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ABSTRACT

Sommakia, Salah Ph.D., Purdue University, December 2013. Effects of Dip-
coated films on the Properties of Implantable Intracortical Microelectrodes.
Major Professor: Kevin J. Otto and Jenna L. Rickus.

The successful clinical use of implantable intracortical microelectrodes (ICMs)

to treat certain types of deafness, blindness, and paralysis is limited by a reac-

tive tissue response (RTR) of the brain. This RTR culminates in the formation

of a tight glial scar and a loss of neuronal density around implanted ICMs,

and is accompanied by a decrease in signal to noise ratio and an increase in

impedance. While no comprehensive mechanistic understanding of the under-

lying biology is currently agreed upon in the field, a general consensus exists

around a highly volatile acute RTR phase. During this acute phase, the electri-

cal properties of ICMs do not always coincide with cellular responses, and the

extent of initial injury appears to greatly influence the degree of the chronic

RTR. While many electrode modifications and treatments are effective in the

short term, the chronic RTR appears impervious to most interventions.

To better understand the acute phase of the RTR, this dissertation aims to

investigate the effects of various dip-coated biomolecules on the electrical prop-

erties of ICMs and cellular responses to microscale ICM-like foreign bodies. We

first present an examination of silica sol-gel thin films as a potential biomolecule
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delivery platform which does not adversely affect the electrical properties of

ICMs. The second study shows that adsorbed proteins, thought to play an im-

portant role in modulating the RTR, cause significant increases in electrode

impedance. In contrast to prevalent electrical models of the electrode tissue

interface which assume purely resistive impedance changes due to adsorbed

proteins, our results show both resistive and capacitive changes. We also show

that increases in impedance related to protein adsorption can be prevented by

dip coating ICMs in an aqueous solution of high molecular weight polyethylene

glycol (PEG). We then describe a method to clean electrode sites using direct

current (DC) biasing, showing that DC biasing is capable of restoring electrode

impedance following exposure to enzymatic cleaning solutions, proteins, phan-

tom brains, and actual brain tissue. The final study in an in vitro mixed pri-

mary cortical cell culture model shows that lipopolysaccharide (LPS), a well-

known ligand to toll-like 4 (TL4) receptors, dip-coated onto segments of metal

microwire, can simulate localized inflammation around an implanted ICM. We

observe elevated activation of glial cells in interface regions, and extending into

more distant regions. This elevation in glial responses is not accompanied by a

decrease in neuronal density. We additionally show that microwire dip-coated

with a mixture of LPS and PEG exhibits significantly lower microglial and as-

trocyte responses.

These findings highlight the importance of adsorbed proteins, some of which

are implicated in aggravating the reactive tissue response, but which we show
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can result in significant increases in electrode impedance before the RTR even

begins. These impedance changes can be prevented through the use of dip-

coated PEG. Our cell culture data presents further evidence for the attractive-

ness of TL4 receptors as a target for intervention, and suggests that the loss

of neuronal density observed in vivo is better explained by other mechanisms

following device insertion than pure glial activation.
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1. RATIONALE AND SIGNIFICANCE

Many traumatic injuries and degenerative diseases are currently incurable, but

can be treated with varying degrees of success by implantable neural micro-

electrodes in the central nervous system. For example, Spinal Cord Injuries

(SCI) occur at a rate of 11,000 cases per year in the U.S. and currently affect

up to 400,000 Americans [Berkowitz et al., 1998] and are extremely costly to

treat. Additionally, there are about 3.3 million Americans suffering from visual

impairment [In et al., 2004] and about 750,000 affected by severe to profound

hearing impairment [Mohr et al., 2001]. The lack of successful cures for sensory

impairments and CNS injuries has stimulated research into using external de-

vices to interface with the remaining healthy parts of the CNS, to create either

a brain machine interface [Nicolelis et al., 2003] or a neural prosthesis capa-

ble of restoring or enhancing lost neural function. Such devices has been used

with varying degrees of success to treat blindness [Maynard, 2001] and deaf-

ness [Lenarz et al., 2006, Loeb, 1990] and to enable bladder and muscle control

in paralyzed patients [Grill, 2000]. For devices interfacing with the central ner-

vous system, two distinct approaches exist. The first approach is to use surface

electrodes that rest on top of the brain surface [Leuthardt et al., 2004]. Surface

electrodes, however, are limited by the organization of cortical cells into dis-
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tinct layers and columns within those layers, placing target neuron populations

deep within the cortex. The second approach employs penetrating intracortical

electrodes which offer unique abilities to target deep neuron populations with

high specificity [Normann et al., 1999, Otto et al., 2005]. While intracortical im-

plants have been shown to be feasible, they are unreliable in chronic settings.

They encounter decreased signal to noise ratios (SNR), increased impedance

and a loss of discrimination [Vetter et al., 2004]. The degradation in electri-

cal characteristics of the electrode-tissue interface is correlated with a reactive

response of brain tissue. The trauma of insertion initiates a cascade of events

culminating in the formation of a glial scar around the electrode, isolating it

from the surrounding healthy brain tissue. Various treatments have been in-

vestigated to mitigate this reactive tissue response, but no completely effective

solution has been found.

The state of the art in the field holds that a highly volatile acute phase is

susceptible to various interventions, but that beneficial effects are typically lost

within a few weeks once the chronic response sets in. There is a lack of a de-

tailed and comprehensive understanding of the relation between the biological

components of the reactive tissue response and the changes in electrical prop-

erties of the implanted ICM, which do not always exhibit a consistent correla-

tion. Many current studies into neurointegrative interventions are performed

on non-functional electrodes for various reasons of cost-effectiveness and con-
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venience, making it difficult to draw solid and accurate conclusions as to the

efficacy of such interventions. This dissertation will attempt to shed some light

on some of these unaddressed points. A background review of the literature will

be presented in Chapter 2, surveying common electrode designs and their ap-

plication, and attempt to summarize current knowledge about the progression

of the reactive tissue response as well as various interventions. Chapter 3 will

discuss silica-sol gel thin films as coatings for neural microelectrodes with po-

tential bioactivity without adverse effect on electrode properties. Chapter 4 will

discuss details of impedance changes to electrode properties following exposure

to a model protein, and demonstrate how such changes can be prevented by ap-

plying a dip-coated film of high molecular weight polyethylene glycol (PEG). A

preliminary in vivo study will also be presented, investigating how impedance

increases in vivo can prevented by applying PEG topically into the brain and

examining the implications. Chapter 5 will describe a method of cleaning elec-

trode sites using relatively long duration direct current (DC) pulsing, suitable

for acute experiments. Chapter 6 will investigate the cellular responses to ICM-

like microscale foreign bodies in a primary mixed cortical cell culture model.

Using lipopolysaccharide (LPS) to induce microglial activation, we simulate lo-

calized inflammation without the presence of blood brain barrier injury, and

attempt to draw physiologically relevant conclusions from the behavior of the

various cell types. Chapter 7 will summarize and offer conclusions, unanswered

questions, and potential future work.
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2. BACKGROUND

2.1 Common Electrode Array Designs

Factors such as cost and availability guide the choice of electrode array, but

a basic understanding of each design’s advantages and limitations is essential

for long term studies, especially when the reactive tissue response to the im-

planted electrode is to be considered. Figure 2.1 shows examples of penetrating

intracortical electrode arrays under investigation for neural prosthetic applica-

tions.

(a) Microwire Array;
adapted from Williams
et al. [2007]

(b) Utah Electrode Array;
adapted from Normann et al.
[1999]

(c) Michigan probe;
adapted from Vetter
et al. [2004]

Fig. 2.1. Examples of commonly used electrode arrays currently
under investigation for use in neural prosthetic applications
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2.1.1 Microwire

Microwire neural electrodes have been used since 1958, when Strumwasser

reported the feasibility of using 80 µm diameter stainless steel wire for ob-

taining single neuron recordings lasting more than a week from awake, un-

restrained animals [Strumwasser, 1958]. Current microwire-based electrodes

are usually made of a conducting material such as gold [Yuen and Agnew, 1995],

iridium [Liu et al., 1999], tungsten [Williams et al., 1999], or stainless steel [Nicolelis

et al., 2003]. The microwire is coated with an insulating material, leaving the

tip exposed to act the electrode site. They are usually arranged into arrays to

cover a larger cortical area. The electrode counts of commonly utilized arrays

have ranged from four [Yuen and Agnew, 1995] to more than 100 [Nicolelis et al.,

2003]. While microwire arrays are relatively easy to construct, they are prone to

bending during insertion, introducing uncertainty about the precise location of

the microwires within the cortex [Edell et al., 1992]. Size considerations mean

that blunt microwires, usually implanted in bundles [Cheung, 2007] can cause

unacceptable levels of neuron displacement during insertion. These limitations

necessitated the development of alternative electrode substrate materials and

fabrication methods, paving the way for the next generation of silicon arrays.
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2.1.2 Micromachined silicon-based electrode arrays

Silicon micromachining techniques have enabled the uniform production of

microelectrodes with high electrode site counts and allow complex designs [Po-

likov et al., 2005], resulting in more design flexibility to counter the problem

of the reactive tissue response. Photolithography methods applied to electrode

fabrication enable great control over electrode size, shape and spacing. Smaller

electrodes result in better spatial discrimination [Kipke et al., 2003] allowing

the design of more sensitive electrodes. Additionally, electrode spacing has

proven important in recent research into the effect of electrode depth within the

brain on neural prosthetic control [Schwarz, 2004]. Among the many electrode

array designs tested, two designs have emerged as de facto standards within the

neural engineering community: the Utah electrode array (UEA), originally de-

veloped at the University of Utah, and the Michigan probe, originally developed

at the University of Michigan.

Utah electrode array

The UEA is an array of sharpened conductive silicon shanks, that is fabri-

cated from a single block of silicon through repeated steps of doping and etch-

ing. The silicon shanks are individually isolated, with the electrode site at

the tip [Cheung, 2007]. The UEA has come a long way since Campbell et al.

[1991] demonstrated its feasibility as a neural prosthetic device in 1991. It has
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been recently employed in a BMI tested in a severely tetraplegic human pa-

tient [Hochberg et al., 2006]. A major drawback of the UEA is the location of

the electrode sites at the tip of the silicon shanks, restricting control over the

depth location of the electrode sites. Some attempts have been made to over-

come this limitation through fabricating a UEA with graded shank lengths to

permit excitation and recording at different depths [Badi et al., 2003].

Michigan array

The Michigan probe currently produced by the Center of Neural Commu-

nication Technology (CNCT) evolved from the original designs of Kensall Wise

at the University of Michigan [Wise et al., 1970]. The advantage of Michigan

probes is the reproducible fabrication of shanks with a high precision electrode

placement [Cheung, 2007]. This layout allows for research into the electrical

activity of different layers in the cortex and for the precise marking of the lo-

cation of the electrode sites within the cortex [Townsend et al., 2002]. This

kind of precise mapping of electrode location was not previously possible. While

acute recording and stimulation with Michigan probes have been shown to be

feasible [Hetke and Anderson, 2002, McConnell et al., 2007], there is interest

in developing chronic applications. The chronic response of brain tissue has

been studied extensively using Michigan probes. Many studies on treatments

for integrating implantable electrodes with neural tissue are conducted using

Michigan probes supplied by CNCT.
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2.2 Progression of the reactive tissue response

The reaction of CNS tissue to implanted devices is physiologically unique due

to the presence of the blood-brain barrier (BBB). The BBB consists of closely

packed endothelial cells surrounded by astrocytic processes. This layer pro-

tects the brain from biochemical fluctuations in the periphery by restricting the

passage of certain molecules, while allowing the passage of nutrients and oxy-

gen [Shoichet et al., 2008]. Chronic BBB injury has been pinpointed as a major

factor in the adverse brain tissue response to implanted microelctrodes[Saxena

et al., 2013]. The response of brain tissue to implanted electrodes is an aggre-

gate of many sub-responses involving many cell types in the brain, including

glial cells, neurons, meningeal fibroblasts and blood macrophages. Over all, the

tissue response can be divided into an acute and a chronic components. Figure

2.2 shows a hypothetical timeline of the response of various cell types in the

CNS to an implanted electrode.

2.2.1 Acute (initial) response

Vascular damage, edema, and biofouling

The cortex has a high vascular density with small capillaries forming dense

networks between larger, longitudinal vessels [Cavaglia et al., 2001]. The injury

process following electrode insertion into the brain begins with the inevitable

breach of the blood-brain barrier, releasing serum and blood cells into the in-
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Fig. 2.2. Projected timeline of cellular responses to implanted
electrodes in the CNS. Adapted from He and Bellamkonda [2008]
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jury site [Clark et al., 1994]. Studies performed in live brain slices show that

vascular damage in the CNS in response to electrode insertion can be classified

into four categories: fluid displacement, vessel rupture, vessel severing and me-

chanical dragging by the device [Bjornsson et al., 2006]. Electrode insertion also

damages neurons and glial cells, causing the immediate accumulation of cellu-

lar and myelin debris at the injury site [Fawcett and Asher, 1999, Polikov et al.,

2005]. During insertion electrodes penetrate the meningeal surface carrying

meningeal cells into the brain and allowing for their migration along the elec-

trode shank [Krueger et al., 1986]. Migrating fibroblasts attempt to recreate

the glia limitans, a layer of tightly meshed astrocytic processes and fibroblasts

separating neurons in the brain from the pia mater [Ramer et al., 2001].

