theorem 2.2.4 (Cut-set bound for general relay channel)

For a general relay network with a single source and a single destination, the

capacity is upper bounded by

C ≤ Ccutset = sup
p(x1,x2,...,xn)

min
(S,S):s∈S,t∈S

I(XS; YS|XS) (2.29)
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Remarks 1. I(XS; YS|XS) is concave in p(x1, x2, ..., xn). Hence, finding boundary

points of (2.29) is a concave optimization problem.

2. By applying the cut-set bound to the discrete memoryless relay channel in

Fig. 2.2, we get the upper bound for the single-relay channel

C ≤ max
p(x,x1)

min{I(X,X1; Y ), I(X ; Y1, Y |X1)} (2.30)

3. For the Gaussian relay channel, Y1 = h1X + Z1 and Y = h2X + h12X2 + Z2,

where h1, h2, h12 are the channel gain of source-relay, source-destination, and relay-

destination, respectively. The random variables Z1 ∼ N(0, N1) and Z2 ∼ N(0, N2)

represent independent Gaussian noise at relay and destination nodes. By optimizing

the bound subject to the power constraints, we can show that it’s attained by jointly

Gaussian (X,X1) and the upper bound becomes

C ≤ max
0≤ρ≤1

min{C(S2 + S12 + 2ρ
√

S2S12), C((1− ρ2)(S2 + S12))}

=







C

(
(√

S1S12+
√

S2(S2+S1−S12)
)2

S2+S1

)

if S1 ≥ S12;

C(S2 + S1) otherwise

(2.31)

where S1 =
h2
1P

N1
, S2 =

h2
2P

N2
and S12 =

h2
12P1

N1
.

2.3 Cooperative Strategies

In wireless networks, the source node can cooperate with other nodes in its vicinity

to transmit its message to the destination node. This cooperation creates indepen-

dent paths between the source and the destination via the introduction of a relay

channel as illustrated in Fig. 2.8. This method, which is called cooperative communi-

cations ( [4], [6]), provides spatial diversity gains to the system, because the users that

momentarily experience deep fades in their links to their destinations can utilize the

quality channels provided by their partners to achieve the desired Quality of Sevice

(QoS).
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Fig. 2.8. Three-node cooperative network

A cooperative communication scheme is typically modeled with two orthogonal

phases so that there is no interference between the two phases. This is illustrated in

Fig. 2.8, with two users cooperate in transmitting their messages to the destination.

In the first transmission phase, either user 1 or 2 transmits its own message to the

destination while the partner, who acts as a relay, receives the message simultaneously

due to the broadcast nature of wireless networks. In the second phase, the relay

forwards the information that it received in the previous phase to the destination,

where optimal combining is then performed for detection. An important aspect of

this two-phase process is how the relay processes the signal received from the source

node and transfers it to the destination. These different processing schemes result in

different cooperative strategies.

Cooperative strategies can be categorized as fixed relaying or adaptive relaying.

In fixed relaying, the channel resources are allocated between the sources and the

relays in a fixed manner. This is easy to implement, but has the disadvantage of low

bandwidth efficiency. For the case in which the source-destination link is not very

bad, the relays are not really needed, so the resources allocated to relays is wasted.

Some fixed relaying strategies that have been studied in the literature ( [4], [36]) are

Decode-and-Forward (DF), Amplify-and-Forward (AF) and Compress-and-Forward

(CF) [11] methods. Adaptive relaying techniques, such as Selective Relaying, and In-

cremental Relaying [36], try to overcome the above problem by dynamically allocating
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the resources to the relays and switching between the fixed strategies depending on

the channel conditions of the source-relay, source-destination, and relay-destination

links.

In the following section, we consider several types of cooperative strategies and

provide the capacity analysis for each of them.

There are some assumptions to make before starting the analysis. First, we con-

sider the full-duplex communication, i.e, devices can transmit and receive at the

same time in the same frequency band. Second, the channel state information (CSI)

is assumed to be available at the receiver but not at the transmitter. The basic coop-

Fig. 2.9. Basic cooperative model: general geometry and linear geometry

erative model consists of one source, one destination, and one relay (see Fig. 2.9). For

numerical evaluations, the linear geometry is chosen as in Fig. 2.9(b). The distance

between the source and the destination is d13 = 1, and the relay is a distance d12 = d

to the right of the source. Two kinds of channels are considered: (1) no fading, and

(2) fast Rayleigh fading. The following equations describe the channels:

Y2 =
H12

|d|α/2X1 + Z2 (2.32a)

Y3 = H13X1 +
H23

|1− d|α/2X2 + Z3 (2.32b)

For no-fading channels, the parameters Huv are constants. For Rayleigh fading

channels, Huv are independent Gaussian random variables with zero mean and unit

variance (consider at a specific time).
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2.3.1 Amplify-and-Forward

For this strategy, the relay just transmits the amplified version of the signal re-

ceived from the source

X2,i = aY2,i−1 (2.33)

where a is the gain which is chosen to satisfy the power constraint for the relay

node. We have the expression

Y3,i =
H13,i

|d13|α/2
X1,i +

H23,i

|d23|α/2
X2,i + Z3,i

=
H13,i

|d13|α/2
X1,i + a

H12,i−1H23,i

(|d12|α/2).(|d23|α/2)
X1,i−1 + a

H23,i

|d23|α/2
Z2,i−1 + Z3,i

(2.34)

The power constraint becomes the inequality given by

|a|2 ≤ P2

N + P1E
[
|H12|2

]
/|d12|α

(2.35)

The rate of this strategy can be found by performing water-filling optimization

(see [11]). The capacity of the relay channel with the Amplify-and-Forward strategy

is

CAF = log2(1 + SAF ) bits per time slot (2.36)

where SAF = |H12|2P1

N |d12|α .
|H23|2/|d23|α

1+|H23|2/|d23|α .

Fig. 2.12 shows the results for the channels with no fading and for the linear

topology. Here, P1/N = P2/N = 10, Huv = 1 for all (u,v), and α = 2.

The AF strategy may perform better by using the parallel relays. Suppose there

are T relays and there is no channel from source node to destination node. Each relay

has the power constraint P. We use 0 < d < 1, and Huv = 1 for all (u,v) as before. It

has been shown that [35].

log2(T ) + log2

(
P1

N
.

|a|2
1 + |a|2

)

≤ C ≤ 2log2(T ) + log2

(
1

T 2
+

P

N

)

(2.37)

Thus, C grows as klog2(T ) with T, where 1 ≤ k ≤ 2, and AF achieves the scaling

law up to a constant factor [35].
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2.3.2 Compress-and-Forward

For this strategy, the information is transmitted in blocks with the structure

described in Fig. 2.10. In every block b, the source encodes the message wb by the

encoder x1(·) and transmits x1(wb) over the wireless channel. The relay observes y2,b

in block b and quantizes it to ŷ2(sb−1, sb) using its quantization codebook ŷ2. Then,

the quantized bits sb are encoded by the relay to x2(sb) and transmitted in block

b+1 (ŷ2(sb−1, sb) has 2 indices because of correlation with x2(sb−1)). The destination

receives the signal y3,b+1. It decodes the index sb first and then uses that to decode

wb, using the codebook ŷ2(sb−1, sb) and the signal y3,b. In the last block, the source

transmits the default codeword x1(1).

Fig. 2.10. Block structure of Compress-and-Forward strategy

To improve the capacity, a more complicated quantization and destination decod-

ing should be used [3]. Instead of transmitting x2(sb), the relay transmits a hash h(sb)

in block b+1 after encoding it to x2(h(sb)). It also finds a quantization ŷ2(h(sb−1), sb)

in block b. This is called a binning strategy, and h(sb) is called the bin index.

Using Shannon’s rate-distortion theory, we can show that the destination can

decode the message wb with any rate satisfying

R = I(X1; Ŷ2Y3|X2) (2.38)
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subject to

I(Ŷ2; Y2|X2Y3) ≤ I(X2; Y3) (2.39)

where the joint probability distribution of the random variables is factored as

P (x1, x2, y2, y3, ŷ2) = P (x1)P (x2)P (y2, y3|x1, x2)P (ŷ2|x2, y2) (2.40)

For AWGN channels, X1 and X2 are Gaussian distributed. Let’s choose Ŷ2 =

Y2 + Ẑ2 where Ẑ2 = Ẑ2R + jẐ2I and Ẑ2R, Ẑ2I are independent Gaussian random

variables with variance N̂2/2. Then, the resulting rate R is

R = log2

(

1 +
P1|H12|2

dα12(N + N̂2)
+

P1|H13|2
dα12N

)

(2.41)

where N̂2 is chosen to be

N̂2 = N.
P1|H12|2/dα12 + P1|H13|2/dα13 +N

P2|H23|2/dα23
(2.42)

to satisfy (2.39) with equality.

2.3.3 Decode-and-Forward

Decode-and-Forward is a cooperative strategy such that the relay completely de-

codes the original source message wb in block b before encoding the message using

its own codebook and retransmitting it in block b+1. The block structure of this

strategy is shown in 2.11.

The source messages is encoded using block Markov encoding in which the source

codeword generated in block b, x1(wb−1, wb), depends on both the messages in block b

and in the previous block b-1. In block b, the relay knows the message wb−1 and uses

this knowledge to decode wb. Then in block b+1, the relay transmits the encoded

message x2(wb). The destination receives the signal y
3,b

in block b and the signal

y
3,b+1

in block b+1.

For the relay and the destination to be able to decode the message, the rate must

be respectively upper bounded by

R ≤ I(X1; Y2|X2), (2.43)
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Fig. 2.11. Block structure of Decode-and-Forward strategy

and

R ≤ I(X1; Y3|X2) + I(X2; Y3) = I(X1X2; Y3) (2.44)

In summary, the maximum achievable rate is

R = max
PX1X2

(.)
min {I(X1; Y2|X2), I(X1X2; Y3)} (2.45)

Specifically, consider the DF strategy for a full-duplex Gaussian relay channel.

We can construct the codebook x2(.) by superposing the codewords from a Gaus-

sian codebook x′
1(.) to codewords from a Gaussian codebook x2(.) scaled by β, i.e,

x1(wb−1, wb) = x′
1(wb)+βx2(wb−1). The source power is P1, the relay power is P2, the

codewords in x′
1(.) use power P ′

1 ≤ P1, and the scaled codewords use power P1 − P ′
1.

Hence, β =
√

(P1 − P ′
1)/P2. When the destination decodes wb, the codeword x′

1(wb+1)

is treated as interference. The achievable rate is:

R = max
ρ

min

{

log2

(

1 +
P1|H12|2(1− |ρ|2)

dα12N

)

,

log2

(

1 +
P1|H13|2
dα13N

+
P2|H23|2
dα23N

+
2
√
P1P2Re{ρH13H

∗
23}

d
α/2
13 d

α/2
23 N

)} (2.46)

where ρ = E[X1X
∗
2 ]/

√
P1P2 =

√

(1− P ′
1/P1) is the correlation coefficient of X1

and X2.

In [35], the above strategies are compared together for the case in which P1/N =

P2/N = 10, Huv = 1 for all (u,v), and α = 2. Assume that the network topology is the

linear geometry. The achievable rates from different strategies are shown in Fig. 2.12,
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Fig. 2.12. Comparison of cooperative strategies

which is a reproduced version of Fig.4.9 from [35]. It can be observed that CF and

DF always outperform AF. The CF strategy works well when the relay is close to the

destination (d ≈ 1), and it reaches the upper bound curve at d = 1. On the other

hand, the DF strategy works well when the relay is close to the source (d ≈ 0) and

can reach the upper bound curve at d = 0. In general networks, we can have multiple

relays, and the relays that are close to the destination should use the CF strategy,

while the others which are close to the source should choose the DF strategy.

2.4 Convex Optimization

Optimization is an important tool in the development of wireless communication

resource allocation. In particular convex optimization can lead to interesting an-
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alytical results and is used in this thesis. A convex optimization problem can be

formulated as

minimize f0(x)

subject to fi(x) ≤ 0, i = 1, 2, ..., m (2.47)

where the functions fi(x) : R
n → R, i = 0, 1, ..., m are convex, i.e., satisfy

fi(αx+ βy) ≤ αfi(x) + βfi(y), ∀x,y ∈ R
n, ∀α, β ∈ R

+ : α + β = 1.

Here, x is called the optimization variable, f0(x) is called the objective function,

and fi(x) are constraint functions. A vector x∗ is called the optimal solution if

it has the smallest objective values among all vectors that satisfy the constraints;

f ∗ = f0(x
∗) is called the optimal value of the problem.

The well-known method for solving convex optimization problem is the Lagrangian

dual method. The basic idea is to take the constraints into account by adding the

weighted sum of the constraint to the objective function. Let a non-negative dual

variable λi associate with each constraint fi(x) ≤ 0 and let λ denote the vector

[λ1, λ2, ..., λm]
T . The Lagrangian associated with the problem (2.47) is defined as

L(x,λ) = f0(x) +

m∑

i=1

λifi(x) (2.48)

The Lagrange dual function is defined as

g(λ) = inf
x∈Rn

(L(x,λ)) (2.49)

It’s easy to see that g(λ) is a lower bound of the optimal value f ∗:

f0(x) ≥ f0(x) +
∑m

i=1 λifi(x)

≥ inf
x∈Rn

(f0(x) +
∑m

i=1 λifi(x))

= g(λ)

(2.50)

where the first inequality comes from the definition of the dual variable, λi ≥ 0.

The result inequality holds for any feasible x, so f ∗ ≥ max{g(λ)}.
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We define the dual optimization problem as

maximize g(λ)

subject to λi ≥ 0, i = 1, 2, ..., m (2.51)

Obviously, this dual optimization problem is convex, whether the functions fi(x)

are convex or not. Let g∗ be the optimal value of (2.51), then f ∗ − g∗ is always

non-negative and called the duality gap. One of the most important results in convex

optimization is that when fi(x) are convex, and the problem satisfies some technical

conditions, then the duality gap is equal to zero. There are many results that establish

these technical conditions on the problem. One simple condition is called Slater’s

condition: there exists a feasible x such that fi(x) < 0, ∀i = 1, 2, ..., m. This is stated

in the following theorem [37].

