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ABSTRACT

Sood, Chetan Ph.D., Purdue University, December 2013. Measuring and Model-
ing the Response Characteristicsof the Environmental Phosphate Transducerin Es-
cherichia coli. Major Professor: Ken Ritchie.

The PhoR/PhoB two-component system in Escherichia coli is a biological trans-

ducer that senses the limitation of environmental inorganic orthophosphate, the bac-

teria’s preferred source of the essential nutrient phosphate, and transmits that infor-

mation to the interior of the cell initiating a response that mitigates phosphate star-

vation. In the first part of this study, we present and apply a fluorescence microscopy

technique to measure, in vivo, the dynamic response characteristics of the transducer

with single-cell resolution. We report that the transience in the PhoR/PhoB TCS

response is consistent with the transducer having a threshold sensitivity to the con-

centration of environmental phosphate, below which the transducer stochastically

switches from a low to high operating point. Significantly, we find that the trans-

ducer response overshoots before settling to its final operating point. In the second

part of this study, we investigate a series of minimal models, simple extensions of the

birth-death process, that have response characteristics in common with the measured

transducer response. We find that using the Hill equation as the functional form

of the birth rate in an autoregulating birth-death process gives a bistable system

with stochastic switching. This demonstrates that the model complexity necessary

to reproduce the transducer’s qualitative behavior is less than the complexity of the

biological system.
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1. INTRODUCTION

Escherichia coli live amid a fluctuating and sometimes hostile chemical environment.

Drift in parameters such as temperature, pH, osmolarity, and the concentrations

of foods, nutrients and toxins can impact the efficiency of the biological processes

running within the bacteria. E. coli has evolved response mechanisms to mitigate or

even exploit changing environmental conditions. The majority of these mechanisms

are transcription programs that incorporate a type of biological transducer called a

two-component system to couple to environmental signals [1].

The two-component system (TCS) is a protein interaction network that converts

an environmental signal to a build-up in the intracellular concentration of a functional

protein. The excess functional protein controls the physiological response; in the case

that it is a transcription program, the functional protein usually directly promotes

or inhibits the transcription of a set of genes by interaction with the DNA. At least

thirty different TCSs have been identified in E. coli [2] and their implementation is

extensive among other prokaryotes.

Of course, prokaryotes are not the only organisms to use such systems: signal

transduction is a fundamental biological process found in all kingdoms of life. In gen-

eral, the signal transduction systems of higher organisms tend to be more complex.

Whereas a TCS is usually sensitive to one type of signal, the signal transduction

systems in humans often integrate and process many, including inter-organ commu-

nications such as hormones. But the basic principle is the same. Signal transduction

systems process, transmit, and convert extracellular signals to an intracellular signal.

The transduction of an extracellular signal can have interesting properties. Even

the relatively simple TCSs demonstrate a rich set of response characteristics. Steady-

state, large-population studies have shown that TCS signal response can be thresh-

olded [3] and bistable [4], where transitions between states occur stochastically.
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Numerous efforts have been made to construct predictive biochemical models of

TCSs and other signal tranduction systems. The value of system models (and the

possibility of whole-cell models) to a diverse range of disease and infection problems

is vast. More so, deep understanding of cell behavior demands model abstractions; as

the list of the cellular “nuts and bolts” grows to overwhelming proportion so does the

need to properly modularize the components into biologically meaningful functional

units. But mechanistic models remain elusive. Although component lists are long,

they remain incomplete, as is knowledge of the interactions among the components.

And the data against which the models are tested tends to be limited in the sense

that the data cannot convincingly choose among the competing imperfect models.

It has been suggested that measuring the transient response of a TCS at the single-

cell level would provide a better benchmark against which models can be tested (see,

for example, [5] which reviews the value of single-cell data and [6] which suggests the

necessity for measurements in the time-domain). In this study, we present and apply

an experimental method to measure, in vivo, the single-cell transient response of a

TCS. The method, a variation of the traditional fluorescence microscopy technique,

illuminates key features in the transience. Then, instead of taking the standard

approach of using this data to test a model constructed from knowledge of the system’s

“nuts and bolts”, we present a series of minimal models, simple extensions of the birth-

death process, that have features in common with the observed behavior. The goal

in this effort is not to find the best model of the TCS, but to identify the smallest

number of parts necessary to model its essential behavior.

The signal transduction system we study is the PhoR/PhoB TCS in E. Coli that

responds to the environmental limitation of inorganic orthophosphate (Pi), the bacte-

ria’s preferred source of the essential nutrient phosphate. Following a short comment

below, the remainder of this chapter describes the “nuts and bolts” of two-component

systems, in general, and the PhoR/PhoB TCS, in particular. In the second chapter we

describe the experimental methods and analysis, and, in the third chapter, we present

the results of the experimentation on the PhoR/PhoB TCS and an interpretation of
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the results. The fourth chapter introduces the basic model building framework and

reviews a comprehensive “nuts and bolts” model of the PhoR/PhoB TCS found in

the literature, before presenting the series of minimal models. As the minimal mod-

els will be of general interest, time and detail is devoted to developing a framework

within which to understand their behavior.

The Big Picture

This study represents the initial stage of a long-time research project. With the ex-

ception of the basic fluorescence microscopy technique (and the E. coli mutant strain

construction and sample culturing necessary for the experimentation, which was per-

formed in the laboratory of our collaborator: Professor Barry L. Wanner, Biological

Sciences, Purdue University), the experimental methods, analysis and interpretation

and the modeling methods, analysis and interpretation have been accomplished for

the first time in this laboratory. This study points the laboratory to a new line of

research; it is not an iteration of an established method on a new system. As such,

there did not exist a body of knowledge to motivate or guide the investigation, and, as

is usually the case at the beginning of a long and difficult project, we took many steps

backwards, redefining and narrowing the scope, before stepping forward. It is impor-

tant to take note of this, as the primary contributions of this work is establishing the

foundation and expertise necessary for the future stages of the project.

To give an example of this “moving backwards before moving forwards”, as orig-

inally conceived, this project was to use microfluidic devices as the experimentation

platform on which to deposit, grow, perturb and observe the E. coli response. Much

effort was devoted to developing the expertise to use the microfluidic devices in con-

cert with developing the experimental method and analysis, before it became clear

the use of the devices was overly burdensome for this phase in the project. The

need to rapidly and repeatedly perform the experiments overruled the initial desire

to use the microfluidic devices. So the scope of the project was narrowed, with the
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idea that migration of the experiments to the microfluidic platform would be a later

goal in the project. In anticipation of this eventual goal (and because the expertise

regarding microfluidic device usage represents, in itself, a significant contribution to

the long-time research project), a discussion of microfluidic devices has been included

in Appendix A.

1.1 Two-Component Systems

Signal transduction by a TCS is achieved by the interactions of two proteins: a

sensory histidine kinase and a response regulator. Three primary interactions con-

trol the signal transduction [7]. In the first, an environmental signal regulates the

autophosphorylation of the sensory histidine kinase (HK). In the second interaction,

the response regulator (RR) catalyzes the stoichiometric transfer of the phosphoryl

group from a phosphorylated HK to itself. And, in the third interaction, the phos-

phorylated RR dephosphorylates by transferring the phosphoryl group to water. The

phosphorylated RR is the functional protein, and the build-up of the intracellular

concentration of phospho-RR controls the physiological response.

Transduction is achieved in the sense that the TCS converts the environmental

signal to a change in the intracellular concentration of phospho-RR. For a typical

TCS, like the PhoR/PhoB TCS, the sensory histidine kinase (HK) is an integral

membrane protein and the response regulator (RR) is a cytosolic protein that, when

phosphorylated, binds with the DNA to regulate the transcription of a set of genes

(an important TCS in which the phospho-RR is not a transcription factor is the

Che system that controls the chemotaxis of E. coli). As we describe below for the

PhoR/PhoB TCS, it is possible that interactions among proteins in addition to the

HK and RR contribute to TCS signal trasduction.

As described in [7], an HK has two functional modules: a diverse sensing domain

and a highly conserved kinase core. In conjunction with other proteins, the sensing

domain interacts specifically with the environmental signal. This interaction causes
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a conformational change in the protein’s structure that modulates the activity of the

kinase core. In its activated conformation, the kinase core can undergo an ATP-

dependent autophosphorylation at a conserved histidine residue.

An RR also has two functional modules: a highly conserved regulatory domain

and a diverse effector domain. The RR catalyzes phosphoryl transfer from a phos-

phorylated HK to a highly conserved aspartate residue in its own regulatory domain.

Phosphorylation induces a conformational change that modulates the activity of the

effector domain. In its activated conformation, the effector domain can interact with

other biochemical species. The modular design of the HK and RR has allowed the

basic TCS template to be adapted to fit a variety of cellular signal transduction needs.

The three primary reactions that control TCS signal transduction can be summa-

rized as [7]:

1. Autophosphorylation: HK-His + ATP ⇔ HK-His∼P + ADP

2. Phosphotransfer: HK-His∼P + RR-Asp ⇔ HK-His + RR-Asp∼P

3. Dephosphorylation: RR-Asp∼P + H2O ⇔ RR-Asp + P + H2O.

1.2 Phosphate Homeostasis in Escherichia coli

Phosphate is essential for the survival, growth, and division of E. coli. In fact,

VanBogelen et al. [8] found that almost a tenth of the E. coli genome is differentially

expressed in response to the limitation of extracellular inorganic orthosphosphate

(Pi), the bacteria’s preferred phosphate source. Elemental phosphorus comprises

approximately three percent of the cell’s dry mass [9] mostly in the form of phosphate.

A large majority of the phosphate is found in the tens of millions of phospholipids

that make the cell membrane, and the entire membrane must be doubled in size each

cell cycle. Phosphate is also a building block of proteins and nucleic acids. As cellular

processes consume phosphate, the E. coli must capture more from the environment

to replenish its internal stock.
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The Phosphate-specific Transport System The uptake of Pi by E. coli is car-

ried out by the Pst (phosphate-specific transport) system which belongs to the su-

perfamily of ABC (ATP-binding cassette) transporters [10]. The Pst system is made

up of four proteins, PstS, PstA, PstB, and PstC. PstS specifically binds Pi in the

periplasm with high affinity, and PstA and PstC form the membrane channel for Pi

entry while PstB interacts with ATP to provide the energy necessary for transporting

Pi across the membrane [3].

1.2.1 The PhoR/PhoB Two-Component System

When E. coli are in an environment with excess Pi, the Pst proteins are tran-

scribed at a basal rate. Basal production replenishes the Pst systems that are lost

to degradation or dilution via cell division (the transporters are randomly divided

among the daughter cells when the cell splits).

Transcription of the Pst proteins is upregulated when Pi is limited – E. coli re-

sponds to the starvation signal by creating additional Pi-specific transport systems,

increasing the efficiency of Pi transport into the cell. This transcriptional response

is controlled by the PhoR/PhoB TCS, where PhoR is the integral membrane HK

and PhoB is the DNA-binding RR. It has been previously reported [3] [10] that,

from measurements in bulk cultures, the threshold delineating Pi limitation is near a

concentration of 4 microMolar ([Pi] = 4µM).

As suggested by Figure 1.1, a PhoR protein exists in one of three states: inhibi-

tion, activation, and deactivation [10]. The state of PhoR determines which reaction

channels (autophosphorylation, phosphotransfer, dephosphorylation) are available to

PhoR and PhoB. Transition between the PhoR states is controlled by the binding of

Pi to the Pst system (specifically to PstS) in the periplasm and facilitated by another

protein called PhoU.

Inhibition of PhoR When the Pst system is bound with a Pi molecule in the

periplasm, a PhoR, PhoB, PhoU, and the Pst system form an inhibition complex
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Figure 1.1. The PhoR/PhoB Two-Component System (image repro-
duced from [10]). The TCS responds to Pi limitation by increasing
the intracellular concentration of phospho-PhoB which upregulates
the production of the Pi transporter system (and other proteins).
PhoR exists in three states: inhibition, activation and deactivation.
In the inhibition state, the binding of PhoR to a Pst system prevents
PhoR from autophosphorylating, quenching the phosphorelay inter-
action between PhoR and the PhoB. In the activation state, PhoR
is released from the inhibition complex and quickly autophosphory-
lates. This opens the phosphorelay reaction channel, allowing a PhoB
to autophosphorylate. Phospho-PhoB can interact with the DNA to
upregulate the transcription of the Pho genes. In the deactivation
state, PhoR and the Pst system reform the inhibition complex and
PhoR (and possibly PhoU) participates in the dephosphorylation of
PhoB. At high [Pi], the inhibition and deactivation states are favor-
able, and at low [Pi], the activation state is favorable.
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that prevents the autophosphorylation of that PhoR; none of the reaction channels

are available. This state of PhoR is favorable when the Pi concentration ([Pi]) is high.

Activation of PhoR When the Pst system unbinds with the Pi molecule in the

periplasm, the inhibition complex dissociates and the PhoR is able to rapidly au-

tophosphorylate from cytoplasmic ATP. The active phospho-PhoR and a PhoB can

access the phosphotransfer reaction channel. The resulting phospho-PhoB can bind

to the DNA to regulate gene transcription. Along with the Pst proteins, phospho-

PhoB upregulates the expression of PhoB (auto-regulation), PhoR and PhoU (and

other Pho proteins). This state of PhoR is favorable when [Pi] is low.

Deactivation of PhoR When a Pst system rebinds a Pi molecule in the periplasm,

it interacts with a PhoR, PhoB, and PhoU to reform the inhibition complex. In the

deactivated state, PhoR and, possibly, PhoU participate in the dephosphorylation of

PhoB [10]. And, once PhoB is dephosphorylated, the inhibition state has been fully

recovered. The deactivation state of PhoR is favorable in high [Pi].

1.2.2 Stochasticity in PhoR/PhoB Response

It has previously been reported [4] that the response of the PhoR/PhoB TCS

has a stochastic nature. Specifically, that the TCS activity has two operating points

(bistability) and the switching between the operating points is intrinsically a random

process. This leads to response variability (phenotype variation) across an isogenic

population subjected to identical environmental conditions.