Vascular damage results in clot formation. Platelets adhere to collagen fibers

from the broken endothelium of the damaged blood vessels, forming the initial

hemostatic plug. They subsequently upregulate the high-affinity platelet inte-

grin αIIbβ, which mediates further platelet aggregation [Ruggeri, 2002]. Once

bound, platelets degranulate, releasing plasma coagulation factors which trig-

ger the formation of a fibrin clot [Standeven et al., 2005]. Activated platelets

also release signaling molecules such as platelet-derived growth factor (PDGF)

[Deuel and Huang, 1984, Heldin, 1992], transforming growth factor-β (TGF-

β) [Assoian et al., 1983] and vascular endothelial growth factor (VEGF) [Mohle

et al., 1997, Papavassiliou et al., 1997]. These factors attract extravasated in-

flammatory blood-borne cells to the injury site, leading to the formation of brain
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edema [Klatzo, 1987, Schilling and Wahl, 1997, 1999, Wahl et al., 1988]. Local

edema increases pressure around the implantation site, resulting in the further

neuronal displacement [Polikov et al., 2005]. Extravasated proteins contribute

to the later inflammatory response; for example, thrombin has been suggested

as a trigger for microglia [Choi et al., 2003, Hanisch et al., 2004, Moller et al.,

2000] and astrocyte [Ehrenreich et al., 1993, Grabham and Cunningham, 1995,

Suidan et al., 1997] activation. Protein adsorption, contributes to the immune

response to implanted materials everywhere in the body, ultimately affecting

device biocompatibility [Williams et al., 1985]. Adsorbed proteins have been

implicated in increasing the levels of activated glia, especially microglia, at the

device/tissue interface [Leung et al., 2008].

Activation of glial cells

Glial cells form the majority of the cells in brain, constituting about 75%

of the total brain volume [Purves et al., 1997]. Previously thought to only

provide structural support for neurons, glial cells have been found to provide

growth cues to neurons during development, control the chemical environment

in the brain and modulate electrical activity of neurons, among many other

functions [Kettenmann and Ransom, 2005]. The main glial cells involved in the

reactive tissue response to implanted electrodes that are discussed in this docu-

ment are microglia and astrocytes. The exact details of glial activation are still
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under investigation, but the phenotypical transformations that they undergo

are well characterized.

Microglia While the question of the ontogeny of microglia is controversial,

the most prevalent view holds that they arise from the prenatal arrival of blood-

borne monocytes into the CNS [Kaur et al., 2001]. Microglia roam the brain act-

ing as pathological event sensors, performing multiple functions including acti-

vation, proliferation and migration to the injury site [Kreutzburg, 1996]. In the

absence of injury, ramified (resting) microglia exist in a highly branched state,

constituting 5-10% of the total number of glial cells in the brain [Ling, 1981].

Following injury microglia interact with various cytokines adsorbed onto the

implanted surface, as well as chemokines present in the vicinity of the injury

site, and undergo activation. Activation is mediated through many factors such

as ATP, toll-like receptor 4, and reactive oxygen species [Davalos et al., 2005,

Okun et al., 2011, Qin et al., 2005, Tanga et al., 2005]. Microglial activation

involves cell proliferation and the assumption of a compact ameboid morphol-

ogy indistinguishable from macrophages [Fawcett and Asher, 1999]. Microglia

begin to perform functions similar to macrophages including phagocytosis of

foreign materials and upregulation of lytic enzymes to aid in the degradation

of the foreign materials [Polikov et al., 2005]. Analysis of the glial sheath ex

vivo around electrodes implanted in rat brains [Biran et al., 2005] and in vitro

in primary rat cortex cultures [Polikov et al., 2006] shows that microglia form
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the glial scar layer closest to the electrode surface, suggesting they are the first

glial cell type to respond to implanted electrodes. They adhere to the surface of

the electrode and act as a source for proinflammatory cytokines, such as IL1-β

and TNF-α [Leung et al., 2008]. The accumulation of activated microglia may

amplify the cytokine production cascade. Attenuating the production of these

proinflammatory cytokines, either through prevention of microglial adhesion

or direct intervention in the inflammatory pathways, may be a key factor to

improving the neurointegration of chronically implanted electrode.

Astrocytes Astrocytes comprise 30-65% of glial cells in the CNS [Nathaniel

and Nathaniel, 1981]. They possess a characteristic star shape with fine cel-

lular processes, comprised of 8-10nm diameter filaments of polymerized glial

fibrillary acidic protein (GFAP), considered to be a specific marker for astro-

cytes [Eng, 1985]. Following injury, astrocytes assume a reactive phenotype,

undergoing dramatic biochemical and functional changes characterized by pro-

liferation and hypertrophy through the upregulation of GFAP [Pekny and Nils-

son, 2005]. This process is usually termed “reactive gliosis” [Norton et al., 1992].

Astrocyte activation initiates the chronic response and the formation of the glial

scar, discussed in the following section. Astrocytic phenotype transformation

also involves a switch from being conducive to neuronal growth towards being

inhibitory [Davies et al., 1996].
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2.2.2 Chronic (sustained) response

Formation of glial scar

The most prominent manifestation of the long-term response to implantable

electrodes in the CNS is the formation of the glial scarâĂŤthe analogue of the

fibrous encapsulation tissue observed in non-CNS tissue in response to non-

degradable materials [Polikov et al., 2005]. In non-CNS tissue, fibrous encapsu-

lation occurs when macrophages encounter a large non-degradable object that

they are incapable of phagocytosing. In response, macrophages fuse into mult-

inucleated foreign body giant cells and continue to secrete degradative factors

such as superoxides and free radicals. In the CNS, the equivalent cells are

microglia. Upon failing to phagocytose the implanted electrode, they persist

in an activated state, further increasing neuronal damage). The main compo-

nent of the glial scar, however, is not activated microglia, but reactive astro-

cytes bound by tight and gap junctions [Edell et al., 1992, Fawcett and Asher,

1999, Turner et al., 1999]. Pathological production of extracellular matrix com-

ponents, such as laminin, collagen, and proteoglycans generally accompanies

—and mediates— the formation of the glial scar in spinal cord and traumatic

brain injury [Asher et al., 2001, Fitch and Silver, 2008, Liesi and Kauppila,

2002, McKeon et al., 1999]. A persistent glial scar forms as a response to the

continued presence of the electrode within the brain [Biran et al., 2005, Rousche

et al., 2001]. The in vivo formation of the glial scar exhibits great variabil-
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ity between experiments. Even within the same experiment, some shanks of

multi-shank probes elicit limited scarring while other shanks result in exten-

sive scarring [Edell et al., 1992, Rousche and Normann, 1998]. The extent of

the glial scarring is dependent on the amount of the initial damage done during

insertion [Szarowski et al., 2003]. The chronic glial scar around an implanted

electrode at 2 weeks is composed of reactive astrocytes 500–600 µm from the

implanted electrode at about 2 weeks. Over time the area of the scar region de-

creases, but cells become more compact and tightly bound by weeks 6 to 12, with

a thickness of 50–100 µm around the implant [Szarowski et al., 2003, Turner

et al., 1999]. An in vitro model produced by Polikov et al. [2006] demonstrated

a similar pattern of glial scar formation around microwires. The formation of

the glial scar has been implicated as the cause for the dramatic increase of the

impedance of implanted electrodes [Edell et al., 1992, Otto et al., 2006, Williams

et al., 1999]. Observations of the total impedance magnitude of implanted elec-

trodes over time reveal a marked jump at about 1 week post-implantation [Otto

et al., 2006, Williams et al., 2007], displaying close temporal correlation to the

formation of the tight junctions between the astrocytes in the glial scar. Pro-

teins secreted by reactive astrocytes also play an important role in the ensuing

neuronal response to electrode implantation. For example, reactive astrocytes

also simultaneously produce type IV collagen and α1 laminin, leading to the for-

mation of a basement membrane which blocks the neuron-outgrowth-promoting

effects of γ1 laminin secreted by resting astrocytes [Liesi and Kauppila, 2002].
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Fig. 2.3. Immunofluorescence images showing some components
of a glial scar around an electrode implanted in the cortex of a
rat. Left image shows a layer of activated microglia; center image
shows a layer of reactive astrocytes; right image shows decreased
neuronal density. Scale bar = 100 µm. Modified from Biran et al.
[2005]

Figure 2.3 shows a representation of cellular distributions around an implanted

electrodes 4 weeks after implantation, demonstrating minimally overlapping

layers of activated microglia and reactive astrocytes, and a decline in neuronal

density around the electrode.

Loss of neuronal density

The formation of the glial scar is accompanied by a loss of neural density in

the vicinity of the implanted electode [Biran et al., 2005] and a decline in the

recorded SNR over time [Vetter et al., 2004]. Reports of the size of this area

of depleted neuronal density vary from about 1 µm to over 100 µm [Stensaas

and Stensaas, 1976, Turner et al., 1999]. One explanation for this phenomenon

is that insertion trauma causes neuronal death, leading some researchers to

coin the term “kill zone”[Edell et al., 1992]. This explanation has been disputed

by studies confirming the presence of neurons in the vicinity of the implanted
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(a) Decline of SNR over time (b) Gradual increase in impedance
magnitude over time

Fig. 2.4. Decline in electrical properties of implanted electrodes
over time. Adapted from Vetter et al. [2004]

electrode and the ability to record neural signals during the first week post-

implantation [Biran et al., 2005, Williams et al., 1999]. This finding implies

that neurons survive throughout the initial response. Several studies have re-

ported a gradual decline in signal strength over time [Liu et al., 1999, Nicolelis,

2003, Vetter et al., 2004], suggesting that a gradual remodeling of neural tis-

sue around the implanted electrode –where neurons are slowly displaced by

migrating reactive microglia and astrocytes– is responsible for the decline in

signal quality. Figure 2.4 shows the progressive decline of electrical proper-

ties of implanted electrodes. The left panel (Figure 2.4(a)) shows the decline in

recorded SNR over time, while the right panel (Figure 2.4(b)) shows the gradual

increase in impedance magnitude, with an abrupt increase between 7 and 10

days post-implantation.
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2.3 Current approaches to improving electrode integration

Neurointegrative treatments can be implemented as a preventative method

prior to electrode implantation. Preventative measures include electrode design

elements, coating electrodes with conductive materials to improve their ability

to deliver electrical charge beyond the glial scar or coating with biomimetic ma-

terials to suppress or eliminate the reactive tissue response. Neurointegrative

treatments can also be applied during the implantation procedure (through lo-

cal or intravenous delivery of anti-inflammatory drugs) or post-implantation

by applying electrical fields of various strength to either guide neuron growth

towards the electrode or to break up the disruptive glial scar layer. These ap-

proaches will be discussed in detail in the following sections.

2.3.1 Electrode design elements

One of the strongest efforts in current neuroprosthetic device development

is research into ultrasmall electrodes and highly flexible materials to address

mechanical mismatch between implanted electrodes and brain tissue. It has

been shown that reducing electrode size and surface area results in smaller

glial scars and improved neuronal integration [Kozai et al., 2012a, Seymour and

Kipke, 2007, Skousen et al., 2011]. Smaller and more flexible electrodes have

their disadvantages, most notable that they are difficult to insert through the

pia and into the brain. Some potential solutions have been to use degradable
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insertion shuttles [Kozai and Kipke, 2009], mechanically adaptive electrode ma-

terials [Harris et al., 2011] or a combination of both [Lewitus et al., 2011]. Dis-

solvable insertion shuttles, however, might subject their flexible cargo to sub-

stantial fluid forces [Rakuman et al., 2013]. Recent findings have suggested

that material density might be as important as its stiffness [Lind et al., 2013].

2.3.2 Electrode enhancing treatments

The need for higher currents to stimulate neurons in the brain, in addition to

the formation of the glial scar and the accompanying increase in impedance, ne-

cessitated the development of electrode materials capable of delivering higher

amounts of electrical charge per unit surface area , a property known as charge

injection capacity [Cogan, 2008]. A trade-off exists between the selectivity of

neural electrodes (the ability to record from and stimulate a small number of

neurons) and their sensitivity (the ability to pick up weak neural activity in

the presence of thermal noise and signal loss through shunt pathways) [Ludwig

et al., 2006]. A common approach to address this issue is to modify the electrode

surface by adding a layer of a different material to either increase the charge in-

jection capacity or increase the surface area to lower the impedance. The goal of

such modifications is to increase the sensitivity while retaining a small enough

electrode size to maintain acceptable sensitivity. The most prevalent method to

enhance an electrode’s electrical properties is the use of conductive polymers.

Poly(3,4-ethylenedioxythiophene) (PEDOT) codeposited with Polystyrene Sul-
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fonate (PSS) onto electrode sites of Michigan probes results in an electrochem-

ically stable, fuzzy film with an impedance two orders of magnitude lower than

native electrodes [Cui and Martin, 2003, Cui and Zhou, 2007, Yang and Mar-

tin, 2004]. More recent research has further validated the use of PEDOT as a

micro-neural material for electrostimulation [Wilks et al., 2009], allowing for

miniaturization of electrode site size without sacrificing sensitivity [Ludwig

et al., 2011]. The superior electrical properties and electrochemical stability

of PEDOT have made it a favorite candidate among the conductive polymers for

use in neural electrodes. Chronic tests of PEDOT in vivo show that PEDOT-

coated sites outperform uncoated electrode sites in SNR metrics(Ludwig et al.,

2006). PEDOT-coated electrodes, however, exhibit impedance fluctuations, at-

tributable to the delamination of the films from the electrode sites, leading to

the investigation of more stable PEDOT films, such as PEDOT nanotubes [Abid-

ian and Martin, 2009, Abidian et al., 2009, 2010]. PEDOT can also be polymer-

ized in living neural tissue, depositing in the extracellular spaces and forming

‘fingers’ which protrude far enough into the neural tissue to potentially extend

past any fibrous tissue attempting to encapsulate the electrode [Richardson-

Burns et al., 2007]. Some studies have attempted to decorate PEDOT films with

biological molecules to further improve its integration with neural tissue [Cui

and Martin, 2003, Green et al., 2009]. While these treatments achieve improved

electrical properties in vivo, they are typically limited to the electrode site area.

In the most common electrode designs, electrode sites cover only a small por-
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tion of the total area of electrode. Other neruointegrative treatments focus on

covering the entire electrode surface as described in the following sections.

2.3.3 Biomimetic coatings

There are two main approaches to designing coatings that mimic the local

ECM in the CNS. The first approach aims to encourage neuron attachment to

the electrode, while the second approach aims to manipulate glial cells in an

attempt to attenuate glial scar formation [Polikov et al., 2005].