Theorem 2.4.1 If the objective and constraint functions fi(x) are convex, and the

problem (2.47) satisfies Slater’s condition, then the strong duality holds, i.e., the

duality gap is zero.

Now consider the convex optimization problems that satisfy the “technical condi-

tions”. Then,

f0(x
∗) = g(λ∗) = inf

x∈Rn
(f0(x) +

∑m
i=1 λ

∗
i fi(x))

≤ f0(x
∗) +

∑m
i=1 λ

∗
i fi(x

∗)

≤ f0(x
∗)

Hence, all the inequalities must become equalities. Hence, we have λ∗
i fi(x

∗) = 0,

∀i = 1, 2, ..., m. This is called the complementary slackness condition. Furthermore,

if the functions fi(x) are differentiable, then the gradient of the Lagrangian L(x,λ∗)

must vanish at x∗ since x∗ minimizes L(x,λ∗) over x. All of these results can be

summarized in the following theorem [37].

Theorem 2.4.2 Let x∗ and λ∗ be any primal and dual optimal points with zero

duality gap. Then the following conditions, called KKT (Karush-Kuhn-Tucker) con-

ditions, must be satisfied. The converse is also true if the primal problem is convex.
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(i) fi(x
∗) ≤ 0, i = 1, 2, ..., m.

(ii) λ∗ ≥ 0, i = 1, 2, ..., m.

(iii) λ∗
i fi(x

∗) = 0, ∀i = 1, 2, ..., m (Complementary slackness condition).

(iv) ∇f0(x
∗) +

∑m
i=1 λ

∗
i∇fi(x

∗) = 0.

Sub-gradient method

The KKT conditions are the key to solve for the optimal solutions of both primal

and dual problems. However, in most practical cases, we do not have closed-form

solutions for the KKT conditions. In these cases, we need some numerical analysis.

For unconstrained optimization to minimize a convex function f(x), we consider

the following gradient algorithm

x(t+ 1) = x(t)− γ∇f(x(t)) (2.52)

Notice that if f is differentiable, then ∇f(x∗) = 0. Hence, if x(t) = x∗, then

x(t+ 1) = x∗.

Theorem 2.4.3 Assume that the function f is convex, continuously differentiable and

∇f is Lipschitz with parameter L, i.e., there exists a constant L such that

||∇f(x)−∇f(y)||2 ≤ L||x− y||2, ∀x,y ∈ R
n (2.53)

Assume further that 0 < γ < 2
L
. Then the sequence of x(t) generated by (2.52)

converges and the limit x0 satisfies ∇f(x0) = 0.

Now consider a constrained optimization problem of minimizing f(x) subject to

x ∈ X , where X is a convex set. There are several algorithms to solve this problem.

The basic idea is to add a “penalty function” to the objective function and convert this

problem to an unconstrained problem. This idea is applied in the penalty-function

method and the interior point method. Here, let’s consider the third method, i.e.,

the projection method.
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Definition 2.4.1 The projection of x onto the convex and closed set X, is the point

z ∈ X that is closest to x,i.e.,

[x]+ = argmin
z∈X

(||z− x||2) (2.54)

Theorem 2.4.4 (Projection Theorem) [38]

(i) [x]+ exists and is unique for each x ∈ R
n.

(ii) z = [x]+ if and only if

(y − z)T (x− z) ≤ 0, ∀y ∈ X (2.55)

(iii) The mapping f(x) = [x]+ is continuous and non-expansive,i.e.,

||[x]+ − [y]+||2 ≤ ||x− y||2, ∀x,y ∈ R
n. (2.56)

By using the Projection Theorem and the results from the unconstrained opti-

mization algorithms, we can derive the gradient projection algorithm and prove its

convergence.

Theorem 2.4.5 If f is convex, and ∇f is Lipschitz with parameter L, then the se-

quence of points

x(t + 1) = [x(t)− γ∇f(x(t))]+ (2.57)

converges if 0 < γ < 2
L
, and the limit x∗ minimizes f(X) over X.

In case that ∇f is not Lipschitz, or if f is even not differentiable, we can replace

the gradient by the sub-gradient. However, the sub-gradient projection algorithm

does not always converge. It has been shown that it will converge if some conditions

on f and on the step size γ are satisfied.

Theorem 2.4.6 Assume that f is convex and its subgradients are bounded. Consider

the subgradient descent algorithm

x(t + 1) = [x(t)− γt∇f(x(t))]+ (2.58)
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where ∇f(x(t)) is a subgradient of f at x(t). Assume further that

∞∑

t=1

γt → ∞,
∞∑

t=1

γ2
t < ∞ (2.59)

then as t → ∞, x(t) converges to x∗ and ∇f(x∗) = 0.

In general, the projection algorithm may be difficult to implement if the constraint

set is in complex form. However, for the dual problem, the constraint set is always

a “quadrant”. Hence, the projection becomes very simple. Furthermore, if x∗ is

the minimizer of the Lagrangian L(x,λ) at λ, then (fi(x
∗) is a subgradient of the

dual function g(λ) at λ. As a result, the gradient projection algorithm for the dual

problem has the following simple form:

λi(t+ 1) = [λi(t) + γfi(x(t))]
+ . (2.60)
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3. JOINT OPTIMIZATION OF POWER ALLOCATION

AND RELAY SELECTION STRATEGY IN WIRELESS

OFDM NETWORKS WITH PERFECT CSI

As stated above, there has been some recent research focused on optimizing the

power allocation at the PHY layer and scheduling at the MAC layer in cooperative

networks, but most of this work includes the consideration of these two problems

separately rather than in combination as one joint optimization problem. The most

difficult obstacle which we have to overcome is the non-convexity of the problem. In

this chapter, a so-called dual optimization method for non-convex problems is applied

to jointly optimize the power allocation and the scheduling of wireless cooperative

OFDM systems. This problem will be mathematically analyzed to find the optimal

solution, and the analysis will be confirmed by some simulation results.

3.1 System Model and Problem Formulation

3.1.1 System Model

We consider the uplink of a wireless network with K mobile stations (MS). The

network of interest uses an OFDMA signal format with N tones. The base station

(BS) transmits a pilot signal with constant power. The MS measure the channel gain

based on this signal and report it to the BS. Perfect power control is assumed. Each

user has a limitation of average transmission power, denoted by pi,max.

We make some assumptions before conducting our analysis. First, we assume that

the channel information can be estimated completely by the receivers and then can

be sent back to the transmitters without error. Indeed, this requires only a small

quantity of additional feedback, that is, the amplitude information on the forward
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Fig. 3.1. System model

links over the systems requiring coherent combining [4], [5]. Secondly, we assume

that the channel conditions are different between users and between each user and

the base station, that is, for each transmission from user i to user j (base station is

considered as user 0), we have a specific channel gain hij , and assume that the channel

distribution of each channel gain is Rayleigh distributed. We further assume that the

number of subcarriers is large enough so that the bandwidth of each subcarrier is

sufficiently small. Hence, we can consider the fading on each sub-channel as flat

fading.

Scheduling

To avoid the interference between users, the data transmission of each user is

scheduled by a mechanism similar to time-division multiplexing, in which each user

transmits data in a specific interval that does not overlap with any interval of other
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users. We denote the time interval for user i over the nth subcarrier by τ
(n)
i and

assume a normalization such that

K∑

i=1

τ
(n)
i ≤ 1 for n = 1, 2, ..., N (3.1)

For a specific subcarrier n, each user is assigned one user from (K-1) remaining

users as the relay node. We denote the relay of user i over nth tone by r
(n)
i .

Each user’s interval then contains two equal-length time slots, so there are 2K

time slots in total. In the first time slot of interval τ
(n)
i , user i transmits its own data

to the BS and to its relay r
(n)
i . In the second time slot, user r

(n)
i , after receiving data

from user i, forwards the data to the BS. The relay-selection process is controlled by

the BS by using the CSI from all users via the feedback channel. Note that if r
(n)
i =

i, user i transmits its data directly to the BS, without using any relay.

Fig. 3.2. Cooperation protocol (during interval τ
(n)
i )
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Power Allocation

The system is modeled by the following equations

y0 =
√
γi0hi0xi +

√

γ
r
(n)
i 0

h
r
(n)
i 0

x
r
(n)
i

+ n0 (3.2a)

y
r
(n)
i

=
√

γ
ir

(n)
i

h
ir

(n)
i

xi + n
r
(n)
i

(3.2b)

where xi is the signal transmitted from node i, yi is the signal received at node

i, ni is the zero-mean AWGN at node i, and γij is the signal-to-noise ratio at node j

corresponding to the signal transmitted from node i, which can be determined by the

formula

γij =
PtGi

dαijN0W
(3.3)

where Pt is the transmission power from node i, dij is the distance between node

i and node j, α is the path-loss index, N0 is the noise power density, W is the total

bandwidth of the network, and Gi is the antenna gain of user i.

As mentioned above, we assume that each user is allocated a specific time interval

on each subchannel to transmit data and denote the transmission power of user i in

the time interval τ
(n)
j by P

(n)
ij (j may, or may not be, equal to i because user i may act

as a relay node during the time interval of user j). Here, the superscript (n) indicates

the nth subchannel of the system. The average transmission power of the ith user over

the unit interval is limited by pi,max. The average transmission power of user i is

P̄i = E





N∑

n=1




1

2
τ
(n)
i P

(n)
ii +

1

2

∑

j:rj=i

τ
(n)
j P

(n)
ij







 (3.4)

where the averaging is over the overall channel distributions.

We also assume that the distance between a user and its relay node is much smaller

than the distance between that user and its BS. If we use the Decode-and-Forward

protocol with code combining for cooperation, then the maximum capacity that user

i can get is determined by the following equation [6]

Ci = E

[

1

2

N∑

n=1

τ
(n)
i log2

∣
∣
∣
∣
1 + ρi0

∣
∣
∣h

(n)
i0

∣
∣
∣

2

P
(n)
ii

∣
∣
∣
∣
+

1

2

N∑

n=1

τ
(n)
i log2

∣
∣
∣
∣
1 + ρri,0

∣
∣
∣h

(n)
ri,0

∣
∣
∣

2

P
(n)
ri,i

∣
∣
∣
∣

]

(3.5)
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where the averaging is over the distribution of channel gains and ρij is a constant

proportional to γij.

3.1.2 Problem Formulation

Our goal is selecting a cooperation strategy (that is, to assign a vector r =
[

r
(n)
1 , r

(n)
2 , ..., r

(n)
K

]T

, where r
(n)
i ∈ {1, 2, ..., K}), and the resource (time and power)

allocation, i.e., to find

P =
[

P
(n)
ij |i, j = 1, 2, ..., K;n = 1, ..., N

]

τ =
[

τ
(n)
i |i = 1, 2, ..., K;n = 1, ..., N

]T

so that the weighted sum rate (WSR) (similar to one defined in [39]) is maximized,

where

WSR =
K∑

i=1

wiCi =

=

K∑

i=1

wiE

[

1

2

N∑

n=1

τ
(n)
i log2
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∣
∣
∣
1 + ρi0

∣
∣
∣h

(n)
i0

∣
∣
∣

2

P
(n)
ii

∣
∣
∣
∣
+

1

2

N∑

n=1

τ
(n)
i log2

∣
∣
∣
∣
1 + ρri,0

∣
∣
∣h

(n)
ri,0

∣
∣
∣

2

P
(n)
ri,i

∣
∣
∣
∣

]

(3.7)

(wi is some weight indicating the importance of user i), subject to the following

constraints:

(i) Power constraint: the average consumed power of user i must be less than pi,max.

E





N∑

n=1




1

2
τ
(n)
i P

(n)
ii +

1

2

∑

j:rj=i

τ
(n)
j P

(n)
ij







 ≤ pi,max i = 1,2,...,K (3.8)

(ii) Time constraint: {τ (n)i }, i = 1, 2, ..., K;n = 1, 2...N must satisfy (3.1).

(iii) Rate constraint: the average data rate for user i must be greater than a certain

rate Ri to guarantee the quality of service for user i, and hence, guarantee the fairness

of the network.

E

[
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2

N∑
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(n)
i log2
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≥ Ri

(3.9)
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Now the problem can be stated as follows.

Problem 1:

maximize
Pij ,τi,j∈{0,ri},ri∈{1,...,K}

WSR =

K∑

i=1

wiCi

=
K∑

i=1

wiE

[

1

2

N∑
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τ
(n)
i log2
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∣
∣
∣
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∣
∣
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(n)
i0

∣
∣
∣

2

P
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ii
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∣
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∣

]

+
K∑

i=1

wiE

[

1
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τilog2
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]

(3.10)

subject to (3.1), (3.8), (3.9).

3.2 Solution and Algorithm

3.2.1 Scenario 1: two users cooperate with each other

To make our analysis easier to understand, we consider the simplest case with 2

users first, and then generalize the results to the case of K users.

Problem 1a:

maximize
P

(n)
ij ,τ

(n)
i

i,j=1,2
n=1,2...N

WSR =

2∑

i=1

wiCi =

2∑

i=1

wiE

[

1

2

N∑

n=1

τ (n)
i

2∑

j=1

log2

∣
∣
∣
∣
1 + ρj0

∣
∣
∣h

(n)
j0

∣
∣
∣

2

P (n)
ji

∣
∣
∣
∣

]

(3.11)

subject to (3.1), (3.8), (3.9) with K = 2.

Case 1: Known CDI (Channel Distribution Information)

Here, we consider the case in which both the BS and the MS know the channel

distribution information (CDI). If the goal is only to optimize the power allocation, the

problem is similar to the traditional water-filling problem, and it’s convex. However,

when combining the power allocation with scheduling, the achievable rate region

ℜ(P, τ ) is not convex.