As a fundamental property of many biological systems, stochasticity has garnered

tremendous excitement and attention (see, for example, [11] for a review). Initially re-

ceiving treatment only as an interesting source of noise [12] [13] in biological systems,

there is a growing consensus [14] that stochastic processes offer survival advantage at

a population level. For example, [15] describes an experiment in which a genetically

homogenous E. coli population survives a temporary antibiotic treatment, not be-



9

cause of an acquired resistance, but, because a subpopulation spontaneously adopts

a slow-growing state that allows it to persist through the treatment.

Generally, stochastic effects arise when biochemical pathways incorporate interac-

tions involving species that occur at small enough copy number [14] that fluctuations

become important. We will see evidence suggestive of a stochastic response in the

results of the experiments investigating PhoR/PhoB TCS response presented in Chap-

ter 3. In Chapter 4, we will investigate a very simple bistable reaction system that

stochastically switches between stable states.
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2. EXPERIMENTAL METHODS

The experimental goal of this study is to measure, in vivo, the single-cell transient

response of the PhoR/PhoB TCS to Pi limitation. We define the PhoR/PhoB TCS

response as the change in intracellular concentration of phospho-PhoB caused by a

change in [Pi]. To measure the intracellular concentration of phospho-PhoB, we con-

duct the experimentation on an E. coli strain that has inserted into the chromosome a

fluorescent reporter gene whose transcription in upregulated by phospho-PhoB. Then

a measurement of the production rate of fluorescent protein (FP) acts as a proxy for

the instantaneous concentration (or number) of phospho-PhoB in a cell. We use flu-

orescence microscopy and a CCD to image the emission intensity of the FP that has

accumulated in single-cells over a time interval. By analysis of the image we quantify

the single-cell production rate of FP during the interval.

An experiment runs as follows: after preparing a sample for observation, we take

measurements at high [Pi] to characterize the basal rate of FP production. Then we

decrease [Pi] and take further measurements for some period of time. After analysis,

the data forms a time series reporting the response of the PhoR/PhoB TCS to step-

decrease in [Pi] (we will call the step-decrease in [Pi] the Pi-signal). Using the time

series we can investigate any transience in the TCS response to the Pi-signal.

In finding the results reported in Chapter 3, for the experimentation we used glass

dishes as the platform for cell deposition, growth, imposition of the Pi-signal, and ob-

servation. We note that the glass dish platform suffers from operational weaknesses

related to mismatch between the length and volume scales of the dish (centimeter

and milliliter) and that of the E. coli (micrometer and femtoliter), including lack of

precision and speed in altering the extracellular environment and lack of control of

the movements of the cells within the dish. These weaknesses are pointed out, in par-

ticular, because they can be specifically addressed by migrating the experimentation



12

to a microfluidic platform. This should be an experimental goal for the next phase of

the project, and a discussion regarding microfluidic devices is included in Appendix

A.

To build a more complete picture of the experimental methods we use in this

study, the following sections discuss in further detail fluorescent proteins, fluorescence

microscopy, the experimental protocol and image analysis.

2.1 Fluorescent Protein and Reporter Complex

The isolation of the gene in bioluminescent jellyfish that encodes the green fluores-

cent protein [16] led to the development of a library of fluorescent proteins with differ-

ent useful properties, such as color, photostability, maturation time, and brightness

(see, for example, [17] for a review). And, recombineering (recombination-mediated

genetic engineering) techniques [18] [19] can incorporate into the chromosome the gene

encoding a fluorescent protein (FP) along with an arbitrary promoter that controls

the transcription of the FP gene (by the normal machinery available in a living cell).

These technologies give the investigator the ability to dictate the conditions under

which the cell produces FP, providing a versatile tool for probing different cellular

processes and systems in vivo.

We chose to insert into the chromosome of the E. coli the fast-folding variant of

the yellow fluorescent protein, called Venus [20]. Figure 2.1(a) shows the excitation

and emission spectra of Venus [21], with the maximum excitation and emission at 515

and 528 nm, respectively. In the chromosomal insertion, the Venus gene is encoded

downstream from the promoter of PhoA (phoAp), a Pho protein whose transcription

is upregulated by phospho-PhoB. Also in the insertion is the gene of the membrane

protein TatB, so that Venus and TatB are produced together as a complex. TatB

carries the Venus to the membrane, and the fluorescent reporter complex diffuses in

the membrane in two-dimensions where it is easily imaged.



13

Figure 2.1. Excitation and emission spectra of the Venus fluores-
cent protein compared to the transmission spectra of the filter set
used to image Venus. (a) The emission spectra (solid) of Venus is
red-shifted from the excitation spectra (dashed). (b) The measured
transmittance spectra of the optical components in the fluorescence
microscopy set up used to image Venus. The excitation filter is a
narrow bandpass filter used to select the 488 nm line from the Argon
laser. The dichromatic mirror (dichroic) reflects the 488 nm excita-
tion beam to the sample and transmits the resulting red-shifted Venus
emission collected by the objective. The emission filter transmits the
Venus emission to the camera while attenuating stray light from the
excitation beam and other sources.



14

2.1.1 The Advantage of Venus Photobleaching

As discussed previously, basal transcription of the Pho genes ensures the Pho

proteins are continuously produced. With our insertion of the fluorescent reporter

complex downstream the PhoA promoter, Venus is also continuously produced in the

cells we study. The accumulation of Venus over the entire (unknown) cell history poses

a technical challenge for the single-cell emission intensity measurement, because, each

cell in the field of view enters the measurement time interval at a different brightness.

In order to maximize the sensitivity of the CCD to all the single-cells in the field

of view, it is preferable that each cell begins the measurement interval at the same

brightness. We exploit the ability to photobleach Venus as a means by which to

reduce all the cells in the field of view to the same brightness, effectively erasing their

unknown history.

Photobleaching is a photon-induced chemical damage that causes an FP to lose

the ability to fluoresce. The incidence of photobleaching has been found to correlate

approximately with the total number of excitation-emission cycles, as the FP is more

likely to undergo the damage while in the excited state (or, in an operational sense,

the incidence of photobleaching FP in a bulk sample increases with power of excitation

beam and the duration of exposure to the beam). This number generally depends on

the molecular structure of the FP and is reported as its photostability [17].

The illumination protocol for the data acquisition is as follows. Before the data

acquisition, we conduct a calibration experiment in order to tune the length of the

“bleaching”’ interval and the power of the excitation beam during the bleaching in-

terval so that, at the maximum rate of Venus production, after the bleaching interval

the Venus accumulated in every cell in the field of view (FOV) is photobleached. Dur-

ing data acquisition, we precede each measurement interval with a bleaching interval

during which the field of view is continuously exposed to the excitation beam, photo-

bleaching all the cells in the FOV. At the end of the bleaching interval we illuminate

the FOV with the excitation beam and record the emission intensity (as a reference
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for the measurement). Then the FOV is subjected to the dark, measurement inter-

val during which Venus is produced in the cells. After that, we, again, shine the

excitation beam onto the FOV and record the emission intensity (the measurement).

As described in further detail in Section 2.4, for a given cell, by taking the differ-

ence of the emission intensity before and after the measurement interval and dividing

by the duration of the measurement interval we calculate a quantity that we infer as

the rate of Venus production in the cell.

2.2 Fluorescence Microscopy

To record the single-cell Venus emission intensity in an image that we can analyze,

we arrange a laser, camera, objective and supporting optical components in the stan-

dard epifluorescence microscopy setup. The setup is schematically depicted in Figure

2.2. We will generically discuss the setup before describing the specific components

used to measure the single-cell Venus emission intensity.

In epifluorescence microscopy, a light source is conditioned and passed through an

excitation filter, a narrow bandpass filter that isolates an excitation wavelength. This

monochromatic beam travels to a dichromatic mirror (dichroic), which reflects in a

band containing the excitation wavelength, but transmits at higher wavelengths. The

dichroic reflects the excitation beam through the objective and through the sample

containing the cells. This excitation beam causes some FP in the cells to fluoresce,

and a part of the emission is collected by the objective. The collected light travels to

the dichroic, where it is transmitted to the CCD for recording.

To measure the single-cell Venus emission intensity, we use, as the excitation

source, an Argon-ion laser that emits at 488 nm. The excitation filter transmits the

band 488±10 nm, eliminating other Argon lines, while the dichroic almost completely

reflects these wavelengths. The transmittance of the dichroic increases rapidly from

495-510 nm, above which it transmits at least 75 percent. In order to capture as much

of the emission spectrum as possible, the emission filter has a broader transmittance
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Figure 2.2. Epifluorescence microscopy illumination path. After
conditioning (lenses not shown) the excitation source (laser) passes
through a narrow bandpass excitation filter to select the appropriate
excitation wavelength. The dichromatic mirror (dichroic) reflects the
excitation beam towards the sample. The excitation beam excites flu-
orescent molecules in the sample. The resulting red-shifted emission
from the sample is gathered by the objective and transmitted by the
dichroic. The emission beam is transmitted by the bandpass emission
filter and focused on the CCD for imaging.
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Table 2.1
Optical components used in the fluorescence microscopy setup. The
table presents product and provider information regarding major com-
ponents in the setup.

Component Product Provider

Laser M177G Air-cooled Argon Ion SpectraPhysics

Microscope IX-71 Inverted Olympus

Objective PlanApo 40x NA0.95 ∞/0.11-0.23 Olympus

CCD XR/MEGA-10Z Turbo ICCD Stanford Photonics

Excitation 488/10nm single band filter Semrock

Emission 525/20nm single band filter Semrock

Dichroic 505nm edge long-pass square filter Semrock

band then the excitation filter, about 525±20 nm. The measured transmittance

spectra of the filter set (excitation filter, dichromatic mirror, and emission filter)

chosen to image Venus is shown in Figure 2.1(b). In the figure, for reference the

transmittance spectra are diplayed directly below the Venus excitation and emission

spectra. A 40x objective is used to collect the fluorescence emission and focus the

image for recording on a cooled, dual-intensified CCD. Table 2.1 lists each of the

components used in the setup by product name and provider.

2.2.1 Fluorescence Intensity

It is important to note that the value of the single-cell Venus emission intensity

that we report can be arbitrarily changed by adjusting any of three experimental

parameters: the power of the laser, the gain of the intensifier, or the length of the

measurement interval. The optimal parameter settings produce the most significant

signal by maximizing the number photons emitted by the FP that are recorded by the
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CCD and minimizing background, while also giving a suitable dynamic range over

which to compare measurements of different intensity.

To address the issue of dynamic range, the parameters are adjusted so that the

measurement of the basal production rate (measured in high [Pi]) can “just be seen”

by eye in the CCD image. This gives a large dynamic range in which to image the

cells as they produce FP at higher rates, while still retaining the ability to measure

the basal production rate. Measuring the basal rate in every experiment is important

because it gives a standard relative to which higher FP production rates can be

compared.

A working set of the parameters was found by trial-and-error, taking a few consid-

erations into account. First, increasing the power of the laser increases the number of

times each FP is excited during an image acquisition which can give a better signal.

But this also increases the rate at which the FP photobleach. Though this might be

desirable when the cells are intentionally bleached, laser power must not be so high

that the FP are significantly photobleached during an image acquisition. Increasing

the intensifier gain increases the signal as well as the background. Increasing the

length of the measurement interval increases the amount of FPs produced during the

interval in a cell. Though this does increase the single-cell signal without affecting

the background, the interval cannot be so long that cells grows significantly during

the duration of the measurement interval.

2.3 Sample Preparation

This section describes the method used to prepare a sample for observation.

2.3.1 E. coli Strain and Culturing

The construction of the E. coli strain (K-12 BW39341) with the phoAp=TatB-

Venus chromosomal insertion was constructed in the laboratory of our collaborator,

Professor Barry L. Wanner, Biological Sciences, Purdue University. This lab also
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cultured and prepared the E. coli samples for the experimentation. The goal of the

culturing is to put the cell population in a reproducible state just before experimen-

tation. The desired state corresponds to the exponential growth of the population.

For the experiments discussed in Chapter 3, the cultures were picked up from the

Wanner Lab on the day of the experiment. Provided with the samples was MOPS

minimal media at various [Pi] for use during the experiments.

2.3.2 Constructing Sample for Observation

The glass dishes used in this study were formed using commercially available

FLEXIperm R© silicone chambers. The chambers are open on both sides, and one side

can be reversible adhered to clean glass forming a dish. E. coli are deposited in a

single layer on the clean glass inside the dish, and the MOPS media sits in the ∼1

mL volume above the cells. Before cell deposition, the clean glass is treated with

Poly-L-lysine (Sigma) to electrostatically adhere the cells to the glass. This keeps the

cells near the glass and within the focal volume of the objective.

To keep the FLEXIperm R© silicone chambers clean, they were autoclaved weekly

for 55 minutes at 250 degrees Farenheit. If the chambers were to be used more than

once a week, they were soaked overnight in a 50% ethanol solution before use.

We used 25 mm glass coverslips to close the chamber and form the dish. Before

use the glass was cleaned by the following steps: (1) 24 hour soak in 5% solution

of Contrad detergent, (2) 30 minute sonication on highest power, (3) 10x wash with

distilled water, (4) 3x wash with ultra-high quality water, (5) 24 hour soak in 1 M

HCl, (6) 30 minute sonication on highest power, (7) 10x wash with distilled water,

(8) 3x wash with ultra-high quality water, (9) 3x wash with methanol. The cleaned

glass can be stored in methanol for a few weeks.

The Poly-L-lysine treatment of the clean glass was achieved by the following steps:

(1) pipette 70 µL of 0.1 mg/mL solution of Poly-L-lysine onto the surface of glass,

(2) incubate 30 minutes to allow the polymer to coat the surface, (3) aspirate the
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solution off the glass, (4) rinse dish with ultra-high quality water, and (5) let glass

air dry.

With the sample platform prepared, 100 µL of the cell culture was pipetted onto

the glass and allowed to settle for 20 minutes. Then the cell solution was aspirated

off the glass and the dish was washed three times with MOPS media to remove all

cells that did not adhere. Finally, 1 mL of MOPS media was pipetted onto the dish

to provide the cells with nutrients and food during the course of the experimentation.

