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ABSTRACT 

 
 
Wang, Xiaoqi Ph.D., Purdue University, December 2013. A Dynamic Magnetic 
Equivalent Circuit Model for Design and Control of Wound Rotor Synchronous 
Machines. Major Professor: Steve Pekarek. 
 

Recently, a new magnetic equivalent circuit (MEC) model was developed to 

support automated multi-objective design of wound-rotor synchronous machines 

(WRSMs). In this research, the MEC model and its application have been enhanced. 

Initial enhancement has focused on using the MEC model to explore machine design and 

control as a unified problem. Excitation strategies for optimal steady-state performance 

have been developed. The optimization is implemented in two phases. First, stator and 

field excitation at rated power is obtained as part of a WRSM design in which the 

objectives are to minimize machine mass and loss. Second, a map between current and 

torque is generated using a single-objective optimization in which core, resistive, and 

switch conduction loss are minimized. Optimal as well as sub-optimal and traditional 

controls are studied and compared. An interesting result is that a relatively 

straightforward field-oriented control is consistent with a desire for mass/loss reduction 

and control simplicity. The applicability of the excitation to systems in which prime 

mover angular velocity varies and is (un)controllable is considered, as well as its impact 

on machine design. 

A second contribution has been the derivation of a mesh-based dynamic MEC 

model for WRSMs. As part of this effort, a reluctance network has been derived to model 

flux distribution around damper bar openings. The reluctance network is applicable to a 

user-defined damper bar pattern, which enables the study of optimal damper bar 

placement. In addition, Faraday’s law is applied to establish a state model in which stator, 

field, and damper winding flux linkages are selected as state variables. The resulting 

coupled MEC/state model is solved to obtain transient machine dynamics, including 



x 
 

 

damper bar currents. In addition, skew of the rotor pole is incorporated using a multi-

slices model. The proposed dynamic model opens new paths for exploration. Perhaps 

most significantly, it enables rigorous design of coupled synchronous machine/diode 

rectifier systems, which are used in numerous applications, but are often designed using 

rules of tradition created prior to the availability of efficient numerical simulation. 
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1. INTRODUCTION 
 

Wound-rotor synchronous machine (WRSM) drive systems are widely used in 

utility, air, ship, and portable power generation. Numerous models including lumped 

parameter, Finite Element (FE), and magnetic equivalent circuits have been developed 

for electric machine design and performance analysis. A growing interest in the 

application of automated design optimization methods such as population-based design 

(PBD) motivates the need for an accurate and efficient machine model. Recently, a mesh-

based steady state magnetic equivalent circuit (MEC) model has been proposed in [1] to 

address this need. 

An initial focus of this research is to use the model proposed in [1] to explore 

excitation strategies that consider machine design and control as a united problem. A 

drive system that consists of a WRSM connected to a 3-phase active rectifier and a prime 

mover that holds the rotor speed constant is studied. In the optimization and excitation 

development process, several interesting results are observed. First, the d-axis current that 

is selected tends to be negative, which contrasts what would be expected from a 

traditional qd model, since the resulting salient torque opposes that of the torque 

produced by stator/field interaction. Second, it is shown that utilizing qd models 

with/without saturation incorporated along the d-axis leads to suboptimal excitation that 

is appreciably different than obtained from a MEC over much of the expected operating 

region. Third, it is observed that similar to the strategies considered in [2]-[4], a look-up 

table is the most convenient means to implement the optimal torque versus current map. 

It is recognized that the traditional methods of excitation are often used for their 

relative simplicity, speed of response (i.e. very fast torque response), and in some cases 

the attractiveness of having closed form expressions that relate torque and current. 

Therefore, two alternative controls are considered using the MEC-based optimization 

strategy. In one, the field current is held constant (similar to a field-oriented control), and 
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the q- and d-axis current versus load is determined that minimizes overall system loss.  In 

another, the d-axis current is held fixed at zero and the field and q-axis current versus 

load is selected to minimize system loss. Through evaluation of both of these sub-optimal 

strategies, it is found that a very simple field-oriented-type control (simplified control) 

approach can be established in which q-axis current  maps linearly with torque, d-axis 

current is held at zero, and the field current is held constant. Since the resulting torque/q-

axis current map is linear, the need to utilize a look-up table for control is eliminated. 

Moreover, there is a relatively minor impact on overall system loss. 

Furthermore, although the machine was originally designed for fixed-speed 

operation, the applicability of the simplified control is considered for the case in which 

prime mover angular velocity varies but is not controlled by the electrical system. 

Envelopes that characterize the constant torque and constant output power region over a 

wide speed range are established to explore the impact that the ‘optimal’ and simplified 

controls have on the overall operating envelope of the machine/drive. Interestingly, under 

variable speed operation, it has been found that the power loss generated by the ‘optimal’ 

and simplified controls at different rotor speeds is relatively minor. However, it is also 

found that if one holds d-axis current at zero and only uses field current for field 

weakening, the range over which constant power can be achieved is reduced. Therefore, 

in an additional study, a new machine design study is performed in which Pareto-optimal 

fronts are established for a variable-speed drive in which one assumes an ‘optimal’ 

control and one in which the simplified control is applied. A comparison of the fronts and 

machines is used to assess the impact of the control on the design of a machine. Finally, 

the extension/applicability of the techniques to cases in which prime mover angular 

velocity varies and is controllable is discussed. 

A second focus of this research is to develop a dynamic MEC model of a WRSM 

starting with the steady state MEC model in [1]. As part of this effort, a reluctance 

network has been derived to model flux tubes of stator tooth tips and damper bar 

openings. Damper bar leakage reluctance has been introduced to model the flux 

distribution around the damper bar openings for the case that the damper bar currents are 

active. The reluctance network is applicable to assign an arbitrary number of damper bars 
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placed at an arbitrary depth in the rotor pole tip. This enables a designer to explore 

alternative damper winding topologies as part of an optimization. In addition, Faraday’s 

law is applied to establish a state model in which winding and damper bar flux linkages 

are selected as state variables and winding voltage is an input. The resulting coupled 

MEC/state model is solved to obtain transient machine dynamics, including damper bar 

currents. An important attribute of the model is that saturation is represented without the 

need for a relaxation factor, which enables its use as a practical tool in machine design. 

The proposed MEC model is validated by FEA or hardware results through various tests, 

including open circuit voltage, three-phase balanced load test, and stand still frequency 

response. 

In order to model skewing effect, the dynamic MEC model is augmented to a 

multi-slices model with a uniformly shifted angle for each slice. The multi-slices model 

satisfies the constraint that each slice conveys the same stator, field, and damper currents. 

The convergence benefit and computational efficiency of the mesh-based MEC model 

ensure a relatively fast, well-converged solution for a large slice number. 

Finally, the optimal design of coupled WRSM/rectifier systems has been 

explored. There is a desire within the community to understand the tradeoffs between 

using a machine/active rectifier and a machine/diode rectifier.  Of particular interest is the 

expected difference in the size of the machines required under each topology. One may 

argue that a dynamic model is not required to assess the difference. However, the steady-

state voltage versus current of the machine/diode rectifier is a function of subtransient 

inductances. In other words, damper bar currents are non-zero in a machine/diode 

rectifier system. As a result, a dynamic model that includes damper bars is required for 

rigorous optimization. Once the dynamic model validation was complete, GA-based 

optimization studies have been performed to compare the Pareto-optimal fronts of the 

machine/rectifier topologies. 

1.1 Literature Review of WRSMs Control 

A goal of exploring excitation strategies for synchronous machines is to consider 

its role when one attempts to minimize the active mass and power loss.  Reduction of 
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active mass reduces component cost and also improves portability. Reducing power loss 

saves fuel, reduces emissions, and helps to reduce thermal signature. Presently, three 

common techniques for control of torque of a WRSM are field oriented control (FOC), 

maximum torque per ampere (MTPA) control, and direct torque control (DTC).  

FOC algorithms in AC machines are intended to create torque versus current 

maps that are similar to DC machines. Specifically, in a DC machine, a field winding or 

magnet is used to establish a fixed magnetizing flux along a direct axis. The current in an 

armature (control) winding is then used to adjust torque. A convenience of an FOC is that 

(in theory) with the field winding flux held fixed, the torque versus armature current map 

is linear. A performance advantage is that FOC results in a relatively high torque 

bandwidth. Specifically electromagnetic torque can be changed nearly instantaneously. A 

disadvantage of FOC approaches in many AC machines is that at low values of torque, 

one pays a price of excess loss associated with maintaining a rated field flux. Details of 

FOC strategies are provided in [5]-[7].  

In contrast to FOC, in maximum torque per ampere control (MTPA), a fixed d-

axis constant field flux is abandoned in lieu of attempting to obtain the most torque from 

the moving charge. At low values of torque, this translates into lower loss than FOC. 

However, it does add complexity to the torque versus stator winding current map. It also 

reduces the torque bandwidth. In [8], a MTPA algorithm for an induction machine was 

presented and compared to the FOC. Instead of holding d-axis current as a constant value, 

both qd-axis currents are regulated to minimize the stator current amplitude for a given 

torque and speed. Decoupled analytical expressions for torque command in terms of qd-

axis currents have been developed in [9], [10]. However, core loss and the inductance 

change due to saturation are not considered in the qd model based analysis. Since the 

power capability and the voltage limit constraints have a significant sensitivity on the 

machine parameters, especially the saliency ratio Xq/Xd[11], an online adaptive self-

tuning parameters estimator and a feed-forward torque correction method are proposed in 

[12], [13] in order to analyze the effect of saturation and cross-magnetization.  

The basic idea of DTC is to directly select a stator voltage vector according to the 

difference between a reference torque and stator flux linkage and their actual values. In 
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[14], a DTC scheme was applied to an interior permanent magnet synchronous machine 

(IPMSM). In [15] and [16], a similar DTC algorithm is used to control a surface PMSM 

with space vector modulation (SVM) so that a fixed switching frequency can be obtained. 

In [17] and [18], DTC is applied to a PM-assisted reluctance synchronous machine and 

an induction machine, respectively, in a starter alternator application. Although DTC is 

an inherently position sensorless control scheme, accurate stator flux and initial rotor 

position estimation is required. 

However, the majority of the literature has focused on methods for permanent 

magnet and induction machines. Although well established, there remain interesting 

questions associated with these controls. Specifically, optimization of the excitation is 

rarely included as part of the machine design where geometry, turns, and core material 

are selected. Rather, the torque versus current map is derived subsequent to machine 

design using lumped parameter models that often assume linear magnetics and/or do not 

account for core loss or semiconductor loss. As a result, one can question whether these 

excitation approaches are consistent with design goals of minimization of mass or overall 

system loss. Indeed, when researchers in [2]-[4] used a finite element model and included 

core/semiconductor losses in calculating ‘optimal’ excitation of a wound-rotor 

synchronous machine, the control was implanted using a look-up table of currents versus 

speed and torque, rather than an analytical map.  This of course raises a question as to 

whether a look-up table-based approach is required when one does include saturation, 

core loss, and semiconductor loss in the machine/excitation design. 

In the 2 kW system considered in this research, the stator and field current at rated 

load are obtained as part of a multi-objective machine design optimization that includes 

16 design variables. The optimization utilizes evolutionary strategies to establish the 

Pareto-optimal front between mass versus loss at rated load. Subsequently, the magnetic 

equivalent circuit is used to establish a map between torque and excitation that minimizes 

system loss (core, winding, conduction of the switches) at loads less than rated. Within 

this process, both optimal and sub-optimal control strategies have been developed and 

compared at rotor speed less than rated. Finally, the tradeoffs and limitations of the 
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proposed simplified control are explored when the desire is to optimize available torque 

at speeds beyond rated values. 

1.2 Literature Review of Dynamic MEC Modeling 

It has been decades since magnetic equivalent circuits (MEC) were introduced for 

machine analysis. After the basic properties and elements of the MEC were formally 

defined in 1941 [19], the duality between electric and magnetic circuits was proposed in 

[20], [21].This subsequently expanded the concept and use of MEC models. In [22], 

Ostović outlined the fundamental theory and structure of MEC for electric machines that 

forms the basis for most existing techniques. In his formulations, the MEC model 

solution is structured using Kirchoff’s Current Law (KCL) utilizing nodal analysis.  

A mesh-based alternative to the nodal MEC has been receiving more attention 

over the past decade. In such a formulation, Kirchhoff’s Voltage Law (KVL) is applied to 

establish an algebraic system in which loop flux is an unknown and winding current 

(MMF) is the input. One of the challenges for the mesh-based MEC is that the flux tubes 

between stator and rotor appear and disappear as rotor position changes due to rotation. 

In a recent study [23], a relatively straightforward shape algorithm was proposed to 

automatically update the loop equations with rotor position. Within the shape algorithm, 

the airgap permeances are used to identify the number of meshes, and the permeance 

connections are used to determine the loop configuration so that the coefficients in the 

KVL equations can be updated. Utilizing the shape algorithm, a detailed steady state 

mesh-based MEC model for WRSMs is presented in [1]. 

The MEC model in [1] is used as a basis to derive a model that efficiently predicts 

the dynamic behavior of WRSMs. This is motivated by the fact that in many designs, 

dynamic performance is of interest. For example, to determine the voltage regulation 

characteristic of machine-diode rectifier systems requires one to model subtransient 

behavior. In addition, in some applications the subtransient inductances are constrained in 

an attempt to limit fault current. The impact that the constraints on inductance/fault 

current have on machine mass and efficiency has not been explored. The proposed model 

is intended to enable such exploration. 
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In contrast to steady state MEC formulations, dynamic MEC models have 

received relatively minor attention, particularly for WRSMs. In most cases, the transient 

responses of electric machines are obtained using equivalent electrical circuits [26]. A 

voltage behind reactance model with saturation in d-axis incorporated is proposed in [27]. 

Both stator and rotor dynamics are estimated using such model. In [28] and [29], an 

average-value model is introduced to analyze the transient response of the synchronous 

machine-rectifier system, in which the synchronous machines are modeled using a 

reduced order model and a full order model, respectively. In [30], a synchronous machine 

is modeled using a network formulation in qd variables. Magnetizing inductances in both 

axes are modified to portray saturation. 

Of the research that has been placed on deriving dynamic MEC models for 

electrical machines, there are primarily five common approaches. One is to use a static 

MEC model to establish the lumped electric parameters of a dynamic machine model. For 

example, in [31], the winding inductances of an induction machine are determined using 

a static nodal-based MEC model within each simulation time step of a q-d-based model 

of the induction machine. In [32], a nodal-based MEC is applied to establish expressions 

for the stator winding back-emf and inductance of a non-salient-pole turbo-generator 

using within an electrical circuit simulation. 

In a second approach, G. Slemon introduced what he referred to as a λ-i model in 

[33], [34], in which duality arguments are used to convert the steady-state MEC and 

damper bar current/flux linkage relationship into a dynamic electrical circuit consisting of 

inductors and capacitors. Although dualities can offer convenience, the proposed model 

structure relies on numerical differentiation to establish the coupling between the 

machine model and external circuits. This is not favorable for design studies requiring 

large numbers of evaluation owing to the ill conditioning of difference-based derivative 

approximations. In addition, the convergence behavior of the proposed model in 

saturation is unknown. 

In a third approach, a differential gyrator model shown in Figure 1.1 is used to 

couple the electric and magnetic quantities so that the system can be solved as electric 

circuits with current-controlled voltage sources and voltage-controlled current sources. 
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One example of such approach is proposed in [35], where the magnetic circuit is 

represented by electric components using a permeance-capacitance analogy. A more 

extensive gyrator-based circuit of inverter-fed synchronous machines is presented in [36]. 

In [36], a gyrator circuit is used to couple the dynamic electric model of the stator and 

field windings to the MEC of the core so that the WRSM is represented using current-

controlled voltage sources and capacitors. To structure the machine model in a gyrator 

form, winding flux and the rate of change of flux are taken to be analogous to electric 

charge and current, respectively. Although potentially convenient, a gyrator approach is 

generally limited to those who intend to use circuit solvers, such as SPICE or PLECS 

[37], to implement the model. In addition, in [36] the method to include saturation is to 

set the relative permeability of several iron elements to low values that are constant, 

rather than to determine values of permeability numerically within the simulation. This 

approach is more applicable for an analysis of a single machine in which flux levels are 

known apriori, rather than a design environment without such knowledge. The proposed 

gyrator model is applied to recent studies [38], [39] to couple the electric and magnetic 

domains for power electronic transformers, in which a HFMEC model that is considered 

as modular assembly of flux tubes is used to capture the eddy current dynamics. 

 

 

Figure 1.1: Depiction of an inductor and the equivalent electric circuit using a gyrator. 
 

A fourth approach is that the MEC equations for a nodal-based model are 

differentiated with respect to time so that the node potentials and winding currents 

become state variables [40]. The inputs to resulting state model are the time changing rate 

of stator and rotor flux linkage. The outputs of the MEC state model are stator winding 

and rotor damper bar currents. The MEC state equations can be coupled to models of 
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external circuits that accept voltage as a model input, with current as a state. Instead of 

using a nonlinear solver, the permeability is calculated directly from the states, i.e. node 

potentials and currents, to avoid numerical issue. However, neither simulation nor 

hardware results are provided in [40]. Using a similar formulation, a nodal-based steady-

state MEC model of a WRSM is proposed in [41]. A challenge with this approach is 

numerical convergence, which was cited in [42] and has been identified as an issue in 

nodal-based MEC formulations in general. Methods to address convergence using 

relaxation factors have been proposed, but add complexity and computational cost. 

A fifth approach is one in which Faraday’s law is used in tandem with the 

algebraic MEC relationships to establish a system of differential algebraic equations. 

Typically in such an approach, winding flux linkages are selected as the state variables. 

The winding flux linkages are established through numerical integration and used as an 

input to the algebraic MEC equations. The winding current is an output of the MEC 

model and is used along with winding voltage as an input for the winding flux linkage 

state equations. This type of formulation has been used to model induction machines 

under healthy [43], [44], [45] and faulted conditions [46], [47]. In [44], [45], the MEC 

network is expanded into 3-D so that local saturation, leakage and skewing can be 

represented. Although flux linkage is used as a state variable in [43]-[47], the 

formulations are all based upon a nodal-based MEC. It has been shown in [42] that mesh-

based MECs have better convergence properties in components with nonlinear magnetic 

materials. In [48], mesh-based MEC techniques are applied to take place of a FE model 

with a MEC. The combined FE-MEC model is coupled to external electric circuit by 

augmenting the system equations. The augmented system is discretized in time and 

solved by numerical methods.  

In this research, Faraday’s law is used in tandem with the MEC expressions to 

establish a system of differential algebraic equations. This general approach has been 

applied in the dynamic models of machines using nodal-based MECs in [43]-[47], but has 

received limited attention in design owing to convergence issues. The judiciously 

restructured/scaled mesh-based model proposed herein has the strong convergence 
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properties necessary for population-based design. Indeed, the model is solved without the 

need for a relaxation factor to obtain convergence. 

To model dynamic behavior, permeances are derived that represent the flux 

distribution of a damper winding structure that consists of an arbitrary number of bars of 

arbitrary radius with/without end connections between poles. This enables a designer to 

explore alternative damper winding topologies as part of an optimization. The model is 

readily coupled to models of external balanced or unbalanced electrical circuits, including 

passive or active rectifiers. The model is validated through comparison with hardware 

experiment as well as a finite element-based model. 
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2. BACKGROUND 

 

 This chapter describes the background information on the MEC modeling and GA 

optimization techniques applied within this research. The fundamental physics of MEC 

modeling are presented in the first section. The underlying theory of GA optimization is 

illustrated in the second section. The steady state mesh-based MEC model proposed in 

[1] is used as reference in this research and a brief review of it is given in the third 

section. 

2.1 Magnetic Equivalent Circuit Basics 

The basic element of the MEC is a flux tube defined by a volumetric space between 

two planes of equal magnetic scalar potential. Magnetic flux is assumed to enter the flux 

tube perpendicular to one equipotential plane to exit perpendicular to the other plane. The 

flux does not leave the boundaries of the volume except at the end surfaces. A diagram of 

a flux tube is shown in Figure 2.1. It is noted that u1 and u2 are the values of magnetic 

scalar potential at the two planes. The configurations and connections of each flux tube 

representing an electric machine depend on an analyst’s knowledge and understanding of 

flux behavior. 

 

Figure 2.1: Uniform flux tube. 
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 Conceptually, a flux tube is represented as a circuit element that is similar to the 

elements of an electric circuit. In particular, the equipotential planes are treated as 

equipotential nodes in an electric circuit, while the flux through the tube is analogous to 

the current in an electric conductor. Therefore, as a counterpart of resistance in electric 

circuit, the flux tube can be represented using a magnetic reluctance that is defined as, 

 1 2u u
R

φ
−=  (2.1) 

Similar to the calculation of electric resistance, the reluctance of a flux tube with 

uniform cross-sectional area and length can be calculated as 

 
l

R
Aµ

=  (2.2) 

wherel is the length of the flux tube, A  is the cross-sectional area of the flux tube, and 

µ  is the permeability of the flux tube material. The inverse of reluctance is defined as 

the permeance (P), and can be expressed as the inverse of either (2.1) or (2.2).  

 In most cases, the flux tubes have non-uniform geometries where either the length 

or area changes along the flux path. In such applications, it is convenient to discretize the 

flux tube into differential sections and compute the overall reluctance or permeance using 

integration. Figure 2.2 shows two types of non-uniform flux tubes. For a flux tube with a 

varying area as shown in Figure 2.2(a), the reluctance can be derived as follows, 

 ( )
dx

R
A xµ

= ∫  (2.3) 

wheredx is the differential tube length and ( )A x  is the position-dependent tube area. On 

the other hand, for a flux tube with a varying length as shown in Figure 2.2(b), the 

permeance can be calculated as follows, 

 ( ),A

dA
P

l x y

µ= ∫  (2.4) 

wheredAis the differential flux tube area and ( , )l x y  is the position dependent length. 

For the case that the length has an insignificant amount of variation, the mean path length 

can be approximated as the uniform length of the flux tube. 
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In general, an analytical expression of the flux tube area or length is required for 

calculating the reluctance or permeance respectively. 

 

(a) Non-uniform area                                       (b) Non-uniform length 
Figure 2.2: Non-uniform flux tubes. 

 

 In an MEC, magnetomotive force (MMF) is used to represent the effect of electric 

current on the magnetic system. An MMF source is analogous to a voltage source in an 

electric circuit and its value can be determined using Ampere’s law, 

 Ni=∫ H dl
� �
i�  (2.5) 

where H
���

 is the magnetic field, and the integral is taken over a closed surface that 

encloses N  turns of a current-carrying conductor. In (2.5), the MMF source F  is 

defined as, 

 F Ni≜  (2.6) 

An example showing how an electromagnetic system can be related to an 

equivalent magnetic circuit is presented in Figure 2.3, where the magnetic behavior of the 

UI inductor on the left is modeled using the equivalent circuit on the right. The inductor 

winding is represented as the MMF source Fui, the steel I component is represented by 

reluctance Ri, the steel U component is represented by reluctances Rub and Rus, the flux 

tubes in the airgap are represented by the reluctance Rag, and the leakage flux tube is 

represented by Rl.  
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Figure 2.3: UI inductor and magnetic equivalent circuit. 
  

Since the UI inductor in Figure 2.3 has a uniform geometry, the reluctance 

elements can be calculated using (2.2). The airgap reluctance and leakage reluctance have 

the permeability of free space, while the steel reluctances are calculated based upon the 

permeability of the steel material determined from its anhysteretic B-H curve. The steel 

reluctances are constant if the system is operating in the linear region. On the other hand, 

if saturation is considered, a nonlinear solver is needed to calculate to reluctances in the 

steel. Once the magnetic circuit network is created, the system can be described using a 

set of equations based upon common circuit analysis technique such as nodal or mesh 

analysis. Using appropriate solution algorithms, the flux (φui) and/or node potentials (u0-

u3) can be calculated. 

2.2 Optimization Tools – Genetic Algorithm & Multi-Obje ctive Optimization 

A genetic algorithm (GA) based upon the theory of biological evolution is applied 

in this research to execute the single and multi-objective optimization. The essential steps 

of a GA are presented in [49] and shown in Figure 2.6. In the algorithm, each individual 

contains a set of genes. For the initial population, genes are selected arbitrarily within a 

user-defined range. Over subsequent generations, the population of individuals evolves 

based upon the evaluation of a user-defined fitness function. 

The basic steps of evolution include selection, crossover, and mutation. During 

selection, an individual is considered as a parent to the next generation of designs and 

placed into a mating pool. During crossover, parts of the genetic information are 

exchanged between parents so that new individuals can be formed. Some parents will 
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stay without crossover to the next generation. At last, random gene mutation takes place 

in a small percentage of the population. Through repetition, the evolution process leads to 

a final population. 

 

 

Figure 2.4: Basic steps of a genetic algorithm. 
 

GA can be configured to solve single or multi-objective optimization problems. 

For single objective optimization, it is relatively straightforward that the best design is 

determined by determining the individual from the final population that has a maximum 

fitness. On the other hand, multi-objective optimization (MOO) employs a fitness value 

for each objective. The idea of dominance is thus introduced to evaluate how fit an 

individual is in general. An individual, x1, is defined to dominate another individual, x2, if 

x1 performs as well as x2 in all objectives and better than x2 in at least one objective. For 

example, let mass and loss be the two objectives in the design. x1 dominates x2 if x1 has 

the same loss and a better mass than x2. However, neither x1 nor x2 are considered to 

dominate each other if x1 has a better mass and a worse loss than x2. If an individual is not 

dominated by any other members of the population, then it is considered as non-

dominated. The Pareto-optimal set is defined as a collection of all of the non-dominated 
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solutions in the final population. Plotting this set in the objective space yields a boundary 

termed the Pareto-optimal front [50]. 

In this research, all GAs are executed using a Purdue-developed Genetic 

Optimization Systems Engineering Toolbox (GOSET) [51]. In this toolbox, more 

functionality, including elitism, migration, death, and diversity control, has been 

introduced than is shown in Figure 2.4. GOSET has been selected for ease of availability 

and its strong performance in addressing related machine optimization problems [52] and 

[53]. 

2.3 Reference MEC Model 

2.3.1 Building MEC model 

The steady-state MEC network upon which this research was initially based is 

designed to model the performance of a salient-pole WRSM with an arbitrary number of 

poles, integer number of slots/pole/phase, and symmetric winding configuration. Figure 

2.5 shows an example cross section of a 4-pole WRSM. The flux tube geometries can be 

defined using the geometric variables indicated in Figure 2.5. The q-, d-, and as-axis of 

the machine are also listed. It is noted that mechanical rotor position θrm is defined by the 

position of q-axis with respect to the as-axis. 

Figure 2.6 shows a representative network of the proposed MEC, wherein loop flux 

Φ is defined in the clockwise direction. The airgap reluctances correspond to the nonzero 

airgap permeances at the respective θrm. Within the network, each stator and field coil 

becomes a MMF source in the loop where the respective current locates. 
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Figure 2.5: Representative cross-section of a WRSM. 

 

 

Figure 2.6: Representative WRSM MEC. 
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Details of the calculation of reluctance values used in the original model are 

presented in [1]. A few details related to this model are of note. First, the stator tooth flux 

tubes do not include stator tooth tips. Second, the airgap flux tubes are connection 

between the stator and rotor, which varies according to rotor position. In order to 

calculate the airgap permeances, the stator, rotor pole, and inter-polar region are 

discretized into subsections. Third, the rotor poles and rotor shank flux tubes are 

considered solid pieces, which have no damper bar slot. Fourth, the inter-polar region can 

be divided into four types of flux tubes, field winding leakage (RFL), rotor pole leakage 

(RRPL), rotor fringing (RRF), and rotor fringing to the bottom of the pole tip (RRFB).A 

challenge of implementing the MEC model shown in Figure 2.6 is that the reluctance 

network in the airgap changes with rotor position. Moreover, the values of the airgap 

permeances are dependent upon the dimensions of the stator teeth and rotor pole tip 

(genes of the GA). To enable a relatively large search space, the derivations of airgap 

permeance must account for many potential tooth width/pole body width combinations.  

In [23], the potential airgap permeance calculations was categorized into 5 8 40× =

conditions, according to the relation of the width of stator tooth tip, stator tooth slot, and 

rotor pole tip section, as well as the relation of the position of stator tooth and rotor pole 

tip section. 

As part of the initial research effort, tooth tips are added into the respective case 

conditions. Although at first glance one would consider that all the cases would need to 

be re-written, a straightforward alternative was developed. Specifically, the original stator 

tooth flux tube is reshaped as stator tooth tip flux tube in the updated model. An extra 

component called stator tooth shank is added in between with stator yoke and stator tooth 

tip, which shares the same flux loop with the stator tooth tip. By doing so, the interface 

between airgap and stator will not change, and what effectively happens is the automated 

program now sees a larger stator tooth width because the tips are included. 

Once reluctance values in the network have been determined, a system of 

nonlinear algebraic equations related to each loop can be established based upon KVL, 

 ( × ) ( ×1) ( ×1)
R l l=nl nl nl nlA φ F  (2.7) 



19 
 

 

where RA  is a symmetric matrix composed of reluctances, lφ  is a vector of loop fluxes, 

lF is a vector of MMF sources, and nl  is the number of loops. The components of (2.7) 

can be expanded as 

 
T

l st1 stns rt1 rtnr ag1 agna= ... ... ...φ φ φ φ φ φ  φ  (2.8) 

where the subscripts “st ”, “ rt ”, and “ag” denote loop fluxes in the stator, rotor, and 

airgap, respectively, and the subscripts “ns”, “ nr ”, and “na” denote the number of the 

stator slots per pole, the number of rotor loops per pole, and the number of airgap loops 

per pole, respectively. Using similar subscripts, lF can be expressed as 

 
T T T T

(ns×1) (nr×1) (na×1)
l st rt=  
 

F F F 0  (2.9) 

The mmf source in the stator loops is given by 

 ( 1) ( 3) (3 1)
st abc abcs

ns ns× × ×=F N i  (2.10) 

where abcsi is a vector of balanced stator currents with rms value Is and phase angle β,and 

the turns matrix abcN is built using the a, b, and c-phase turn vectors. The mmf in the 

rotor loops is given by, 

 [ ]T( 1) ( 1)
rt rt fd fd fd1 1 0nr nr I N I× ×= = −F N  (2.11) 

where fdI  is the field current andfdN  is the number of field turns. Due to the use of single-

pole symmetry, the sign of the rotor mmf changes with respect to rotor position. 

Within the model program, the matrix RA  is constructed using a building 

algorithm similar to that used in general circuit analysis programs (i.e., Spice). Details of 

the construction of matrix RA  are provided in [1].  

2.3.2 Solving MEC model 

The overall solution procedure for the static MEC model is shown in Figure 2.7. 

The inputs to the model are the machine geometry (including winding configuration), the 

material properties, and the stator and field currents. The outputs calculated in the post-

processing include flux linkage, electromagnetic torque, power loss, and phase and field 

voltages.  
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Within the solution procedure shown in Figure 2.7, a Newton-Raphson (N-R) 

method is used to solve the nonlinear magnetic system in (2.7) at any given rotor 

position, and the solution procedure is described in Figure 2.8. The maximum possible 

relative permeability is used to calculate the initial guess of steel reluctance, which is 

further used to generate an initial guess of loop fluxes through (2.7). The permeability is 

updated in each iteration and ready for next step. 

 

 

Figure 2.7: Block diagram of the overall solution procedure. 
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Figure 2.8: Block diagram of Newton-Raphson solution procedure. 
 

The iterative solver starts by computing the branch flux density in the steel as, 

 br
br

br

=
φ

B
A

 (2.12) 

where brB  is the branch flux density, brφ  is the flux through the branch, and brA  is the 

average cross-sectional area. Once the flux density is obtained, the relative permeability 

rµ  and the partial derivative of relative permeability r / Bµ∂ ∂  can be calculated in the B-

H model using an exponential-based curve fit equation for r ( )Bµ  presented in [54]. 

After the reluctance values are updated with the new permeabilities, the Jacobian 

matrix can be formed as follow, 

 
( )R l l

l l

= -
∂ ∂

∂ ∂
A φ F

J
φ φ

 (2.13) 

where the term l l∂ ∂F φ is zero since lF  is not dependent on flux. Using the product rule, 

the Jacobian can be expanded in the form of 

 R R= +J A D  (2.14) 
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where RD  is a matrix containing all the partial derivative terms and is automatically 

generated from a branch connection matrix. If the branch connection matrix determined 

that iR  is only within one loop vφ , then the following line of code is executed, 

 ( ) ( ) ( )R R, , i
v

v

R
v v v v φ

φ
∂= +
∂

D D  (2.15) 

If iR  is within two loops, x  and y , then the following updates can be applied, 

 

( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )

R R

R R

R R

R R

, ,

, ,

, ,

, ,

i x x y

i y y x

i y x y

i x y x

x x x x R b

y y y y R b

x y x y R b

y x y x R b

φ φ φ

φ φ φ

φ φ φ

φ φ φ

= + ∂ ∂ −

= + ∂ ∂ −

= + ∂ ∂ −

= + ∂ ∂ −

D D

D D

D D

D D

 (2.16) 

whereb  is equal to +1 when iR  is a non-boundary reluctance and -1 when iR  does lie on 

the boundary of the pole. Calculation of the Jacobian and reluctance partial derivative 

terms is well established in [42]. 

2.3.3 Performance calculation 

Electromagnetic Torque 

An expression of field energy in terms of MEC quantities is presented in [22] as, 

 
2n
j

mag
j 1 j

1

2
W P

P

φ
=

= ∑  (2.17) 

where jP  is the j-th permeance and P  is the number of poles. The torque equation based 

on (2.17) is developed in [55] as, 

 ( )
22

agj agj
e r

1 agj r

,
2

na

j

PP
T

P

φ
φ θ

θ=

  ∂ =      ∂   
∑  (2.18) 

where agjP  is the j-th airgap permeance and the number of airgap permeances changes 

with rotor position. 
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Stator Phase Voltage 

The calculation of phase voltage is based on the phase voltage equations in the 

rotor reference frame [26], 

 qs s qs r ds qs
r r r rv r i pω λ λ= + +  (2.19) 

 ds s ds r qs ds
r r r rv r i pω λ λ= − +  (2.20) 

where qs
rf  and ds

rf  are the q- and d-axis variables with f can be voltage (v), current (i), or 

flux linkage (λ), and p  is the operator /d dt . From the machine geometry and conductor 

properties, the stator resistance (sr ) can be derived as, 

 
( )slot endc

s
c c c c

2l ll
r

A Aσ σ
+

= =  (2.21) 

where cA  is the area of the conductor, cσ  is the conductivity (copper is used herein), and 

cl  is the length of the conductor including the length in both slots and end windings. The 

length of end windings is defined as the arc length between the centers of two adjacent 

stator tooth slots. Similarly, the field resistance and damper bar resistance can be 

calculated. 

The phase winding flux linkages can be expressed in terms of MEC quantities as, 

 T
abcs abc st=Pλ N φ  (2.22) 

whereP is the number of poles,stφ is the vector of stator loop fluxes, and abcN  is the turns 

matrix. qs
rλ  and ds

rλ  can be obtained by applying Park’s transformation to the phase flux 

linkage abcsλ . Considering slot harmonics and non-sinusoidally distributed windings, 

qs
rpλ  and ds

rpλ  are not zero. Application of a numerical differentiation can yield a voltage 

waveform. However, taking the average value of (2.19) and (2.20), the steady-state stator 

voltages can be expressed as: 

 qs s qs r ds
r r rv r i ω λ= +  (2.23) 

 ds s ds r qs
r r rv r i ω λ= −  (2.24) 



24 
 

 

where the superscript  represents average value. Once the stator voltages in the rotor 

reference frame are calculated, the values in machine variables can be determined by 

applying the inverse rotor reference frame transformation. 

 

Power Loss 

Within the static MEC model, the total machine/rectifier system loss is 

represented as, 

 loss res core condP P P P= + +  (2.25) 

where resP is the total resistive loss in the machine, coreP  is the core loss in the stator, and 

condP is the semiconductor conduction losses. Notice that core loss in the rotor, losses 

associated with switching (turning on and off semiconductor devices), and friction and 

windage losses are neglected within the model. The resistive loss is calculated as, 

 ( )22 2

0

3

2res fd fd s as r rP r I r i d
π

θ θ
π

= + ∫  (2.26) 

where the phase currents are balanced and the field current is a constant dc value.  

In the core loss calculation, a volumetric power loss density (W/m3), ldP ,is 

approximated based on the Modified Steinmetz Equation (MSE) [56], 

 ( )
2

1 max
2

0

T
e

ld h eq
b b

Eddy Current LossHysteresis Loss

B k f dB
P B k f f dt

B B dt

β
α −    = +   

  
∫

���	��
����	���


 (2.27) 

where f and T  are the fundamental frequency and period of the current; bB  is the base 

flux density ( 1TbB = ); maxB  is the maximum value of the flux density waveform; α , β ,

hk  and ek  are parameters of the MSE that are defined in [54] and their values are listed 

in Table 2.1. The equivalent frequency is given by, 

  
( )

2

2 2
0max min

2 T

eq

dB
f dt

dtB B π
 =  
 − ∫  (2.28) 
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In (2.27) and (2.28), the derivative and integral terms are calculated using a 

forward Euler formula and the composite trapezoidal rule, respectively. Thus, the final 

value of core loss in the stator can be developed as, 

 , ,core ld T ST ld Y SYP P V P V= +  (2.29) 

where ,ld TP  and ,ld YP  are the volumetric power loss density in the stator teeth and stator 

yoke, respectively; and STV  and SYV  are the volume of the stator teeth and stator yoke, 

respectively. 

 

Table 2.1 
Parameters for core loss estimation using MSE for M19. 

α 1.338 β 1.817 
ke 5.044e-5 kh 0.09294 

 

 

By assuming the forward voltage drop of a transistor and a diode are the same, the 

conduction losses is given by, 

 ( )2

0

1
3

2cond drop as r rP V i d
π

θ θ
π

= ∫  (2.30) 

where dropV  is the forward switch and diode voltage drop and  

 2 22 rms qs dsI I I= +  (2.31) 

Switching loss is not represented in the model. Its potential influence is the 

subject of ongoing research. In the studies conducted herein it was assumed that 2dropV =

V for all devices. 
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3.  CONTROL OPTIMIZATION OF WRSMS 

3.1 Motivation 

Prior to derivations, it is convenient to view the block diagram of a representative 

WRSM drive shown in Figure 3.1 to place the questions addressed in this research in 

context. In Figure 3.1 it can be seen that the WRSM is connected mechanically to a prime 

mover. The stator windings are connected to an active rectifier, which is used to control 

the stator phase currents and convert ac to dc. The field winding is connected to a dc 

source, which herein is assumed to regulate the field current. Typically, the dc bus is 

capacitive, as shown. Although the prime mover could be categorized by type (i.e. diesel 

engine, gas turbine, wind turbine), herein it is classified by whether one does or does not 

have the capability to adjust commanded prime mover angular velocity (speed). An 

example where one does not have the capability to control speed is aircraft power 

generation systems, where the turbine or engine speed is not specified by the electrical 

power system and indeed varies considerably. A similar situation is encountered in 

traditional automotive charging systems. A third example is ship and portable power 

applications where the commanded speeds of turbine or engine sets are often fixed by the 

manufacturer. 

A representative control for systems without access to commanded prime mover 

velocity is shown in Figure 3.2. As shown, the difference between commanded and 

measured dc voltage is input to a voltage regulator (often a proportional plus integral 

control). The output of the voltage regulator is the commanded electromagnetic torque 

that is desired from the WRSM. The electric drive controller is responsible for translating 

the commanded torque to stator and field current commands that are used to adjust the 

switching devices in the active rectifier and field winding circuits. Through this process, 
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the commanded torque effectively sets the dc current out of the electric drive that in 

steady-state will match the load current at the commanded voltage. 

 
Figure 3.1: Block diagram of a representative WRSM drive. 

 

 
Figure 3.2: Representative electric drive control without access to commanded prime 

mover velocity. (Starred quantities represent commanded values.) 
 

The overall question addressed herein is how to establish the map between 

commanded torque and commanded winding currents. This question yields additional 

questions as to what model should be applied to create the map, whether the proposed 

map is consistent with the goals of mass/loss reduction, the simplicity of the control, and 

what is the influence on the machine design? These questions are addressed for the case 

in which one does not have the capability to adjust commanded prime mover angular 

velocity in Sections 3.3-3.7. It is noted that without this capability, the prime mover has 

no role in the design of the electric drive controls, other than to provide the lower/upper 

limits on angular velocity. 

The case in which prime mover commanded angular velocity is adjustable does 

change the overall picture and enables one to consider the coupled prime mover/electric 
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drive together when establishing controls. A description of how this can be approached is 

provided in Section 3.8. Finally, although the questions raised are herein considered for a 

generator application, the answers presented are directly applicable for a WRSM drive 

operating as a motor (i.e. as an engine starter). 

3.2 Background  

Over the past several years, a multi-objective (i.e. minimize mass, minimize loss) 

evolutionary-based design toolbox [51] has been created for WRSMs. The variables 

listed in Table 3.1 are used as genes. Genes 1-7 are geometric variables that define the 

depth/length of all the major machine sections. These are shown in Figure 2.5. Genes 8-

11 are scaling factors between 0 and 1 that are used to establish the geometry of the stator 

teeth/slots and the rotor poles. Genes 12-13 are used to define the stator and field 

windings. Genes 14-16 are used to define the field and stator winding excitation.  

 

Table 3.1 
Genes Used in the WRSM Design Program. 

# Gene Gene Description 
1 rsh Shaft radius (m) 
2 drc Rotor core depth (m) 
3 drp Rotor pole depth (m) 
4 g Airgap length (m) 
5 dst Stator tooth depth (m) 
6 db Stator yoke depth (m) 
7 l Stack length (m) 
8 fwss Fraction to find wss 

9 fhrt Fraction to find hrt 

10 fwrt Fraction to find wrt 
11 fwrp Fraction to find wrp 

12 Ns Turns per slot 
13 Nfd Number of field turns 
14 Is Stator current, rms (A) 
15 β Stator phase angle (rad) 

16 Ifd Field current (A) 
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Within the toolbox, the constraints and fitness function are evaluated using the 

steady-state MEC model described in Section 2.3. The MEC model has been structured 

for rapid evaluation of candidate designs by modeling only a single pole and using a 

mesh-based solution of the circuit. Within optimization studies, a single machine is 

evaluated at 91 discrete positions over half of an electrical cycle. This requires on the 

order of 0.6-.0.8 son a single-core desktop PC. The variance in the time is due to the 

convergence of the Newton Raphson algorithm, which has been found to require less than 

5 iterations, regardless of saturation level. 

The toolbox is configured for the electromagnetic design of machines of arbitrary 

power level. To date, thermal effects are considered in a simplified way by setting a 

current density limit on the stator and rotor windings. Initial testing and toolbox 

implementation has focused upon an air-cooled drive system with constraints of a dc-link 

voltage < 200 V, output power > 2 kW, and winding current densities < 7.6 A/mm2 at a 

rotor speed of 3600 rpm. An initial optimization was performed using a population of 600 

individuals over 800 generations. The Pareto-optimal front from which a design to be 

constructed was selected is shown in Figure 3.3. Details of the design process and 

hardware validation are provided in [1].  

 

 

Figure 3.3: Pareto-optimal front for 2 kW machine design. 
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It is noted that in the initial validation, focus was placed upon the machine. Losses 

of the rectifier were not included in establishing the Pareto-optimal front. Subsequently, 

conduction loss of the rectifier has been included. In using the tool to study machine 

designs with/without conduction loss, it has been found that the machines are similar in 

terms of geometry and field and stator winding ampere-turns [57]. The notable difference 

is that in the machines with rectifier conduction loss included, ampere-turns are achieved 

by higher turns and lower current compared to machines without rectifier conduction 

loss. 

Among the lessons learned in the design and validation is that there can be 

relatively wide variability in the anhysteretic BH curves of M19 steel. Specifically, 

toroidal samples of the core material obtained pre- and post-machine construction were 

obtained and were found to have differences. This is not unexpected, since material 

classification is based upon a loss characterization and not an anhysteretic BH 

characterization [58]. The qd-axis flux linkage calculated with BH1 (pre-construction) 

and BH2 (post-construction) are shown in Figure 3.4. BH2 was shown to have a more 

accurate material characterization in [59] and thus is used in developing the excitation 

strategies in the following sections. 

 

 

Figure 3.4: q- and d-axis flux linkage versus current. 
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3.3 Model Details 

From Table 3.1, it is observed that the genes of the machine design optimization 

include stator and field excitation for rated output power. One may suggest that the 

currents over a range of operating points could be obtained within the machine design 

optimization. However, the computational effort required to do so is significant, since 

each operating point would require the solution of the MEC. In addition, as one increases 

the number of genes (which would need to include currents at each operating point), the 

time required to obtain convergence increases. 

As an alternative, for power less than rated, a second optimization is performed to 

establish a map between commanded torque and stator/field excitation for any machine 

upon the Pareto-optimal front. Herein, the map is obtained for the machine that was 

constructed using three approaches. In the first, a standard qd-model is utilized. In the 

second, a qd-model in which saturation is included along the d-axis is utilized. In the 

final approach, the MEC model is applied. 

 

qd model – saturation neglected 

Since the machines are connected to an active rectifier, damper windings are not 

utilized in the rotor of the machine studied. The voltage and flux linkage equations of a 

traditional qd model that are used for optimization are expressed as, 

 r r r
qs s qs r dsV r I ω λ= +  (3.1) 

 r r r
ds s ds r qsV r I ω λ= −  (3.2) 

 ' ' '
fd fd fdV r I=  (3.3) 

 r r
qs q qsL iλ =  (3.4) 

 'r r
ds d ds md fdL i L iλ = +  (3.5) 

The electromagnetic torque is expressed as, 

 
3

( )
2 2

r r r r
e ds qs qs ds

P
T i iλ λ= −  (3.6) 
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In (3.1)-(3.6), mdL and mqL are the d-axis and q-axis magnetizing inductances, 

respectively, sr  is the stator winding resistance, and '
fdr  is the referred field resistance. In 

(3.3) and (3.5), the primes are used to denote that the field quantities are referred to the 

stator winding. 

The values of dL , qL  are obtained from the MEC model by taking the ratio of the 

respective q- and d-axis flux linkage to q- and d-axis test currents. mdL  and mqL  are 

obtained by subtracting the stator leakage inductance lsL  from dL  and qL . The stator 

leakage inductance is approximated as the zero-sequence inductance 0L  which is the 

ratio of zero-sequence flux linkage to zero-sequence current. The ratio between actual 

and referred rotor windings was obtained using a developed diagram of the MMF of the 

rotor and stator windings [26]. The equivalent turns of a sinusoidally distributed winding 

were computed and used to establish' 2

3
fd

fd fd
s

N
I I

N
=  and ' s

fd fd
fd

N
V V

N
= . The stator and 

field winding resistances are calculated within the machine design program using (2.21) 

to calculate dc winding resistance. All parameters of the steady-state qd model are shown 

in Table 3.2. 