Fortunately, it has been shown in [1] that if a non-convex problem satisfies the

“time-sharing property,” then the duality gap between the primal problem and the
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Lagrangian dual problem is zero. Furthermore, it’s also emphasized in [1] that in

OFDM systems, the time-sharing property is satisfied regardless of the convexity as

long as N is sufficiently large and the per-tone objective functions fn, ..., fn+k and the

per-tone constraint functions hn, ..., hn+k are sufficiently similar for small values of k.

This is the case in almost all OFDM systems because sub-channel widths in OFDM

systems are chosen so that the channel response is approximately flat within each

sub-channel.

Hence, we can use the Lagrangian dual method [37] to solve the original problem.

This problem has a special structure so that we can also use the Lagrangian dual

decomposition as is shown below.

We let λi and νi (i = 1, 2) be the Lagrange multipliers associated with the power

constraint and the rate constraint, respectively.

Denote:

τ =
[

τ
(n)
i |i = 1, 2, n = 1, ..., N

]T

P =
[

P
(n)
ij |i, j = 1, 2, n = 1, ..., N

]

ν = [ν1 ν2]
T

λ = [λ1 λ2]
T

Then, the Lagrangian dual function can be written as

g(λ,ν) = min
τ ,P

{L(τ ,P,λ,ν) |(τ ,P) ∈ S } (3.12)

where

S =
{

(τ ,P)
∣
∣
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(n)
i ≥ 0, P
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}

(3.13)

where the set r
(n)
i ∈ {1, 2} for i = 1,2. The function L(τ ,P,λ,ν) is given by
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2∑

i=1

wiE

[

1

2

N∑

n=1

(

τ
(n)
i

2∑

j=1

log2

∣
∣
∣
∣
1 + ρj0

∣
∣
∣h

(n)
j0

∣
∣
∣

2

P
(n)
ji

∣
∣
∣
∣

)]

+

+
2∑

i=1

λi

[

E

[

1

2

N∑

n=1

2∑

j=1

τ
(n)
j P

(n)
ij

]

− pi,max

]

+

+
2∑

i=1

νi

{

Ri − E

[

1

2

N∑

n=1

(

τ
(n)
i

2∑

j=1

log2

∣
∣
∣
∣
1 + ρj0

∣
∣
∣h

(n)
j0

∣
∣
∣

2

P
(n)
ji

∣
∣
∣
∣

)]}

,
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or alternatively,

L(τ ,P,λ,ν) = −
2∑

i=1

2∑

j=1

1

2

N∑

n=1

E
[

τ
(n)
i f

(

P
(n)
ji

)]

+

2∑

i=1

(νiRi − λipi,max) (3.14)

where

f(P
(n)
ji ) = (wi + vi) log2

∣
∣
∣
∣
1 + ρj0

∣
∣
∣h

(n)
j0

∣
∣
∣

2

P
(n)
ji

∣
∣
∣
∣
− λjP

(n)
ji (3.15)

The Lagrangian dual problem (D) is

maximize g(λ,ν)

subject to λ ≥ 0,ν ≥ 0

where x ≥ 0 means that each element of x is greater than or equal to zero.

If the “time-sharing” property is satisfied, then there is no duality gap between the

primal and the dual problems. Hence, the solution to the Lagrangian dual problem

(D) in (3.16) provides the solution to Problem 1a. Now, we can decompose this

problem into three sub-problems.

g(λ,ν) = min
τ
(n)
1 +τ

(n)
2 ≤1,τ

(n)
i ≥0,i=1,2







−
2∑

i=1

N∑

n=1

2∑

j=1

1

2
max
P

(n)
ij ≥0

E
[

τ
(n)
i f

(

P
(n)
ji

)]

︸ ︷︷ ︸

PowerAllocation Subproblem







︸ ︷︷ ︸

Scheduling Subproblem

+

+

2∑

i=1

(νiRi − λipi,max)

(3.16)

We first fix τ and solve the inner sub-problem for P, and then solve the outer sub-

problem for τ .

Inner sub-problem

Theorem 3.2.1 The optimal solution of the power allocation sub-problem defined in

(3.16) is

P
(n)∗
ji =

(wi + νi)

λj ln 2
−
(

ρj0

∣
∣
∣h(n)

j0

∣
∣
∣

2
)−1

(i,j = 1,2) (3.17)
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Proof. The inner sub-problem can be solved by using the KKT optimality condi-

tions [37]. To see this, first construct a new Lagrangian function by associating the

constraint P
(n)
ij ≥ 0 with a Lagrange multiplier υij. Write down the KKT conditions

for the primal-dual optimal solution P ∗, υ∗ :

i/ P
(n)∗
ij ≥ 0 (i = 1,2, j = 0,1,2,j 6= i) (3.18)

ii/ υ∗ ≥ 0 (3.19)

iii/ υ∗
ijP

(n)∗
ij = 0, i, j = 1, 2 (3.20)

iv/ P∗ minimizes the Lagrangian function L(P,υ∗) (3.21)

The condition (3.21) means that the derivatives of L(P,υ∗) with respect to P
(n)
ij must

be equal to zero. From (3.20) and by the complementary slackness condition [37], we

have υ∗
ij = 0 because P

(n)
ij = 0 is not optimal. Now solving equations with derivatives

of the above Lagrangian function with respect to P
(n)
ij set to zero, we have

∂

∂P
(n)
ji

[

(wi + vi) log2

∣
∣
∣
∣
1 + ρj0

∣
∣
∣h

(n)
j0

∣
∣
∣

2

P
(n)
ji

∣
∣
∣
∣
− λjP

(n)
ji )

]

= 0

⇒ (wi + vi)

(∣
∣
∣
∣
1 + ρj0

∣
∣
∣h

(n)
j0

∣
∣
∣

2

P
(n)
j0

∣
∣
∣
∣
ln 2

)−1

ρj0

∣
∣
∣h

(n)
j0

∣
∣
∣

2

− λj = 0

⇒ P
(n)∗
ji =

(wi + vi)

λj ln 2
−
(

ρj0

∣
∣
∣h(n)

j0

∣
∣
∣

2
)−1

(3.22)

�

Outer sub-problem

After solving the inner sub-problem, the scheduling becomes simple.

Theorem 3.2.2 The optimal solution to the Scheduling Sub-problem which is defined

in (3.16) is

τ
(n)∗
i =







1, if i = argmax
k

(
2∑

j=1

E
[

f
(

P
(n)∗
jk

)]
)

0, otherwise

for i = 1, 2 (3.23)



43

Proof. We define

A(n) = E
[

f(P
(n)∗
11 ) + f(P

(n)∗
21 )

]

B(n) = E
[

f(P
(n)∗
12 ) + f(P

(n)∗
22 )

]

The outer sub-problem becomes a linear optimization problem.

maximize
N∑

n=1

(A(n)τ
(n)
1 +B(n)τ

(n)
2 )

subject to

N∑

n=1

τ
(n)
1 + τ

(n)
2 ≤ 1, τ

(n)
1 , τ

(n)
2 ≥ 0

We can write
N∑

n=1

(A(n)τ
(n)
1 +B(n)τ

(n)
2 ) =

N∑

n=1

B(n)
(

τ
(n)
1 + τ

(n)
2

)

+
(
A(n) −B(n)

)
τ
(n)
1 ≤

≤
N∑

n=1

A(n) +
N∑

n=1

(
A(n) − B(n)

)
τ
(n)
1

(3.24)

If A(n) ≥ B(n), then the nth term of (3.24) is maximized when τ
(n)
1 = 1. Otherwise,

it’s maximized when τ
(n)
1 = 0. Hence, τ

(n)∗
1 = 1 if A(n) ≥ B(n), and τ

(n)∗
1 = 0,

otherwise. �

Now, it remains to determine the optimal solutions λ∗,ν∗. When this is accom-

plished, (λ,ν) can be replaced by (λ∗,ν∗) in (3.17) and (3.23). This then yields the

optimal solution for the original problem described by (3.11).

From (3.23), we see that the dual objective function is not differentiable, so we

have to use a subgradient projection method to compute the optimal dual solution.

The subgradient projection method is an algorithm to compute the sequence of points

{x(t)}∞t=0, which converges to the optimal solution, according to the following formula

x(t + 1) = [x(t)− γ(t)gf(x(t))]
+ (3.25)

where gf(x) is the subgradient of f evaluated at x, {γ(t)}∞t=0 is a step-size sequence,

and [·]+ denotes the projection onto the feasible set. In [38], it’s shown that if the

sequence {γ(t)}∞t=0 satisfies the following conditions

γ(t) → ∞,

∞∑

t=0

γ(t) → ∞, and

∞∑

t=0

[γ(t)]2 < ∞ (3.26)
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then the subgradient algorithm (3.25) converges with probability 1 to the optimal

solution of the convex optimization problem with objective function f.

Back to our dual problem, the subgradients of the dual function g(λ,ν) with

respect to λi and νi are, respectively, determined by

gf(λi(t)) = E

[

1

2

N∑

n=1

2∑

j=1

τ
(n)∗
j (t)P

(n)∗
ij (t)

]

− pi,max (3.27)

and

gf (νi(t)) = Ri −E

[

1

2

N∑

n=1

(

τ
(n)∗
i (t)

2∑

j=1

log2

∣
∣
∣
∣
1 + ρj0

∣
∣
∣h

(n)
j0

∣
∣
∣

2

P
(n)∗
ji (t)

∣
∣
∣
∣

)]

(3.28)

In the equations (3.27) and (3.28), τ
(n)∗
i (t) and P

(n)∗
ji (t) are computed by (3.23) and

(3.17), respectively, with (λ,ν) is replaced by (λ(t),ν(t)).

Now, an algorithm can be designed for joint optimization of power allocation and

scheduling when the CDI is known.

Algorithm 1

1. Initial condition: Choose λ(0) and ν(0), then compute P
(n)∗
ij (0) by (3.17) and

τ
(n)∗
i (0) by (3.23) for i,j =1,2, n=1,2,...,N.

2. Iteration: At step t + 1, choose step size γ(t) = γ/t, where γ is some positive

constant. Compute gf (λi(t)) and gf (νi(t)) for i = 1,2 using (3.27) and (3.28).

Update λi(t+ 1) and νi(t+ 1), i = 1, 2 using the following formulas:

λi(t + 1) = [λi(t) + γ(t)gf(λi(t))]
+ = max {λi(t) + γ(t)gf(λi(t)), 0} (3.29)

νi(t+ 1) = [vi(t) + γ(t)gf(νi(t))]
+ = max {vi(t) + γ(t)gf(νi(t)), 0} (3.30)

3. Termination: Let ε be the maximum error allowed, then the algorithm stops when-

ever ‖λ(t + 1)− λ(t)‖ < ε and ‖ν(t+ 1)− ν(t)‖ < ε for i = 1, 2. Otherwise,

increase t by 1 and repeat step 2.
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Case 2: Unknown CDI but perfect CSI (Channel State Information) feed-

back

In this section, we assume that the channel distribution is unknown and the mobile

users must estimate the channel state information based on the sample symbols sent

from the BS. This estimated information is then fed back to the BS. We assume that

the feedback channel is error free.

Without knowledge of the full distribution of the channel gain matrices, we can

no longer use (3.27) and (3.28), since we cannot average over the total distribution of

channel gains. Instead, we use an adaptive stochastic approximation algorithm [40],

that is, we use the current values of P
(n)∗
ij and τ

(n)∗
i to compute the subgradients,

rather than using the expectation of all these values:

ĝf(λ̂i(t)) =

[
N∑

n=1

2∑

j=1

1

2
τ
(n)∗
j (t)P

(n)∗
ij (t)

]

− pi,max (3.31)

and

ĝf (ν̂i(t)) = Ri −
1

2

N∑

n=1

(

τ
(n)∗
i (t)

2∑

j=1

log2

∣
∣
∣
∣
1 + ρj0

∣
∣
∣h

(n)
j0

∣
∣
∣

2

P
(n)∗
ji (t)

∣
∣
∣
∣

)

(3.32)

Now, we can state the Algorithm 2:

Algorithm 2

1. Initial condition: Choose λ̂(0) and ν̂(0), then compute P
(n)∗
ij (0) by (3.17) and

τ
(n)∗
i (0) for i, j = 1, 2, n = 1, 2, ..., N by (3.23).

2. Iteration: At step t + 1, choose step size γ(t) = γ/t, where γ is some positive

constant. Compute gf

(

λ̂i(t)
)

and gf (ν̂i(t)) using (3.31), (3.32). Update λ̂i(t + 1)

and ν̂i(t), i = 1, 2 using

λ̂i(t+ 1) =
[

λ̂i(t)− γ(t)gf(λ̂i(t))
]+

= min
{

λ̂i(t)− γ(t)gf(λ̂i(t)), 0
}

(3.33)

ν̂i(t+ 1) = [ν̂i(t)− γ(t)gf(ν̂i(t))]
+ = min {ν̂i(t)− γ(t)gf(ν̂i(t)), 0} (3.34)

3. Termination: Let ε be the maximum error allowed, then the algorithm stops when-

ever
∥
∥
∥λ̂(t + 1)− λ̂(t)

∥
∥
∥ < ε and ‖ν̂(t + 1)− ν̂(t)‖ < ε for i = 1, 2. Otherwise,

increase j by 1 and repeat step 2.
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3.2.2 Scenario 2: K users, each user has exactly one relay

The preceding development can be easily generalized for the case of K mobile

users in the system, as long as each user has one and only one specific relay. In other

words, if we have a fixed relay assignment, then we can apply the algorithms 1 and 2

to optimize the WSR of the system. The new question in this case is, “Which relay

assignment strategies give the largest WSR?”. This general problem involves a search

over all possible relay assignment strategies to find the best strategy, which results in

a mixed integer programming problem [38].