Several studies have attempted to create surfaces more conducive to neural

growth by incorporating or immobilizing cell adhesion molecules. A common

approach is the use of multipeptide fragments of laminin for the purpose of mod-

ulating neural attachment and growth. The coating methods employed include

covalent immobilization on dextran-coated surfaces [Massia et al., 2004], cova-

lent immobilization on amino-modified glass (Kam et al., 2002), self-assembling

peptide nanofibers [Tysseling-Mattiace et al., 2008, Wu et al., 2006], copolymer-

ization with conductive polymers [Cui et al., 2001, Stauffer and Cui, 2006], elec-

trostatic layer-by-layer deposition [He et al., 2006], microcontact printing [James

et al., 2000, St. John et al., 1997], fiber templating within a hydrogel [Yu and

Shoichet, 2005], and covalent binding to silica sol-gel [Jedlicka et al., 2006,

2007a].

These studies present in vitro results showing that coatings containing whole

laminin (He and Bellamkonda, 2005), laminin sequences YIGSR [Cui et al.,
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2001, Yu and Shoichet, 2005] or IKVAV [Jedlicka et al., 2007a, Massia et al.,

2004, Yu and Shoichet, 2005] result in improved neuron and neuron-like cell

(PC12) growth. The incorporation of the laminin fragment RGD, however, re-

sulted at best in a non-specific effect on multiple cell types [Zhang et al., 2005]

and at worst a preferential adhesion affinity for non neuronal cells [Kam et al.,

2002]. More recently, the immobilization of a neuron specific adhesion molecule,

L1, on a silicon substrate electrodes was investigated and showed improved neu-

ral adhesion in vitro [Azemi et al., 2008] and in vivo [Azemi et al., 2011].

Kam et al. have taken the converse approach, studying the effects of peptide

sequences on astrocyte adhesion [Kam et al., 2002]. Their results showed that

YIGSR and IKVAV have no effect on astrocyte growth and adhesion in vitro,

but that the Neural Cell Adhesion Molecule (NCAM) sequence KHIFSDDSSE

causes increased astrocyte growth compared to fibroblasts. Since NCAM is

known to have an inhibitory effect on astrocyte proliferation following injury

[Sporns et al., 1995]. Kam et al. argue that immobilizing the KHIFSDDSSE

sequence to a neural electrode could attenuate the intensity of the resulting

glial scar in vivo. The effect of this NCAM-modified surface on neurons was not

investigated, and there was no in vivo follow up.

While these in vitro studies show potential for biomimetic coatings, in vivo

studies have yet to show an unambiguous improvement in the reactive tissue

response when such coatings are used. Cui et al. [2003] have shown that the in-

corporation of YIGSR in polypyrrole coatings result in more neuron survival at
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the electrode site compared to control sites. He et al. [2006] have demonstrated

that electrostatically deposited laminin results in a less intense glial scar. Nei-

ther of these studies, however, show a concrete and satisfactory improvement

of electrode performance over a long time scale, and much research remains to

be done in this field.

2.3.4 Drug elution

A different approach to neurointegrative coatings is to use drug elution to

attenuate the inflammatory response to the implanted electrode. Such ad-

ditives include neuropeptides such as α-melanocyte-stimulating hormone (α-

MSH) and synthetic glucocorticoids such as methylprednisolone and dexam-

ethasone [He and Bellamkonda, 2008, Li et al., 2005]. Peripheral injections

of dexamethasone starting at the day of injury and continuing for 6 days have

been shown to result in a profound attenuating effect on both the initial and

sustained tissue responses [Spataro et al., 2005]. The systemic delivery of such

anti-inflammatory compounds risks significant side effects, however, leading to

research into drug elution techniques for the local delivery of these agents to the

injury site. Ravi Bellamkonda’s research group has demonstrated the feasibil-

ity of local anti-inflammatory drug delivery. Using a nitrocellulose-based coat-

ing for the sustained in vivo release of dexamethasone [Zhong and Bellamkonda,

2007] and α-MSH [Zhong and Bellamkonda, 2005] they showed a weakened tis-

sue response over a four week period. Kim and Martin have demonstrated a
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successful system for in vitro dexamethasone release from an alginate hydro-

gel matrix [Kim and Martin, 2006]. Wadhwa et al. [2006] have implemented

a system for the electrochemically-controlled release of dexamethasone in vitro

from polypyrrole films, while Abidian et al. [2006] have implemented a similar

system for dexamethasone release from PEDOT and polypyrrole. A limitation

of controlled drug release is that it is not sustainable over the long term, typ-

ically lasting days to weeks. To counter this limitation, He et al. [2007] im-

mobilized α-MSH onto the silicon surface of neural electrodes resulting in an

anti-inflammatory surface that elicited a significantly weaker tissue response.

Using a different approach to mitigate the reactive tissue response, Win-

ter et al. [2007] have implemented a system for the controlled release of nerve

growth factor (NGF) from a polyethylene glycol-polylactic acid (PEGPLA) hydro-

gel. This in vitro study showed that NGF-loaded hydrogel coatings on neural

microelectrodes can sustain the release of NGF for 1 week with little effect on

the electrical properties of the electrodes a significant positive effect on the sur-

vival and neurite extension of PC-12 cells.

While there is an extensive body of literature describing the reactive brain

tissue response to implantable electrodes, there is no completely successful

treatment regime currently in place. Sheafs of published literature currently

show that any efficacy displayed by a particular treatment only lasts for a month

at most. This places a huge obstacle to the further implementation of intra-

cortical microelectrode-based neural prostheses. As shown by Szarowski et al.
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[2003], the extent of the glial scar depends greatly on the extent of the acute

damage, demonstrating the need to modulate the initial response, especially

edema and the attachment and activation of microglia.

One important factor affecting the extent of the reactive tissue response,

demonstrated by Seymour and Kipke [2007] is electrode size. The many advan-

tages of silicon-based microelectrodes, including ease of fabrication and reliable

large-scale production, make them indispensable in neuroprosthetic research

at this point, despite their non-optimal size. Neurointegrative coatings must

be designed in such a way that they do not exacerbate neuronal displacement,

yet have enough coverage to treat the entire device shank, rather than just the

electrode site.
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3. SOL-GEL THIN FILM COATINGS FOR IMPLANTABLE

INTRACORTICAL MICROELECTRODES

3.1 Introduction

The complexity underlying the RTR to implanted ICMs means that approaches

towards mitigating it will likely entail multiple modalities, including immobi-

lized biomimetic biomolecules, locally released anti-inflammatories, and sys-

temically delivered drugs. Current drug delivery platforms are dominated by

hydrogels [Kim and Martin, 2006, Winter et al., 2007], which, while well estab-

lished, are large in scale in comparison to ICMs, and might exacerbate neuronal

displacement effects. Some electrically conductive electrode coatings, such as

PEDOT and carbon nanotubes, are capable of drug loading and delivery [Abid-

ian et al., 2006, 2007]. They are, however, typically deposited only on the elec-

trode sites, and cover only a small fraction of the indwelling part of the de-

vice. While some success has been demonstrated with direct grafting of bioac-

tive molecules onto the substrate of the ICM device shanks [Azemi et al., 2008,

2011], such approaches can require multiple steps and the use of complicated

chemical techniques.
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One promising approach to mitigating the reactive tissue response is to coat

the microelectrodes in a porous silica thin film using the sol-gel method. The

sol-gel technique allows for single-pot synthesis at ambient conditions. Dip

coated thin films of ultraporous silica exhibit a flat surface morphology, with

pore size and surface features of <25 nm, and a thickness of approximately

100 nm [Jedlicka et al., 2006]. With the incorporation of short peptide chains

into the silane precursor, peptide-presenting sol-gel silica thin films can be

made with precise control over density of the presented peptides [Jedlicka et al.,

2007a,b]. These peptide-presenting silica thin films have been shown to be ex-

cellent substrates for neuronal growth [Jedlicka et al., 2006, 2007a]. In addi-

tion, sol-gel thin films are a viable drug delivery platform, achievable through

the controlled release of drugs encapsulated within the porous film [Radin and

Ducheyne, 2007, Radin et al., 2009]. This coating technique thus has the poten-

tial to combine biomimetic material modification with localized drug delivery,

but it is necessary to first establish the effects of such sol-gel thin films on the

electrical properties of the microelectrodes. The purpose of this study is to ex-

plore the feasibility of applying sol-gel silica thin film coatings to silicon-based

microelectrodes. Determining this feasibility includes verifying the adhesion

of the coating to the probes, as well as ensuring that the coatings do not sig-

nificantly detriment the electrode’s electrical properties. This characterization

is an important step toward developing these coatings towards better in vivo

neurointegration of implantable ICMs.
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3.2 Materials and methods

3.2.1 Coating technique

Sol-gel silica thin film were prepared as previously described in Jedlicka

et al. [2006]. Briefly, the precursor sol was prepared by mixing 3.8 mL tetram-

ethylorthosilicate (TMOS) (Sigma-Aldrich, St. Louis, MO) with 850 mL ddH2O,

and subsequently adding 0.55 mL of 0.04N HCl to catalyze hydrolysis. The pre-

cursor was then sonicated for approximately 15 min. The sonicated mixture was

filtered using a 0.2mm Whatman syringe filter. A solution was then mixed con-

sisting of 300µL of the filtered TMOS mixture, 700 µL of sterile-filtered, pH6.0,

0.2M phosphate buffer, and 100 µL of methanol. The thin films were produced

by dip coating the shanks of six single-shank silicon substrate microelectrodes

(NeuroNexus Technologies, Ann Arbor, MI) at a constant rate of 35mm/s into

this final solution. Each of the six electrodes evaluated in this study had 16

individual iridium sites with a site area of 703 µm2, for a total of 96 coated elec-

trode sites. The films were allowed to gel for approximately 1 minute in air at

room temperature, and then stored in phosphate buffer for use.

3.2.2 Evaluation of coating

The presence and evenness of the sol-gel silica thin films on the electrodes

were evaluated by incorporating a fluorescent label into the coating. This was

achieved by adding a saturating quantity of fluorescein sodium salt to the phos-
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phate buffer before coating, resulting in a silica thin film with uniform fluo-

rescent label throughout. An electrode was coated in non-fluorescent sol-gel

as a control to ensure that the coating itself did not autofluoresce. To ensure

that fluorescence of the labeled probe was not due to surface adhesion of the

fluorescein, coated and uncoated control probes were dipped in a fluorescein

sodium salt solution identical to that used to coat the fluorescent probe, except

that TMOS was replaced with an equal volume of phosphate buffer. Fluores-

cent images were obtained 1 hour after coating using a Leica DM-IRB fluores-

cence microscope. Images of the fluorescently labeled probes were collected at

a 525 nm wavelength emission using 490 nm excitation. Fluorescence in im-

ages of the coated electrodes with fluorescein label was compared against the

control electrodes, which were not labeled. To evaluate stability of the coating,

an established phantom brain model was utilized [Chen et al., 2004]. A single

shank, acute Michigan electrode was coated in the fluorescently labeled sol-gel

and imaged as described above. The probe was then inserted repeatedly into

the brain model and then imaged again. Stability was assessed by continued

fluorescence following insertion in the phantom brain.

3.2.3 Electrical characterization

Electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV)

measurements were collected using an Autolab potentiostat PGSTAT12 (Eco-

Chemie, Utrecht, The Netherlands) with built in frequency analyzer (Brinkman,
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Westbury, NY). A three electrode setup was utilized for in vitro experiments,

with the coated NeuroNexus acute, single-shank electrodes serving as the work-

ing electrode. A calomel electrode (Fisher Scientific,Waltham, MA)was used as

a reference electrode, and a platinum wire as the counter electrode. Measure-

ments were performed in 1x PBS at room temperature. EIS and CV were pre-

formed prior to and 1 day following application of the thin film coatings. To per-

form EIS, a 25mV RMS sine wave was applied to electrode sites with frequencies

ranging logarithmically from 0.1 to 10 kHz. CV was performed by sweeping a

voltage linearly from-0.6 to +0.8V at a scanning rate of 1 V/s. Sites with broken

or poor connections, detected by having a maximum current in cyclic voltammo-

grams below 1 nA, were excluded from the data set. The impedance data gath-

ered from EIS were averaged across all sites. The impedances were separated

into resistive and reactive components, and were compared for the pre-coated

and post-coated probes at all measured frequencies. Changes in resistance, re-

actance, and impedance magnitude were evaluated using t-tests with p<0.05

indicating statistical significance. Current values from cyclic voltammograms

were likewise averaged across all electrode sites. The charge carrying capacity

was calculated by integrating the cathodic current density curve generated by

the cyclic voltammogram and dividing by the sweep rate, and was compared

before and after coating.
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3.3 Results

Fluorescent imaging shows fluorescence on the electrode coated with the la-

beled sol-gel but not on the control (Figure 3.1), indicating adherence of the

sol-gel film to the electrode. The majority of the coating fluoresced uniformly;

however, there were patches of increased fluorescence, suggestive of local coat-

ing irregularities or clumps within a thin, even film. Absence of fluorescence

on the control probe demonstrates that the coating is not auto-fluorescent, and

that the fluorescence of the labeled probe is due to encapsulation within the

pores of the sol-gel film, rather than adhesion on the film’s external surface.

In addition, uncoated probes dipped in the fluorescein solution displayed no

fluorescence (data not shown), indicating that the fluorescence seen in the ex-

perimental probe was not due to surface adhesion of the label directly onto the

probe surface. The stability of the coating on the probe was confirmed through

continued florescence after inserting the probe into a phantom brain (data not

shown). The coating appeared unaltered after insertion into the model, demon-

strating adherence of the coating to the probe given similar mechanical stresses

during surgical insertion.

The results of cyclic voltammetry show moderate changes in the voltammo-

grams post-coating (Figure 3.2A), with larger current magnitudes observed for

all voltages along the sweep. Cathodic charge storage capacity post-coating ex-
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Fig. 3.1. Fluorescence microscopy confirms the adherence of sol-
gel coatings to microelectrodes. (A) Bright field image of probes
to show their location. (B) Fluorescent micrograph of coated
probes. Left probe is unlabeled control, right probe is fluores-
cently labeled. These images demonstrate that the silica sol-
gels can be successfully applied to silicon-based microelectrodes.
Additionally, these images confirm the ability to encapsulate
molecules in the TMOS precursor to facilitate biomolecule deliv-
ery to the implantation site. Reprinted from Pierce et al. [2009]
with permission.
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hibited a statistically significant increase (p<0.001) compared to pre-coated val-

ues (Figure 3.2B).