 

qd model – saturation along d-axis 

Often, in the analysis of salient-pole synchronous machines, saturation is 

represented along the d-axis. With knowledge that the machine selected has flux densities 

that are beyond the knee of the BH curve, it was of interest to observe the influence that 

modeling d-axis saturation has on the optimized winding currents. To model saturation, 

(3.5) is represented in a form 

 r r r
ds ls ds mdL iλ λ= +  (3.7) 

where 

 ( )r
md mdf iλ =  (3.8) 

 'r
md ds fdI I I= +  (3.9)  
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To determine the relationship between magnetizing current and flux linkage, the 

MEC model was utilized. The rotor was positioned at 90rθ = ° and the stator winding 

currents were set to zero. The field current was increased and the respective d-axis flux 

linkage determined. The relationship between magnetizing current and flux linkage can 

be expressed mathematically using the map proposed in [27] as, 

 

{ }
{ }2 2 2 2

2
( ) tan[ ( )] tan( )

         ln(1 ) ln[1 ( ) ]

      

d
md md T T md T T T T

d
T T T md T a md

T

M
i a a

M
M

λ λ τ λ λ λ τ λ
π

τ λ τ λ λ λ
πτ

= − − + − +

+ − + − +  (3.10) 

where Md and Ma are related to the initial and final slopes, τT and λT define the tightness 

of the transition from initial slope to final slope and the point of transition, respectively. 

The values are shown in Table 3.2. 

 

Table 3.2 
Parameters used in qd Models. 

Md 451.42 Ma 612.83 
τT 173.09 λT 0.127 

rs(Ω) 0.16 r fd(Ω) 2.55 

Lq (mH) 3.76 Ld (mH) 5.15 
L0 (mH) 0.82 Ns 19.67 

Nfd 215.26   
 

MEC model 

The electromagnetic torque and power loss calculation are shown in Section 2.3.3. 

The same equations can be used to calculate the resistive and conduction loss for the qd 

models, however, core loss can only be calculated in the MEC model. 

3.4 Optimal Excitation 

Consistent with the desire to minimize loss, an optimization was established to 

minimize loss subject to the constraint of meeting the specified electromagnetic torque 

command. Additional constraints include not exceeding the current limit and the phase 

voltage limit. Mathematically, the optimization is expressed as, 
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                                  Minimize ( , , )r r
loss qs ds fdP i i i  (3.11) 

                                  Subject to:  

 *
e eT T=  (3.12) 

 maxstator sJ J≤  (3.13) 

 maxrotor rJ J≤  (3.14) 

 2 23 r r
qs ds dcV V V+ ≤  (3.15) 

In (3.12), and throughout this chapter, a * is used to denote a commanded value. 

The maximum stator and rotor current densities were assumed 

2
max max 7.6A / mms rJ J= = The dc bus voltage limit was 200dcV = V. The optimization 

was performed using the evolutionary approach used for the machine design. 

Initially, the optimization was performed using the MEC model upon which the 

design was based. The optimization was then repeated using the traditional qd model (no 

saturation) and the qd model incorporated with d-axis saturation. Within the qd models, 

only resistive loss and switch conduction loss is represented (no core loss). The resulting 

currents obtained from optimization of (3.11)-(3.15) using the three models are shown in 

Figure 3.5. The comparison of the total power loss obtained from the optimization using 

the three models is shown in Figure 3.6. From the plots in Figure 3.6, one can see that the 

power loss is significantly under estimated when using the qd models due to the absence 

of core loss within these models. This would lead to an overestimate of the output power 

from the qd models. In addition, if one applies the currents obtained from the qd models 

into the MEC model, one finds that at higher power levels the torque is significantly less 

than the commanded torque.  

From Figure 3.5, there are several interesting observations. First, at lighter loads 

both qd models yield nearly the same optimal stator current commands. This is expected 

since under the relatively small currents, saturation is unlikely to play a dominant role. As 

load increases, the currents obtained by the three models tend to have more significant 

differences. 
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Figure 3.5: Current control schemes for optimal control based on MEC model, linear qd 
model, and nonlinear qd model respectively. a) q-axis current, b) d-axis current, c) field 

current. 
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Figure 3.6: Comparison of power loss for the MEC model, linear qd model, and nonlinear 
qd model. 
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Within the MEC model, saturation and core loss are included. At light load, one 

can argue that the only possible reason for a negative d-axis is to minimize core loss. A 

careful inspection at the q-axis and field currents under light load shows that they are 

larger in magnitude than those obtained by the qd models. This is to counteract the 

reduction in torque created by the negative d-axis current. 

To help explain the prevalence of negative d-axis current at higher loads, an 

additional study was performed. Specifically, taking the phase current amplitude and 

field current at rated load, the current phase angle was varied and the impact on the 

machine performance was investigated using the MEC model. Variation of the phase 

angle directly impacts the amount of q-axis and d-axis current. This variation has no 

impact on the resistive/conduction loss since rms stator current remains the same. The 

main variables of interest for this study were core loss and torque, and these variables 

along with q- and d-axis current are plotted in Figure 3.7 as a function of phase angle. 

These results illustrate that a negative d-axis current provides a benefit in terms of core 

loss, although the amount of the reduction in core loss is perhaps relatively small. In 

addition, if one looks at the impact on torque, it can be seen that for a set of field current, 

the maximum torque point is achieved by using a negative d-axis current. Referring back 

to (3.6) with (3.4) and (3.5) substituted for the flux linkages, this seems counterintuitive, 

but it is reasonable considering that the MEC model accounts for saturation whereas the 

lumped parameter equation does not. Indeed, this also explains why the d-axis current 

obtained by the saturated qd model becomes negative as load increases. 
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Figure 3.7: q- and d-axis stator current, torque and core loss versus stator current phase 
angle for constructed machine. 
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DC machine in which the rotor field is constant and the torque command is mapped 

directly to armature excitation.  

To address these potential interests, three alternative excitation schemes are 

considered. In the first, the field current is held fixed at the optimized 2 kW level (3.8 A), 

and the q- and d-axis currents are optimized to minimize system loss at each value of 

commanded torque. A second control is considered in which the torque attributed to 

saliency is eliminated by setting d-axis current to zero. Therein, the field and q-axis 

current are solved to minimize system loss. The currents obtained for these two schemes 

are shown along with the optimal control currents in Figure 3.8. The total system loss 

resulting from these controls are shown in Figure 3.9. 
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Figure 3.8: Current control schemes for a) optimal control, b) zero d-axis, and c) constant 

field controls. 
 

 

Figure 3.9: Total power loss for optimal control, zero d-axis current control, and constant 
field controls. 
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From Figure 3.9, it can be seen that with the exception of powers below 30% 

rated, a constant field control provides minimal difference with those of the original 

optimized current. It can also be observed that setting d-axis current to zero does lead to 

an increase in loss at higher power levels.  However, this loss increase is relatively minor. 

The results of the first two alternative controls sets the stage for a third control in 

which the d-axis current is set to zero, the field current is held constant, and a torque 

versus q-axis current map is utilized over the entire power range. Figure 3.10 shows this 

simplified current control. The field current in this scheme is obtained so that the overall 

power loss in creating electromagnetic torque from 0 to rated (6.3 Nm) is minimized. Its 

value is 3.28 A in this case. A comparison of total system loss resulting from the 

simplified control and the optimal control is also shown in Figure 3.10. From the results, 

it can be seen that the simplified control is nearly as efficient as the optimal control over 

much of the power range. 

 

Figure 3.10: Current control schemes and total power loss for simplified control. 
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such a control is relatively straightforward for both brushed and brushless exciters. 

Specifically, for a brushless excitation system, a single point map is needed between field 

current and excitation field voltage. Another point to consider is that it is interesting that 

the torque versus q-axis current is indeed linear in this simplified control, despite the 

machine operating in saturation. This is a result that saturation is primarily set by the field 

current. The q-axis current from zero through rated value appears to have relatively minor 

influence on the magnetic operating point. In addition, since the d-axis current is held 

fixed at zero and the q-axis does not have an appreciate influence on the magnetic 

operating point, changes in torque would not translate to transients in the field current. 

Theoretically, this would ensure a fast transient response. 

Finally, there was interest in establishing performance for speeds less than rated. 

Within this region, studies were performed to establish the power loss between the 

simplified and optimal controls at various speeds and torque levels. The results are shown 

in Figure 3.11. From these curves one can see there is relatively minor difference 

between the loss obtained from the two controls, as one might expect. 

 

 
Figure 3.11: Comparison of power loss between optimal and simplified control at 

variable speed. 
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3.6 Hardware Validation 

Hardware-based performance of the controls for speeds up to 3600 rpm was 

evaluated using the bench set up shown in Figure 3.12. A dynamometer working as a 

prime-mover was connected with the WRSM through a torque transducer. The WRSM is 

driven electrically by an active rectifier that used a ST microelectronics STG3P3M25N60 

3-phase inverter bridge with an International Rectifier half-bridge gate driver (IR2183) to 

perform delta-hysteresis current regulation. The delta interval and hysteresis band were 

set to 50 µs and 0.5 A, respectively. At the output of the inverter is a 6.6 mF capacitor in 

parallel with a 20 Ω resistor. An encoder is used to obtain rotor position and a power 

supply operating as a current source is used to provide field excitation. The current 

control vectors generated by the optimal control and the simplified control were tested at 

3600 rpm and 1800 rpm. 

 

 

Figure 3.12: Hardware test bench. 
 

Prior to the experiments, the dynamometer was used to spin the de-energized 

machine to 3600 rpm and 1800 rpm. An in-line torque transducer was used to establish an 

estimate of 100 W and 50 W loss due to friction/windage at rated and half-rated speed, 

respectively. Stator and field windings resistances were measured as 0.2 Ω and 2.81 Ω, 

respectively. The measured values of resistance are used for loss calculation in the MEC 
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model in this section. The machine was then run under load and the respective 

mechanical input power and dc output power were measured. ‘Measured’ 

electromagnetic torque was estimated by taking the measurement of the torque 

transducer, and subtracting the torque associated with friction/windage. Total loss was 

estimated as 

 loss e rm fd fd dc dcP T V I V Iω= + −  (3.16) 

where eT  is the estimated electromagnetic torque, rmω is the rotor angular velocity, 

fd fdV I is the input power to the exciter, and dc dcV I is the average of the product of 

measured dc-link current and voltage. 

Table 3.3 and Table 3.4 contain the MEC and hardware performance for the 

optimal control and simplified control at rated speed, respectively.  

Table 3.5 and Table 3.6 contain the MEC and hardware performance for the 

optimal control and simplified control at half-rated speed, respectively. From the tables, 

one can see that the simulation and experimental results match well. As expected, the 

simplified control produces slightly more machine loss than the optimized control at 

higher torque levels. 

For both current commands one can see error between the MEC model predicted 

loss and the measured loss. A difference is certainly expected, since in the MEC model, 

switching loss is not represented. In addition, only core loss of the stator (not the rotor) is 

considered. Within the delta-hysteresis control a synchronous current regulator was not 

applied. Thus, there is likely some minor error between commanded current and actual 

current that could lead to a difference in expected/measured torque that was perhaps 

favorable in some instances and unfavorable in others. However, it does not appear that 

these differences were appreciable. In general, one can conclude that the difference 

between the loss of the optimal and simplified controls is minor, and that a relatively 

simple control can be achieved that is consistent with goals of minimizing mass and loss 

of this machine/drive system. 
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Table 3.3 
Comparison of MEC and hardware for optimal control currents at 3600 rpm. 

 

Table 3.4 
Comparison of MEC and hardware for simplified control currents at 3600 rpm. 

Current (A)  Torque (Nm) DC Output  
Power (W) 

Power      Loss 
(W) Iq Id Ifd 

 
-10.6 

 
-0.8 

 
3.13 

MEC 2.99 1022.3 131.3 
Hardware 3.16 1067.3 151.6 

Error 5.7% 4.4% 15.5% 
 

-14.0 
 

-2.1 
 

3.56 
MEC 4.31 1476.3 184.6 

Hardware 4.60 1565.8 204.0 
Error 6.7% 6.1% 10.5% 

 
-15.8 

 
-2.5 

 
3.71 

MEC 4.97 1698.9 213.5 
Hardware 5.37 1826.0 237.2 

Error 8.0% 7.5% 11.1% 
 

-17.4 
 

-3.7 
 

3.93 
MEC 5.63 1923.9 243.5 

Hardware 6.06 2055.3 272.7 
Error 7.6% 6.8% 12.0% 

 
-18.6 

 
-5.3 

 
4.20 

 

MEC 6.29 2146.3 275.4 
Hardware 6.65 2236.6 320.0 

Error 5.7% 4.2% 16.2% 

Current (A)  Torque (Nm) DC Output  
Power (W) 

Power      Loss 
(W) Iq Id Ifd 

 
-10.3 

 
0 

 
3.28 

MEC 2.99 1024.4 132.2 
Hardware 3.17 1071.9 153.3 

Error 6.0% 4.6% 16.0% 
 

-14.8 
 
0 

 
3.28 

MEC 4.31 1467.7 187.7 
Hardware 4.55 1538.6 207.0 

Error 5.6% 4.8% 10.3% 
 

-17.1 
 
0 

 
3.28 

MEC 4.97 1683.8 220.8 
Hardware 5.25 1752.0 257.4 

Error 5.6% 4.1% 16.7% 
 

-19.4 
 
0 

 
3.28 

MEC 5.63 1896.6 257.7 
Hardware 5.93 1986.6 279.1 

Error 5.3% 4.7% 8.3% 
 

-21.7 
 
0 

 
3.28 

MEC 6.29 2105.1 298.5 
Hardware 6.55 2165.5 334.0 

Error 4.1% 2.9% 11.9% 
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Table 3.5 
Comparison of MEC and hardware for optimal control currents at 1800 rpm. 

 

Table 3.6 
Comparison of MEC and hardware for simplified control currents at 1800 rpm. 

Current (A)  Torque (Nm) DC Output  
Power (W) 

Power      Loss 
(W) Iq Id Ifd 

 
-10.4 

 
-0.6 

 
3.20 

MEC 2.99 477.3 112.9 
Hardware 3.12 484.6 132.2 

Error 4.3% 1.5% 17.1% 
 

-13.9 
 

-2.1 
 

3.61 
MEC 4.31 684.9 163.5 

Hardware 4.54 704.9 187.4 
Error 5.3% 2.9% 14.6% 

 
-15.7 

 
-2.8 

 
3.78 

MEC 4.97 785.5 191.1 
Hardware 5.30 827.9 211.2 

Error 6.6% 5.4% 10.5% 
 

-17.3 
 

-3.7 
 

3.97 
MEC 5.63 885.5 220.2 

Hardware 6.01 932.7 244.4 
Error 6.7% 5.3% 11.0% 

 
-18.8 

 
-4.6 

 
4.16 

MEC 6.29 984.1 250.7 
Hardware 6.57 1017.4 269.6 

Error 4.5% 3.4% 7.5% 

Current (A)  Torque (Nm) DC Output  
Power (W) 

Power      Loss 
(W) Iq Id Ifd 

 
-10.2 

 
0 

 
3.28 

MEC 2.99 449.6 113.4 
Hardware 3.13 484.2 136.0 

Error 4.7% 7.7% 19.9% 
 

-14.8 
 
0 

 
3.28 

MEC 4.31 646.0 166.3 
Hardware 4.45 672.7 196.3 

Error 3.2% 4.1% 18.0% 
 

-17.1 
 
0 

 
3.28 

MEC 4.97 739.2 197.8 
Hardware 5.13 776.2 221.0 

Error 3.2% 5.0% 11.7% 
 

-19.4 
 
0 

 
3.28 

MEC 5.63 828.9 232.8 
Hardware 5.85 878.1 254.8 

Error 3.9% 5.9% 9.5% 
 

-21.7 
 
0 

 
3.28 

MEC 6.29 914.9 271.5 
Hardware 6.48 955.5 296.2 

Error 3.0% 4.4% 9.1% 
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3.7 Variable Speed Operation 

Although the given machine was not originally designed for variable speed 

application, it is interesting to consider the impact of these alternative excitations 

strategies as speed increases beyond rated value. To do so, the envelopes that establish 

the maximum possible torque at each speed were created following an optimization: 

                                  Maximize ( , , , )r r
e qs ds fd rT i i i ω  (3.17) 

                                  Subject to:  

 _e e ratedT T≤  (3.18) 

 maxstator sJ J≤  (3.19) 

 maxrotor rJ J≤  (3.20) 

 2 23 r r
qs ds dcV V V+ ≤  (3.21) 

where the rated torque is 6.3 Nm. To create the envelopes for the simplified control, rdsi  

in (3.17) is set to zero for all speeds, and the field current is held constant at 3.28 A. The 

maximum torque versus speed under each of the controls is shown in Figure 3.13. 

Comparing the envelopes of performance, one notes that the torque achievability 

from the simplified control is a subset of that of the optimal control. Of course, for speeds 

up to rated there is no difference in the torque availability and the performance was 

considered in Sections 3.5 and 3.6. However, if one extends beyond rated speed, the peak 

torque that can be obtained is much different between the two controls. Considering 

Figure 3.13, several details catch the eye. First, although the machine was not designed 

for variable speed operation, when using the optimal control, one can achieve rated 

torque for speeds exceeding roughly twice rated speed. Moreover, once the available 

torque decreases, the decrease is proportional to rotor speed and therefore a constant 

power region extends to at least four times rated speed. Of course, design constraints and 

mechanical loss for high speeds were not considered and so this result is useful in that it 

allows comparison to the performance from the simplified control. 
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Figure 3.13: Torque and output power envelopes of optimal and simplified controls. 

 

As one would expect, the torque that can be achieved using the simplified control 

is much less as speeds extend beyond rated speed. This is due to the fact that if the field 

current is held fixed and the d-axis current fixed at zero, no field weakening occurs. Thus 

the q-axis current achievable is diminished. Of course, the simplified control can be 

modified so that the field current is reduced in proportion to rotor speed. To consider 

such a method, a study was performed in which the field current is adjusted according to 

 
, ,

,
, ,

,

( ),

fd fd sc rm rm rated

rm rated
fd fd rated rm rm rated

rm

i i

i i

ω ω
ω

ω ω
ω

= ≤



= >


 (3.22) 

and the q-axis current adjusted to solve (3.17). In (3.22), ,fd sci is the field current for 

simplified control at less than rated speed (3.28 A), ,fd ratedi  is the field current at the 

optimized 2 kW level (3.8 A) and ,rm ratedω  is the rated speed of the machine (3600 rpm). 

The resulting torque envelope is shown in Figure 3.13 as Simplified Control 2. One can 
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observe from the curve that the field weakening of the field does enable an increase in 

available torque. However, it remains much less than that of the optimal control. 

There are many questions that arise for optimization of a machine intended to 

operate over a wide speed range. Addressing them is outside the scope of this paper. 

However one question that was of interest is whether a machine can be designed with a 

wide speed range and yet with d-axis current fixed at zero. To consider this question, an 

optimization study was performed. Within the study, the stator phase angle, which is gene 

15 in Table 3.1, is set to 180° so that d-axis current is zero. In addition, an extra 

constraint is added so that the rated output power (2 kW) is obtained at four times rated 

speed with one fourth of the field current used at rated speed. 

To obtain a perspective on the potential mass penalty that results from setting d-

axis current to zero, a repeat of the original 2 kW design was performed with the updated 

BH properties included. For this case the d-axis current is allowed to be nonzero. With 

the three currents to manipulate, all the machines can achieve rated torque at 2 kW at 

3600 rpm and constant power at four times rated speed. Conduction loss of the rectifier is 

included within the loss calculation in both cases. 

The resulting Pareto fronts of power loss at rated speed versus mass is shown in 

Figure 3.14. As shown in Figure 3.14, at rated speed, the machines that are designed 

assuming the use of Simplified Control 2 with the constant power constraint have more 

mass for a given loss than the machines designed for the machines with the optimal 

control. Comparing the fronts provides some measure of the cost (increase in mass) of 

keeping with a simplified control under variable speed operation. For systems with higher 

loss, the mass difference is relatively small. However, as loss decreases, the difference in 

mass becomes more appreciable. 
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Figure 3.14: Comparison of Pareto fronts. 
 

To investigate the difference in the machines from the two fronts, the conduction 

loss, core loss, and resistive loss have been compared for rated speed/rated torque 

conditions in Figure 3.15. A comparison of different design variables in the two design 

optimizations is shown in Figure 3.16 to help understand how the designs are different. 

As shown in Figure 3.16, although the field currents at rated speed for both designs are 

very close, the designs assuming Simplified Control 2 tend to have a much smaller field 

current at high speed (one fourth of the rated value at four times rated speed). Therefore, 

a larger stator current is required to compensate for the torque reduced by the smaller 

field current. This increases the rectifier conduction loss. Since the modified designs have 

larger stator current, the optimization process tends to use less stator turns in order to 

reduce the stator resistance, thus the resistive loss of the machines designed to use 

Simplified Control 2 and optimal control are very close. Moreover, since negative d-axis 

current helps to reduce core loss as discussed previously, setting them to zero one expects 

to have more core loss. It is also interesting that in general, the size of machines and turns 

of the field winding created by both designs are very close. The key difference is the 
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stator winding turns and current. If one summarizes these trends, one can surmise that for 

systems in which the conduction loss is a small percentage of overall loss, the two fronts 

would approach each other. 

As a final study, a machine (shown as a star in Figure 3.14) was selected for 

evaluation of the excitation optimization. Following (3.17)-(3.21), the same control 

optimization process was applied to generate the torque and output power envelopes of 

simplified control 2 for this machine. The envelopes are shown in Figure 3.17. 

Comparing the torque and power envelopes of the Simplified Control 2 with that 

observed for Simplified Control 2 of the original machine shown in Figure 3.13, one can 

see that the speeds over which constant torque is achieved is expanded significantly. In 

addition, once rated torque cannot be achieved, the field weakening leads to a torque 

envelop that yields in excess of 2 kW power at speeds up to four times rated. Thus, one 

observes that it is possible to have a simplified field-oriented type control with d-axis 

current set to zero and yet have a wide constant power range, provided the simplified 

control is included in the design stage. 
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Figure 3.15: Comparison of conduction loss, core loss, and resistive loss. 
 

 
Figure 3.16: Comparison of design variables in variable speed design and rated speed 

design. 
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Figure 3.17: Torque and output power envelopes of simplified control 2 using a 
simplified control design. 

 

3.8 Discussion 

In Section 3.1 several questions were raised and it is helpful to consider them in 

light of the results presented. From the control perspective, it has been found that when 

establishing the torque versus current map there are significant differences between the 

currents that are obtained from the MEC and those one would obtain using traditional qd 

models. The differences come from the impact of saturation as well as the influence of 

core loss. At first glance this is discouraging since the resulting ‘optimal’ torque/current 

map from the MEC model is difficult to express analytically. However, through analysis 

of the optimized currents, an alternative simplified control is obtained that is 

straightforward to implement. Its main property – a linear map between torque and q-axis 

current- is precisely what drive control designers seek. The caveat of the simplified 

control is that one must be willing to accept an increase in loss over an ‘optimized’ 

current. 
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This leads to a question of whether a control designer needs to communicate their 

desire to use a simplified control to the machine designer? For variable speed 

applications the results in Section 3.7 show the answer is yes. Without this 

communication, the torque versus speed capabilities of the drive is greatly diminished 

under the simplified control. Moreover, the machine designer will be able to inform the 

control engineer of the added cost of the simplified control since, as shown in Figure 

3.14, the mass of the machine may increase. 

Finally, one may ask how this research applies to applications in which one can 

adjust the commanded prime mover angular velocity. Going back to Figure 3.2, in this 

case, the output of the voltage regulator is now a power command. Due to the capability 

to adjust speed, an optimization can be performed to obtain the torque/speed 

combination: 

 Minimize         ( , )loss e rP T ω  (3.23) 

     Subject to        *( , )e rP T Pω =  (3.24) 

where the loss includes those of the WRSM, active rectifier, prime mover, and rotation. 

The output of the optimization is a torque command provided to the electric drive and a 

speed command provided to the prime mover. Again, a torque command to current 

command map is required. The results of Section 3.7 are readily applied, with the caveat 

that for a wide speed range, any desire to use a simplified control requires one to include 

the control as part of the machine design process. 
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4.  DYNAMIC MAGNETIC EQUIVALENT CIRCUIT MODEL 

4.1 Enhanced MEC Network 

The dynamic MEC-based model is designed to predict the performance of a salient-

pole WRSM with an arbitrary number of poles, integer number of slots/pole/phase, and 

damper bars. An example cross section of a 4-pole WRSM with 3 damper bars is shown 

in Figure 4.1. The q-, d-, and as-axis of the machine are also listed. It is noted that 

mechanical rotor position θrm is defined by the position of the q-axis with respect to the 

as-axis. 

 

 

Figure 4.1: Example WRSM geometry/configuration. 
 

ro
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An initial network of the proposed MEC is shown in Figure 4.2, wherein loop flux 

Φ is defined in the clockwise direction. Within the network, each stator and field coil 

becomes a MMF source in the loop where the respective current is located. Single-pole 

symmetry is applied to reduce the number of unknowns [23]. Therefore, the MEC 

network shown includes a single pole. Regarding the network, the reluctances of the 

stator leakage (RTL), stator yoke (RY), rotor interpolar region (RRY), rotor shank (RRSH), 

rotor yoke (RRYP), and the nonzero airgap reluctances (Rag) at the respective θrm are 

identical to those developed for the steady state model [1].   

 

 

Figure 4.2: Representative WRSM MEC with damper bars inactive. 
 

The first enhancement that the dynamic MEC network provides is that the stator 

tooth is divided into two components, that is stator tooth shank (RSH) and stator tooth tip 

(RTT). The challenge of this effort is to determine the airgap permeance based on the 

updated network. Since the airgap flux tubes are formed between the stator and rotor, 

they are dependent on the rotor position. For purposes of calculating the airgap 

permeances, the stator, rotor pole, and rotor slot are all discretized into subsections. The 

stator is discretized by the number of stator teeth. In general, the number of rotor pole and 
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slot sections can be user-defined variables. The airgap permeance between the i-th stator 

tooth (STi) and the j-th rotor section (RSj) is calculated as a parallel combination of flux 

tubes that represent flux paths directly from a stator tooth to a rotor section and fringing 

from the side of a stator tooth to a rotor section. In an automated design program 

considering arbitrary geometries, the calculation of the airgap permeance is dependent on 

several factors. Specifically, one must know how the angular span of the rotor section 

compares to the angular spans of the stator tooth and half the stator slot. In [1], logic that 

was used to determine overlap angles for arbitrary geometries is provided, assuming the 

stator teeth do not have tooth tips. Within the enhanced MEC model, the same logic is 

used to determine the reluctance between stator teeth and rotor sections is applied using 

the geometry of the stator tooth tip to establish angular overlap. 

The uniqueness of the MEC network for the dynamic model is centered on the 

reluctance network of the rotor pole tips. A goal is to develop a general model that can be 

applied for arbitrary number of damper bars and also, at their arbitrary positioning (with 

some limitation), both horizontally and vertically. An issue that is often confronted by 

manufacturers is that a single lamination is used across a large product range. Thus, 

damper bar holes are often included in rotor laminations, but in some products left 

unfilled. Within the model, provisions are included to represent damper bar holes that are 

inactive and those that are active.  

For the case in which the damper bar currents are inactive, the MEC network is 

shown in Figure 4.2. Therein it is shown the flux tubes that represent the rotor pole tip 

include the “inner” pole tip (RRTIi), the “outer” pole tip (RRTOi), and the “outer end” of the 

pole tip (RRTEi). Within the model, it is assumed that to the left and right of the pole body 

flux mainly flows tangentially, and directly above the rotor pole body, flows radially. If 

an outer section includes a damper hole, the value of RRTOi is derived assuming the tube 

geometry is a rectangular section of steel with a cylindrical damper hole at the center. 

This has been found to provide a reasonable estimate of the tangential flux flow in the 

outer sections.  

For the case in which the damper bar currents are active, the MEC network in the 

rotor changes appreciably as shown in Figure 4.3. Specifically, it is observed from 2D 
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FEA that a leakage path exists around a damper hole and the leakage flux varies 

appreciably according to the depth of damper hole. Therefore, if an outer section RRTOi 

includes an active damper bar, then the section is represented using a parallel 

combination of two reluctances RRTOi
* and RRLOi. The reluctance RRTOi

*
 is used to 

represent a main path in which flux flows in the same direction of RRTOi. The reluctance 

RRLOi is used to represent a leakage path around a damper bar. 

 

 

Figure 4.3: Representative WRSM MEC with damper bars active. 
 

4.1.1 Stator flux tubes 

As can be seen from Figure 4.2 and Figure 4.3, the stator is composed of 4 types of 

flux tubes, the stator tooth tip (RTT), stator tooth shank (RSH), stator yoke (RY), and stator 

tooth leakage (RTL). A close-up of configuration of stator flux tubes is shown in Figure 

4.4.  
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Figure 4.4: Illustration of stator flux tubes. 

 

Within the model, sttw  and tiph  represent the width and length of stator tooth tip 

respectively, while( )–  2stt tipw w and ( )–st tipd h are the width and length of stator tooth 

shank respectively. As for the stator yoke, the width and length are given as bd and 

( ) 2 /  / 2st o bN r dπ − respectively, where stN is the number of stator teeth. The lengths of 

RSH and RY are selected as the mean path length and the equipotential planes intersect to 

form a node in the MEC. The reluctances for the stator tooth shank, the tooth tip, and the 

yoke are calculated as,  
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where µ is the magnetic permeability. The calculation of stator tooth leakage reluctance 

(RTL) is provided in [60]. 
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4.1.2 Flux tubes in the rotor 

In [1], the reluctance network of the rotor did no

bar holes. In the enhanced model, such holes are included. To establish the difference 

between the models, it is convenient to first consider the model without damper holes 

which is taken directly from 

various rotor tooth tip flux tubes 

configuration is that to the left and right of the shank, flux mainly flows tangentially in 

the tooth tip; and directly above the rotor shank, flux flows radially

 

Figure 
 

The flux tube at the outer edge of the rotor tooth tip is represented by reluctance 

RRTEi, and it provides a path for fringing through the side of the rotor tooth. The length of 

the flux tube is half of a rotor tooth section. The width can be estimated by the function 

fwrto(x) shown in Figure 4

 

where x is the distance from the center of the rotor shank to the middle of the respective 

flux tube. The reluctance expression is given by

in the rotor pole with damper holes 

, the reluctance network of the rotor did not account for support or damper 

bar holes. In the enhanced model, such holes are included. To establish the difference 

between the models, it is convenient to first consider the model without damper holes 

which is taken directly from [1]. Without damper holes, the general configuration of the 

various rotor tooth tip flux tubes is illustrated in Figure 4.5. The basic idea behind the 

configuration is that to the left and right of the shank, flux mainly flows tangentially in 

the tooth tip; and directly above the rotor shank, flux flows radially. 

Figure 4.5: Description of rotor tooth tip flux tubes. 

The flux tube at the outer edge of the rotor tooth tip is represented by reluctance 

, and it provides a path for fringing through the side of the rotor tooth. The length of 

the flux tube is half of a rotor tooth section. The width can be estimated by the function 

4.5, which is established from simple geometry, 

( ) ( )22
wrto ro rtbf x r x h= − −  

is the distance from the center of the rotor shank to the middle of the respective 

The reluctance expression is given by 
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The flux tube at the outer edge of the rotor tooth tip is represented by reluctance 

, and it provides a path for fringing through the side of the rotor tooth. The length of 

the flux tube is half of a rotor tooth section. The width can be estimated by the function 

 

  (4.4)   

is the distance from the center of the rotor shank to the middle of the respective 
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 ( )
/ 2

/ 2 / 4
rts

RTEi
RTEi wrto rt rts

w
R

f w w lµ
=

−
   (4.5)   

where wrts is the width of a rotor tooth section (wrt /Nrts), and Nrts is the number of user-

defined rotor tooth sections. 

The remaining tangential flux tubes are represented by the outer rotor tooth tip 

reluctances (RRTOi). The number of outer reluctances is dependent on the number of rotor 

tooth sections (Nrts) and on the total length of tangential reluctances, lRtot, which is 

defined herein as, 

 ( ) ( )/ 2 min / 4,Rtot rt rp rp rtml w w w h= − +    (4.6)   

where hrtm = fwrto(wrp/2)/2. The length of the individual flux tubes is equal to wrts except 

for the inner-most flux tube which has a length in Figure 4.5 of 3 2.5RTO Rtot rtsl l w= − . The 

approximate width of each flux tube is again determined using fwrto(x) from (4.4). 

As for the inner rotor pole tip section (RRTI), the width is equal tortsw , and the 

length is calculated as, 

 ( )RTIi wrto rtml f x h= −    (4.7)   

Similarly, the rotor pole shank reluctance (RRSH) has a width of rpw and a length of 

( )/ 2    rc rp rtmd h h+ + . 

Next, if damper bar opening are included and the damper currents are inactive, the 

flux tubes of the rotor sections, except for the outer edge of the pole tip (RRTE), become 

non-uniform flux tubes. This is shown using a representative pole with hole openings in 

Figure 4.6. In general, the ideas of having tangential flux tubes to the left and right of the 

shank and radial tubes above the rotor shank is continued. However, the tubes are 

modified to incorporate the effects of the holes. 
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Figure 4.6: Illustration of rotor pole shank and rotor pole tip flux tubes. 
 

Herein the highlighted section RRTO1 is used as an example to illustrate the 

derivation of the reluctance for a flux tube with a damper bar opening. A close-up of the 

highlighted section RRTO1 is shown in Figure 4.7. In order to derive the reluctance of the 

flux tube, an assumption is made that the damper holes are placed at the center of a 

respective rotor pole section. 

h
R
T
O
1
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Figure 4.7: Configuration of rotor pole tip flux tube with damper bar. 
 

In Figure 4.7, RRTO1 is divided into three subsections, RRTO1_1, RRTO1_2, and 

RRTO1_3. RRTO1_1, and RRTO1_3 are subsections of RRTO1 before and after the damper hole. 

RRTO1_2 is the subsection of RRTO1 that contains the damper hole. Since all three are 

serially connected and RRTO1_1 and RRTO1_3 are assumed to have the same cross-sectional 

area, RRTO1_1 and RRTO1_3 can be combined as a single reluctance RRTO1_1,3. It is determined 

using 

 1
1_1,3

1

2RTO dt
RTO

RTO

l r
R

lhµ
−=    (4.8)   

where 1RTOh is the width of the section obtained using (4.4). Using symmetry and 

considering the appropriate series and parallel combinations, one can obtain the 

reluctance of the subsection with the damper hole (1_ 2RTOR ) through consideration of the 

reluctance of only a quarter of the subsection region as shown in Figure 4.7. Specifically, 

it can be shown that  1_ 2RTOR  and subR  are equal. To calculate their value, 

dt dt

dt
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µ
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−
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− −

 
 = − + +
 − − 

∫

   (4.9)   

The cross-sectional area of the component 1_ 2RTOR  used to evaluate the 

permeability value is the mean value of the section. Finally, the component RRTO1_1,3 and 

RRTO1_2 are combined and represented as RRTO1 in the MEC network in Figure 4.2. 

A similar approach has been applied to calculate RRTIi when a damper hole is 

included within the inner pole region. 

4.1.3 Flux tubes of rotor pole tip leakage 

From observations of flux line distribution using finite elements, leakage path 

exists around a damper hole when damper current is active. Therefore, leakage reluctance 

in rotor pole tip is incorporated to the MEC network as shown in Figure 4.3. To derive 

RRLO1, the section RRTO1 is highlighted in Figure 4.6 and enlarged in Figure 4.8 to 

illustrate the configuration of rotor pole tip leakage flux tube. 
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Figure 4.8: Configuration of rotor pole tip leakage flux tubes. 
 

An assumption has been made that the leakage path is circling around the damper 

slot. Thus the damper slot leakage flux tube (RRLO1) is structured as a parallel 

combination of three leakage permeances, that is P1, P2, and P3, as shown in the shaded 

area of Figure 4.8. P1 represents the leakage path in the copper (or air) inside the damper 

slot, with a radius of rdt. P2 represents the leakage path in the steel in the rotor section, 

which is modeled as a ring with a width of ddp that is equal to the depth of the damper 

hole. Herein, a scaling factor dpα  is introduced to describe the vertical position of the 

damper holes with respect to the section height. Specifically 0dpα =  or 1dpα =  then the 

damper holes locate at the top or the bottom of the rotor pole tip, respectively. Thus, the 

depth of damper hole dpd  is equal to 1( 2 )dp RTO dth rα − . P3 represents the leakage path in 

the air gap, in which the MMF drop in the steel is neglected. Therefore, the reluctance of 

damper slot leakage RRLO1 for the cylindrical tube can be expressed as, 

r dt
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   (4.10)   

where µ is the magnetic permeability in the steel, and µ0 is the magnetic permeability in 

the air. The value of RRTO1
* is then calculated in a way to keep the parallel combination of 

it and RRLO1 to be the same as RRTO1. Doing so, the reluctance of RRTO1
* can be expressed 

as, 

 

2 2 2 2

* 11
1

1 1

11

1

1 1

2
tan ( )

24 4

2 1
           

2

RTO dt
RTO

RTO dt RTO dt

RTO dt

RTO RLO

h r
R

l h r h r

l r

l lh R

π

µ

π
µ µ

−

−−

  
  = + −

 − −  

− − + − 
 

   (4.11)   

One can observe from Figure 4.3 that in the outer pole sections the two 

reluctances are placed in parallel by assuming that the reluctance in the vertical direction 

is negligible. As for those rotor sections without damper bars (e.g. RRTO2 and RRTO3), the 

total reluctance of the section is decomposed into two equivalent reluctances placed in 

parallel in the rotor pole network. For instance, the rotor section RRTO2 is decomposed 

into two branches, that is RRLO2 and RRTO2
*, in the reluctance network, with values that 

*
2 2 22RLO RTO RTOR R R= = . 

For an inner section with a damper bar, a leakage reluctance RRLIi calculated in the 

same fashion of RRLOi is added in between the adjacent two inner sections RRTIi. 

In practice, the topology of the network in Figure 4.3 can be applied to machines 

without active damper bars by simply removing all of the rotor pole tip leakage 

reluctances and the MMF sources of damper currents. Therefore, the initial MEC network 

in Figure 4.2 can be replaced by the enhanced MEC network in Figure 4.3. 
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4.1.4 Damper bar placement 

In general, the rotor pole tip can be discretized into a user-defined arbitrary 

number of sections. The number of damper bars is also a user-defined arbitrary number. 

If the number of rotor pole tip damper bars is an odd number, then one of the bars is 

located in the center of the most inner two RRTI sections. Otherwise, with an even number, 

there is no hole in the center of the most inner two RRTIi sections, but they are 

symmetrically distributed on the two sides of the rest of the rotor pole sections. Within 

the design program, the horizontal distribution of the damper bars is described using a 

damper winding vector as 

 3 2 1 2 3[... ...]dt dt dt dt dtr r r r r=damper_rtip    (4.12)   

where dtir  is the radius of the one in the middle of the rotor pole and the other values are 

the radii of damper bars at two sides. By manipulating the value of dtir  in (4.12), the 

horizontal distribution and the shape of the damper bars is readily modified. For example, 

if the number of damper bars on each rotor pole tip is three, a damper winding vector 

2 1 2[0 0 0 0]dt dt dtr r r  gives a more scattered damper bars distribution compare to 

a damper winding vector 2 1 2[0 0 0 0]dt dt dtr r r . 

In addition, the vertical depth of the damper bars can be assigned by adjusting the 

scaling factor dpα . Therefore, the proposed MEC model provides the ability to 

investigate both horizontal and vertical placement of the damper bar in the rotor pole tips. 

Practically, damper current is not present in the rotor shank. The slot openings in 

the rotor shank are used to bind the rotor laminations and confine the field windings. 

Therefore, in practice they are likely not located in the center of the rotor shank but at the 

edges of the rotor shank. However, the reluctance of the rotor shank component does not 

change when the holes are placed at different locations along the radial direction. 
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4.2 Meshed-Based MEC Model Formulation 

4.2.1 Single-pole symmetry 

Single-pole symmetry has already been studied in [23] in which it was shown that 

only a single pole is required for analysis of an integer slot/pole/phase machine. 

Therefore, Figure 4.9 shows an example MEC network with a single pole span. One can 

imagine that if the MEC network was continued for the pole to the right, the MEC 

network over a full pole pair can be formed.  

 

 

Figure 4.9: Single pole representative of the MEC network. 
 

Considering the symmetry of the magnetic circuit topology in each pole, the 

reluctance networks are identical on both sides of the pole demarcation line. In addition, 

the MMF sources have the same amplitude but opposite polarity to the left and right of 
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the line. As a result, it is apparent that the loop fluxes in the left of the line are equal to 

the negative of the corresponding loop fluxes in the right. 

If damper windings are activated, care must be given to incorporate the single-pole 

symmetry. Specifically, whenever a rotor tooth tip section crosses the pole demarcation 

line, the direction of damper winding current must be reversed so that the MMF source of 

the damper winding has the same amplitude but opposite direction. Moreover, the 

direction of the flux linkage crossing each of two damper windings has to be reversed 

since the positive direction changes from one pole to the other.  

4.2.2 KVL MEC model 

Often, MEC models are structured to explore steady-state behavior in which case 

the model is structured to accept stator and rotor currents as inputs. Once reluctance 

values in the network have been determined, a system of nonlinear algebraic equations 

related to each loop is then established based upon KVL as, 

 ( ) ( 1) ( 1)
R l l=nl nl nl nl× × ×A φ F    (4.13)   

where RA  is a symmetric matrix composed of reluctances, lφ  is a vector of loop fluxes, 

lF  is a vector of MMF sources, and nl  is the number of loops. The loop flux vector lφ  

can be expanded as, 

 l st1 st rt1 rt ag1 ag rp1 rp

T

ns nr na npφ φ φ φ φ φ φ φ =  φ ⋯ ⋯ ⋯ ⋯    (4.14)   

where the subscripts ‘st’, ‘rt’, ‘ag’, and ‘rp’ indicate loop fluxes in the stator, rotor, 

airgap, and rotor pole tip leakage respectively, and the subscripts ‘ns’, ‘nr’, ‘na’, and ‘np’ 

denote the number (per pole) of the stator slots, rotor loops, airgap loops, and rotor pole 

tip leakage loops respectively. The source vector lF  can be expressed as, 

 
T T T T T

( 1) ( 1) ( 1) ( 1)
l st rt rp= ns nr na np× × × × 
 

F F F 0 F    (4.15)   

The mmf source in the stator loops is given by, 

 ( 1) ( 3) (3 1)
st abc abcs

ns ns× × ×=F N i    (4.16)   

where abcsi is a vector of balanced stator currents and the turns matrix abcN is built using 

the a, b, and c-phase turn vectors. The mmf in the rotor loops is given by, 
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 [ ]T( 1) ( 1)
rt rt fd fd fd1 1 0nr nr I N I× ×= = −F N    (4.17)   

where fdI  is the field current and fdN  is the number of field turns. Due to the use of 

single-pole symmetry, the sign of the rotor MMF changes with rotor position. 

The last element inlF , i.e. rpF , represents the damper winding mmf source within 

the meshes of the rotor pole tip leakage. It can be expressed as, 

 ( 1) ( ) ( 1)
rp dp dp( )= ( , ) ( )np np nd ndj j k k× × ×F N i    (4.18)   

where the subscript ‘nd’ denotes the number of damper bars on each rotor pole tip. 

( )( 1)
rp

np j×F  is the j th rotor pole tip leakage loop MMF, ( )( 1)
dp
nd k×i  is the kth damper winding 

current. ( )( )
dp ,np nd j k×N  indicates the number of damper winding turns, which has a value 

of 1 if the kth damper winding current is in the j th rotor pole tip leakage loop and, 

otherwise,  has a value of 0. For example, for the geometry shown in Figure 4.3, 

 (5 1) (3 1)
rp dp

1 0 0
0 0 0

= 0 1 0
0 0 0
0 0 1

× ×

 
 
 
 
  

F i    (4.19)   

The derivation of dynamic system equations in the remainder of this section is 

based upon a configuration in which there is a pole to pole connection between the 

damper windings. However, the proposed model is readily modified to the case in which 

damper winding connections are only made on a single pole by using the fact that the 

damper winding currents satisfy the relationship, 

 
-1

dp dp
1

( )=- ( )
nd

k

nd k
=
∑i i    (4.20)   

Using (4.20) one can see that, a number of (nd-1) damper winding current is 

needed to be solved and all of the entries of the mth row of the matrix dpN are -1, where m 

is the rotor pole tip leakage loop index that ( )dpi nd  is present. 
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4.3 Dynamic System Equations 

Prior to deriving the dynamic model, it is convenient to view the intended dynamic 

model structure in the block diagram form shown in Figure 4.10. Therein it can be seen 

that a dynamic model is obtained by first restructuring the KVL MEC system of 

equations so that stator and damper winding flux linkage is used as an input to the MEC 

model, and stator and damper winding current is an output of the MEC model. State 

equations are then established to obtain stator and damper winding flux linkage based 

upon winding voltage and current, which is obtained from the coupling to external 

circuits and the MEC respectively. From Figure 4.10, unlike the stator and damper 

winding currents, the field winding currents remain an input to the MEC derived herein. 

This is used to consider machines in which the field winding is coupled to a power 

electronic circuit that acts as a current source. For the case in which the field winding is 

connected to a power electronic circuit that appears as a voltage source (i.e. a rotating 

rectifier exciter), the field winding dynamics are readily included using a similar 

approach that is applied to the stator and damper windings. 
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Figure 4.10: Basic structure of the dynamic model shown in contrast with the KVL 
model. 

 

As a first step in restructuring the MEC model, (4.13) is expanded as, 

 R l l,abc abcs l,dp dp l,fd fd- - = IA φ N i N i N    (4.21)   

where the turns matrices are defined as, 

 
( 3)

( 3) abc
(( ) 3)l,abc =

ns
nl

nr na np

×
×

+ + ×
 
  

NN
0

   (4.22)   

 

( 1)

( 1) ( 1)
l,fd rt

(( ) 1)
=

ns

nl nr

na np

×

× ×

+ ×

 
 
 
 

0
N N

0
   (4.23)   

 
(( ) )

(nl×nd)
( )l,dp
dp

=
ns nr na nd

np nd

+ + ×

×
 
 
 

0
N

N    (4.24)   

Next, the system matrix RA  in (4.21) is augmented so that the loop flux is not 

only related to the MMF sources, but also to the flux linkage. To do so, the stator flux 

linkage is first expressed as, 

[ ]R l l l( ) = =A φ φ F Ni
lφ T

abcs abc st=λ N φP

abcs= ( , )v f i λ

= ( )v f i

( )i k

= ( , )λ f v ip

( 1)= ( , ( ))λ g λ λk p k+

( )λ k

( )i k
( )v k

( )v k

R 1 l fd

2

I
=

A W φ
B

W 0 i λ

     
     

    
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 abcs l,abc st=Pλ N φ    (4.25)   

where P  is the number of poles. A matrix l,dpM  is used to relate the damper bar flux 

linkage (which is identical to flux since there is only a single turn) to the loop fluxes lφ . 