For simplicity, we consider the case in which the channel distribution information

is known. Roughly speaking, if the CDI is unknown, but the CSI can be estimated

and feedback perfectly, the algorithm also converges in probability to the optimal

solution, as shown in the convergence analysis later.

Utilizing the work of W. Yu and R. Liu [1] again, we can equivalently solve the

dual problem when the number of OFDM tones goes to infinity. The Lagrangian

function in this case is

L(τ ,P,λ,ν) = −
K∑

i=1

wiE




1

2

N∑

n=1



τ
(n)
i

∑

j∈{1,ri}
log2

∣
∣
∣
∣
1 + ρj0

∣
∣
∣h

(n)
j0

∣
∣
∣

2

P
(n)
ji

∣
∣
∣
∣







+

+
K∑

i=1

λi






E





N∑

n=1




1

2
τ
(n)
i P

(n)
ii +

1

2

∑

j:rj=i

τ
(n)
j P

(n)
ij







− pi,max






+

+
K∑

i=1

νi






Ri − E




1

2

N∑

n=1



τ
(n)
i

∑

j∈{1,ri}
log2

∣
∣
∣
∣
1 + ρj0

∣
∣
∣h

(n)
j0

∣
∣
∣

2

P
(n)
ji

∣
∣
∣
∣















g(λ,ν) = min
τ ,P,r

{L(τ ,P,λ,ν) |(τ ,P, r) ∈ S }

where

S =







(τ ,P, r)

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

M∑

i=1

τ
(n)
i ≤ 1

τ
(n)
i ≥ 0

P
(n)
ij ≥ 0

ri ∈ {1, 2..., K}

, ∀i, j = 1, 2, ..., K;n = 1, ..., N
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The dual problem is to maximize g(λ,ν) subject to λ ≥ 0,ν ≥ 0. We’re going to find

the minimum point of L(τ ,P,λ,ν) over the feasible set S. However, it’s equivalent

to finding N optimal solutions of N per-tone problems.

For the relay selection strategy, we notice that each user can be a relay for more

than one user, but these operations must be in different tones. This means, in the

per-tone maximization problem, the set Si = {j ∈ {1, 2, ..., K} |rj = i} has at most

one element. It implies that the set
{

r
(n)
1 , r

(n)
2 , ..., r

(n)
K

}

is a permutation of the set

{1, 2, ..., K}. Hence, the Lagrangian function can be rewritten in the following form

as

L(τ ,P,λ,ν) = −
N∑

n=1

K∑

i=1

1

2
E
[

τ
(n)
i fi(P

(n)
ii , P

(n)
rii

)
]

+
K∑

i=1

(νiRi − λipi,max) (3.35)

where

fi(P
(n)
ii , P

(n)
rii

) = (wi + νi)log2

(∣
∣
∣
∣
1 + ρi0

∣
∣
∣h

(n)
i0

∣
∣
∣

2

P
(n)
ii

∣
∣
∣
∣
.

∣
∣
∣
∣
1 + ρri0

∣
∣
∣h

(n)
ri0

∣
∣
∣

2

P
(n)
rii

∣
∣
∣
∣

)

− λiP
(n)
ii − λriP

(n)
rii

(3.36)

Example: To illustrate the above idea, consider the case in which K = 4 and the relay

selection strategy is (r1, r2, r3, r4) = (4, 2, 1, 3). Consider a particular tone n (we omit

the superscript n for simplicity). The Lagrangian function term corresponding to the

nth tone (excluding the constant term (
K∑

i=1

(νiRi − λipi,max)) is given by

1

2

[
τ1(w1 + ν1)log2

(∣
∣1 + ρ10|h10|2P11

∣
∣ .
∣
∣1 + ρ40|h40|2P41

∣
∣
)
− λ1(τ1P11 + τ3P13)

]

+
1

2

[
τ2(w2 + ν2)log2

(∣
∣1 + ρ20|h20|2P22

∣
∣ .
∣
∣1 + ρ20|h22|2P22

∣
∣
)
− λ2(τ2P22 + τ2P22)

]

+
1

2

[
τ3(w3 + ν3)log2

(∣
∣1 + ρ30|h30|2P33

∣
∣ .
∣
∣1 + ρ10|h10|2P13

∣
∣
)
− λ3(τ3P33 + τ4P34)

]

+
1

2

[
τ4(w4 + ν4)log2

(∣
∣1 + ρ40|h40|2P44

∣
∣ .
∣
∣1 + ρ30|h30|2P34

∣
∣
)
− λ4(τ4P44 + τ1P41)

]

=
1

2

4∑

i=1

τifi(Pii, Prii)
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Hence, we can decompose the dual function g(λ,ν) into two sub-problems in a similar

way to Problem 1a to obtain

g(λ,ν) =−




















N∑

n=1

max
r(n)







max
τ
(n)
i ≥0

K
∑

i=1
τ
(n)
i ≤1







K∑

i=1

1

2
τ
(n)
i max

P
(n)
ii ,P

(n)
rii

≥0

E
[

fi(P
(n)
ii , P

(n)
rii

)
]

︸ ︷︷ ︸

Power Allocation Subproblem













︸ ︷︷ ︸

Scheduling Subproblem
︸ ︷︷ ︸

Relay Selection Strategy Subproblem




















+

K∑

i=1

(νiRi − λipi,max)

(3.37)

The optimal solutions for the power allocation sub-problem and the scheduling sub-

problem can be derived by the same method as Problem 1a. The results are stated

in the following theorem.

Theorem 3.2.3 The optimal solutions to the Power Allocation Sub-problem and the

Scheduling Sub-problem which are defined in (3.37) are

P
(n)∗
ji =

(wi + νi)

λj ln 2
−
(

ρj0

∣
∣
∣h(n)

j0

∣
∣
∣

2
)−1

(i = 1, 2, j = 1, ri) (3.38)

and

τ
(n)∗
i =







1, if i = argmax
k

(

E
[

fk

(

P
(n)∗
kk , P

(n)∗
rkk

)])

0, otherwise

for i = 1, 2, ..., K (3.39)

respectively.

Proof. The power allocation sub-problem can be solved by using the KKT con-

ditions. Here, the proof is similar to the one that is used for Theorem 3.2.1.

For the scheduling sub-problem, we define

A
(n)
k = E

[

fk(P
(n)∗
kk , P

(n)∗
rkk

)
]
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The scheduling subproblem becomes a linear optimization problem.

maximize

N∑

n=1

K∑

k=1

A
(n)
k τ

(n)
k

subject to
K∑

k=1

τ
(n)
k ≤ 1, ∀n and τ

(n)
k ≥ 0, ∀n, ∀k

Let k∗ = argmax
k

(

E
[

fk

(

P
(n)∗
kk , P

(n)∗
rkk

)])

then we can write

N∑

n=1

K∑

k=1

A
(n)
k τ

(n)
k ≤

N∑

n=1

A
(n)
k∗

K∑

k=1

τ
(n)
k ≤

N∑

n=1

A
(n)
k∗ (3.40)

The first inequality in (3.40) becomes an equality if and only if A
(n)
k = A

(n)
k∗ or

τ
(n)
k = 0. That means τ

(n)
k = 0, ∀k 6= k∗. In addition, the second inequality in

(3.40) becomes an equality if and only if
K∑

k=1

τ
(n)
k = 1. Hence τ

(n)∗
i = 1 if i = k∗ and

τ
(n)∗
i = 0 otherwise. �

Finally, the best relay selection strategy is chosen by an exhaustive search over all

possible values of
{

r
(n)
1 , r

(n)
2 , ..., r

(n)
K

}

(K! possibilities).

The original problem can be solved after the optimal dual solution (λ,ν) is de-

termined. The solution can be obtained by the subgradient projection method. The

subgradient of the dual function g(λ,ν) with respect to λi and νi at the t
th iteration

are respectively determined by the formulas given by

gf(λi(t)) = E

[
N∑

n=1

(
1

2
τ
(n)
i P

(n)
ii +

1

2
τ
(n)
j P

(n)
ij

)]

− pi,max, where rj = i (3.41)

and

gf (νi(t)) = Ri −E




1

2

N∑

n=1



τ
(n)
i

∑

j∈{i,ri}
log2

∣
∣
∣
∣
1 + ρj0

∣
∣
∣h

(n)
j0

∣
∣
∣

2

P
(n)
ji

∣
∣
∣
∣







 (3.42)

In the equations (3.41) and (3.42), τ
(n)∗
i (t) and P

(n)∗
ji (t) are computed by (3.39) and

(3.38), respectively, with (λ,ν) is replaced by (λ(t),ν(t)).

Now, we summarize the algorithm for joint optimization of power allocation and

cooperation strategy in the condition of known CDI.
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Algorithm 3

1. Choose an initial relay selection strategy for each tone of the OFDMA system.

2. Solve each per-tone optimization problem:

a) Initial condition: Choose λ(0) and ν(0), then compute P
(n)∗
ij (0) by (3.38) and

τ
(n)∗
i (0) by (3.39) for i,j =1,2,...,K; n=1,2,...,N.

b) Iteration: At step t + 1, choose step size γ(t) = γ/t , where γ is some positive

constant. Compute gf (λi(t)) and gf (νi(t)) for i = 1, 2, ..., K using (3.41) and

(3.42). Update λi(t + 1) and νi(t+ 1) , i = 1, 2, ..., K using the following formulas

λi(t + 1) = [λi(t) + γ(t)gf(λi(t))]
+ = max {λi(t) + γ(t)gf(λi(t)), 0} (3.43)

vi(t+ 1) = [vi(t) + γ(t)gf(vi(t))]
+ = max {vi(t) + γ(t)gf(vi(t)), 0} (3.44)

c) Termination: Let ε be the maximum error allowed. Stop the algorithm whenever

‖λ(t+ 1)− λ(t)‖ < ε and ‖ν(t+ 1)− ν(t)‖ < ε, i = 1, 2, ..., K. Otherwise, increase

t by 1 and repeat Step 2b.

d) Store the optimal solution, and then change to another relay selection strategy.

Repeat steps 2a through 2c. If the optimal value is better than previous value, store

the new optimal solution. Otherwise, discard it. Repeat Step 2d until there is no

remaining strategy to consider.

3. Repeat Step 2 for other tones until all tones have been processed.

The flow chart of Algorithm 3 is illustrated in Fig. 3.3.

If the CDI is unknown, but the CSI is fed back without error, we can modify the

Algorithm 3 to a more practical Algorithm 4.

Algorithm 4

Same as Algorithm 3, except at Step 2b:

2. b) Iteration: At step t + 1, choose step size γ(t) = γ/t , where γ is some positive

constant. Compute ĝf

(

λ̂i(t)
)

and ĝf (ν̂i(t)) for i = 1, 2, ..., K using (3.41) and

(3.42). Update λ̂i(t + 1) and ν̂i(t+ 1) , i = 1, 2, ..., K using the following formulas

λ̂i(t+ 1) =
[

λ̂i(t) + γ(t)gf(λ̂i(t))
]+

= min
{

λ̂i(t) + γ(t)gf(λ̂i(t)), 0
}

ν̂i(t+ 1) = [ν̂i(t) + γ(t)gf(ν̂i(t))]
+ = min {ν̂i(t) + γ(t)gf (ν̂i(t)), 0}

(3.45)
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Fig. 3.3. Flow chart of Algorithm 3

3.3 Convergence Analysis

In this section, we prove the convergence of Algorithm 3 and 4 by mathemat-

ical analysis. The proof follows similar ones in [40]. Later on, we also illustrate

the convergence of these 2 algorithms by simulation results. It’s sufficient to show

the convergence of Algorithm 3, because when we achieve that, the convergence of

Algorithm 4 will follow immediately.

Theorem 3.3.1 If the step size γ(t) satisfies the conditions (3.26)

γ(t) → ∞,

∞∑

t=0

γ(t) → ∞, and

∞∑

t=0

[γ(t)]2 < ∞
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then Algorithm 3 converges to the optimal solution (λ,ν) with probability 1.

Proof. Define Bε =

{(

λ̂, ν̂
)

:
∥
∥
∥λ̂− λ∗

∥
∥
∥

2

+ ‖ν̂ − ν∗‖2 < ε

}

. We need to show

that for any ε > 0,
(

λ̂(t), ν̂(t)
)

∈ Bε with probability 1 for t large enough. The proof

is divided into 2 steps. The first step shows that for any ε > 0,
(

λ̂(t), ν̂(t)
)

∈ Bε

for infinitely large j with probability 1. Then, using this result, we show that for any

ε > 0, there exists t0 such that
(

λ̂(t), ν̂(t)
)

∈ Bε for any t > t0 with probability 1 in

Step 2.

Step 1: We can rewrite the recursive equations for λ̂i and ν̂i as

λ̂i(t + 1) = λ̂i(t)− γ(t)[ĝf(λ̂i(t)) + δλi
(t)] + ζλi

(t) (3.46)

ν̂i(t+ 1) = ν̂i(t)− γ(t)[ĝf(ν̂i(t)) + δνi(t)] + ζνi(t) (3.47)

where

δλi
(t) = ĝf (λ̂i(t))−E[ĝf (λ̂i(t))] (3.48)

δνi(j) = ĝf(ν̂i(t))− E[ĝf(ν̂i(t))] (3.49)

and ζλi
(t) and ζνi(t) are some correction terms. Then, we have

∥
∥
∥λ̂(t+ 1)− λ∗

∥
∥
∥

2

≤
∥
∥
∥λ̂(t)− λ∗

∥
∥
∥

2

− 2γ(t)
(

λ̂(t)− λ∗
)T [

ĝf(λ̂(t)) + δλ(t)
]

+ [γ(t)]2
∥
∥
∥ĝf(λ̂(t)) + δλ(t)

∥
∥
∥

2
(3.50)

where δλ(t) = [δλ1 , δλ2 , ..., δλK
]T .