Change in [Pi] was accomplished by manually exchanging the 1 mL of MOPS media

for a MOPS media with a different [Pi] using the same procedure (aspirate old media,

wash dish three times with new media, pipette 1 mL of new media onto the dish).

During the experimentation, the temperature of the glass dish was maintained at

34 degrees Celsius by means of heater.

We do note that the Poly-L-lysine deforms and flattens [22] cells adhered to the

glass. As this might possibly effect the cell physiology, experiments have been con-

ducted using Cell-tak (BD), in place of the Poly-L-lysine, to adhere the cells to the

glass. Though not reported in the next chapter, the experiments using Cell-tak give

the same qualitative results.

2.4 Image Analysis

The goal of the image analysis is to convert an acquired image, which includes

the single-cell Venus emission intensity of many E. coli in the field of view, to a set

of datapoints that each represents the fluorescence intensity of a single cell. The first

step in the image analysis is constructing masks that coincide with the shape of a

cell. Once the appropriate masks are found, it is straightforward to read off the value

recorded for each pixel inside the mask.

To guide the following discussion, a representative set of images acquired during

experimentation is shown in Figure 2.3. In the figure, each image shows the fluores-

cence intensity of cells in the same field of view at different times during the data
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(a) (b) (c)

Figure 2.3. Single-cell fluorescence intensity imaging. The fluores-
cence intensity of a field of view containing several cells is imaged (a)
before the photobleach interval, (b) after the photobleach interval,
and (c) after the measurement interval. In this experiment, the pho-
tobleach interval was set at three minutes and the recovery interval
at five minutes.

acquisition. Figure 2.3(a) is taken at the start of the photobleaching interval and

shows the accumulation of Venus over the cells’ history. Figure 2.3(b) is taken at

the end of the bleaching interval. The cells appear dark because all the Venus has

photobleached. The time Figure 2.3(b) is taken also corresponds to the start of the

measurement interval. Figure 2.3(c) is taken after the dark, measurment interval, and

the cells show some fluorescence intensity. For this experiment, the bleaching interval

was set to three minutes and the measurement interval to five minutes. So Figures

2.3(a) and 2.3(b) were acquired three minutes apart with the laser illuminating the

FOV for that entire period. And, Figures 2.3(b) and 2.3(c) were acquired five minutes

apart, during which time the field of view was dark.

Cell masks are constructed using a time-series of images collected as a movie

during the bleaching interval. For brighter cells the movie is taken deeper into the

bleaching interval so that no CCD pixel is saturated. The images of the movie are

averaged together so that noise in the background is supressed. The average image

corresponding to the bleaching interval between Figures 2.3(a) and 2.3(b) is shown

in Figure 2.4(a).
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(a) Average image. (b) Cell masks.

Figure 2.4. Constructing masks to coincide with the shape of the cells.
(a) The image constructed by averaging together subsequent frames
in a movie acquired during the bleaching interval. (b) Cell masks are
constructed by processing the average image and selecting areas in
the processed images that visually correspond to cells.
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The average image is fed through a bandpass filter and thresholded, and then

compared, by eye, to a brightfield image of the same field of view. Areas that can be

trivially selected in the thresholded image and that correspond visually to single cells

in the brightfield are chosen as masks. Figure 2.4 shows the masks that result from

processing 2.4(a).

If Ii(0) is the average pixel value (arbitrary units) inside the ith mask at the end

of the bleaching interval, Ii(∆t) is the average pixel value inside the same mask at the

end of the measurement interval, and ∆t is the duration of the measurement interval,

then we report the rate of Venus production for the ith cell as

Production Rate (a.u.) =
Ii(∆t)− Ii(0)

∆t
.

In the following chapter we discuss the results of the experiments that use the

methods just described.
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3. EXPERIMENTAL RESULTS

In this chapter we describe the results of experiments conducted according to the

methods discussed in Chapter 2. Briefly, cells of E. coli strain K-12 BW39341 (with

chromosomal insertion phoAp=TatB-Venus) were immobilized with Poly-L-lysine in

clean glass dishes. The samples were then washed and incubated in 2 mM [Pi] MOPS

minimal media for a few generations. During the incubation period single-cell Venus

emission intensity measurements were collected to determine the basal rate of protein

production. After the incubation, the media was manually exchanged for MOPS with

[Pi] equal to either 0, 5, 10, 25 or 50 µM and further measurements were collected to

determine the change in the rate of protein production induced by the PhoR/PhoB

TCS.

Figure 3.1 shows the results from the image analysis of the measurements taken

during the five experiments. In the figure, each data point (red circle) gives the rate

of Venus production (in arbitrary units) for a single cell. The grey, dashed line shows

when the Pi-signal was imposed (when [Pi] was changed from excess, 2 mM, to the

limited concentration indicated on each graph).

An immediate conclusion that we can draw from Figure 3.1 is that the threshold

for the PhoR/PhoB TCS response is greater than the 4 µM [Pi] reported previously;

the threshold appears to be between 25 and 50 µM – in 3.1(c) there is a significant

and obvious change in the observed single-cell protein production measurements after

the change to 10 µM, but not so in 3.1(e) after the change to 50 µM.

Also, we note the large cell-to-cell variability in the measurements in Figures

3.1(a), (b), (c) and (d). We believe the variability is a property of the PhoR/PhoB

TCS response, and that it demonstrates the stochastic nature of the TCS.

In the following sections we identify qualitative characteristics in TCS response

suggested by the data in Figure 3.1. The strength of these suggestions are limited
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Figure 3.1. Single-cell PhoR/PhoB TCS response to various Pi-
signals. Each graph shows the results of an experiment in which [Pi]
was changed from 2 mM (excess) to (a) 0, (b) 5, (c) 10, (d) 25 or (e)
50 µM. In each graph, the red circles represent a single-cell measure-
ment of protein production as described in the text. The change in
[Pi] (indicated by the grey, dashed curve) occurs at time zero in all
experiments.
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by the number of experiments conducted for each Pi-signal and the coarse sampling

rate of the experiments. These two concerns are currently being addressed by further

experimentation performed by another investigator in our lab, Dr. Yoriko Lill, and we

note that the results found so far by Dr. Lill are consistent with the data presented

in Figure 3.1.

3.1 Bistability and Subpopulation Isolation

Figure 3.1(a), (b) and (c) show clearly that the PhoR/PhoB TCS responds to

the Pi-signal: in these three figures it is obvious that for a fraction of cells the rate

of Venus production increases above the basal rate. But, another fraction of the

cells seems never to leave the basal state. This is consistent with the findings of

Zhou et al. [4], that, using flow cytometry techniques, measured enough single cells

to conclusively determine that the PhoR/PhoB TCS response was bistable. Though

only suggested by the data in Figure 3.1, the measurement is consistent with the

bistable hypothesis.

As an aside, we note that, in regards to the segmentation of the data, the as-

sumption of bistability is equivalent to changing the nature of the question we ask

of the data. Instead of asking “what is the character of the single-cell PhoR/PhoB

TCS response?”, we can ask “what is the character of the single-cell PhoR/PhoB

TCS response in cells significantly outside of the basal state?”. After changing the

question we ask of the data, we would proceed in identical fashion from the popu-

lation segmentation to the analysis and interpretation presented in the remainder of

this chapter. Though the bistability hypothesis has implications for the model con-

struction discussed in Chapter 4, it is not absolutely necessary for the data analysis

and interpretation.

From the assumption that there are two distinct subpopulations represented in the

data, we separate the data points into the subpopulations and analyze the subpop-

ulations independently. In order to find a cutoff that delineates the subpopulations,
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Figure 3.2. Distribution of single-cell PhoR/PhoB TCS basal activity.
The single-cell measurement of protein production from multiple ex-
periments at excess [Pi] (2 mM) are combined in the histogram. The
histogram is fit to a Guassian to find the center (x0) and standard
deviation (σ). The cutoff used to decide whether cells are in the basal
state is chosen as x0 + 2σ.

Figure 3.3. Fraction of single-cells above the cutoff. The cutoff, de-
scribed in the text, isolates cells in the basal state. The plot shows,
for the timepoints after the Pi-signal, the fraction of cells outside the
basal state.

we use the data from all five experiments before the imposition of the Pi-signal to

place bounds on the population with protein production at the basal rate. Figure 3.2
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collects this data and shows the distribution of measured values of single-cell basal

protein production (in excess, 2 mM, [Pi]) from all the experiments. We characterize

the basal state by fitting the histogram in Figure 3.2 to a Gaussian distribution. Two

standard deviations above the mean captures nearly 98% of the subpopulation in the

basal state, and delineates a reasonable cutoff between the subpopulations. We note

that reporting a “TCS response” is subject to the definition of the basal state which

will depend on the experimental method and analysis.

If the PhoR/PhoB TCS is not affected by the Pi-signal, we would expect no more

than about 2% of the population to be above the cutoff. For the timepoints after the

Pi-signal in every experiment, Figure 3.3 shows the fraction of cells above the cutoff.

Surprisingly, there exists a substantial fraction of cells outside the basal state after

the 50 µM Pi-signal, and we must conclude that these cells are affected by that signal

or affected by the changing of the media. Even so, as we can see in Figure 3.1(e), the

data points in the 50 µM experiment are bunched so closely that we will not treat

the results from this experiment to further analysis.

Upon manually exchanging media from MOPS with 2 mM [Pi] to MOPS with

50 µM [Pi] basal transcriptional activity of the PhoR/PhoB TCS is measurably per-

turbed, but this perturbation is significantly different in character to that measured

upon changes to 0, 5, 10 and 25 µM [Pi]. We interpret the significant difference in

character between the response to the 50 µM Pi-signal versus the response to other

signals as indicative of the threshold sensitivity of the PhoR/PhoB TCS.

3.2 Summary Statistics: Median and Median Absolute Deviation

We would like understand how the subpopulations behave after the 0, 5, 10 and

25 µM Pi-signal. Because the sample of cells we measured at each timepoint in each

experiment can contain outliers (see, in particular, Figure 3.1(d)), we do not believe

that the mean and the standard deviation are the most robust characterizations of

the central tendency and dispersion, respectively, of each sample. In their place, we
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calculate the median and the median absolute deviation. The median is the data

value that separates the higher- and lower-valued halves of the sample. To calculate

the median absolute deviation (MAD) we first calculate the median of the sample,

median(Xi), where the Xi are the data points in the sample. Then we calculate the

set of deviations between the data points and the median,

Xj −median(Xi),

where we have, now, indexed the data points with j. Then we create another set

from the absolute values of the deviations, and take the median of that set,

MAD = medianj(|Xj −median(Xi)|).

3.3 Ramp Up after Pi-signal

Figures 3.4 and 3.5 show, in the left-hand column, the original raw data with

the subpopulations marked with different symbols and colors. And, in the right-

hand column, these figures show the median and MAD of the subpopulations at each

timepoint, where the MAD is represented by the bars surrounding the symbols that

show the location of the median. Figure 3.6 shows, on the same plot, the medians

calculated for timepoints in the 0, 5, 10 and 25 µM [Pi] experiments.

We interpret Figures 3.4 and 3.5 as suggesting that the rise time to maximal re-

sponse is signal-independent, while the value at maximal response is signal-dependent.

Since our measurements are coarse in time, we cannot support these claims quanti-

tatively.

3.4 Overshoot before Settling

An intersting feature of the PhoR/PhoB TCS response suggested by in Figures

3.4 and 3.5, is that the TCS overshoots it final steady-state. In order to demonstrate

that this data indicates an overshoot, we need to calculate the error in the estimate

of the subpopulation median, and show that the median at the maximal response is



31

Figure 3.4. Summary statistics describing the behavior of the two
subpopulations before and after the Pi-signal. (a) The raw data for
the 0 µM experiment has been segmented into the subpopulation in
the basal state (black square) and the subpopulation out of the basal
state (red circle) for each timepoint. (b) The subpopulations from
(a) are characterized by their median (red circle) and median abso-
lute deviation (red bars) showing, respectively, the central tendency
and dispersion of each sampling. (c) Same as (a), but for the 5 µM
experiment. (d) Same as (b), but for the 5 µM experiment.
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Figure 3.5. Summary statistics describing the behavior of the two
subpopulations before and after the Pi-signal. (a) The raw data for
the 10 µM experiment has been segmented into the subpopulation in
the basal state (black square) and the subpopulation out of the basal
state (red circle) for each timepoint. (b) The subpopulations from (a)
are characterized by their median (red circle) and median absolute
deviation (red bars) showing, respectively, the central tendency and
dispersion of each sampling. (c) Same as (a), but for the 25 µM
experiment. (d) Same as (b), but for the 25 µM experiment.
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Figure 3.6. Response of subpopulation median to various Pi-signals.
For the time points in the different experiments, the median of the
subpopulation out the basal state is compared. As a reference to the
basal state, the first time point in 2 mM [Pi] is included. The grey,
dashed line indicates the arrival of the Pi-signal.
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significantly different then the median at the long-time response. But the error in

the sample median is difficult to reliably estimate by the common boot strap method

since the sample size is not very large (30-50 datapoints).

To find an estimate of the error in the estimate of the central tendency, we turn

to more familiar statistics. If we use the mean and standard deviation as indicators

of central tendency and dispersion, respectively, then we can calculate the standard

error in the mean in the usual way. For mean X̄, standard deviation s and sample

size N , the standard error in the mean is

σX̄ =
s√
N
.

Figure 3.7 shows the mean and standard error in the mean calculated for the sub-

population out of the basal state for time points in 0, 5, and 10 µM [Pi] experiments.

We see in Figure 3.7 for the 5 and 10 µM experiments that the location of the center

of the sample at the maximal response level is significantly higher then the center

of the sample at the long-time response level – the TCS response overshoots before

settling. The effect is also present in the 0 µM experiment, though the standard error

in the mean is larger because the presence of outliers in the samples at each time

point in this experiment corrupts the estimate of the mean and standard deviation.