Specifically, 

 ( 1) ( ) ( 1) ( ( ) ( ) ( 1)
dp l,dp l l,dp_sub l=nd nd nl nl nd nl nd nd nd nl× × × × − × × =  λ M φ 0 M φ    (4.26)   

where dpλ  is the net flux linkage (flux) between two adjacent damper bars. The net flux 

crossing damper bars is readily established through inspection of the circuit. In general, it 

can be shown that the only contributions to the net flux are from the loop flux that 

circulates around the two corresponding damper bars. For example, from Figure 4.3, the 

net flux between bars 1 and 2 can be expressed as,1 1 3dp rp rpλ φ φ= −
.
 The net flux between 

bars 2 and 3 can be expressed as ,2 3 5dp rp rpλ φ φ= − . The net flux between bar 3 and the 

first bar in the next pole is obtained using symmetry. Specifically, the loop flux of the 

first damper bar in the next pole is the opposite of 1rpφ . Therefore, ,3 5 1dp rp rpλ φ φ= + . Thus, 

for the circuit shown in Figure 4.3, the relationship between loop fluxes and damper flux 

linkages can be expressed as, 

 

l,dp_sub

,1 1

,2 3

,3 5

1 1 0
0 1 1
1 0 1

dp rp

dp rp

dp rp

λ φ
λ φ
λ φ

   − 
    = −
        

M
��	�


   (4.27)   

Straightforward logic is used to generate the matrix for an arbitrary damper 

structure. 

From the first two steps, the MEC system of equations for the dynamic model is 

expanded as, 

 
R l,abc l,dp

fdl l,fdT
l,abc abcs abcs

dp dpl,dp

-      - I0 0
= 0 / 0

0 0 0
P

      
      
      
       

A N N φ N
N i I λ

Ii λM

   (4.28)   

where I  is an identity matrix. To simplify further the stator windings can be transformed 

into an arbitrary reference frame using the following transformation, 



73 
 

 

 

( ) ( ) ( )
( ) ( ) ( )s

qd0s s abcs

cos cos 2 / 3 cos 2 / 3
2

sin sin 2 / 3 sin 2 / 3
3 1/ 2 1/ 2 1/ 2

=

θ θ π θ π
θ θ π θ π

− + 
 = − +
 
 

K

f K f

   (4.29)   

where θ  is the reference frame position, and f  can be voltage (v), current (i), or flux 

linkage (λ). 

Applying the arbitrary reference frame transformation to the MEC system of 

equations (4.28), the following dynamic MEC system can be obtained, 
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fd

qd0s
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 
 
 
  

λ

λ

   (4.30)   

where 

 qd0s qd0s,scl=  scalefi i    (4.31)   

 dp dp,scl = scalefi i    (4.32)   

and scalef  is a user-defined scaling factor that is used to increase the magnitude of the 

smallest terms to avoid an ill-conditioned system matrix. In practice, with 310scalef = , it 

has been observed that potential ill-conditioning is eliminated. 

In comparing (4.30) to the block diagram in Figure 4.10, relations among the 

notations are, 
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A Newton-Raphson method is used to solve the dynamic model for the loop 

fluxes and currents. The Jacobian matrix of the dynamic model in (4.30) is expressed, 
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   (4.36)   

 

where dynA  is the augmented system matrix in (4.30), and RD  is a matrix that contains 

the partial derivation of the network reluctances with respect to the loop fluxes. 

Derivation of RD is provided in [1]. 

The next step in the dynamic model development is to establish the state 

equations of the system that enable calculation of the flux linkages that are inputs in 

(4.30). The derivation of the state equations is divided into two parts, one for the rotor 

electrical system, and the second for the stator electrical system. 
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Figure 4.11: Damper winding circuit. 
 

To help describe the state equations for the rotor, the electrical connection circuit 

shown in Figure 4.11 is used. Within the circuit, ,dp kr  is the resistance of each damper 

bar, and ,e kr  is the resistance of the connection end between bars. From Ohm’s and 

Faraday’s laws, the damper winding currents are related to the flux linkage crossing each 

of two bars as follow, 

 dp dp dp=pλ T i    (4.37)   

where /p d dt= is the Heaviside operator for differentiation, and dpT  can be express as, 

 
,1 ,1 ,2 ,1 ,1

dp ,2 ,2 ,2 ,3 ,2

,1 ,3 ,3 ,3 ,3

dp e dp e e

e dp e dp e

dp e e dp e

r r r r r
r r r r r

r r r r r

 + − − −
 = + − −
 + + 

T    (4.38)   

where ,dp kr  is the resistance of each damper bar, and ,e kr  is the resistance of the 

connection end between bars. 

As for the stator electrical system, the stator winding voltage equations can be 

expressed in the arbitrary reference frame as, 

 qd0s qd0s qd0s qd0s

0 1 0
= - - -1 0 0

0 0 0
sp r ω

 
 
  

λ v i λ    (4.39)   

where the stator voltage qd0sv  can be either a user-defined input or calculated by an 

external circuit model Numerical integration is used to solve (4.37) and (4.39) for the 

3

e dp,k
k=1

1
i i

2
= ∑
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damper and stator winding flux linkages, given the stator winding voltages, stator 

winding currents, and damper bar currents. 

Based upon the calculations of electromagnetic torque and power losses presented 

in Section 2.3.3, the calculation of resistive loss is updated to incorporate the damper 

current loss with an expression as, 
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   (4.40)   

where ,dp kr  and ,dp ki  are the resistance and current of each damper bar, and ,e kr  and ,e ki are 

the resistance and current of the connection end between bars. 

4.4 Validation of Dynamic MEC Model 

4.4.1 Hardware environment 

Two stator and rotor geometries were created by Kohler Power System Co. for the 

validation of the dynamic MEC model. The two stators are identical with the exception 

that one is wound for single-phase and three-phase generation, respectively. The two 

rotors are identical with the exception that one has rotor poles (and damper bars) that are 

straight as one proceeds from the front to the back of the machine. The other has rotor 

poles and damper bars that are skewed. Skewing is a common method to reduce 

harmonics introduced by non-ideal magnetic fields. Using the two stators and rotors, four 

WRSMs can be assembled for test. Figure 4.12 shows the three-phase and single-phase 

stator, and the straight and skewed rotor. In the following sections, a 3-phase 10 kW 

WRSM with a straight rotor that is designed to operate at 1800 rpm was built for 

hardware validation. 
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A view of the cross-section of the stator and rotor laminations of the MEC model 

and hardware is shown in Figure 4.13. The geometry of the stator and rotor laminations, 

as well as the measured values of stator and field resistances are listed in Table 4.1. In the 

rotor geometry, there are 5 damper slots with unequal radii filled with copper. 

Dimensions and resistances of the damper bars and end connections are shown in Table 

4.2. It is noted that the temperature of the stator and rotor are measured by wireless 

temperature sensor so that the resistance values can be calculated at loaded condition. 

The BH curve of the steel material used in laminations is characterized using the 

fit equations developed in [61] and expressed as, 

(a) Three-phase stator (b) Straight rotor 

(c) Single-phase stator (d) Skewed rotor 
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where rµ , kα , kβ , and kγ  are the parameters with values listed in  

Table 4.3, and M is the magnetization. The parameters for core loss estimation using 
MSE is shown in Table 4.4. 
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Figure 4.13:Comparison of design cross-section to the stator and rotor laminations. 
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Table 4.1 
Wound-rotor synchronous machine parameters. 

 

Table 4.2 
Damper bar dimension and resistance. 

 
Table 4.3 

Parameters for calculating permeability for 50WW800. 
µr = 5349.922 (initial relative permeability), K = 4 

α = [0.12542   0.00019835   0.00019835   0.00019835] 1/T 

β = [13.14573    0.1971988   129.4606   8.358885] 1/T 
γ = [1.6445   0.01   1.4157   0.58577] T 

 

Table 4.4 
Parameters for core loss estimation using MSE for 50WW800. 

α 1.0529 β 1.5969 
ke 8.2813e-5 kh 0.3314 

 

rsh: 44.4 mm drc: 15.3 mm g: 1.21 mm l: 11.1 cm 
dstt: 1.02 mm dst: 17.3 mm wstt:13.8 mm wst: 8.4 mm 
wss: 2.5 mm db: 22.97 mm hrto: 52.1 mm hrtt: 6.9 mm 
wrp: 4.81cm wrt: 8.99 cm drp: 54.76 mm rro:18.45 cm 
Nph: 3 Pp: 2 αdp: 0.08 
Number of stator teeth: 36 Field winding turns per pole: 214 
Stator turns (Ns): 14 Stator winding connection: series 

a-phase winding distribution: [ ]0 0 0s s s s s sN N N N N N  

Stator resistance rs: 0.748 ohm (25 °C) / 0.852  ohm (58.5 °C) 
Field resistance r fd: 3.046 ohm (25 °C) / 3.627  ohm (72.2 °C) 

Number of  rotor tip dampers: 5 Number of  rotor shank dampers: 2 
Radius of damper bars on rotor tip (rdt):  rdt1 - 3.4mm ,  rdt2 - 2.4mm 
Radius of damper bars on rotor shank (rds): 3.3mm 
Damper winding vector: [ ]2 1 1 1 20 0 0 0 0 0dt dt dt dt dtr r r r r  

Damper bar body resistance (rdp):   

[ ]0.184 0.091 0.091 0.091 0.184mohm (25 °C)  / 

[ ]0.219 0.108 0.108 0.108 0.219mohm (72.2 °C) 

Damper bar end connection resistance (re):  

[ ]0.133 0.100 0.100 0.133 0.871mohm (25 °C)  / 

[ ]0.158 0.119 0.119 0.158 1.037mohm (72.2 °C) 
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4.4.2 Open circuit voltage 

For validation a series of experiments was performed. In the first, the machine 

was operated under open-circuit conditions at rated speed. The instantaneous and RMS 

value of the line-line voltage was then obtained for a range of field currents from 0 to 

10.2 A. The RMS values of line-to-line voltage are compared in Figure 4.14. The largest 

difference between the predicted and measured values is approximately 5.0%. Plots of the 

line-line voltage for three of the field currents are shown in Figure 4.15. Therein it can be 

seen that there are significant slot harmonics in both measured and MEC waveforms. 

This is due to the fact that neither the stator slots nor the rotor poles are skewed.  

 

 

Figure 4.14: Comparison of RMS values of open circuit line-to-line voltage. 
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Figure 4.15: Comparison of MEC (left) and hardware (right) open circuit line-to-line 
voltage waveforms. 

 
 

4.4.3 Excitation scheme generation 

In practice, commercial alternators typically operate a at fixed power factor and 

line-to-line voltage. Field excitation is adjusted to change power level. The proposed 

MEC model provides the ability to determine the stator and field excitations for a given 

output power, power factor, and line-to-line voltage. Values for the MEC under 
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alternative loading were obtained as part of an optimization in which the objective is 

expressed as, 

                                  Minimize      
_ _ _2 2 2

* * *
( ) ( ) ( )error error errorV P pf

V P pf
+ +  (4.44) 

where *V , *P , and 
*pf  are commanded values for line-to-line voltage, output power, 

and power factor, respectively. _errorV , _errorP , and _errorpf  are the difference between 

calculated and commanded values. The output power, reactive power and power factor in 

the MEC model are calculated using, 

 
3

( )
2

r r r r
out qs qs ds dsP v i v i= +  (4.45) 

 
3

( )
2

r r r r
out qs ds ds qsQ v i v i= −  (4.46) 

 
2 2

( ) out
out

out out

P
pf sign Q

P Q
=

+
 (4.47) 

where ( )outsign Q  is the sign of reactive power. A negative value represents leading power 

factor and vice versa. The MEC model is run under steady-state mode, with RMS value 

of stator current, stator current phase angle and field current set as genes. Using a 

population of 100 and a generation of 25, the optimization for each operation point takes 

about 3 minutes.  The rotor speed was set 1800 rpm, the power factor to -0.8, and the 

RMS value of line-to-line voltage to 480 V. The results obtained by MEC model is 

compared with those from measurement in Table 4.5.  

From Table 4.5, the RMS value of stator phase current has a very strong relation 

between the MEC model and measured values. The error in the field current increases as 

the load increases, although is remains at a reasonable level. One reason to explain this 

could be the material is not precisely characterized, particularly in saturation as shown in 

the open circuit test in Figure 4.14. Another reason could be that the damper winding 

currents are deactivated in the steady state analysis, which in fact changes the rotor 

equivalent circuit. 

 



83 
 

 

Table 4.5 
Stator and field excitation estimations. 

Output 
Power 
(kW) 

Field current  RMS values of stator phase current 
Measured 

(A) 
MEC  
(A) 

Error  
(%) 

Measured 
(A) 

MEC  
(A) 

Error  
(%) 

10.103 11.6 10.69 7.84 15.2 15.19 0.07 
8.6446 10.4 9.67 7.02 13.0 13.0 0.00 
6.5613 8.7 8.28 4.83 9.8 9.87 0.71 
4.7491 7.5 7.13 4.93 7.1 7.14 0.56 
2.2018 5.7 5.63 1.23 3.3 3.31 0.30 

 

4.4.4 Balanced three-phase load test 

In a third validation, the WRSM was operated at rated speed and stator windings 

connected to Y-connected balanced three-phase parallel RL (resistance and inductance) 

loads that have 0.8 lagging power factor. For each load, the RMS value of the line-to-line 

voltage was regulated to 480 V by adjusting the field current applied. The measured 

values of RMS stator currents, average input torque, and output power were measured 

and are compared to those predicted by the MEC Model in Table 4.6-Table 4.8, 

respectively. 

It is important to note that within the MEC model the electromagnetic torque is 

calculated, not the input torque. In addition, the core loss is not within the dynamic 

model, but rather it is obtained as part of post-processing calculations. Thus, input torque 

from the MEC model was estimated using, 

 _
e rm mech core

in avg
rm

T P P
T

ω
ω

+ +=  (4.48) 

where the electromagnetic torque eT  is defined as positive in generation mode here, coreP  

is the core loss, rmω  is the mechanical rotor speed,  303WmechP = is the rotational loss that 

was measured experimentally at no load conditions. The output power is calculated using, 

 out e rm resP T Pω= −  (4.49) 

where the calculation of Pres is shown in (4.40). In practice, the brushes attached to the 

rotor slip ring increase the field resistance by 1 Ω. 
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Table 4.6 
Comparison of RMS values of phase current. 

Field 
Current (A) 

 
Load 

RMS values of phase current 
Measured 

(A) 
MEC 
 (A) 

Error 
(%) 

6.2 77.16 (Ω)  
0.2729 (H) 

4.5 4.8 6.25 

7.6 45.44 (Ω)  
0.1607 (H) 

7.6 8.0 5.00 

9.6 30.35 (Ω)  
0.1073 (H) 

11.4 12.0 5.00 

11.6 22.81 (Ω)  
0.0807 (H) 

15.2 15.9 4.40 

 

Table 4.7 
Comparison of average input torque. 

Field 
Current (A) 

 
Load 

Average input torque 
Measured 

(Nm) 
MEC 
 (Nm) 

Error 
(%) 

6.2 77.16 (Ω)  
0.2729 (H) 

19.98 21.01 4.90 

7.6 45.44 (Ω)  
0.1607 (H) 

32.26 33.81 4.58 

9.6 30.35 (Ω)  
0.1073 (H) 

47.78 49.95 4.34 

11.6 22.81 (Ω)  
0.0807 (H) 

64.16 66.11 2.95 

 
Table 4.8 

Comparison of output power. 
Field 

Current (A) 
 

Load 
Output power 

Measured 
(kW) 

MEC 
 (kW) 

Error 
(%) 

6.2 77.16 (Ω)  
0.2729 (H) 

3.1775 2.9858 6.03 

7.6 45.44 (Ω)  
0.1607 (H) 

5.3641 5.0707 5.47 

9.6 30.35 (Ω)  
0.1073 (H) 

7.9783 7.5915 4.85 

11.6 22.81 (Ω)  
0.0807 (H) 

10.4445 10.1030 3.27 
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Table 4.9 
Comparison of power loss. 

 
Load 

  

MEC Test 
Ps+f 
(W) 

Pcore 
(W) 

Pdp 
(W) 

Pcore+dp 
(W) 

Ps+f 
(W) 

Pcore+dp 
(W) 

1 235.5 232.3 12.5 244.7 229.5 247.9 
2 431.2 241.8 32.9 274.7 414.5 292.8 
3 793.2 254.2 86.4 340.6 757.6 354.4 
4 1267.4 265.3 181.9 447.2 1211.2 477.0 

 

From the results in Table 4.6-Table 4.8, there is a strong correlation between the 

model and hardware results. The error is approximately 6% at low load, and 3% at full 

load. A study of the power loss components is shown in Table 4.9, in which Ps+f is the 

resistive loss in the stator and field windings, Pcore is the core loss, and Pdp is the damper 

loss. The difference between the measured and predicted Ps+f values causes by the 

difference of stator currents. The measured Pcore+dp is calculated by subtracting Ps+f and 

Pmech from the total power loss. One might see that the predicted Pcore+dp values are 

slightly lower than the measured values. This is due to the fact that in practice the field 

winding is sourced by the stator winding through an exciter, which is not modeled in the 

MEC. 

In addition, The line-to-line voltage waveforms at rated output power (10 kW) are 

compared between MEC and hardware in Figure 4.16. The error of RMS values of phase 

current and voltage is approximately 5%. 
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Figure 4.16: Comparison of line-to-line voltage waveforms at rated power (10 kW). 
 

4.4.5 Stand still frequency response 

As a final experiment, a standstill frequency response test [62] was applied to 

obtain qd-axis operational impedances. This test was motivated by the fact that in many 

cases, the subtransient inductances are used in design specifications. In addition, the 

switching behavior of the diodes in machine-rectifier systems is a function of the 

subtransient inductances [24], [25]. The SSFR circuit configuration and test procedure 

have been described in details in IEEE Std. 115. An SSFR similar to the standard has 

been executed to date. The circuit configuration used for the test is shown in Figure 4.17, 

where b and c phase stator windings are parallel-connected, and the field winding is short 

circuited. A function generator was connected to a power amplifier which was used to 

provide ac voltage in a range of frequencies from 0.1 to 1 k Hz. 
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Figure 4.17: Measurement of q- and d- axis operational impedance. 
 

The test procedure for d-axis operational reactance measurement can be divided 

into two steps. First, the rotor is positioned atr  90θ = ° . The rotor angle was determined 

by setting the source voltage to a frequency of 100Hz, and rotating the rotor until the 

induced field voltage becomes a maximum value. At this point, the magnetic axis of field 

winding is aligned and ready to be used for d-axis test. Second, after applying a variable-

frequency source voltage, inv  and ini  signals are measured so that d-axis impedance can 

be calculated as 

 
( )2

( )
3 ( )

in
d

in

v s
Z s

i s
=  (4.50) 

And the d-axis operational reactance can be calculated using 

 
( ( ) )

( ) b d s
d

Z s r
X s

s

ω −=  (4.51) 

where bω  is the base radian frequency, and s jω= . Finally, the rotor is tuned at a 

position such that the induced field voltage achieves its null and a q-axis impedance 

measured. 

Prior to describing the results, it is noted that in the physical construction, 

connections between damper end bars is made through copper plates that are connected 

to each end of the rotor. In constructing the machine with these plates, an additional 

conductive path is created through the rotor shaft, which was not modeled. 

The magnitude of the operational impedance between hardware and the MEC is 

shown in Figure 4.18. The high-frequency asymptote of the operational impedances 
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corresponds to subtransient impedances. The low-frequency asymptotes correspond to 

magnetizing impedances. Comparing results from the MEC model with measurement, the 

d-axis data matches very well. However, a discrepancy does exist in the q-axis. At low 

frequencies (below 0.4 Hz), the measured and predicted values match closely. 

At mid frequencies (between 0.4 Hz and 20 Hz), the experimental data begins to 

deviate. This is attributed to the additional conduction path that exists between the copper 

plates and the rotor shaft. These components provide a path for q-axis current which is 

not modeled in the MEC. To confirm this conjecture, a 2D FEA model was created and 

used to obtain q-axis (and d-axis) operational impedances. Within the FEA model, eddy 

currents were not represented, which is consistent with the MEC model. Comparing the 

FEA and MEC curves, the match is very strong through the mid frequency range. 

At higher frequencies (above 100 Hz), a slight difference exists between the FEA 

and MEC impedances. This is likely caused by some error in modeling the rotor pole tip 

leakage flux paths, since the operational impedance is dominated by leakage impedance 

at high frequency. It is also noted that at the measured q-axis impedance drops more 

significantly than both the FEA and MEC-based curves. This is mainly attributed to the 

eddy currents in the shaft/copper plates. Other factors such as the variation of resistance 

due to skin effect could also lead to some difference among the three traces. 

As shown in the Section 4.1.3, the reluctance of the rotor pole tip leakage is a 

function of the depth of the damper bars. Therefore, in order to study the influence that 

damper bar placement has on the operational impedances, two additional machines were 

modeled in MEC and FEA. In these two machines, the geometries of the hardware-based 

machine were used. However, the depth of bars was adjusted by modifying the scaling 

factor αdp. In the first case, the bars were positioned relatively deep into the rotor tips by 

setting αdp=0.5, which provides for a leakage flux paths with relatively small reluctance. 

In the second case, the bars were placed at the top of the rotor tips very close to the airgap 

by setting αdp=0.0001, which nearly eliminates the leakage flux path around the damper 

bars. The frequency responses obtained are provided in Figure 4.19 and Figure 4.20. In 

Figure 4.19, one observes that the MEC and FEA models match very well. One can note 

that under this design, the q-axis impedance is nearly constant. This is attributed to the 
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fact that the damper leakage inductances are relatively large. In Figure 4.20, there is a 

small difference in the high frequency asymptotes in the q-axis curves. This is attributed 

to the fact that the damper slot leakage between the poles is not represented within the 

MEC model, and thus the leakage inductance is under estimated.  The study in Figure 

4.20 is then repeated with damper bar connections are only made on a single pole in order 

to eliminate the leakage path between poles. The result is shown in Fig. 15 and indicates 

a strong match between the two models. 

 

 

Figure 4.18: Standstill frequency response test with αdp=0.08. 
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Figure 4.19: Standstill frequency response test with αdp=0.5. 
 

 

Figure 4.20: Standstill frequency response test with αdp=0.0001. 
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Figure 4.21: Standstill frequency response test with αdp=0.0001, with damper bar 

connections are only made on a single pole. 
 

 

It is also important to note that the precision in capturing leakage flux behavior and 

calculating the flux crossing the damper bar paths for the MEC and FEA is different. 

Specifically, within the FEA model, the flux densities are vector quantities and thus the 

normal component of the flux crossing the damper path is readily modeled. However, 

flux densities in the MEC model are represented as scalars. Therefore, a difference 

between FEA and MEC results is certainly expected. 
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5.  IMPLEMENTATION OF SKEWING 

5.1 Literature Review of Skewing 

The electromagnetic torque in synchronous machines include three main 

components: 1) torque produced by the interaction of poles resulting from the stator 

currents and the rotor field; 2) reluctance torque, which is generated by the interaction of 

the poles produced by the stator winding attempting to align with a minimum reluctance 

path; and 3) cogging torque, which is created by the interaction of poles produced by the 

rotor field and the attempting to align with stator teeth. Often, to minimize acoustic noise 

and vibration there is a need to minimize cogging torque.  

Stacking the stator teeth or rotor poles with a slight offset down the axial length, 

which is often referred to as skewing, tends to reduce cogging torque and also eliminate 

stator-slot-induced harmonics in current and voltage waveforms [63]-[65]. Approaches to 

model skewing in electric machine models generally fall into one of five categories. 

Within lumped-parameter models, a conventional approach is to apply analytically-

derived skew factors to represent its impact on airgap flux density harmonics, which is 

then used to calculate skew-based induced voltages and machine parameters [60], [66]. In 

a second path, an analytical model that describes flux density and airgap permeance with 

axial variation was proposed in [67], [68]. Within the model, input data from a finite 

number of magnetostatic FEA solutions is used to predict the flux density that includes 

slot harmonics and saturation. In a third method which is focused on MEC models, V. 

Ostovic introduced a ‘3D’ calculation of airgap permeances that is based upon the 

overlap of a stator and rotor tooth sections with axial variation included [69]. In general, 

this requires sophisticated logic, and hence is impractical in generalized machine design 

problems. A fourth approach is to create separate 2D models with appropriate shifts of 

the rotor relative to the stator teeth [70]. The energy values obtained from each model are 

averaged and used to calculate electromagnetic torque. Similarly, flux linkage values are 
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averaged and used to calculate open-circuit voltage. Although straightforward to 

implement, it has been shown in [71] that using this process leads to inaccuracies in 

machines that have short-circuited rotor cages. This inaccuracy results from the 

neglecting of the coupling of the flux linkage and induced cage currents. 

The fifth approach, which has been used in FEA [71]-[74], is referred to as a multi-

slice method. Within a multi-slice model, the machine is separated into a finite number of 

cross-sections along axial direction. Within each of the finite sections, a shift is 

introduced between the stator teeth and rotor poles.  Each of the slices is then modeled in 

two-dimensions with a constraint that the axial currents are the same. Therefore, within 

the model, flux and currents of the respective slices are not averaged, but are all solved 

within a unified system matrix. Herein, this approach is extended to both the steady-state 

and dynamic MEC models. 

5.2 Multi-slices MEC Model 

 

Figure 5.1: Basic structure of the dynamic model shown in contrast with the KVL model. 
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To establish the multi-slice method, the block diagram of the steady state and 

dynamic MEC models shown in Figure 4.10 is useful and is included here as Figure 5.1 

for convenience. Applying the multi-slice technique to the steady state MEC model is 

relatively straightforward due to the fact that currents are set as inputs to the model so 

that the constraint that each of the slices shares the same axial currents is automatically 

satisfied. The steady state MEC system equations are shown in Figure 5.1 as, 

 
R l =A φ Ni  (5.1) 

Here we consider n slices of equal axial length. The step angle, which is used to 

provide the offset between the stator teeth and pole sections within each slice, can be 

expressed as, 

 
( 1)

skew

n

θα =
−

 (5.2) 

where skewθ  is the complete skew angle down the axial length of the machine. If the rotor 

position for the first slice is 1θ , then the kth slice has a rotor position that is expressed as, 

 
1 ( 1),    1,...,k k k nθ θ α= + − =  (5.3) 

Applying kθ  to the algorithm to determine the reluctance and turns matrices, the 

system equations (5.1) for the kth slice can be written as, 

 
R,k l,k k=A φ N i  (5.4) 

By combining and manipulating all of the slice models, the overall multi-slice 

system equations can be expressed in matrix form as, 

 
( ) ( 1) ( 4)
R,1 l,1 1

(4 1)

( ) ( 1) ( 4)
R,n l,n n

nl nl nl nl

nl nl nl nl

× × ×

×

× × ×

     
     =
     

    

A 0 φ N
i

0 A φ N
⋱ ⋮ ⋮  (5.5) 

As can be seen from (5.5), the inputs for the multi-slice system equations are stator 

and field currents (i ), and the unknowns are the loop fluxes (lφ ) for each individual slice.  

A Newton-Raphson method is used to solve the multi-slice system of equations. 

The derivation of the Jacobian matrix for the single slice dynamic system has been 

presented in [1]. The same technique is applied to the system equation in (5.4), and thus 

the Jacobian matrix for the kth slices is expressed as, 
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k R,k R,k= +J A D  (5.6) 

By combining and manipulating all of the slice Jacobian matrices, the overall 

multi-slice Jacobian matrix for (5.5) can be expressed as, 

 
R,1

tot R,tot

R,n

= +
 
 
 
 

D 0
J A

0 D
⋱  (5.7) 

where R,totA  is the system matrix in (5.5). The calculation of electromagnetic torque can 

be expressed as, 

 ( )
22

agj,k agj,k
e r

1 1 agj,k r

,
2

n na

k j

PP
T

P

φ
φ θ

θ= =

   ∂  =       ∂    
∑ ∑  (5.8) 

In the steady-state MEC model, stator phase voltage is calculated as a post-process 

of the flux linkage, which is calculated as the product of phase winding function and flux. 

When the multi-slice model is applied, the phase flux in the calculation is substituted by 

the sum of each separate slice. 

As for the dynamic MEC model, the currents are no longer the inputs. Therefore, 

one of the challenges to implement the multi-slice technique to the dynamic MEC model 

is that the same currents should be solved for each separate slice. The dynamic MEC 

system equations are shown in Figure 5.1 as, 

 l,fdR 1 fdl

2
=

/P
     
           

N 0A W Iφ
W 0 i λ0 I

 (5.9) 

Similar to the steady-state MEC model, applying kθ  to the algorithm to determine 

the reluctance and turns matrices, the system equations (5.9) for the kth slice can be 

written as, 

 R,k 1,k l,k l,fd fd

2,k k
=

/P
       
            

A W φ N 0 I
W 0 λi 0 I

 (5.10) 

Since the total flux linkage (λ ) is the sum of the flux linkage for each separate 

slices ( kλ ), therefore 

 
2,k l,k

1

/
n

k

P
=

=∑W φ Iλ  (5.11) 
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By combining and manipulating (5.10) and (5.11), the overall multi-slice system of 

equations can be expressed in matrix form as, 

 

( ) ( (2 )) ( 1)
R,1 1,1 l,1

( ) ( (2 )) ( 1)
R,1 1,n l,n

((2 ) ) ((2 ) ) ((2 ) 1)
2,1 2,n

( 1)
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((2 ) (2 ))
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+ × +
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⋯

⋱
fd

fd
((2 ) 1)nd+ ×

 
  
  
  
 

I

I
λ

⋮

 

(5.12)

 

As can be seen from (5.12), the inputs for the multi-slice system of equations are 

field current ( fdI ) for each separate slices and the flux linkage (λ ) of the phases and the 

damper bars, which can be calculated by the same state equation and numerical 

integration as shown in Figure 5.1. The unknowns are the loop fluxes ( l,kφ ) for each 

separate slice and the currents (i ) of the phases and the damper bars. The currents (i ) in 

the unknown vector satisfy the constraint that all slices share the same axial currents. 

A Newton-Raphson method is used to solve the multi-slice system of equations for 

the loop fluxes and currents. The derivation of the Jacobian matrix for the single slice 

dynamic system has been presented in Chapter 4. The same technique can be applied to 

the system equation in (5.12), and thus the Jacobian matrix for the kth slices is expressed 

as, 

 R,k
dyn,k dyn,k= +  

  

D 0J A
0 0

 (5.13) 

By combining and manipulating all of the slice Jacobian matrices, the overall 

multi-slice Jacobian matrix for (5.12) can be expressed as, 

 
R,1

dyn,tot dyn,tot
R,n

= +

 
 
 
 
 

D 0
0J A 0 D

0 0

⋱  (5.14) 

where dyn,totA  is the system matrix in (5.12).  
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5.3 Simulation Results 

5.3.1 Open circuit voltage 

For validation, the multi-slice MEC model is configured with a slice number of five 

and a skew degree of one stator slot. The skewed and non-skewed open circuit voltage 

waveforms are obtained for the machine described in Chapter 4, at a field excitation Ifd = 

7 A, as shown in Figure 5.2. The open circuit voltage waveforms for each of the slices in 

the multi-slices model are shown in Figure 5.3. One can see in Figure 5.3 that the 

waveforms are shifted evenly by 
4
skewθ

. The harmonics spectrum of the open circuit 

voltage waveforms in Figure 5.2 is shown in Figure 5.4. One can see that the skewing 

reduces the (6k+1)th and (6k-1)th harmonics, where k = 1, 2, … . The results match 

analytical prediction [60] that the skew influence on the hth harmonic of open-circuit 

voltage can be modeled as, 

 
sin( )

2

2

skew

skew
skew

h

k
h

θ

θ=  (5.15) 

The comparison of skew factors calculated based upon (5.15) and Figure 5.3 is shown in 

Table 5.1. From Table 5.1 one can see that the harmonic components are significantly 

reduced. The differences in the higher slot-induced harmonics is attributed to saturation, 

numerical error, and approximations of flux behavior around slots used in both analytical 

and MEC derivations. 

 



98 
 

 

 

Figure 5.2: Comparison of the skewed and non-skewed open circuit voltage waveforms. 
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Figure 5.3: Open circuit voltage for each slice. 
 

 

Figure 5.4: Harmonics spectrum of the open circuit voltage waveforms. 
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Table 5.1 
 Comparison of skew factors calculated by analytical and MEC models. 

Order of 
Harmonics 

Analytical MEC Error 

1 0.9949 0.9946 0.1% 
5 0.8778 0.8393 5.4% 
7 0.7691 0.8557 11.3% 
11 0.4895 0.5812 18.7% 
13 0.3376 0.3481 3.1% 
17 0.0585 0.0783 33.8% 
19 0.0524 0.0994 89.7% 

 

5.3.2 Balanced three-phase load test 

As a second validation, it is assumed that the WRSM is connected to 3-phase 

balanced resistive load, providing output power of 7 kW. The load resistance is 40 Ω, and 

the field excitation is set to 7 A. Comparisons of the skewed and non-skewed waveforms, 

including phase current, phase voltage, and electromagnetic torque, are shown in Figure 

5.5-Figure 5.7. As expected, the waveforms predicted by the multi-slice model have 

much lower harmonic content. 
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Figure 5.5: Comparison of skewed and non-skewed phase voltage. 
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Figure 5.6: Comparison of skewed and non-skewed phase current. 

 

 
Figure 5.7: Comparison of skewed and non-skewed electromagnetic torque. 
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6.  OPTIMAL DESIGN OF WRSM/RECTIFIER SYSTEMS 

6.1 Design Overview 

In this chapter, a goal was to apply the model developed in Chapter 4 to 

demonstrate its use in machine design. Toward this goal, the design of electric machines 

for a 25 MW, 3600 rpm dc power generation system is considered. As shown in Figure 

6.1, the generation system consists of a prime mover, e.g. the turbine of the vessel. The 

output shaft of the turbine is connected to an electric machine that sources power 

electronic converters used to supply dc power. Designs were explored for connection of 

the WRSM to power electronic converters that enable the control of winding current. 

Such converters are herein referred to as active rectifiers. In addition, designs were 

explored for connection of the WRSM to diode-based converters, which are herein 

referred to as passive rectifiers.  The passive rectifier designs are also applicable to 

architectures in which thyristors are used in place of diodes for fault protection. 

 

 

Figure 6.1: 25 MW generation system. 
 

A question of particular interest in formulating the design studies was whether 

passive rectifiers can be applied in such high power applications. Passive rectifiers have 

the desirable property that they do not require a rotor position sensor to establish the 

converter switching and do not require gate-drive circuitry. Thus, they are simpler to 

control/maintain and have a higher reliability. However, it is generally believed that the 
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harmonics associated with diode rectifiers lead to electric machines that are too large for 

practical consideration, particularly at high power levels. To consider whether this is 

indeed the case, multi-objective optimizations were performed. Within each optimization, 

the performance metrics were machine mass and machine/rectifier loss. A Pareto optimal 

front, which represents the tradeoff between mass and loss (including resistive loss, core 

loss in the stator, and conduction loss), was obtained for machine/active rectifier and 

machine/passive rectifier systems.  

For the design of all machines considered herein, it was assumed that the dc bus 

voltage is 5 kV, the output power required is 25 MW, the prime mover operates at a fixed 

speed of 3600 rpm, and all winding current densities are less than 10 A/mm�. Although a 

thermal analysis was not performed, the current density limit is within reason, provided 

that the machines are liquid cooled.  The maximum packing factor of the stator slots was 

assumed to be 0.5 and that of the rotor 0.6. The on-state voltage drop of IGBTs was 

assumed to be 6 V. The drop of the diodes (thyristors) was taken to be 4 V. These were 

based upon values obtained from datasheets of high power switching devices. The multi-

objective optimization of each topology was carried out using GOSET 2.4 [51]. 

The core of the WRSM/rectifier system design study is the dynamic MEC model 

for WRSMs proposed in Chapter 4. The example cross-sectional WRSM geometry and 

representative MEC network are shown in Figure 6.2 and Figure 6.3, respectively. In 

Figure 6.2, the rotor of the machine consists of the shaft with radius rsh, the rotor core 

which conducts flux circumferentially around the machine with depth drc, and the rotor 

teeth with depth drp and outer radius rro. The rotor teeth consist of a tooth shank 

connected to the rotor core with width wrp and a tooth tip with width wrt. The rotor 

damper bar has a radius rds on the rotor shank and a radius rdt on the rotor tip. The 

number of rotor teeth is equivalent to the number of poles. The airgap has a uniform 

depth between stator and rotor teeth of g. The stator of the machine consists of the stator 

teeth with depth dst and inner radius rsi, the stator slots with a width of wss at the airgap, 

and the stator back iron of depth db and outer radius rso. The stator can have any integer 

number of slots per pole per phase. The length of the active part of the machine is 

denoted l.  
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Figure 6.2: Example WRSM geometry/configuration. 
 

 

Figure 6.3: Representative WRSM MEC. 
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6.2 Design of WRSM/Active Rectifier Systems 

The first system was structured as a wound-rotor synchronous machine connected 

to an active rectifier as shown in Figure 6.4. In this system, it was assumed that the phase 

currents ias, ibs, and ics are regulated to be sinusoidal waveforms, and the field current Ifd is 

also regulated to be an ideal current source.  

 

 

Figure 6.4: WRSM/active rectifier system. 
 

The MEC model is structured as a current input voltage output, steady-state model, 

in which damper bars are not included. The design space variables for the studies relating 

to the WRSM/active rectifier are given by, 

 
[ rc rt st bs ss rt rt

T

rp s s fd fd p

d l d g d d fw fh fw

fw N I N I P ftipw ftiphβ

=



θ ⋯
 (6.1) 

Within (6.1), the first six variables relate to the machine geometry, and they were 

defined earlier when discussing Figure 6.2. Genes number 7, 8, 9, 10, 17, and 18 are 

scaling factors between 0 and 1 that are used to establish machine geometry based upon 

calculations. For instance, with the stator tooth height known, ftiph defines the height of 

the stator tooth tip as a fraction of the total height of the stator tooth. The gene Ns 

represents the number of turns in the phase windings function. It is noted that the stator 

winding has a slots/pole/phase number of 2 and the a-phase winding function is 

expressed as [ ]0 0 0 0s sN N . With appropriate phase shift, the b- and c-phase 
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winding function can be achieved. The variable Is defines the rms phase current, and β 

defines the phase angle of the stator currents. Thus the phase currents are expressed as, 

 
( )

( )
( )

ras

bs s r

cs r

cos
2 cos 2 / 3

cos 2 / 3

i
i I
i

θ β
θ β π
θ β π

+  
   = + −
   + +   

 (6.2) 

The variable Pp denotes the number of pole pairs. The choice of material can be 

readily included in the design space; however, M19 was selected as the stator and rotor 

lamination and copper was used for the stator and field windings in this study. The 

properties of these materials are defined in [61].  

6.3 Design of WRSM/Passive Rectifier Systems 

The second system considered was a wound-rotor synchronous machine interfaced 

to the dc bus with a passive rectifier as shown in Figure 6.5. The influence of damper 

bars is of interest in passive rectifier systems because the system behavior is based upon 

subtransient dynamics of the machine [24], [25]. More specifically, the regulation 

characteristic of the output voltage is dependent on the subtransient reactances. Arguably, 

a lower value of these reactance could yield an increase in current (power) for a given dc 

voltage. However, adjusting subtransient reactance requires one to introduce damper 

bars. The current in the damper bars produces additional resistive losses, which likely 

impacts the loss for a given generator size. Therefore, the sizing, number, and true benefit 

of the bars were largely unknown prior to this study.  

The MEC model is structured as a voltage input current output, dynamic model, in 

which damper current dynamics are included. By coupling with the passive rectifier 

model, the phase voltage can be calculated using the phase currents through the following 

steps. First, the phase currents (iabcs or iqd0s) can be transformed to the rectifier line 

currents (iabcl). For a machine with wye-connection, the rectifier line currents are equal to 

the negative of the phase currents based on the assumption that phase currents flow 

outside to the machine in generator mode. For a machine with delta-connection, the line 

currents are calculated as 

 ( ) 1

abcl s qd0s

1 0 1
1 1 0
0 1 1

−− 
 = −
 − 

i K i  (6.3) 



 

Figure 
 

Next, the rectifier voltage (

(iabcl), using the relationship shown in 

current is above ε, the rectifier voltage logarithmically appro

Vdrop, according to the current direction.

current magnitude is below

voltage drop.  

Using the above logic, the

to calculate the phase voltage in

 

for a machine with wye-connection 

 

for a machine with delta-connection

 

Figure 6.5: WRSM/passive rectifier system. 

Next, the rectifier voltage (vabcg) can be calculated by the rectifier line

), using the relationship shown in Figure 6.6. When the magnitude of the rectifier line 

, the rectifier voltage logarithmically approaches either 

the current direction. Otherwise, a linear relationship is used when the

below ε. It is noted that ε has a value of 0.005 and 

Using the above logic, the rectifier voltages can be determined and

to calculate the phase voltage in the arbitrary reference frame as, 

qds s abcg
1 0 0
0 1 0
 =
  

v K v  

connection and, 

qd0s s abcg

1 3 / 3 0
3

3 / 3 1 0
2 0 0 0

 
 = − 
  

v K v  

connection. 
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) can be calculated by the rectifier line current 

of the rectifier line 

aches either vdc + Vdrop or –

Otherwise, a linear relationship is used when the 

has a value of 0.005 and Vdrop is the diode 

rectifier voltages can be determined and finally be used 

(6.4) 

(6.5) 
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Figure 6.6: Relationship between the rectifier voltage and rectifier line current. 

 
The design space variables for the studies relating to the WRSM/active rectifier 

are given by, 

 
[ rc rt st bs ss rt rt

T

rp s fd fd p dt num con

d l d g d d fw fh fw

fw N N I P ftipw ftiph r d d

=



θ ⋯
 (6.6) 

where the variables related to the phase currents have been removed and the radius dtr ,  

number dnum, and connection type (pole or pole-pole) dcon, of the damper bars have 

been included. All design assumptions and constraints of active rectifier design also 

apply with one exception. The constraint on the calculated dc bus voltage is no longer 

needed since the output bus voltage is pre-defined. 

6.4 Results and Discussion 

Design optimizations for both of the system topologies have been studied using the 

GOSET tool box, with a population number of 800 and a generation number of 600. An 

estimation of the elapsed time for the optimizations process of the WRSM/active rectifier 

system is approximately 10 hours, while it takes about 250 hours for the WRSM/passive 

rectifier system. The design optimization was performed several times to ensure 

convergence and repeatability of the design process. The final Pareto front obtained for 

the passive rectifier design is shown in Figure 6.7. 

 

vag

vdc/2

v  + Vdc drop
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Figure 6.7: Pareto fronts of alternative WRSM/rectifier topologies. 
 

Comparing the pareto fronts of alternative WRSM/rectifier topologies in Figure 

6.7, a surprising result is that for a given system loss, the mass of a passive rectifier 

machine is less than that of an active rectifier machine. This is partly due to the fact that 

the on-state voltage drop of the power diodes are less than those of IGBTs. In addition, 

through the evolutionary optimization process, the core and winding geometry of the 

passive rectifier machines are different than those of the active rectifier machines. This 

difference effectively compensates for the difference in harmonic content of the stator 

current that results from diode rectification. In order to observe differences in 

geometry/configuration of the alternative WRSM/rectifier systems, the comparison of 

genes in the design studies are shown in Figure 6.8 and Figure 6.9. 
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Figure 6.8: Comparison of genes of alternative WRSM/rectifier systems (a). 

 

 

Figure 6.9: Comparison of genes of alternative WRSM/rectifier systems (b). 

0 100 200
0

0.2

0.4

0.6

0.8

D
R

C
 (

m
)

0 100 200
0.5

1

1.5

2

2.5

G
LS

 (
m

)

0 100 200
0.2

0.3

0.4

0.5

0.6

0.7

H
R

T
 (

m
)

0 100 200
0.02

0.03

0.04

0.05

0.06

G
 (

m
)

0 100 200
0.05

0.06

0.07

0.08

0.09

0.1

H
S

T
 (

m
)

0 100 200
0

0.2

0.4

0.6

0.8

D
B

S
 (

m
)

0 100 200
2

2.5

3

3.5

4

P
p

 

 
Active
Passive

0 100 200
2

2.5

3

3.5

4

N
s

0 100 200
100

200

300

400

N
fld

0 100 200
0.1

0.2

0.3

0.4

0.5

0.6

fW
S

S

0 100 200
0.05

0.1

0.15

0.2

0.25

0.3
fH

R
T

0 100 200
0.4

0.5

0.6

0.7

0.8

fW
R

T

0 100 200
0.2

0.3

0.4

0.5

0.6

0.7

fW
R

P

0 100 200
0.1

0.15

0.2

0.25

0.3

0.35

fT
IP

W

0 100 200
0.05

0.1

0.15

0.2

0.25

0.3

fT
IP

H

 

 

Active
Passive



112 
 

 

From Figure 6.8 and Figure 6.9 one can see that the WRSM/active rectifier design 

has larger height of rotor teeth (HRT), airgap length (G), and pole pair (Pp). On the other 

hand, the WRSM/passive rectifier design has larger stack length (GLS), stator turns (Ns) 

and field turns (Nfld). Of note is that all machines on the front have zero damper bars. 

Thus, a conclusion is that there appears to be no advantage, in either mass or loss, to 

utilize damper bars in the system topologies considered. In addition, since the pole pair 

(Pp) number is 3 or 4 for the WRSM/active rectifier design, and is 2 or 3 for the 

WRSM/passive rectifier design, thus four example machine designs with different pole 

pair number are shown in Figure 6.10 - Figure 6.13 for comparison. 

 

 

Figure 6.10: Example design of an 8-pole WRSM connected to active rectifier. 
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Figure 6.11: Example design of a 6-pole WRSM connected to active rectifier. 

 

 
Figure 6.12: Example design of a 6-pole WRSM connected to passive rectifier. 
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Figure 6.13: Example design of a 4-pole WRSM connected to passive rectifier. 
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7.  CONCLUSION AND FUTURE WORK 

7.1 Conclusion 

The key contributions of this research are twofold. First has been the result of the 

study of optimized excitation strategies that are consistent with goals of minimizing mass 

and loss for a WRSM drive system. It is shown that utilizing qd models with/without 

saturation incorporated along the d-axis leads to suboptimal excitation that is different 

than obtained from a MEC over much of the expected operating region. However, based 

upon analysis of several alternative strategies, a simplified control is derived in which d-

axis current is zero, field current is held fixed, and q-axis current is varied linearly with 

torque. This control results in system-level efficiencies nearly the same as a control 

designed to maximize efficiency. Finally, the tradeoffs and limitations of the simplified 

control are explored when the desire is to optimize available torque over variable speeds 

that may or may not be controllable. 

Second, an enhanced dynamic MEC model for WRSMs has been developed. The 

model enables one to include the dynamics of an arbitrary number of damper bars with 

and without connection between poles. The dynamic model is structured to accept 

terminal winding voltage as input, which leads to relatively straightforward coupling with 

external circuits.  As part of the dynamic model development, new geometry features, 

including stator tooth tips and rotor damper bars have been added, which greatly 

increases the dimension of potential machine topologies that can be analyzed and design. 