Comparison of the resistance and reactance as a function of frequency re-

veals an increase in resistance and a decrease in reactance (Figure 3.3A).The

impedance magnitude pre and post coating demonstrates a decrease in impedance

after coating at all frequencies tested (Figure 3.3B). Nyquist plots of the elec-

trochemical impedance spectroscopy data exhibit a shift in the impedance curve

towards increased resistance and decreased reactance, particularly at low fre-

quencies (Fig. 4A). At low frequencies, both the resistive and reactive changes

are more pronounced, with the reactance dominating the total impedance. Com-

paring the impedances at the individual frequencies of 100 Hz, 1 kHz, and

10 kHz (Fig. 4B–D), the resistance increases significantly across all frequencies

(p<0.001), whereas the reactance is significantly decreased at 100 Hz (p<0.001),

becomes unchanged around 1 kHz (p=0.1156), and is significantly increased at

10 kHz (p<0.001). The 100 Hz decrease is much larger in magnitude than the

10 kHz increase.

3.4 Discussion

A key consideration in coating an electrode is how the coating material af-

fects the electrical properties of the electrode. If a coating that aims to mitigate
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Fig. 3.2. (A) Representative cyclic voltammogram demonstrates
changes in hysteresis curve. Cyclic voltammograms pre- and
post-coating reveal an increase in current for each applied volt-
age of the sweep. This result indicates an increase in charge car-
rying capacity of the electrode site after application of the coat-
ing. (B) The average cathodic charge storage capacity (n = 92)
increases after coating for all experimental sites. The increase
in CV area is indicative of an increase in charge carrying capac-
ity of the electrode following coating. Reprinted from Pierce et al.
[2009] with permission.
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Fig. 3.3. Plots generated from EIS performed before and after
coating show decreasing impedance losses with increasing fre-
quency (n = 92). (A) Separated real and imaginary impedances
show a resistance increase and reactance decrease following coat-
ing, with the most pronounced effects occurring at low frequency.
(B) The total impedance shows a general decrease with the most
pronounced effect also occurring for low frequency. The total
impedance is dominated by the imaginary component. Reprinted
from Pierce et al. [2009] with permission.
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Fig. 3.4. (A) Representative Nyquist plot generated through
electrochemical impedance spectroscopy demonstrates changes
in impedance. Spectrograms obtained pre and post coating show
a moderate decrease in impedance magnitude for all frequencies.
(BŰD) Bar graphs showing average (n = 92) change in resistance
(R), reactance (X), and total impedance (Z) following coating for
(B) 100 Hz, (C) 1 kHz, and (D) 10 kHz. Resistance increases sig-
nificantly for all frequencies. Reactance and total impedance de-
crease significantly at low frequencies, become unchanged near
physiological frequencies (i.e. 1 kHz), and become significantly
higher at high frequencies. The reactance increase at high fre-
quency is much smaller in magnitude than the decrease seen at
low frequency. Reprinted from Pierce et al. [2009] with permis-
sion.
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the RTR results in detrimental changes to the electrical properties of the elec-

trode, this coating would be of little practical value. The cyclic voltammetry re-

sults from our study demonstrate an overall increase in charge carrying capac-

ity for coated electrode sites. Increasing charge carrying capacity corresponds

to an increase in sensitivity for recording and allows for higher stimulation cur-

rents while minimizing voltage excursions [Wilks et al., 2009]. The increase in

charge carrying capacity may be due in part to the decrease in impedance; how-

ever, it should be noted that the charge carrying capacity changes may be over-

estimated since the original site area was used for its calculation, but the porous

coating likely increases the surface area across which charge transfer can occur.

The results of EIS show a general decrease in site impedance, with impedance

magnitude at the physiologically relevant frequency of 1 kHz being essentially

unchanged from a bare electrode. Decreases in site impedance will increase the

sensitivity of the electrodes, allowing for the detection of weaker signals across

larger distances. Such decreases in impedance following the application of a

non-conductive coating may be a result of increased capacitive charge transfer.

Similar effects upon application of thin film coatings have been noted in the

literature [Zhong and Bellamkonda, 2007]. The trends seen in the reactance

and total impedance support the idea that these impedance decreases are a re-

sult of increased capacitance caused by charge separation due to introduction

of the layer of thin, nonconductive silica. Because a capacitor’s impedance is

largest at small frequencies and decreases with increasing capacitance, an in-
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crease in capacitance of the electrode interface would account for the reactance

trend. Additionally, an increase in interfacial capacitance is consistent with the

observed increase in charge carrying capacity. The resistance increased for all

frequencies, as would be expected for an insulating layer. The electrical prop-

erties of sol-gel produced silica are highly dependent upon the material proper-

ties that result from the synthesis and treatment conditions of the film. While

thick coatings of sol-gel silica sintered and densified by heat treatment substan-

tially increase the total impedance [Hamdy et al., 2007, Pepe et al., 2006], high

porosity silica xerogels and aerogels have dielectric constants in the range of

2.1–3.95. Our results demonstrate that the dip-coated, ambient-dried thin film

silica sol-gel coatings do not adversely affect the electrical characteristics of the

implantable electrodes, and may in fact provide beneficial electrical properties.

A major advantage of the sol-gel silica is the potential for simple biofunctional-

ization schemes. Together these features will allow the sol-gel silica coatings to

be used as a platform material for the mitigation of the RTR without causing

significant detriment to the functionality of the probes.

The modest changes in the electrical properties of the probes should increase

signal-to-noise ratio and improve the quality of neural recordings. These ef-

fects will likely be small, and the primary advantage of the coating is its use

as a future platform for biochemical modulation of the electrode tissue inter-

face. The impedance decreases observed in this study are much smaller than

those caused by films or nanotube structures of poly(pyrrole) (PPy) or poly(3,4-
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ethylenedioxythiophene) (PEDOT), for which changes are one or more orders

of magnitude [Abidian et al., 2006, Wilks et al., 2009]. Likewise, the charge

carrying capacity increase is much more subtle than that caused by PPy or PE-

DOT. Although less advantageous electrically than conductive polymers, sol-gel

coatings provide a number of beneficial properties. While polymer nanotubes

can deliver only small molecules, sol-gel materials can deliver a wide range of

biomolecules. In addition, the rate of release can be finely tuned by adjusting

the precursor silane to catalyst ratio [Avnir et al., 2006]. Another important

point of contrast between silica sol-gel coatings and conducting polymer coat-

ings is the physical scale. While sol-gel coatings have a total thickness of ap-

proximately 100 nm, coatings of conductive polymer nanotubes have a thickness

ranging from 2 to 8.3 µm [Abidian and Martin, 2008].

The results of this study demonstrate the feasibility of applying silica sol-gel

materials to microelectrodes. The potential clinical applications that depend

on stable chronic recording from the cortex make the mitigation of the RTR a

crucial issue. Our finding that silica sol-gel thin films can be coated onto ICMs

without adversely affecting the electrical properties of the ICMs, combined with

potential application of silica-sol gels as a combinatorial drug releasing and

biomolecules presenting platform make silica thin films an interesting research

avenue in the quest for alleviating chronic RTR.
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4. QUANTIFIABLE PROTEIN-ADSORPTION-CAUSED

CHANGES IN ELECTRODE IMPEDANCE ARE

PREVENTABLE USING DIP-COATED PEG

4.1 Introduction

Failure of intracortical microelectrodes (ICMs) associated with the forma-

tion of a dense glial scar and loss of neuronal density typically manifests as

increased impedance and decreased signal to noise ratios. In vivo impedance

monitoring is a common tool to assess the functionality of implanted ICMs, and

is used to infer the progression of the reactive tissue response to implanted

ICMs [Vetter et al., 2004, Williams et al., 1999, 2007]. Recent research show-

ing that changes in electrical properties do not always perfectly correlate with

cellular responses implicates additional abiotic factors [Prasad and Sanchez,

2012, Prasad et al., 2012]. In vitro testing in 3D gel constructs revealed that

the different glial cells have different impedance profiles when adhered to the

surface of a microelectrode [Frampton et al., 2010]. While adsorbed proteins

have been implicated in the biological response(Leung et al., 2008), their effects

on the electrical impedance of ICMs have not been described with impedance

spectroscopy. The prevalent electrical circuit model of the tissue electrode in-
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terface assumes that adsorbed proteins result in purely resistive impedance

changes [Otto et al., 2006, Williams et al., 2007] but there is not sufficient em-

pirical verification of this assumption.

Another important question in this regard is whether any detrimental changes

to the electrical characteristics of neural microelectrodes can be prevented using

simple and cost effective approaches. For implantable devices in other biological

systems, protein-resistant treatments are commonplace [Bluestein et al., 2010,

Li and Henry, 2011, Salacinski et al., 2001]. One of the most common materials

used to enhance the biocompatibility of biomedical implants is polyethylene gly-

col (PEG). Due to its hydrophilic nature, it prevents the adsorption of proteins

by reducing access to the more hydrophobic surface onto which proteins prefer

to bind [Michel et al., 2005]. Typically PEG is chemically grafted onto a sub-

strate and very reliably reduces protein adsorption [Muthusubramaniam et al.,

2011, Sharma et al., 2004a,b]. Current approaches in intracortical implant bio-

compatibility incorporate PEG as a scaffold for thick drug eluting hydrogels

[Lu et al., 2009, Rao et al., 2011, Winter et al., 2007], which might exacerbate

neuronal displacement.

This chapter will present an analysis of changes in ICM impedance following

immersion in a model protein solution mimicking in vivo brain protein concen-

tration. Total impedance, as well as resistance and reactance, will be analyzed

at different points across the frequency spectrum to elucidate the contribution

of adsorbed proteins to the impedance changes affecting electrode performance.
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We will show that a dip-coated film of high molecular weight PEG (HMWPEG)

prevents changes in impedance upon immersion in protein solution, and that in

vivo application of PEG in an acute setting reduces the magnitude of impedance

increase resulting from electrode insertion into tissue.

4.2 Materials and methods

4.2.1 Electrochemical measurements

Electrochemical measurements of 16-channel single shank Michigan elec-

trode arrays (CNCT, Ann Arbor, MI) were made using an Autolab potentiostat

PG-STAT12 with a built-in frequency response analyzer (EcoChemie, Utrecht,

The Netherlands). A three-electrode cell configuration was used with the mi-

croelectrode site functioning as the working electrode, a large-area Pt wire

functioning as the counter electrode, and an Accumet, gel-filled, KCl saturated

calomel electrode (Thermo Fischer Scientific, Fair Lawn, NJ) functioning as the

reference electrode. For each electrode array, Cyclic voltammetry (CV) was per-

formed by sweeping the applied voltage from -0.6 to +0.8 V at a scanning rate

of 1 V/s to determine sites with broken or poor connections, designated as those

sites exhibiting a maximum current below 1 nA. These sites were discarded

from the analysis, thus yielding a total of 30 functional sites on 3 different elec-

trode arrays .
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Electrochemical impedance spectroscopy (EIS), using the PGSTAT12, was

used to measure the impedance of the electrode sites with the application of

16 sequentially applied sinusoidal waves at logarithmically spaced frequencies

ranging from 46 Hz to 10 kHz, with an amplitude of 25 mVRMS. For each elec-

trode, impedance spectroscopy was performed in PBS following each of three

different treatments: a) no treatment, b) immersion in a 10% solution of bovine

serum albumin (BSA) (Sigma-Aldrich, St. Louis, MO) in PBS, the concentra-

tion of which was chosen to mimic protein concentration in rat cerebral cortex

[Banay-Schwartz et al., 1992], and c) immersion in a 20% solution of 4000MW

PEG (Alfa-Aesar, Ward Hill, MA), air-drying for one minute, then immersion in

BSA. An additional volume of 100 µL of PEG was further applied directly onto

the microelectrode shank as it was immersed in BSA to mimic a topical ap-

plication. Electrodes were rinsed with deionized water and anodically cleaned

between the different treatments using 10 second long DC pulses, as previously

described in Sommakia et al. [2009]. Impedance and phase spectra and Nyquist

plots were generated for all treatment groups. Comparisons of the resistance,

reactance and total impedance were done at 50 Hz, 100 Hz, 1 kHz, and 10 kHz.

4.2.2 Acute surgery

The laboratory animal protocol for this work was approved through the Pur-

due Animal Care and Use Committee (West Lafayette, IN, USA), and conforms

to the guidelines of the US National Institutes of Health. Two male Sprague
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Dawley rats (Harlan Laboratories, Indianapolis, IN) were used for this prelimi-

nary study. Each rat was anesthetized with 2% isofluorane, then transferred to

a stereotactic frame and maintained with 0.5–1% isofluorane delivered through

a nose cone. The head was shaved and swabbed with ethanol, and an eye lu-

bricating ointment applied. Lidocaine was injected subcutaneously at multiple

positions in the head, and then a midline incision approximately 2cm long was

made along the cranium with a scalpel. The underlying pericranium was re-

moved to expose the skull. A single burr hole was made with a dental drill

towards the back of the head, slightly anterior to the ears, and a stainless steel

bone screw with attached to a segment of platinum wire was threaded into it to

serve as a counter electrode. Bilateral craniotomies about 2.5 mm in diameter

were made with a dental drill, approximately 2.5 mm anterior to Bregma and 2

mm lateral to the midline. For each craniotomy, a slit was made in the dura us-

ing surgical microscissors. One craniotomy serving as control was wetted with

0.9% sterile saline before electrode insertion, while the other craniotomy was

wetted with 20% w/v solution of 4000MW PEG prior to electrode insertion. An

acute Michigan probe was used for this experiment, with its 1 kHz impedance

in PBS measured immediately before insertion. The control craniotomy was

done first, with the electrode connected to Autolab potentiostat. The electrode

was held in a magnet-stabilized micromanipulator, and manually inserted into

the cortex. Five minutes after insertion, EIS was measured in a two-electrode

setup. The electrode was then removed, rinsed with MilliQ water, and cleaned
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by applying a DC bias of 1.5 V for 10 seconds as described in Sommakia et al.