For the 0, 5 and 10 µM experiments, Table 3.1 shows the statistics describing the

subpopulation out of the basal state for time points after the Pi-signal.

3.5 Summary

We set out to draw qualitative conclusions regarding the response behavior of

the PhoR/PhoB TCS from the data presented in Figure 3.1. Significantly, our mea-

surement demonstrates that, at the population level, the transducer ramps up and

overshoots before settling to its final steady-state. We also found that our measure-

ments were consistent with the transducer having, at the single-cell level, a threshold

sensitivity and a bistable response that stochastically switches between fixed points.

We have been cautious in the interpretation of this data as it is limited, though recent
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Figure 3.7. Response of subpopulation mean to various Pi-signals.
For the time points in the different experiments, the men of the sub-
population out of the basal state is compared. The bars indicate the
standard error in the mean. The grey, dashed line indicates the arrival
of the Pi-signal.
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Table 3.1
Statistics describing the subpopulation out of the basal state for time
points after the Pi-signal in the 0, 5 and 10 µM experiments.

0 µM Experiment Data points above cutoff

minutes after Pi-signal Md MAD x̄ s σx̄

27.5 12.4 3.4 14.5 6.8 2.3

54.5 60.1 32.4 64.2 35.9 7.0

80.1 46.1 28.8 51.0 37.4 6.6

108.3 37.2 13.8 41.2 27.9 4.5

5 µM Experiment Data points above cutoff

minutes after Pi-signal Md MAD x̄ s σx̄

23 9.2 1.0 10.0 2.7 0.8

53.4 63.5 20.4 65.0 28.5 4.8

83.3 32.4 16.6 41.4 29.0 4.0

118.7 25.6 8.1 27.2 13.1 1.8

10 µM Experiment Data points above cutoff

minutes after Pi-signal Md MAD x̄ s σx̄

17.2 9.3 1.6 9.5 2.4 0.5

46.0 40.3 18.9 46.9 29.9 4.9

79.0 22.0 9.1 26.7 18.6 2.3

118.3 18.6 5.3 21.4 10.4 1.4
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results found by another investigator in our lab are consistent with the data in Figure

3.1.

The strategy we have developed for analyzing the data of single-cell fluorescence

microscopy experimentation should prove valuable as further experimentation is con-

ducted.
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4. MODELING

The goal of this chapter is to demonstrate that simple reaction systems can qualita-

tively reproduce some of the features observed in PhoR/PhoB TCS signal response.

We do not try to find a comprehensive model for the TCS, that is beyond the scope of

this work. Instead, we identify basic model components that give rise to the observ-

able response features. The value in this approach is that we can build an intuition

regarding how model components contribute to the overall behavior of the system;

giving a toolbox of model components that can be systematically integrated into a

complete model of the PhoR/PhoB TCS or other signaling systems.

The chapter is comprised of three parts. We begin the chapter by introducing,

in the first part, the basic principles for building reaction systems, and the tools we

will use to solve the time evolution of a system. In the second part, we review the

model of the PhoR/PhoB TCS proposed by Kierzek et al. [23] in which a detailed

and comprehensive reaction system is proposed as a model for the PhoR/PhoB TCS.

The model of [23] is presented to constrast the approach to model construction we

take in the final part of the chapter. In that part, we propose and investigate a series

of related simple reaction systems and build a framework in order to understand their

behavior.

4.1 Reaction System and Reaction-Rate Theory

In analogy to chemical reaction theory, we can think of a signal transduction net-

work as a collection of reactions that, over time, changes the concentration or number

of the biomolecular species present inside the cell by consuming or creating copies of

the species. One of the smallest reaction systems that is biologically interesting con-

sists of the birth and death of a single species, X, and in the simplest case, the birth
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and death of X occur at constant rates, c1 and c2, respectively. This birth-death

reaction system can be represented schematically as

∅ c1
X

c2 ∅.

For a closed system, in the case that the number of copies of X is large and the

reaction volume, V , fixed, the classical reaction rate theory gives [24] the change of

the mean number of X (or, equivalently the concentration of the species) in time as

Ẋ = c1 − c2X. (4.1)

Note that we use the same designation (in this case, X) for both the species name

and the mean number of the species. The mean number X evolves deterministically

in time according to the solution to Equation 4.1, which is

X(t) =
c1

c2

+ (X(0)− c1

c2

)e−c2t.

From intial value X(0), the mean number exponentially approaches the steady-state

value of Xss = c1
c2

with a time constant equal to the inverse of the death rate c2. The

appearance of the two scales, c1
c2

and c2, suggests a scale invariant form of the solution.

Finding the scale invariant solution can reduce the number of free parameters in

the system, allowing us to focus on the system behavior and not get caught up in

the details of precisely defining the all the parameters. Starting with Equation 4.1,

we can rescale time c2t→τ and define Z = X
Xss

. Doing so reduces Equation 4.1 to

Ż = 1− Z (where the derivative is taken with respect to τ), which has solutions

Z(τ) = 1 + (Z(0)− 1)e−τ .

The variable τ is dimensionless and represents the number of time constants that have

elapsed. Figure 4.1 shows two solutions Z(τ) that start at a different initial values of

Z.

The reaction-rate formulation can be used to study the dynamics of the mean

numbers of species of a reaction system of arbitrary complexity. For example, we can

add to the birth-death scheme a reversible isomerization
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Figure 4.1. Deterministic solutions of the constant rate birth-death
reaction system. The time evolution of Z evolves deterministically
according to Z(τ) = 1 + (Z(0) − 1)e−τ . The curves begin at the
different initial conditions, Z(0) = 2 and Z(0) = 0, and exponentially
approach the steady-state Z = 1 with time constant 1.

X Y ,

or a two species reaction

X + Y Z,

or any number of variations or complications of these types of reactions (three-species

reactions are usually treated as a series of two-species reactions). To add further

complexity we can define the reaction rates as functions of one or more species.

In a reaction system that specifies N reactants interacting in M reaction channels,

the time derivative for the change in mean number of the ith species will generally

depend on the mean numbers of all the species and on the reaction structure and

kinetic parameters:

Ẋi(t) = fi(X1(t), ..., XN(t)).

The solution to this set of coupled, ordinary differential equations gives the time evo-

lution of the mean number of every species in the system. In most cases, finding an
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analytic solution to this set of differential equations is impossible; but there are es-

tablished numerical methods and readily available software implementations of these

methods to computationally solve such reaction systems (we use the ‘ode45’ solver in

MATLAB whose method is described in [25]).

Monte Carlo Method

As noted by Daniel Gillespie [26] [27] [28] the reaction-rate theory makes the

explicit assumptions that the time evolution of the system is deterministic and con-

tinuous in the Xi space. For some systems, especially for systems with species that

occur at small numbers, the continuum approximation fails.

In place of the reaction-rate formalism, Gillespie proposed [27] a kinetic Monte

Carlo method to study the time evolution of a reaction system. The method randomly

samples trajectories of the reaction system, where each trajectory is a timed path

through the state space comprised of the number of each species in the system. From

a collection of trajectories the time evolution of various statistics of the number of a

species, including the mean number, can be determined.

In the description of his Monte Carlo method, Gillespie demonstrated that [26]

[27] [28], if well-stirred, the time evolution of the reaction system can be rigorously

described as a continuous-time Markov process. So each step in a trajectory depends

only on the current state of the system and the structure and kinetic parameters

describing the reactions. In the demonstration, he connected these kinetic parameters

to those of the reaction-rate formulism – no additional information regarding the

reaction system is required.

Gillespie also described a computer algorithm, commonly called the Stochastic

Simulation Algorithm (SSA), to build the simulated trajectories. The SSA, and its

many refinements, is currently a pervasive tool in simulating the behavior of biological

reaction systems. Appendix B describes in more detail Gillespie’s SSA.
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Figure 4.2. Monte Carlo (stochastic) analysis of the constant rate
birth-death reaction system in scale-invariant form. (a) A collection
of trajectories that simulates the time evolution of the reaction sys-
tem from different intial states. (b) From the simulations, the time
evolution of the sample mean, Z, and standard deviation, σ, are cal-
culated.

Figure 4.2 presents a Monte Carlo (stochastic) analysis of the scale invariant form

of the constant rate birth-death reaction system. Figure 4.2(a) shows sixty simulated

trajectories of the reaction system, with half the trajectories starting below and half

starting above the steady-state value. And Figure 4.2(b) shows the time evolution

of the sample mean and standard deviation as calculated from the trajectories. The

mean response is in good agreement with the deterministic solution shown in Figure

4.1.

For the various reaction systems we present later in this chapter, we will use both

the deterministic and stochastic analyses as tools to study system response. The

deterministic analysis is less computationally expensive and yields precise knowledge

regarding the time evolution of the mean number as described by the differential

equations. But this solution is not always a good predictor of the system’s behavior.

In particular, as we will see in Section 4.6, for a bistable system where switching

between states depends on stochastic fluctuations, the long-time mean number found
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by the deterministic analysis incorrectly describes the behavior discovered via the

stochastic analysis. Aside from giving a more accurate picture regarding the behav-

ior of a reaction system, the stochastic analysis allows the computation of the time

evolution of various sample statistics in addition to the mean.

4.2 Remarks Regarding Model Freedom

Now that we have a basic framework in which to build and study reaction systems,

we must decide how to put together a reaction system that models the behavior of the

PhoR/PhoB TCS. And, we must do this with incomplete and imperfect knowledge of

the actual signal transduction network. As we can imagine, there are many reaction

systems that might sufficiently reproduce the observed behavior while having net-

work structure and kinetic parameters that might sufficiently overlap what is known

of the protein signaling network. The criteria constraining the freedom in model con-

struction are ill-defined and must be imposed, ad hoc, by the investigator. Before

broadly commenting on the two contrasting philosophies regarding the problem of

model freedom, we take the opportunity to directly quote Bolouri and Davidson [29]

who elegantly characterize the problem:

All modeling is an abstraction of reality. The only exact model of any

system is the system itself. So, when we set out to build a model of

a system..., we must make a choice about the level of detail and type

of features that the model should represent. To a large extent, this is

dictated by the characteristics of the system being studied, the type of

experimental data available, and the type of questions that we wish to

address through modeling.

On the one hand, the investigator can choose to faithfully use all the information

currently available to build the most complete model possible and test that model

against the data. Success with this approach can imply that no significant component

in the real system has been left out of the model. But, inevitably, this approach suffers
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as the proposed model might not be structurally identifiable [30] – parts of the model

might be untested by the experimental data and thus cannot be uniquely determined

to be necessary for the model’s behavior. Also, with the excess of parameters, by

overspecifying the model, it can be difficult to build an intuition that can be applied

to other modeling problems.

On the other hand, the investigator can choose simplicity as the criteria with which

to constrain model freedom. This is the strictly phenomenological approach; the

investigator seeks the smallest and simplest model that reproduces certain features of

the measurement. Success with this approach can significantly constrain the unknown

structure of the real system. And, this approach lends itself to building an intuition

regarding model parts that can be widely applied to further problems. But, the

approach suffers as a direct and obvious connection to the known parts of the real

system can be lost. It can be difficult to connect a phenomenological model with

quantitative experimental data.

Of course, these constrasting approaches are at the extremes, and every effort at

model construction follows some intermediate path. The model of the reconstruction-

ist, by necessity, must include some ‘lumping’ or modularization as the real system is

not perfectly known. And the model of the phenomenologist needs to maintain some

connection with the real system, otherwise the conclusions lose their relevance.

We will adopt the minimalist approach and investigate the behavior of simple

reaction systems, drawing broad connections between the behavior of the reaction

systems and that of the PhoR/PhoB TCS. Before doing that we review, in the fol-

lowing section, the model of the PhoR/PhoB TCS proposed by Kierzek et al. [23].

Kierzek et al. take the constrasting approach, using the best available knowledge to

construct a detailed and comprehensive reaction system as a model of the PhoR/PhoB

TCS.
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4.3 A comprehensive model of the PhoR/PhoB TCS

Kierzek et al [23], taking the reconstructionist approach to model creation, con-

struct a detailed and comprehensive reaction system to model the response dynamics

of the PhoR/PhoB TCS. The reaction system consists of interactions among the four-

teen species – variants of PhoR, PhoB, and mRNA; fluorescent reporter and RNA

polymerase – listed in Table 4.1. Table 4.2 breaks the twenty nine reactions considered

in the model into signaling (protein-protein interactions), production (birth reactions)

and degradation (death reactions) categories. For brevity and clarity, many of the

rows in Table 4.2 describe more than one of the reactions included in the Kierzek

model. It is worthwhile to note that, although it is comprehensive, this reaction

system is not complete, as it does not include species like PhoU or the Pst proteins

believed to play some role in the signal transduction [10].

In the following discussion we point to several notable features included in the con-

struction of the Kierzek model. The model handles protein production in a two-step

process, treating transcription and translation separately. This gives the flexibility

to independently vary the time scales of transcription and translation, allowing the

investigators to correctly model the relatively slow translation of PhoR. In the signal-

ing reactions of the model, the dimerization of PhoR and PhoB are explicitly treated,

as the dimerization is biologically necessary for the proteins to be functioning. And,

the phosphorelay channel leading to the creation of phospho-PhoB is treated as a

two-species interaction between PhoB and a phosphorylated dimer of PhoR. In the

model, the production of fluorescent reporter is explicitly treated so that the number

of fluorescent reporter produced in a simulation can be directly compared to data

from flow cytometry experiments.

Monte Carlo simulations of the Kierzek model using biologically realistic param-

eters showed the external signal causes the appearance of two subpopulations (bista-

bility), a population that continued to produce reporter at a basal level and another

that produced reporter at a higher level. The simulations also showed the flow of
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Table 4.1
Subset of species Kierzek et al include in their model of the PhoR/PhoB TCS [23].