It can be seen that
∥
∥
∥λ̂(t)− λ∗

∥
∥
∥,
∥
∥
∥ĝf(λ̂(t))

∥
∥
∥, and ‖δλ(t)‖ are upper bounded, and

E[δλ(t)] = 0. Hence, (3.50) implies that

E

[∥
∥
∥λ̂(t+ 1)− λ∗

∥
∥
∥

2
]

≤
∥
∥
∥λ̂(t)− λ∗

∥
∥
∥

2

− 2γ(t)
(

λ̂(t)− λ∗
)T

ĝf(λ̂(t)) + o
(
[γ(t)]2

)

(3.51)

Similarly,

E
[
‖ν̂(t+ 1)− ν∗‖2

]
≤ ‖ν̂(t)− ν∗‖2−2γ(t)(ν̂(t)− ν∗)T ĝf(ν̂(t))+o

(
[γ(t)]2

)
(3.52)
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Adding (3.51) and (3.52) together, we obtain

E

[∥
∥
∥λ̂(t + 1)− λ∗

∥
∥
∥

2
]

+ E
[
‖ν̂(t + 1)− ν∗‖2

]
≤
∥
∥
∥λ̂(t)− λ∗

∥
∥
∥

2

+ ‖ν̂(t)− ν∗‖2

− 2γ(t)

[(

λ̂(t)− λ∗
)T

ĝf(λ̂(t)) + (ν̂(t)− ν∗)T ĝf(ν̂(t))

]

+ o
(
[γ(t)]2

)

(3.53)

Now, we finish Step 1 by using the following theorem, which was shown in [41].

Theorem 3.3.2 (Supermartingale Convergence Theorem)

Let {Xn} be an R
r-valued stochastic process, and V (·) be a real-valued non-negative

function in R
r. Suppose that {Yn} is a sequence of random variables satisfying that

En |Yn| < ∞ with probability 1. Let {Fn} be a sequence of σ-algebra generated by

{Xi, Yi, i ≤ n}. Suppose that there exists a compact set B ∈ R
r such that for all n,

En [V (Xn)]− V (Xn) ≤ −snδ + Yn for Xn /∈ B, where sn satisfies (3.26) and δ is a

positive constant. Then Xn ∈ B for infinitely large n with probability 1.

Applying this theorem with Xt =
(

λ̂(t), ν̂(t)
)

, Yt = o
(
[γ(t)]2

)
, and V

(

λ̂, ν̂
)

=
∥
∥
∥λ̂− λ∗

∥
∥
∥

2

+ ‖ν̂ − ν∗‖2, we obtain the expected result of Step 1.

Step 2: Pick any ε > 0. We let ε0 = ε/3 and use the result of Step 1 for ε0. Assume

that t1 is large enough and

(

λ̂(t + 1), ν̂(t + 1)
)

/∈ Bε0.

We first show that
(

λ̂(t+ 1), ν̂(t+ 1)
)

∈ B2ε0

with probability 1. This holds by using Chebyshev’s inequality

Pr
{

γ(t1) ‖δλ(t1)‖ >
ε0
2

}

≤ 4[γ(t1)]
2E
[
‖δλ(t1)‖2

]

ε20
(3.54)

Pr
{

γ(t1) ‖δν(t1)‖ >
ε0
2

}

≤ 4[γ(t1)]
2E
[
‖δν(t1)‖2

]

ε20
(3.55)

Adding the results together, we obtain

Pr {γ(t1) [‖δλ(t1)‖+ ‖δν(t1)‖] > ε0} ≤ 4[γ(t1)]
2E
[
‖δλ(t1)‖2 + ‖δν(t1)‖2

]

ε20
(3.56)
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Because
(

λ̂(t), ν̂(t)
)

∈ Bε0 with probability 1, we conclude
(

λ̂(t+ 1), ν̂(t+ 1)
)

∈
B2ε0 with probability 1. Now, using the martingale inequality ( [38], Eq. (1.4)), we

have

Pr

{

sup

∣
∣
∣
∣
∣

r∑

t=t1+1

γ(t) ‖δλ(t)‖
∣
∣
∣
∣
∣
≥ ε0

2

}

≤ 4 lim suptE [‖δλ(t)‖ 2]

ε20

∞∑

t=t1+1

[γ(t)]2

for r ≥ t1 + 1. Then,

lim
r→∞

Pr

{

sup

∣
∣
∣
∣
∣

r∑

t=t1+1

γ(t) ‖δλ(t)‖
∣
∣
∣
∣
∣
≥ ε0

2

}

= 0, ∀ε0 > 0 (3.57)

and similarly,

lim
r→∞

Pr

{

sup

∣
∣
∣
∣
∣

r∑

t=t1+1

γ(t) ‖δν(t)‖
∣
∣
∣
∣
∣
≥ ε0

2

}

= 0, ∀ε0 > 0 (3.58)

From (3.57), (3.58), we get

lim
r→∞

Pr

{

sup

∣
∣
∣
∣
∣

r∑

t=t1+1

γ(t) [‖δλ(t)‖+ ‖δν(t)‖]
∣
∣
∣
∣
∣
≥ ε0

}

= 0, ∀ε0 > 0 (3.59)

Therefore, all
(

λ̂(t), ν̂(t)
)

, where t > t1, are in B3ε0 = Bε. This completes the

proof. �

3.4 Numerical Analysis

In this section, we verify our analysis by simulation results. The simulation pro-

gram has been developed using the MATLAB environment. Two simulation scenarios

illustrate our analysis, a network of two users and a network of three users, respec-

tively. Scenario 1 illustrates the convergence of the proposed algorithms as well as

the effect of step size selection and the number of OFDM tones on these algorithms.

Scenario 2 illustrates the optimal relay selection strategy when Algorithm 2 is used.

Table 1 shows the common simulation parameters. The users are assumed to have

the same priority. Hence, their weights are all set to 1. The minimum rate and

the maximum transmitted power of each user are 10Mbps and 20dB (normalized by

the average noise power N0W ), respectively. The network topologies for these two

scenarios are depicted in Fig. 3.4.
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Table 3.1
Common parameters for numerical analysis of the algorithms

Symbol Parameter name Value

N Number of subcarriers 16, 32

K Number of users 2, 3

wk Weight of user k, k = 1, 2, 3 [1 1 1]

Rk Minimum rate of user k [10 10 10] Mbps

Pi,max/(N0W ) Power constraint for all users 20dB

ε Error goal 10−4

Fig. 3.4. Simulated network topology

3.4.1 Scenario 1: Network with 2 users

Assume that the base station is located at (0,0) while user 1 and user 2 are

located at (100,0) and (100,10), respectively, on a Cartesian coordinate plane. Some

numerical results follow together with the conclusions drawn from these results.
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Convergence of the Algorithm:

Figure 3.5 and 3.6 shows the numerical results when using Algorithm 1 in the con-

dition of known CDI. We observe that this algorithm converges after 500 iterations.

Figure 3.7 shows the similar results for the unknown CDI, but with perfect CSI. The

number of iterations is about 180, and the running time has been improved signifi-

cantly (89.2 seconds, while the algorithm 1 takes 1292 seconds). This fact confirms

the theoretical analysis that was developed. Although Algorithm 2 is just an ap-

proximation approach, it improves the computational efficiency because it relaxes the

computation from the complexity of evaluating the expectation over the distribution

of all channels and users. However, Algorithm 2 may not converge uniformly. It may

suffer from oscillations even at a large number of iterations due to the randomness of

the channel gain.

Fig. 3.5. The convergence of Algorithm 1 with the condition of known CDI
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Fig. 3.6. Estimation error of Algorithm 1 in condition of known CDI

The optimal dual solutions are λ∗ = [9.6410 9.6220] and ν∗ = [0 0]. This can be

interpreted in the following way. The optimal power allocation and scheduling should

satisfy the rate constraint strictly to have the maximum sum rate. Hence, by the

complementary slackness condition, we must have ν∗ = [0 0]. On the other hand, to

get the maximum rate, most likely the users take their full power capability, so the

equality must occur in the power constraints. Hence, also by complementary slackness

condition, λ∗ > 0. If the constraints are so strict, for example, if Ri,min is too large,

the Slater condition does not hold, and the algorithms above will not converge. The

duality gap in this case is (−d∗)− (p∗) = 295.89− 280.32 = 15.57(bps/Hz). This is

because the number of tones is not large enough (N = 16 in this case).
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Fig. 3.7. Estimation error of Algorithm 2 with the condition of perfect CSI

Effectiveness of step size on the convergence rate

Figure 3.8 shown that the number of required iterations of Algorithm 1 is nearly

proportional to the initial step size for small values of step size. Algorithm 2 converges

faster and requires less running than Algorithm 1. In a manner similar to Algorithm

1, in general, Algorithm 2 converges faster when the initial step size is small. However,

if the step size is too small, the number of iterations may increase again.

Effectiveness of the number of tones

As mentioned before, the duality gap will eventually go to zero when the number

of tones goes to infinity. For the case in which N = 16 as shown in Fig. 3.5, we

observed that the duality gap is 19. Figure 3.9 below shows that the duality gap
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Fig. 3.8. Effect of step size selection on the convergence rate of algorithms 1 and 2

is reduced to 2.23 when the number of tones increases from 16 to 32. Because the

number of subchannels is doubled, the bandwidth of each channel must be divided

by 2 to make the comparison fair.

3.4.2 Scenario 2: Networks with 3 users

Figure 3.10 and 3.11 illustrate the results of running Algorithm 3 for the network

of 3 users. This procedure is more time consuming, but we can observe that it also

converges. The optimal dual solution are λ∗ = [3.9738, 3.9802, 3.9701] and ν∗ = [0

0 0]. The optimal WSR is 30.64 bps/Hz.
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Fig. 3.9. Duality gap approaches zero when the number of tones increases to 32

3.5 Summary

In this chapter we investigate in detail the algorithms to jointly optimize the

power allocation at the physical layer and scheduling at the MAC layer of wireless

OFDM cooperative networks. Although there are several research papers that have

explored these issues before, the most important results of this project is investigating

the convergence of joint optimization algorithms for the power allocation, scheduling,

and relay selection strategy in a specific model of cooperative networks, both by

mathematical analysis and by computer simulation. It has been shown that the

joint optimization problem can be solved successfully by using the dual optimization

method for multicarrier systems, proposed in [1]. Here, we only consider the case in

which the channel state information is error free. Indeed, we need to show that if
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Fig. 3.10. Convergence of Algorithm 3 in condition of known CDI

the CSI has errors and the estimation error has zero mean, then Algorithm 2 still

converges to the optimal solution with probability 1. Verifying this statement and

further investigation of this problem with other conditions of the channel are the

purposes of the next chapter.
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Fig. 3.11. Estimation error of Algorithm 3 for the network of 3 users
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4. JOINT OPTIMIZATION OF POWER ALLOCATION

AND RELAY SELECTION STRATEGY IN WIRELESS

OFDM NETWORKS WITH IMPERFECT CSI

In the previous chapter, we proposed the detailed algorithms for joint optimization of

power allocation, scheduling, and relay selection in cooperative networks. However,

we only examined the ideal case in which the channel state information (CSI) can be

fed back to the base station without error.

Here, we extend the result by considering the case in which CSI is imperfectly fed

back to the base station. This work has already been published in [42]. Since the

algorithm of [42] uses the instantaneous feedback of CSI at each iteration, if an error

is introduced by the CSI, the resulting solution from the algorithm may no longer

be optimal. Here, we address the conditions that cause the proposed algorithm to

converge to the optimal solution and examine the impact of channel estimation errors

on the solution. We find that the stochastic subgradients must be unbiased to achieve

the exact convergence, and we also evaluate the impact of the CSI error.

4.1 System Model and Problem Formulation

We consider again the system model described in previous chapter (Fig. 3.1), with

one modification. The channel state information (CSI) is now assumed to be imper-

fectly fed back, i.e., there is an error between the real channel gains and the channel

gains which are fed back to the BS. We denote by H̃
(n)

= {h(n)
ij }i=1,...,K; j=1,...,K;n=1,...,N

the channel gain matrices with estimation errors, and denote by ˜P(n) and τ̃ (n) the

resultant optimal allocation matrix and scheduling vector when H(n) is replaced by

H̃
(n)

.

The basic notation derived from the previous chapter is indicated below.
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• K = {0, 1, 2, ..., K} is the set of user nodes, where user 0 is the base station.

• N = {1, 2, ..., N} is the set of tones.

• h
(n)
ij is the channel gain between user i and user j over the nth tone.

• τ
(n)
i is the time interval for user i over the nth tone, and τ = {τ (n)i }i=1,...,K;n=1,...,N .

• r
(n)
i is the node that acts as the relay for user i over the nth tone. The relay

protocol is described as follows. In the first half of the interval τ
(n)
i , user i

transmits its own data, the relay listens; in the remaining half of the interval,

the relay decodes and forwards the information received in the first half of the

interval to the BS.

• P
(n)
ij is the power consumed by user i to send the nth tone to user j, and P =

{P (n)
ij }i=1,...,K; j=1,...,K;n=1,...,N .

Our goal is to select a cooperation strategy that maximizes the weighted sum rate

(WSR) of the network, while keeping the resources (power and time) constrained and

also satisfying the fairness condition in this network.

Problem

maximize
P

(n)
ij ,τ

(n)
i ,r

(n)
i

i=1,...,K; j=1,2,...K;n=1,2...N

WSR =
K∑

i=1

wiCi (4.1)

subject to:

K∑

i=1

τ
(n)
i ≤ 1 for i = 1, 2, ..., N (4.2)

P i ≤ pi,max (i = 1, 2, ..., K) (4.3)

Ci ≥ Ri (i = 1, 2, ..., K). (4.4)

4.2 Summary of Solutions and Algorithms

As established in the last chapter, the power allocation and scheduling solutions

are given in (3.38) and (3.39) if the CSI is fed back perfectly. However, with imperfect
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CSI, we don’t know the real channel gains h
(n)
ij . Instead, we use h̃

(n)
ij in place of h

(n)
ij .