[2009] and Chapter 5. After verifying the return of the 1 kHz impedance to

baseline, the electrode was immersed in a 20% solution of 4000MW PEG in

MilliQ water for 1 minute and allowed to dry for 2 minutes. The electrode was

then replaced in the micromanipulator and inserted into the cortex in the other

craniotomy wetted with PEG, and EIS was performed again.

4.2.3 Statistical analysis

Statistical analysis was done using the SAS 9.3 statistical package (SAS In-

stitute, Cary, NC). A general linear model (GLM) procedure was used to perform

a one way ANOVA with block to remove variations between the different elec-

trodes by treating electrodes as a statistical block. Tukey post-hoc tests were

used to identify statistically significant differences between the groups at a sig-

nificance level ofα<0.05. Plots were generated using MATLAB (The MathWorks

Inc., Natick, MA).

4.3 Results

4.3.1 Analysis of impedance changes with model protein solution and

PEG in vitro

Figure 4.1(a) shows the magnitude spectrum for electrodes dipped into BSA

without pretreatment with PEG is higher than the magnitude spectrum for un-
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coated controls for all frequencies, indicating an overall increase in impedance.

In contrast, the magnitude spectrum for electrodes treated with PEG prior to

BSA immersion shows more congruence with the magnitude spectrum of the

control. Figure 4.1(b) shows the phase spectrum for non-PEG treated electrodes

immersed in BSA exhibits lower phase angles at the lower end of the frequency

spectrum, and the difference is most pronounced in the middle of the spectrum

between 200–500 Hz. For electrodes pretreated with PEG prior to BSA im-

mersion, the phase angle is also lower than the controls, but higher than the

non-PEG electrodes, at the low frequency end of the spectrum. At higher fre-

quencies, the phase angle of non-PEG electrodes approaches that of the controls,

whereas the PEG treated electrodes exhibit a reduced phased angle at frequen-

cies higher than approximately 2 kHz.

Figure 4.2 shows the Nyquist plots for the different treatments. The Nyquist

plot for electrodes not treated with PEG prior to BSA immersion appears shifted

up and the right compared to the controls, indicating both increased resistance

and reactance, with the most pronounced divergence occurring toward the mid-

dle of the plot. In contrast, the plot for electrodes pretreated with PEG shows

more congruence with the control in the middle of the plot and slight divergence

at the lower end of the plot, corresponding to the higher frequencies.

Figure 4.3 shows changes in the real component of the impedance, i.e. re-

sistance, relative to the control at four frequency values across the spectrum.
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Fig. 4.1. (a) Total impedance magnitude spectrum for electrodes
not pretreated with PEG before BSA application is higher than
both the control and PEG treated electrodes. (b) Phase angle
spectrum for electrodes not pretreated with PEG prior to BSA
application shows a lower phase angle for lower and intermediate
frequencies compared to the control, while the phase angle spec-
trum for electrodes pretreated with PEG exhibits smaller phase
angles across all frequencies.
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Fig. 4.2. Nyquist plot for electrodes pretreated with PEG before
BSA application is close to the control plot, with a slight shift to
the left at lower frequencies, indicating a decrease in resistance.
Nyquist plot for electrodes not pretreated with PEG before BSA
shows a shift up and to the right, indicating increases in both
resistance and reactance.

Electrodes immersed in BSA without PEG pretreatment exhibited highly statis-

tically significant increases in the resistance compared to the uncoated control

at examined frequencies. The highest impedance increase relative to control

was in the middle of the frequency spectrum, specifically at 1 kHz, with a 30.7%

increase in resistance. At 50Hz, the increase in resistance in resistance for the

BSA coated electrodes without PEG pretreatment was 14.5%, at 100Hz, the re-

sistance increase was 23.9%, and 10 kHz, the resistance increase was 17%. The

electrodes pretreated with PEG prior to BSA immersion, on the other hand, did

not exhibit any significant differences in resistance compared to the uncoated
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controls at all examined frequencies.
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Fig. 4.3. Resistance: electrodes coated with BSA without PEG
pretreatment exhibited considerable and statistically significant
increases in resistance (real impedance) compared to uncoated
controls at all frequency values studied. In contrast, electrodes
treated with PEG prior to BSA application did not exhibit any
significant increases in resistance compared to the control at all
studied frequencies, and were all significantly lower compared to
BSA coated electrodes. Control plot shown slightly offset to the
left for clarity. Error bars represent the standard error of the
means.

Figure 4.4 shows changes in the imaginary component of the impedance,

i.e. reactance, relative to the control at four frequency values. For electrodes

not pretreated with PEG prior to immersion in BSA, no significant increase in

reactance was observed at 50 Hz or 100 Hz, while increases of 4%, 12% and
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15% were observed at 100 Hz, 1 kHz and 10 kHz, respectively. In contrast,

electrodes pretreated with PEG prior to immersion in BSA exhibited modest

decreases in the reactance relative to control at all frequencies (-6.3% at 50Hz,

-6.3% at 100Hz, -4.2% at 1 kHz, and -4.8% at 10 kHz).
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Fig. 4.4. Reactance: for BSA coated electrodes, no change in re-
actance (imaginary impedance) was observed compared to un-
coated control at 50Hz, whereas increases in reactance were ob-
served at higher frequencies. PEG coated electrodes exhibited
slight decreases in reactance compared to uncoated controls at
frequencies greater than 50Hz. Control plot shown slightly off-
set to the left for clarity. Error bars represent the standard error
of the means.

Figure 4.5 shows the changes in total impedance relative to the control at

four frequency values. For electrodes not pretreated with PEG prior to BSA im-
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mersion, no significant difference in total impedance was observed at 50Hz, but

progressive increases in the impedance were observed at the higher frequencies

(4.5% at 100hz, 13.5% at 1 kHz, 15.3% at 10 kHz). For electrodes pretreated

with PEG prior to BSA immersion, modest decreases in total impedance were

observed at the lower frequencies (-5.8% at 50Hz, -5.6% at 100 Hz, -3.9% at

1 kHz), while no significant difference in the total impedance compared to the

control was observed 10 kHz.
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Fig. 4.5. Total Impedance: for BSA coated electrodes, total
impedance exhibited statistically significant increases compared
to uncoated controls except at 50Hz. For electrodes treated with
PEG prior to application in BSA, smaller but statistically sig-
nificant decreases in total impedance were observed except at
10 kHz. Control plot shown slightly offset to the left for clarity.
Error bars represent the standard error of the means.
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4.3.2 Preliminary analysis of impedance changes with and without

PEG in vivo

Figure 4.6 shows the percent increase of the real component of the impedance,

i.e. resistance, between the in vitro baseline and the in vivo measurement at

four frequency values across the spectrum. In both cases of PEG treatment or

non-treatment, the resistance increased significantly when measured in vivo

compared to the in vitro baseline. Insertion into the cortex without PEG treat-

ment, however, resulted in a larger increase from baseline compared to inser-

tion with PEG treatment. The increases compared to baseline are presented in

table 4.1.

Table 4.1
Increase in resistance from baseline observed in vivo for No PEG
vs. PEG treatment at 4 frequencies (mean ± standard error).

50 Hz 100 Hz 1 kHz 10 kHz

No PEG 69.1±4.6% 112.2±5.9% 218.7±11% 305±15.8%

PEG 49±4.6% 56.6±5.9% 142.5±11% 215.2±15.8%

p=0.0033 p<0.0001 p<0.0001 p<0.0001

Figure 4.7 shows the percent increase of the imaginary component of the

impedance, i.e. reactance, between the in vitro baseline and the in vivo mea-

surement at four frequency values across the spectrum. In both cases of PEG

treatment or none-treatment, the reactance increased significantly when mea-
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Fig. 4.6. In vivo increase in resistance from baseline.

sured in vivo compared to the in vitro baseline. Insertion into the cortex without

PEG treatment, however, resulted in a larger increase from baseline compared

to insertion with PEG treatment. The magnitudes of the increases in reactance

were smaller than those for the resistance. The increases compared to baseline

are presented in table 4.2.

Figure 4.8 shows the percent increase of the total impedance between the

in vitro baseline and the in vivo measurement at four frequency values across

the spectrum. In both cases of PEG treatment or none-treatment, the total
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Table 4.2
Increase in reactance from baseline observed in vivo for No PEG
vs. PEG treatment at 4 frequencies (mean ± standard error).

50 Hz 100 Hz 1 kHz 10 kHz

No PEG 49.7±2% 53.7±2.7% 75.7±3.1% 157±7.3%

PEG 30.4±2% 32.2±2.7% 42.2±3.1% 91.8±7.3%

p=0.0033 p<0.0001 p<0.0001 p<0.0001
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Fig. 4.7. In vivo increase in reactance from baseline.

impedance increased significantly when measured in vivo compared to the in

vitro baseline. Insertion into the cortex without PEG treatment, however, re-

sulted in a larger increase from baseline compared to insertion with PEG treat-

ment. The increases compared to baseline are presented in table 4.2.
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Table 4.3
Increase in total impedance from baseline in vivo for No PEG vs.
PEG treatment at 4 frequencies (mean ± standard error).

50 Hz 100 Hz 1 kHz 10 kHz

No PEG 52.3±2.1% 58.7±2.9% 98.9±4% 222.5±11%

PEG 31.5±2.1% 34.2±2.9% 57.5±4% 154.2±11%

p = 0.0033 p < 0.0001 p < 0.0001 p < 0.0001
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Fig. 4.8. In vivo increase in total impedance from baseline.

4.4 Discussion

4.4.1 Rationale

The in vivo reactive tissue response is an aggregate of amplified biological

processes that begin with device insertion and accompanying trauma. The in-
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dwelling implant acts as a nucleation site/sink for various proinflammatory pro-

teins, as well as substrate for cell attachment [Leung et al., 2008]. A quantifi-

cation of the effects of immediate protein adhesion onto neural electrodes on

the electrical properties of the microelectrodes does not exist in the literature.

Countering the effects of protein adsorption onto neural microelectrodes is im-

portant inasmuch as it actually improves device performance, particularly as

inferred by its electrical properties. Current efforts in combating the reactive

tissue response focus on targeting and quantifying the cellular component of

the reactive tissue response. A potential alternative might be to quantify and

target molecular and extracellular components.

4.4.2 Explanation of results

As seen from the impedance and phase angle spectra and the Nyquist plots,

the quantitative effects on electrode impedance are not easily discernible by

examining log-plot Bode and Nyquist plots. We therefore examined the rel-

ative resistance, reactance, and total impedance at various points across the

frequency spectrum to better understand how protein adsorption affects the

electrical properties of neural microelectrodes, and how attempts to mitigate

protein adsorption might affect electrode performance.

Our first finding was that readily apparent and significant increases in re-

sistance at all examined frequencies occur immediately upon exposure to a pro-
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tein solution at a concentration mimicking in vivo concentrations. Further-

more, significant increases in the reactance are observed at higher frequencies,

including the physiologically relevant 1 kHz. The aggregate impedance effect

is that of a significant increase at frequencies higher than 50Hz. These ob-

served in vitro changes in impedance might not exactly match in vivo changes,

given the difference in protein composition in the brain, and the presence of

additional biomolecules with widely varying degrees of hydrophobicity, such as

lipids and polysaccharides [Margolis and Margolis, 1974, Norton et al., 1975,

O’Brien and Sampson, 1965, Pease, 1966]. This finding of changes in both re-

sistive and capacitive component following protein adsorption challenges cur-

rent assumptions inherent in prevalent electrical circuit models of the device

tissue interface. Such models typically assume that protein adsorption causes

purely resistive changes in impedance [Otto et al., 2006, Williams et al., 2007].

We demonstrate that the exposure of microelectrodes to a protein solution re-

sults in both resistive and capacitive changes in impedance, rather than purely

resistive changes. These findings suggest a need for the reexamination of as-

sumptions upon which prevalent electrical circuit models for the tissue electrode

interface are built.

Our study further demonstrates that treating electrodes with a PEG film

via dip coating prior to immersion in a protein solution negates these increases

in impedances at physiologically relevant frequencies. That the reactance ex-

hibits slight decreases for electrodes pretreated with PEG supports our work-
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ing hypothesis that the PEG film forms a hydrated layer close to the electrode

surface that prevents proteins from accessing the surface of the electrode, while

simultaneously avoiding detrimental effects on charge transfer at the electrode-

electrolyte layer. As expected, electrode insertion into the brain results in a

considerable increase in impedance, both resistive and capacitive, as predicted

by electrode tissue interface models [Otto et al., 2006, Williams et al., 2007].

The addition of an aqueous solution of HMWPEG by dip-coating onto the mi-

croelectrode and directly into the craniotomy resulted in a reduction in the mag-

nitude of the increase from baseline. Because cellular responses in the brain

are not observed until several hours post implantation [Kozai et al., 2012b],

this suggests that a considerable portion of the immediate impedance increase

comes from biomolecules with hydrophobic properties that come into contact

with the electrode surface and hinder charge transfer. The presence of free

HMWPEG entering the brain simultaneously with the electrode appears to con-

fer some degree of protection from the effects of aforementioned biomolecules.

While grafted microscale antifouling coatings that prevent cellular adhesion

in vitro do not result in significant improvement to the cellular composition of

the chronic electrode tissue interface [Gutowski et al., 2013], the effects of such

coatings on the electrical behavior of functional electrodes has not been tested.

Applying higher molecular weight PEG in solution has been shown to improve

cellular and behavioral recovery in traumatic brain injury [Koob and Borgens,

2006, Koob et al., 2005, 2008], due to its hydrophilicity achieving membrane
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sealing effects. It is possible that this property of HMWPEG can be similarly ef-

fective in disrupting deposition of proteins and other molecules at the electrode

vicinity. It has been suggested that cellular, specifically microglial, responses

do not consistently correlate to electrode performance [Prasad et al., 2012]. Our

findings, in conjunction to these observations from the literature, suggest the

importance of future studies to correlate in vivo electrode performance with

molecular and extracellular components of the reactive tissue response.