Type Name Description

PhoR Variants

hk PhoR protein

hkP phospho-PhoR

hk2 dimer-PhoR

hk2P phospho-dimer-PhoR

PhoB Variants

rr PhoB protein

rrP phospho-PhoB

rrP2 dimer-phospho-PhoB

Complexes
rr − hk2P PhoB/phospho-dimer-PhoR

rrP − hk2 phospho-PhoB/dimer-PhoR

– fr fluorescent reporter

mRNA Variants

mRNAhk mRNA of PhoR

mRNArr mRNA of PhoB

mRNAfr mRNA of fluor. rep.

– RNAP RNA polymerase
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Table 4.2
Reactions among the species that form the model of the PhoR/PhoB
TCS constructed by Kierzek et al [23]. Abbreviations used in the
table: dimer. is dimerization; phosph. is phosphorylation; transc. is
transcription; const. transc. is constitutive transcription; transl. is
translation; degrad. is degradation. rrP2 (dimer of phospho-PhoB) is
the transcription factor necessary for active transcription. Modulation
of the rate of dephosphorylation of hk2P (phosphorylated dimer of
PhoR) acts as a proxy for the external signal. For brevity and clarity,
many of the rows in the table describe more than one of the reactions
included in the model.

Signaling

Description Reactions

Dimer. hk hk + hk hk2

Auto/Dephosph. hk2 hk2 hk2P

Phosph. rr rr + hk2P rr − hk2P rrP + hk2

Dephosph. rrP rrP + hk2 rrP − hk2 rr + hk2

Dimer. rrP rrP + rrP rrP2

Production

Description Reactions

Active Transc. rr(fr) RNAP + rrP2 mRNArr(fr)

Basal Transc. rr(fr) RNAP mRNAreg(fr)

Transl. mRNAreg(fr) mRNArr(fr) mRNArr(fr) + rr(fr)

Const. Transc. hk RNAP mRNAhk

Transl. mRNAhk mRNAhk mRNAhk + hk

Degradation

Description Reactions

Degrad. mRNA mRNArr,mRNAhk,mRNAfr ∅

Degrad. rr species rr, rrP, rrP2 ∅

Degrad. hk species hk, hkP, hk2, hk2P ∅

Degrad. fr fr ∅
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members of one subpopulation into the other (stochastic switching). Significantly,

these features of the model response are in good qualitative agreement with results

from the flow cytometry experiments.

4.4 Phenomenological Models

In the remainder of the chapter we will examine simple models that fold together

and strip away many of the reactions explicitly treated by Kierzek et al. Our moti-

vation is a desire to understand what components of the Kierzek model contribute to

the signal response. More generally, we desire to understand what components are

necessary for a certain type of behavior.

4.4.1 Parameter Choice

It is not obvious how to use parameters described in the Kierzek model or elsewhere

in the simple models we will study, because so many of the reactions have been lumped

or ignored. So we will follow a general principle that the parameters used in our

phenomenological models should not be biologically absurd nor lead to biologically

absurd results. Though heuristic at best, this principle implies, for example, that

the death of a species (corresponding to degradation or dilution of a protein via cell

splitting) should be the slowest process in the reaction system, or that we should not

have protein numbers in the billions. We offer further discussion as parameter choices

are made.

Though this the connection to the real system and to real parameters is an inherent

limitation in our approach, because parameters are only loosely constrained (and

there are only a few parameters in the simple systems), we are able to investigate

model behavior as a function of the parameters. Giving a more complete picture of

system behavior allows us to build intuition regarding model components that can be

intelligently integrated to build a model from the ground up.
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4.4.2 Connecting Models to Experiments

In the experimental results discussed in Chapter 3, we measured changes in the

rate of protein production, which depends indirectly on the intracellular concentration

of phospho-PhoR. We assume that the transience in the measurement reflects the

transience in the number of phospho-PhoR in the single-cells. So in the reaction

systems we study, we look for changes in the number of an autoregulating species

that qualitatively matches the changes in protein production we measured.

The features that we will demonstrate in the simple reaction systems are bistabil-

ity, stochastic switching, ramp up after signal, overshoot and threshold sensitivity.

4.5 Autoregulation in Birth-Death System

We begin by investigating a reaction system composed of a single autoregulating

species. To model an autoregulating species we can refine the birth-death system

discussed previously so that the birth rate is functionally dependent on the number

of the species produced in the birth reaction:

∅
c1(X)

X
c2 ∅.

The elementary birth reaction is already a tremendous simplification of the “nuts-and-

bolts” of protein production as the birth rate, c1(X), must account for the sequential

processes of transcription (protein-DNA interaction creating an mRNA transcript

from a DNA gene), translation (ribosome-mRNA interaction converting an mRNA

transcript into a polypeptide chain) and post-translational modification (e.g., folding

of polypeptide chain into functional protein).

4.5.1 Hill Function for Birth

Following Walczak et al. [31], we will use the Hill equation as the functional form

of the birth rate:

c1(X) =
c0X

n + c1K
n

Xn +Kn
. (4.2)
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The Hill equation causes the birth rate to toggle between constant values c0 and c1

depending on the concentration of X. At large X (X >> K), the value of the Hill

equation is near c0, and at small X the value is near c1. The parameter K sets the

half-saturation point; at X = K the value of the Hill equation is the average of c0

and c1. And, n is the so-called Hill coefficient which changes the steepness of the

saturation curve.

The Hill equation finds pervasive application in chemistry and biochemistry to

model a process with saturating kinetics. In this context, the parameter n describes

cooperativity in the reaction process.

Investigators commonly use the Michaelis-Menten equation (Hill equation with

n = 1) to model two-state (basal and active) transcription initiation that depends,

in a saturating fashion, on the level of transcription factor (see, for example, [29]

and [32]). As previously discussed, the Pho proteins (including PhoB) are always

produced at a basal rate. Upon an increase in the intracellular concentration of

phospho-PhoB the rate of production of the Pho proteins increases; phospho-PhoB is

a transcription factor that binds to the DNA to upregulate the transcription initiation

rate (and, thus, the production rate) of the Pho proteins. Due to the finite time

of phospho-PhoB/DNA binding events, the increase in transcription rate eventually

saturates. So, it would be appropriate to use a Hill equation to describe transcription

initiation of a Pho gene as a function of phospho-PhoB.

But we propose to use the Hill equation to describe species production; we are,

in a sense, ignoring processes other than transcription that are required for protein

synthesis (namely, translation and post-translational modification). These additional

processes could be added later, if needed.

As we analyze the Hill birth-death reaction system, we will take advantage of the

inherent scale K to rewrite the Hill equation. We introduce this form of the Hill

equation now, so we can plot various Hill curves in a manner consistent with what is

to come. Defining Z ≡ X/K, Γ = c0 and α = c0
c1

we rewrite Equation 4.2 as

c1(Z) = Γ
Zn + 1

α

Zn + 1
. (4.3)
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Figure 4.3. Hill curves for different values of n.

Figure 4.3 shows representative Hill curves for different values of n.

For the auto-regulating species, the time derivative of the change in mean number

of that species is

Ẋ =
c10X

n + c11K
n

Xn +Kn
− c2X. (4.4)

The Hill birth-death system will form the backbone of the reaction systems we

introduce in later sections. More so, we will find that the form of the structure of the

steady-state solutions to Equation 4.4 is a general feature of the simple extensions to

birth-death reaction system that we introduce. As we can learn much that will be

applicable to subsequent systems, in the following sections we will study Equation 4.4

in detail. These sections will provide tools and a strategy to our study of the simple

extensions to the Hill birth-death reaction system.

To simplify our study of Equation 4.4 we rescale time c2t → τ and define Z =

X/K, Γ = c10
c2K

and α = c10
c11

yielding

Ż = Γ
Zn + 1

α

Zn + 1
− Z. (4.5)

4.5.2 Steady-states of Hill Birth-Death System

A few comments are necessary to preface the mathematical treatment that follows.

At the start of our modeling effort we put together several reaction systems simply
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related to the Hill birth-death reaction system. As we varied model parameters and

studied the behavior of the reaction system (using the ode45 solver and the SSA), we

were struck by how unpredictably the behavior varied as a result of small changes in

model parameters. In an effort to understand this, we stripped away model parts to

isolate the sources of the strong parameter dependence. Eventually, we were left with

just the Hill birth-death system, and we were surprised by the richness of phenomenon

coming forth from this seemingly simple reaction system. The following treatment

summarizes our current understanding of the dependence of the behavior of the Hill

birth-death reaction system on the parameters n, Γ and α.

In Equation 4.5 the term Γ
Zn+ 1

α

Zn+1
is the propensity for a birth reaction and deter-

mines the probability that the reaction will occur. Similarly, Z is the propensity for

a death reaction. A steady-state of X occurs at levels of X that balance the birth

and death propensities; from such a fixed point it is equally probably to either gain

or lose a copy of X.

The steady-state (Ż = 0) solutions to Equation 4.5 take the form of roots of the

(n+ 1)-order polynomial

Zn+1 − ΓZn + Z − 1

α
Γ = 0. (4.6)

Solutions of Equation 4.6 give the steady-states or fixed points of the reaction system.

In the remainder of this section, we will investigate the dependence of the structure

of the steady-states on the parameters n, Γ and α. Since we have some freedom to set

these parameters, we would like to build a picture of how each affects the behavior

of the system.

n Sets Maximum Number of Steady-states

The Hill coefficient, n, sets the maximum number of solutions to Equation 4.6,

and, thus, the number of fixed points of Z. Since X = ZK is the number of species

X and corresponds to the number of a protein it must be greater than or equal to



54

zero. We restrict our interest to those roots of the steady-state polynomial that are

real and positive.

First, we will demonstrate that for n = 0 and n = 1 Equation 4.6 has only one

solution that is real and positive. Then, we will show graphically that for n ≥ 2

Equation 4.6 either has one or three solutions that are real and positive, depending

on choice of Γ and α.

For n = 0, Equation 4.6 reduces to

Z − Γ

2
(1 +

1

α
) = 0,

and Z has only one solution at Z = Γ
2
(1 + 1

α
). With n = 0 the Hill term is constant-

valued and equal to Γ
2
(1 + 1

α
). So the steady-state solution of Z is the ratio of this

constant birth rate to the death rate (1), in agreement with what we found for the

constant rate birth-death system we examined at the beginning of this chapter.

For n = 1, the steady-state equation reduces to

Z2 + (1− Γ)Z − 1

α
Γ = 0.

The second-order polynomial has a positive discriminant and two solutions:

Z± =
Γ− 1

2
±

√
(Γ− 1)2 + 4α−1Γ

2
,

both of which are real, but only one of which is positive (Z+).

For n ≥ 2, we can rearrange Equation 4.6

Zn+1 − ΓZn = −Z +
1

α
Γ,

and we can interpret the solutions of Equation 4.6 as the points of intersection of the

polynomial p(Z) = Zn+1 − ΓZn = Zn(Z − Γ) and the line l(Z) = −Z + 1
α

Γ. The

intersections are best shown graphically, and Figure 4.4 shows p(Z) and l(Z) for some

choices of n, Γ and α.

Because l(Z) has positive offset and negative slope and p(Z) dips into the fourth

quadrant before increasing to the first quadrant, the intersections between the line
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Figure 4.4. The solutions to Equation 4.6 can be visualized as the
points of intersection of p(Z) = Zn+1 − ΓZn and l(Z) = −Z + 1

α
Γ.

For Hill coefficient n ≥ 2, p(Z) and l(Z) intersect at either one or
three points for positive Z depending on the values of Γ and α. Plot
a) shows a representative graph for n ≥ 2 and even, and b) shows a
representative graph for n ≥ 2 and odd.

and polynomial will always occurs in the fourth quadrant. More so, at minimum,

there is one intersection in this quadrant, and, since it occurs for positive Z, this will

be one of the steady-states accessed by the reaction system. As shown in Figure 4.4

the choice of Γ and α can yield two additional intersections for Z > 0.

Choosing Γ

The additional intersections arise when the slope of p(Z) is such that it increases

above l(Z) then decreases below it. In order to cross l(Z) from above, at some point

the negative slope of p(Z) must be less than than the negative slope of the line.

The maximum negative slope of p(Z) occurs at the inflection point n−1
n+1

Γ ≡ Zcrit

(found by solving d2p
dZ2 = 0). So the criteria sufficient for the additional intersections

is dp
dZ
|Zcrit < −1. Solving this criteria we find Γ > (n+1

n−1
)
n−1
n ≡ Γcrit, which restricts

the values of Γ that allow for the possibility of the two additional intersections.

Figure 4.5 shows the Γcrit as a function of n, which tends to 1 for large n. Re-

membering the definition of Γ = c10
c2K

, to satisfy the criteria for the two additional
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Figure 4.5. Values of Γcrit as a function of n. If Γ < Γcrit = (n+1
n−1

)
n−1
n

then it is not possible for p(Z) = Zn+1 − ΓZn and l(Z) = −Z + 1
α

Γ
to intersect more than once in the fourth quadrant (for positive Z).

intersection the ratio between active production rate and the death rate must be

greater than the half-saturation number of X.

Choosing α

We are trying to find the bounds on α between which the line l(Z) intersects p(Z)

more than once in the fourth quadrant (for positive Z). In order for this to occur,

p(Z) must increase above l(Z) and then decrease below the line. This situation is

satisfied if the maximally negative slope of p(Z) at point (Zcrit, p(Zcrit) is less than

−1 and l(Z) lies between the two points at which the slope of p(Z) equals −1. So, if

we draw the tangent lines through these two points at which p(Z) has slope equal to

−1 we create an envelope within which l(Z) must lie in order to intersect p(Z) three

times. Outside of this envelope l(Z) only crosses p(Z) once. Figure 4.6 depicts this

envelope for n = 6 and two different values of Γ.

If we can find the two lines tangent to p(Z) of slope −1 that create the envelope

then we will have found the range of α within which l(Z) crosses the polynomial three

times. The first step is to find the two points at which p(Z) has slope equal to −1.