In addition, a multi-slices approach has been implemented to the steady state and 

dynamic MEC to model the skewing effect. Finally, alternative WRSM/rectifier systems 

are compared based on the steady-state and dynamic MEC models. 

A 10 kW and a 2 kW WRSM have been used to validate the proposed dynamic 

MEC model and control approaches, respectively. Several test cases have been run and 

have shown relatively strong correlation among MEC, FEA, and hardware results.  
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7.2 Future Work  

Further validation of the dynamic model will be performed. The required parts to 

assemble and set up the 10 kW WRSM have been machined. Once the WRSM has been 

mounted on the test bench and ready to operate, more time-domain waveforms of phase 

current, phase voltage, and torque will be measured and analyze. Different load circuits, 

including resistive-inductive (RL) load, active rectifier, and passive rectifier are of 

interest. A particular focus will be to compare transients in the time-domain and the 

operational impedances at various frequencies. To compare hardware and simulated 

transient performance, it is desirable to measure the damper winding currents. This is 

challenging when the rotor is moving at 1800 rpm. Thus, a goal will be to develop a 

technique to measure the damper winding currents in-situ. A Rowgowski coil connected 

with a wireless voltage sensor will be evaluated for this purpose.  

Simulation results of the skew model has been presented and compared to 

analytical model. In order to achieve more thorough validation, a 10 kW WRSM with a 

skewed rotor will be constructed so that different time-domain waveforms can be 

measured. 3D FEA analysis is also preferred if more computational power is accessible.  

In addition, although the dynamic MEC model is designed for three-phase 

machines, it sets up the baseline to explore the applications of single-phase or multi-

phase machines design. Compared to three-phase machines, the single-phase machines 

operate at lower power level and usually constant frequency. The single-phase machines 

can be connected to the ac grid directly without any power electronics, but with an 

auxiliary winding, which draws an industrial desire for its simplicity. On the other hand, 

the multi-phase machines provide lower harmonics content at the price of extra phases of 

windings. Due to the extra number of phases, the rating of the semiconductor switches for 

each inverter leg can be reduced accordingly, and the fault tolerance for phase failure 

may be improved as well.  
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A. MATLAB CODE  
 

The code for the enhanced steady-state and dynamic MEC models are provided 
herein. A list of the filenames with the corresponding description is shown in Table A.1. 

 

Table A.1 
Filenames and description. 

 
File Description Page 

wrsm_design.m Run WRSM design study. 127 

wrsmfit.m Evaluates a particular machine design (set of 

design variables) based on the constraints and 

objectives. Assigns each design a fitness 

value. 

129 

wrsm_model.m Intializes MEC simulation variables, solves 

the MEC system of equations and plots 

results. 

135 

design_param.m Creates a vector of machine/simulation 

parameters for a given machine using design 

variables. 

140 

wrsmdynamics.m Solves the Dynamics of the MEC network.  149 

get_reluctances.m Calculates all terms in the reluctance equation 

except for the relative permeability.  This is 

done for all iron permeances in the stator and 

rotor.  Calculates cross-sectional area. 

Calculates all reluctances residing in air. 

164 

get_Pag.m Determines the airgap permeance between 171 
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each rotor tooth/slot section and stator tooth. 

get_J.m Determines the Jacobian. 180 

get_meshmatrices.m Builds the matrices A and d used to solve for 

flux. Outputs Cr for use by get_J.m 

182 

shape_alg.m Determines the mesh connections for each 

reluctance and mmf source for a given rotor 

position.  The first column of the connection 

matrics is left as zero and is later updated 

with the specific reluctance/source value. 

184 

get_mur_exp.m Calculate mur and pmur from exponential 

curve fit formulation in PMMT. 

197 

get_mass.m Calculates the weight of the machine. 198 

coreloss.m Calculates the core loss of the iron sections 

for any given material. 

201 

calc_dploss.m Calculates damper loss. 202 

wrsmpostprocess.m Calculates postprocessing values (voltage, 

flux linkage, etc.) after modeling a machine. 

203 

plotwrsm.m Depicts the machine topology in a plot. 204 

rect.m Calculates the rectifier voltages based on the 

rectifier currents. 

209 

tools.m Finds the average value, rms value, and/or 

ripple of a given signal. 

211 

wrsmdynamics_ multislice.m Similar to wrsmdynamics.m, but with skew 

model incorporated. 

213 

wrsmdynamics_ss_multislice.m Similar to wrsmdynamics.m, but with skew 

model incorporated to analyze steady-state 

model. 

232 
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%-------------------------------------------------- --------------------  
% AUTHORS:  Xiaoqi Wang, Michelle Bash, Steven D. P ekarek  
%-------------------------------------------------- --------------------  
% CONTACT:  School of Electrical & Computer Enginee ring  
%           Purdue University  
%           465 Northwestern Ave.  
%           West Lafayette, IN 47907  
%           765-494-3434, spekarek@ecn.purdue.edu  
%-------------------------------------------------- --------------------  
% Apr 1, 2013  
%-------------------------------------------------- --------------------  
% M-FILE: wrsm_design.m  
% 
% Run WRSM design study  
%-------------------------------------------------- --------------------  
close all  
clear  
clc  
addpath([pwd, '\goset_2.5' ])  
  
% units  
mm  = 1e-3;  
cm  = 1e-2;  
 
% set up parameters for machine design  
param.SD = 0*mm;  
param.damper_rshank = 0*mm;  
param.damper_nshank = 0;  
param.damper_dtip = 0.5;  
param.vrms = 0;  
param.vph = 0;  
param.vfreq = 60;  
param.NCYC = 2;  
param.NPTS = 1e3;  
 
% ------------------------------------------------- --------------------  
% Multi-objective optimization  
GAP = gapdefault(2,0,500,500);  
GAP.op_list = [1 2];  
GAP.pp_list = [1 2];  
% GAP.rp_lvl  = 0;  
GAP.mc_alg  = 6.0;  
GAP.ev_pp = true;                % parallel process   [Set to true]  
GAP.ev_npg = 2;                  % number of evaluation groups for non-
block [Set to number of cores allocated by matlabpo ol]  
% Set up genes  
% 1-min, 2-max, 3-type, 4-chromosome  
GAP.gd = [  10*cm     80*cm    3   1; % DRC-1 
            0.5       3        3   1; % GLS-2  
            30*cm     80*cm    3   1; % HRT-3 
            20*mm     60*mm    3   1; % G1-4  
            1*cm      40*cm    3   1; % HST-5  
            5*cm      80*cm    3   1; % DBS-6 
            0.1       0.6      3   1; % fB0-7  
            0.05      0.3      3   1; % fHRTT-8  
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            0.3       0.9      3   1; % RPIT-9  
            0.1       0.7      3   1; % fWRTSH-10 
            1         5        1   1; % Ns-11  
            1         1000     1   1; % Nfld-12  
            50        150      2   1; % ifld-13  
            1         7        1   1; % Pp-14  
            0         0.3      2   1; % tipw-15  
            0.05      0.3      2   1; % tiph-16  
            0         20*mm    3   1; % damper_rtip_1-17  
            0         20*mm    3   1; % damper_rtip_2-18  
            0         3        1   1; % damper_ntip-19  
            0         2        1   1]; % bar connection type-20  
             
         
% START GENETIC ALGORITHM OPTIMIZATION             
[fp,GAS,final_designs] = gaoptimize(@wrsmfit,GAP,pa ram);  
% ------------------------------------------------- --------------------  
  
save results  final_designs  fp  GAS GAP param  
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%-------------------------------------------------- --------------------  
% AUTHORS:  Xiaoqi Wang, Michelle Bash, Steven D. P ekarek  
%-------------------------------------------------- --------------------  
% CONTACT:  School of Electrical & Computer Enginee ring  
%           Purdue University  
%           465 Northwestern Ave.  
%           West Lafayette, IN 47907  
%           765-494-3434, spekarek@ecn.purdue.edu  
%-------------------------------------------------- --------------------  
% Apr 1, 2013  
%-------------------------------------------------- --------------------  
% fitness = wrsmfit(design)  
% 
% Evaluates a particular machine design (set of des ign variables) based 
on 
% the constraints and objectives. Assigns each desi gn a fitness value.  
% OUTPUTS: fitness  - fitness of a machine design  
% 
% INPUTS:  design   - design variables  
%-------------------------------------------------- --------------------  
function  fitness = wrsmfit(GAP,param,varnum)  
 
design(1) = param.SD;  
design(2) = GAP(1);  
design(3) = GAP(2);  
design(4) = GAP(3);  
design(5) = GAP(4);  
design(6) = GAP(5);  
design(7) = GAP(6);  
design(8) = GAP(7);  
design(9) = GAP(8);  
design(10) = GAP(9);  
design(11) = GAP(10);  
design(12) = GAP(11);  
design(13) = GAP(12);  
design(14) = param.vrms;  
design(15) = param.vph;  
design(16) = GAP(13);  
design(17) = GAP(14);  
design(18) = GAP(15);  
design(19) = GAP(16);  
design(20) = GAP(17);  
design(21) = GAP(18);  
design(22) = param.damper_rshank;  
design(23) = GAP(19);  
design(24) = param.damper_nshank;  
design(25) = param.damper_dtip;  
design(26) = GAP(20);  
design(27) = param.vfreq;  
design(28) = param.NCYC;  
design(29) = param.NPTS;  
  
% GET GEOMETRY, WINDING, AND SIMULATION PARAMETERS 
[parx,pars,turns,damperdata,mudata] = design_params (design);  
%-------------------------------------------------- --------------------  
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% CONSTRAINTS: 
%-------------------------------------------------- --------------------  
nc = 8; % Number of constraints  
constraints = zeros(1,nc);  
%-------------------------------------------------- --------------------  
% Constraint 1: Realizable and realistic geometry.  
% Rotor tooth shank does not overlap at core  
WRTSHchord  = pars(56);  
DC          = pars(25);  
RP          = pars(28);  
chordmax = (DC)*sin(pi/RP);  
c1a = lessthan(WRTSHchord,chordmax,0.1*chordmax);  
% rotor pole tips do not overlap in the slot  
WAIRT       = pars(35);  
HRTT        = pars(44);  
ROD         = pars(24);  
maxHRT = sin(pi/2-
pi/RP)/sin(2*pi/RP)*ROD*sin(WAIRT/ROD)+2*HRTT*(RP== 2);  
c1b = lessthan(HRTT,maxHRT,0.01*maxHRT);  
% Length constraint is met - no pancake machines  
% c1c = lessthan(pars(1)/pars(3),1.82,0.182);  
c1c = 1;  
% HRTT is real and positive  
if  abs(HRTT) ~= HRTT  
    HRTT = -1;  
end  
c1d = greaterthan(HRTT,0,0.01);  
% Radius of damper bars has to be less than width o f rotor sections  
if  c1d == 1  
    SPT     = parx(2);  
    WRT     = pars(34);  
    ROD     = pars(24); % Rotor outer diameter, m  
    WRTang  = 2*WRT/ROD;  
    xout    = sin(WRTang/2)*ROD/2;  % (xout = WRTchord/2)  
    WRTS2   = xout*2/SPT; % Horizontal width (not arc width) of the 
rotor tooth sections  
    damper_rtip = damperdata.damper_rtip; % Radius of damper windings  
    if  max(damper_rtip) > WRTS2/2  
        Rxm = -1;  
    else  
        mu0     = pi*4e-7;      % Permeability of free space  
        [Rxm,areas,Rair,NPRTS,NPRTB] = 
get_reluctances(mu0,parx,pars,damperdata);  
    end  
    c1e     = greaterthan(min(Rxm),0,0.01);  
else  
    c1e = 0;  
end  
% Outer diameter constraint  
c1f = lessthan(pars(1),2.5,0.25);  
constraints(1) = (c1a+c1b+c1c+c1d+c1e+c1f)/6;  
% constraints(1) = 1;  
if  constraints(1) == 1      % Machine is realizable  
    %-------------------------------------------------- ----------------  
    % Evaluate the MEC model over one stator tooth and slot  
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    % PARAMETERS 
    NCYC    = parx(6);              % Number of cycles  
    DT      = parx(12);             % Time step in s  
    wrm     = parx(4)*2*pi/60;      % Mechanical rotor speed in rad/s  
    wr      = (pars(28)/2)*wrm;     % Electrical rotor speed in rad/s  
    rs      = pars(23);                 % Phase resistance in ohm  
    rfld    = pars(43);                 % Field resistance in ohms  
    ifld    = pars(47);                 % Field current (A)  
    Pmin    = parx(24);                 % Minimun output power (w)  
    synfreq = (pars(28)/2)*parx(4)/60;  % Frequency of vas,vbs,vcs - 
(assumed to be synchronized with rotor speed)  
    damper_ntip = damperdata.damper_ntip; % Number of damper windings 
on rotor tip  
    Rd = damperdata.Rd; % Resistance of damper windings on rotor tip  
    % DYNAMICS DESCRIPTION    
[t,vabc,lamabcpp,lamdamper,iabc,idamper,idc,vdc,vc, torque,qrm,phit,BY,B
T,BTT,nrconverge,saturate,BIRON] = 
wrsmdynamics(parx,pars,turns,damperdata,mudata,0);  
    SL = parx(3);  
    SPPPP = SL/RP/3;  
    SPT     = parx(2);  
    NRrtrt  = parx(27);  
    damper_nshank = damperdata.damper_nshank; % Number of damper 
windings on rotor shank  
    BRY = abs(BIRON(SPPPP*9+[1 3+damper_nshank 4+da mper_nshank],:));  
    BRTSH = abs(BIRON(SPPPP*9+2,:));  
    BRT = abs(BIRON(SPPPP*9+4+damper_nshank+[1:(SPT  - 2*NRrtrt) (2*SPT 
- 4*NRrtrt)+1:(2*SPT - 4*NRrtrt)+2*NRrtrt],:));  
    %-------------------------------------------------- -----  
    % Constraint 2: Newton-Raphson Nonlinear Solver Con verges & 
Operation meets flux density constraint  
    constraints(2) = nrconverge & min(saturate);  
    %     constraints(2) = 1;  
    if  constraints(2) == 1  
        %-------------------------------------------------- ------------  
        % Constraint 3: Avarage torque be negative.  
        Te_avg = tool_avg(torque,1,synfreq,DT); % Compute average 
torque  
        constraints(3) = lessthan(Te_avg,-(0.7*Pmin /wrm),0.1*Pmin/wrm);  
        if  constraints(3) == 1;  
            %-------------------------------------------------- --------  
            % Constraint 4: Voltage is above minimum allowed va lue, vdc 
is actually Vas_rated.  
            vdcmax = parx(25);  
            % Calculaion of current, voltage rms, avg  
            irms = tools( 'tool_rms' ,iabc(1,:),1,synfreq,DT);  
            vrms = tools( 'tool_rms' ,vabc(1,:),1,synfreq,DT);  
            constraints(4) = lessthan(vrms,vdcmax/s qrt(6),0.01*vdcmax);  
%             V_error = abs(vrms-vdcmax)/vdcmax;  
%             constraints(4) = 
lessthan(V_error,0.01*vdcmax,0.001*vdcmax);  
%             constraints(4) = 1;  
            %-------------------------------------------------- --------  
            % Constraint 5: Minimum power output met.  
            % WEIGHT CALCULATION 



132 
 

 

            [wstt,wst,wsy,wrt,wrsh,wry,wsw,wrw,weig ht] = 
get_mass(pars,parx,turns,damperdata);  
            % LOSS CALCULATION 
            DENS    = pars(37);  
            GLS     = pars(3);  
            clBTT   = 
coreloss(BTT(1,:),synfreq,DT,mudata.s)*wstt/DENS*10 00;  
            clBT    = 
coreloss(BT(1,:),synfreq,DT,mudata.s)*wst/DENS*1000 ;  
            clBY    = 
coreloss(BY(1,:),synfreq,DT,mudata.s)*wsy/DENS*1000 ;  
            clWRT   = 
coreloss(sum(BRT,1)/SPT,synfreq,DT,mudata.s)*wrt/DE NS*1000;  
            clWRSH  = 
coreloss(BRTSH,synfreq,DT,mudata.s)*wrsh/DENS*1000;  
            clWRY   = 
coreloss(BRY(1,:),synfreq,DT,mudata.s)*wry/DENS*100 0;  
            core_losses = clBTT+clBT+clBY+clWRT+clW RSH+clWRY; 
            resistive_losses    = parx(1)*rs*irms^2  + 
rfld*mean(ifld)*mean(ifld);  
            conduction_losses   = parx(20)*(irms*sq rt(2)*2/pi)*parx(1);  
            damper_losses       = calc_dploss(idamp er, damperdata, 
pars, parx);  
            total_losses  = resistive_losses + core _losses + 
damper_losses + conduction_losses;  
            Pelec = abs(Te_avg*wrm) - total_losses;  
            constraints(5) = greaterthan(Pelec,Pmin ,0.1*Pmin);  
            %         P_error = abs(Pelec-Pmin)/Pmin;  
            %         constraints(5) = 
lessthan(P_error,0.01*Pmin,0.001*Pmin);  
            %         constraints(5) = 1;  
            %-------------------------------------------------- --------  
            % Constraint 6: Stator Current Density less than ma x.  
            B1          = pars(10);  
            BS          = pars(12);  
            Ncond       = max(turns);  
            H3          = pars(8);  
            slotarea    = (0.5*(B1+BS))*H3;  
            pfs         = pars(48);  
            Js = irms*sqrt(2)*Ncond/(slotarea*pfs);  
            Jmax = parx(26);  
            constraints(6) = lessthan(Js,Jmax,0.1*J max);  
            %         constraints(6) = 1;  
            %-------------------------------------------------- --------  
            % Constraint 7: Rotor Current Density less than max .  
            HRTSH       = pars(45);  
            WCOIL       = pars(51);  
            Nfld        = pars(41);  
            slotareaf   = WCOIL*HRTSH;  
            pfr         = pars(52);  
            ifld = pars(47);  
            Jr = ifld*Nfld/(slotareaf*pfr);  
            constraints(7) = lessthan(Jr,Jmax,0.1*J max);  
            %         constraints(7) = 1;  
            %-------------------------------------------------- --------  
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            % Constraint 8: power factor above 0.8.  
            pf = sign(Qelec)*Pmin/sqrt(Pmin^2+Qelec ^2);  
            pf_error = abs(pf-0.8);  
            constraints(8) = lessthan(pf_error,0.01 *0.8,0.001*0.8);  
            %         constraints(8) = lessthan(pf,0.8,0.1*0.8) ;  
                    constraints(8) = 1;  
        end  
    end  
end  
%-------------------------------------------------- --------------------  
% FITNESS EVALUATION:  
%-------------------------------------------------- --------------------  
cmin = min(constraints); % Minimum value of the constraint variables. 
Value of 1 indicates that the constraint is met.  
if  cmin < 1  
    fitness = (sum(constraints) - 1e12*nc)*[1;1];  
else  
    fitness = [-total_losses;-weight];  
end  
%-------------------------------------------------- --------------------  
if  nargin>2  
    disp( 'Geometric Parameters' )  
    disp([ 'Shaft Diameter (SD): ' ,num2str(1e3*param.SD), 'mm' ])  
    disp([ 'Depth of Rotor Core (DRC): ' ,num2str(1e3*GAP(1)), 'mm' ])  
    disp([ 'Core length (GLS): ' ,num2str(1e2*GAP(2)), 'cm' ])  
    disp([ 'Height of Rotor Tooth (HRT): ' ,num2str(1e3*GAP(3)), 'mm' ])  
    disp([ 'Airgap Length (G1): ' ,num2str(1e3*GAP(4)), 'mm' ])  
    disp([ 'Height of Stator Tooth (HST): ' ,num2str(1e3*GAP(5)), 'mm' ])  
    disp([ 'Depth of Stator Yoke (DBS): ' ,num2str(1e3*GAP(6)), 'mm' ])  
    disp([ 'Width of Stator Tooth Shank (STW): 
' ,num2str(1e3*pars(20)), 'mm' ])  
    disp([ 'Height of Rotor Tooth Tip Side (HRTT): 
' ,num2str(1e3*pars(44)), 'mm' ])  
    disp([ 'Chord Length of Rotor Tooth Tip (WRTchord): 
' ,num2str(1e3*pars(55)), 'mm' ])  
    disp([ 'Chord Width of Rotor Tooth Shank (WRTSHchord): 
' ,num2str(1e3*pars(56)), 'mm' ])  
    disp([ 'Stator Turns (Ns): ' ,num2str(GAP(11))])  
    disp([ 'Field Turns (Nfld): ' ,num2str(GAP(12))])  
    disp([ 'Pole Pairs (Pp): ' ,num2str(GAP(14))])  
    disp([ 'Width of Stator Tooth Tip (STTW): 
' ,num2str(1e3*pars(21)), 'mm' ])  
    disp([ 'Height of Stator Tooth Tip (STTW): 
' ,num2str(1e3*pars(58)), 'mm' ])  
    disp([ 'Number of Damper bars on Rotor Tip (damper_ntip): 
' ,num2str(damperdata.damper_ntip)])  
    fprintf( 'Radius of Damper bars on Rotor Tip (damper_rtip): %f 
mm.\n' ,1e3*damperdata.damper_rtip);  
    disp([ 'Number of Damper bars on Rotor Shank (damper_nshan k): 
' ,num2str(damperdata.damper_nshank)])  
    disp([ 'Radius of Damper bars on Rotor Shank (damper_rshan k): 
' ,num2str(1e3*damperdata.damper_rshank), 'mm' ])     
    disp( 'Electric Parameters' )  
    disp([ 'Phase Current RMS: ' ,num2str(irms), 'A' ])  
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    disp([ 'Phase Current Angle: ' ,num2str(atan2(-
mean(idsr),mean(iqsr))*180/pi), 'deg' ])  
    disp([ 'Phase Voltage RMS: ' ,num2str(vrms), 'V' ])  
    disp([ 'Phase Voltage Angle: ' ,num2str(atan2(-
mean(vdsr),mean(vqsr))*180/pi), 'deg' ])  
    disp([ 'Field Current: ' ,num2str(ifld), 'A' ])  
    disp([ 'Stator Current Density: ' ,num2str(Js), 'A/m^2' ])  
    disp([ 'Rotor Current Density: ' ,num2str(Jr), 'A/m^2' ])  
    disp([ 'Output Power: ' ,num2str(Pelec/1000), 'kW' ])  
    disp([ 'Reactive Power: ' ,num2str(Qelec/1000), 'kVA' ])  
    disp([ 'Electromagnetic Torque: ' ,num2str(Te_avg), 'Nm' ])  
    disp([ 'Total Loss: ' ,num2str(total_losses), 'W' ])  
    disp([ 'Efficiency: ' ,num2str(Pelec/abs(Te_avg*wrm))])  
    disp( 'Losses' )  
    disp([ 'Resistive Loss: ' ,num2str(resistive_losses), 'W' ])  
    disp([ 'Core Loss: ' ,num2str(core_losses), 'W' ])  
    disp([ 'Conduction Loss: ' ,num2str(conduction_losses), 'W' ])  
    disp([ 'Damper Loss: ' ,num2str(damper_losses), 'W' ])  
    disp( 'Mass' )  
    disp([ 'Stator Mass: ' ,num2str(wsy+wst+wstt), 'kg' ])  
    disp([ 'Rotor Mass: ' ,num2str(wry+wrt+wrsh), 'kg' ])  
    disp([ 'Copper Mass: ' ,num2str(wsw+wrw), 'kg' ])  
    disp([ 'Total Machine Mass: ' ,num2str(weight), 'kg' ])  
     
    plotwrsm(pars,parx,damperdata,0,varnum);  
end  
% greaterthan and lessthan functions used to comput e constraint values.  
function  c = greaterthan(x,xmin,deltax)  
if  x > xmin  
    c = 1;  
else  
    c = 1/(1+abs((xmin-x)/deltax));  
end  
  
    function  c = lessthan(x,xmax,deltax)  
        if  x < xmax  
            c = 1;  
        else  
            c = 1/(1+abs((x-xmax)/deltax));  
        end  
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%-------------------------------------------------- --------------------  
% AUTHORS:  Xiaoqi Wang, Michelle Bash, Steven D. P ekarek  
%-------------------------------------------------- --------------------  
% CONTACT:  School of Electrical & Computer Enginee ring  
%           Purdue University  
%           465 Northwestern Ave.  
%           West Lafayette, IN 47907  
%           765-494-3434, spekarek@ecn.purdue.edu  
%-------------------------------------------------- --------------------  
% April 1, 2012  
%-------------------------------------------------- --------------------  
% M-FILE: wrsm_model.m  
% 
% Intializes MEC simulation variables, solves the M EC 
% system of equations and plots results.   
%-------------------------------------------------- --------------------  
clear all  
close all  
clc  
% ------------------------------------------------- ---------  
% % EVALUATE A MACHINE FROM MULTI-OBJECTIVE DESIGN RESULTS 
% fdi = input('Which design would you like to evalu ate: ');  
% filename = input('Filename of the saved data: ');  
% % Load design results and process genes  
load( 'init_test.mat' )  
[parx,pars,turns,damperdata,mudata] = design_params (final_design(:,1));  
% ------------------------------------------------- ---------  
fprintf( '********* Dynamic Mesh Based MEC Model *********** \n' )  
% SIMULATION TIME AND PARAMETERS 
NCYC    = parx(6);                  % Number of cycles  
DT      = parx(12);                 % Time step in s  
iter    = parx(30);                 % Number of iterations  
wrm     = parx(4)*2*pi/60;          % Mechanical rotor speed in rad/s  
wr      = (pars(28)/2)*wrm;         % Electrical rotor speed in rad/s  
rs      = pars(23);                 % Phase resistance in ohm  
rfld    = pars(43);                 % Field resistance in ohms  
ifld    = pars(47);                 % Field current (A)  
synfreq   = (pars(28)/2)*parx(4)/60;  % Frequency of vas,vbs,vcs - 
(assumed to be synchronized with rotor speed)  
damper_ntip = damperdata.damper_ntip; % Number of damper windings on 
rotor tip  
damper_nshank = damperdata.damper_nshank; % Number of damper windings 
on rotor shank  
Rd = damperdata.Rd; % Resistance of damper windings on rotor tip  
Re = damperdata.Re; % Resistance of damper windings connection  
  
% DYNAMICS DESCRIPTION 
qr_init = 0;  
[t,vabc,lamabcpp,lamdamper,iabc,idamper,idc,vdc,vc, torque,qrm,phit,BY,B
T,BTT,nrconverge,saturate,BIRON] = 
wrsmdynamics(parx,pars,turns,damperdata,mudata,qr_i nit);  
  
% POST-PROCESSING 
qrmdeg = qrm*180/pi;  
RP = pars(28);  
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SL = parx(3);  
SPPPP = SL/RP/3;  
SPT     = parx(2);  
NRrtrt  = parx(27);  
BRY = abs(BIRON(SPPPP*9+[1 3+damper_nshank 4+damper _nshank],1:iter));  
BRTSH = abs(BIRON(SPPPP*9+2,1:iter));  
BRT = abs(BIRON(SPPPP*9+4+damper_nshank+[1:(SPT - 2 *NRrtrt) (2*SPT - 
4*NRrtrt)+1:(2*SPT - 4*NRrtrt)+2*NRrtrt],1:iter));  
if  wrm > 0  
    ias = iabc(1,:);  
    ibs = iabc(2,:);  
    ics = iabc(3,:);  
    wrsmpostprocess;  
    % CALCULATING AVERAGE AND RIPPLE TORQUE 
    [Te_rms,Te_avg,Te_rip] = tools( 'tool_all' ,torque,1,synfreq,DT);  
    % Calculaion of current, voltage rms  
    irms = tools( 'tool_rms' ,iabc(1,:),1,synfreq,DT);  
    vrms = tools( 'tool_rms' ,vabc(1,:),1,synfreq,DT);  
    % Calculate current density in a slot  
    B1          = pars(10);  
    BS          = pars(12);  
    Ncond       = max(turns);  
    H3          = pars(8);  
    slotarea    = (0.5*(B1+BS))*H3;  
    pfs         = pars(48);  
    Ac          = slotarea*pfs/Ncond;  
    Js          = irms*sqrt(2)/Ac;  
    fprintf( 'The current density in a stator slot is %f 
A/mm^2.\n' ,Js*1e-6);  
    HRTSH       = pars(45);  
    WCOIL       = pars(51);  
    Nfld        = pars(41);  
    slotareaf   = WCOIL*HRTSH;  
    pfr         = pars(52);  
    Acfld       = slotareaf*pfr/Nfld;  
    Jr          = ifld/Acfld;  
    fprintf( 'The current density in a field slot is %f 
A/mm^2.\n' ,Jr*1e-6);  
    % WEIGHT CALCULATION 
    [wstt,wst,wsy,wrt,wrsh,wry,wsw,wrw,weight] = 
get_mass(pars,parx,turns,damperdata);  
    msg = sprintf( 'Stator Mass = %f kg' ,wsy+wst+wstt); disp(msg);  
    msg = sprintf( 'Rotor Mass = %f kg' ,wry+wrt+wrsh); disp(msg);  
    msg = sprintf( 'Copper Mass = %f kg' ,wsw+wrw); disp(msg);  
    msg = sprintf( 'Total Machine Mass = %f kg' ,weight); disp(msg);  
    % LOSS CALCULATION 
    DENS    = pars(37);  
    GLS     = pars(3);  
    clBTT   = coreloss(BTT(1,:),synfreq,DT,mudata.s )*wstt/DENS*1000;  
    clBT    = coreloss(BT(1,:),synfreq,DT,mudata.s) *wst/DENS*1000;  
    clBY    = coreloss(BY(1,:),synfreq,DT,mudata.s) *wsy/DENS*1000;  
    clWRT   = 
coreloss(sum(BRT,1)/SPT,synfreq,DT,mudata.s)*wrt/DE NS*1000;  
    clWRSH  = coreloss(BRTSH,synfreq,DT,mudata.s)*w rsh/DENS*1000;  
    clWRY   = coreloss(BRY(1,:),synfreq,DT,mudata.s )*wry/DENS*1000;  
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    core_losses = clBTT+clBT+clBY+clWRT+clWRSH+clWR Y;  
    resistive_losses    = parx(1)*rs*irms^2 + 
rfld*mean(ifld)*mean(ifld);  
    conduction_losses   = parx(20)*(irms*sqrt(2)*2/ pi)*parx(1);  
    damper_losses       = calc_dploss(idamper, damp erdata, pars, parx);  
    total_losses  = resistive_losses + core_losses + damper_losses + 
303;  
    % Input mechanical torque calculation  
    Te_mech = sign(Te_avg)*(abs(Te_avg*wrm)+core_lo sses+303)/wrm;  
    % OUTPUT INFO TO COMMAND WINDOW 
    fprintf( 'Current: %f A\n' , irms);  
    fprintf( 'Voltage: %f V\n' , vrms*sqrt(3));  
    fprintf( 'Output power: %f kW\n' , (abs(Te_avg*wrm)-resistive_losses-
damper_losses)/1000);  
    fprintf( 'Mechanical torque: %f Nm\n' , Te_mech);  
    fprintf( 'Electrical torque: %f Nm\n' , Te_avg);  
    fprintf( 'Torque ripple: %f Nm\n\n' , Te_rip);  
    fprintf( 'The resistive loss is %f W\n' ,resistive_losses);  
    fprintf( 'Core loss in the teeth: %f W\n' , clBT+clBTT);  
    fprintf( 'Core loss in the yoke: %f W\n' , clBY);  
    fprintf( 'The core loss is %f W\n' ,core_losses);  
    fprintf( 'The damper loss is %f W\n' ,damper_losses);  
    fprintf( 'The conduction loss is %f W\n' ,conduction_losses);  
    fprintf( 'The total loss is %f W\n' ,total_losses);  
    fprintf( 'The machine efficiency is %f\n\n' ,(abs(Te_mech*wrm)-
total_losses)/abs(Te_mech*wrm));  
    fprintf( 'Max stator yoke flux density: %f T\n' , max(max(BY)));  
    fprintf( 'Max stator tooth flux density: %f T\n' , max(max(BT)));  
    fprintf( 'Max rotor yoke flux density: %f T\n' , max(max(BRY)));  
    fprintf( 'Max rotor shank flux density: %f T\n' , max(max(BRTSH)));  
    fprintf( 'Max flux density: %f T\n' , max(max(abs(BIRON))));    
end  
  
% PLOT RESULTS 
if  wrm > 0  
    xax = qrmdeg; % xaxis value  
else  
    xax = linspace(0,DT*(iter-1),iter);  
end  
figure(1)  
box on 
hold on 
plot(t,iabc(1,:), 'b' );  
plot(t,iabc(2,:), 'r' );  
plot(t,iabc(3,:), 'g' );  
plot(t,ifld, 'c' );  
set(gca, 'FontName' , 'Times New Roman' )  
set(gca, 'FontSize' ,12)  
title( 'Phase Currents' );  
xlabel( 'Time (s)' )  
ylabel( 'Current (A)' )  
figure(2)  
box on 
hold on 
plot(t,torque(1:iter), 'b' );  
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set(gca, 'XLim' ,[t(1) t(iter)])  
set(gca, 'FontName' , 'Times New Roman' )  
set(gca, 'FontSize' ,12)  
title( 'Torque' );  
xlabel( 'Time (s)' )  
ylabel( 'Torque (Nm)' )  
figure(3)  
hold on 
box on 
plot(t,-(BY(1,1:iter)), 'b' );  
plot(t,-(BY(2,1:iter)), 'r' );  
set(gca, 'FontName' , 'Times New Roman' )  
set(gca, 'FontSize' ,12)  
xlabel( 'Time (s)' )  
title( 'Stator Yoke Section Flux Density' );  
ylabel( 'Flux Density (T)' )  
figure(4)  
hold on 
box on 
plot(t,(BT(1,1:iter)), 'b' );  
plot(t,(BT(2,1:iter)), 'b' );  
plot(t,(BT(3,1:iter)), 'r' );  
set(gca, 'FontName' , 'Times New Roman' )  
set(gca, 'FontSize' ,12)  
title( 'Stator Tooth Flux Density' );  
xlabel( 'Time (s)' )  
ylabel( 'Flux Density (T)' )  
figure(5)  
hold on 
box on 
plot(t,(BRY(1,1:iter)), 'r' );  
plot(t,(BRY(2,1:iter)), 'b' );  
plot(t,(BRY(3,1:iter)), 'b' );  
set(gca, 'FontName' , 'Times New Roman' )  
set(gca, 'FontSize' ,12)  
title( 'Rotor Yoke Flux Density' );  
xlabel( 'Time (s)' )  
ylabel( 'Flux Density (T)' )  
figure(6)  
hold on 
box on 
plot(t,BRTSH(1,1:iter), 'b' );  
set(gca, 'FontName' , 'Times New Roman' )  
set(gca, 'FontSize' ,12)  
title( 'Rotor Tooth Shank Flux Density' );  
xlabel( 'Time (s)' )  
ylabel( 'Flux Density (T)' )  
figure(7)  
box on 
hold on 
plot(t,vabc(1,:), 'b' );  
plot(t,vabc(2,:), 'r' );  
plot(t,vabc(3,:), 'g' );  
set(gca, 'XLim' ,[t(1) t(iter)])  
set(gca, 'FontName' , 'Times New Roman' )  
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set(gca, 'FontSize' ,12)  
title( 'Phase and field voltage' );  
xlabel( 'Time (s)' )  
ylabel( 'Voltage (V)' )  
figure(8)  
box on 
hold on 
plot(t,lamabcpp(1,:), 'b' );  
plot(t,lamabcpp(2,:), 'r' );  
plot(t,lamabcpp(3,:), 'g' );  
set(gca, 'XLim' ,[t(1) t(iter)])  
set(gca, 'FontName' , 'Times New Roman' )  
set(gca, 'FontSize' ,12)  
title( 'Phase and field flux linkage' );  
xlabel( 'Time (s)' )  
ylabel( 'Flux linkage (Vs)' )  
plotwrsm(pars,parx,damperdata,0,9);  
figure(10)  
hold on 
% for i = 1:damper_ntip  
%     plot(t,idamper(i,:))  
% end  
plot(t,idamper(1,:), 'b' );  
plot(t,idamper(2,:), 'r' );  
plot(t,idamper(3,:), 'g' );  
plot(t,idamper(4,:), 'c' );  
plot(t,idamper(5,:), 'm' );  
set(gca, 'FontName' , 'Times New Roman' )  
set(gca, 'FontSize' ,12)  
title( 'Damper Winding Currents' );  
xlabel( 'Time (s)' )  
ylabel( 'Current (A)' )  
legend( '1' , '2' , '3' , '4' , '5' )  
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%-------------------------------------------------- --------------------  
% AUTHORS:  Xiaoqi Wang, Michelle Bash, Steven D. P ekarek  
%-------------------------------------------------- --------------------  
% CONTACT:  School of Electrical & Computer Enginee ring  
%           Purdue University  
%           465 Northwestern Ave.  
%           West Lafayette, IN 47907  
%           765-494-3434, spekarek@ecn.purdue.edu  
%-------------------------------------------------- --------------------  
% April 1, 2012  
%-------------------------------------------------- --------------------  
% [parx,pars,turns,damperdata,matdata] = design_par ams(design)  
%  
% Creates a vector of machine/simulation parameters  for a given machine  
% using design variables.  
% 
% OUTPUTS: pars       - geometric parameters  
%          parx       - simulation parameters  
%          turns      - conductor turns  
%          damperdata - damper properties  
%          matdata    - magnetic material propertie s  
% 
% INPUTS:  design     - vector of genes from machin e optimization  
%-------------------------------------------------- --------------------  
function  [parx,pars,turns,damperdata,matdata] = design_para ms(design)  
% USER DEFINED MACHINE PARAMETERS --------->  
%-------------------------------------------------- --------------------  
% MEC Simulation Data  
%-------------------------------------------------- --------------------  
NPH     = 3;                % NUMBER OF PHASES 
damper_rtip_1 = design(20); % Radius of damper windings on rotor tip  
damper_rtip_2 = design(21); % Radius of damper windings on rotor tip  
damper_rshank = design(22); % Radius of damper windings on rotor shank  
damper_ntip = design(23);   % Number of damper windings on rotor tip  
damper_nshank = design(24); % Number of damper windings on rotor shank  
damper_dtip = design(25); % Ratio of the depth of dampers on rotor tip  
bartype = design(26); % Bartype: 0-no connection, 1-connent within 
poles, 2-connect between poles  
%-------------------------------------------------- --------------------  
% Rotor section division & Damper windings distribu tion  
% And this is a "mirror half" vector, for example  
% 
%  (rotor sections)  
%   ----------------------------------------------- --------  
%  |      |      |      |      |      |      |      |      |      
%   ----------------------------------------------- --------  
%                           [ rdp1      rdp2   rdp3    rdp4 ...]  
% 
switch  damper_ntip  
    case  0  
        damper_rtip = zeros(4,1);  
    case  1  
        damper_rtip = [damper_rtip_1 0 0 0]';  
    case  2  
        damper_rtip = [0 damper_rtip_1 0 0]';  
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    case  3  
        damper_rtip = [damper_rtip_1 0 damper_rtip_ 1 0]';  
    case  4  
        damper_rtip = [0 damper_rtip_1 0 damper_rti p_2 0]';  
    case  5  
        damper_rtip = [damper_rtip_1 damper_rtip_1 0 damper_rtip_2 0 
0]';  
    otherwise  
        damper_rtip = [damper_rtip_1*mod(damper_nti p,2) damper_rtip_1 
damper_rtip_2 damper_rtip_2*ones(1,floor((damper_nt ip+2)/2)-3)]';  
end  
SPT  = 2*length(damper_rtip);  
%-------------------------------------------------- --------------------  
     
SPAIR   = 3;                % SECTIONS PER HALF THE ROTOR "SLOT"  
SLL     = 3*design(17)*3*2; % NUMBER OF STATOR SLOTS (change to 
correspond with poles)  
RP      = design(17)*2;     % NUMBER OF POLES 
vfreq   = design(27);       % Input voltage frequency  
WRMRPM  = 1800;             % MECHANICAL ROTOR SPEED, RPM 
% If WRMRPM==0, then the system is in SSFR mode  
if  WRMRPM == 0 
    ONECYC  = 1/vfreq;      % ONE PERIOD, s  
else  
    ONECYC  = 1./(WRMRPM/60*RP/2); % ONE PERIOD, s  
end  
NCYC    = design(28);       % NUMBER OF ELECTRICAL CYCLES TO SIMULATE 
NPTS    = design(29);       % NUMBER OF DATA POINTS PER CYCLE 
TSTART  = 0;                % INITIAL TIME, s  
TSTOP   = NCYC*ONECYC;      % FINAL TIME, s  
ITER    = NCYC*NPTS+1;      % NUMBER OF ITERATIONS 
DT      = ONECYC/NPTS;      % TIME STEP, s  
ALPHAX  = 1;                % CONVERGENCE FACTOR FOR NEWTON-RAPHSON 
MAXIT   = 50;               % MAXIMUM NUMBER OF ITERATIONS  
VDROP   = 2;                % FORWARD SWITCH AND DIODE DROP, V 
scl1    = 1e3;              % scaling factor for stator windings  
scl2    = 1e1;              % scaling factor for field windings  
DALPHA  = 0.442307;         % Rectifier Parameters  
DBETA   = 2.352236;  
%-------------------------------------------------- --------------------  
% Stator Input Data  
%-------------------------------------------------- --------------------  
SLTINS  = 0;                % SLOT INSULATION WIDTH, m  
ESC     = 2.5e-2;           % ARMATURE WINDING EXTENSION BEYOND STACK, 
M 
%-------------------------------------------------- --------------------  
% Rotor Input Data  
%-------------------------------------------------- --------------------  
SHDENS  = 0;                % SHAFT DENSITY:  
%-------------------------------------------------- --------------------  
% Parameters calculated from the design vector  
% ------------------------------------------------- --------------------  
SD      = design(1);     % ROTOR SHAFT DIAMETER 
DRC     = design(2);     % DEPTH OF THE ROTOR CORE 
HRT     = design(4);     % HEIGHT OF THE ROTOR TOOTH 
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G1      = design(5);       % MAIN AIR GAP LENGTH, m  
HST     = design(6);       % HEIGHT OF THE STATOR TOOTH 
DBS     = design(7);       % STATOR YOKE DEPTH, m 
OD      = SD+(DRC+HRT+G1+HST+DBS)*2 ; % STATOR OUTER DIAMETER, m 
ROD     = SD+(DRC+HRT)*2;  % ROTOR OUTER DIAMETER, m 
GLS     = design(3);       % STATOR STACK LENGTH, m 
ID      = ROD + 2*G1;      % STATOR INNER DIAMETER, m  
STTW = (ID/2)*(2*pi/SLL)*(1-design(8)); % WIDTH OF STATOR TOOTH TIP, m  
tipw    = STTW*design(18); % width of stator tooth tip side  
tiph    = HST*design(19);  % height of stator tooth tip  
STW     = STTW-2*tipw;     % STATOR TOOTH SHANK WIDTH, m 
B0      = (ID/2)*(2*pi/SLL)*design(8); % STATOR SLOT DIMENSION, m  
fHRTT   = design(9); % VALUE TO DETERMINE HEIGHT OF ROTOR TOOTH TIP  
RPIT    = design(10); % ROTOR POLE PITCH COEFFICIENT 
fWRTSH  = design(11); % VALUE TO DETERMINE WIDTH OF ROTOR TOOTH SHANK 
CL      = GLS;             % ROTOR CORE LENGTH, m 
GLP     = GLS;             % LENGTH OF ROTOR POLE, m 
  