60

5. DIRECT CURRENT BIASING FOR THE RESTORATION

OF SITE IMPEDANCE OF NEURAL MICROELECTRODES

5.1 Introduction

Acute experiments using penetrating silicon-shank intracortical microelec-

trodes (ICMs) have been successfully used to study electrophysiology in the

central nervous system [Crea et al., 2009, Hoa et al., 2008, McConnell et al.,

2007, Niu et al., 2013, Snyder et al., 2008]. The major advantage of penetrating

ICMs is the high specificity conferred by their small size scale and their ability

to reach physiologically relevant neuron populations inside the cortex [Ander-

son et al., 1989, Drake et al., 1988]. These properties simultaneously consti-

tute a disadvantage because the insertion procedure causes localized injury to

neural tissue and the blood brain barrier, including cell lysis and blood vessel

permeabilization [Saxena et al., 2013]. This injury results in the extravasa-

tion of blood borne protein and cells and the accumulation of a diverse range

of molecules on the electrode surface [Fawcett and Asher, 1999, He and Bel-

lamkonda, 2008, Leung et al., 2008]. The smaller size of the electrically active

sites on neural microelectrodes makes them geometrically more susceptible to

accumulation of cellular and extracellular biomolecules. This effect is also true
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when exposing such electrodes in vitro to model protein solutions and phan-

tom brains for the sake of various tests. This accumulation of proteins, cell

debris, and other biomolecules can result in an increase in the impedance of

the electrode site. Increases in impedance can be detrimental to in vivo record-

ing sensitivity and to electrode assessment in other in vitro tests [Vetter et al.,

2004, Williams et al., 2007].

Protein removal from surfaces is a time and labor intensive process, most

commonly involving various surfactants and electrophoresis techniques [Green

et al., 2001, Magnani et al., 2004, Vinaraphong et al., 1995]. Ultrasonic cavi-

tation (sonication) is another common alternative which functions by creating

oscillating nanobubbles at the surface. These cavitations exert drag and shear

forces that remove adsorbed proteins [Maisonhaute et al., 2002a,b]. The brittle

mechanics of silicon [Stieglitz et al., 2000], however, limit the use of ultrasonic

cavitation. Piranha solution etching is the most robust method of removing or-

ganic residues [Verhaverbeke and Christenson, 2001], but Piranha solution is a

volatile and potentially explosive material, and cannot be safely used to quickly

clean electrodes within a surgical setting. NeuroNexus, a prominent manu-

facturer of silicon-shank microelectrodes, recommends soaking electrodes in a

multipurpose contact lens cleaner for a few hours. This recommendation re-

stricts the reuse of an acute electrode in same day experiments, and, as we

will demonstrate in this paper, soaking microelectrodes in contact lens solution

results in substantial increases in electrode site impedance.
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One approach that has been shown to successfully, albeit temporarily, re-

store recording capabilities to encapsulated chronic microelectrodes is DC bias-

ing at voltages outside the water window [Johnson et al., 2005, Otto et al., 2006].

Application of DC voltages above 0.8 V in an electrochemical cell results in the

electrolysis of water and the production of hydrogen gas [Holladay et al., 2009].

Similar approaches have been used to remove metal oxide layers by holding a

constant potential at a relatively voltage high in a strong acid solution [Robblee

et al., 1983]. Similarly, we posit that DC voltages applied to electrode sites of

an iridium microelectrode in an electrochemical cell with an aqueous electrolyte

will result in the decomposition of water at the electrode-electrolyte surface and

the production of hydrogen gas bubbles. We hypothesize that these bubbles

would exert forces on adsorbed biomolecules somewhat similar to those forces

exerted by nanobubbles in sonication, with similar results. In this paper we

demonstrate the utility of using DC anodic cleaning to restore the impedance

of silicon microelectrodes following exposure to various biomolecules. We will

show that applying a DC voltage to an electrode for as little as 2 seconds results

in a significant and considerable decrease in impedance, and that pulses of over

10 seconds are sufficient to achieve a stable impedance value. We demonstrate

the use of this technique to clean electrodes placed in protein solution, phantom

agar brain, and rat brain tissue.
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5.2 Methods

5.2.1 Electrochemical measurement and DC biasing

Electrochemical measurements of acute 16-channel single shank Michigan

electrode arrays (NeuroNexus Inc., Ann Arbor, MI) were made using an Auto-

lab potentiostat PG-STAT12 with a built-in frequency response analyzer (Eco-

Chemie, Utrecht, The Netherlands). Both two- and three-electrode cell con-

figurations were used with the microelectrode site functioning as the working

electrode and a large-area Pt wire functioned as the counter electrode. For

the three-electrode configuration, an Accumet, gel-filled, KCl saturated calomel

electrode (Thermo Fischer Scientific, Fair Lawn, NJ) functioned as the refer-

ence electrode. Measurements were performed in 1x PBS at room tempera-

ture. To determine sites with broken or poor connection, cyclic voltammetry

(CV) was performed by sweeping the applied voltage from -0.6 to +0.8 V at a

scanning rate of 1 V/sec . Sites exhibiting a maximum current below 1 nA were

discarded from the analysis. Electrochemical impedance spectroscopy (EIS), us-

ing the PGSTAT12, was used to measure the impedance of the electrode sites

with the application of 16 sequentially applied sinusoidal waves at logarithmi-

cally spaced frequencies ranging from 46 Hz to 10 kHz, with an amplitude of

25 mV RMS. For the DC biasing, the PG-STAT12 was instructed to apply a

constant voltage of 1.5 V for a set duration.
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5.2.2 DC duration study

To study the effect of DC biasing duration, electrodes were placed with the

silicon shank in Equate brand multipurpose contact solution (Walmart, Ben-

tonville, AR) overnight, then removed and rinsed with MilliQ water, as per

instruction from the NeuronexusNeuroNexus website. Electrodes were then

placed in three-electrode cell described above and EIS was performed to obtain

the baseline impedance. A 1.5 V DC voltage was applied for 2 seconds, and

the impedance was measured again. This procedure of paired consecutive DC

biasing and EIS was repeated eight times, for a total DC biasing time of 16

seconds.

5.2.3 In Vitro biomolecule models

To demonstrate the efficacy of DC biasing at restoring electrode impedance

following exposure to biomolecules, two models were employed. Model pro-

tein solution was a 10% weight/volume bovine serum albumin (Sigma-Aldrich,

St. Louis, MO) in MilliQ water, prepared as described previously [Sommakia

et al., 2009]. Phantom brains were prepared by mixing 1% agar (Sigma Aldrich,

St. Louis, MO) in 1x PBS on a heated magnetic stirrer until well dissolved,

and allowed to set for 2 hours at room temperature then overnight at 4 de-

grees. For each model, EIS measurements were performed to measure baseline

impedance. The electrode was then affixed to a manipulator and immersed in
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the BSA solution or inserted in the phantom brain. Electrodes were held in

BSA for 5 minutes and in agar for 15 minutes. Electrodes were then removed

and placed back into the three-electrode cell. EIS was performed to measure

impedance, and then DC biasing at 1.5 V was performed for 15 seconds, and

EIS performed again. Efficacy of DC biasing method was evaluated by exam-

ining the 1 kHz impedance, which is a typical metric for evaluating microelec-

trodes [Cogan, 2008].

5.2.4 DC biasing following acute in vivo implant

To demonstrate the efficacy of DC biasing at restoring electrode impedance

during acute surgeries, DC biasing was performed during the course of acute

surgeries. The laboratory animal protocol for this work was approved through

the Purdue Animal Care and Use Committee (West Lafayette, IN, USA), and

conforms to the guidelines of the US National Institutes of Health. Briefly, male

Sprague Dawley rats (Harlan Laboratories, Indianapolis, IN) undergoing acute

surgeries are anesthetized with 2% isofluorane and placed into a stereotactic

frame. A subcutaneous injection of 0.5 ml of Lidocaine was administered, and

then a midline incision was made along the cranium with a scalpel. A 2 mm

diameter craniotomy was made with a dental drill, approximately 2.5 mm an-

terior to Bregma and 2 mm lateral to the midline. A slit in the dura was made

using microscissors, and the electrode inserted into the brain with a magnet-

stabilized micromanipulator. Once the experiment was concluded, the electrode
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was withdrawn from the brain and rinsed in MilliQ water. EIS was performed

in a two-electrode configuration at the surgical site, after which DC biasing was

applied at 1.5 V for 15 seconds, and the EIS performed again.

5.2.5 Data Analysis

Experiments were run in triplicate except for the in vivo acute surgery, which

was performed in duplicate. EIS data was extracted using a custom MATLAB

(MathWorks, Natick, MA) function. Statistical analysis was performed using

the SAS statistical package (SAS Institute, Cary, NC). A generalized linear

model procedure was used to perform a one-way ANOVA with blocking to re-

move the effect of variations between electrodes and extract the least square

means of the treatments. Post-hoc Tukey tests were performed to determine the

pairwise differences between the treatments to a significance level of α = 0.05.

Graphs were plotted using MATLAB.

5.3 Results

5.3.1 Effects of Duration of DC biasing

Figure 5.1 shows the effect of the duration of DC biasing at 1.5 V on elec-

trodes that have been placed in contact solution overnight. Figure 5.1(a) shows

the effect of DC biasing on the Total impedance magnitude at 1 kHz. With-

out any DC biasing, these electrodes exhibit an average 1 kHz impedance of
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3456.8 kΩ. Applying a 1.5 V DC bias for 2 seconds reduces the average 1 kHz

impedance to 1181.2 kΩ (p<0.0001, compared to uncleaned), a decrease of 65%.

A total of 4 seconds of cumulative DC biasing reduces the average 1 kHz im-

pedance to 901.05 kΩ (p=0.0048 compared to 2 sec), a total decrease of 74% from

the impedance of uncleaned electrodes. Additional DC biasing for durations

longer than 4 seconds slightly reduces the 1 kHz impedance, with no statisti-

cally significant difference observed until 12 seconds of cumulative DC biasing,

where the 1 kHz impedance is 661.2 kΩ (p=0.031). The observed mean 1 kHz

impedance over time can be fitted to an exponential decay function (Rsquare

value).

Analyzing the reactance and resistance separately as shown in Figure 5.1(b)

reveals that the reactance follows an extremely similar pattern to the total

impedance at 1 kHz. Uncleaned electrodes with a 1 kHz reactance of 3211 kΩ

drops down to 1134.2 kΩ with 2 sec of DC biasing at 1.5 V, a decrease of 64%

(p<0.0001). Cumulative DC biasing for 4 seconds reduces the reactance to

865.9 kΩ, a decrease of 73% from the uncleaned electrodes. Additional DC bias-

ing slightly reduces the reactance, but a statistically significant difference does

not occur again until 12 seconds of cumulative DC cleaning, where the reac-

tance is observed to be 636 kΩ. The resistance at 1 kHz changes in a slightly

different manner. DC biasing for 2 seconds results in a decrease from 1238.7 kΩ

to 327.5 kΩ, representing a decrease of 73%. Unlike the reactance, DC biasing

longer than 2 seconds did not result in significant decreases in the resistance.



68

Uncleaned 2 sec 4 sec 6 sec 8 sec 10 sec 12 sec 14 sec 16 sec
0

500

1000

1500

2000

2500

3000

3500

4000

T
o

ta
l I

m
p

ed
an

ce
 a

t 
1 

K
H

z 
(K

Ω
)

0

100

200

300

400

500

600

(a) Total impedance vs. DC biasing duration

Uncleaned 2 sec 4 sec 6 sec 8 sec 10 sec 12 sec 14 sec 16 sec
0

500

1000

1500

2000

2500

3000

3500

Im
p

ed
an

ce
 (

K
Ω

)

 

 

Resistance
Reactance

(b) Resistance and reactance vs. DC biasing duration

Fig. 5.1. Effects of progressively increasing durations of DC bi-
asing on total impedance (a), and resistance and reactance (b)
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Fig. 5.2. Nyquist plot of electrodes immersed overnight in multi-
purpose contact solution before DC biasing and after 10 seconds
of DC biasing.

5.3.2 Effects of DC biasing on the components of the impedance

The Nyquist plot shown in Figure 5.2 shows a comparison between the im-

pedance of electrodes placed overnight in multipurpose contact solution before

and after 10 seconds of DC biasing. A shift to the left and up is observed after

cleaning, indicating a decrease in both the resistance and the reactance at all

frequencies. The slope of the line approximately doubles after cleaning, indi-

cating that changes to the resistive component of the impedance are stronger

than the capacitive components.
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5.3.3 Effects of DC biasing following model biomolecule adsorption

Figure 5.3(a) shows that a set of electrodes immersed in BSA experienced

a statistically significant increase of 17% (from Z=491.7 ± 4.9 kΩ to Z=573.13

± 4.54 kΩ) in the 1 kHz impedance compared to baseline (p<0.0001). After

DC biasing for 15 seconds at 1.5 V, the 1 kHz impedance returned to a value

statistically identical to the baseline impedance (Z=481.9 ± 4.54 kΩ).

Figure 5.3(b) shows that a different set of electrodes inserted into an agar

phantom brain experience a statistically significant increase of 20.2% (from Z=

340.16 ± 5.5 to Z= 409.27 ± 5.58 kΩ) compared to baseline (p<0.0001). After

DC biasing at 1.5 V for 15 seconds, the 1 kHz impedance returned to a value

indistinguishable from baseline impedance (Z=339.29 ± 5.77 kΩ).

5.3.4 Effects of DC biasing following in vivo exposure to brain tissue

Figure 5.4 shows that electrodes inserted into rat cortex during an acute

surgery experience a statistically significant increase of 33% (from Z=480.59 ±

12.15 to 639.61 ± 12.15 kΩ) in the 1 kHz impedance compared to baseline. Af-

ter DC biasing for 15 seconds at 1.5 V, the 1 kHz impedance returned to a value

statistically identical to the baseline (Z=470 ± 12.15 kΩ).
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agar phantom brain on the 1 kHz impedance, showing a reliable
return to baseline.