We can find the Z-values of the points by setting the derivative of the polynomial
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Figure 4.6. If the line l(Z) lies within the envelope created by l+(Z)
and l−(Z) then it will intersect the polynomial p(Z) three times in
the fourth quadrant.

equal to −1. Evaluating the derivative and adding one to both sides of the equation,

we find that Z-values of the points will be the only real solutions to the equation

(n+ 1)Zn − ΓnZn−1 + 1 = 0. (4.7)

The Z-values of the points, let’s call them Z±, can be found numerically. So, the

points at which p(Z) has slope equal to −1 are (Z±, p(Z±)). And, the lines that cross

these points and have slope equal to −1 are

l±(Z) = −Z + (Z± + p(Z±)). (4.8)

In order for l(Z) = −Z + 1
α

Γ to lie within the envelope, its offset, 1
α

Γ, should lie

between the offsets of l±(Z). This criteria yields the following condition α must

satisfy for l(Z) to cross the polynomial three times in the fourth quadrant:

1

Γ
(Z+ + p(Z+)) <

1

α
<

1

Γ
(Z− + p(Z−)). (4.9)

On the plots in Figure 4.6 we show the values of the offsets, found numerically

according to the described procedure, of the lines l±(Z) for the indicated choices of

n and Γ. Of course, α cannot be negative, so the lower bound for α corresponding to

the parameter values in Figure 4.6(b) is zero.
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Negative and Complex Roots of the Polynomial

For completeness, we note that when n ≥ 2 and odd there is an additional inter-

section of p(Z) and l(Z) for Z less than zero, as shown in Figure 4.4(b). This point

is also a solution to Equation 4.6, but is not a physical solution as it requires the

number of proteins to be negative.

Also, for completeness, we note that a polynomial of order n + 1 has n + 1 roots

in the complex plane. The additional solutions to Equation 4.6 that we have not

accounted for are complex numbers that occur in conjugate pairs (because the coef-

ficients of the polynomial are real). So, for example, if n = 7 and Γ and α are chosen

such that Equation 4.6 has three real, positive solutions, then the equation also has

the one real, negative solution and four solutions comprised of two pairs of complex

conjugates, giving the eight solutions, as expected.

4.5.3 Stability of Steady-states

In this section we present a global and local analysis of the steady-states of the

Hill birth-death reaction system. The global analysis allows us to understand the

stability of the fixed points as a function of the parameters Γ and α. So this type of

analysis helps us build intuition regarding the behavior of the reaction system. But,

as we complicate the reaction system in later sections by incorporating additional

species, we will only be able to use a local analysis to calculate the stability of the

steady-states. In this discussion we will continue to use as an example the reaction

system with Hill coefficient, n, equal to 6 (see Figures 4.4(a) and 4.6).

Phase Plane

The phase plane plots Ż against Z and is a useful tool as it allows us to visualize

the tendency for changes in Z and identify which fixed points are attractors (stable).
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On a phase plane plot, when Ż is positive there is a tendency for Z to increase, and

when it is negative there is a tendency for Z to decrease.

Fixing n = 6 and Γ = 2, Figure 4.7 shows the phase plane for the Hill birth-

death system α = 0.3 and 30. When α = 0.3, there is only one steady-state solution

(α = 0.3 places l(Z) outside the envelope shown in Figure 4.6). As shown by the

black arrows in Figure 4.7 that emphasize the tendency for changes in Z, the one

fixed point is stable as there is a tendency for Z to move towards the point. When

α = 30, there are three steady-state solutions, two of which are stable and one of

which is unstable.

In order to characterize the dependence of the structure of the steady-state solu-

tions for all values of α we can collect the information of many phase plane plots in

a single plot like that shown in Figure 4.8. The figure shows, for n = 6 and Γ = 2,

how the number of fixed points, their stability and their value change with α. The

sudden appearance of the pair of fixed points with increasing α is called a saddle-point

bifurcation. When we fix α and vary Γ we find the two bifurcations shown in Figure

4.9.

From the bifurcation diagrams we can learn a few things. First, in the three-

solution regime, the steady-state solution structure is not very sensitive to increasing

α. This is connected to the fact the for n = 6 and Γ = 2 the lower bound on α

defining the three-solution regime is zero, and α must always be greater than zero.

On the other hand, for n = 6 and α = 30, the solution structure is quite sensitive

to increasing Γ. Notably, the value of the largest fixed points appears to increase

approximately proportional to Γ, and the distance between the steady-states increases

with increasing Γ.

It is worthwile to note that the types of dependencies discovered so far are general

for the Hill birth-death reaction system regardless of the choice of n. With the

exception of the negative-valued fixed point that occurs for odd n, the one or three

positive Z fixed points tend to behave in a manner similar to that found here.
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Figure 4.7. Phase plan plots for Hill birth-death system n = 6 and
Γ = 2. When Ż is positive there is a tendency for Z to increase,
and when Ż is negative there is a tendency for Z to decrease. The
black arrows show the tendency. (a) α = 0.3 yields one fixed point
and it is stable and attractive, as the level of Z is driven towards the
fixed point. (b) α = 30 yields three fixed points. Two are stable and
attractive and third is unstable.

Figure 4.8. Saddle-node bifurcation with variation of model parameter
α. At small values of α there is a single stable fixed point. Increase
in α causes the appearance of a pair of additional fixed points, one
stable and the other unstable.
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Figure 4.9. Saddle-node bifurcation with variation of model parame-
ter Γ. At small values of Γ there is a single stable fixed point. Increase
in Γ causes the appearance of a pair of additional fixed points, one
stable and the other unstable. Further increase in Γ causes the dis-
appearance of a pair of fixed points, the unstable one and the stable
fixed point that exists at small values of Γ. The plot on the right is a
magnification in the vertical axis.
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Figure 4.10. Model parameter n controls strength of tendency to stay
near a fixed point. For different values of n the phase plot shows Ż for
fixed Γ and α. As n increases, the values of the local minimum and
maximums of Ż also increase, implying an increase in the strength of
the tendency driving the level of Z towards a fixed point.

The parameter n does control the strength of the tendency to stay near a fixed

point. Figure 4.10 shows the phase plane for different values of n (keeping Γ and

α fixed). As n increases, the values of the local minimum and maximums of Ż also

increase, implying an increase in the strength of the tendency driving the level of Z

towards a fixed point.

Local Stability near Fixed Points

A different approach to stability analysis is to characterize the stability of a reac-

tion system in the vicinity of a fixed point. To do so, we find the time evolution of

a small deviation from that steady-state. We begin by expanding the function that

gives the time-derivative of the species to first order about a steady-state

Ż = f(Z) ≈ f(Zss) + f ′(Z)|Z=Zss(Z − Zss).

Defining the deviation variable as Z̃ ≡ Z −Zss and using the fact that Żss = f(Zss),

we find

˙̃Z = f ′(Z)|Z=ZssZ̃.



63

So the time evolution of the deviation variable in the vicinity of the fixed point is

Z̃(t) = Z̃(0)e(f ′(Z)|Z=Zss )t.

Near the steady-state the deviation variable grows exponentially in time if f ′(Z)|Z=Zss >

0 and diminishes if f ′(Z)|Z=Zss < 0; in the first case the steady-state is unstable and

in the second the state is stable.

4.6 Stochastic Switching in the Hill Birth-Death System

We have learned that the Hill birth-death reaction system is bistable for n ≥ 2

and particular choices of Γ and α. In this section we will demonstrate that the system

is also capable of stochastic switching between the two stable fixed points. By using

the ideas developed above, we will find a set of parameters (design a model) that

gives the desired behavior.

The goal is to increase the chance that the reaction system randomly jumps be-

tween the stable steady-states, or, equivalently, to increase the chance that the level

of Z randomly crosses the unstable fixed point. This can be achieved by choosing

a small value for n (diminishing the strength of the tendency driving the level of Z

towards the fixed points) and a small value for Γ (decreasing the distance between

the stable steady-states and, thus, the distance that the level of Z must walk before

crossing the unstable fixed point).

4.6.1 Parameter Choice and Steady-states

We start by choosing n = 2. For this choice, Equation 4.6 becomes the cubic

equation

Z3 − ΓZ2 + Z − 1

α
Γ = 0. (4.10)

Before we find values for Γ and α, we can take advantage of the fact that an analytic

form of the discriminant of a cubic equation exists, and use that form to visualize the
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Figure 4.11. Positive values of the discriminant of Z3 − ΓZ2 + Z −
1
α

Γ = 0 yields three real solutions. In the figure positive values of the
discriminant are colored where as negative values are grey.

region in the Γ-α parameter space for which Equation 4.10 has three real solutions

(all of which must be positive). The discriminant of Equation 4.10 is

∆ = − 4

α
Γ4 + (−27

α2
+

18

α
+ 1)Γ2 − 4,

and the equation has three real solutions when the discriminant is greater than zero.

Figure 4.11 plots in color the positive values of the discriminant over a region of the

Γ-α parameter space; in the figure, all negative values of the discriminant are colored

grey.

For n = 2, Γcrit =
√

3 ≈ 1.73. Though a detailed discussion was previously

omitted, we note that for values of Γ near Γcrit, the steady-state solution structure

does depend strongly on the choice of α. This occurs when the lower bound on α

that delineates the bistable regime is greater than zero, so that changing α gives two

saddle-point bifurcations (with increasing α the number of fixed points jumps from

one to three and then back to one). This effect gives rise to the “tail” in Figure 4.11

that appears for values of Γ between Γcrit and 2.
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As part of the model design, we choose to avoid this complication, so we set Γ = 2.

Solving Equation 4.7 for n = Γ = 2, we find Z− = 1
3

and Z+ = 1. Plugging the Z-

values into p(Z) = Z3 − 2Z2, we find that the points at which p(Z) has slope equal

to −1 are (Z−, p(Z−)) = (1
3
,− 5

27
) and (Z+, p(Z+)) = (1,−1).

Inserting the values of Z± and p(Z±) into the inequality in Equation 4.9 we find

that, in order for Equation 4.10 to have two stable steady-states, α must satisfy

0 <
1

α
<

2

27
.

As long as the choice of α does not lead to biologically absurd rate constants, any

α within this range is suitable. But, since we have learned that the structure of

the steady-state solutions will not depend strongly on α for our choice of Γ = 2

(dependence is similar to that shown in Figure 4.8), for convenience, we can try to

find an α that yields steady-state values that have a relatively simple form. Appendix

C discusses a short procedure that allows us to find steady-states with values that

are tractable by, essentially, taking advantage of the freedom in α.

Using that procedure, we find that choosing α = 16 allows us to factor Equation

4.10

Z3 − 2Z2 + Z − 1

8
= (Z − 1

2
)(Z2 − 3

2
Z +

1

4
) = 0,

immediately giving us one of the steady-state values Zss = 1
2
. From the unfactored

term, the quadratic formula gives the other two steady-state values as Zss = 3±
√

5
4
≈

0.19; 1.31.

We omit a detailed discussion of the stability of the fixed points, and we only

remark (as can be seen in the deterministic solutions presented in Figure 4.12) that,

as expected, Zss = 1
2

is unstable while the two outer fixed points are stable.

4.6.2 Time evolution

For the choice of parameters, the differential equation defining the reaction system

is

Ż = 2
Z2 + 1

16

Z2 + 1
− Z. (4.11)
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Figure 4.12. Deterministic solutions Hill Birth-Death reaction system.
For all intial values except the value of the unstable fixed point, the
deterministic solutions tends towards either of the outer, stable fixed
points.

Figure 4.12 shows the deterministic solutions of Equation 4.11 found using the ode45

solver of MATLAB. For every initial value except that corresponding to the value

of the unstable fixed point, the solutions tend towards the stable steady-states. If

the initial value is set at the value of the unstable fixed point, the level of Z never

changes from that value (that is the definition of a fixed point). We are only able

to demonstrate this in the figure because we found the precise value of the unstable

fixed point (analytic forms for the roots of a cubic are usually unwieldy and must be

approximated numerically).

Figure 4.13 shows trajectories of Z from stochastic simulations of the system

defined by Equation 4.11, where Figure 4.13(a) shows the time evolution over the

first 5 time constants and Figure 4.13(b) shows the time evolution over the first

50 time constants (remember that a time constant is equal to 1
c2

). In the figures

all trajectories are initialized to a value (Z(t = 0) = 0.1) below the lowest fixed
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Figure 4.13. Stochastic solutions Hill Birth-Death reaction system.
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point. After twenty time constants we see clear evidence that some trajectories have

‘found’ the higher fixed point. This reaction system demonstrates both bistability

and stochastic switching.

4.6.3 An Example of a Realistic Set of Kinetic Parameters

Remembering the definitions Γ = c10
c2k

and α = c10
c11

we can construct a set of

biologically feasible kinetic parameters that satisfies our choices Γ and α. We only

have the freedom to choose two of the four kinetic parameters and, then, Γ = 2 and

α = 16 sets the other two.

The following considerations guide the choice of c2 and c10. The death rate, c2,

describing the loss of species from the system is connected to the dilution of protein

due to cell division (proteins are randomly split among daughter cells), and not to the

degradation of protein that occurs on a significantly slower time scale [23]. Setting

c2 = 1/2000 s−1 is consistent with the fact that an E. coli cell divides about once every

thirty minutes under optimal growth conditions [9]. And, setting c10 = 160/2000 s−1

is consistent with the rate 0.0751 s−1 used for active transcription of PhoB in the

Kierzek model [23].

The choices Γ = 2, α = 16, c2 = 1/2000 s−1 and c10 = 160/2000 s−1 yield

c11 = 10/2000 s−1 and k = 80. Using these parameters and the definition Z ≡ X/K

we can find the steady-state values of X; in ascending order Xss = 20(3 −
√

5) ≈

15; 40; 5(3 +
√

5) ≈ 105. Table 4.3 summarizes this realization of the Hill birth-

death reaction system.

4.7 Elementary Inhibition Reaction System

In this section we investigate a reaction system that introduces simple control by

an external signal into the Hill birth-death reaction system. The control is achieved

by adding an isomer of the autoregulating species into the system in such a way that

the isomer does not contribute to the birth reaction and the rate of isomerization
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Table 4.3
Birth-death reaction system. The scheme illustrates the two reactions,
the birth and death of species X, that occur in the system with the
propensities for each reaction given in the second column of the table.
The parameters in the third column have been selected so that Γ =
c10
c2k

= 2 and α = c10
c11

= 16. With the listed parameters the reaction

system has stable steady-states at X = 20(3±
√

5).