% TURNS VECTOR - DEPENDS ON SLOTS PER POLE PER PHASE 
SPPPP = SLL/RP/NPH;  
if  SPPPP == 1  
    Npmax = round(design(12));  
    Nphase  = [0 Npmax  0];  
elseif  SPPPP == 2  
    Npmax = round(design(12));  
    Nphase = [0 0 Npmax Npmax 0 0];  
elseif  SPPPP == 3  
    Npmax = round(design(12));  
    Nphase = [Npmax Npmax Npmax Npmax Npmax Npmax 0  0 0];  
elseif  SPPPP == 4  
    Npmax = round(design(12));  
    Nphase = [0 0 0 0 Npmax Npmax Npmax Npmax 0 0 0  0];  
elseif  rem(SPPPP,1)~=0  
    error( 'There must be an integer number of slots per pole per 
phase.' )  
else  
    error( 'Number of stator slots per pole per phase is unacc ounted 
for.' )  
end  
frms    = design(14);   % RMS Stator Voltage or current  
fph     = design(15);   % Phase of stator voltage or current, degrees  
ffld    = design(16);   % FIELD CURRENT or voltage  
Nfld    = round(design(13));   % FIELD TURNS 
%-------------------------------------------------- ---------------  
% STATOR TOOTH DIMENSIONS 
fH3     = 0.95;   % FRACTION OF SLOT HEIGHT OCCUPIED BY WDG  
H0      = (OD/2 - DBS - SLTINS - ID/2)*(1-fH3);  % STATOR SLOT HEIGHT 
NOT OCCUPIED BY WDG, m 
H1      = 0;      % STATOR SLOT HEIGHT DIMENSION, m  
H2      = 0;      % STATOR SLOT HEIGHT DIMENSION, m  
H3      = (OD/2 - DBS - SLTINS - ID/2)*fH3;      % STATOR SLOT HEIGHT 
DIMENSION, m  
B1      = (2*pi/SLL)*(ID/2 + H0 + H1) - STW;     % STATOR SLOT WIDTH 
DIMENSION, m  
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B2      = (2*pi/SLL)*(ID/2 + H0 + H1 + H2) - STW; % STATOR SLOT WIDTH 
DIMENSION, m  
BS      = (2*pi/SLL)*(ID/2 + H0 + H1 + H2 + H3) - S TW; % STATOR SLOT 
WIDTH DIMENSION, m  
% TURNS 
turns = Nphase;  
winding = abs(cumsum(turns) - 0.5*sum(turns));  
% ROTOR DIMENSIONS 
WRTang  = 2*pi*RPIT/RP; % ANGLE AT OUTSIDE EDGE OF ROTOR TOOTH TIP 
WRTchord= 2*(ROD/2)*sin(0.5*WRTang); % CHORD LENGTH OF ROTOR TOOTH TIP 
WRT     = WRTang*ROD/2; % WIDTH OF ROTOR TOOTH (arc length)  
WAIRT   = pi*ROD/RP - WRT; % WIDTH OF AIR BETWEEN ROTOR TEETH (arc 
length)  
WRTS    = WRT/SPT; % WIDTH OF ROTOR TOOTH SECTION (arc length)  
DC      = SD + DRC*2; % ROTOR CORE DIAMETER 
WRTSHchord= fWRTSH*WRTchord; % CHORD WIDTH OF ROTOR TOOTH SHANK 
yRT     = ROD/2*cos(0.5*WRTang); % VERTICAL HEIGHT TO TOP OF TOOTH TIP 
SIDE 
yRC     = 0.5*sqrt(DC^2-WRTSHchord^2);  % VERTICAL HEIGHT TO BOTTOM OF 
ROTOR TOOTH SHANK SIDE 
HRTT    = fHRTT*(yRT-yRC); % VERTICAL HEIGHT OF ROTOR TOOTH TIP SIDE  
HRTSH   = (yRT-yRC)*(1-fHRTT); % VERTICAL HEIGHT OF ROTOR TOOTH SHANK 
WRTSHang= 2*atan(WRTSHchord/(2*(HRTSH+yRC))); % ANGLE OF ROTOR TOOTH 
SHANK AT INSIDE OF ROTOR TOOTH TIP  
WRTSHrad= (HRTSH+yRC)/(cos(0.5*WRTSHang)); % RADIUS AT TOP OF ROTOR 
TOOTH SHANK 
WRTSH   = WRTSHrad*WRTSHang; % WIDTH OF ROTOR TOOTH SHANK (arc length)  
WCOILout= (WRTchord-WRTSHchord)/2; % WIDTH OF FIELD COIL AT OUTER EDGE  
WCOILin = (pi*DC/RP - WRTSH)/2; % APPROXIMATE WIDTH OF FIELD COIL AT 
INNER EDGE 
WCOIL   = 0.5*(WCOILout+WCOILin); % AVERAGE WIDTH OF AVAILABLE SPACE 
FOR THE FIELD COIL  
% ------------------------------------------------- ---------  
% Determination of the number of tangential rotor t eeth permeances 
(NRrtrt)  
ytmid = sqrt((ROD/2)^2-(0.5*WRTSHchord).^2);  
lR = (WRTchord-WRTSHchord)/2+min(0.5*(ytmid-(yRT-
HRTT)),0.25*WRTSHchord);  
Nsect = lR/(WRTchord/SPT);  
NRrtrt = round(Nsect)*(Nsect-floor(Nsect)~=0.5) + f loor(Nsect)*(Nsect-
floor(Nsect)==0.5);  
NRrtrt = NRrtrt - 1*(2*NRrtrt==SPT);  
% CROSS-SECTIONAL AREA OF CONDUCTOR IN THE STATOR AND ROTOR 
Ncond       = max(turns);  
slotarea    = (0.5*(B1+BS))*H3; % Approximate slot as trapezoid  
slotareaf   = WCOIL*HRTSH;  
Ac          = 2*1.0403e-6;              % Wire gauge #17, 2 conductors  
Acfld       = 2.0865e-6;                % Wire gauge #14  
pfs         = 2*Ncond*Ac/slotarea; % STATOR CONDUCTOR PACKING FACTOR 
pfr         = Nfld*Acfld/slotareaf; % ROTOR CONDUCTOR PACKING FACTOR 
% pfs         = 0.5;      % STATOR CONDUCTOR PACKIN G FACTOR 
% pfr         = 0.6;      % ROTOR CONDUCTOR PACKING  FACTOR 
% Ac          = slotarea*pfs/Ncond;  
% Acfld       = slotareaf*pfr/Nfld;  
%-------------------------------------------------- --------------------  
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% Conductor Characteristics  
%-------------------------------------------------- --------------------  
WIREDENS    = 8900;                     % DENSITY, kg/m^3  
sigmac      = 58e6;                     % CONDUCTIVITY of copper  
sigalu      = 35e6;                     % Conductivity of aluminium  
% WIRE CHARACTERISTICS 
SR      = 1/(sigmac*Ac);  
RR      = 1/(sigmac*Acfld);  
% LENGTH OF STATOR CONDUCTOR AND STATOR RESISTANCE 
DZ      = ID + 2*(H0+H1);                                            
DW      = 0.5*(OD-DZ) - SLTINS - DBS;                                
lslot   = GLS + 2*ESC;  
lend    = (2*pi/SLL)*(DZ/2 + DW/2);  
lcond   = sum(turns)*lslot*RP + 2*sum(winding)*lend *RP;  
RS      = lcond*SR;  
% LENGTH OF ROTOR CONDUCTOR AND FIELD RESISTANCE 
lcondfld = 2*(GLP + WRTSH + WCOIL*pi/2)*Nfld*RP;  
Rfld = lcondfld*RR;  
 
% ------------------------------------------------- --------------------  
% Resistance of the rotor tooth tip damper bar body  
CL_dp = CL;  % Damper bar length with extended portion  
dp_pos = find(damper_rtip);  
Rd_r1 = damper_rtip(dp_pos);  
Rd_r2 = flipdim(Rd_r1,1);  
if  damper_ntip == 0  
    Rd_r = [];  
elseif  dp_pos(1) == 1  
    Rd_r = [Rd_r2(1:end-1);Rd_r1];  
else  
    Rd_r = [Rd_r2;Rd_r1];  
end  
Rd = CL_dp./(sigmac*pi*Rd_r.^2)*(1+0.004041*47.2);  
  
% Resistance of the rotor tooth tip damper bar end connection  
switch  damper_ntip  
    case  0  
        Re_ang = [];  
    case  1  
        Re_ang = 2*(length(damper_rtip)-
dp_pos(end)+1)*WRTang/(SPT+1)+(2*pi/RP-WRTang);  
    case  2  
        Re_ang = [(2*dp_pos(1)-1)*WRTang/(SPT+1); ...  
                  2*(length(damper_rtip)-
dp_pos(end)+1)*WRTang/(SPT+1)+(2*pi/RP-WRTang)];  
    otherwise  
        if  dp_pos(1) == 1  
            Re_ang_1 = zeros(length(dp_pos),1);  
            for  i = 1:length(dp_pos)-1  
                Re_ang_1(i) = (dp_pos(i+1)-
dp_pos(i)+0.5*(i==1))*WRTang/(SPT+1);  
            end  
            Re_ang_1(end) = 2*(length(damper_rtip)-
dp_pos(end)+1)*WRTang/(SPT+1)+(2*pi/RP-WRTang);  
            Re_ang_2 = flipdim(Re_ang_1,1);  
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            Re_ang = [Re_ang_2(2:end);Re_ang_1];  
        else  
            Re_ang_1 = zeros(length(dp_pos)+1,1);  
            Re_ang_1(1) = (2*dp_pos(1)-1)*WRTang/(S PT+1);  
            for  i = 1:length(dp_pos)-1  
                Re_ang_1(i+1) = (dp_pos(i+1)-dp_pos (i))*WRTang/(SPT+1);  
            end  
            Re_ang_1(end) = 2*(length(damper_rtip)-
dp_pos(end)+1)*WRTang/(SPT+1)+(2*pi/RP-WRTang);  
            Re_ang_2 = flipdim(Re_ang_1,1);  
            Re_ang = [Re_ang_2(2:end-1);Re_ang_1];  
        end  
end  
Re_b = 0.1e-3; % Base value  
Re = Re_b*Re_ang/min(Re_ang)*(1+0.004041*47.2);  
  
%-------------------------------------------------- --------------------  
% Additional Simulation and Optimization Parameters  
%-------------------------------------------------- --------------------  
TOL     = 1e-5;         % Convergence tolerance  
PTCmin  = 1e-16;  % Minimum allowed airgap permeance to avoid inf Rag  
Pmin    = 1e4;          % Constraint on power output  
vdcmax  = 480/sqrt(3);  % Constraint on bus voltage  
Jmax    = 7.6*1e6;      % Constraint on current density  
slopes  = pi/2;   % Slopes to calculate fringing airgap permeances  
%-------------------------------------------------- --------------------  
% Material data  
%-------------------------------------------------- --------------------  
% Kohler  
DENS    = 7437.49;     % Kohler  
Bsat    = 2.5;         % Kohler  
% Stator steel  
matdata.s.K = 4;  
matdata.s.mur = 5349.922;  
matdata.s.a = [0.12542  0.00019835 0.00019835 0.000 19835];  
matdata.s.b = [13.14573     0.1971988      129.4606      8.358885];  
matdata.s.g = [1.6445      0.01      1.4157      0. 58577];  
matdata.s.d = matdata.s.a./matdata.s.b;  
matdata.s.e = matdata.s.b.*matdata.s.g;  
matdata.s.z = 1+exp(matdata.s.e);  
matdata.s.alpha = 1.0529;  
matdata.s.beta = 1.5969;  
matdata.s.kh = 0.33143;  
matdata.s.ke = 8.2813e-05;  
slB      = 3*SLL/RP;  
matdata.s.a = ones(slB,1)*matdata.s.a;  
matdata.s.b = ones(slB,1)*matdata.s.b;  
matdata.s.d = ones(slB,1)*matdata.s.d;  
matdata.s.e = ones(slB,1)*matdata.s.e;  
matdata.s.z = ones(slB,1)*matdata.s.z;  
% Rotor steel  
matdata.r.K = 4;  
matdata.r.mur = 5349.922;  
matdata.r.a = [0.12542  0.00019835 0.00019835 0.000 19835];  
matdata.r.b = [13.14573     0.1971988      129.4606      8.358885];  
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matdata.r.g = [1.6445      0.01      1.4157      0. 58577];  
matdata.r.d = matdata.r.a./matdata.r.b;  
matdata.r.e = matdata.r.b.*matdata.r.g;  
matdata.r.z = 1+exp(matdata.r.e);  
matdata.r.alpha = 1.0529;  
matdata.r.beta = 1.5969;  
matdata.r.kh = 0.33143;  
matdata.r.ke = 8.2813e-05;  
rlB      = 6+SPT+damper_nshank+SPT+(SPT-1);  
matdata.r.a = ones(rlB,1)*matdata.r.a;  
matdata.r.b = ones(rlB,1)*matdata.r.b;  
matdata.r.d = ones(rlB,1)*matdata.r.d;  
matdata.r.e = ones(rlB,1)*matdata.r.e;  
matdata.r.z = ones(rlB,1)*matdata.r.z;  
% ------------------------------------------------- --------------------  
% % M19 - PROPERTIES FROM PMMT 
% DENS    = 7402;         % DENSITY OF M19  
% Bsat    = 1.4311;         % Maximum allowed satur ation  
% % Stator steel  
% matdata.s.K = 4;  
% matdata.s.mur = 32685.6784;  
% matdata.s.a = [0.098611 0.0014823 0.001435 0.0014 35];  
% matdata.s.b = [69.73973 1.949541 162.2767 3.59855 3];  
% matdata.s.g = [1.399 2.1619 1.2475 2.0377];  
% matdata.s.d = matdata.s.a./matdata.s.b;  
% matdata.s.e = matdata.s.b.*matdata.s.g;  
% matdata.s.z = 1+exp(matdata.s.e);  
% matdata.s.alpha = 1.338;  
% matdata.s.beta = 1.817;  
% matdata.s.kh = 0.09294;  
% matdata.s.ke = 0.00005044;  
% slB      = 3*SLL/RP;  
% matdata.s.a = ones(slB,1)*matdata.s.a;  
% matdata.s.b = ones(slB,1)*matdata.s.b;  
% matdata.s.d = ones(slB,1)*matdata.s.d;  
% matdata.s.e = ones(slB,1)*matdata.s.e;  
% matdata.s.z = ones(slB,1)*matdata.s.z;  
% % Rotor steel  
% matdata.r.K = 4;  
% matdata.r.mur = 32685.6784;  
% matdata.r.a = [0.098611 0.0014823 0.001435 0.0014 35];  
% matdata.r.b = [69.73973 1.949541 162.2767 3.59855 3];  
% matdata.r.g = [1.399 2.1619 1.2475 2.0377];  
% matdata.r.d = matdata.r.a./matdata.r.b;  
% matdata.r.e = matdata.r.b.*matdata.r.g;  
% matdata.r.z = 1+exp(matdata.r.e);  
% matdata.r.alpha = 1.338;  
% matdata.r.beta = 1.817;  
% matdata.r.kh = 0.09294;  
% matdata.r.ke = 0.00005044;  
% rlB      = 6+SPT+damper_nshank+SPT+(SPT-1);  
% matdata.r.a = ones(rlB,1)*matdata.r.a;  
% matdata.r.b = ones(rlB,1)*matdata.r.b;  
% matdata.r.d = ones(rlB,1)*matdata.r.d;  
% matdata.r.e = ones(rlB,1)*matdata.r.e;  
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% matdata.r.z = ones(rlB,1)*matdata.r.z;  
% 
%-------------------------------------------------- --------------------  
% Damper data  
%-------------------------------------------------- --------------------  
damperdata.Rd = Rd;  
damperdata.Re = Re;  
damperdata.Rd_r = Rd_r;  
damperdata.damper_rtip = damper_rtip;  
damperdata.damper_rshank = damper_rshank;  
damperdata.damper_ntip = damper_ntip;  
damperdata.damper_nshank = damper_nshank;  
damperdata.damper_dtip = damper_dtip;  
damperdata.bartype = bartype;  
% 
% PARS - PARAMETER VECTOR, PRIMARILY GEOMETRY 
pars     = zeros(1,63);  
pars(1)  = OD;  
pars(2)  = ID;  
pars(3)  = GLS;  
pars(4)  = DBS;  
pars(5)  = H0;  
pars(6)  = H1;  
pars(7)  = H2;  
pars(8)  = H3;  
pars(9)  = B0;  
pars(10) = B1;  
pars(11) = B2;  
pars(12) = BS;  
pars(13) = SLTINS;  
pars(14) = G1;  
pars(15) = 0; % UNUSED   
pars(16) = 0; % UNUSED     
pars(17) = ESC;  
pars(18) = 0; % UNUSED    
pars(19) = 0; % UNUSED  
pars(20) = STW;  
pars(21) = STTW;  
pars(22) = 0; % UNUSED 
pars(23) = RS;  
pars(24) = ROD;  
pars(25) = DC;  
pars(26) = CL;  
pars(27) = GLP;  
pars(28) = RP;  
pars(29) = SD;  
pars(30) = 0; % UNUSED   
pars(31) = 0; % UNUSED     
pars(32) = RPIT;  
pars(33) = HRT;  
pars(34) = WRT;  
pars(35) = WAIRT;  
pars(36) = WRTS;  
pars(37) = DENS;  
pars(38) = SHDENS;  
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pars(39) = WIREDENS;  
pars(40) = Ac;  
pars(41) = Nfld;  
pars(42) = Acfld;  
pars(43) = Rfld;  
pars(44) = HRTT;  
pars(45) = HRTSH;  
pars(46) = WRTSH;  
pars(47) = ffld;  
pars(48) = pfs;  
pars(49) = frms;  
pars(50) = fph;  
pars(51) = WCOIL;  
pars(52) = pfr;  
pars(53) = 0; % UNUSED 
pars(54) = slopes;  
pars(55) = WRTchord; % UNUSED 
pars(56) = WRTSHchord;  
pars(57) = tipw; % Width of stator teeth tip  
pars(58) = tiph; % Height of stator teeth tip  
% PARX - SIMULATION PARAMETERS 
parx     = zeros(1,30);  
parx(1)  = NPH;  
parx(2)  = SPT;  
parx(3)  = SLL;  
parx(4)  = WRMRPM;  
parx(5)  = vfreq;  
parx(6)  = NCYC; % Number of cycles   
parx(7)  = 0; % UNUSED  
parx(8)  = 0; % UNUSED  
parx(9)  = 0; % UNUSED  
parx(10) = TSTART;  
parx(11) = TSTOP;  
parx(12) = DT;  
parx(13) = ALPHAX;  
parx(14) = MAXIT;  
parx(15) = 0; % 1:Delta connection; 0:Wye connection  
parx(16) = scl1; % Scaling factor for stator windings  
parx(17) = scl2; % Scaling factor for field windings  
parx(18) = DALPHA;  
parx(19) = DBETA;   
parx(20) = VDROP;  
parx(21) = TOL;  
parx(22) = PTCmin;  
parx(23) = Bsat;  
parx(24) = Pmin;  
parx(25) = vdcmax;  
parx(26) = Jmax;  
parx(27) = NRrtrt;  
parx(28) = 0; % UNUSED 
parx(29) = SPAIR;  
parx(30) = ITER;  
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%-------------------------------------------------- --------------------  
% AUTHORS:  Xiaoqi Wang, Michelle Bash, Steven D. P ekarek  
%-------------------------------------------------- --------------------  
% CONTACT:  School of Electrical & Computer Enginee ring  
%           Purdue University  
%           465 Northwestern Ave.  
%           West Lafayette, IN 47907  
%           765-494-3434, spekarek@ecn.purdue.edu  
%-------------------------------------------------- --------------------  
% Apr 1, 2013  
%-------------------------------------------------- --------------------  
% 
[t,vabc,lamabcpp,lamdamper,iabc,idamper,idc,vdc,vc, torque,qrm,phit,BY,B
T,BTT,nrconverge,saturate,BIRON] =  
% wrsmdynamics(parx,pars,turns,damperdata,mudata,qr _init)  
%  
% Solves the Dynamics of the MEC network.  
% 
% OUTPUTS: t        - time vector (s)  
%          vabcs    - phase voltages (V)  
%          lamabcpp - phase flux linkage per pole ( Vs)  
%          lamdamper - damper flux linkage (Vs)  
%          iabcs    - phase currents (A)  
%          idamper  - damper bar currents (A)  
%          idc      - dc bus currents (A)  
%          vdc      - dc bus voltage (V)  
%          vc       - dc bus capacitor voltage (V)  
%          torque   - torque (Nm)  
%          qrm      - mechanical rotor position (ra dians)  
%          phit     - stator teeth flux (Wb)  
%          BY,BT,BTT    - flux density in the stato r yoke, stator 
teeth, and stator tooth tips (T)  
%          nrconverge - flag indicating if newton r aphson converged  
%          saturate   - indicates if the flux densi ty limit is violated  
%          BIRON    - flux density in iron (Wb)  
% 
% INPUTS:  pars     - geometric parameters  
%          parx     - simulation parameters  
%          turns    - phase winding turns (turn cou nt)  
%          damperdata   - information of damper bar s  
%          mudata   - magnetic material data for fi nding permeability  
%          qr_init  - initial rotor position in ele ctric degree  
%-------------------------------------------------- --------------------  
function  
[t,vabc,lamabcpp,lamdamper,iabc,idamper,idc,vdc,vc, torque,qrm,phit,BY,B
T,BTT,nrconverge,saturate,BIRON] = 
wrsmdynamics(parx,pars,turns,damperdata,mudata,qr_i nit)  
%-------------------------------------------------- --------------------  
% INITIALIZE THE SYSTEM  
%-------------------------------------------------- --------------------  
mu0 = pi*4e-7;      % Permeability of free space  
RP  = pars(28);     % Poles  
S   = parx(3)/RP;   % Number of stator slots per pole  
D   = 2*(parx(2));  % Number of rotor pole tip sections per pole pair  
Dsl = 4*parx(29);   % Number of inter-polar regions per pole pair  
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SPT    = parx(2);  % SECTIONS PER ROTOR TOOTH, including radial and 
tangential  
NRrtrt = parx(27); % Number of outer pole tip reluctances per pole pai r  
damper_ntip = damperdata.damper_ntip;     % Number of damper windings 
on rotor tip  
damper_nshank = damperdata.damper_nshank; % Number of damper windings 
on rotor shank  
bartype = damperdata.bartype; % Type of damper bars connnection  
Rd = damperdata.Rd;     % Damper bar body resistance  
Re = damperdata.Re;     % Damper bar end connection resistance  
Rload   = 22.81;      % Parallel resistance load  
Lload   = 0.0807;     % Parallel resistance load  
Cload   = 100e-6;       % Filter capacitance  
taus    = 0.1;          % Filter time constant  
rs      = pars(23);     % Stator windings resistance  
wrm     = parx(4)*2*pi/60;          % Mechanical rotor speed in rad/s  
wr      = (pars(28)/2)*wrm;  
scl     = parx(16);  
ifld    = pars(47);                 % Field current (A)  
vrms    = pars(49);                 % rms Stator voltage (V)  
vphase  = pars(50);                 % Current phase angle (degrees)  
vm      = vrms*sqrt(2);             % Magnitude of vas,vbs,vcs  
DT      = parx(12);                 % Time step in s  
iter    = parx(30);                 % Number of iterations  
vdcmax  = parx(25);                 % Maximum dc voltage  
% For machine design with RL load producing rated p ower ---------------  
% Vll_rms = 480;  
% pf = 0.8;  
% P = parx(24);  
% Q = sqrt((P/pf)^2-P^2);  
% Rload = 3*(Vll_rms/sqrt(3))^2/P;  
% Lload = (Vll_rms/sqrt(3))^2/Q/wr;  
% ------------------------------------------------- --------------------  
% INITIALIZE VARIABLES  
slB     = 3*S;                      % Number of iron elements in stator  
rlB     = 6+D/2+damper_nshank+SPT+(SPT-1); % Number of iron elements in 
rotor  
lB      = slB+rlB;                  % Number of iron elements  
nriter  = zeros(1,iter);            % Keeps track of N-R iterations  
torque  = zeros(1,iter);  
PTC     = zeros(S,D+Dsl,iter);      % Matrix of airgap permeances  
dPTC    = zeros(S,D+Dsl,iter);  
phit    = zeros(S,iter);            % Stator tooth flux  
phiiron = zeros(lB,iter);           % Flux in iron  
BY      = zeros(S,iter);            % Stator yoke flux density  
BT      = zeros(S,iter);            % Stator tooth shank flux density  
BTT     = zeros(S,iter);            % Stator tooth tip flux density  
BIRON   = zeros(lB,iter);           % Flus density in all iron elements  
saturate = ones(1,iter);            % Saturation constraint (is Bsat 
violated)  
smuiron = get_mur_exp(zeros(slB,1),mudata.s); % Initial permeabilities 
of stator  
rmuiron = get_mur_exp(zeros(rlB,1),mudata.r); % Initial permeabilities 
of rotor  
muiron  = [smuiron;rmuiron];        % Initial permeabilities  
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TOL     = parx(21);                 % tolerance for convergence of 
Newton-Raphson  
k       = 1;                        % Simulation step  
t(k)    = parx(10);  
% ARTIFICIAL ROTOR POSITION MODIFICATION used in th e calculation of 
airgap  
% permeances.----  
SLL     = parx(3);  
ID      = pars(2);  
ROD     = pars(24);  
STTW    = pars(21);  
WRT     = pars(34);  
WAIRT   = pars(35);  
shift1  = WRT/(ROD/2);  
shift2  = (WAIRT/2)/(ROD/2);  
shift3  = 2*pi/SLL;  
shift4  = (STTW/2)/(ID/2);  
shift5  = (pi/2)/(RP/2);  
shift   = shift1 + shift2 - (S/2)*shift3 - shift4 -  shift5;   
% TIME AND ROTOR POSITION VECTORS 
t       = (0:DT:DT*(iter-1))+t(k);  
qrm     = t*wrm + qr_init/(RP/2);   % Actual rotor position  
qrm_shift =  qrm + shift;           % Angle fed to airgap permeance 
function  
%-------------------------------------------------- --------------------  
% CALCULATE VARIABLES/MATRICES WHICH WILL NOT CHANGE DURING SIM  
%-------------------------------------------------- --------------------  
% Variables/matrices to be used in airgap permeance  calculation  
WRS     = pars(35)/(2*parx(29));  
WRTS    = pars(36);  
B0      = pars(9);  
SPT     = parx(2);  
RPIT    = pars(32);  
WRTSang = 2*pi*RPIT/RP/SPT;  
WRTang  = 2*pi*RPIT/RP;  
WRSang  = 2*pi*(1-RPIT)/RP/(Dsl/2);  
qs      = STTW/ID*RP;               % Span of stator tooth in 
electrical radians  
qs1     = B0/ID*RP;                 % Span of stator slot  
qrr     = WRTSang*RP/2;             % Span of rotor pole tip section  
qrs     = WRSang*RP/2;              % Span of inter-polar section  
Gmaxrt = pi*4e-7*pars(3)/(ID-
ROD)*2*(WRTS*(STTW>=WRTS)+STTW*(STTW<WRTS)); % if-else  
Gmaxsl = pi*4e-7*pars(3)/(ID-ROD)*2*(WRS*(STTW>=WRS )+STTW*(STTW<WRS)); 
% if-else  
rt      = 1:D; rtsl    = 1:Dsl; st      = (1:S)';  
% Matrices defining the angle between every stator tooth and rotor 
section  
anglert = ones(S,1)*(-mod(rt-1,(D/2))*WRTSang - flo or((rt-
1)/(D/2))*2*pi/RP) ...  
    + ((st-1)*(STTW+B0)/(ID/2))*ones(1,D);  
anglesl = ones(S,1)*(-WRTang - mod(rtsl-1,(Dsl/2))* WRSang - ...  
    floor((rtsl-1)/(Dsl/2))*2*pi/RP) + ((st-
1)*(STTW+B0)/(ID/2))*ones(1,Dsl);  
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% Establish the geometric case for the rotor tooth section  
if  qrr <= qs1/2  
    qrrcs = 1;  
elseif  (qrr <= qs)  
    qrrcs = 2;  
elseif  (qrr <= qs +qs1/2)  
    qrrcs = 3;  
elseif  (qrr <= qs+qs1)  
    qrrcs = 4;  
else  
    qrrcs = 5;  
end  
% Establish the geometric case for the rotor slot s ection     
if  qrs <= qs1/2  
    qrscs = 1;  
elseif  (qrs <= qs)  
    qrscs = 2;  
elseif  (qrs <= qs +qs1/2)  
    qrscs = 3;  
elseif  (qrs <= qs+qs1)  
    qrscs = 4;  
else  
    qrscs = 5;  
end  
  
% ------------------------------------------------- -------------------  
% turns matrix to be used in system of equations  
Natrn   = [-turns turns]';  
Nbtrn   = [Natrn(2*SLL/(3*RP)+1:end);Natrn(1:2*SLL/ (3*RP))];  
Nctrn   = [Natrn(4*SLL/(3*RP)+1:end);Natrn(1:4*SLL/ (3*RP))];  
Nabc    = [Natrn Nbtrn Nctrn];  
Nfld    = pars(41);  
Nabcf   = [Nabc(1:S,:) zeros(S,1);0 0 0 Nfld;0 0 0 -Nfld];  
% ------------------------------------------------- -------------------  
% MEC loops with MMF sources  
Cvcfixed = (1:S+2)';  
%-------------------------------------------------- --------------  
% Calculate the reluctances  
[Rxm,areas,Rair,NPRTS,NPRTB] = 
get_reluctances(mu0,parx,pars,damperdata);  
Riron = Rxm./muiron;  
%-------------------------------------------------- --------------  
% Identify type of node in rotor tooth and slot  
% 1 = node of rotor pole tip radial branch  
% 2 = node of rotor pole tip tangential branch  
% 3 = rotor slot branch going to rotor edge  
% 4 = rotor slot branch going to bottom of rotor po le tip  
rtid = [2*ones(NRrtrt,1);ones(D/2-2*NRrtrt,1);2*one s(NRrtrt,1); ...  
        3*ones(NPRTS,1);4*ones(2*NPRTB,1);3*ones(NP RTS,1); ...  
        2*ones(NRrtrt,1);ones(D/2-2*NRrtrt,1);2*one s(NRrtrt,1); ...  
        3*ones(NPRTS,1);4*ones(2*NPRTB,1);3*ones(NP RTS,1)];  
% Identify how many RRTOUT branches border the roto r loop  
NRBRL = ceil((NRrtrt+1)/2);  % Number of RRTOUT branches Bordering 
Rotor Loop  
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NRTBD = NRrtrt-NRBRL; % Number of RRTOUT branches with bordering loop 
To Be Determined  
% ------------------------------------------------- -------------------  
% Define reluctance connections in stator and rotor  which do not change  
% Stator tooth tip, damper slots, and leakage of da mper slots are not  
% presented here, but will be derived as postproces s in shape_alg.m  
% IRON 
% Stator yoke - S  
% Stator teeth - S  
% Rotor yoke below the slot - 1  
% Rotor tooth shank - 1  
% Rotor yoke connected to shank - 2  
% Rotor tooth tips radial - (D - 4*NRrtrt)  
% Rotor tooth to rotor tooth tangential - 4*NRrtrt  
% Rotor tooth tangential at sides of tooth tips - 4  
% AIR  
% Stator tooth leakage - S  
% Field winding leakage - 2  
% Middle rotor slot leakage - 2  
% Fringing permeance from rotor side to airgap boun dary - Dsl  
% Fringing permeance from rotor slot side to bottom  of tooth tip - 4  
% RY R RRYSL RRTSH RRYSH RRTIN RRTOUT RRTS RSTL RFDL RRTL RAGFR RFRB 
Crcfixed = zeros(2*S+8+D+S+3+Dsl,3);  
% RY (all)  
Crcfixed(1:S,2)=(1:S)';  
% R (all)  
Crcfixed(S+1:2*S,2) = [1 2:S]';  
Crcfixed(S+1:2*S,3) = [-S 1:S-1]';  
% RRYSL (all)  
Crcfixed(2*S+1,3) = S+3;  
% RRTSH (all)  
Crcfixed(2*S+2,2:3) = [S+1 S+2];  
% RRYSH (all)  
Crcfixed(2*S+2+(1:2)',2) = [S+1;S+2];  
% RRTIN (Determined by shape algorithm)  
% RRTOUT - One side known if reluctance borders rot or loop  
Crcfixed(2*S+2+D-4*NRrtrt+2+(1:4*NRrtrt)',2) = ...  
 
[[zeros(NRTBD,1);ones(NRBRL,1)]*(S+1);[ones(NRBRL,1 );zeros(NRTBD,1)]*(S
+2); ...  
 -[zeros(NRTBD,1);ones(NRBRL,1)]*(S+1);-
[ones(NRBRL,1);zeros(NRTBD,1)]*(S+2)];  
% RRTS - (Determined by shape algorithm)  
% RSTL (one side known, use shape alg for other)  
Crcfixed(2*S+2+D+6+(1:S)',2) = (1:S)';  
% RFDL (all)  
Crcfixed(2*S+2+D+6+S+(1:2)',2:3) = [-(S+3) S+1;S+2 S+3];  
% RRTL (one side known, use shape alg for other)  
Crcfixed(2*S+2+D+6+S+2+(1:2)',2) = [S+3;-(S+3)];  
% RAGFR - (Determined by shape algorithm)  
% RFRB (one side, use shape alg for other)  
Crcfixed(2*S+2+D+6+S+4+Dsl+(1:4)',2) = [-(S+3);S+3; S+3;-(S+3)];  
%-------------------------------------------------- --------------------  
% Initialize variables  
if  parx(15) == 1 %Delta  
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    nio = 3;  
    mlam = [0 1 0;-1 0 0;0 0 0];  
    m_isil = [-1 0 1;1 -1 0;0 1 -1];  
    m_vgvs = 1.5*[1 sqrt(3)/3 0;-sqrt(3)/3 1 0;0 0 0];  
else  %Wye 
    nio = 2;  
    mlam = [0 1;-1 0];  
    m_isil = -eye(3);  
    m_vgvs = [1 0 0;0 1 0];  
end  
iabc  = zeros(3,iter);  
lamabcpp = zeros(3,iter);  
vqd0sr = zeros(nio,iter);  
iqd0sr = zeros(nio,iter);  
lamqd0srpp = zeros(nio,iter+1);  
plamqd0srpp = zeros(nio,iter);  
idamper = zeros(damper_ntip,iter);  
lamdamper = zeros(damper_ntip,iter+1);  
plamdamper = zeros(damper_ntip,iter);  
index_vect = zeros(damper_ntip,3,iter+1);  
flag_vect = ones(damper_ntip,iter+1);  
il_qd = zeros(2,iter+1);  
pil_qd = zeros(2,iter);  
vc = ones(1,iter+1)*vdcmax;  
pvc = zeros(1,iter);  
idc = ones(1,iter+1)*vdcmax/Rload;  
vdc = ones(1,iter+1)*vdcmax;  
Ivdc = zeros(1,iter+1);  
Ivc = zeros(1,iter+1);  
  
% Calculate the voltages for SSFR test  
if  wrm>0  
    vas = vm*cos((RP/2)*(qrm) + (pi*vphase/180));  
    vbs = vm*cos((RP/2)*(qrm) + (pi*vphase/180) - ( 2*pi/3));  
    vcs = vm*cos((RP/2)*(qrm) + (pi*vphase/180) - ( 4*pi/3));  
else  
    vfreq = parx(5);  
    vas = 2/3*vm*cos(2*pi*vfreq*t);  
    vbs = -1/3*vm*cos(2*pi*vfreq*t);  
    vcs = -1/3*vm*cos(2*pi*vfreq*t);  
end  
vabc = [vas;vbs;vcs];  
  
% Initial stator flux linkage per pole values  
if  wrm > 0  
    Ksr_prime = (2/3)*[-sin((RP/2)*(qrm(k))) -sin(( RP/2)*(qrm(k))-
2*pi/3) -sin((RP/2)*(qrm(k))+2*pi/3);  
        cos((RP/2)*(qrm(k))) cos((RP/2)*(qrm(k))-2* pi/3) 
cos((RP/2)*(qrm(k))+2*pi/3)];  
    lamqd0srpp(1:2,k) = Ksr_prime*vabc(:,k)/wr/RP;  
else  
    lamqd0srpp(1:2,k) = [0.00;0.001];  
end  
%-------------------------------------------------- --------------------  
% Determine transformation matrix for plamdamper  
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if  bartype == 1  
    % Version-1: No end connection resistance --------- ----------------  
    % For example damper_ntip = 5  
    % Tdp = [-rb1 rb2 0 0;0 -rb2 rb3 0;0 0 -rb3 rb4;-rb 5 -rb5 -rb5 -
rb5-rb4];  
     
    % if damper_ntip == 2  
    %     Tdp = -Rd(1)-Rd(2);  
    % else  
    %     Tdp = -diag(Rd(1:end-1));  
    %     for i = 1:damper_ntip-2  
    %         Tdp(i,i+1) = Rd(i+1);  
    %     end  
    %     Tdp(damper_ntip-1,:) = -Rd(damper_ntip)*ones( 1,damper_ntip-
1);  
    %     Tdp(damper_ntip-1,damper_ntip-1) = Tdp(damper _ntip-
1,damper_ntip-1)-Rd(damper_ntip-1);  
    % end  
     
    % Version-2: With end connection resistance ------- ----------------  
    % Tdp = [-rb1-2*re1 rb2 0 0;  
    %        -2*re2 -rb2-2*re2 rb3 0;  
    %        -2*re3 -2*re3 -rb3-2*re3 rb4;  
    %        -rb5-2*re4 -rb5-2*re4 -rb5-2*re4 -rb5-2*re 4-rb4];  
     
    % Re = [0.1 0.1 0.1 0.1 0.1]*1e-3;  
    if  damper_ntip < 2  
        Tdp = [];  
    elseif  damper_ntip == 2  
        Tdp = -Rd(1)-Rd(2)-2*Re(1);  
    else  
        Tdp = -diag(Rd(1:end-1));  
        for  i = 1:damper_ntip-2  
            Tdp(i,i+1) = Rd(i+1);  
        end  
        for  i = 1:damper_ntip-1  
            for  j = 1:i  
                Tdp(i,j) = Tdp(i,j)-2*Re(i);  
            end  
        end  
        Tdp(damper_ntip-1,:) = Tdp(damper_ntip-1,:) -
Rd(damper_ntip)*ones(1,damper_ntip-1);  
    end  
     
elseif  bartype == 2  
    % Version-1: No end connection resistance --------- ----------------  
    % For example damper_ntip = 5  
    % Tdp = [-Rd(1) Rd(2) 0 0 0;0 -Rd(2) Rd(3) 0 0;0 0 -Rd(3) Rd(4) 0;0 
0 0 -Rd(4) Rd(5);-Rd(1) 0 0 0 -Rd(5)];  
     
    % if damper_ntip == 1  
    %     Tdp = -2*Rd(1);  
    % else  
    %     Tdp = -diag(Rd(1:end));  
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    %     for i = 1:damper_ntip-1  
    %         Tdp(i,i+1) = Rd(i+1);  
    %     end  
    %     Tdp(damper_ntip,1) = -Rd(1);  
    % end  
     
    % Version-2: With end connection resistance ------- ----------------  
    % Re = [0.1 0.1 0.1 0.1 0.1]*1e-3;  
    % Tdp = -[Rd(1)+Re(1) -Rd(2)-Re(1) -Re(1) -Re(1) -R e(1); ...  
    %         Re(2) Rd(2)+Re(2) -Rd(3)-Re(2) -Re(2) -Re (2); ...  
    %         Re(3) Re(3) Rd(3)+Re(3) -Rd(4)-Re(3) -Re( 3); ...  
    %         Re(4) Re(4) Re(4) Rd(4)+Re(4) -Rd(5)-Re(4 ); ...  
    %         Rd(1)+Re(5) Re(5) Re(5) Re(5) Rd(5)+Re(5) ];  
    % 
    % Re = [0.1 0.1 0.1 0.1 1]*1e-3;  
    if  damper_ntip == 0  
        Tdp = [];  
    elseif  damper_ntip == 1  
        Tdp = -2*Rd(1)-2*Re(1);  
    else  
        Tdp = -diag(Rd(1:end));  
        for  i = 1:damper_ntip  
            for  j = 1:damper_ntip  
                if  j <= i  
                    Tdp(i,j) = Tdp(i,j)-Re(i);  
                else  
                    Tdp(i,j) = Tdp(i,j)+Re(i);  
                end  
            end  
        end  
        for  i = 1:damper_ntip-1  
            Tdp(i,i+1) = Tdp(i,i+1)+Rd(i+1);  
        end  
        Tdp(damper_ntip,1) = Tdp(damper_ntip,1)-Rd( 1);  
    end  
end  
%-------------------------------------------------- --------------------  
% SOLVING LOOP 
%-------------------------------------------------- --------------------  
nrconverge = 1;  
while  k <= iter     
    % AIR-GAP PERMEANCES 
    [PTC(:,:,k),dPTC(:,:,k)] = 
get_Pag(qrm_shift(k),pars,parx,Gmaxrt,Gmaxsl,angler t,anglesl,qrrcs,qrsc
s);  
    % Shape algorithm - Find the loop topology in the a irgap if it has 
changed  
    if  k==1 || sum(sum((PTC(:,:,k-1)~=0)~=(PTC(:,:,k)~=0) ))>0  
        [Crconn,Cvconn,O,PTCind,d_damper_1,d_damper _2,index,flag] = 
shape_alg(PTC(:,:,k),parx,pars,damperdata,Crcfixed, Cvcfixed,rtid,index_
vect(:,:,k),flag_vect(:,k));  
        if  length(Crconn)~=length([Riron;Rair;PTCind])  
            nrconverge = 0;  
            break  
        end          
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    end  
     
    % Obtain list of airgap permeances and their deriva tives for this 
rotor position  
    ptc         = PTC(:,:,k)';  
    PTClist     = ptc(PTCind);  
    dptc        = dPTC(:,:,k)';  
    dPTClist    = dptc(PTCind);  
     
    % Using rotor reference frame  
    Ksr = (2/3)*[cos((RP/2)*(qrm(k))) cos((RP/2)*(q rm(k))-2*pi/3) 
cos((RP/2)*(qrm(k))+2*pi/3);  
                sin((RP/2)*(qrm(k))) sin((RP/2)*(qr m(k))-2*pi/3) 
sin((RP/2)*(qrm(k))+2*pi/3);  
                0.5 0.5 0.5];  
    Ksrinv = [cos((RP/2)*(qrm(k))) sin((RP/2)*(qrm( k))) 1;  
             cos((RP/2)*(qrm(k))-2*pi/3) sin((RP/2) *(qrm(k))-2*pi/3) 1;  
             cos((RP/2)*(qrm(k))+2*pi/3) sin((RP/2) *(qrm(k))+2*pi/3) 
1];  
          
    % Find the system of equations and solve for the in itial guess  
    [A,d] = 
get_meshmatrices(Rair,PTClist,Riron,parx,pars,Nabcf ,Crconn,Cvconn);  
     
    % ------------------------------------------------- ----------------  
    if  bartype == 0 || (bartype==1 && damper_ntip<2) || ( bartype==2 && 
damper_ntip<1)  
        Aaug = [A -scl*d(:,1:3)*Ksrinv(:,1:nio) ; 
scl*Ksr(1:nio,:)*d(:,1:3)' zeros(nio,nio)];  
        daug = [d(:,4) zeros(length(A),nio) ;zeros( nio,1) eye(nio)];  
        if  rcond(Aaug)<1e-16  
            fprintf( 'Warning: rcond(Aaug) = %d at 
k=%i.\n' ,rcond(Aaug),k);  
        end  
         
        % Solve for vector of loop flux and current  
        lam = [ifld;scl*lamqd0srpp(:,k)];  
        xg = Aaug\(daug*lam);  
        % Identify just the loop fluxes  
        fluxm = xg(1:end-nio);  
        % NEWTON-RAPHSON SOLVER 
        it = 1; % Keeps track of N-R iterations  
        NRSOLVE = 1;  
        while  NRSOLVE 
            % DETERMINE FLUXES FOR THE GUESS VECTOR xg 
            phi = O*fluxm;  
            phiiron(:,k) = phi(1:lB);  
            % DETERMINE B-FIELDs  
            BIRON(:,k) = phiiron(:,k)./areas;  
            % GET PERMEABILITY FOR EACH RESPECTIVE PERM 
            [sMU,sdmdb] = get_mur_exp(BIRON(1:slB,k ),mudata.s);  
            [rMU,rdmdb] = get_mur_exp(BIRON(slB+1:e nd,k),mudata.r);  
            MU = [sMU;rMU];  
            dmdb = [sdmdb;rdmdb];  
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            % UPDATE MATRICIES 
            Riron = Rxm./MU;  
            [Ag,d,Cr] = 
get_meshmatrices(Rair,PTClist,Riron,parx,pars,Nabcf ,Crconn,Cvconn);  
            Aaug = [Ag -scl*d(:,1:3)*Ksrinv(:,1:nio ) ; 
scl*Ksr(1:nio,:)*d(:,1:3)' zeros(nio,nio)];  
            daug = [d(:,4) zeros(length(Ag),nio) ;z eros(nio,1) 
eye(nio)];  
            if  rcond(Aaug)<1e-16  
                fprintf( 'Warning: rcond(Aaug) = %d at 
k=%i.\n' ,rcond(Aaug),k);  
            end  
            % Pure Newton Raphson Iterator - find Jacobian and update x  
            J       = 
get_J(Cr(1:lB,:),O(1:lB,:),Aaug,MU,areas,dmdb,xg);  
            xnewp = xg -  J\(Aaug*xg - daug*lam);  
             
            % Check for convergence  
            if  ((sqrt((xnewp-xg)'*(xnewp-
xg))/(length(xg)*max(abs([xnewp;xg]))) ...  
                    < TOL) || (it == parx(14)))  
                if  (it == parx(14))  
                    % Maximum N-R iterations reached  
                    disp([ 'Max Iterations Reached: IT = '  num2str(it) 
', Data Point = '  num2str(k)]);  
                    nrconverge = 0;  
                end  
                NRSOLVE = 0;  
                nriter(k) = it;  
            else  
                xg = xnewp;  
                fluxm = xg(1:end-nio);  
                it = it+1;  
            end  
        end  
        if  ~nrconverge  
            break  
        end  
        % Store flux/flux density values after converging  
        phit(:,k) = phi(S+1:2*S);  
        phiag = phi(4*S+11+D/2+Dsl/2+1+damper_nshan k+D/2+2*(SPT-
1):end);  
        BY(:,k)    = BIRON(1:S,k);  
        BT(:,k)    = BIRON(S+1:2*S,k);  
        BTT(:,k)   = BIRON(2*S+1:3*S,k);  
        % Calculate torque  
        torque(k) = ((RP/2)^2)*sum(phiag.^2.*dPTCli st./(PTClist.^2));  
        % Phase current calculation  
        iqd0sr(:,k) = xg(end-nio+1:end)*scl;  
        iabc(:,k) = Ksrinv(:,1:nio)*iqd0sr(:,k);  
        % Phase flux linkage calculation  
        lamabcpp(:,k) = Ksrinv(:,1:nio)*lamqd0srpp( :,k);  
         
    elseif  bartype == 1 % ---------------------------------------------  
        % Solve for initial guess of damper flux linkage  
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        if  k == 1  
            Aaug_prime = [A -scl*d(:,1:3)*Ksrinv(:, 1:nio) ; 
scl*Ksr(1:nio,:)*d(:,1:3)' zeros(nio,nio)];  
            daug_prime = [d(:,4) zeros(length(A),ni o) ;zeros(nio,1) 
eye(nio)];  
            lam_prime = [ifld;scl*lamqd0srpp(:,k)];  
            xg_prime = Aaug_prime\(daug_prime*lam_p rime);  
            lamdamper(1:damper_ntip-1,k) = d_damper _2'*xg_prime(1:end-
nio);  
        end  
         
        % Solve for vector of loop flux and current  
        Aaug = [A -scl*d(:,1:3)*Ksrinv(:,1:nio) -sc l*d_damper_1; ...  
            scl*Ksr(1:nio,:)*d(:,1:3)' zeros(nio,ni o+damper_ntip-1); 
...  
            scl*d_damper_2' zeros(damper_ntip-1,nio +damper_ntip-1)];  
        daug = [d(:,4) zeros(length(A),nio+damper_n tip-1) ; ...  
            zeros(nio+damper_ntip-1,1) eye(nio+damp er_ntip-1)];  
        if  rcond(Aaug)<1e-16  
            fprintf( 'Warning: rcond(Aaug) = %d at 
k=%i.\n' ,rcond(Aaug),k);  
        end  
        lam = [ifld;scl*lamqd0srpp(:,k);scl*lamdamp er(1:damper_ntip-
1,k)];  
        xg = Aaug\(daug*lam);  
         
        % Identify just the loop fluxes  
        fluxm = xg(1:end-nio-damper_ntip+1);  
        % NEWTON-RAPHSON SOLVER 
        it = 1; % Keeps track of N-R iterations  
        NRSOLVE = 1;  
        while  NRSOLVE 
            % DETERMINE FLUXES FOR THE GUESS VECTOR xg 
            phi = O*fluxm;  
            phiiron(:,k) = phi(1:lB);  
            % DETERMINE B-FIELDs  
            BIRON(:,k) = phiiron(:,k)./areas;  
            % GET PERMEABILITY FOR EACH RESPECTIVE PERM 
            [sMU,sdmdb] = get_mur_exp(BIRON(1:slB,k ),mudata.s);  
            [rMU,rdmdb] = get_mur_exp(BIRON(slB+1:e nd,k),mudata.r);  
            MU = [sMU;rMU];  
            dmdb = [sdmdb;rdmdb];  
            % UPDATE MATRICIES 
            Riron = Rxm./MU;  
            [Ag,d,Cr] = 
get_meshmatrices(Rair,PTClist,Riron,parx,pars,Nabcf ,Crconn,Cvconn);  
            Aaug = [Ag -scl*d(:,1:3)*Ksrinv(:,1:nio ) -scl*d_damper_1; 
...  
                scl*Ksr(1:nio,:)*d(:,1:3)' zeros(ni o,nio+damper_ntip-
1); ...  
                scl*d_damper_2' zeros(damper_ntip-1 ,nio+damper_ntip-
1)];  
            daug = [d(:,4) zeros(length(Ag),nio+dam per_ntip-1) ; ...  
                zeros(nio+damper_ntip-1,1) eye(nio+ damper_ntip-1)];  
            if  rcond(Aaug)<1e-16  
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                fprintf( 'Warning: rcond(Aaug) = %d at 
k=%i.\n' ,rcond(Aaug),k);  
            end  
            % Pure Newton Raphson Iterator - find Jacobian and update x  
            J       = 
get_J(Cr(1:lB,:),O(1:lB,:),Aaug,MU,areas,dmdb,xg);  
            xnewp = xg -  J\(Aaug*xg - daug*lam);  
             