Fig. 5.3. DC biasing returns electrode impedance at 1 kHz to
baseline after exposure to protein and agar



72

baseline tissue DC cleaned

100

110

120

130

140

R
el

at
iv

e 
im

p
ed

an
ce

 a
t 

1 
kH

z 
(%

 o
f 

b
as

el
in

e) *

Fig. 5.4. Effects of DC biasing for 15 seconds on the 1 kHz
impedance of electrodes acutely implanted into rat cortex, show-
ing a reliable return to baseline.
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5.4 Discussion

The use of neural microelectrodes with lower impedance is a common ap-

proach to improving recording sensitivity [Keefer et al., 2008, Ludwig et al.,

2011]. While tissue and extracellular components are the major culprits in de-

grading recording quality for chronic electrodes, the time scale in most acute

experiments is not long enough for these tissue responses to develop [Kozai

et al., 2012b]. In such experiments, increases in the electrode impedance will

be the result of adsorbed protein and other biomolecules from brain tissue. Most

common cleaning procedures are time intensive, and cannot practically be per-

formed within the confines of an acute experiment. In this chapter we described

an alternative cleaning method using DC biasing to restore electrode impedance

following exposure to a variety of biomolecules and brain tissue. Concerns about

altering the chemical composition of the electrode are not realized with DC bi-

asing at 1.5 for durations of less than 20 seconds, as observed by the 1 kHz

impedance approaching asymptotic values. Typically, oxidation of iridium to

form activated iridium oxide (AIROF) is achieved by repetitive voltage cycling

in sulfuric acid [Burke and Whelan, 1984, Robblee et al., 1983, Zerbino et al.,

1978], so it is unlikely that activated iridium oxide layers would form on elec-

trodes cleaned by DC biasing in PBS. We have not investigated the effect of

holding DC bias on a microelectrode for durations longer than 20 seconds, since

durations under 20 seconds appear to be sufficient to return electrodes exposed
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to biological solutions to baseline values. The drawback of this method is that

the cleaning effect of the DC biasing is likely to be confined to the surface of the

electrode site, and would not be useful to remove adsorbed molecules elsewhere

on the electrode shank. We propose that this method is a useful approach to

cleaning electrodes during acute experiments with multiple insertions for the

same electrode. It could also be used as an adjunct cleaning step for chronic

electrodes pre-implantation, either prior to or following sterilization.
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6. CELLULAR RESPONSES TO MICROSCALE FOREIGN

BODIES DIP-COATED WITH LPS AND PEG

6.1 Introduction

The biological pathways governing the progression of the RTR to ICMs are

not well characterized. Dural and blood vessel damage appears to be a ma-

jor factor contributing to the RTR [Saxena et al., 2013]. This RTR has been

shown to be non-uniform and depth related [Woolley et al., 2013], with stronger

scarring closer to the surface of the brain. Recent work has shown that trans-

dural implants elicit a much higher response that implants dwelling completely

within the brain [Markwardt et al., 2013]. These findings collectively suggest

that the introduction of dural fibroblasts, blood borne cells, and proteins into

the brain activates inflammatory pathways, and that this activation is strongest

at the site of injury to these structures. Potential mechanisms include accu-

mulation of reactive oxygen species and activation of toll-like receptor 4 (TL4)

[Potter et al., 2013, Ravikumar et al., 2013]. The complexity underlying in vivo

conditions and obscuring biological mechanisms can be somewhat controlled by

using in vitro cell culture models. The most widely used model was described

by Polikov et al. [2006, 2009] using microscale foreign bodies in primary mixed
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neural cultures. This model has been widely applied to test biocompatibility

of various materials as neural interfaces [Achyuta et al., 2010, Ereifej et al.,

2013, Tien et al., 2013]. While this model relies on modifying culture media

to achieve a globally elevated activation state, we posit that the model can be

slightly modified by dip coating in lipopolysaccharide (LPS) to simulate an in-

flammatory microenvironment localized around the foreign body placed in the

cell cultures. LPS is a known upregulator of microglial activation through TL4

binding [Lehnardt et al., 2003, Tzeng et al., 2005], and as such is an attrac-

tive option for modifying the Polikov model to test cellular responses to specific,

localized targeting of TL4 receptors.

Previous research in the neurotrauma field has also found that, due its sur-

factant properties, soluble PEG can induce membrane sealing of damaged cells

and reduce edema. This has been shown to significantly improve recovery from

both spinal cord and traumatic brain injuries by inducing cellular and behav-

ioral recovery [Koob and Borgens, 2006, Koob et al., 2008]. In this regard, a

non-grafted dip-coated PEG film is a technically and economically attractive

option to achieve both antifouling and membrane sealing. Our hypothesis is

that a dip-coated layer of high molecular weight PEG will exhibit sufficient

short term stability, simultaneously preventing adverse changes in electrical

properties of microelectrodes as well as and modulating cellular responses in

response to microelectrodes in vitro. Given the importance of the early stages
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of the injury response in shaping the later chronic stages, this approach might

prove highly beneficial in vivo.

6.2 Methods

6.2.1 Cell culture and microwire placement

The experimental procedures complied with the Guide for the Care and Use

of Laboratory Animals and were approved by The Purdue Animal Care and

Use Committee (PACUC). Forebrains from E17 embryonic rat pups were re-

ceived suspended in 5 mL of Solution 1 (NaCl 7.24g/L; KCl 0.4g/L; NaH2PO4

0.14g/L; Glucose 2.61g/L; Hepes 5.96g/L; MgSO4 0.295 g/L; BSA 3 g/L) in a

50 mL centrifuge tube. Under sterile conditions, the tissue was gently tritu-

rated with an added 18 µL of trypsin solution (Sigma-Aldrich, St. Louis, MO)

(7.5mg/mL in 0.9% saline). Following 20 minute incubation in a 37◦C water

bath, 100 µL of trypsin inhibitor/DNAse solution (Sigma-Aldrich, St. Louis,

MO) (2.5 mg/mL trypsin inhibitor, 400 µg/mL DNAse in 0.9% saline) was added

and tissue was again gently triturated. The tissue was then centrifuged at 1,000

rpm for 5 minutes at room temperature and supernatant was poured off. Cells

were re-suspended in 16 mL of Hibernate-E (Brainbits, Springfield, IL) and

triturated again. Cells were filtered through a cell strainer and centrifuged at

1,400 rpm for 5 min at room temperature. Supernatant was poured off and

cells were re-suspended in a culture medium consisting of Dulbecco’s modified
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Eagle’s Medium (DMEM) with 10% Fetal Bovine Serum (FBS) and 10% horse

serum (HS). The cells were then seeded in 96 well plates at a density of 500,000

cells/cm2, and cultured for 7 days at 37◦C and 5% CO2, with the cell media be-

ing replaced every 48 hours. At day 7 in vitro, lengths of 50 µm-diameter tung-

sten microwire (California Fine Wire Co., Grover Beach, CA) were autoclaved

then cut into small segments of 5-7 mm in length using carbide scissors. The

microwire segments were treated by dip coating with one of four treatments:

LPS (50 ng/mL) only, PEG (20% aqueous solution, 4000 MW) only, a 1:1 mix-

ture of LPS and PEG, or uncoated. In each well, one segment of microwire was

dropped into the medium and allowed to sink to the bottom of the well. The

plates were then placed in the incubator for an additional 7 days. Figure 6.1(A)

shows wells with microwire.

6.2.2 Cell fixing and labeling

At day 14 in vitro, the cultures were fixed with 4% paraformaldehyde for 10

minutes, rinsed 3x with Hepes Buffered Hank’s saline (HBHS) (in g/L; 7.5 g

NaCl, 0.3 g KCl, 0.06 g KH2PO4, 0.13 g Na2HPO4, 2 g Glucose, 2.4 g HEPES,

0.05 g MgCl2:6H2O, 0.05 g MgSO4:7H2O, 0.165 g CaCl2, 90 mg NaN3, at pH

7.4), then permeabilized with 0.2% Triton-X (Sigma-Aldrich, St. Louis, MO).

The cultures were then blocked with 10% normal goat serum (Jackson Im-

munoresearch, West Grove, PA) for 1 hour, after which primary antibodies were

added. These antibodies include beta-3-tubulin (β-3-tub) (Covance, Princeton,
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NJ), which labels neurons; Glial Fibrillary Acidic Protein (GFAP) (Millipore,

Billerica, MA), which labels astrocytes; and Ionized Calcium binding adap-

tor molecule 1 (Iba-1) (Wako, Osaka, Japan), and the cultures incubated in a

4◦C refrigerator overnight. The wells were then aspirated, rinsed in HBHS 3x,

and the following secondary antibodies were added: Alexa Fluor 488 Goat anti-

mouse, Alexa Fluor 555 Goat anti-chicken, and Alexa Fluor 635 Goat anti-rabbit

(Invitrogen, Carlsbad, CA). After a 2 hour incubation at room temperature, the

secondary antibodies were rinsed 3x with HBHS, and a final volume of 100 µL

of HBHS was left in the wells for imaging.

6.2.3 Image acquisition and analysis:

With the microwire still attached to the bottom of the Fluorescent images of

512x512 pixels with obtained on a confocal microscope fitted with a long work-

ing distance 10x air objective using Fluoview software (Olympus, Center Valley,

PA). The different channels were imaged sequentially, and noise reduction was

achieved by applying a Kalman filter built into the acquisition software to 3

scans for each channel. Each plate was imaged using the same set of imag-

ing parameters (laser power, aperture, acquisition time) to ensure uniformity.

Source images were imported into ImageJ (ImageJ, U. S. National Institutes

of Health, Bethesda, MD) and visually inspected and rotated to place the mi-

crowire in a vertical orientation, as shown in Figure 6.1(B). When possible, two

adjacent rectangular selections, 480 pixels high by 240 pixels wide (equivalent
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to 994 µm by 496 µm), were made with the long edge running on the center

of the microwire. If that was not possible due to excessive proximity to wall of

the well, only a single rectangular selection was made facing the interior of the

well. From these selections, intensity profiles of average brightness of each ver-

tical line were generated, as shown in Figure 6.1(C). Microwire segments were

also imaged in three empty wells, and an average intensity profile was obtained

and subtracted from the intensity profile generated from cell-containing wells.

Three response indices (one per cell type) for each region were obtained by sum-

ming the area underneath the intensity profile line between the distance points

corresponding to the defined region , and dividing by 10000. Statistical anal-

ysis was performed using the SAS 9.3 statistical package (SAS Institute Inc.,

Cary, NC) . A general linear model (GLM) procedure was used perform to a one

way ANOVA with block, to remove the effects of variations between the plates

by treating the plates as a statistical block. Post hoc Tukey tests were used

to determine statistical significance between the treatment groups at a signif-

icance level of α<0.05. Plots were generated using MATLAB (The MathWorks

Inc., Natick, MA).
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Fig. 6.1. Image quantification. Wells in 96 well plate (A) were
imaged to produce a fluorescent image (B) and extract intensity
profiles for each channel. The fluorescent image is pseudocol-
ored to show neurons in red, astrocytes in green, and microglia
in blue. Scale bar is 50 µm. For each examined region (examples
shown within rectangles), three intensity profiles (C) are gener-
ated, and response indices calculated by summing the area under
the graph corresponding to the chosen distances.
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6.3 Results

6.3.1 Microglia

As shown in Figure 6.2, in the interface area containing only the microwire,

the only significant difference in the microglial response index was between the

PEG coated microwire and LPS coated microwire (RI=1.37 vs. 2.2, p=0.007).

For the interface area containing the microwire and extending over an adjacent

25um, significant pairwise differences were observed between the LPS coated

microwire (RI=5.84) and the other microwires (uncoated RI=4.92, p=0.041; PEG

RI=4.26, p<0.0001; LPS+PEG RI=4.82, p=0.022) . For a wider interface area

containing the microwire and extending over the adjacent 50um, these pairwise

differences get stronger between the LPS coated microwire (RI=8.27) and the

other microwires (uncoated RI=6.58, p=0.0007; PEG RI=5.8, p<0.0001; LPS+PEG

RI=6.4, p=0.0002).

Figure 6.3 shows the microglial responses at more distant regions. For the

closest distant bin extending from 50 to 150um from edge of microwire, the re-

sponse index for LPS coated microwire (RI=5.62) was significantly higher than

all the other treatments (uncoated RI=4.21, p=0.0001; PEG RI=3.71, p<0.0001;

LPS+PEG RI=3.91, p<0.0001). For the next three distant 100um wide bins,

the only significant difference observed was between LPS coated microwire and

PEG coated microwire in all 3 bins. The calculated RI are as follows: for the bin
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Fig. 6.2. Microglia—interface. For the narrowest interface are,
the only significant difference in the response index was between
the PEG coated microwire and LPS coated microwire. For the
wider interface areas, significant pairwise differences were ob-
served between the LPS coated microwire and all the other mi-
crowires. Error bars represent standard errors of the mean.
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Fig. 6.3. Microglia—distant. For the closest distant bin (50-
150um from edge of microwire), the response index for LPS
coated microwire was significantly higher than all the other
treatments. For the more distant bins, the only significant dif-
ference observed was between LPS coated microwire and PEG
coated microwire in all 3 bins. Error bars represent standard
errors of the mean.

extending from 150 to 250um from edge of microwire: LPS RI=4.5 vs. PEG 3.12,

p=0.0001; for the bin extending 250 to 350um from edge of microwire: RI= 5.12

vs. 3.8, p=0.0003; for the bin extending 350 to 450um from edge of microwire):

RI=4.98 vs. 3.9, p=0.01.

Figure 6.4 shows the astrocyte response index at interface areas. For the

interface area containing only the microwire, the astrocyte response index for

LPS coated microwire (RI=3.33) was significantly higher than PEG coated and

LPS+PEG coated microwire (PEG RI=2.59, p=0.015; LPS+PEG RI=2.63, p=0.02).
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Fig. 6.4. Astrocytes—interface. In all examined interface areas,
the astrocyte response index for LPS coated microwire was signif-
icantly higher than PEG coated and LPS+PEG coated microwire,
but not uncoated microwire. Error bars represent standard er-
rors of the mean.