Hence, the power allocation and scheduling solutions in this case are given by

P̃
(n)∗
ji =

(wi + νi)

λ̃j ln 2
−
(

ρj0

∣
∣
∣h̃(n)

j0

∣
∣
∣

2
)−1

(i = 1, 2, .., K; j = 1, ri) (4.5)

and

τ̃
(n)∗
i =







1, if i = argmax
k

(

E
[

fk

(

P̃
(n)∗
kk , P̃

(n)∗
rkk

)])

0, otherwise

(4.6)

To compute the optimal solution λ∗,ν∗, we use the subgradient projection method

[38]. Since the full channel distribution information is not available, we adaptively

use the current values of P
(n)∗
ij and τ

(n)∗
i to compute the subgradients, rather than

using the expectation of all these values [43] to obtain

g̃λi
(t) =

N∑

n=1

(
1

2
τ̃
(n)∗
i P̃

(n)∗
ii +

1

2
τ̃
(n)∗
j P̃

(n)∗
ij

)

− Pi,max (4.7)

and

g̃νi (t) = Ri −




1

2

N∑

n=1



τ̃
(n)∗
i

∑

j∈{i,ri}
log2

∣
∣
∣
∣
1 + ρj0

∣
∣
∣h̃

(n)
j0

∣
∣
∣

2

P̃
(n)∗
ji

∣
∣
∣
∣







 (4.8)

where j is such that r
(n)
j = i.

The joint optimization algorithm proposed in [43] can be summarized as

1. Choose an initial relay selection strategy for each tone of the OFDMA system.

2. Solve each per-tone optimization problem:

a. Initial condition: Choose λ̃(0) and ν̃(0), and then use (4.5) and (4.6) for i=1,...,K;

j =1,2,...,K; n=1,...,N.

b. Iteration: At step t + 1, choose step size γ(t) = γ/t, where γ is some positive

constant. Compute g̃λi
(t) and g̃νi(t) for i = 1,2,...,K using (4.7) and (4.8). Update

λ̃i(t+ 1) and ν̃i(t+ 1) for i = 1,2,...,K by using the following formulas given by

λ̃i(t+ 1) =
[

λ̃i(t) + γ(t)g̃λi
(t)
]+

ν̃i(t + 1) = [ν̃i(t) + γ(t)g̃νi(t)]
+

(4.9)
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where [x]+ = max{x, 0}.
c. Termination: Using ǫ as the maximum error allowed, stop the algorithm when-

ever
∥
∥
∥λ̃(t+ 1)− λ̃(t)

∥
∥
∥ < ǫ and ‖ν̃(t+ 1)− ν̃(t)‖ < ǫ for i = 1, 2, ..., K. Otherwise,

increase t by 1 and repeat Step 2b.

d. Store the optimal solution, and then change to another relay selection strategy.

Repeat steps 2a through 2c. If the optimal value is better than the previous value,

store the new optimal solution. Otherwise, discard it. Repeat Step 2d until there is

no remaining strategy to consider.

3. Repeat Step 2 for the other tones until all tones have been processed.

4.3 Convergence Analysis

The convergence analysis for the case of perfect CSI has been examined in [42]

(propositions 3 and 4). We can rewrite the stochastic subgradients as

g̃λi
(t) = gλi

(t) + ∆λi
(t) + δ̃λi

(t) (4.10)

and

g̃νi(t) = gνi(t) + ∆νi(t) + δ̃νi(t) (4.11)

where ∆λi
(t) and ∆νi(t) are the means of estimation errors (i = 1, 2, ..., K), which

are given by

∆λi
(t) , E [g̃λi

(t)]− gλi
(t)

=

N∑

n=1

1

2
E
[(

τ̃
(n)
i P̃

(n)
ii + τ̃

(n)
j P̃

(n)
ij

)

−
(

τ
(n)∗
i P

(n)∗
ii + τ

(n)∗
j P

(n)∗
ij

)] (4.12)

and

∆νi(t) , E [g̃νi(t)]− gνi(t) = E




1

2

N∑

n=1



τ
(n)∗
i

∑

j∈{i,ri}
log2

∣
∣
∣
∣
1 + ρj0

∣
∣
∣h

(n)
j0

∣
∣
∣

2

P
(n)∗
ji

∣
∣
∣
∣









− E




1

2

N∑

n=1



τ̃
(n)
i

∑

j∈{i,ri}
log2

∣
∣
∣
∣
1 + ρj0

∣
∣
∣h

(n)
j0

∣
∣
∣

2

P̃
(n)
ji

∣
∣
∣
∣







 (4.13)
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The quantities δ̃λi
(t) and δ̃νi(t) are given by

δ̃λi
(t) , g̃λi

(t)−E [g̃λi
(t)] =

N∑

n=1

1

2

[

τ̃
(n)
i P̃

(n)
ii + τ̃

(n)
j P̃

(n)
ij

]

−
N∑

n=1

1

2
E
[

τ̃
(n)
i P̃

(n)
ii + τ̃

(n)
j P̃

(n)
ij

]

(4.14)

and

δ̃νi(t) , g̃νi(t)−E [g̃νi(t)] = E




1

2

N∑

n=1



τ̃
(n)
i

∑

j∈{i,ri}
log2

∣
∣
∣
∣
1 + ρj0

∣
∣
∣h

(n)
j0

∣
∣
∣

2

P̃
(n)
ji

∣
∣
∣
∣









− 1

2

N∑

n=1



τ̃
(n)
i

∑

j∈{i,ri}
log2

∣
∣
∣
∣
1 + ρj0

∣
∣
∣h

(n)
j0

∣
∣
∣

2

P̃
(n)
ji

∣
∣
∣
∣





(4.15)

For convenience, we use the notation described by the equations

∆λ(t) = [∆λ1(t),∆λ2(t), ...,∆λK
(t)]T

and

∆ν(t) = [∆ν1(t),∆ν2(t), ...,∆νK (t)]
T

Theorem 4.3.1 If E [∆λ(t)] = 0 and E [∆ν(t)] = 0 for every t and if the step

size γ(t) satisfies the convergence conditions (in [43]), then the proposed algorithm

converges with probability one to the optimal solution.

Proof. We can write λ̃i(t+1) = λ̃i(t) + γ(t)
[

gλi
(t) + ∆λi

(t) + δ̃λi
(t)
]

+C, where

C is a non-negative term to guarantee that λ̃i(t + 1) ≥ 0. Now, we can easily show

that

‖λ̃(t+ 1)− λ∗‖2 ≤ ‖λ̃(t)− λ∗‖2 − 2γ(t)〈
[

λ̃(t)− λ∗
]

,
[

gλ(t) + ∆λ(t) + δ̃λ(t)
]

〉

+ [γ(t)]2 ‖gλ(t) + ∆λ(t) + δ̃λ(t)‖2 (4.16)

Noticing that E [∆λ(t)] = 0, E
[

δ̃λ(t)
]

= 0, and each term in (4.16) is bounded,

we obtain

E
[

‖λ̃(t+ 1)− λ∗‖2
]

≤ ‖λ̃(t)− λ∗‖2 − 2γ(t)
〈

λ̃(t)− λ∗, gλ(t)
〉

+ 0
(
[γ(t)]2

)
.
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A similar inequality can be obtained for ν̃. Adding these two inequalities together,

we have

E
[

‖λ̃(t + 1)− λ∗‖2 + ‖ν̃(t+ 1)− ν∗‖2
]

≤ ‖λ̃(t)− λ∗‖2 + |ν̃(t)− ν∗‖2

− 2γ(t)
[〈

λ̃(t)− λ∗, gλ(t)
〉

+
〈

λ̃(t)− λ∗, gλ(t)
〉]

+ 0
(
[γ(t)]2

)
.

From this point, the proof is similar to the proof of Theorem 3.3.1. �

Theorem 4.3.2 If E [∆λi
(t)] 6= 0 or E [∆νi(t)] 6= 0 for some i and if the step size γ(t)

satisfies the convergence condition (in [43]), then (λ̃(t), ν̃(t)) : t = 1, 2, ... approaches

some neighborhood ℜ(d) around the optimal solution with probability one, where ℜ(d)
is defined as

ℜ(d) ,







(λ,ν) :

d|gλi
(λ,ν)| ≤ ∆̄λi

for some i

d|gνi(λ,ν)| ≤ ∆̄νi for some i

0 ≤ d ≤ 1







(4.17)

where ∆̄λi
= lim supt→∞E [∆λi

(t)] and ∆̄νi = lim supt→∞E [∆νi(t)].

Proof. Define V (λ̃, ν̃) , ‖λ̃−λ∗‖2 + ‖ν̃ − ν∗‖2. Consider the region ℜ(d)⋃Bǫ,

where Bǫ =
{(

λ̃, ν̃
)

: V
(

λ̃, ν̃
)

≤ ǫ
}

. Assume that
(

λ̃(t), ν̃(t)
)

/∈ ℜ(d)⋃Bǫ, then

lim supt→∞E [∆λi
(t)] < d|gλi

(λ,ν)|. Using (4.16) with the fact that E
[

δ̃λ(t)
]

= 0,

we obtain

E
[

‖λ̃(t+ 1)− λ∗‖2
]

≤ ‖λ̃(t)− λ∗‖2 − 2γ(t)(1− d)
〈

λ̃(t)− λ∗, gλ(t)
〉

+ 0
(
[γ(t)]2

)

Finally, by applying the same method for ν̃ and adding the two resultant inequal-

ities together, we obtain the inequality

E
[

‖λ̃(t + 1)− λ∗‖2 + ‖ν̃(t+ 1)− ν∗‖2
]

≤ ‖λ̃(t)− λ∗‖2 + |ν̃(t)

− ν∗‖2 − 2γ(t)(1− d)
[〈

λ̃(t)− λ∗, gλ(t)
〉

+
〈

λ̃(t)− λ∗, gλ(t)
〉]

+ 0
(
[γ(t)]2

)

By the same argument as in the proof of Theorem 3.3.1, the points {(λ̃(t), ν̃(t)) :
t = 1, 2, ...} reside in ℜ(d)⋃Bǫ almost surely. By letting ǫ → ∞, we complete the

proof. �
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The effect of channel estimation error on the accuracy of the solutions is assessed

with the following theorem.

Theorem 4.3.3 The neighborhood ℜ(d) described in Theorem 4.3.2 is inner bounded

by {(λ̃, ν̃) : |gλi
(λ,ν)| = ∆̄λi

and |gνi(λ,ν)| = ∆̄νi for all i} .

Proof. From Theorem 4.3.2, there exists d ∈ [0, 1) such that E [∆λi
(t)] ≤

d|gλi
(λ,ν)| ≤ ∆̄λi

, for (λ,ν) ∈ ℜ(d). Hence, we can write:
E[∆λi

(t)]
|gλi(λ,ν)|

≤ d < 1. This

holds for any (λ,ν) ∈ ℜ(d). As n → ∞, |gλi
(λ,ν)| decreases (since (λ(t),ν(t))

moves toward the optimal point). Hence, d approaches 1, and we conclude that

ℜ(d) is inner bounded by points satisfying |gλi
(λ,ν)| = ∆̄λi

. Similarly, we can show

|gνi(λ,ν)| = ∆̄νi .�

4.4 Numerical Results

In this section, a network of five users is simulated to evaluate the impact of

channel estimation error. The network topology is shown in Fig. 4.1. The users are

assumed to have the same priority, i.e., the weight vector is chosen to be [1 1 1 1 1].

The minimum rate and the maximum transmitted power of each user are 1 Mbps

and 20 dB (normalized by the average noise power N0W ), respectively, where W

represents the equivalent noise bandwidth and N0 represents the single-sided noise

spectral density. The number of OFDM tones is N = 16. The channel for each tone

is assumed to be i.i.d. Rayleigh fading. The SNRs for 5 users depend on the distance

from the users to the BS.

Fig. 4.2 compares the results when running the proposed algorithm for two chan-

nel conditions, that is, perfect CSI (dashed curve) and imperfect CSI with unbiased

subgradients (solid curve). We observe that the algorithm converges to the same opti-

mal solution in each case, although with different convergence rates. With the larger

number of users (more than 5 users), the algorithm still works, but the complexity

increases because an exhaustive search over all permutations of the set of users is

required. However, this problem can be solved if we eliminate some obviously bad
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Fig. 4.1. Simulated network topology

relay strategies before searching. In Fig. 4.3, we consider the imperfect CSI condition

with biased stochastic subgradients. Fig. 4.3 shows that the proposed algorithm still

converges, but to a different solution. Here, we consider two cases, that is, ∆λi
(t) and

∆νi(t) are both Gaussian distributed N(0.5, 0.01) (case 1) or N(0.75, 0.01) (case 2).

We see that the difference between the convergence point and the real optimal WSR

value is larger for larger channel estimation errors. Note that in this case the WSR

(suboptimal solution for the primal problem) is less than the optimal solution, but

the algorithm may converge to a greater value than the optimal solution because of

the convexity of the Lagrangian dual function.

4.5 Conclusion

In this chapter the convergence of the algorithms to jointly optimize the power

allocation at the physical layer and scheduling at the MAC layer of wireless OFDM
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Fig. 4.2. Convergence of the algorithm with imperfect CSI (unbiased case)

cooperative networks has been investigated when the channel estimation is imperfect.

Using the optimization framework proposed in [44], the joint optimization problem

can be solved successfully even if the CSI is reported to the BS in error. More specifi-

cally, if the CSI has errors and the estimation error has zero mean, then the proposed

algorithm still converges to the optimal solution with probability 1. Otherwise, if the

estimation error has nonzero mean, then the proposed algorithm converges to a point

in some neighborhood of the optimal solution.
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5. OPTIMIZATION OF POWER ALLOCATION AND

INTEGER COEFFICIENTS OF RELAY FUNCTIONS IN

COMPUTE-AND-FORWARD RELAY NETWORKS

5.1 Compute-and-Forward

Of central importance in designing reliable communication schemes over wireless

relay networks is the question of how to deal with the interference from other source

nodes and the additive noise at the destination nodes. In the aforementioned Decode-

and-Forward scheme, the relays can completely remove noise by decoding the original

codewords before forwarding them to the destination. However, this strategy still

suffers from interference if there are multiple transmitters in the network. Another

approach is to try to use the interference-reducing techniques available in MIMO

channels, in which the interactions between interference signals can be exploited.