            % Check for convergence  
            if  ((sqrt((xnewp-xg)'*(xnewp-
xg))/(length(xg)*max(abs([xnewp;xg]))) ...  
                    < TOL) || (it == parx(14)))  
                if  (it == parx(14))  
                    % Maximum N-R iterations reached  
                    disp([ 'Max Iterations Reached: IT = '  num2str(it) 
', Data Point = '  num2str(k)]);  
                    nrconverge = 0;  
                end  
                NRSOLVE = 0;  
                nriter(k) = it;  
            else  
                xg = xnewp;  
                fluxm = xg(1:end-nio-damper_ntip+1) ;  
                it = it+1;  
            end  
        end  
        if  ~nrconverge  
            break  
        end  
         
        % Store flux/flux density values after converging  
        phit(:,k) = phi(S+1:2*S);  
        phiag = phi(4*S+11+D/2+Dsl/2+1+damper_nshan k+D/2+2*(SPT-
1):end);  
        BY(:,k)    = BIRON(1:S,k);  
        BT(:,k)    = BIRON(S+1:2*S,k);  
        BTT(:,k)   = BIRON(2*S+1:3*S,k);  
        % Calculate torque  
        torque(k) = ((RP/2)^2)*sum(phiag.^2.*dPTCli st./(PTClist.^2));  
        % Phase current calculation  
        iqd0sr(:,k) = xg(end-nio-damper_ntip+2:end- damper_ntip+1)*scl;  
        iabc(:,k) = Ksrinv(:,1:nio)*iqd0sr(:,k); % terminals series 
connected  
        % Phase flux linkage calculation  
        lamabcpp(:,k) = Ksrinv(:,1:nio)*lamqd0srpp( :,k);  
        % Damper windings current  
        idamper(1:damper_ntip-1,k) = xg(end-damper_ ntip+2:end)*scl;  
        idamper(damper_ntip,k) = -sum(idamper(1:dam per_ntip-1,k));  
         
    elseif  bartype == 2 % ---------------------------------------------  
        % Solve for initial guess of damper flux linkage  
        if  k == 1  
            Aaug_prime = [A -scl*d(:,1:3)*Ksrinv(:, 1:nio) ; 
scl*Ksr(1:nio,:)*d(:,1:3)' zeros(nio,nio)];  
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            daug_prime = [d(:,4) zeros(length(A),ni o) ;zeros(nio,1) 
eye(nio)];  
            lam_prime = [ifld;scl*lamqd0srpp(:,k)];  
            xg_prime = Aaug_prime\(daug_prime*lam_p rime);  
            lamdamper(:,k) = d_damper_2'*xg_prime(1 :end-nio);  
        end  
         
        % Solve for vector of loop flux and current  
        Aaug = [A -scl*d(:,1:3)*Ksrinv(:,1:nio) -sc l*d_damper_1; ...  
            scl*Ksr(1:nio,:)*d(:,1:3)' zeros(nio,ni o+damper_ntip); ...  
            scl*d_damper_2' zeros(damper_ntip,nio+d amper_ntip)];  
        daug = [d(:,4) zeros(length(A),nio+damper_n tip) ; ...  
            zeros(nio+damper_ntip,1) eye(nio+damper _ntip)];  
        if  rcond(Aaug)<1e-16  
            fprintf( 'Warning: rcond(Aaug) = %d at 
k=%i.\n' ,rcond(Aaug),k);  
        end  
        lam = [ifld;scl*lamqd0srpp(:,k);scl*lamdamp er(:,k)];  
        xg = Aaug\(daug*lam);  
         
        % Identify just the loop fluxes  
        fluxm = xg(1:end-nio-damper_ntip);  
        % NEWTON-RAPHSON SOLVER 
        it = 1; % Keeps track of N-R iterations  
        NRSOLVE = 1;  
        while  NRSOLVE 
            % DETERMINE FLUXES FOR THE GUESS VECTOR xg 
            phi = O*fluxm;  
            phiiron(:,k) = phi(1:lB);  
            % DETERMINE B-FIELDs  
            BIRON(:,k) = phiiron(:,k)./areas;  
            % GET PERMEABILITY FOR EACH RESPECTIVE PERM 
            [sMU,sdmdb] = get_mur_exp(BIRON(1:slB,k ),mudata.s);  
            [rMU,rdmdb] = get_mur_exp(BIRON(slB+1:e nd,k),mudata.r);  
            MU = [sMU;rMU];  
            dmdb = [sdmdb;rdmdb];  
            % UPDATE MATRICIES 
            Riron = Rxm./MU;  
            [Ag,d,Cr] = 
get_meshmatrices(Rair,PTClist,Riron,parx,pars,Nabcf ,Crconn,Cvconn);  
            Aaug = [Ag -scl*d(:,1:3)*Ksrinv(:,1:nio ) -scl*d_damper_1; 
...  
                scl*Ksr(1:nio,:)*d(:,1:3)' zeros(ni o,nio+damper_ntip); 
...  
                scl*d_damper_2' zeros(damper_ntip,n io+damper_ntip)];  
            daug = [d(:,4) zeros(length(Ag),nio+dam per_ntip) ; ...  
                zeros(nio+damper_ntip,1) eye(nio+da mper_ntip)];  
            if  rcond(Aaug)<1e-16  
                fprintf( 'Warning: rcond(Aaug) = %d at 
k=%i.\n' ,rcond(Aaug),k);  
            end  
            % Pure Newton Raphson Iterator - find Jacobian and update x  
            J       = 
get_J(Cr(1:lB,:),O(1:lB,:),Aaug,MU,areas,dmdb,xg);  
            xnewp = xg -  J\(Aaug*xg - daug*lam);  
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            % Check for convergence  
            if  ((sqrt((xnewp-xg)'*(xnewp-
xg))/(length(xg)*max(abs([xnewp;xg]))) ...  
                    < TOL) || (it == parx(14)))  
                if  (it == parx(14))  
                    % Maximum N-R iterations reached  
                    disp([ 'Max Iterations Reached: IT = '  num2str(it) 
', Data Point = '  num2str(k)]);  
                    nrconverge = 0;  
                end  
                NRSOLVE = 0;  
                nriter(k) = it;  
            else  
                xg = xnewp;  
                fluxm = xg(1:end-nio-damper_ntip);  
                it = it+1;  
            end  
        end  
        if  ~nrconverge  
            break  
        end  
         
        % Store flux/flux density values after converging  
        phit(:,k) = phi(S+1:2*S);  
        phiag = phi(4*S+11+D/2+Dsl/2+1+damper_nshan k+D/2+2*(SPT-
1):end);  
        BY(:,k)    = BIRON(1:S,k);  
        BT(:,k)    = BIRON(S+1:2*S,k);  
        BTT(:,k)   = BIRON(2*S+1:3*S,k);  
        % Calculate torque  
        torque(k) = ((RP/2)^2)*sum(phiag.^2.*dPTCli st./(PTClist.^2));  
        % Phase current calculation  
        iqd0sr(:,k) = xg(end-nio-damper_ntip+1:end- damper_ntip)*scl;  
        iabc(:,k) = Ksrinv(:,1:nio)*iqd0sr(:,k); % terminals series 
connected  
        % Phase flux linkage calculation  
        lamabcpp(:,k) = Ksrinv(:,1:nio)*lamqd0srpp( :,k);  
        % Damper windings current  
        idamper(:,k) = xg(end-damper_ntip+1:end)*sc l;  
    end  
    %-------------------------------------------------- ----------------  
    % External voltage model--------------------------- ----------------  
    % R load  
%     vqd0sr(:,k) = -iqd0sr(:,k)*Rload;  
    % Parallel RL load  
    vqd0sr(:,k) = (-iqd0sr(:,k)-il_qd(:,k))*Rload;  
    pil_qd(:,k) = vqd0sr(:,k)/Lload - wr*[0 1;-1 0] *il_qd(:,k);  
    il_qd(:,k+1) = il_qd(:,k)+pil_qd(:,k)*DT;  
     
%     abc voltage calculation     
    vabc(:,k) = Ksrinv(:,1:nio)*vqd0sr(:,k); % Terminals series 
connected  
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    % Connected to rectifier with constant vdc  
%     iabcl = m_isil*iabc(:,k);  
%     [V,idc(k)] = rect(iabcl,vdcmax,parx);  
%     vqd0gr = Ksr*V;   
%     vqd0sr(:,k) = m_vgvs*vqd0gr;  
%     vabc(:,k) = Ksrinv(:,1:nio)*vqd0sr(:,k);  
    % Connected to rectifier with RLC load  
%     iabcl = m_isil*iabc(:,k);  
%     [V,idc(k)] = rect(iabcl,vdc(k),parx);  
%     vqd0gr = Ksr*V;   
%     vqd0sr(:,k) = m_vgvs*vqd0gr;  
%     vabc(:,k) = Ksrinv(:,1:nio)*vqd0sr(:,k);  
%     pvc(k) = (idc(k)-vc(k)/Rload)/Cload;  
%     vc(k+1) = vc(k)+pvc(k)*DT;  
%     Ivc(k+1) = Ivc(k)+(vc(k+1)+vc(k))/2*DT;  
%     vdc(k+1) = (-
(Ivdc(k)+vdc(k)*DT/2)+taus*vc(k+1)+Ivc(k+1)+Lload*i dc(k))/(taus+DT/2);  
%     Ivdc(k+1) = Ivdc(k)+(vdc(k+1)+vdc(k))/2*DT;  
    %-------------------------------------------------- ----------------  
     
    % Forward Euler to solve state model--------------- ----------------  
    plamqd0srpp(:,k) = (vqd0sr(:,k) - rs.*iqd0sr(:, k) - 
wr*mlam*lamqd0srpp(:,k)*RP)/RP;  
    lamqd0srpp(:,k+1) = lamqd0srpp(:,k) + plamqd0sr pp(:,k)*DT;  
     
    if  bartype == 0  
        if  damper_ntip > 0  
            lamdamper(:,k) = d_damper_2'*xg(1:end-n io);  
        end  
    elseif  bartype == 1  
        plamdamper(1:damper_ntip-1,k) = -Tdp*idampe r(1:damper_ntip-
1,k);  
        lamdamper(:,k+1) = lamdamper(:,k) + plamdam per(:,k)*DT;  
    elseif  bartype == 2  
        plamdamper(:,k) = -Tdp*idamper(:,k);  
        lamdamper(:,k+1) = lamdamper(:,k) + plamdam per(:,k)*DT;  
    end    
    %-------------------------------------------------- ----------------     
  
    index_vect(:,:,k+1) = index;  
    flag_vect(:,k+1) = flag;  
     
    % Increment time/rotor position  
    k = k+1;  
end  
  
% Check for flux densities above limit  
Bsat = parx(23);  
maxB = max(abs(BIRON));  
saturate(maxB>=Bsat) = 1./(1+abs((maxB(maxB>=Bsat)- Bsat)./(0.1*Bsat)));  
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%-------------------------------------------------- --------------------  
% AUTHORS:  Xiaoqi Wang, Michelle Bash, Steven D. P ekarek  
%-------------------------------------------------- --------------------  
% CONTACT:  School of Electrical & Computer Enginee ring  
%           Purdue University  
%           465 Northwestern Ave.  
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%           765-494-3434, spekarek@ecn.purdue.edu  
%-------------------------------------------------- --------------------  
% April 1, 2012  
%-------------------------------------------------- --------------------  
% [Rxm,areas,Rair,NPRTS,NPRTB] = 
get_reluctances(mu0,parx,pars,damperdata)  
%  
% Calculates all terms in the reluctance equation e xcept for the  
% relative permeability.  This is done for all iron  permeances in the  
% stator and rotor.  Calculates cross-sectional are a. Calculates all  
% reluctances residing in air.  
% 
% OUTPUTS: Rxm      - iron reluctances times mur  
%          areas    - reluctance areas  
%          Rair     - reluctances in air  
%          NPRTS    - # of permeances connected to the rotor pole tip 
side  
%          NPRTB    - # of permeances connected to the pole tip bottom  
% 
% INPUTS:  mu0      - permeability of air  
%          parx     - simulation parameters  
%          pars     - geometric parameters  
%          damperdata - damper properties  
%-------------------------------------------------- --------------------  
function  [Rxm,areas,Rair,NPRTS,NPRTB] = 
get_reluctances(mu0,parx,pars,damperdata)  
% Define reluctance connections in stator and rotor  which do not change  
% IRON 
% Stator yoke - S  
% Stator shank - S  
% Stator teeth - S  
% Rotor yoke below the slot - 1  
% Rotor tooth shank - 1  
% Damper bar in Rotor tooth shank - damper_nshank  
% Rotor yoke connected to shank - 2  
% Rotor tooth tips radial - (D - 4*NRrtrt)/2  
% Damper windings in Rotor tooth tips radial - (D -  4*NRrtrt)/2  
% Rotor tooth to rotor tooth tangential - 4*NRrtrt/ 2 
% Damper windings in Rotor tooth to rotor tooth tan gential - 4*NRrtrt/2  
% Leakage of damper windings - 2*Nldp  
% Rotor tooth tangential at sides of tooth tips - 4 /2  
% AIR  
% Stator tooth leakage - S  
% Field winding leakage - 2  
% Middle rotor slot leakage - 2/2  
% Fringing permeance from rotor side to airgap boun dary - Dsl  
% Fringing permeance from rotor slot side to bottom  of tooth tip - 4/2  
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% Machine parameters  
G1      = pars(14); % Airgap length, m  
DBS     = pars(4);  % stator yoke depth, m  
STW     = pars(20); % width of tooth shank, m  
CL      = pars(26); % rotor core length, m  
SL      = parx(3);  % number of teeth in one mechanical cycle  
OD      = pars(1);  % stator outside diameter of yoke, m  
ID      = pars(2);  % stator inner diameter (tooth tip to tooth tip), m  
WRT     = pars(34);  
WRTSH   = pars(46);  
SD      = pars(29);  
WRTSHchord = pars(56);  
NRrtrt  = parx(27);  
SPT     = parx(2);  
Nrtt    = 2*SPT - 4*NRrtrt;       % Number of radial rotor tooth 
branches  
GLS     = pars(3);  % Stator stack length, m  
H0      = pars(5);  % Stator slot dimension, m  
H3      = pars(8);  % Stator slot dimension, m  
B0      = pars(9);  % Stator slot dimension, m  
B1      = pars(10); % Stator slot dimension, m  
B2      = pars(11); % Stator slot dimension, m  
BS      = pars(12); % Stator slot dimension, m  
GLP     = pars(27); % Rotor stack length, m  
HRTT    = pars(44); % Height of rotor tooth tip, m  
HRTSH   = pars(45); % Height of rotor tooth shank, m  
WCOIL   = pars(51); % Equivalent width of field wdg, m  
SPAIR   = parx(29); % Number of rotor sections in half the slot  
RPIT    = pars(32); % Rotor pole pitch coefficient  
ROD     = pars(24); % Rotor outer diameter, m  
RP      = pars(28); % Number of rotor poles  
S       = parx(3)/pars(28);  % Number of stator teeth per pole  
SPT     = parx(2); % number of rotor sections in the pole tip  
DC      = pars(25); % Rotor core diameter, m  
tipw    = pars(57);  
tiph    = pars(58);  
damper_rtip = damperdata.damper_rtip;  
damper_rshank = damperdata.damper_rshank;  
damper_ntip = damperdata.damper_ntip;  
damper_nshank = damperdata.damper_nshank;  
damper_dtip = damperdata.damper_dtip;  
WRTang  = 2*WRT/ROD;  
xout    = sin(WRTang/2)*ROD/2;  % (xout = WRTchord/2)  
yb      = cos(WRTang/2)*ROD/2-HRTT; % Vertical height to the bottom of 
the rotor tooth tip  
xin     = WRTSHchord/2;  
WRTS2   = xout*2/SPT; % Horizontal width (not arc width) of the rotor 
tooth sections  
% yt__ = Vertical height to the top of the rotor to oth tip at a given 
"x"  
% position  
% **Stator yoke  
AY = ones(S,1)*GLS*DBS;  
RY = (pi*(OD-DBS))/((mu0)*GLS*SL*DBS);  
% **Stator tooth shank  
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AT_shank = ones(S,1)*STW*GLS;  
LT_shank  = (OD/2-DBS/2)-ID/2-tiph;  
RT_shank  = LT_shank./(mu0*STW*GLS);  
% **Stator tooth tip  
AT_tip = ones(S,1)*(STW+2*tipw)*GLS;  
RT_tip = tiph./(mu0*(STW+2*tipw)*GLS);  
% **Rotor yoke below the slot and connected to shan k  
ARY     = 0.5*(DC - SD)*CL;  
rad     = DC/4+SD/4;  
thsh_core = 2*asin(WRTSHchord/DC); % Angle of the rotor shank at the 
outside of the rotor core  
thsl_core = 2*pi/RP - thsh_core; % Angle of the rotor slot at the 
outside of the rotor core  
thsl    = thsl_core/2; % Angular length of the rotor yoke reluctance 
below the slot  
thsh    = thsl_core/4+thsh_core/2; % Angular length of the rotor yoke 
reluctance connected to the shank  
RRYSL = rad*thsl./(mu0*ARY);  
RRYSH = rad*thsh./(mu0*ARY);  
%-------------------------------------------------- --------------------  
% **Rotor tooth tip (inner)  
ARTIN = ones(Nrtt/2,1)*GLP*WRTS2;  
ymid = (sqrt((ROD/2)^2-(xin).^2)+yb)/2;  
ytRTT = sqrt((ROD/2)^2-abs(xout-WRTS2*NRrtrt-WRTS2* ((1:Nrtt/2)-
0.5)').^2);  
RTTlength = ytRTT - ymid;  
RTTlength_IN = zeros(Nrtt/2,1);  
for  i = 0:(Nrtt/4-1)  
    RTTlength_IN(Nrtt/4+i+1) = RTTlength(Nrtt/4+i+1 )-
2*damper_rtip(i+1);  
    RTTlength_IN(end-(Nrtt/4+i+1)+1) = RTTlength_IN (Nrtt/4+i+1);  
end  
RRTIN = RTTlength_IN./(mu0*ARTIN);  
% damper windings on Rotor tooth tip (inner)  
ARD_tip_in = ARTIN;  
RRD_tip_in = zeros(Nrtt/2,1);  
for  i = 0:(Nrtt/4-1)  
    if  i == 0  
        ARD_tip_in(Nrtt/4+i+1) = (WRTS2-damper_rtip (1)/2)*GLP;  
        ARD_tip_in(end-(Nrtt/4+i+1)+1) = ARD_tip_in (Nrtt/4+i+1);  
        RRD_tip_in(Nrtt/4+i+1) = 2*(-pi/(2*mu0*GLP)  + 
WRTS2/(mu0*GLP*sqrt(WRTS2^2-damper_rtip(1)^2)) ...  
                      *(pi/2+atan(damper_rtip(1)/sq rt(WRTS2^2-
damper_rtip(1)^2))));  
        RRD_tip_in(Nrtt/4+i+1) = 
RRD_tip_in(Nrtt/4+i+1)*(RRD_tip_in(Nrtt/4+i+1)>0.01 *min(RRTIN));       
        RRD_tip_in(end-(Nrtt/4+i+1)+1) = RRD_tip_in (Nrtt/4+i+1);  
    else  
        ARD_tip_in(Nrtt/4+i+1) = (WRTS2-damper_rtip (i+1))*GLP;  
        ARD_tip_in(end-(Nrtt/4+i+1)+1) = ARD_tip_in (Nrtt/4+i+1);  
        RRD_tip_in(Nrtt/4+i+1) = -pi/(2*mu0*GLP) + 
WRTS2/(mu0*GLP*sqrt(WRTS2^2-4*damper_rtip(i+1)^2)) ...  
                      *(pi/2+atan(2*damper_rtip(i+1 )/sqrt(WRTS2^2-
4*damper_rtip(i+1)^2)));  
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        RRD_tip_in(Nrtt/4+i+1) = 
RRD_tip_in(Nrtt/4+i+1)*(RRD_tip_in(Nrtt/4+i+1)>0.01 *min(RRTIN));  
        RRD_tip_in(end-(Nrtt/4+i+1)+1) = RRD_tip_in (Nrtt/4+i+1);  
    end  
end  
  
%-------------------------------------------------- --------------------  
% **Rotor tooth shank  
ARTSH = GLP*WRTSH; 
l     = ymid - SD/2 - (DC-SD)/4;  
RRTSH = (l-2*damper_nshank*damper_rshank)/(mu0*ARTS H);  
% damper windings on Rotor tooth shank  
ARD_shank = ones(damper_nshank,1)*GLP*(WRTSH-damper _rshank);  
RRD_shank = ones(damper_nshank,1)*(-pi/(2*mu0*GLP) + 
WRTSH/(mu0*GLP*sqrt(WRTSH^2-4*damper_rshank^2)) ...  
                      *(pi/2+atan(2*damper_rshank/s qrt(WRTSH^2-
4*damper_rshank^2))));  
%-------------------------------------------------- --------------------  
% **Rotor tooth section to rotor tooth section perm eance  
damper_rtip_out_2 = damper_rtip(end-NRrtrt+1:end);  
damper_rtip_out_1 = flipdim(damper_rtip_out_2,1);  
damper_rtip_out = [damper_rtip_out_1;damper_rtip_ou t_2];  
ytend   = sqrt((ROD/2)^2-(xout-WRTS2/4)^2);  
ARTOUT = zeros(2*NRrtrt,1);  
for  jj = 1:NRrtrt  
    ytNR = sqrt((ROD/2)^2-(xout-WRTS2*jj).^2);  
    ARTOUT(jj) = (ytNR-yb)*GLP;  
    ARTOUT(end-jj+1) = (ytNR-yb)*GLP;  
end  
lR     = xout - xin + min(0.5*xin,(ymid-yb)); % Total length of the 
estimated tangential reluctance from the side of th e rotor tooth tip  
WRTSIN = lR - (NRrtrt-1)*WRTS2 - WRTS2/2; % Adjusted length of the 
inner rotor tooth tip tangential reluctance  
lRRTOUT = [WRTS2*ones((NRrtrt-1),1);WRTSIN;WRTSIN;W RTS2*ones((NRrtrt-
1),1)];  
lRRTOUT = lRRTOUT-2*damper_rtip_out;  
RRTOUT = lRRTOUT./(mu0*ARTOUT);  
% damper windings on Rotor tooth section to rotor t ooth section  
ARD_tip_out = zeros(2*NRrtrt,1);  
RRD_tip_out = zeros(2*NRrtrt,1);  
for  jj = 1:NRrtrt  
    ytNR = sqrt((ROD/2)^2-(xout-WRTS2*jj).^2);  
    ARD_tip_out(jj) = (ytNR-yb-damper_rtip_out(jj)) *GLP;  
    ARD_tip_out(end-jj+1) = ARD_tip_out(jj);  
    RRD_tip_out(jj) = -pi/(2*mu0*GLP) + (ytNR-yb)/( mu0*GLP*sqrt((ytNR-
yb)^2-4*damper_rtip_out(jj)^2)) ...  
                      *(pi/2+atan(2*damper_rtip_out (jj)/sqrt((ytNR-
yb)^2-4*damper_rtip_out(jj)^2)));  
    RRD_tip_out(jj) = 
RRD_tip_out(jj)*(RRD_tip_out(jj)>0.01*min(RRTOUT));  
    RRD_tip_out(end-jj+1) = RRD_tip_out(jj);  
end  
%-------------------------------------------------- --------------------  
% Leakage reluctance of damper windings in iron  
% Leakage components on tangential path  
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ARD_ldp_out = zeros(2*NRrtrt,1);  
RRD_ldp_out = zeros(2*NRrtrt,1);  
for  i = 1:2*NRrtrt  
    if  damper_rtip_out(i) == 0  
        ARD_ldp_out(i) = ARTOUT(i)/2;  
        RRD_ldp_out(i) = lRRTOUT(i)/(mu0*ARD_ldp_ou t(i));  
    else  
        ARD_ldp_out(i) = (ARTOUT(i)/GLP-
2*damper_rtip_out(i))*damper_dtip*GLP;  
        RRD_ldp_out(i) = 
2*pi/(mu0*GLP*log((ARD_ldp_out(i)/GLP+damper_rtip_o ut(i))/damper_rtip_o
ut(i)));  
    end  
end    
% Leakage components on radial path  
damper_rtip_in_2 = damper_rtip(1:Nrtt/4);  
damper_rtip_in_1 = flipdim(damper_rtip_in_2,1);  
damper_rtip_in = [damper_rtip_in_1;damper_rtip_in_2 ];  
ARD_ldp_in = (RTTlength-2*damper_rtip_in)*GLP*dampe r_dtip;  
RRD_ldp_in = 
2*pi./(mu0*GLP*log((ARD_ldp_in/GLP+damper_rtip_in). /damper_rtip_in));  
% Combine the tangential and radial components  
ARD_ldp = 
[ARD_ldp_out(1:end/2);ARD_ldp_in(1:end/2);ARD_ldp_i n(end/2+2:end);ARD_l
dp_out(end/2+1:end)];  
RRD_ldp = 
[RRD_ldp_out(1:end/2);RRD_ldp_in(1:end/2);RRD_ldp_i n(end/2+2:end);RRD_l
dp_out(end/2+1:end)];  
% Correction of RRTOUT due to leakage  
RRTOUT = 1./(1./(RRTOUT+RRD_tip_out)-1./RRD_ldp_out )-RRD_tip_out;  
  
%-------------------------------------------------- --------------------  
% **side rotor tangential reluctances  
ARTRTS  = (ytend-yb)*GLP*ones(2,1);  % Area of the side rotor 
tangential reluctances  
lRTRTS = WRTS2/2*ones(2,1); % length of the side rotor tangential 
reluctances  
RRTRTS = lRTRTS./(mu0*ARTRTS);  
  
% AREAS AND RELUCTANCES*MUR FOR IRON ELEMENTS 
areas = 
[AY;AT_shank;AT_tip;ARY;ARTSH;ARD_shank;ARY;ARY;ART IN;ARD_tip_in;ARTOUT
;ARD_tip_out;ARD_ldp;ARTRTS];  
Rxm = 
[RY*ones(S,1);RT_shank*ones(S,1);RT_tip*ones(S,1);R RYSL;RRTSH;RRD_shank
;RRYSH*ones(2,1);RRTIN;RRD_tip_in;RRTOUT;RRD_tip_ou t;RRD_ldp;RRTRTS];  
%-------------------------------------------------- --------------------  
% **Stator tooth tip leakage  
P012 = mu0*H0/(B1-B0)*log(B1/B0);  
beta = B2/BS;  
P3 = mu0*(H3/BS)*(( (beta^2) - ((beta^4)*0.25) - lo g(beta) - 0.75 )/( 
(1-beta)*((1-beta^2)^2) ));  
RSTL = 1/((P012 + P3)*GLS);  
% **Field wdg leakage permeance  
RFDL = 3*HRTSH/(mu0*GLP*WCOIL);  
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% Geometry calculations needed for determining roto r fringing 
permeances  
WRTang  = 2*pi*RPIT/RP;                     % ANGLE AT OUTSIDE EDGE OF 
ROTOR TOOTH TIP 
WRTchord= (ROD)*sin(0.5*WRTang);            % CHORD LENGTH OF ROTOR 
TOOTH TIP 
Rint    = WRTchord/(2*sin(pi/RP));          % Radius at the point where 
a line extended from the rotor tooth side intersect s with a line 
through the center of the rotor slot  
halfWAIRTchd = ROD*sin(0.5*pi/RP*(1-RPIT)); % Chord length of the arc 
encompassing half the outer rotor slot  
theta_Rfr = asin((ROD/2-Rint)/halfWAIRTchd*sin(pi/R P)); % Angle between 
the rotor tooth side and the line halfWAIRTchd  
WAIRTSchd  = halfWAIRTchd/(SPAIR);          % Width of a fringing flux 
tube  
WRTTS   = (WRTchord - pars(56))/2;          % Width of one side of the 
rotor tooth tip not including the rotor shank  
lRinttoROD = sqrt(halfWAIRTchd^2+(ROD/2-Rint)^2-2*( ROD/2-
Rint)*halfWAIRTchd*cos(pi-pi/RP-theta_Rfr)); % length of the line 
extending from the rotor tooth tip side to the inte rsection point in 
the middle of the rotor slot  
% ** Fringing permeance from rotor slot to rotor bo ttom  
WRTB2   = WRTTS;                            % Ending radius of RFRB 
flux tube  
WRTB1   = max(min([WRTchord/SPT/4 HRTSH/2 WRTTS/2]) , 0.0001); % 
Starting radius of RFRB flux tube  
RFRB = 1./(mu0*GLP*2/pi*log(WRTB2/WRTB1));  
% ** Fringing permeance from airgap to rotor side  
if  halfWAIRTchd < (HRTSH+HRTT)  
    % Uniform flux tube widths can be used  
    NPRTS   = max(ceil((HRTT+WRTB1)/WAIRTSchd),1);  
    NPRTS = NPRTS*(NPRTS<SPAIR) + SPAIR*(NPRTS>=SPA IR); % if-else  
    NPRTB = (SPAIR-NPRTS)*(NPRTS<SPAIR); % if-else  
    lPAGFR = theta_Rfr*(0.5*WAIRTSchd+(0:WAIRTSchd: WAIRTSchd*(SPAIR-
1))'); % for-loop  
    % Length of flux tube overlapping side and bottom  
    lPAGFR(NPRTS) = lPAGFR(NPRTS)+WRTB1/WAIRTSchd*( WRTB1/2*pi/2);  
    RAGFR = lPAGFR./(mu0*WAIRTSchd*GLP);  
    % **Middle rotor slot leakage  
    lmeanRTSL = 2*sin(pi/RP)*(lRinttoROD-halfWAIRTc hd);  
    wRTSL = (ROD/2-DC/2)/3;  
    RRTL = lmeanRTSL/(mu0*GLP*wRTSL);  
else  
    % Flux tubes with decreasing width must be used  
    theta_Rfr2 = min(acos((HRTSH+HRTT)/halfWAIRTchd ),theta_Rfr); 
%Portion of theta_Rfr where the flux tube is a tria ngle with non-
uniform width  
    theta_Rfr1 = theta_Rfr - theta_Rfr2; %Portion of theta_Rfr where 
the flux tube is still an arc with uniform width  
    WRFR2 = HRTSH+HRTT;     % Total width of the flux tubes at the 
rotor and field winding side  
    WRFRs = WRFR2/SPAIR;    % Width of an individual flux tube at the 
small end  
    WRFRavg = (WRFRs*theta_Rfr2+WAIRTSchd*theta_Rfr 1)/theta_Rfr; % 
Average width of the flux tubes  
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    NPRTS   = max(ceil((HRTT+WRTB1)/WRFRs),1);  
    NPRTS = NPRTS*(NPRTS<SPAIR) + SPAIR*(NPRTS>=SPA IR); % if-else  
    NPRTB = (SPAIR-NPRTS)*(NPRTS<SPAIR); % if-elsE  
    lPAGFR = theta_Rfr*(0.5*WAIRTSchd+(0:WAIRTSchd: WAIRTSchd*(SPAIR-
1))'); % for-loop  
    % Length of flux tube overlapping side and bottom  
    lPAGFR(NPRTS) = lPAGFR(NPRTS)+WRTB1/WRFRs*(WRTB 1/2*pi/2);  
    RAGFR = lPAGFR./(mu0*WRFRavg*GLP);  
    % **Middle rotor slot leakage  
    lmeanRTSL = 2*sin(pi/RP)*(lRinttoROD-WRFR2);  
    wRTSL = (ROD/2-DC/2)/3;  
    RRTL = lmeanRTSL/(mu0*GLP*wRTSL);  
end  
  
% Leakage reluctance of damper windings in air  
Rair_ldp_out = 1e16*ones(2*NRrtrt,1);  
for  i = 1:2*NRrtrt  
    if  damper_rtip_out(i) > 0  
        Rair_ldp_out(i) = 1./(mu0*GLP/8/pi + mu0*GL P/2* ...  
            
log((sqrt(2*G1*(ARD_ldp_out(i)/GLP+damper_rtip_out( i))+G1^2) ...  
            
+G1+ARD_ldp_out(i)/GLP+damper_rtip_out(i))./(ARD_ld p_out(i)/GLP+damper_
rtip_out(i))));  
    end  
end  
Rair_ldp_in = 1./(mu0*GLP/8/pi + mu0*GLP/2* ...  
            log((sqrt(2*G1*(ARD_ldp_in/GLP+damper_r tip_in)+G1^2) ...  
            
+G1+ARD_ldp_in/GLP+damper_rtip_in)./(ARD_ldp_in/GLP +damper_rtip_in)));  
Rair_ldp = 
[Rair_ldp_out(1:end/2);Rair_ldp_in(1:end/2);Rair_ld p_in(end/2+2:end);Ra
ir_ldp_out(end/2+1:end)];  
  
% **Air permeances  
Rair = 
[RSTL*ones(S,1);RFDL*ones(2,1);RRTL;RAGFR;flipud(RA GFR);RFRB*ones(2,1);
Rair_ldp];  
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%-------------------------------------------------- --------------------  
% [G,dG] =  
% get_Pag(theta_rm,pars,parx,Gmaxrt,Gmaxsl,anglert, anglesl,qrrcs,qrscs)  
%  
% Determines the airgap permeance between each roto r tooth/slot section 
and  
% stator tooth.   
% 
% OUTPUTS: G        - matrix of airgap permeances, size S x D+Dslot  
%          dG       - derivative of G w.r.t. thetar , size S x D+Dslot  
% 
% INPUTS:  theta_rm - mechanical rotor position (sh ifted to work 
herein)  
%          pars     - parameters  
%          parx     - simulation parameters  
%          Gmaxrt   - permeance when a rotor tooth section is 
completely  
%          under a stator tooth  
%          Gmaxsl   - permeance when a rotor slot s ection is completely  
%          under a stator tooth  
%          anglert  - angle between each rotor toot h section and stator  
%          tooth  
%          anglesl  - angle between each rotor slot  section and stator  
%          tooth  
%          qrrcs    - geometric case for rotor toot h section  
%          qrscs    - geometric case for rotor slot  section  
%-------------------------------------------------- --------------------  
function  [G,dG] = 
get_Pag(theta_rm,pars,parx,Gmaxrt,Gmaxsl,anglert,an glesl,qrrcs,qrscs)  
%DIMENSIONS & PARAMETERS 
ID      = pars(2);      % Stator inner diameter, m  
GLS     = pars(3);      % Stator stack length, m  
ROD     = pars(24);     % Rotor outer diameter, m  
RP      = pars(28);     % Number of rotor poles  
STTW    = pars(21);     % Width of stator tooth, m  
RPIT    = pars(32);     % Rotor pole pitch coefficient, m  
B0      = pars(9);      % Stator slot width, m  
g       = pars(14);     % Airgap length, m  
slope   = pars(54);     % Used to calculate airgap permeance, rad  
SPT     = parx(2);      % Number of rotor tooth sections  
D       = SPT*2;        % Number of rotor tooth sections over a pole 
pair  
S1P     = parx(3)/RP;   % Number of stator teeth per pole  
Dslot   = 4*parx(29);   % Number of rotor slot sections over a pole 
pair  
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mu0     = pi*4e-7;      % Permeability of free space  
% Relevant angular spans  
WRTSang = 2*pi*RPIT/RP/SPT; % Angular width of rotor tooth section  
WRSang  = 2*pi*(1-RPIT)/RP/(Dslot/2); % Angular width of rotor slot 
section  
qs      = STTW/ID*RP; % Electrical angular width of stator tooth  
qs1     = B0/ID*RP; % Electrical angular width of stator slot  
qrr     = WRTSang*RP/2; % Electrical angular width of rotor tooth 
section  
qrs     = WRSang*RP/2; % Electrical angular width of rotor slot section  
aoff    = 1e-13; % Angular offset used to avoid numerical errors  
% Initialize matrices  
Grt     = zeros(S1P,D);  
dGrt    = zeros(S1P,D);  
Gsl     = zeros(S1P,Dslot);  
dGsl    = zeros(S1P,Dslot);  
% position (Electrical) of rotor tooth and rotor  
% slot sections in relation to stator teeth  
posrt = mod(RP/2*(theta_rm+anglert),2*pi); % defined as shown below  
possl = mod(RP/2*(theta_rm+anglesl),2*pi); % defined as shown below  
% Calculate airgap permeances over the rotor tooth (pole)  
% Common terms in permeances and derivative calcula tions  
Pm1 = (mu0*GLS/slope);  
Pm2 = ROD/RP*slope;  
dPm1 = (mu0*GLS*ROD/RP);  
switch  qrrcs  
  case  1 % qrr <= qs1/2  
    Gedges = [0 qrr qs1/2 qs1/2+qrr-aoff (2*S1P-1)* (qs+qs1)+qs1/2+aoff 
...  
      (2*S1P-1)*(qs+qs1)+qs1/2+qrr (2*S1P-1)*(qs+qs 1)+qs1 ...  
      (2*S1P-1)*(qs+qs1)+qs1+qrr 2*pi];  
    [ncs,Gcs] = histc(posrt,Gedges,2);  
    % calculate permeances for non-zero cases (Case 4 P =0)  
    % Case 1  
    Grt(Gcs==1) = (Gmaxrt*(qrr - posrt(Gcs==1))/qrr ) + ...  
        Pm1*log((posrt(Gcs==1)*Pm2 + g)/g);  
    dGrt(Gcs==1) = -Gmaxrt/qrr + dPm1./(posrt(Gcs== 1)*Pm2 + g);  
    % Case 2  
    Grt(Gcs==2) = Pm1*log((posrt(Gcs==2)*Pm2+g)./(( posrt(Gcs==2)-
qrr)*Pm2+g));  
    dGrt(Gcs==2) = dPm1*(1./(posrt(Gcs==2)*Pm2 + g)  - ...  
        1./((posrt(Gcs==2)-qrr)*Pm2 + g));  
    % Case 3  
    Grt(Gcs==3) = Pm1*(log(qs1/2*Pm2 + g) - log((po srt(Gcs==3)-qrr)*Pm2 
+ g));  
    dGrt(Gcs==3) = dPm1*(-1./((posrt(Gcs==3)-qrr)*P m2 + g));  
    % Case 5  
    Grt(Gcs==5) = Pm1*(log(qs1/2*Pm2 + g) - ...  
        log((2*pi - posrt(Gcs==5) - qs)*Pm2 + g));  
    dGrt(Gcs==5) = dPm1*(1./((2*pi - posrt(Gcs==5) - qs)*Pm2 + g));  
    % Case 6  
    Grt(Gcs==6) = Pm1*(log((2*pi-posrt(Gcs==6)-qs+q rr)*Pm2 + g) - ...  
        log((2*pi-posrt(Gcs==6)-qs)*Pm2 + g));  
    dGrt(Gcs==6) = dPm1*(-1./((2*pi-posrt(Gcs==6)-q s+qrr)*Pm2 + g) + 
...  
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        1./((2*pi-posrt(Gcs==6)-qs)*Pm2 + g));  
    % Case 7  
    Grt(Gcs==7) = Gmaxrt*(posrt(Gcs==7)-2*pi+qs)/qr r + ...  
        Pm1*log(((2*pi-qs-posrt(Gcs==7)+qrr)*Pm2 + g)/g);  
    dGrt(Gcs==7) = Gmaxrt/qrr+dPm1*(-1./((2*pi-qs-
posrt(Gcs==7)+qrr)*Pm2+g));  
    % Case 8  
    Grt(Gcs>=8) = Gmaxrt;  
    dGrt(Gcs>=8) = 0;  
  case  2 % (qrr > qs1/2) && (qrr <= qs)  
    Gedges = [0 qs1/2 qrr qrr+qs1/2-aoff (2*S1P-1)* (qs+qs1) + 
qs1/2+aoff ...  
        (2*S1P-1)*(qs+qs1) + qs1 (2*S1P-1)*(qs+qs1)  + qs1/2 + qrr ...  
        (2*S1P-1)*(qs+qs1) + qs1 + qrr max(2*S1P*(q s+qs1),2*pi)];  
    [ncs,Gcs] = histc(posrt,Gedges,2);  
    % calculate permeances for non-zero cases (Case 4 P =0)  
    % Case 1  
    Grt(Gcs==1) = (Gmaxrt*(qrr - posrt(Gcs==1))/qrr ) + ...  
        Pm1*log((posrt(Gcs==1)*Pm2 + g)/g);  
    dGrt(Gcs==1) = -Gmaxrt/qrr + dPm1./(posrt(Gcs== 1)*Pm2 + g);  
    % Case 2  
    Grt(Gcs==2) = (Gmaxrt*(qrr-posrt(Gcs==2))/qrr)+ Pm1*log((qs1/2*Pm2 + 
g)/g);  
    dGrt(Gcs==2) = -Gmaxrt/qrr;  
    % Case 3  
    Grt(Gcs==3) = Pm1*(log(qs1/2*Pm2 + g) - log((po srt(Gcs==3)-
qrr)*Pm2+ g));  
    dGrt(Gcs==3) = -dPm1./((posrt(Gcs==3) - qrr)*Pm 2 + g);  
    % Case 5  
    Grt(Gcs==5) = Pm1*(log(qs1/2*Pm2+g)-log((2*pi-p osrt(Gcs==5)-qs)*Pm2 
+ g));  
    dGrt(Gcs==5) = dPm1./((2*pi - posrt(Gcs==5) - q s)*Pm2 + g);  
    % Case 6  
    Grt(Gcs==6)=(Gmaxrt*(posrt(Gcs==6)+qs-
2*pi)/qrr)+Pm1*log((qs1/2*Pm2+g)/g);  
    dGrt(Gcs==6) = Gmaxrt/qrr;  
    % Case 7  
    Grt(Gcs==7) = (Gmaxrt*(posrt(Gcs==7) + qs - 2*p i)/qrr) + ...  
        Pm1*log(((2*pi - posrt(Gcs==7) - qs + qrr)* Pm2 + g)/g);  
    dGrt(Gcs==7) = Gmaxrt/qrr - dPm1./((2*pi-posrt( Gcs==7)-qs+qrr)*Pm2 
+ g);  
    % Case 8  
    Grt(Gcs>=8) = Gmaxrt;  
    dGrt(Gcs>=8) = 0;  
  case  3 % (qrr > qs) && (qrr <= qs +qs1/2)  
    Gedges = [0 qrr-qs qs1/2 qrr qrr+qs1/2-aoff ...  
        (2*S1P-1)*(qs+qs1)+qs1/2+aoff (2*S1P-1)*(qs +qs1)+qs1 ...  
        (2*S1P-1)*(qs+qs1)+qs1/2+qrr max(2*S1P*(qs+ qs1),2*pi)];  
    [ncs,Gcs] = histc(posrt,Gedges,2);  
    % calculate permeances for non-zero cases (Case 5 P =0)  
    % Case 1  
    Grt(Gcs==1) = Gmaxrt+Pm1*(log((posrt(Gcs==1)*RO D/RP)*slope+g)-
log(g))+ ...  
            Pm1*(log((qrr-qs-posrt(Gcs==1))*Pm2 + g ) - log(g));  
    dGrt(Gcs==1) = dPm1*(-1./((qrr-qs-posrt(Gcs==1) )*Pm2 + g) + ...  
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        1./((posrt(Gcs==1))*Pm2 + g));  
    % Case 2  
    Grt(Gcs==2) = Gmaxrt*(qrr - posrt(Gcs==2))/qs +  ...  
        Pm1*(log((posrt(Gcs==2)*ROD/RP)*slope + g) - log(g));  
    dGrt(Gcs==2) = -Gmaxrt/qs + dPm1*(1./(posrt(Gcs ==2)*Pm2 + g));  
    % Case 3  
    Grt(Gcs==3) = Gmaxrt*(qrr - posrt(Gcs==3))/qs +  ...  
        Pm1*(log((qs1/2*ROD/RP)*slope + g) - log(g) );  
    dGrt(Gcs==3) = -Gmaxrt/qs;  
    % Case 4  
    Grt(Gcs==4) = Pm1*(log((qs1/2*ROD/RP)*slope + g ) - ...  
        log((posrt(Gcs==4)-qrr)*Pm2 + g));  
    dGrt(Gcs==4) = dPm1*(-1./((posrt(Gcs==4)-qrr)*P m2 + g));  
    % Case 6  
    Grt(Gcs==6) = Pm1*(log((qs1/2*ROD/RP)*slope + g ) - ...  
        log((2*pi-qs-posrt(Gcs==6))*Pm2 + g));  
    dGrt(Gcs==6) = dPm1*(1./((2*pi-qs-posrt(Gcs==6) )*Pm2 + g));  
    % Case 7  
    Grt(Gcs==7) = Gmaxrt*(qs-(2*pi-posrt(Gcs==7)))/ qs + ...  
        Pm1*(log((qs1/2*ROD/RP)*slope + g) - log(g) );  
    dGrt(Gcs==7) = Gmaxrt/qs;  
    % Case 8  
    Grt(Gcs>=8) = Gmaxrt*(qs-(2*pi-posrt(Gcs>=8)))/ qs + ...  
        Pm1*(log((2*pi-qs-posrt(Gcs>=8)+qrr)*Pm2 + g) - log(g));  
    dGrt(Gcs>=8) = Gmaxrt/qs + dPm1*(-1./((2*pi-qs-
posrt(Gcs>=8)+qrr)*Pm2+g));  
  case  4 % (qrr > qs+qs1/2) && (qrr <= qs+qs1)  
    Gedges = [0 qrr-qs-qs1/2 qs1/2 qrr-qs qrr qs1/2 +qrr-aoff ...  
        (2*S1P-1)*(qs+qs1)+qs1/2+aoff (2*S1P-1)*(qs +qs1)+qs1 2*pi];  
    [ncs,Gcs] = histc(posrt,Gedges,2);  
    % calculate permeances for non-zero cases (Case 6 P =0)  
    % Case 1  
    Grt(Gcs==1) = Gmaxrt + Pm1*(log((posrt(Gcs==1)) *Pm2 + g) - log(g)) 
+ ...  
        Pm1*(log(qs1/2*Pm2 + g) - log(g));  
    dGrt(Gcs==1) = dPm1*(1./((posrt(Gcs==1))*Pm2 + g));  
    % Case 2  
    Grt(Gcs==2) = Gmaxrt + Pm1*(log((posrt(Gcs==2)) *Pm2 + g) - log(g)) 
+ ...  
        Pm1*(log((qrr-posrt(Gcs==2)-qs)*Pm2 + g) - log(g));  
    dGrt(Gcs==2) = dPm1*(1./((posrt(Gcs==2))*Pm2 + g) - ...  
        1./((qrr-posrt(Gcs==2)-qs)*Pm2 + g));  
    % Case 3  
    Grt(Gcs==3) = Gmaxrt + Pm1*(log(qs1/2*Pm2 + g) - log(g)) + ...  
        Pm1*(log((qrr-posrt(Gcs==3)-qs)*Pm2 + g) - log(g));  
    dGrt(Gcs==3) = dPm1*(-1./((qrr-posrt(Gcs==3)-qs )*Pm2 + g));  
    % Case 4  
    Grt(Gcs==4) = Gmaxrt*(qrr-posrt(Gcs==4))/qs + P m1*(log(qs1/2*Pm2 + 
g) ...  
        - log(g));  
    dGrt(Gcs==4) = -Gmaxrt/qs;  
    % Case 5  
    Grt(Gcs==5) = Pm1*(log(qs1/2*Pm2 + g) - log((po srt(Gcs==5)-qrr)*Pm2 
+ g));  
    dGrt(Gcs==5) = dPm1*(-1./((posrt(Gcs==5)-qrr)*P m2 + g));  