Scheme Propensities Parameters

X

1

∅

2

∅ a1 = c10Xn+c11kn

Xn+kn

a2 = c2X

n = 2

c10 = 160/2000 s−1

c11 = 10/2000 s−1

k = 80

c2 = 1/2000 s−1
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is signal-dependent. In a biological sense, this corresponds to the environmentally-

induced transition of the autoregulating protein to an inhibited state in which it

cannot promote its own production.

We will consider the case in which the conversion frequency to the ’inhibited’

isomer increases linearly with the signal. An increase in the signal increases the

frequency of conversion from the free species to its inhibited isomer, effectively locking

up the system as their are fewer free species to contribute to the birth propensity. A

decrease in the signal releases the stock of inhibited isomer, abruptly converting many

to the free species that can contribute to the birth propensity. We can schematically

represent the reaction system as

X1
c3

c4(t)
X2

c1(X2)

∅

c2

∅

.

We introduce the external signal by step-modulating the parameter c4(t) in time. Our

goal is to design the reaction system in such a way that the number of X2 responds

to the signal by ramping up and overshooting its final equilibrium value.

The time derivatives of the mean number of the two species are

Ẋ1 = −c3X1 + c4(t)X2 ,and

Ẋ2 =
c10X

2
2 + c11k

2

X2
2 + k2

− c2X2 + c3X1 − c4(t)X2.

As we did previously with the Hill birth-death system, we can divide out the inherent

scales in the problem and study a scale-invariant form of these equations. Rescaling

time c2t→ τ and defining Zi = Xi
k

, Γ = c10
c2k

, α = c10
c11

, ∆ = c3
c2

and β = c4
c3

we find

Ż1 = −∆Z1 + ∆βZ2 (4.12)

Ż2 = Γ
Z2

2 + 1
α

Z2
2 + 1

− Z2 + ∆Z1 −∆βZ2. (4.13)
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4.7.1 Steady-states

Imposing the steady-state condition (Ż1 = Ż2 = 0) on Equations 4.12 we find

Z1,ss = βZ2,ss (4.14)

Z2,ss = Γ
Z2

2,ss + 1
α

Z2
2,ss + 1

. (4.15)

Equation 4.15 is identical to the steady-state equation for the Hill birth-death reaction

system that we solved previously – so we have all the tools necessary to understand

Z2,ss. And, Z1,ss is simply β times Z2,ss. Since β is proportional to the signal, we see

that the larger the magnitude of the signal the larger the amount of Z2 in the system

at steady-state.

Interestingly, the value of ∆ does not affect the steady-state solutions of Z1 or Z2.

4.7.2 Parameter Choice

In order to computationally solve the time evolution of the system, we need to

choose values for each of the parameters. We can set n = 2, Γ = 2 and α =

16 as we did previously. The parameter ∆ controls the speed of the isomerization

dynamics relative to the death dynamics. In order to get a ramp up, the isomerization

must occur on faster time scale then death. Also, from a biological perspective, it is

reasonable to assume that species death is the slowest timescale in the system. For

these reasons we demand that ∆ = c3
c2
> 1. The time evolution of the reaction system

is essentially unchanged for a large range of ∆ > 1, so, for simplicity, we let ∆ = 10.

Step-modulation of β simulates a change in the strength of the external signal.

The parameter also sets the ratio Z1,ss

Z2,ss
and the rate of conversion of Z2 into Z1. We

design the initial state of the system so that Z2 is at the lower fixed point and a

large amount of Z1 is stored in the system (large β). When β is suddenly reduced,

the stored Z1 rapidly converts to Z2 in such a way that Z2 overshoots its higher

steady-state value before settling back to it. We found that an initial value of β = 50

produces an overshoot for the range of step-modulations to β =0.05, 0.5, 1 or 2.
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4.7.3 Time Evolution

For the choice of parameters the differential equations defining the reaction system

are

Ż1 = −10Z1 + 10βZ2 (4.16)

Ż2 = 2
Z2

2 + 1
16

Z2
2 + 1

− Z2 + 10Z1 − 10βZ2, (4.17)

where β is step-modulated from 50 to 0.05, 0.5, 1 or 2.

Figure 4.14 shows deterministic solutions of Equation 4.16 found using the ode45

solver of MATLAB. Z2 is initialized to the value of the smaller stable fixed point.

At τ = 1, β is step-modulated to the various final values, and each curve shows the

response to one of the step-modulations. As designed, the level of Z2 overshoots (to

varying degrees dependent on the strength of the signal modulation) before settling

to the higher of the two fixed points.

Figure 4.14 shows trajectories of Z2 from stochastic simulations of the system

defined by Equation 4.16. In each of the four experiments shown in the figure, Z2 is

initially near the lowest fixed point and β = 50 and then step-modulated to the value

indicated.

Interestingly, in this case, the stochastic simulations are in good agreement with

the deterministic solutions. In the current study, we were not able to design a system

that shows both stochastic switching and overshoot before settling. This is currently

an active area of research.

4.7.4 An Example of a Realistic Set of Kinetic Parameters

If we use the same parameter choices previously discussed for the Hill birth-death

reaction system (c2 = 1/2000 s−1 and c10 = 160/2000 s−1) and the choices of Γ,

α, ∆ and β described above, we find a complete kinetic parameter description of a

realization of the inhibition reaction system: c10 = 160/2000 s−1, c11 = 10/2000 s−1,
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Figure 4.14. Deterministic solutions to the Elementary Inhibition
reaction system for different strength signals. The value of the au-
toregulating species Z2 is initialized to the value of the smaller stable
fixed point. At τ = 1 the model parameter β is step-modulated by
the amount indicated in the plot in order to simulate the arrival of
an external signal. Each curve shows the solution for a different mag-
nitude modulation. The signal strength is sufficient, in all cases, to
cause Z2 to transition to the higher fixed point with varying degrees
of overshoot.

k = 80, c2 = 1/2000 s−1, c3 = 10/2000 s−1 and c4 is modulated from 500/2000 s−1

(β = 50) to 0.5/2000 s−1 (β = 0.05).

The steady-states of X2 ≡ KZ2 in ascending order are Xss = 20(3 −
√

5) ≈

15; 40; 20(3 +
√

5) ≈ 105. Table 4.4 summarizes this realization of the elementary

inhibition reaction system.

4.8 Elementary Activation Reaction System

In this section we present an alternative method to introduce control by an ex-

ternal signal into the birth-death reaction system. We do not subject this reaction

system to a detailed analysis, but only highlight a remarkable characteristic the sys-

tem possesses.
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Figure 4.15. Stochastic solutions to the Elementary Inhibition reac-
tion system for different strength signals. The value of the autoregu-
lating species X2 is initialized to the value of the smaller stable fixed
point. At τ = 1 the model parameter β is step-modulated by the
amount indicated in each plot in order to simulate the arrival of an
external signal. Each plot shows the solution for a different magni-
tude modulation. The signal strength is sufficient, in all cases, to
cause X2 to transition to the higher fixed point with varying degrees
of overshoot.
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Table 4.4
Elementary inhibition reaction system. The scheme illustrates the
four reactions that occur among the two species in the system. The
second column of the table lists the propensities for the reactions.
Species X2 autoregulates its birth via a Hill function. X2 converts to
the inhibited isomer X1 with a frequency that depends linearly on the
external signal. Step modulation of the kinetic parameter c4 acts as
a proxy for the external signal. The parameters in the third column
have been selected so that Γ = c10

c2k
= 2, α = c10

c11
= 16, ∆ = c3

c2
= 10

and β = c4
c3

varies in step fashion from 50 to 0.05.

Scheme Propensities Parameters

X1
3

4
X2

1

∅

2

∅

a1 =
c10Xn

2 +c11kn

Xn
2 +kn

a2 = c2X2

a3 = c3X1

a4 = c4(t)X2

c4(t) = c4h−

(c4h−c4l)θ(t−t0)

n = 2

c10 = 160/2000 s−1

c11 = 10/2000 s−1

k = 80

c2 = 1/2000 s−1

c3 = 10/2000 s−1

c4h = 500/2000 s−1

c4l = 0.5/2000 s−1
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Another way to introduce control by an external signal into the birth-death reac-

tion system is to necessitate that the autoregulating species isomerizes before it can

cause its own birth, and that the isomerization depends on the strength external sig-

nal. In a biological sense, this corresponds to the environmentally-induced activation

of a protein into a self-regulating transcription factor.

We will consider the case in which the conversion frequency to the ’inactive’ isomer

increases linearly with the signal strength. An increase in the signal increases the

frequency of conversion from the active to inactive isomer, effectively locking up the

system as there are fewer active isomers to contribute to the birth propensity. A

decrease in the signal abruptly converts the stock of inactive isomers to the active

species that can contribute to the birth propensity. We schematically represent the

activation reaction system as

X1
c3

c4(t)
X2

c1(X2)

∅

c2

∅

where modulation of parameter c4(t) acts as a proxy for the external signal.

Reducing the model in the same way we did previously, we find the differential

equations for the reduced species Zi = Xi
k

are

Ż1 = Γ
Z2

2 + 1
α

Z2
2 + 1

− Z1 −∆Z1 −∆βZ2 (4.18)

Ż2 = ∆Z1 −∆βZ2, (4.19)

where Γ = c10
c2k

, α = c10
c11

, ∆ = c3
c2

and β = c4
c3

.
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4.8.1 Steady-states

Imposing the steady-state condition (Ż1 = Ż2 = 0) on Equations 4.18, we find

Z1,ss = βZ2,ss (4.20)

Z2,ss =
Γ

β

Z2
2,ss + 1

α

Z2
2,ss + 1

. (4.21)

Other than the factor of β, Equation 4.21 is identical to the steady-state equation for

the Hill birth-death system we solved previously. The parameter β acts as the proxy

for the external signal. In addition to setting the steady-state ratio Z1,ss

Z2,ss
, β, by its

placement in Equation 4.21, increasing β is identical to decreasing Γ. This implies

that changing β will affect the steady-state solution structure.

So, remarkably, for this reaction system the external signal controls the steady-

state solution structure. The implications of this property is an area of active research.

4.9 Summary and Concluding Remarks

Two-component systems are a large class of signal-response mechanisms (trans-

ducers) prevalent in prokaryotes. In this study we developed a method using single-

cell fluorescence microscopy techniques to measure, in vivo, the transience in the

signal response of a two-component system. We applied that technique to measur-

ing the characteristics of the response of the environmental phosphate transducer

in Escherichia coli (the PhoR/PhoB TCS) to phosphate limitation. Then we con-

nected features measured in the PhoR/PhoB TCS response to simple extensions of

the birth-death reaction system.

Significantly, our measurement of the PhoR/PhoB TCS transient signal-response

demonstrates that, at the population level, the transducer ramps up and overshoots

before settling to its final steady-state. We also found that our measurements were

consistent with the transducer having a threshold sensitivity and, at the single-cell

level, a bistable response that stochastically switches between fixed points.
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Instead of building a model of the PhoR/PhoB TCS from first principles like that

of Kierzek et al., we sought a more rigorous understanding of pervasive model compo-

nents, like the autoregulating species. We studied simple extensions of the birth-death

reaction system that qualitatively reproduce the PhoR/PhoB TCS phenomenology

found in the measurements. The simple models have a small number of parameters

and, thus, allow a complete characterization of the model behavior in the parameter

space.

Specifically, we developed a mathematical method to find the parameter-regime in

which the Hill birth-death reaction system is bistable. Then we showed how to choose

parameters within this regime that allows the system to stochastically switch between

the stable states. This demonstrates how the stochasticity observed in many biological

systems, including the PhoR/PhoB TCS, can arise simply from an autoregulating

transcription factor.

Then we demonstrated that a simple extension of the Hill birth-death system

gives a model that, in response to an external signal, ramps up and overshoots before

settling to its final steady-state. We achieved this by adding to the Hill birth-death

system a signal-dependent isomerization of the autoregulating species to an inhibited

state. Again, this can be connected to the inhibition state of the PhoR/PhoB TCS

described in Chapter 1.

Though we were not able to design a system that showed both stochastic switching

and overshoot, we have identified the basic requirements a model must possess in order

to have either. Further research can use the tools we developed here to construct a

reaction system that combines these features in a simple model.



APPENDICES
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A. MICROFLUIDIC DEVICES

As mentioned at the beginning of Chapter 2, the initial experiments conducted in a

glass dish suffer from several weakness related to precisely controlling the chemical

environment and the cell population in the relatively large ∼1 mL volume of the dish.

First, in the dish, Pi is controlled by manually exchanging the chemical environment

surrounding the cells. Even though the environment can be changed in just a few

minutes, there is no way to tell what parameters the cells ”see” during the exchange.

Second, though using Poly-L-Lysine is a common laboratory technique, the cell is

deformed and flattened [22] as it adheres. It is not clear to what degree this affects

the physiology of the cell. As the goal is to measure a physiological response, this is

not an optimal condition. Third, during the course of the experiment, and especially

when the cell density is high, the cells can detach from the glass, move through

the volume of the dish, and land at some other spot. And, fourth, the cells have a

tendency, especially when the cell density is high, to grow on top of each other. In

such a case, it is impossible to reliably measure the emission intensity from a single

cell. The last two effects are very difficult to account for and reduce the number of

cells in the field of view that can be analyzed.

Each of these weaknesses can be addressed by using a microfluidic device instead

of a glass dish. Microfluidic describes the manipulation or control of a fluid at the

sub-millimeter length scale, just one or two orders of magnitude greater than the

size of E. coli (roughly the size of a cylinder with diameter 1 micron and length 2

microns). This scale is well suited for isolating single cells for measurement. Figure

A.1 shows a few E. coli in a microfluidic chamber. In addition to giving control of the

cell population, microfluidics give precise and sophisticated control of the chemical

environment surrounding the cells.
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Figure A.1. Microfluidic are well suited for isolating single cells for
imaging. The figure on the left shows a brightfield image at 40x
magification of several E. coli in a microfluidic chamber. The figure
on the right shows the single-cell fluorescence intensity of the same
cells.
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Figure A.2. 10:1 scale representation of microfluidic device. Courtesy
of the Groisman Lab (UCSD).