Amplify-and-Forward and Compress-and-Forward are two schemes that fall into this

category. Noise is not removed in the Amplify-and-Forward scheme, and is just

removed partially in the Compress-and-Forward scheme. Hence, it can be amplified

and accumulated at the destination.

The natural question is how to handle both interference and noise, and one in-

genious answer came from Nazer et al. in [20]. The idea is based on the network

coding principle, that means the relays try to recover a noiseless linear function of

the codewords sent by the source nodes, instead of decoding each codeword separately.

In this way, we can not only harness the interactions introduced by the channel if

the computed functions are well designed, but also remove noise completely at the

relays. Finally, the decoded functions are combined and inverted at the destination

to recover the original messages. This strategy is called Compute-and-Forward, or
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physical-layer network coding, or analog network coding, because of its similarity to

network coding.

It’s required that the linear functions of the transmitted codewords that the relays

are going to decode must also be a codeword. Hence, a structured coding must be

used instead of random coding. In [20], Nazer proposed the nested lattice codes,

which have the desired property mentioned above. A lattice code consists of a lattice

and a shaping domain. A lattice is a set of linear combinations of a finite number of

independent vectors, with integer coefficients. There are an infinite number of lattice

points. However, the set of lattice points which stay inside a bounded shaping region

forms a lattice codebook. In particular, if the shaping region is created from another

lattice, then the resulting code is call nested lattice code.

The maximum achievable capacity of Compute-and-Forward is also derived in [20].

However, there is a technical difficulty when implementing this relaying scheme. The

lattice property holds only for integer linear combinations of codewords, while the

functions computed by the channel have real (or complex) coefficients in general.

When the relays try to decode these functions, some quantization errors can be in-

troduced. To overcome this problem, it’s suggested to scale the received signal so

that it’s close to an integer combination. The larger the scale factor is, the smaller

quantization error that the system suffers. But a larger scale factor also results in the

amplification of noise, which degrades the performance of the system. This tradeoff

between small quantization error and large noise amplification raises a question of

how to optimize the scale factors. In practice, the scale factors depend on the trans-

mit power of the source nodes. Hence, we can solve an optimization problem of power

allocation in networks and the integer coefficients of the computational functions to

get the maximum achievable rate. This is the scope of this chapter.

In this chapter, we consider the typical Compute-and-Forward scheme that is

described in [20] with K source nodes and K relay nodes. An algorithm to optimize

the power allocation and the integer coefficients is proposed. The remainder of this

chapter is organized as follows. Section 5.2 summarizes the background theory related
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to lattice coding. The target system model, as well as the corresponding optimization

problem, is described in Section 5.3. In Section 5.4, an algorithm for solving that

optimization problem is proposed. The numerical results to support the analysis are

presented in Section 5.5. Finally, Section 5.6 contains concluding remarks.

5.2 Lattices and Lattice Coding

As mentioned above, interesting links were found recently between lattices and

coding schemes for wireless relay networks, especially for the Compute-and-Forward

strategy. Lattice codes can help to achieve the capacity of Gaussian point-to-point

channels as shown in [45]. Good lattices tend to be “perfect” in all aspects as the

dimension goes to infinity [46]. In this section, we introduce some basic definitions

and main figures of merit of lattices for the further study of lattices in the area of

Gaussian network information theory.

structured codingrandom coding

Fig. 5.1. Random coding v.s. structured coding
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Definition 5.2.1 An n-dimensional lattice C is defined by a set of n basis vectors

g1, g2, ..., gn ∈ R
n. The lattice C is composed of all integral combinations of the basis

vectors, i.e.,

Λ = {λ = Gi : i ∈ Z
n} (5.1)

where Z = {0,±1,±2, ...} and the n × n generator matrix G is given by G =

[g1, g2, ..., gn].

Definition 5.2.2 (Nearest neighbor quantizer and Voronoi region). The nearest

neighbor quantizer Q(·) associated with C is defined by

Q(x) = argmin
λ∈Λ

‖x− λ‖ (5.2)

where ‖·‖ denotes the Euclidean norm. The fundamental Voronoi region of Λ, denoted

by V, is a set of points in R
n closest to the zero codeword, i.e., V0 = {x : Q(x) = 0}.

The Voronoi region associated with each λ ∈ Λ is the set of points x such that

Q(x) = λ.

According to the definition of the Voronoi region, every x ∈ R
n can be uniquely

expressed as x = λ+ r with λ ∈ Λ, r ∈ V.

Definition 5.2.3 (Modulo lattice operation). The modulo lattice operation with re-

spect to a lattice Λ is defined as,

xmodΛ = x−Q(x) (5.3)

Definition 5.2.4 (Second moment of a lattice). The second moment σ2
Λ of the lattice

Λ is defined as

σ2
Λ =

1

n
E‖U‖2 = 1

n
.

∫

V ‖x‖2dx
V

(5.4)

where U is a random vector uniformly distributed over V and V , V (Λ) = |V|.

Definition 5.2.5 (Normalized second moment). The normalized second moment of

Λ is defined as

G(Λ)V 2/n = σ2
Λ1n.σ

2
Λ

∫

V
‖x‖2dxV 1+2/n (5.5)
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The minimum possible value of G(Λn) over all lattices in R
n is denoted by Gn.

It’s shown by Poltyrev [47] that Gn ≥ G∗
n > 1

2πe
, where G∗

n is the normalized second

moment of an n-dimensional sphere and 1
2πe

is the normalized second moment of an

infinite-dimensional sphere. A result in [47] states that there exists a sequence of

lattices Λn with

lim
n→∞

Gn =
1

2πe

i.e., there exists a sequence of “good” lattices Λ∗
n whose Voronoi region V ap-

proaches a sphere in the sense that G(Λ∗
n) = Gn → G∗

n → 1
2πe

as n → ∞. We say

that such lattices are good for quantization [48].

Definition 5.2.6 (Nested Lattices, nesting ratio and coset leaders)

• A pair of n-dimensional lattices (Λ1,Λ2) is called nested if Λ2 ⊂ Λ1, i.e., there

exists corresponding generator matrices G1 and G2 such that G2 = G1.J, where

J is an n× n integer matrix whose determinant is greater than one.

• Denote the Voronoi regions of Λ1 and Λ2 as V1 and V2, and their volumes as V1

and V2, respectively. The nesting ratio of the above nested lattices is defined as

n
√
detJ = n

√
V2

V1

• The points of the set C = Λ1modΛ2 , Λ1

⋂V2 are called the coset leaders of

Λ2 relative to Λ1.

Roughly speaking, a nested lattice code is a lattice code whose bounding region

is the Voronoi region of a sublattice.

Definition 5.2.7 The coding rate of the nested lattice code is defined as

R =
1

n
log‖C‖ =

1

n
log

V2

V1
. (5.6)

Finally, we present some properties of the modulo operation.
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shaping (coarse) lattice

coding (fine) lattice

Fig. 5.2. Nested lattice code

Lemma 5.2.1

(i) (xmodΛ+ y)modΛ = (x+ y)modΛ, ∀x ∈ R
n,y ∈ R

n.

(ii) [k(xmodΛ)]modΛ = (kx)modΛ, ∀k ∈ Z,x ∈ R
n.

(iii) γ(xmodΛ) = (γx)mod (γΛ), ∀γ ∈ R,x ∈ R
n.

(5.7)

5.3 System Model

A typical communication scenario where the Compute-and-Forward strategy with

nested lattice codes has proven beneficial is described in Fig. 5.2. In this model, there

are K transmitters which are sending K independent messages to a destination with

the support of K relays. Each relay tries to decode an integer linear function of the

transmitted messages, and then forwards the decoded function to the destination via

an error-free channel. The destination will combine all those functions and converted

them to K original messages separately.
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Fig. 5.3. System model

Suppose that we have an n-dimensional lattice Λ with second moment σ2
Λ = P

and the Voronoi region V. We choose a fine lattice ΛC such that the codebook

C = ΛC

⋂
V consists of 2nR codewords. Let Pi,max be the maximum power that the

ith transmitter can transmit. Assume that the ith transmitter wants to transmit the

codeword wi to the destination.

Encoding: To transmit the message wi, the i
th transmitter sends the following signal

xi =
√

(Pi/P )([wi − ui]modΛ) (5.8)

where Pi is the transmitted power of the ith transmitter and ui is a dithering vector,

which is uniformly distributed in the Voronoi region of Λ and independent of wi. It

has been shown [49] that xi is also independent of wi and uniformly distributed over

the Voronoi region of Λ.

The received signal at the kth relay is given by

yk =

K∑

i=1

hikxi + nk (5.9)
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Decoding: the kth relay tries to decode correctly the following integer combination

ei =
∑K

i=1mikwi from the received signal, where mik are some integers predesigned

by the relay. To do this, the relay computes the following quantity

y
′

k = (αkyk +

K∑

i=1

mikui)modΛ

= [αk(
K∑

i=1

hikxi + nk) +
K∑

i=1

(
mik

√

Pi/P
xi −

mik√
Pi/P

xi +mikui)]modΛ

=

[
K∑

i=1

(

αkhik −
mik

√

Pi/P

)

xi +
K∑

i=1

([mik(wi − ui)modΛ] +mikui) + αknk

]

modΛ

=

[
K∑

i=1

mikwi +

K∑

i=1

(

αkhik −
mik

√

Pi/P

)

xi + αknk

]

modΛ

=

(
K∑

i=1

mikwi + n
′

k

)

modΛ

(5.10)

where αk ∈ R is some factor which is determined later. Here, we use the properties

(i) and (ii) in (5.7) to do the algebra. The vector n
′

k is the equivalent noise, which is

given from (5.10).

n
′

k ,

[

αknk +
K∑

i=1

(

αkhik −
mi

√

Pi/P

)

xi

]

modΛ (5.11)

The relay now can decode the lattice point ek =
∑K

i=1mikxi from y
′

k. Finally, the

destination collects all decoded functions e1, e2, ..., eK from the relays and solves for

the original codewords w1,w2, ...,wK from the following equation

e = M.w (5.12)

where e = [e1, e2, ..., eK ]
T ,w = [w1,w2, ...,wK ]

T and M = [mik], 1 ≤ i ≤ K, 1 ≤
k ≤ K.

5.3.1 Rate Analysis

The following theorem has been introduced in [20].
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Theorem 5.3.1 For real-valued AWGN networks with channel coefficient vectors

hm ∈ R
K and equation coefficient vectors am ∈ Z

K , the following computation rate is

achievable at the mth relay node

R(hm, am) = max
αm∈R

[
1

2
log+

(
P

α2
m + P‖αmhm − am‖2

)]

(5.13)

This is maximized by choosing αm to be the MMSE coefficient αm = Ph
T
mam

1+P‖hm‖2 ,

which results in a computation rate of

R(hm, am) =
1

2

+

log

[(

‖am‖2 −
P (hT

mam)
2

1 + P‖hm‖2
)−1

]

(5.14)

Proof. See [20]. �

In the above theorem, the equal power constraint ‖xm‖2 ≤ nP is assumed. Now,

suppose that each source node can be assigned a maximum transmit power given by

Pi,max. We can incorporate this asymmetric power constraint by scaling the channel

coefficients properly. Thus, by applying the Theorem 5.3.1 for each relay and adding

them together, the sum rate that can be achieved for the considered network can be

found as

SR =
1

2

K∑

k=1

+

log

[(

‖mk‖2 −
P ((β ◦ hk)

Tmk)
2

Nk + P‖(β ◦ hk)‖2
)−1

]

(5.15)

where β = [β1, β2, ..., βK ]
T .

5.3.2 Problem Formulation

The joint optimization of power allocation and integer coefficients can be stated

as

Problem 2

maximize SR =
1

2

K∑

k=1

+

log

[(

‖mk‖2 −
P ((β ◦ hk)

Tmk)
2

Nk + P‖(β ◦ hk)‖2
)−1

]

subject to 0 ≤ βk ≤
√

(Pk,max/P ), for k = 1, 2, ..., K

and |det(m)| ≥ 1 and m ∈ Z
k×k for k = 1, 2, ..., K

(5.16)



82

This is an Mixed Integer Nonlinear Programming (MINLP) problem. Moreover,

this problem is non-convex. The methods to solve this kind of problems have been

introduced in [50]. However, the complexity of the algorithms is quite high and

needs to be considered carefully. Another implementable approach is to solve this

problem iteratively. If we fix the power factors β and try to optimize the integer

coefficients m, we get a Mixed Integer Quadratic Programming (MIQP) problem. If

we fix the integer coefficients m, then the power allocation can be optimized by using

the Lagrange method, although it’s a non-convex problem. In the next section, the

algorithms for the sum rate optimization problem will be analyzed.

5.4 Optimization of Compute-and-Forward Relay Network

5.4.1 Iterative Solution

By observing the objective function, we can easily see that the integer coefficient

vector mk only involves in the kth term of the objective function (that is the maximum

rate at the kth relay). Hence, if the power factor β is fixed, then the optimization of

the integer coefficients can be done separately at each relay. For instance, at the kth

relay, we have the following problem to solve

maximize Rk =
+

log

[(

‖mk‖2 −
P ((ck)

Tmk)
2

Nk + P‖(ck)‖2
)−1

]

subject to mk ∈ Z
k

(5.17)

where ck = β ◦ hk is a constant vector.