175 
 

 

    % Case 7  
    Grt(Gcs==7) = Pm1*(log(qs1/2*Pm2 + g)-log((2*pi -posrt(Gcs==7)-
qs)*Pm2+g));  
    dGrt(Gcs==7) = dPm1*(1./((2*pi-posrt(Gcs==7)-qs )*Pm2 + g));  
    % Case 8  
    Grt(Gcs>=8) = Gmaxrt*(posrt(Gcs>=8)-2*pi+qs)/qs  + ...  
        Pm1*(log(qs1/2*Pm2+g) - log(g));  
    dGrt(Gcs>=8) = Gmaxrt/qs;  
  case  5 % (qrr > qs+qs1)  
    Gedges = [0 qs1/2 qrr-qs-qs1/2 qrr-qs qrr qs1/2 +qrr-aoff ...  
        (2*S1P-1)*(qs+qs1)+qs1/2+aoff (2*S1P-1)*(qs +qs1)+qs1 2*pi];  
    [ncs,Gcs] = histc(posrt,Gedges,2);  
    % calculate permeances for non-zero cases (Case 6 P =0)  
    % Case 1  
    Grt(Gcs==1) = Gmaxrt + Pm1*(log((posrt(Gcs==1)) *Pm2 + g) - log(g)) 
+ ...  
        Pm1*(log(qs1/2*Pm2 + g) - log(g));  
    dGrt(Gcs==1) = dPm1*(1./((posrt(Gcs==1))*Pm2 + g));  
    % Case 2  
    Grt(Gcs==2) = Gmaxrt + Pm1*(log(qs1/2*Pm2 + g) - log(g)) + ...  
        Pm1*(log(qs1/2*Pm2 + g) - log(g));  
    dGrt(Gcs==2) = 0;  
    % Case 3  
    Grt(Gcs==3) = Gmaxrt + Pm1*(log(qs1/2*Pm2 + g) - log(g)) + ...  
        Pm1*(log((qrr-posrt(Gcs==3)-qs)*Pm2 + g) - log(g));  
    dGrt(Gcs==3) = dPm1*(-1./((qrr-posrt(Gcs==3)-qs )*Pm2 + g));  
    % Case 4  
    Grt(Gcs==4) = Gmaxrt*(qrr-posrt(Gcs==4))/qs + ...  
        Pm1*(log(qs1/2*Pm2 + g) - log(g));  
    dGrt(Gcs==4) = -Gmaxrt/qs;  
    % Case 5  
    Grt(Gcs==5) = Pm1*(log(qs1/2*Pm2 + g) - log((po srt(Gcs==5)-qrr)*Pm2 
+ g));  
    dGrt(Gcs==5) = dPm1*(-1./((posrt(Gcs==5)-qrr)*P m2 + g));  
    % Case 7  
    Grt(Gcs==7) = Pm1*(log(qs1/2*Pm2+g) - log((2*pi -posrt(Gcs==7)-
qs)*Pm2+g));  
    dGrt(Gcs==7) = dPm1*(1./((2*pi-posrt(Gcs==7)-qs )*Pm2 + g));  
    % Case 8  
    Grt(Gcs>=8) = Gmaxrt*(posrt(Gcs>=8)-2*pi+qs)/qs  + ...  
        Pm1*(log(qs1/2*Pm2 + g) - log(g));  
    dGrt(Gcs>=8) = Gmaxrt/qs;  
end  
% Calculate airgap permeances over the rotor slot ( inter-polar region)  
switch  qrscs  
  case  1 % qrs <= qs1/2  
    Gedges = [0 qrs qs1/2 qs1/2+qrs-aoff (2*S1P-1)* (qs+qs1)+qs1/2+aoff 
...  
        (2*S1P-1)*(qs+qs1)+qs1/2+qrs (2*S1P-1)*(qs+ qs1)+qs1 ...  
        (2*S1P-1)*(qs+qs1)+qs1+qrs 2*pi];  
    [ncs,Gcs] = histc(possl,Gedges,2);  
    % calculate permeances for non-zero cases (Case 4 P =0)  
    % Case 1  
    Gsl(Gcs==1) = (Gmaxsl*(qrs - possl(Gcs==1))/qrs ) + ...  
        Pm1*log((possl(Gcs==1)*Pm2 + g)/g);  
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    dGsl(Gcs==1) = -Gmaxsl/qrs + dPm1./(possl(Gcs== 1)*Pm2 + g);  
    % Case 2  
    Gsl(Gcs==2) = Pm1*log((possl(Gcs==2)*Pm2+g)./(( possl(Gcs==2)-
qrs)*Pm2+g));  
    dGsl(Gcs==2) = dPm1*(1./(possl(Gcs==2)*Pm2 + g)  - ...  
        1./((possl(Gcs==2)-qrs)*Pm2 + g));  
    % Case 3  
    Gsl(Gcs==3) = Pm1*(log(qs1/2*Pm2 + g) - log((po ssl(Gcs==3)-qrs)*Pm2 
+ g));  
    dGsl(Gcs==3) = dPm1*(-1./((possl(Gcs==3)-qrs)*P m2 + g));  
    % Case 5  
    Gsl(Gcs==5) = Pm1*(log(qs1/2*Pm2+g) - log((2*pi -possl(Gcs==5)-
qs)*Pm2+g));  
    dGsl(Gcs==5) = dPm1*(1./((2*pi - possl(Gcs==5) - qs)*Pm2 + g));  
    % Case 6  
    Gsl(Gcs==6) = Pm1*(log((2*pi-possl(Gcs==6)-qs+q rs)*Pm2 + g) - ...  
        log((2*pi-possl(Gcs==6)-qs)*Pm2 + g));  
    dGsl(Gcs==6) = dPm1*(-1./((2*pi-possl(Gcs==6)-q s+qrs)*Pm2 + g) + 
...  
        1./((2*pi-possl(Gcs==6)-qs)*Pm2 + g));  
    % Case 7  
    Gsl(Gcs==7) = Gmaxsl*(possl(Gcs==7)-2*pi+qs)/qr s + ...  
        Pm1*log(((2*pi-qs-possl(Gcs==7)+qrs)*Pm2 + g)/g);  
    dGsl(Gcs==7) = Gmaxsl/qrs+dPm1*(-1./((2*pi-qs-
possl(Gcs==7)+qrs)*Pm2+g));  
    % Case 8  
    Gsl(Gcs>=8) = Gmaxsl;  
    dGsl(Gcs>=8) = 0;  
  case  2 % (qrs > qs1/2) && (qrs <= qs)  
    Gedges = [0 qs1/2 qrs qrs+qs1/2-aoff (2*S1P-1)* (qs+qs1) + 
qs1/2+aoff ...  
        (2*S1P-1)*(qs+qs1) + qs1 (2*S1P-1)*(qs+qs1)  + qs1/2 + qrs ...  
        (2*S1P-1)*(qs+qs1) + qs1 + qrs max(2*S1P*(q s+qs1),2*pi)];  
    [ncs,Gcs] = histc(possl,Gedges,2);    
    % calculate permeances for non-zero cases (Case 4 P =0)  
    % Case 1  
    Gsl(Gcs==1) = (Gmaxsl*(qrs - possl(Gcs==1))/qrs ) + ...  
        Pm1*log((possl(Gcs==1)*Pm2 + g)/g);  
    dGsl(Gcs==1) = -Gmaxsl/qrs + dPm1./(possl(Gcs== 1)*Pm2 + g);  
    % Case 2  
    Gsl(Gcs==2) = (Gmaxsl*(qrs-possl(Gcs==2))/qrs) + 
Pm1*log((qs1/2*Pm2+g)/g);  
    dGsl(Gcs==2) = -Gmaxsl/qrs;  
    % Case 3  
    Gsl(Gcs==3) = Pm1*(log(qs1/2*Pm2 + g) - log((po ssl(Gcs==3)-qrs)*Pm2 
+ g));  
    dGsl(Gcs==3) = -dPm1./((possl(Gcs==3) - qrs)*Pm 2 + g);  
    % Case 5  
    Gsl(Gcs==5) = Pm1*(log(qs1/2*Pm2+g) - log((2*pi -possl(Gcs==5)-
qs)*Pm2+g));  
    dGsl(Gcs==5) = dPm1./((2*pi - possl(Gcs==5) - q s)*Pm2 + g);  
    % Case 6  
    Gsl(Gcs==6) = (Gmaxsl*(possl(Gcs==6) + qs - 2*p i)/qrs) + ...  
        Pm1*log((qs1/2*Pm2 + g)/g);  
    dGsl(Gcs==6) = Gmaxsl/qrs;  



177 
 

 

    % Case 7  
    Gsl(Gcs==7) = (Gmaxsl*(possl(Gcs==7) + qs - 2*p i)/qrs) + ...  
        Pm1*log(((2*pi - possl(Gcs==7) - qs + qrs)* Pm2 + g)/g);  
    dGsl(Gcs==7) = Gmaxsl/qrs - dPm1./((2*pi-possl( Gcs==7)-qs+qrs)*Pm2 
+ g);  
    % Case 8  
    Gsl(Gcs>=8) = Gmaxsl;  
    dGsl(Gcs>=8) = 0;  
  case  3 % (qrs > qs) && (qrs <= qs +qs1/2)  
    Gedges = [0 qrs-qs qs1/2 qrs qrs+qs1/2-aoff ...  
        (2*S1P-1)*(qs+qs1)+qs1/2+aoff (2*S1P-1)*(qs +qs1)+qs1 ...  
        (2*S1P-1)*(qs+qs1)+qs1/2+qrs max(2*S1P*(qs+ qs1),2*pi)];  
    [ncs,Gcs] = histc(possl,Gedges,2);    
    % calculate permeances for non-zero cases (Case 5 P =0)  
    % Case 1  
    Gsl(Gcs==1) = Gmaxsl+Pm1*(log((possl(Gcs==1)*RO D/RP)*slope+g)-
log(g))+ ...  
            Pm1*(log((qrs-qs-possl(Gcs==1))*Pm2 + g ) - log(g));  
    dGsl(Gcs==1) = dPm1*(-1./((qrs-qs-possl(Gcs==1) )*Pm2 + g) + ...  
        1./((possl(Gcs==1))*Pm2 + g));  
    % Case 2  
    Gsl(Gcs==2) = Gmaxsl*(qrs - possl(Gcs==2))/qs +  ...  
        Pm1*(log((possl(Gcs==2)*ROD/RP)*slope + g) - log(g));  
    dGsl(Gcs==2) = -Gmaxsl/qs + dPm1*(1./(possl(Gcs ==2)*Pm2 + g));  
    % Case 3  
    Gsl(Gcs==3) = Gmaxsl*(qrs - possl(Gcs==3))/qs +  ...  
        Pm1*(log((qs1/2*ROD/RP)*slope + g) - log(g) );  
    dGsl(Gcs==3) = -Gmaxsl/qs;  
    % Case 4  
    Gsl(Gcs==4) = Pm1*(log((qs1/2*ROD/RP)*slope + g ) - ...  
        log((possl(Gcs==4)-qrs)*Pm2 + g));  
    dGsl(Gcs==4) = dPm1*(-1./((possl(Gcs==4)-qrs)*P m2 + g));  
    % Case 6  
    Gsl(Gcs==6) = Pm1*(log((qs1/2*ROD/RP)*slope + g ) - ...  
        log((2*pi-qs-possl(Gcs==6))*Pm2 + g));  
    dGsl(Gcs==6) = dPm1*(1./((2*pi-qs-possl(Gcs==6) )*Pm2 + g));  
    % Case 7  
    Gsl(Gcs==7) = Gmaxsl*(qs-(2*pi-possl(Gcs==7)))/ qs + ...  
        Pm1*(log((qs1/2*ROD/RP)*slope + g) - log(g) );  
    dGsl(Gcs==7) = Gmaxsl/qs;  
    % Case 8  
    Gsl(Gcs>=8) = Gmaxsl*(qs-(2*pi-possl(Gcs>=8)))/ qs + ...  
        Pm1*(log((2*pi-qs-possl(Gcs>=8)+qrs)*Pm2 + g) - log(g));  
    dGsl(Gcs>=8) = Gmaxsl/qs + dPm1*(-1./((2*pi-qs-
possl(Gcs>=8)+qrs)*Pm2+g));  
  case  4 % (qrs > qs+qs1/2) && (qrs <= qs+qs1)  
    Gedges = [0 qrs-qs-qs1/2 qs1/2 qrs-qs qrs qs1/2 +qrs-aoff ...  
        (2*S1P-1)*(qs+qs1)+qs1/2+aoff (2*S1P-1)*(qs +qs1)+qs1 2*pi];  
    [ncs,Gcs] = histc(possl,Gedges,2);  
    % calculate permeances for non-zero cases (Case 6 P =0)  
    % Case 1  
    Gsl(Gcs==1) = Gmaxsl + Pm1*(log((possl(Gcs==1)) *Pm2 + g) - log(g)) 
+ ...  
        Pm1*(log(qs1/2*Pm2 + g) - log(g));  
    dGsl(Gcs==1) = dPm1*(1./((possl(Gcs==1))*Pm2 + g));  



178 
 

 

    % Case 2  
    Gsl(Gcs==2) = Gmaxsl + Pm1*(log((possl(Gcs==2)) *Pm2 + g) - log(g)) 
+ ...  
        Pm1*(log((qrs-possl(Gcs==2)-qs)*Pm2 + g) - log(g));  
    dGsl(Gcs==2) = dPm1*(1./((possl(Gcs==2))*Pm2 + g) - ...  
        1./((qrs-possl(Gcs==2)-qs)*Pm2 + g));  
    % Case 3  
    Gsl(Gcs==3) = Gmaxsl + Pm1*(log(qs1/2*Pm2 + g) - log(g)) + ...  
        Pm1*(log((qrs-possl(Gcs==3)-qs)*Pm2 + g) - log(g));  
    dGsl(Gcs==3) = dPm1*(-1./((qrs-possl(Gcs==3)-qs )*Pm2 + g));  
    % Case 4  
    Gsl(Gcs==4) = Gmaxsl*(qrs-possl(Gcs==4))/qs + ...  
        Pm1*(log(qs1/2*Pm2 + g) - log(g));  
    dGsl(Gcs==4) = -Gmaxsl/qs;  
    % Case 5  
    Gsl(Gcs==5) = Pm1*(log(qs1/2*Pm2 + g) - log((po ssl(Gcs==5)-qrs)*Pm2 
+ g));  
    dGsl(Gcs==5) = dPm1*(-1./((possl(Gcs==5)-qrs)*P m2 + g));  
    % Case 7  
    Gsl(Gcs==7) = Pm1*(log(qs1/2*Pm2+g) - log((2*pi -possl(Gcs==7)-
qs)*Pm2+g));  
    dGsl(Gcs==7) = dPm1*(1./((2*pi-possl(Gcs==7)-qs )*Pm2 + g));  
    % Case 8  
    Gsl(Gcs>=8) = Gmaxsl*(possl(Gcs>=8)-2*pi+qs)/qs  + ...  
        Pm1*(log(qs1/2*Pm2 + g) - log(g));  
    dGsl(Gcs>=8) = Gmaxsl/qs;  
  case  5 % (qrs > qs+qs1)  
    Gedges = [0 qs1/2 qrs-qs-qs1/2 qrs-qs qrs qs1/2 +qrs-aoff ...  
        (2*S1P-1)*(qs+qs1)+qs1/2+aoff (2*S1P-1)*(qs +qs1)+qs1 2*pi];  
    [ncs,Gcs] = histc(possl,Gedges,2);  
    % calculate permeances for non-zero cases (Case 6 P =0)  
    % Case 1  
    Gsl(Gcs==1) = Gmaxsl + Pm1*(log((possl(Gcs==1)) *Pm2 + g) - log(g)) 
+ ...  
        Pm1*(log(qs1/2*Pm2 + g) - log(g));  
    dGsl(Gcs==1) = dPm1*(1./((possl(Gcs==1))*Pm2 + g));  
    % Case 2  
    Gsl(Gcs==2) = Gmaxsl + Pm1*(log(qs1/2*Pm2 + g) - log(g)) + ...  
        Pm1*(log(qs1/2*Pm2 + g) - log(g));  
    dGsl(Gcs==2) = 0;  
    % Case 3  
    Gsl(Gcs==3) = Gmaxsl + Pm1*(log(qs1/2*Pm2 + g) - log(g)) + ...  
        Pm1*(log((qrs-possl(Gcs==3)-qs)*Pm2 + g) - log(g));  
    dGsl(Gcs==3) = dPm1*(-1./((qrs-possl(Gcs==3)-qs )*Pm2 + g));  
    % Case 4  
    Gsl(Gcs==4) = Gmaxsl*(qrs-possl(Gcs==4))/qs+Pm1 *(log(qs1/2*Pm2+g)-
log(g));  
    dGsl(Gcs==4) = -Gmaxsl/qs;  
    % Case 5  
    Gsl(Gcs==5) = Pm1*(log(qs1/2*Pm2 + g) - log((po ssl(Gcs==5)-qrs)*Pm2 
+ g));  
    dGsl(Gcs==5) = dPm1*(-1./((possl(Gcs==5)-qrs)*P m2 + g));  
    % Case 7  
    Gsl(Gcs==7) = Pm1*(log(qs1/2*Pm2+g) - log((2*pi -possl(Gcs==7)-
qs)*Pm2+g));  
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    dGsl(Gcs==7) = dPm1*(1./((2*pi-possl(Gcs==7)-qs )*Pm2 + g));  
    % Case 8  
    Gsl(Gcs>=8) = Gmaxsl*(possl(Gcs>=8)-2*pi+qs)/qs  + ...  
        Pm1*(log(qs1/2*Pm2 + g) - log(g));  
    dGsl(Gcs>=8) = Gmaxsl/qs;  
end  
% Construct final matrices  
G = [Grt(:,1:SPT) Gsl(:,1:Dslot/2) Grt(:,SPT+1:D) 
Gsl(:,Dslot/2+1:Dslot)];  
dG=[dGrt(:,1:SPT) dGsl(:,1:Dslot/2) dGrt(:,SPT+1:D)  
dGsl(:,Dslot/2+1:Dslot)];  
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%-------------------------------------------------- --------------------  
% AUTHORS:  Michelle Bash, Steven D. Pekarek  
%-------------------------------------------------- --------------------  
% CONTACT:  School of Electrical & Computer Enginee ring  
%           Purdue University  
%           465 Northwestern Ave.  
%           West Lafayette, IN 47907  
%           765-494-3434, spekarek@ecn.purdue.edu  
%-------------------------------------------------- --------------------  
% May 1, 2009  
%-------------------------------------------------- --------------------  
% J = get_J(Crfe,Ofe,A,mus,areas,dm_dbs,x)  
% 
% Determines the Jacobian.  
% 
% OUTPUTS: J      - Jacobian  
% 
% INPUTS:  Crfe   - Reluctance connection matrix  
%          Ofe    - orientation matrix  
%          A      - A * x = F  
%          mus    - relative permeability correspon ding to iron 
branches  
%          areas  - areas of the iron branches  
%          dm_dbs - derivative of relative permeabi lities  
%          x      - mesh fluxes  
%-------------------------------------------------- --------------------  
function  J = get_J(Crfe,Ofe,A,mus,areas,dm_dbs,x)  
% IRON 
% Stator yoke - S  
% Stator teeth - S  
% Rotor yoke below the slot - 1  
% Rotor tooth shank - 1  
% Rotor yoke connected to shank - 2  
% Rotor tooth tips radial - (D - 4*NRrtrt)  
% Rotor tooth to rotor tooth tangential - 4*NRrtrt  
% Rotor tooth tangential at sides of tooth tips - 4  
% AIR  
% Stator tooth leakage - S  
% Field winding leakage - 2  
% Middle rotor slot leakage - 1  
% Fringing permeance from rotor side to airgap boun dary - Dsl  
% Remaining air gap terms - Nam --air  
% Build Jacobian using building algorithm  
pA = zeros(size(A));  
ind1 = abs(Crfe(:,2));  
ind2 = abs(Crfe(:,3));  
dRdPhi = -Crfe(:,1).*dm_dbs./(mus.*areas);  
for  i=1:length(Crfe)    
    if  ind1(i)*ind2(i)>0 %&& ind2(i)>0  
        neg = sign(Crfe(i,2)*Crfe(i,3));  
        pA(ind1(i),ind1(i)) = pA(ind1(i),ind1(i)) +  ...  
          dRdPhi(i)*Ofe(i,ind1(i))*(x(ind1(i)) - ne g*x(ind2(i)));  
        pA(ind2(i),ind2(i)) = pA(ind2(i),ind2(i)) +  ...  
          dRdPhi(i)*Ofe(i,ind2(i))*(x(ind2(i)) - ne g*x(ind1(i)));  
        pA(ind1(i),ind2(i)) = pA(ind1(i),ind2(i)) +  ...  
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          dRdPhi(i)*Ofe(i,ind2(i))*(x(ind1(i)) - ne g*x(ind2(i)));  
        pA(ind2(i),ind1(i)) = pA(ind1(i),ind2(i));  
    elseif  ind1(i)>0  
        neg = sign(Crfe(i,2));  
        pA(ind1(i),ind1(i)) = pA(ind1(i),ind1(i)) +  ...  
          dRdPhi(i)*Ofe(i,ind1(i))*neg*x(ind1(i));  
    elseif  ind2(i)>0  
        neg = sign(Crfe(i,3));  
        pA(ind2(i),ind2(i)) = pA(ind2(i),ind2(i)) +  ...  
          dRdPhi(i)*Ofe(i,ind2(i))*neg*x(ind2(i));  
    end      
end  
J = A+pA; 
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%-------------------------------------------------- --------------------  
% AUTHORS:  Xiaoqi Wang, Michelle Bash, Steven D. P ekarek  
%-------------------------------------------------- --------------------  
% CONTACT:  School of Electrical & Computer Enginee ring  
%           Purdue University  
%           465 Northwestern Ave.  
%           West Lafayette, IN 47907  
%           765-494-3434, spekarek@ecn.purdue.edu  
%-------------------------------------------------- --------------------  
% Apr 1, 2013  
%-------------------------------------------------- --------------------  
% [A,d,Cr] = 
get_meshmatrices(Rair,PTClist,Riron,parx,pars,Nabcf ,Cr,Cvconn)  
%  
% Builds the matrices A and d used to solve for flu x. Outputs Cr for 
use by  
% get_J.m  
% 
% OUTPUTS: A,d      - matrices describing the MEC s ystem, A*x = 
d*current  
%          Cr       - connection matrix complete wi th reluctances  
% 
% INPUTS:  Rair     - air reluctances  
%          PTClist  - air gap permeances  
%          Riron    - iron reluctance  
%          parx     - simulation parameters  
%          pars     - geometry parameters  
%          Nabcf    - matrix of stator and rotor co nductor turns  
%          Cr       - Reluctance connection matrix  
%          Cvconn   - mmf source connection matrix  
%-------------------------------------------------- --------------------  
function  [A,d,Cr] = 
get_meshmatrices(Rair,PTClist,Riron,parx,pars,Nabcf ,Cr,Cvconn)  
% ------------------------------------------------- --------------------  
%PARAMETERS 
S     = parx(3)/pars(28); % Number of stator teeth per pole  
SPT   = parx(2);  
Dsl   = 4*parx(29);  
Nldp  = SPT-1; % Number of damper leakage meshes  
Nm    = 3 + S + length(PTClist) + Nldp;  % Total number of meshes  
% ---------------------------------------  
% Determine connection matrix size  
% Nrym = 3;               % Number of rotor yoke me shes  
% Nsm = S;                % Number of stator tooth meshes  
% Nam = length(PTClist);  % Number of air gap meshe s  
% Connection matrix reluctances  
% IRON 
% Stator yoke - S  
% Stator shank - S  
% Stator teeth - S  
% Rotor yoke below the slot - 1  
% Rotor tooth shank - 1  
% Damper bar in Rotor tooth shank - damper_nshank  
% Rotor yoke connected to shank - 2  
% Rotor tooth tips radial - (D - 4*NRrtrt)/2  
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% Damper windings in Rotor tooth tips radial - (D -  4*NRrtrt)/2  
% Rotor tooth to rotor tooth tangential - 4*NRrtrt/ 2 
% Damper windings in Rotor tooth to rotor tooth tan gential - 4*NRrtrt/2  
% Leakage of rotor pole tip - Nldp  
% Rotor tooth tangential at sides of tooth tips - 4 /2  
% AIR  
% Stator tooth leakage - S  
% Field winding leakage - 2  
% Middle rotor slot leakage - 2/2  
% Fringing permeance from rotor side to airgap boun dary - Dsl/2  
% Fringing permeance from rotor slot side to bottom  of tooth tip - 4/2  
% Airgap - Nam  
% ------------------------------------------------- ----------------  
% Combine the rotor pole tip leakage in the iron an d air  
Riron(end-2-Nldp+1:end-2) = ...  
    1./(1./Riron(end-2-Nldp+1:end-2) + 1./Rair(end- Nldp+1:end));  
Rair(end-Nldp+1:end) = Rair(end-Nldp+1:end)*0;  
%------------------------------------  
% Add reluctances to connection matrix  
RTC = 1./PTClist;  
Cr(:,1) = [Riron;Rair;RTC];  
% ------------------------------------------------- ----------------  
% Find A using building algorithm  
A = zeros(Nm);  
ind1 = abs(Cr(:,2));  
ind2 = abs(Cr(:,3));  
pm   = sign(Cr(:,3).*Cr(:,2));  
for  i=1:length(Cr)  
    if  ind1(i)*ind2(i)>0  
        A(ind1(i),ind1(i)) = A(ind1(i),ind1(i))+Cr( i,1);  
        A(ind2(i),ind2(i)) = A(ind2(i),ind2(i))+Cr( i,1);  
        A(ind1(i),ind2(i)) = A(ind1(i),ind2(i))-pm( i)*Cr(i,1);  
        A(ind2(i),ind1(i)) = A(ind2(i),ind1(i))-pm( i)*Cr(i,1);  
    elseif  ind1(i)>0    
        A(ind1(i),ind1(i)) = A(ind1(i),ind1(i))+Cr( i,1);  
    elseif  ind2(i)>0  
        A(ind2(i),ind2(i)) = A(ind2(i),ind2(i))+Cr( i,1);  
    end  
end  
% ------------------------------------  
% Find d: d = zeros(Nm,NPH+1);  
d = zeros(Nm,4);  
d(1:S+2,:) = Nabcf;  
d(S+1,:) = d(S+1,:)*sign(Cvconn(S+1));  
d(S+2,:) = d(S+2,:)*sign(Cvconn(S+2));  
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%-------------------------------------------------- --------------------  
% AUTHORS:  Xiaoqi Wang, Michelle Bash, Steven D. P ekarek  
%-------------------------------------------------- --------------------  
% CONTACT:  School of Electrical & Computer Enginee ring  
%           Purdue University  
%           465 Northwestern Ave.  
%           West Lafayette, IN 47907  
%           765-494-3434, spekarek@ecn.purdue.edu  
%-------------------------------------------------- --------------------  
% Apr 1, 2013  
%-------------------------------------------------- --------------------  
% [Crconn,Cvconn,O,PTCind,d_damper_1,d_damper_2,ind ex,flag] =  
% 
shape_alg(PTC,parx,pars,damperdata,Crcfixed,Cvcfixe d,rtid,index_old,fla
g_old)  
% 
% Determines the mesh connections for each reluctan ce and mmf source 
for a  
% given rotor position.  The first column of the co nnection matrics is 
left  
% as zero and is later updated with the specific re luctance/source 
value.  
% 
% OUTPUTS: Crconn - reluctance connections for the MEC mesh 
%          Cvconn - mmf source connections for the MEC mesh 
%          O      - orientation matrix: FLUX = O * mesh_flux, where 
FLUX is  
%          the flux through a reluctance  
%          PTCind - ordered indices of the relevant  airgap permeances  
%          d_damper_1 - represents MMF of damper cu rrents  
%          d_damper_2 - relates loop fluxes and the  flux linkage 
crossing each of two dampers  
%          index, flag - identify poles crossing  
% 
% INPUTS:  PTC    - Permeances in the air gap (S x D)  
%          parx   - machine parameters  
%          pars   - machine parameters  
%          damperdata - informations of damper bars  
%          Crcfixed - reluctance connections that d o not change  
%          Cvcfixed - mmf source connections  
%          rtid   - vector identifying type of node  in each rotor 
section  
%-------------------------------------------------- --------------------  
function  [Crconn,Cvconn,O,PTCind,d_damper_1,d_damper_2,inde x,flag] = 
shape_alg(PTC,parx,pars,damperdata,Crcfixed,Cvcfixe d,rtid,index_old,fla
g_old)  
%PARAMETERS 
SPT     = parx(2);  
SL      = parx(3);  
RP      = pars(28);  
S       = SL/RP;  
D       = 2*SPT;  
SPAIR   = parx(29);  
Dsl     = 4*parx(29);  
NRrtrt  = parx(27);  
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Nrtt    = D - 4*NRrtrt;  
damper_rtip = damperdata.damper_rtip;  
damper_ntip = damperdata.damper_ntip;  
damper_nshank = damperdata.damper_nshank;  
bartype = damperdata.bartype;  
% ------------------------------------------------- -------------------  
% Build source connections  
Cvconn = Cvcfixed;  
% ------------------------------------------------- -------------------  
% Based on airgap permeances, determine if a reorde ring is necessary 
and if  
% the rotor source mmf is negative. (Necessary beca use of single pole  
% model.)  
% st contains list of stator teeth with connections  in order  
% and rt is the corresponding list of rotor teeth s ections.  
% PTCind contains the indices of the non-zero perme ances in the correct  
% order.  
[rt,st] = find(PTC');  
rtup    = sort(rt,1, 'ascend' );  
rtdown  = sort(rt,1, 'descend' );  
if  ~isequal(rt,rtup) && ~isequal(rt,rtdown)  
    PTCnew = [PTC(:,(D+Dsl)/2+1:Dsl+D) PTC(:,1:(D+D sl)/2)];  
    [rt,st] = find(PTCnew');  
    PTCind1 = find([zeros(S,(D+Dsl)/2) PTC(:,(D+Dsl )/2+1:D+Dsl)]');  
    PTCind2 = find([PTC(:,1:(D+Dsl)/2) zeros(S,(D+D sl)/2)]');  
    PTCind = [PTCind1;PTCind2];  
    Cvconn(S+1) = -(S+1);  
    Cvconn(S+2) = -(S+2);  
elseif (rt(1)==(D+Dsl)/2+1)  
    Cvconn(S+1) = -(S+1);  
    Cvconn(S+2) = -(S+2);     
    PTCind = find(PTC');  
else  
    PTCind = find(PTC');  
end  
% ------------------------------------------------- -------------------  
% Build reluctance connections  
% Determine connection matrix size  
% Nrym = 3;               % Number of rotor yoke me shes  
% Nsm = S;                % Number of stator tooth meshes  
Nam = length(rt);  % Number of air gap meshes  
Nldp = SPT-1; % Number of damper leakage meshes  
Nm = 3 + S + Nam + Nldp;  % Total number of meshes  
% Initialize matrix  
Crconn = [Crcfixed;zeros(Nam,3)];  
% Connection matrix reluctances  
% IRON 
% Stator yoke - S  
% Stator teeth - S  
% Rotor yoke below the slot - 1  
% Rotor tooth shank - 1  
% Rotor yoke connected to shank - 2  
% Rotor tooth tips radial - (D - 4*NRrtrt)  
% Rotor tooth to rotor tooth tangential - 4*NRrtrt  
% Rotor tooth tangential at sides of tooth tips - 4  
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% AIR  
% Stator tooth leakage - S  
% Field winding leakage - 2  
% Middle rotor slot leakage - 2  
% Fringing permeance from rotor side to airgap boun dary - Dsl  
% Fringing permeance from rotor slot side to bottom  of tooth tip - 4  
% Remaining air gap terms - Nam  
% Indexing variables and other terms used in algori thm  
rtcs = S*3+16+D+Dsl;    % start index for air gap reluct  
rt1s = 2*S+4;           % start index for radial rotor tooth reluct  
rt2s = 2*S+4+D-4*NRrtrt; % start index for tangential rotor tooth reluct  
rt34s = S*3+12+D;       % start index for fringing permeances  
rtrts = 2*S+4+D;        % start index for side tangential rotor tooth 
reluct  
rfrbs = 3*S+12+D+Dsl;   % start index for rotor fringing to the bottom 
of the tooth tip  
rtposs = 1:D+Dsl;       % List of possible rotor nodes connecting to 
airgap reluctances  
rt1 = rtposs(rtid==1);  % Rotor nodes corresponding to RRTIN  
rt2 = rtposs(rtid==2);  % Rotor nodes corresponding to RRTOUT  
rt34 = rtposs(rtid>2);  % Rotor nodes corresponding to RAGFR  
rt5 = rt2([1 2*NRrtrt 2*NRrtrt+1 end]); % Rotor nodes corresponding to 
RRTS 
NRTBD = length(find(Crconn(rt2s+1:rt2s+NRrtrt,2)==0 )); % number of 
RRTOUT branches with both meshes unknown  
% Connections in stator and rotor which depend on a irgap config but do 
not  
% rely on shape algorithm  
% RSTL connection (stator tooth leakage)  
Crconn(3*S+8+D,3) = S+3+Nam;  
% RAG Connections (Air gap reluctances)  
Crconn(rtcs+1:rtcs+Nam,3) = (S+4:Nam+S+3)';  
Crconn(rtcs+1:rtcs+Nam,2) = [-(Nam+S+3) S+4:Nam+S+2 ]';  
%-------------------------------------------------- --------------  
% PROCESS SHAPES 
for  i=1:Nam-1  
% Current mesh (loop flux) to be assigned to a relu ctance  
currm = S+3+i;      
% Condition for the reluctance to be connected to a  negative loop  
neg = 1-2*(rt(1)+(D+Dsl)/2==rt(i+1));                
  if  st(i)==st(i+1) && rt(i)+1==rt(i+1)  
    % Base down triangle ------------------------------ -------------  
    bdt_cs = rtid(rt(i))*10 + rtid(rt(i+1));  
    switch  bdt_cs  
      case  11  
          % Connecting to 2 radial rotor tooth branches  
          Crconn(rt1s+find(rt1==rt(i)),3) = currm;  
          Crconn(rt1s+find(rt1==rt(i+1)),2) = neg*c urrm;  
      case  12  
          % Connecting to a radial branch and a tangential br anch  
          Crconn(rt1s+find(rt1==rt(i)),3) = currm;  
          Crconn(rt2s+find(rt2==rt(i+1)),3) = currm ;  
      case  22  
          % Connecting to 2 tangential branches  
          rt2off = rt(i)>D/4&&rt(i)<(D+Dsl)/2 || rt (i)>D*3/4+Dsl/2;  



187 
 

 

          Crconn(rt2s+find(rt2==rt(i))+rt2off,3) = currm;  
      case  21  
          % Connecting to a tangential branch and a radial br anch  
          Crconn(rt2s+find(rt2==rt(i)),3) = currm;  
          Crconn(rt1s+find(rt1==rt(i+1)),2) = neg*c urrm;  
      case  23  
          % Connecting to tangential branch & fringing to out er edge  
          Crconn(rtrts+find(rt5==rt(i)),3) = currm;  
          Crconn(rt34s+find(rt34==rt(i+1)),2) = neg *currm;  
      case  33  
          % Connecting to 2 fringing branch  
          rt3i = find(rt34==rt(i));  
          if  mod(rt3i,2*SPAIR) == SPAIR  
              Crconn(3*S+10+D+ceil(rt3i/(2*SPAIR)), 3) =  currm;  
              if  rt3i<2*SPAIR  
                  Crconn(rt2s+(2*NRrtrt-NRTBD+1:2*N Rrtrt+NRTBD)',2) = 
currm*ones(2*NRTBD,1);  
                  Crconn(rt2s+(4*NRrtrt-NRTBD+1:4*N Rrtrt)',2) = -
currm*ones(NRTBD,1);  
                  Crconn(rt2s+(1:NRTBD)',2) = -curr m*ones(NRTBD,1);  
                  Crconn(rtrts+(2:3)',2) = [currm;c urrm];  
                  Crconn(rtrts+[1;4],2) = [-currm;- currm];  
                  Crconn(rfrbs+(2:3)',3) = [currm;c urrm];  
              else  
                  Crconn(rt2s+(1:NRTBD)',2) = currm *ones(NRTBD,1);  
                  Crconn(rt2s+(4*NRrtrt-NRTBD+1:4*N Rrtrt)',2) = 
currm*ones(NRTBD,1);  
                  Crconn(rt2s+(2*NRrtrt-NRTBD+1:2*N Rrtrt+NRTBD)',2) = -
currm*ones(2*NRTBD,1);  
                  Crconn(rtrts+[1;4],2) = [currm;cu rrm];  
                  Crconn(rtrts+(2:3)',2) = [-currm; -currm];  
                  Crconn(rfrbs+[1;4]',3) = [currm;c urrm];  
              end  
          end  
          Crconn(rt34s+find(rt34==rt(i)),3) = currm ;  
          Crconn(rt34s+find(rt34==rt(i+1)),2) = neg *currm;  
      case  34  
          % Connecting to fringing going to edge and bottom  
          Crconn(rt34s+find(rt34==rt(i)),3) = currm ;  
          Crconn(rt34s+find(rt34==rt(i+1)),2) = neg *currm;   
          whichtt = ceil(find(rt34==rt(i))/SPAIR)+1 ;  
          whichtt = whichtt*(whichtt<=4)+(whichtt>4 ); % if-else  
          Crconn(rtrts+whichtt,2) = currm;  
          Crconn(rfrbs+whichtt,3) = currm;  
          if  whichtt==1  
              Crconn(rt2s+(1:NRTBD)',2) = currm*one s(NRTBD,1);  
              Crconn(rt2s+2*NRrtrt+(1:NRTBD)',2) = -
currm*ones(NRTBD,1);  
              Crconn(rtrts+3,2) = -currm;  
          elseif  whichtt==2  
              Crconn(rt2s+2*NRrtrt-NRTBD+(1:NRTBD)' ,2) = 
currm*ones(NRTBD,1);  
              Crconn(rt2s+4*NRrtrt-NRTBD+(1:NRTBD)' ,2) = -
currm*ones(NRTBD,1);  
              Crconn(rtrts+4,2) = -currm;  
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          elseif  whichtt==3  
              Crconn(rt2s+2*NRrtrt+(1:NRTBD)',2) = currm*ones(NRTBD,1);  
              Crconn(rt2s+(1:NRTBD)',2) = -currm*on es(NRTBD,1);  
              Crconn(rtrts+1,2) = -currm;  
          else  
              Crconn(rt2s+4*NRrtrt-NRTBD+(1:NRTBD)' ,2) = 
currm*ones(NRTBD,1);  
              Crconn(rt2s+2*NRrtrt-NRTBD+(1:NRTBD)' ,2) = -
currm*ones(NRTBD,1);  
              Crconn(rtrts+2,2) = -currm;  
          end  
      case  32  
          % Connecting to fringing and tangential branch  
          Crconn(rt34s+find(rt34==rt(i)),3) = currm ;  
          Crconn(rtrts+find(rt5==rt(i+1)),3) = curr m; 
      case  44  
          % Connecting to 2 fringing paths both going to bott om 
          rt4i = find(rt34==rt(i));  
          if  mod(rt4i,2*SPAIR) == SPAIR  
              Crconn(3*S+10+D+ceil(rt4i/(2*SPAIR)), 3) =  currm;  
          end  
          Crconn(rt34s+find(rt34==rt(i)),3) = currm ;  
          Crconn(rt34s+find(rt34==rt(i+1)),2) = neg *currm;              
      case  43  
          % Connecting to fringing to bottom and edge  
          Crconn(rt34s+find(rt34==rt(i)),3) = currm ;  
          Crconn(rt34s+find(rt34==rt(i+1)),2) = neg *currm;   
          whichtt = ceil(find(rt34==rt(i))/SPAIR)+1 ;  
          whichtt = whichtt*(whichtt<=4)+(whichtt>4 ); % if-else  
          Crconn(rtrts+whichtt,2) = currm;  
          Crconn(rfrbs+whichtt,3) = currm;  
          if  whichtt==1  
              Crconn(rt2s+(1:NRTBD)',2) = currm*one s(NRTBD,1);  
              Crconn(rt2s+2*NRrtrt+(1:NRTBD)',2) = -
currm*ones(NRTBD,1);  
              Crconn(rtrts+3,2) = -currm;  
          elseif  whichtt==2  
              Crconn(rt2s+2*NRrtrt-NRTBD+(1:NRTBD)' ,2) = 
currm*ones(NRTBD,1);  
              Crconn(rt2s+4*NRrtrt-NRTBD+(1:NRTBD)' ,2) = -
currm*ones(NRTBD,1);  
              Crconn(rtrts+4,2) = -currm;  
          elseif  whichtt==3  
              Crconn(rt2s+2*NRrtrt+(1:NRTBD)',2) = currm*ones(NRTBD,1);  
              Crconn(rt2s+(1:NRTBD)',2) = -currm*on es(NRTBD,1);  
              Crconn(rtrts+1,2) = -currm;  
          else  
              Crconn(rt2s+4*NRrtrt-NRTBD+(1:NRTBD)' ,2) = 
currm*ones(NRTBD,1);  
              Crconn(rt2s+2*NRrtrt-NRTBD+(1:NRTBD)' ,2) = -
currm*ones(NRTBD,1);  
              Crconn(rtrts+2,2) = -currm;  
          end  
    end  
  elseif  rt(i)==rt(i+1) && st(i)+1==st(i+1)  
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    % Base up triangle -------------------------------- -------------  
    Crconn(2*S+8+D+st(i),3) = currm;    
  elseif  rt(i)+1==rt(i+1) && st(i+1)>=st(i)+1  
    % Four-sided polygon ------------------------------ -------------  
    bdt_cs = rtid(rt(i))*10 + rtid(rt(i+1));  
    switch  bdt_cs  
      case  11  
          % Connecting to 2 radial rotor tooth branches  
          Crconn(rt1s+find(rt1==rt(i)),3) = currm;  
          Crconn(rt1s+find(rt1==rt(i+1)),2) = neg*c urrm;  
      case  12  
          % Connecting to a radial branch and a tangential br anch  
          Crconn(rt1s+find(rt1==rt(i)),3) = currm;  
          Crconn(rt2s+find(rt2==rt(i+1)),3) = currm ;  
      case  22  
          % Connecting to 2 tangential branches  
          rt2off = rt(i)>D/4&&rt(i)<(D+Dsl)/2 || rt (i)>D*3/4+Dsl/2;  
          Crconn(rt2s+find(rt2==rt(i))+rt2off,3) = currm;  
      case  21  
          % Connecting to a tangential branch and a radial br anch  
          Crconn(rt2s+find(rt2==rt(i)),3) = currm;  
          Crconn(rt1s+find(rt1==rt(i+1)),2) = neg*c urrm;  
      case  23  
          % Connecting to tangential branch & fringing to out er edge  
          Crconn(rtrts+find(rt5==rt(i)),3) = currm;  
          Crconn(rt34s+find(rt34==rt(i+1)),2) = neg *currm;  
      case  33  
          % Connecting to 2 fringing branch  
          rt3i = find(rt34==rt(i));  
          if  mod(rt3i,2*SPAIR) == SPAIR  
              Crconn(3*S+10+D+ceil(rt3i/(2*SPAIR)), 3) =  currm;  
              if  rt3i<2*SPAIR  
                  Crconn(rt2s+(2*NRrtrt-NRTBD+1:2*N Rrtrt+NRTBD)',2) = 
currm*ones(2*NRTBD,1);  
                  Crconn(rt2s+(4*NRrtrt-NRTBD+1:4*N Rrtrt)',2) = -
currm*ones(NRTBD,1);  
                  Crconn(rt2s+(1:NRTBD)',2) = -curr m*ones(NRTBD,1);  
                  Crconn(rtrts+(2:3)',2) = [currm;c urrm];  
                  Crconn(rtrts+[1;4],2) = [-currm;- currm];  
                  Crconn(rfrbs+(2:3)',3) = [currm;c urrm];  
              else  
                  Crconn(rt2s+(1:NRTBD)',2) = currm *ones(NRTBD,1);  
                  Crconn(rt2s+(4*NRrtrt-NRTBD+1:4*N Rrtrt)',2) = 
currm*ones(NRTBD,1);  
                  Crconn(rt2s+(2*NRrtrt-NRTBD+1:2*N Rrtrt+NRTBD)',2) = -
currm*ones(2*NRTBD,1);  
                  Crconn(rtrts+[1;4],2) = [currm;cu rrm];  
                  Crconn(rtrts+(2:3)',2) = [-currm; -currm];  
                  Crconn(rfrbs+[1;4]',3) = [currm;c urrm];  
              end  
          end  
          Crconn(rt34s+find(rt34==rt(i)),3) = currm ;  
          Crconn(rt34s+find(rt34==rt(i+1)),2) = neg *currm;  
      case  34  
          % Connecting to fringing going to edge and bottom  
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          Crconn(rt34s+find(rt34==rt(i)),3) = currm ;  
          Crconn(rt34s+find(rt34==rt(i+1)),2) = neg *currm;   
          whichtt = ceil(find(rt34==rt(i))/SPAIR)+1 ;  
          whichtt = whichtt*(whichtt<=4)+(whichtt>4 ); % if-else  
          Crconn(rtrts+whichtt,2) = currm;  
          Crconn(rfrbs+whichtt,3) = currm;  
          if  whichtt==1  
              Crconn(rt2s+(1:NRTBD)',2) = currm*one s(NRTBD,1);  
              Crconn(rt2s+2*NRrtrt+(1:NRTBD)',2) = -
currm*ones(NRTBD,1);  
              Crconn(rtrts+3,2) = -currm;  
          elseif  whichtt==2  
              Crconn(rt2s+2*NRrtrt-NRTBD+(1:NRTBD)' ,2) = 
currm*ones(NRTBD,1);  
              Crconn(rt2s+4*NRrtrt-NRTBD+(1:NRTBD)' ,2) = -
currm*ones(NRTBD,1);  
              Crconn(rtrts+4,2) = -currm;  
          elseif  whichtt==3  
              Crconn(rt2s+2*NRrtrt+(1:NRTBD)',2) = currm*ones(NRTBD,1);  
              Crconn(rt2s+(1:NRTBD)',2) = -currm*on es(NRTBD,1);  
              Crconn(rtrts+1,2) = -currm;  
          else  
              Crconn(rt2s+4*NRrtrt-NRTBD+(1:NRTBD)' ,2) = 
currm*ones(NRTBD,1);  
              Crconn(rt2s+2*NRrtrt-NRTBD+(1:NRTBD)' ,2) = -
currm*ones(NRTBD,1);  
              Crconn(rtrts+2,2) = -currm;  
          end  
      case  32  
          % Connecting to fringing and tangential branch  
          Crconn(rt34s+find(rt34==rt(i)),3) = currm ;  
          Crconn(rtrts+find(rt5==rt(i+1)),3) = curr m; 
      case  44  
          % Connecting to 2 fringing paths both going to bott om 
          rt4i = find(rt34==rt(i));  
          if  mod(rt4i,2*SPAIR) == SPAIR  
              Crconn(3*S+10+D+ceil(rt4i/(2*SPAIR)), 3) =  currm;  
          end  
          Crconn(rt34s+find(rt34==rt(i)),3) = currm ;  
          Crconn(rt34s+find(rt34==rt(i+1)),2) = neg *currm;              
      case  43  
          % Connecting to fringing to bottom and edge  
          Crconn(rt34s+find(rt34==rt(i)),3) = currm ;  
          Crconn(rt34s+find(rt34==rt(i+1)),2) = neg *currm;   
          whichtt = ceil(find(rt34==rt(i))/SPAIR)+1 ;  
          whichtt = whichtt*(whichtt<=4)+(whichtt>4 ); % if-else  
          Crconn(rtrts+whichtt,2) = currm;  
          Crconn(rfrbs+whichtt,3) = currm;  
          if  whichtt==1  
              Crconn(rt2s+(1:NRTBD)',2) = currm*one s(NRTBD,1);  
              Crconn(rt2s+2*NRrtrt+(1:NRTBD)',2) = -
currm*ones(NRTBD,1);  
              Crconn(rtrts+3,2) = -currm;  
          elseif  whichtt==2  
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              Crconn(rt2s+2*NRrtrt-NRTBD+(1:NRTBD)' ,2) = 
currm*ones(NRTBD,1);  
              Crconn(rt2s+4*NRrtrt-NRTBD+(1:NRTBD)' ,2) = -
currm*ones(NRTBD,1);  
              Crconn(rtrts+4,2) = -currm;  
          elseif  whichtt==3  
              Crconn(rt2s+2*NRrtrt+(1:NRTBD)',2) = currm*ones(NRTBD,1);  
              Crconn(rt2s+(1:NRTBD)',2) = -currm*on es(NRTBD,1);  
              Crconn(rtrts+1,2) = -currm;  
          else  
              Crconn(rt2s+4*NRrtrt-NRTBD+(1:NRTBD)' ,2) = 
currm*ones(NRTBD,1);  
              Crconn(rt2s+2*NRrtrt-NRTBD+(1:NRTBD)' ,2) = -
currm*ones(NRTBD,1);  
              Crconn(rtrts+2,2) = -currm;  
          end  
    end  
    Crconn(2*S+8+D+st(i):2*S+8+D+st(i+1)-1,3) = cur rm;        
  end  
end  
% PROCESS BOUNDARY SHAPE 
currm = S+3+Nam; % final airgap loop  
if  rt(1)+D/2+Dsl/2~=rt(Nam) % First and last airgap reluct not 
connected to the same rotor tooth  
    % Base-down triangle or four-sided polygon  
    neg = -1;  
    bdtbound_cs = rtid(rt(Nam))*10 + rtid(rt(1));  
    switch  bdtbound_cs  
        case  11  
            % Connecting to 2 radial rotor tooth branches  
            Crconn(rt1s+find(rt1==rt(Nam)),3) = cur rm;  
            Crconn(rt1s+find(rt1==rt(1)),2) = neg*c urrm;  
        case  12  
            % Connecting to a radial branch and a tangential br anch  
            Crconn(rt1s+find(rt1==rt(Nam)),3) = cur rm;  
            Crconn(rt2s+find(rt2==rt(1)),3) = neg*c urrm;  
        case  22  
            % Connecting to 2 tangential branches  
            rt2off = rt(Nam)>D/4&&rt(Nam)<(D+Dsl)/2  || 
rt(Nam)>D*3/4+Dsl/2;  
            Crconn(rt2s+find(rt2==rt(Nam))+rt2off,3 ) = currm;  
        case  21  
            % Connecting to a tangential branch and a radial br anch  
            Crconn(rt2s+find(rt2==rt(Nam)),3) = cur rm;  
            Crconn(rt1s+find(rt1==rt(1)),2) = neg*c urrm;  
        case  23  
            % Connecting to tangential branch & fringing to out er edge  
            Crconn(rtrts+find(rt5==rt(Nam)),3) = cu rrm;                  
            Crconn(rt34s+find(rt34==rt(1)),2) = neg *currm;  
        case  33  
            % Connecting to 2 fringing branch  
            rt3i = find(rt34==rt(Nam));  
            if  mod(rt3i,2*SPAIR) == SPAIR  
                Crconn(3*S+10+D+ceil(rt3i/(2*SPAIR) ),3) =  currm;  
                Crconn(rfrbs+[1;4],3) = [currm;curr m];  
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                Crconn(rtrts+[1;4],2) = [currm;curr m];  
                Crconn(rtrts+[2;3],2) = [-currm;-cu rrm];  
                Crconn(rt2s+2*NRrtrt+(1:NRTBD)',2) = -
currm*ones(NRTBD,1);  
                Crconn(rt2s+(4*NRrtrt-NRTBD+1:4*NRr trt)',2) = 
currm*ones(NRTBD,1);  
            end  
            Crconn(rt34s+find(rt34==rt(Nam)),3) = c urrm;  
            Crconn(rt34s+find(rt34==rt(1)),2) = neg *currm;  
        case  34  
            % Connecting to fringing going to edge and bottom  
            Crconn(rt34s+find(rt34==rt(Nam)),3) = c urrm;  
            Crconn(rt34s+find(rt34==rt(1)),2) = neg *currm;   
            whichtt = ceil(find(rt34==rt(Nam))/SPAI R)+1;  
            whichtt = whichtt*(whichtt<=4)+(whichtt >4); % if-else  
            Crconn(rtrts+whichtt,2) = currm;  
            Crconn(rfrbs+whichtt,3) = currm;  
            Crconn(rt2s+(4*NRrtrt-NRTBD+1:4*NRrtrt) ',2) = 
currm*ones(NRTBD,1);  
        case  32  
            % Connecting to fringing and tangential branch  
            Crconn(rt34s+find(rt34==rt(Nam)),3) = c urrm;  
            if  rt(1)>(D+Dsl)/2  
                Crconn(rtrts+find(rt5==(rt(1)-(D+Ds l)/2)),3) = currm;  
            else  
                Crconn(rtrts+find(rt5==(rt(1)+(D+Ds l)/2)),3) = currm;  
            end  
        case  44  
            % Connecting to 2 fringing paths both going to bott om 
            rt4i = find(rt34==rt(Nam));  
            if  mod(rt4i,2*SPAIR) == SPAIR  
                Crconn(3*S+10+D+ceil(rt4i/(2*SPAIR) ),3) =  currm;  
            end  
            Crconn(rt34s+find(rt34==rt(Nam)),3) = c urrm;  
            Crconn(rt34s+find(rt34==rt(1)),2) = neg *currm;  
        case  43  
            % Connecting to fringing to bottom and edge  
            Crconn(rt34s+find(rt34==rt(Nam)),3) = c urrm;  
            Crconn(rt34s+find(rt34==rt(1)),2) = neg *currm;   
            whichtt = ceil(find(rt34==rt(1))/SPAIR) +1;  
            whichtt = whichtt*(whichtt<=4)+(whichtt >4);  
            Crconn(rtrts+whichtt,2) = neg*currm;   
            Crconn(rfrbs+whichtt,3) = neg*currm;  
            Crconn(rt2s+(whichtt-1)*NRrtrt+(1:NRTBD )',2) = -
currm*ones(NRTBD,1);  
    end  
else  
    % Base-up triangle  
    if  rtid(rt(1)) == 1  
        Crconn(rt1s+find(rt1==rt(1)),2) = 
Crconn(rt1s+find(rt1==rt(Nam)),2);  
    elseif  rtid(rt(1)) > 2  
        Crconn(rt34s+find(rt34==rt(1)),2) = 
Crconn(rt34s+find(rt34==rt(Nam)),2);  
    end  
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end  
% GET RID OF UNUSED ROTOR TEETH RELUCTANCES IN Crco nn (D/2 positions)  
% Cut down rotor reluctances to one pole instead of  a pole pair  
remov = (Crconn(:,2)==0 | Crconn(:,3) ==0) & 
[zeros(2*S+4,1);ones(D+4+S+8+Dsl+Nam,1)];  
firstpole = [zeros(2*S+4,1);ones(D/2-2*NRrtrt,1);ze ros(D/2-
2*NRrtrt,1);ones(2*NRrtrt,1);zeros(2*NRrtrt,1);zero s(S+2+4+2,1);ones(Ds
l/2,1);zeros(Dsl/2+4+Nam,1)];  
secpole = [zeros(2*S+4,1);zeros(D/2-2*NRrtrt,1);one s(D/2-
2*NRrtrt,1);zeros(2*NRrtrt,1);ones(2*NRrtrt,1);zero s(S+6+2,1);zeros(Dsl
/2,1);ones(Dsl/2,1);zeros(4+Nam,1)];  
Crconn(firstpole&remov,:)=Crconn(secpole&~remov,:);  
Crconn(secpole&secpole|remov&~firstpole,:) = [];  
% Crconn is ordered such that the flux through a re luctance branch is 
equal  
% to the loop flux in column 2 - loop flux in colum n 3  
  