Testing of microfluidic devices (provided by the Alex Groisman Lab, UCSD) with

fluorescent beads and with E. coli has been conducted. Migration of the experimen-

tation to this platform is one of the more difficult experimental goals of this proposal,

but also one of the more exciting. As such, the following sections will provide an

introduction to the use of microfluidic devices.

A.1 Device Design

The microfluidic devices that we will use in this study are made from a patterning

of three basic features: channels, chambers, and capillaries. Figure A.2 shows a 10:1

scale representation of a microfluidic device.

Channels carry the large-volume (microliter) flow throughout the device, and the

chambers provide a small volume (femtoliters) outside the large-volume flow within

which to isolate and observe single cells. The capillaries are the smallest of the

three features and serve to couple the chambers to the channels. Table A.1 shows

approximate sizes of each feature.
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Table A.1
Approximate feature dimensions of the microfluidic devices.

Feature Length (micron) Width (micron) Height (micron)

Channel 105 100 15

Chamber 100-200 100 1.5

Capillary 25-50 20 0.6-1.5
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A.2 Device Construction

Currently, there are competing techniques for microfluidic device fabrication avail-

able to researchers that are well documented in the literature. For example, [33] pro-

vides a comprehensive review of materials and methods for device construction. The

poly(dimethyl-siloxane) (PDMS) microfluidic devices used in this study are fabricated

using soft lithography [34] to pattern the PDMS elastomer. The most difficult part

of this procedure is creating a mold on which to cast the PDMS. The casting mold,

upon which the PDMS prepolymer is prepared and cured, contains the negative relief

structure that defines the feature geometry of the microfluidic device.

The result of the soft lithography process is a PDMS block containing the feature

geometry (channels, chambers, and capillaries) open on one side. The geometry is

closed by reversibly adhering the open side to a glass substrate. Prior to PDMS-glass

bonding, the PDMS and glass are cleaned and prepared to promote strong adhesion.

After use, the glass is separated from the PDMS, reopening the feature geometry.

The PDMS block can be cleaned and rebonded to substrate for reuse.

Since device fabrication techniques are only indirectly relevant to this study and

are extensively reviewed elsewhere, a more detailed discussion is omitted.

A.3 Fluid Flow

As cells consume food and nutrients and expel waste, the chemical environment of

the small-volume chamber degrades. To maintain precise control of the environmental

parameters, the volume within the chamber should be exchanged on a timescale

much shorter than the cell’s life cycle. The following argument will demonstrate that

continously flowing fresh media through the large-volume channels at a speed of order

100 micron/s is sufficient to achieve the desired volume exchange.

The Reynolds scale of the microfluidic device dictates that the fluid flow is well

described by streamlines (non-crossing, steady-state particle trajectories). To find

the Reynolds number we take as the characteristic length scale, L, the hydraulic
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diameter of the channel, of order 10 microns, and approximate the media density,

ρ, and viscosity, µ, as that of water. Using the channel flow speed, V , of order 100

micron/s we find

Re =
Finertial

Fviscous
=
ρ V L

µ
=

103 kg

m3
10−4 m

s
10−5m

10−3 Ns
m2

<< 1,

much less than the value of 2040 [35] that marks the maximum of laminar flow and the

onset of sustained turbulence in pipe flow. In this regime, energy dissipation by the

relatively large viscous forces, Fviscous, damps turbulent flow structure, giving creeping

flow. This implies that off-streamline mass transfer can only occur by diffusion.

To put an upper limit on the timescale for the chamber volume exchange, we can

ignore the small effect of active flow into the chamber and consider only the diffusive

mass tranfer from the channel. For now, let us assume that the effect of the large-

volume channel flow is to maintain a constant concentration of chemical species at

the channel-capillary interface. Solving for this setup, the characteristic timescale for

molecular diffusion into the chamber for small molecules with diffusion coefficient, D,

of order 10−6 cm2 /s can be estimated as [36]

τ =
wchamber hchamber lcapillary

D hcapillary
= 125 s,

where w, h, and l are the width, height, and length of the features from Table A.1

chosen to maximize the calculation. Since the doubling time for a healthy population

of E. coli is approximately 20-30 minutes [9], diffusive mass transfer is sufficient to

cycle the chamber volume in a time much less than the cell’s life cycle.

Now, the diffusive mass transfer described above will, in fact, deplete the concen-

tration of chemical species at the channel-capillary interface. The large-volume flow

within the channel must be fast enough to replenish this depletion. The volumetric

flow through the channel is equal to the cross sectional area of the channel times the

flow speed, ν. This flow must replace the entire volume of the chamber taken from

the channel in time τ found above:

ν =
Vchamber
τ σchannel

<< 1 micron/s.
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So 100 micron/s flow in the channel is more than sufficient for precise control of

the chemical environment in the chamber. We can reasonably assume that the cells

experience an environment in the chamber that is identical to that of channel.

A.4 Micro/Macro Interface and Device Use

The microfluidic devices we will use have four millimeter-size wells (see Figure A.2)

that interface with standard tubing and allow hydraulic access to the sub-millimeter

feature geometry. Three of these wells, two inlets and a vent, are at the front-end of

the device and the fourth, the waste, is at the back-end of the device. At the front-end,

fluid flows in through the inlets and out through the vent (inbetween inlets). Part

of the fluid from the inlets flows through a fluid manipulation construct (discussed

next), through the chambers, and exits the back-end of the device through the waste.

Tubing connects the four wells to 2 mL containers that provide fluid to the inlets

and accepts fluid from the waste and vent. When a continous fluid fills the device, the

tubing, and the containers, a pressure difference applied between any two containers

will cause fluid to flow in the microfluidic device. The pressure difference necessary

to obtain the small volumetric flow rate required to sustain the chambers is on the

order of 10 inches of water (∼0.4 psi), and is achieved by placing the containers at

different heights.

A.5 Fluid Manipulation

The microfluidic devices we will use implement two basic constructs to provide

manipulation of the fluid from the inlets. These constructs are located downstream of

the inlets and upstream of the growth chambers. Described in more detail below, the

two constructs are the Fluid Switch, providing rapid and predictable fluid exchange

to the growth chambers, and the Multiplex Fluid Mixer, mixing fluids from the two

inlets in various exact proportions before the fluid reaches the growth chamber.
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Fluid Switch The media switch gives the capability of very rapidly exchanging

the fluid supplied to the channels that feed the chambers. Any fluid exchange must

occur onboard the device, as the small volumetric flow rate through the device will

not support the exchange of the ∼mL volume wells. Figure A.3(a) shows a schematic

of the switch in two pressure configurations. The direction of the fluid flow is shown

with arrows. In the left figure, the pressure applied to the container that feeds inlet 1,

P1, is greater than P2, the pressure applied to the container that feeds inlet 2. Both

these of these pressures are larger then that applied to the container that collects

from the vent, PV . In this configuration, fluid from inlet 1 travels to the vent as well

as downstream to the chambers and to the waste (chambers and waste not shown).

Fluid from inlet 2 only travels to the vent. In the alternate pressure configuration,

P2 > P1 > PV , fluid from inlet 2 flows towards the chambers. This is shown in

the right figure. Fluid exchange using the switch has been observed to occur in the

chambers on the order of minutes (data not shown).

Multiplex Fluid Mixer The multiplex fluid mixer gives the capability of flowing

a different mixture of fluid from inlets 1 and 2 down each of the channels. Figure

A.3(b) shows a schematic of the mixer. Fluid from both inlets flows towards the first

stage of the device. Because the pressure applied to the inlets is the same, the fluids

meet in the middle of this stage and travel side-by-side down a large channel to the

next stage. Before reaching the next stage, the fluids from the inlets diffusively mix

in the middle channel, so that three different fluids arrive at the third stage (fluid

1, a 1:1 mixture of fluids 1 and 2, and fluid 2). A similar process occurs at the

second stage. Fluid 1 is mixed in 1:1 proportion with the 1:1 mixture of fluid 1 and 2.

Fluid 2 is also mixed in 1:1 proportion with the 1:1 mixture. This yields four fluids:

fluid 1, fluid 1/fluid 2 mixture at 3:1, fluid 1/fluid 2 mixture at 1:3, and fluid 2. The

device is designed to have eight stages; the end result is ten channels each with a fluid

mixture in a different proportion. This device gives a good method for determining
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(a) Fluid switch.

(b) Multiplex fluid mixer.

Figure A.3. Onboard fluid manipulation integrated into microfluidic
devices. Arrows show the direction of fluid flow. (a) In the fluid
switch device, changing the pressure applied to inlets 1 and 2 rapidly
switches which inlet provides fluid to the chambers. The vent is kept
at a pressure below both inlets. (b) In the multiplex fluid mixer, fluid
from inlet 1 and 2 are mixed 1:1 at a branching point in the first
stage. This gives three different fluids (the fluid from inlet 1 and from
inlet 2 plus the 1:1 mixture). Two combinations of these fluids are
mixed at branching points in the second stage, giving four different
fluids. This procedure is iterated eight times (all not shown) yielding
ten combinations of the fluids from inlet 1 and 2.

steady-state response properties as a function of concentration, like the Pi threshold

of PhoR/PhoB TCS response.
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B. STOCHASTIC SIMULATION METHOD AND

ALGORITHM

Daniel Gillespie rigorously demonstrated [26] [27] [28] how a single trajectory of a

reaction system can be described as a continuous-time Markov process in the state

space of the species numbers. From this demonstration, he described a method to

simulate a trajectory.

During each step in the simulation a reaction, µ, occurs during the time interval,

τ , where µ and τ are randomly selected from the probability density P (τ, µ). Gillespie

found the correct form of P (τ, µ) in the following way.

Given state (X1, ..., XN) at time t we should calculate the probability, P (τ, µ)dτ ,

that reaction µ occurs after time interval τ .

P (τ, µ)dτ is equivalent to the probability, P0(τ), that no reaction occurs in interval

τ and that µ occurs immediately following interval τ and within the interval (t+τ, t+

τ + dτ). If the probability that reaction µ occurs in an infinitesmal interval is related

to the propensity of the reaction aµdτ , then:

P (τ, µ)dτ = P0(τ)aµdτ.

To find P0(τ), consider that the probability that no event occurs in an infinitesmal

interval is [1−
∑∞

ν=1 aνdτ ] so the probability that no event occurs in interval (t+τ+dτ)

is

P0(τ + dτ) = P0(τ)[1−
∞∑
ν=1

aνdτ ].

This means that
dP0(τ)

P0(τ)
= −

∞∑
ν=1

aνdτ ,

and

P0(τ) = exp [−
∞∑
ν=1

aντ ].
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Defining a0 =
∑∞

ν=1 aν gives

P (τ, µ) = aµ exp (−a0τ) (B.1)

Gillespie used this formulation to propose a computational method, the Stochas-

tic Simulation Algorithm [27] (SSA), essentially a type of kinetic Monte Carlo, to

rigorously simulate chemical reactions regardless of the numbers of species. The SSA

is an iterative procedure that takes at time t a state (X1, ..., XN) and steps it forward

in time by τ by choosing the next reaction µ, where τ and µ are randomly picked

according to the probability density P (τ, µ). This can be achieved [26] by picking

two uniform random numbers, r1 and r2 and calculating

τ =
1

a0

ln
1

r1

,

and finding the integer µ such that

µ−1∑
ν=1

aν < r2a0 ≤
µ∑
ν=1

aν .

The chosen reaction, µ, is used to update the state of the system by subtracting

the reactants used up and adding the products created to species populations. It is

straight forward to write a computer program to implement the SSA.
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C. SOLUTIONS TO THE STEADY-STATE CUBIC

POLYNOMIAL

We want to find solutions to the n = 2 steady-state polynomial

Z3 − ΓZ2 + Z − 1

α
Γ = 0. (C.1)

The general method to compute the roots of a cubic polynomial

ax3 + bx2 + cx+ d = 0

can be found in many math textbooks. A brief summary of this method is as follows.

First we compute the following quantities:

∆0 = b2 − 3ac

∆1 = 2b3 − 9abc+ 27a2d

C =
3

√
∆1 +

√
∆2

1 − 4∆3
0

2
.

Then, the kth of the three roots to the cubic polynomial is

xk =
−1

3a
(b+ ukC +

∆0

ukC
), (C.2)

where the uk are the three cubic roots of unity:

u1 = 1 , u2 =
−1 + i

√
3

2
, u3 =

−1− i
√

3

2
.

This method yields the three roots of the cubic in an analytic form that is rather

cumbersome. For certain choices of Γ and α Equation C.1 has three real, positive

roots, and the imaginary terms must cancel. But it is non-trivial to reduce the

solutions in Equation C.2 to a form that is easy to use in calculations.
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Instead of solving the cubic in this way, we can use a trick that takes advantage

of the fact that Γ and α are essentially free parameters (constrained only in that the

underlying kinetic parameters that contribute to Γ and α should be real, positive and

not biologically absurd). First, we arbitrarily factor Equation C.1 using real, positive

numbers a, b and c:

Z3 − ΓZ2 + Z − 1

α
Γ = (Z − a)(Z2 − bZ + c)

= Z3 − (a+ b)Z2 + (ab+ c)Z − ac = 0.

Equating the constants common to the various powers of Z we can find the relation-

ships

b = Γ− a

c = a2 − aΓ + 1

1

α
=
a

Γ
(a2 − aΓ + 1).

In this construction the freedom in α has been swapped for freedom in a. We can

choose any Γ and a subject to the constraint that b and c must be positive. This

constraint is met as long as a < Γ < a+ 1
a
.

Choosing Γ and a sets the values of b, c and α and the three solutions of the cubic

polynomial follow trivially as

Z = a ;
b±
√
b2 − 4c

2
.

We can impose the further constraint that b2− 4c > 0 so that the three solutions will

be real.
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