Now, assume that we can obtain the optimal solution f ∗
k for Problem (5.17). The

maximum sum rate of the network can be found from the following problem

maximize SR =
1

2

K∑

k=1

+

log

[(

‖mk‖2 −
P ((β ◦ hk)

Tmk)
2

Nk + P‖(β ◦ hk)‖2
)−1

]

subject to 0 ≤ βk ≤
√

(Pk,max/P ), for k = 1, 2, ..., K

(5.18)
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Problem (5.17) can be reduced to a MIQP problem because the logarithm function

is an increasing function. In fact, Problem (5.17) can be stated equivalently as

minimize gk = Nk‖mk‖2 + P‖ck‖2‖mk‖2 − P (cTkmk)
2

subject to mk ∈ Z
k and 0 < gk < Nk + P‖ck‖2

(5.19)

Problem (5.18) is a non-convex and nonlinear optimization problem. However, we

are able to solve it by global optimization theory, which is shown later.

a. Integer coefficients sub-problem

Let’s solve the Problem (5.17). First, we notice that the first inequality constraint of

(5.19) is always satisfied because (cTkmk)
2 ≤ ‖ck‖2‖mk‖2 (by Schwartz’s inequality).

The second inequality constraint of (5.19) is to guarantee that the expression inside

the log+(·) function is greater than 1. If there is no feasible mk for this constraint,

then the optimal value of the Problem (5.17) will be zero and mk can be any integer

vector.

Because gk ≥ 0, ∀mk, the quadratic form gk is semi-definite, so the Problem (5.19)

can be solved easily by the well-known methods for MIQP such as cutting plane or

branch-and-bound. For example, we can use branch-and-bound algorithm in [51].

b. Power allocation sub-problem

Consider the power allocation subproblem (5.18).

maximize SR =
1

2

K∑

k=1

+

log

[(

‖mk‖2 −
P ((◦hk)

Tmk)
2

Nk + P‖(β ◦ hk)‖2
)−1

]

subject to 0 ≤ βk ≤
√

(Pk,max/P ), for k = 1, 2, ..., K

This problem is a nonconvex optimization problem. However, the objective func-

tion and the constraint functions are continuous and differentiable almost everywhere.

Therefore, we can use one of the well-studied iterative algorithms for the nonconvex

optimization problem. Fig. 5.4 shows the sum rate of our model as a function of the

power allocation factors β where the integer coefficients M are fixed.
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Fig. 5.4. Objective function of Problem (5.18)

5.4.2 Algorithm

In this section, we summarize the iterative algorithm to jointly optimize the power

allocation and the integer coefficients of the computational functions of Compute-and-

Forward relay networks. This algorithm is described as follows.

Algorithm 5.1.

1. Initialization: Set i = 1 and choose the initial vector β(0).

2. Set β = β(i−1) and solve the integer coefficient problem (5.19) for each relay

k = 1, 2, ..., K to get the solution at the ith iteration M(i).

3. Set M = M(i) and solve the power allocation problem (5.18) to get the solution

β(i). Compute the sum rate at the ith iteration SR(i).

4. Increase the iteration index i = i+ 1 and repeat Step 2.

5. The algorithm will terminate whenever ‖β(i)−β(i−1)‖ < ǫ and ‖SR(i)−SR(i−1)‖ <

ǫ0, where ǫ and ǫ0 are the predefined maximum errors.
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In most cases, this algorithm converges to the optimal solution of the problem.

However, this convergence is not guaranteed in all cases. The temporary solution

may bounce back and forth between some finite number of suboptimal solutions as

we’ll show by the numerical results.

5.5 Numerical Results

In this section, some numerical results are provided to evaluate the proposed

algorithm. For simplicity, we assume that the noise signals at the receivers have the

same powers N1 = N2 = ... = NK = N . We also assume that each transmitter

has a maximum transmitted power of 10dBW. The performances of the network are

measured by the sum rates of all receivers at different levels of SNR.

We consider two network topologies; one with two sources and two relays and

the other with 3 sources and 3 relays. The channel coefficients between the sources

and the relays are modeled as independent zero-mean Gaussian random variables,

whose variances depend on the strength of the corresponding links. Typically, we

express the strength of each link by its Euclidean distance in the network topology.

We normalize the distance so that the distance d = 1 corresponds to the channel gain

variance σ2 = 0 dBW . The network topologies are shown in Fig. 5.5. As mentioned

in previous sections, the full channel state information (CSI) is available in all of

the simulation scenarios. To solve the MIQP sub-problem in Step 2 of the proposed

algorithm, we use the TOMLAB optimization tool [52].

Fig. 5.6 compares the results when running the proposed algorithm for 2-user

2-relay networks in different channel conditions. For better channel conditions, the

optimal sum rate is higher. (The blue curve corresponds to the best channel condition

and the pink curve corresponds to the worst channel condition.) In this case (2 users

and 2 relays), the objective function and the constraints are rational functions and

polynomials of second order, so we have a quadratic rational optimization problem.
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Fig. 5.5. Simulated network topology

The proposed algorithm converges very quickly to the optimal solution after only a

few iterations.

Fig. 5.7 shows the respective results for 3-user, 3-relay networks in different chan-

nel conditions. Again, the numerical results are consistent with the theoretical con-

jecture. However, the convergence of the algorithm is not guaranteed in this case.

Here, we can only get to some sub-optimal solution of the problem. Fig. 5.8 shows

the sum rate of the network versus the iterations for a special case.

Finally, Fig. 5.8 compares the sum rate achieved by the Compute-and-Forward

strategy with the sum rate achieved when each relay decodes the message from its

corresponding source, independent of the other relays. Other source nodes are con-

sidered as interference sources. We observe that the Compute-and-Forward scheme

is dominating the non-relaying scheme.

5.6 Conclusion

In this chapter, we study a multiple-access relay network, which is equipped with

the Compute-and-Forward relay strategy. This strategy enables the relays to decode

linear integer combinations of the codewords sent from the source nodes using the
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Fig. 5.6. Optimal sum rate of 2x2 Compute-and-Forward relay network

noisy linear combination provided by the channel. The destination finally collects

sufficient combinations from the relays and solves a system of linear equations to

recover the original messages. In the basic Compute-and-Forward strategy, the relays

are free to select the linear equations they want to recover. However, because the

channel coefficients are not integers, there is always a quantization error when the

relays try to decode their linear integer combination. This error can be reduced if

we scale the transmitted signal so that the noisy combination of them is close to

a linear integer combination. The error is typically decreased when we increase the

scaling factor, but doing that also degrades the performance of the network due to the

amplification of noise. Moreover, we cannot increase the scaling arbitrarily because

of the power limitation. To solve this problem, a joint optimization problem of the
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integer coefficients for the relay and power allocation for the sources is presented in

this chapter. Although this optimization is nonconvex, nonlinear, and has mixed

integer and non-integer variables, it can be solved iteratively and numerically. This

interesting idea is also confirmed by the numerical results.
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6. SUMMARY AND FURTHER WORK

Minimizing the capacity loss that results from distributing the radio resources to the

relay transmissions is an important and challenging problem that needs to be solved

to accelerate the development of relay-assisted wireless networks. Many optimization

problems in cooperative networks have been investigated to maximize the perfor-

mance of the networks (in terms of capacity, throughput, BER, etc.) subject to the

constraints on the resources available in the system, such as time, bandwidth, power,

etc. There has been significant progress in solving these problems. This is because of

the advance of convex optimization tools, which have enabled useful approaches for

solving the problems.

However, while the development of optimization in relay networks has been on-

going for years, most of the optimization problems that have been solved so far have

only considered the involved factors separately. In these cases, the formulated opti-

mization problems are either a convex problem or a problem that can be converted

easily to a convex problem. What is needed in current cooperative network research

is an optimization involving a combination of all of the affecting factors, and this is

the main purpose of this current work.

Recently, specific advances in non-convex optimization theory continue to enable

new techniques which are capable of solving complicated optimization problems. This

work describes one such technique and applies that to solve a bigger optimization

problem for wireless cooperative networks.

6.1 Summary of the Results

The first and important result that has been achieved so far is the solution for the

joint optimization of power allocation, time scheduling, and relay selection strategy,
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subject to the constraints of maximum transmission power and minimum required

rate for each user. The main method that is used to obtain this result is the dual

method for non-convex optimization in multi-carrier systems, proposed by Yu et

al. [1]. By applying this result, the original problem is transfered to a dual problem,

and the structure of the problem is exploited to subdivide it into smaller and simpler

subproblems. Finally each subproblem is solved using the KKT conditions [37].

In addition to providing a solution to the problem, in this work a set of numerical

algorithms to obtain the optimal solution are also proposed. The first algorithm is

based on the assumption that the channel gain distribution is known, and we can take

the expectation of the channel gains in order to compute the optimal solution. The

second algorithm is designed for real-time situations, when the channel distribution is

not known beforehand, but the base station can get the channel state information from

the feedback channel. In this case, we can replace the expectation by the immediate

value of the channel gains to obtain a real-time algorithm.

Both algorithms have been verified in terms of mathematical analysis and nu-

merical simulation. An understanding of the convergence of these algorithms is very

important for the implementation in practice. The convergence of both algorithms

is proved by using the stochastic optimization theory [38]. The important result on

convergence is that all the algorithms will converge with probability 1 if the adaptive

step size is chosen to satisfy some basic conditions. However, the location of the

convergence point will depend on the availability of the channel state information.

• If the channel distribution is known, or if the channel state information is fed

back perfectly, then the proposed algorithms will converge with probability 1

to the optimal solution of the joint optimization problem.

• If the channel state information is not fed back correctly, then there are two

possibilities: if the channel estimation error satisfies the unbiased condition,

then the real-time algorithm still converges to the optimal solution with proba-

bility 1. However, if the channel estimation error is biased, then the convergence
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point is not the same as the optimal point of the problem. It’s also proved that

the convergence point will stay in some bounded neighborhood of the optimal

point with probability 1.

Numerical results are provided to confirm the correctness of the solution and the

algorithms. The simulation results show that both algorithms converge, and the

duality gap between the primal and the dual problems reduces to zero when the

number of subcarriers becomes large. The affect of the step size and the randomness

of the channel condition on the convergence rate are also illustrated by numerical

results.

The results from Chapter 3 and Chapter 4 are for the Decode-and-Forward co-

operative networks only. However, it’s not difficult to extend the results for other

cooperative schemes like Amplify-and-Forward and Compress-and-Forward by using

the same approach. However, for the new cooperative scheme such as Compute-and-

Forward, we need to formulate a new problem to involve the optimization of network

code design. This problem has also been introduced in Chapter 5. In Compute-

and-Forward relay networks, each relay tries to decode a linear combination of the

codewords sent from different sources, instead of decoding each of them separately

as in the Decode-and-Forward scheme. We are interested in the joint optimization of

the integer coefficients of the recovered equations at each relay as well as the power

allocation to each sender so that the considered network can achieve the maximum

sum rate. This is a non-convex, nonlinear, mixed integer programming problem, and

it is NP hard. In this dissertation, an iterative algorithm is proposed to solve that

problem, and the numerical results are also introduced to confirm the idea.

6.2 Further Work and Directions

As reported in Chapter 3 and 4, a significant progress has been made to solve joint

optimization problems in wireless cooperative networks, which is the main purpose

of this work. With an appropriate method for solving non-convex problems, we have
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obtained the solution for multiple-source, one-destination relay networks using the

Decode-and-Forward strategy. We also have proposed algorithms to compute the

optimal solutions and proved the convergence of the algorithms in different cases.

However, to complete this research, there are still several remaining tasks.

• The complexity of the algorithms has not been investigated sufficiently. Indeed,

the complexity of the real-time algorithm still increases very fast when the

number of users increases because we’re still using the exhaustive search when

finding the best relay strategy in each iterative step. One method to improve

this drawback is to derive some basic criteria so that we can remove a lot of

obviously bad strategies, and hence, reduce the total complexity.

• The error between the real optimal solution and the solution obtained from the

real-time algorithm in case of imperfect CSI has not been evaluated. We already

bounded the convergence point inside a neighborhood of the optimal solution;

however, how large this neighborhood is, and if the error is negligible are the

questions that need to be answered.

In addition to the topics mentioned above, during my work toward this disserta-

tion, I found the following issues to be both very interesting and essential for bringing

cooperative communications to reality.

• As mentioned at the beginning of this report, the most recent approach for

designing cooperation schemes in relay networks that has attracted the most

interest from researchers is Compute-and-Forward, which exploits the interfer-

ence in multi-user communications by using structured codes. Actually, the

class of structured codes that were used in [20] had been introduced before and

its capability to achieve the Shannon limit had also been shown in [45], where

the codes are called lattice codes. The challenge is how to design practical lattice

codes that are not too complicated for computation, but which still approach

the capacity limit. Independent of the research on relay networks, several re-

searchers have found some interesting results about lattice codes. Specifically, a
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practical type of lattice codes has been proposed by N. Sommer, M. Feder and

O. Shalvi based on the similarity to LDPC codes, called LDLC (Low Density

Lattice Codes) [49]. The convergence analysis and some efficient methods for

decoding LDLC has also been given in [53] - [54]. Unfortunately, so far there

are no results on the connection between LDLC and cooperative communication

networks. A problem of designing practical LDLC or something similar is an

interesting direction, and optimization theory may be useful here.

• Another interesting optimization problem in relay networks is to minimize the

error of relay channel estimation. In relay channel estimation problems, we de-

sign an appropriate training data sequence and allocate the transmission power

to the source node and relay nodes. Then the training data from the source

node is sent to the destination node with the assistance of one or more relay

nodes for which we want to estimate the channel conditions. By observing the

received data from source nodes and relay nodes and knowing the transmitted

data, the destination nodes can estimate the channel coefficients. This is a

least-square problem and it turns out that the MSE (mean-squared error) of

the estimation will depend on the designed sequence and the power allocation.

By optimizing the training sequence and the power allocation, we can minimize

the MSE of the estimation.
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