For the interface area containing the microwire and extending an adjacent

25um, the same pairwise difference were observed, but with a stronger dif-

ference between the LPS coated microwire (RI=6.7) and the LPS+PEG coated

microwire (PEG RI=5.75, p=0.012; LPS+PEG RI=5.64, p=0.0045). For the in-

terface area containing the microwire and extending an adjacent 50µm, the

same observation of the LPS astrocyte response index being higher than both

PEG and LPS+PEG was noticed (LPS RI=7.54, PEG RI=6.49, p=0.02; LPS+PEG

RI=6.19, p=0.002).
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Fig. 6.5. Astrocytes—distant. No significant differences were ob-
served between the different treatments for the closest distant
bin. For the middle two distant bins, a slightly significant dif-
ference was observed between LPS coated wire and LPS+PEG
coated wire. Error bars represent standard errors of the mean.

Figure 6.5 shows the astrocyte response index at distant areas. No signifi-

cant differences were observed between the different treatments for the closest

distant bin extending from 50 to 150um from edge of microwire. For the mid-

dle two distant bins, a slightly significant difference was observed between LPS

coated wire and LPS+PEG coated wire bin 2 (150-250um from edge of wire):

LPS RI=2.31, LPS+PEG RI=1.37, p=0.012; bin 3 (250-350um from edge of wire):

LPS RI=2.73, LPS+PEG RI=1.73, p=0.03.
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Figure 6.6 shows the neuron response index in interface(a) and distant(b)

regions, respectively. No significant differences in the neuron response were

found between any of the treatment conditions in either interface or distant

region. In contrast to microglia and astrocytes, where the response index was

higher in distant areas in comparison to the widest interface area examined,

the neuron response index in distant areas was roughly equal to that in the

widest interface area examined.

6.4 Discussion

6.4.1 Validity of study:

To test the effects of such a dip coated PEG film on the cellular responses

to implanted electrodes, we modified a robust and frequently replicated in vitro

mixed cortical culture model pioneered by Polikov et al. [2006, 2009]. The main

drawback of in vitro models is their inability to accurately mimic in vivo mi-

croenvironments. In this particular model of primary cortical cell cultures, the

cells exist in isolation from supporting vasculature, extra-cellular brain tissue

components, and meninges. These aforementioned structures are heavily dam-

aged during microelectrode insertion, which has been shown to strongly the

chronic response of the brain to implanted microelectrodes [Markwardt et al.,

2013, Saxena et al., 2013]. The original model developed by Polikov et al. [2006]
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did not elicit a consistent glial scar, and it was necessary to alter the composi-

tion of the culture media to place all glial cells in the culture in an elevated

reactive state, thereby ensuring a consistent glial scar [Polikov et al., 2009]. By

coating LPS directly onto microwire, we are able to create a localized inflam-

matory microenvironment that more closely mimics the reality of an indwelling

cortical implant, rather than placing the glial cells in the culture in a globally

activated state. This localized inflammatory microenvironment enables us to

examine distance related effects on the cultured cells. For the LPS+PEG con-

dition, concerns about cross contamination and the potential to disrupt the dip

coated PEG film led to the decision of codepositing PEG and LPS via dip-coating

from a single pot. Because PEG has been shown to be an excellent rapid drug

release platform [Avula et al., 2013, Craig, 2002], we were confident that our

codeposition of PEG and LPS would not hinder the exposure of the cells to LPS.

While a morphological examination of the glial cells in this model to deter-

mine the degree of activation is difficult, we can infer the degree of activation

from the overall fluorescence levels. Iba-1 and GFAP are upregulated in mi-

croglia and astrocytes, respectively, in the activated state. Similar image anal-

ysis approaches have been used in vitro [Achyuta et al., 2010, Polikov et al.,

2009, Tien et al., 2013] and in vivo [Azemi et al., 2011, Potter et al., 2013] to

analyze responses to microelectrodes and microscale foreign bodies.



90

6.4.2 Analysis of cellular responses:

Microglia:

When examining the microglial response in a narrow interface region com-

prising only the area under the microwire, we observe a three tiered response;

where a significant difference exists between the LPS only and the PEG only

treatments, but not between the other conditions. This tiered response might

be attributed to the difference between increased activation caused by the LPS

and reduced cellular adhesion caused by PEG. As the examined interface area

gets wider, we see a progressive increase in Iba-1 fluorescence in response to

the LPS coated wire compared to the other treatments. This increase in Iba-1

fluorescence might be explained by elevated activation of microglia through am-

plification of inflammatory pathway precipitated by TL4 binding. The observed

elevation of Iba-1 fluorescence persists in the next 100µm wide distant region,

again indicating an extended inflammatory response, potentially mediated by

secreted cytokines produced by activated microglia but dissipates in further

distant regions, reverting to a tiered response, where the only significant pair-

wise difference is between LPS and PEG. This tiered response can again be

attributed to distinct pathway amplification between the two treatments; the

difference appearing only between the increased upregulation of microglial ac-

tivation due to LPS and the reduced microglial activation due to PEG.
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Astrocytes

In interface regions of carrying width, the astrocyte response also exhibits

a three tiered response, where an elevated astrocyte response is observed with

LPS, and a reduction occurs with both PEG conditions (with LPS and without).

In the distant regions, the first and fourth 100um wide distant bin do not exhibit

any differences between the different treatments, but we observe a difference

between LPS and LPS+PEG in the middle two 100um wide bins, but surpris-

ingly no difference between LPS and PEG in these distant areas. A potential

explanation is that the astrocytes are exhibiting a dose dependent response to

LPS. Under this explanation, the increased activation in the interface area for

the LPS only treatment results in both astrocyte migration from distant re-

gions and increased overall activation; delivering the LPS with PEG results

in astrocyte migration without an accompanying equivalent increase in activa-

tion, resulting in a depletion of distant astrocytes; while PEG only results in

even less astrocyte activation in interface areas, which in turn does not signal

migration of distant astrocytes. Because we did not directly test for whether

LPS was acting through direct binding to receptors on astrocyte surfaces, we

are merely discussing correlative effects. It is unclear whether the astrocyte re-

sponse is due to direct action by LPS, or if it they are reacting to cytokines and

chemokines secreted by microglia. While astrocytes are not typically thought to

express TL4 receptors, there is some evidence to the contrary [Bowman et al.,
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2003]. Additionally, while GFAP-positive astrocytes are observed in primary

cultures, a considerable portion of them differentiate in vitro from astrocyte

precursors [Abney et al., 1981]. It is possible that due to these culture condi-

tions that the astrocyte response is altered from normally developing astrocytes

in vivo.

Neurons

No significant differences were detected in neuron response to any of the

treatments, in either interface or distant regions. While not statistically signif-

icant, a coupling between neuron and astrocyte response can be noticed, where

slightly higher (but not significantly different) neuron growth was observed for

the LPS treatment. Neuronal growth has been consistently shown to occur on a

supporting substrate of astrocytes [Noble et al., 1984, Tomaselli et al., 1988]. In

contrast to the microglia and astrocytes, where the response in the widest inter-

face bin was considerably higher than the first adjacent distant bin, the neuron

response in that distant bin was comparable to that in the wide interface bin,

and we did not observe a decline in neuron density over distance. One explana-

tion mirrors the concern expressed earlier about the maturity of the astrocytes,

where immature astrocytes in culture provided a better substrate for neuron

outgrowth compared to mature astrocytes [Smith et al., 1990]. An alternative

explanation is that elevated glial activation is not, in and of itself, neurotoxic or

neurodegenerative within a foreign body reactive tissue response paradigm. If
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the latter explanation is correct, then the loss of neural density in vivo following

implantation of a microelectrode might be better explained by displacement of

neurons following insertion trauma and edema which fail to reoccupy depleted

zones because of the glial scar formation, or that in vivo neurotoxicity occurs

due to direct contact between neurons and extrabrain components.

6.4.3 Conclusion

We have shown that microglial response in a primary mixed cortical cul-

ture can be manipulated by dip-coating microscale foreign bodies. Microglial

response can be increased by coating the surface of the foreign body with LPS,

and this increase can be prevented by codepositing LPS and PEG. As described

in Chapter 2, we hypothesize that the film of high molecular weight PEG, while

allowing for LPS release, presents a hydrated physical barrier that disrupts cy-

tokine, chemokines and adsorbed protein gradients that typically guide patho-

logical responses. Astrocyte response also increased for LPS coated foreign

bodies, but it is unclear whether this response is directly mediated by LPS or

whether it is caused by other microglia-secreted factors. Neuron response was

not negatively correlated with microglial response, raising questions about the

mechanisms of chronic in vivo neuronal density loss .
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7. CONCLUDING REMARKS

7.1 Summary

Implantable ICMs are a promising technique for treating a wide range of

neurological deficiencies, but they face many challenges to becoming a viable

candidate for human clinical use. The major challenge faced by such devices

is their unreliability in chronic use. The causes of this unreliability are not

completely understood, but a major suspect is the glial scar formed around the

implanted electrode. While much research has been conducted into the progres-

sion of the reactive tissue response, no definitive solution has yet emerged.

The work presented in this dissertation highlights several important aspects

potentially salient to the progression of the reactive tissue response. Chapter

3 presented an analysis of silica sol-gel dip-coated thin-films for intracortical

electrodes, emphasizing the need to preserve electrical properties when devel-

oping neurointegrative and bioactive coatings for intracortical microelectrodes.

Chapter 4 described the effects of adsorbed protein on the electrical proper-

ties of microelectrodes, and demonstrated the utility of dip-coated high molec-

ular weight PEG in preventing such adsorption induced changes. PEG was

also shown to reduce acute impedance increases in preliminary in vivo exper-
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iments, suggesting a role for hydrophobic molecular components in influenc-

ing impedance changes during the acute phase of the reactive tissue response.

Chapter 5 reported a method to restore electrode impedance following exposure

to a variety of solutions in vitro and to brain tissue.

While the previous chapters focused on impedance measurements in response

to exposure to protein and tissue, and approaches for prevention and cleaning,

chapter 6 examined the cellular responses to microscale foreign objects in a

primary mixed cortical cell culture model simulating localized inflammation

using LPS dip-coated onto the microwires. The observed responses support a

role suggested in recent literature for TL4 receptors in the reactive tissue re-

sponse, but also show that neuronal density in this model is not negatively cor-

related with microglial activation, indicating mechanisms for neuronal density

loss other than glial activation. The results also suggest that dip-coated films of

high molecular weight PEG have the potential to disrupt gradients of molecules

involved in the reactive tissue response.

7.2 Future Work

The results from this dissertation provide some insights to approach several

gaps in the current literature that might be of interest for future work.

The first gap is a lack of a comprehensive understanding of the biologi-

cal pathways and cascades governing the progression of the reactive tissue re-

sponse. Systemically delivered drugs or drug eluting coatings requires knowl-
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edge of the biological pathway involved to ensure efficient treatment. Most in-

formation about the reactive of brain cells to injury comes from the spinal cord

and traumatic brain injury literature, which while certainly relevant and im-

portant, does not have to contend with the effects of a chronically indwelling

implant. It has been shown that stab wounds made with inserted electrodes do

not typically result in a glial scar compared to an implanted electrode [Biran

et al., 2005], and that a major contributor to the reactive tissue response is the

chronic injury to the blood brain barrier [Saxena et al., 2013]. Only recently

have efforts been made to examine specific receptors and cytokines involved in

the reactive tissue response. TL4 receptors have been the target of several re-

cent publications [Potter et al., 2013, Ravikumar et al., 2013], while other work

involved some investigation of upregulation of gene expression of neurotoxic cy-

tokine transcripts using qRT-PCR [Karumbaiah et al., 2012, 2013, Saxena et al.,

2013].

A second gap involves understanding the composition of the glial scar, and

how that composition relates to the failure of implanted microelectrodes. The

typical method of assessing glial scar extent is to examine fluorescence intensity

of cell surface markers associated with glial cells like microglia, astrocytes, or

oligodendrocytes. The glial scar, however, is not only composed of cells but also

of deposited extracellular matrix biomolecules, such as proteoglycans, laminin,

and collagen. As shown in this dissertation, biomolecules have a considerable

effect on the properties of neural microelectrodes, and potentially on the pro-
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gression of the reactive tissue response. While a recent study by Barrese et al.

[2013] that retrospectively analyzed large sets of chronic data confirmed that

the acute biological response is not necessarily correlated to electrical perfor-

mance, the majority of chronic failures in that study were due to biological fac-

tors.

With the goal of identifying various extracellular proteins and receptors in-

volved in the reactive tissue response, a systematic genomic and proteomic ap-

proach is preferable to ad hoc examinations of individual proteins or cytokines.

This might be possible by collecting slices of tissue containing the entire de-

vice and encapsulation tissue as described by Woolley et al. [2011, 2012, 2013],

and using DNA or protein microarray technologies which enable the analysis of

thousands of parameters in a single experiment [Heller, 2002, Templin et al.,

2002]. Such an approach would be an immense leap over current piecemeal

approaches if successful at identifying molecular components of the glial scar

and/or genes involved in its formation.

Another gap in the literature concerns the biphasic nature of the reactive tis-

sue response. While consistent reports appear in the literature on the volatility

of the acute response and the intransigence of the chronic response to various

treatments, it is unclear as to why this discrepancy exists and why treatments

that affect the acute response are not effective against the chronic response. It is

possible that systematic genomic and proteomic data mining techniques exam-

ining the glial scar over an extended timeline might be able to shed light on this
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question. Recent reports detailing the role of transmeningeal implants [Barrese

et al., 2013, Markwardt et al., 2013, Woolley et al., 2013] suggest the importance

of migrating away from the paradigm of wired implants and towards wireless

systems. With constant advances in that field, it is very possible that such de-

vices might be realized in the near future. Even so, a detailed understanding of

the composition of the glial scar and the biological switches controlling the pro-

gression of the reactive tissue response are avoid designs and approaches that

would still be susceptible to degradation and failure due to the reactive tissue

response.
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