% ------------------------------------------------- --------------------  
% Crconn matrix postprocess to incorporate the bran ches of  
% stator tooth tip, damper slots, and leakage of da mper slots  
% ------------------------------------------------- --------------------  
% Add branches for stator tooth tip --------------- --------------------  
Crconn_stt = Crconn(S+1:2*S,:);  
Crconn_temp_1 = Crconn(1:2*S,:);  
Crconn_temp_2 = Crconn(2*S+1:end,:);  
Crconn = [Crconn_temp_1;Crconn_stt;Crconn_temp_2];  
  
% Add branches for damper slots in shank ---------- --------------------  
if  damper_nshank == 0  
    Crconn_shank = [];  
else  
    for  i = 1:damper_nshank  
        Crconn_shank(i,:) = Crconn(3*S+2,:);  
    end  
end  
Crconn_temp_1 = Crconn(1:3*S+2,:);  
Crconn_temp_2 = Crconn(3*S+3:end,:);  
Crconn = [Crconn_temp_1;Crconn_shank;Crconn_temp_2] ;  
  
% Add branches for damper slots on tip ------------ --------------------  
Crconn_in = Crconn(3*S+4+damper_nshank+1:3*S+4+damp er_nshank+Nrtt/2,:);  
Crconn_out = 
Crconn(3*S+4+damper_nshank+Nrtt/2+1:3*S+4+damper_ns hank+D/2,:);  
Crconn_temp_1 = Crconn(1:3*S+4+damper_nshank+Nrtt/2 ,:);  
Crconn_temp_2 = Crconn(3*S+4+damper_nshank+Nrtt/2+1 :end,:);  
Crconn = [Crconn_temp_1;Crconn_in;Crconn_out;Crconn _temp_2];  
  
% Add branches for leakage path of rotor pole tip i ron-----------------  
rt1s = 3*S+4+damper_nshank;  
ldp_start = 3*S+4+damper_nshank+D;  
Crconn_ldp = zeros(Nldp,3);  
     
for  i = 1:ceil(Nldp/2)  
    if  i <= Nrtt/4  
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        c1 = sign(Crconn_in(Nrtt/4-i+1,3))*(S+3+Nam +ceil(Nldp/2)-i+1);  
        c2 = sign(Crconn_in(Nrtt/4-i+2,2))*(S+3+Nam +ceil(Nldp/2)-i+1);  
        Crconn(rt1s+Nrtt/4-i+1,3) = c1;  
        Crconn(rt1s+Nrtt/4-i+2,2) = c2;  
        Crconn_ldp(ceil(Nldp/2)-i+1,2) = c1;  
        Crconn_ldp(ceil(Nldp/2)-i+1,3) = Crconn_in( Nrtt/4-i+1,3);  
         
        c1 = sign(Crconn_in(Nrtt/4+i-1,3))*(S+3+Nam +floor(Nldp/2)+i);  
        c2 = sign(Crconn_in(Nrtt/4+i,2))*(S+3+Nam+f loor(Nldp/2)+i);  
        Crconn(rt1s+Nrtt/4+i-1,3) = c1;  
        Crconn(rt1s+Nrtt/4+i,2) = c2;  
        Crconn_ldp(floor(Nldp/2)+i,2) = c1;  
        Crconn_ldp(floor(Nldp/2)+i,3) = Crconn_in(N rtt/4+i-1,3);  
    else  
        c1 = sign(Crconn_out(length(damper_rtip)-
i+1,3))*(S+3+Nam+ceil(Nldp/2)-i+1);  
        Crconn(rt1s+D-4*NRrtrt+length(damper_rtip)- i+1,3) = c1;  
        Crconn_ldp(ceil(Nldp/2)-i+1,2) = c1;  
        Crconn_ldp(ceil(Nldp/2)-i+1,3) = 
Crconn_out(length(damper_rtip)-i+1,3);  
         
        c1 = sign(Crconn_out(2*NRrtrt-(length(dampe r_rtip)-
i),3))*(S+3+Nam+floor(Nldp/2)+i);  
        Crconn(rt1s+D-4*NRrtrt+2*NRrtrt-(length(dam per_rtip)-i),3) = 
c1;  
        Crconn_ldp(floor(Nldp/2)+i,2) = c1;  
        Crconn_ldp(floor(Nldp/2)+i,3) = Crconn_out( 2*NRrtrt-
(length(damper_rtip)-i),3);  
         
        if  i == Nrtt/4+1  
            Crconn(rt1s+1,2) = 
sign(Crconn_in(1,2))*Crconn_ldp(ceil(Nldp/2)-i+1,2) ;  
            Crconn(rt1s+Nrtt/2,3) = 
sign(Crconn_in(Nrtt/2,3))*Crconn_ldp(floor(Nldp/2)+ i,2);  
        end  
    end  
end  
Crconn(rt1s+Nrtt/2+(1:Nrtt/2),:) = Crconn(rt1s+(1:N rtt/2),:);  
Crconn(rt1s+D-2*NRrtrt+(1:2*NRrtrt),:) = Crconn(rt1 s+D-
4*NRrtrt+(1:2*NRrtrt),:);  
Crconn_temp_1 = Crconn(1:ldp_start,:);  
Crconn_temp_2 = Crconn(ldp_start+1:end,:);  
Crconn = [Crconn_temp_1;Crconn_ldp;Crconn_temp_2];  
  
% Add branches for leakage path of rotor pole tip a ir------------------  
Crconn_temp_1 = Crconn(1:ldp_start+Nldp+S+Dsl/2+7,: );  
Crconn_temp_2 = Crconn(ldp_start+Nldp+S+Dsl/2+7+1:e nd,:);  
Crconn = [Crconn_temp_1;Crconn_ldp;Crconn_temp_2];  
  
% Final output connection matrix Crconn ----------- --------------------  
% IRON 
% Stator yoke - S  
% Stator shank - S  
% Stator teeth - S  



195 
 

 

% Rotor yoke below the slot - 1  
% Rotor tooth shank - 1  
% Damper bar in Rotor tooth shank - damper_nshank  
% Rotor yoke connected to shank - 2  
% Rotor tooth tips radial - (D - 4*NRrtrt)/2  
% Damper windings in Rotor tooth tips radial - (D -  4*NRrtrt)/2  
% Rotor tooth to rotor tooth tangential - 4*NRrtrt/ 2 
% Damper windings in Rotor tooth to rotor tooth tan gential - 4*NRrtrt/2  
% Leakage of rotor pole tip - Nldp  
% Rotor tooth tangential at sides of tooth tips - 4 /2  
% AIR  
% Stator tooth leakage - S  
% Field winding leakage - 2  
% Middle rotor slot leakage - 2/2  
% Fringing permeance from rotor side to airgap boun dary - Dsl/2  
% Fringing permeance from rotor slot side to bottom  of tooth tip - 4/2  
% Airgap - Nam  
  
% ------------------------------------------------- --------------------  
% Create a matrix O such that [branch flux] = O*[lo op flux]  
Osize = [length(Crconn),Nm];  
O = zeros(Osize)';  
% vec_ind used to convert indexing to one long vect or, instead of using  
% (row,col) indexing  
vec_ind = (0:Osize(2):Osize(2)*(Osize(1)-1))';  
Ocols = ([vec_ind vec_ind]+abs(Crconn(:,2:3))).*(Cr conn(:,2:3)~=0);  
% find fluxes in the positive column which are actu ally negative 
because of  
% symmetry conditions, place -1 in O  
oposopp = find((Crconn(:,2)<0)==1);  
O(Ocols(oposopp)) = -1;  
Ocols(oposopp) = 0;  
% find fluxes in the neg column which are actually pos, place 1 in O  
onegopp = find((Crconn(:,3)<0)==1);  
O(Ocols(onegopp,2)) = 1;  
Ocols(onegopp,2) = 0;  
% add a -1 in O for the remaining fluxes in neg col umn 
Oneg = Ocols(Ocols(:,2)~=0,2);  
O(Oneg) = O(Oneg)-1;  
% add a +1 in O for remaining fluxes in the pos col umn 
Opos = Ocols(Ocols(:,1)~=0,1);  
O(Opos) = O(Opos)+1;  
O = O';  
  
%-------------------------------------------------- --------------------  
% Update turn matrix for damper windings  
% d_damper_1 represents MMF of damper currents  
% d_damper_2 relates loop fluxes and the flux linka ge crossing each of 
two dampers  
damper_rtip_prime = flipdim(damper_rtip,1);  
damper_rtip_full = [damper_rtip_prime;damper_rtip(2 :end)];  
dp_pos = find(damper_rtip_full);  
index = Crconn_ldp(dp_pos,:);  
flag = flag_old;  
% Damper bars disconnected between poles  
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if  bartype == 1  
    if  damper_ntip < 2  
        d_damper_1 = [];  
        d_damper_2 = [];  
    else  
        d_damper_1 = zeros(Nm,damper_ntip-1);  
        d_damper_2 = zeros(Nm,damper_ntip-1);  
        for  i = 1:damper_ntip-1  
            if  abs(index(i,3)-index_old(i,3)) > Nam/2  
                flag(i) = -flag(i);  
            end  
            d_damper_1(abs(index(i,2)),i) = flag(i) ;  
        end  
        if  abs(index(i+1,3)-index_old(i+1,3)) > Nam/2  
            flag(i+1) = -flag(i+1);  
        end  
        d_damper_1(abs(index(i+1,2)),:) = -ones(1,d amper_ntip-
1)*flag(i+1);  
         
        for  i = 1:damper_ntip-1  
            d_damper_2(abs(index(i,2)),i) = -flag(i );  
            d_damper_2(abs(index(i+1,2)),i) = flag( i+1);  
        end  
    end  
% Damper bars connected between poles or no connect ion  
elseif  bartype == 2 || bartype == 0     
    if  damper_ntip < 1  
        d_damper_1 = [];  
    else  
        d_damper_1 = zeros(Nm,damper_ntip);  
        d_damper_2 = zeros(Nm,damper_ntip);  
        for  i = 1:damper_ntip  
            if  abs(index(i,3)-index_old(i,3)) > Nam/2  
                flag(i) = -flag(i);  
            end  
            d_damper_1(abs(index(i,2)),i) = flag(i) ;  
        end  
    end  
     
    if  damper_ntip == 0  
        d_damper_2 = [];  
    elseif  damper_ntip == 1  
        d_damper_2(abs(index(1,2)),1) = -2*flag(1);  
    else  
        for  i = 1:damper_ntip-1  
            d_damper_2(abs(index(i,2)),i) = -flag(i );  
            d_damper_2(abs(index(i+1,2)),i) = flag( i+1);  
        end   
        d_damper_2(abs(index(damper_ntip,2)),damper _ntip) = -
flag(damper_ntip);  
        d_damper_2(abs(index(1,2)),damper_ntip) = - flag(1);  
    end  
end  
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%-------------------------------------------------- --------------------  
% AUTHORS:  Michelle Bash, Steven D. Pekarek  
%-------------------------------------------------- --------------------  
% CONTACT:  School of Electrical & Computer Enginee ring  
%           Purdue University  
%           465 Northwestern Ave.  
%           West Lafayette, IN 47907  
%           765-494-3434, spekarek@ecn.purdue.edu  
%-------------------------------------------------- --------------------  
% May 1, 2009  
%-------------------------------------------------- --------------------  
% [mur,pmur] = get_mur_exp(B,mubd)  
% 
% Calculate mur and pmur from exponential curve fit  formulation in 
PMMT. 
% 
% OUTPUTS: mur    - relative permeability  
%          pmur   - derivative of the relative perm eability  
% 
% INPUTS:  B      - flux density (T)  
%          mubd   - structure containing curve fit parameters  
%-------------------------------------------------- --------------------  
function  [mur,pmur] = get_mur_exp(B,mubd)  
B_w_sign = sign(B);  
B_w_sign(B==0) = 1;  
% Flux density is copied into a matrix to enable ca lculation without a 
for  
% loop.  The parameters are already in matrix form.  
B = abs(B)*ones(1,mubd.K);  
fofB    = mubd.mur/(mubd.mur-1) + ...  
    sum(mubd.a.*B+mubd.d.*log((1+exp(-mubd.b.*B+mub d.e))./mubd.z),2);  
dfofBdB = B_w_sign.*sum(mubd.a./(1+exp(-mubd.b.*B+m ubd.e)),2);  
% Relative permeability and its derivative  
mur     = fofB./(fofB-1);  
pmur    = -dfofBdB./((fofB-1).^2);  
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%-------------------------------------------------- --------------------  
% AUTHORS:  Xiaoqi Wang, Michelle Bash, Steven D. P ekarek  
%-------------------------------------------------- --------------------  
% CONTACT:  School of Electrical & Computer Enginee ring  
%           Purdue University  
%           465 Northwestern Ave.  
%           West Lafayette, IN 47907  
%           765-494-3434, spekarek@ecn.purdue.edu  
%-------------------------------------------------- --------------------  
% June 1, 2012  
%-------------------------------------------------- --------------------  
% [WSTT,WST,WSY,WRT,WRY,WSW,WRW,WTOT] = get_mass(pars,parx,trns)  
%  
% Calculates the weight of the machine.  
% 
% OUTPUTS: WSTT     - stator teeth tip weight  
%          WST      - stator teeth shank weight  
%          WSY      - stator yoke weight  
%          WRT      - rotor teeth weight  
%          WRSH     - rotor shank weight  
%          WRY      - rotor yoke weight  
%          WSW,WRW  - stator and rotor copper weigh t  
%          WTOT     - total weight  
% 
% INPUTS:  pars     - geometric parameters  
%          parx     - simulation parameters  
%          trns     - conductor turns  
%-------------------------------------------------- --------------------  
function  [WSTT,WST,WSY,WRT,WRSH,WRY,WSW,WRW,WTOT] = 
get_mass(pars,parx,trns,damperdata)  
% Parameters  
OD          = pars(1);  
ID          = pars(2);  
GLS         = pars(3);  
DBS         = pars(4);  
H0          = pars(5);  
H1          = pars(6);  
SLTINS      = pars(13);  
ESC         = pars(17);  
STW         = pars(20);  
DC          = pars(25);  
CL          = pars(26);  
GLP         = pars(27);  
RP          = pars(28);  
DENS        = pars(37);  
SHDENS      = pars(38);  
SD          = pars(29);  
WIREDENS    = pars(39);  
Ac          = pars(40);  
Nfld        = pars(41);  
Acfld       = pars(42);  
ROD         = pars(24);  
RPIT        = pars(32);  
HRTT        = pars(44);  
WRTSH       = pars(46);  
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NPH         = parx(1);  
SL          = parx(3);  
WRTang      = 2*pi*RPIT/RP; % ANGLE AT OUTSIDE EDGE OF ROTOR TOOTH TIP 
WRTchord    = 2*(ROD/2)*sin(0.5*WRTang); % CHORD LENGTH OF ROTOR TOOTH 
TIP  
WRTSHchord  = pars(56); % CHORD WIDTH OF ROTOR TOOTH SHANK 
yRT         = ROD/2*cos(0.5*WRTang);     % VERTICAL HEIGHT TO TOP OF 
TOOTH TIP SIDE  
yRC         = 0.5*sqrt(DC^2-WRTSHchord^2);  % VERTICAL HEIGHT TO BOTTOM 
OF ROTOR TOOTH SHANK SIDE 
HRTSH       = pars(45);          % VERTICAL HEIGHT OF ROTOR TOOTH SHANK 
WCOIL       = pars(51);  
tipw        = pars(57); % Width of stator teeth tip  
tiph        = pars(58); % Height of stator teeth tip  
damper_rtip = damperdata.damper_rtip;  
damper_rshank = damperdata.damper_rshank;  
damper_nshank = damperdata.damper_nshank;  
%%%STATOR WEIGHT 
%STATOR T00TH SHANK WEIGHT 
rb = OD/2 - DBS; % Radius to back iron  
rsi = ID/2; % Inner stator radius  
% STW is the tooth arc width at the inner stator ra dius  
thetats = 0.5*STW/rsi;  
STWchd = sin(thetats)*rsi*2; %linear width of tooth  
thetatb = asin((STWchd/2)/rb);  
a1 = thetatb*(rb^2);  
a3 = rb*rsi*sin(thetats-thetatb)/2;  
a2 = thetats*(rsi^2);  
area_stator_tooth_shank = a1 + 2*a3 - a2 - STW*tiph ;  
WST = DENS*(GLS*area_stator_tooth_shank)*SL;  
%STATOR T00TH TIP WEIGHT 
area_stator_tooth_tip = (2*tipw+STW)*tiph;  
WSTT = DENS*(GLS*area_stator_tooth_tip)*SL;  
%STATOR YOKE WEIGHT 
volume_stator_outer_slice = GLS*pi*(OD/2)^2;  
volume_stator_inner_slice = GLS*pi*(OD/2-DBS)^2;  
WSY = DENS*(volume_stator_outer_slice - volume_stat or_inner_slice);  
% STATOR WEIGHT 
SWEIGHT = WST + WSY + WSTT;  
%%%ROTOR WEIGHT 
%ROTOR CORE WEIGHT 
volume_rotor_core_yoke = CL*pi*((DC/2)^2 - (SD/2)^2 );  
volume_shaft = CL*pi*(SD/2)^2;  
WRY = DENS*volume_rotor_core_yoke + SHDENS*volume_s haft;  
%ROTOR POLE TIP WEIGHT 
artslice = WRTang/2*(ROD/2)^2;  
arttri = WRTchord/2*yRT;  
apt = HRTT*WRTchord;  
area_damper_tip = sum(pi*damper_rtip.^2);  
area_rotor_tip = artslice-arttri + apt - area_dampe r_tip;  
volume_rotor_tip = GLP*RP*area_rotor_tip;  
WRT = DENS*volume_rotor_tip;  
% ROTOR POLE SHANK WEIGHT 
apb = WRTSHchord*HRTSH;  
arcslice = (DC/2)^2*asin(WRTSHchord/DC);  
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arctri = WRTSHchord/2*yRC;  
area_damper_shank = damper_nshank*pi*damper_rshank. ^2;  
area_rotor_shank = apb - (arcslice-arctri) - area_d amper_shank;  
volume_rotor_shank = GLP*RP*area_rotor_shank;  
WRSH = DENS*volume_rotor_shank;  
  
% ROTOR WEIGHT 
RWEIGHT = WRY + WRT + WRSH;  
%%%COPPER WEIGHT 
winding = abs(cumsum(trns) - 0.5*sum(trns));  
DZ      = ID + 2*(H0+H1);  
DW      = 0.5*(OD-DZ) - SLTINS - DBS;  
lslot   = GLS + 2*ESC;  
lend    = (2*pi/SL)*(DZ/2 + DW/2);  
lcond   = sum(trns)*lslot*RP + 2*sum(winding)*lend* RP;  
volume_stator_copper = Ac*lcond*NPH;  
WSW = WIREDENS*volume_stator_copper;  
%ROTOR WINDINGS 
lcondfld = 2*(GLP + WRTSH + WCOIL*pi/2)*Nfld;  
volume_rotor_copper = Acfld*lcondfld*RP;  
WRW = WIREDENS*volume_rotor_copper;  
% Copper weight  
CUWEIGHT = WSW + WRW; 
%TOTAL WEIGHT 
WTOT = SWEIGHT + RWEIGHT + CUWEIGHT;  
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%-------------------------------------------------- --------------------  
% AUTHORS:  Michelle Bash, Steven D. Pekarek  
%-------------------------------------------------- --------------------  
% CONTACT:  School of Electrical & Computer Enginee ring  
%           Purdue University  
%           465 Northwestern Ave.  
%           West Lafayette, IN 47907  
%           765-494-3434, spekarek@ecn.purdue.edu  
%-------------------------------------------------- --------------------  
% November 1, 2009  
%-------------------------------------------------- --------------------  
% Pld = coreloss(B,f,DT,matdata)  
%  
% Calculates the core loss of the iron sections for  any given material.  
% 
% OUTPUTS: Pld      - Volumetric power loss density  
% 
% INPUTS:  B        - flux density  
%          f        - fundamental frequency  
%          DT       - time step  
%          matdata  - structure containing material  data  
%-------------------------------------------------- --------------------  
function  Pld = coreloss(B,f,DT,matdata)  
% Bb = 1;  
deltB = max(B) - min(B);  
% Coefficients for magnetic material  
alp     = matdata.alpha;  
beta    = matdata.beta;  
kh      = matdata.kh;  
ke      = matdata.ke;  
% DEFINE NUMBER OF POINTS FOR ONE CYCLE 
num_pts=round((1/f)/DT);  
% LENGTH OF DATA VECTORS 
n=length(B);  
% OBTAIN WAVEFORM PORTION OF INTEREST 
B_1=B(n-num_pts:n);  
npts = length(B_1);  
% NUMERICALLY DIFFERENTIATE 
dBdt = (B_1(2:npts) - B_1(1:npts-1))./DT;  
dBdt(npts) = dBdt(1);  
dBdt2 = dBdt.*dBdt;  
% INTEGRATE dB/dt^2  
int_0toT = DT*(sum(dBdt2(1:npts-1))/2 + sum(dBdt2(2 :npts))/2);  
% EQUIVALENT FREQUENCY 
feq = 2/(deltB^2*pi*pi)*int_0toT;  
% POWER LOSS DENSITY 
Pld = kh*feq^(alp-1)*max(B)^beta*f + ke*f*int_0toT;  
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%-------------------------------------------------- --------------------  
% AUTHORS:  Wang Xiaoqi, Steven D. Pekarek  
%-------------------------------------------------- --------------------  
% CONTACT:  School of Electrical & Computer Enginee ring  
%           Purdue University  
%           465 Northwestern Ave.  
%           West Lafayette, IN 47907  
%           765-494-3434, spekarek@ecn.purdue.edu  
%-------------------------------------------------- --------------------  
% August 1, 2013  
%-------------------------------------------------- --------------------  
% damper_losses = calc_dploss(idamper, damperdata, pars, parx)  
%  
% Calculates the damper loss.  
% 
% OUTPUTS: damper_losses   -  damper loss  
% 
% INPUTS:  idamper      - damper currents  
%          damperdata   - information of damper bar s  
%          pars         - geometric parameters  
%          parx         - simulation parameters  
%-------------------------------------------------- --------------------  
  
function  [damper_losses] = calc_dploss(idamper, damperdata,  pars, parx)  
  
synfreq   = (pars(28)/2)*parx(4)/60;  % Fundamental frequency  
DT        = parx(12);                 % Time step in s  
RP        = pars(28);                 % Number of rotor poles      
damper_ntip = damperdata.damper_ntip; % Number of damper windings on 
rotor tip  
Rd = damperdata.Rd; % Resistance of damper windings on rotor tip  
Re = damperdata.Re; % Resistance of damper windings connection  
bartype = damperdata.bartype; % Type of damper bars connnection  
  
if  damper_ntip == 0  
    damper_losses = 0;  
else  
    % Current in the bars  
    idp_rms = zeros(damper_ntip,1);  
    for  i = 1:damper_ntip  
        idp_rms(i) = tools( 'tool_rms' ,idamper(i,:),1,synfreq,DT);  
    end  
    % Current in the end connections  
    dp_conn = tril(ones(damper_ntip-(bartype==1),da mper_ntip-
(bartype==1)),-1) ...  
        + diag(ones(damper_ntip-(bartype==1),1));  
    idp_end = dp_conn*idamper(1:damper_ntip-(bartyp e==1),:);  
    idp_end_rms = zeros(damper_ntip-(bartype==1),1) ;  
    for  i = 1:damper_ntip-(bartype==1)  
        idp_end_rms(i) = tools( 'tool_rms' ,idp_end(i,:),1,synfreq,DT);  
    end  
    % Calculate loss  
    damper_losses = RP*(sum(Rd.*idp_rms.^2,1)+sum(R e(1:damper_ntip-
(bartype==1)).*idp_end_rms.^2,1));  
end  
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%-------------------------------------------------- --------------------  
% AUTHORS:  Xiaoqi Wang, Michelle Bash, Steven D. P ekarek  
%-------------------------------------------------- --------------------  
% CONTACT:  School of Electrical & Computer Enginee ring  
%           Purdue University  
%           465 Northwestern Ave.  
%           West Lafayette, IN 47907  
%           765-494-3434, spekarek@ecn.purdue.edu  
%-------------------------------------------------- --------------------  
% July 1, 2012  
%-------------------------------------------------- --------------------  
% wrsmpostprocess.m - NOT A FUNCTION  
% 
% Calculates postprocessing values (voltage, flux l inkage, etc.) after  
% modeling a machine.  
%-------------------------------------------------- --------------------  
qr  = (RP/2)*(qrm); % Electrical rotor position  
% qd current, flux linkage, and voltage  
iqsr = (2/3)*(ias.*cos(qr) + ibs.*cos(qr - 2*pi/3) + ics.*cos(qr - 
4*pi/3));  
idsr = (2/3)*(ias.*sin(qr) + ibs.*sin(qr - 2*pi/3) + ics.*sin(qr - 
4*pi/3));  
i0sr = (2/3)*(ias*0.5 + ibs*0.5 + ics*0.5);  
lamqsr = (2/3)*(lamabcpp(1,:).*cos(qr) + lamabcpp(2 ,:).*cos(qr - 
2*pi/3) + lamabcpp(3,:).*cos(qr - 4*pi/3))*RP;  
lamdsr = (2/3)*(lamabcpp(1,:).*sin(qr) + lamabcpp(2 ,:).*sin(qr - 
2*pi/3) + lamabcpp(3,:).*sin(qr - 4*pi/3))*RP;  
lam0sr = (2/3)*(lamabcpp(1,:)*0.5 + lamabcpp(2,:)*0 .5 + 
lamabcpp(3,:)*0.5)*RP;  
% Vqd method 1  
vqsr = (2/3)*(vabc(1,:).*cos(qr) + vabc(2,:).*cos(q r - 2*pi/3) + 
vabc(3,:).*cos(qr - 4*pi/3));  
vdsr = (2/3)*(vabc(1,:).*sin(qr) + vabc(2,:).*sin(q r - 2*pi/3) + 
vabc(3,:).*sin(qr - 4*pi/3));  
% Vqd method 2  
% vqsr = rs*iqsr + wr*lamdsr+[0 (lamqsr(2:end)-lamq sr(1:end-1))]/DT;  
% vdsr = rs*idsr - wr*lamqsr+[0 (lamdsr(2:end)-lamd sr(1:end-1))]/DT;  
  
% Torque based on qd  
torque_qd = mean(3/2*RP/2*(lamdsr(floor((NCYC-
1)/NCYC*end)+1:end).*iqsr(floor((NCYC-1)/NCYC*end)+ 1:end) ...  
    -lamqsr(floor((NCYC-1)/NCYC*end)+1:end).*idsr(( floor((NCYC-
1)/NCYC*end)+1:end))));  
% compute reactive power  
Qelec = 3/2*(mean(vqsr(floor((NCYC-
1)/NCYC*end)+1:end).*idsr(floor((NCYC-1)/NCYC*end)+ 1:end)) ...  
    -mean(vdsr(floor((NCYC-1)/NCYC*end)+1:end).*iqs r(floor((NCYC-
1)/NCYC*end)+1:end)));  
Pelec = 3/2*(mean(vqsr(floor((NCYC-
1)/NCYC*end)+1:end).*iqsr(floor((NCYC-1)/NCYC*end)+ 1:end)) ...  
    +mean(vdsr(floor((NCYC-1)/NCYC*end)+1:end).*ids r(floor((NCYC-
1)/NCYC*end)+1:end)));  
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%-------------------------------------------------- --------------------  
% AUTHORS:  Xiaoqi Wang, Michelle Bash, Steven D. P ekarek  
%-------------------------------------------------- --------------------  
% CONTACT:  School of Electrical & Computer Enginee ring  
%           Purdue University  
%           465 Northwestern Ave.  
%           West Lafayette, IN 47907  
%           765-494-3434, spekarek@ecn.purdue.edu  
%-------------------------------------------------- --------------------  
% June 1, 2012  
%-------------------------------------------------- --------------------  
% plothand = plotwrsm(pars,parx,pos,fign)  
%  
% Depicts the machine topology in a plot.  
% 
% OUTPUTS: plothand - handle to the plot created  
% 
% INPUTS:  pars     - geometric parameters  
%          parx     - simulation parameters  
%          pos      - rotor position in radians  
%          fign     - figure number for the plot (o ptional)  
%-------------------------------------------------- --------------------  
function  plothand = plotwrsm(pars,parx,damperdata,pos,fign)  
% INITIALIZE FIGURE  
if  nargin==4  
    plothand = figure(fign);  
else  
    plothand = figure;  
end  
plot(0,0)  
axis square  
hold on 
% MACHINE PARAMETERS 
mtomm = 1000;  
OD      = pars(1)*mtomm;  
ID      = pars(2)*mtomm;  
GLS     = pars(3)*mtomm;  
DBS     = pars(4)*mtomm;  
H0      = pars(5)*mtomm;  
H1      = pars(6)*mtomm;  
H2      = pars(7)*mtomm;  
H3      = pars(8)*mtomm;  
B0      = pars(9)*mtomm;  
B1      = pars(10)*mtomm;  
B2      = pars(11)*mtomm;  
BS      = pars(12)*mtomm;  
G1      = pars(14)*mtomm;  
STW     = pars(20)*mtomm;  
STTW    = pars(21)*mtomm;  
ROD     = pars(24)*mtomm;  
DC      = pars(25)*mtomm;  
RP      = pars(28);  
SD      = pars(29)*mtomm;  
HRT     = pars(33)*mtomm;  
WRT     = pars(34)*mtomm;  
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WAIRT   = pars(35)*mtomm;  
HRTT    = pars(44)*mtomm;  
HRTSH   = pars(45)*mtomm;  
WRTSH   = pars(46)*mtomm;  
RPIT    = pars(32);  
WRTSHchord = pars(56)*mtomm;  
NPH = parx(1);  
SPT = parx(2);  
SLL = parx(3);  
NRrtrt  = parx(27);  
Nrtt    = 2*SPT - 4*NRrtrt;       % Number of radial rotor tooth 
branches  
tipw    = pars(57)*mtomm; % width of stator teeth tip  
tiph    = pars(58)*mtomm; % height of stator teeth tip  
damper_rtip   = damperdata.damper_rtip;  
damper_rshank = damperdata.damper_rshank;  
damper_ntip   = damperdata.damper_ntip;  
damper_nshank = damperdata.damper_nshank;  
damper_dtip   = damperdata.damper_dtip;  
  
% Plot stator ------------------------------------- -------  
% Plot outer diameter  
theta = 0:0.1:2*pi+0.1;  
polar(theta,repmat(OD/2,1,length(theta)))  
% Initialize terms used to plot stator teeth  
angoff = 0; % angle offset of next tooth  
strep = 2*pi/SLL; % angle between adjacent teeth  
sistart = 0.5*STW/(OD/2-DBS); % angle associated with inner slot 
boundary  
siend = 2*pi/SLL - STW/(OD/2-DBS)+sistart;  
tostart = -0.5*STTW/(ID/2); % angle associated with outer tooth 
boundary  
toend = STTW/(ID/2)+tostart;  
tistart = -0.5*STTW/(ID/2+tiph); % angles associated with the left & 
right inner tooth boundary  
tiend = -0.5*STW/(ID/2+tiph);  
tioff = (STW+tipw)/(ID/2+tiph);  
tilango = 0.5*STW/(ID/2+tiph); % angles associated with the left & 
right inner tooth edge  
tirango = -0.5*STW/(ID/2+tiph);  
tilangi = 0.5*STW/(OD/2-DBS);  
tirangi = -0.5*STW/(OD/2-DBS);  
tolango = 0.5*STTW/(ID/2); % angles associated with the left & right 
outer tooth edge  
torango = -0.5*STTW/(ID/2);  
tolangi = 0.5*STTW/(ID/2+tiph);  
torangi = -0.5*STTW/(ID/2+tiph);  
% Plot stator teeth/slots  
for  st = 1:SLL  
    % Plot "curved" portions  
    arang = (sistart:(siend-sistart)/10:siend)+ango ff;  
    polar(arang,repmat(OD/2-DBS,1,length(arang)))  
    arang = (tostart:(toend-tostart)/10:toend)+ango ff;  
    polar(arang,repmat(ID/2,1,length(arang)))  
    arang = (tistart:(tiend-tistart)/10:tiend)+ango ff;  
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    polar(arang,repmat((ID/2+tiph),1,length(arang)) )  
    arang = (tistart:(tiend-tistart)/10:tiend)+ango ff+tioff;  
    polar(arang,repmat((ID/2+tiph),1,length(arang)) )  
    % Plot radial portions  
    polar([tilango+angoff tilangi+angoff],[ID/2+tip h OD/2-DBS])  
    polar([tirango+angoff tirangi+angoff],[ID/2+tip h OD/2-DBS])  
    polar([tolango+angoff tolangi+angoff],[ID/2 ID/ 2+tiph])  
    polar([torango+angoff torangi+angoff],[ID/2 ID/ 2+tiph])  
    % Increment angle offset to plot next tooth  
    angoff = angoff+strep;  
end  
% PLOT ROTOR -------------------------------------- --  
%Plot shaft  
theta = 0:0.1:2*pi+0.1;  
polar(theta,repmat(SD/2,1,length(theta)))  
% Initialize terms used to plot rotor  
WRTang  = 2*pi*RPIT/RP; % ANGLE AT OUTSIDE EDGE OF ROTOR TOOTH TIP 
WRTchord= 2*(ROD/2)*sin(0.5*WRTang); % CHORD LENGTH OF ROTOR TOOTH TIP 
yRC     = 0.5*sqrt(DC^2-WRTSHchord^2); % VERTICAL HEIGHT TO BOTTOM OF 
ROTOR TOOTH SHANK SIDE 
WRTSHang= 2*atan(WRTSHchord/(2*(HRTSH+yRC))); % ANGLE OF ROTOR TOOTH 
SHANK AT INSIDE OF ROTOR TOOTH TIP  
WRTSHrad= (HRTSH+yRC)/(cos(0.5*WRTSHang));  % RADIUS AT TOP OF ROTOR 
TOOTH SHANK 
RTToutrad = sqrt((WRTchord*0.5)^2+(HRTSH+yRC)^2); % Radius at bottom of 
outer tooth tip edge  
WRTinang = 2*asin(WRTchord/(2*RTToutrad)); % INNER ANGLE OF ROTOR TOOTH 
TIP  
WRTSHinang = 2*asin(WRTSHchord/DC);  
% angles associated with the inner rotor slot bound ary (inter-polar 
region)  
rsistrt = pos - (2*pi/RP - WRTSHinang)/2;  
rsiend = rsistrt + (2*pi/RP - WRTSHinang);  
% angles associated with the rotor pole tip and pol e body  
rtostrt = pos + (WAIRT/(ROD/2))/2;  
rtoend = rtostrt + WRT/(ROD/2);  
rttistrt = pos + (2*pi/RP - WRTinang)/2;  
rttiend = rttistrt + 0.5*(WRTinang-WRTSHang);  
rttioff = (WRTSHang + 0.5*(WRTinang-WRTSHang));  
rtrep = 2*pi/RP; % angle between adjacent rotor poles  
angoff = 0;  
for  rt = 1:RP  
    % Plot curved portions  
    arang = (rsistrt:(rsiend-rsistrt)/10:rsiend)+an goff;  
    polar(arang,repmat(DC/2,1,length(arang)))  
    arang = (rtostrt:(rtoend-rtostrt)/10:rtoend)+an goff;  
    polar(arang,repmat(ROD/2,1,length(arang)))  
    % Plot straight portions  
    polar([rttistrt rttiend]+angoff,[RTToutrad WRTS Hrad])  
    polar([rttistrt rttiend]+angoff+rttioff,[WRTSHr ad RTToutrad])  
    polar([rttiend+rttioff rtoend]+angoff,[RTToutra d ROD/2])  
    polar([rttistrt rtostrt]+angoff,[RTToutrad ROD/ 2])         
    polar([rsiend rttiend]+angoff,[DC/2 WRTSHrad])         
    polar([rsistrt+rtrep rttistrt+rttioff]+angoff,[ DC/2 WRTSHrad])  
    % Increment offset angle to plot next tooth  
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    angoff = angoff+rtrep;         
end  
  
% Plot rotor pole tip dampers --------------------- ------------------  
WRTang  = 2*WRT/ROD;  
xout    = sin(WRTang/2)*ROD/2; % (xout = WRTchord/2)  
yb      = cos(WRTang/2)*ROD/2-HRTT; % Vertical height to the bottom of 
the rotor tooth tip  
xin     = WRTSHchord/2;  
WRTS2   = xout*2/SPT; % Horizontal width (not arc width) of the rotor 
tooth sections  
ymid = (sqrt((ROD/2)^2-(xin).^2)+yb)/2;  
ytRTT = sqrt((ROD/2)^2-abs(xout-WRTS2*NRrtrt-WRTS2* ((1:Nrtt/2)-
0.5)').^2);  
ytNR = sqrt((ROD/2)^2-(xout-WRTS2*(1:NRrtrt)).^2);  
angoff = 0;  
dplength = length(damper_rtip)*2-1;  
dpmid = length(damper_rtip);  
dpx = zeros(1,dplength);  
dpy = zeros(1,dplength);  
dpr = [flipud(damper_rtip(2:end));damper_rtip]*mtom m; 
for  rt = 1:RP  
    for  k = 0:dpmid-1  
        if  k == 0  
            dpy(dpmid) = 0;  
            dpx(dpmid) = (ROD/2-ymid-2*dpr(dpmid))* (1-
damper_dtip)+dpr(dpmid)+ymid;  
            [THETA,RHO] = cart2pol(dpx(dpmid),dpy(d pmid));  
            [dpx(dpmid),dpy(dpmid)] = pol2cart(THET A-
pi/RP+pos+angoff,RHO);  
        elseif  k < Nrtt/4  
            dpy(dpmid+k) = WRTS2*(k+0.5);  
            dpx(dpmid+k) = (ytRTT(Nrtt/4-k)-ymid-2* dpr(dpmid+k))*(1-
damper_dtip)+dpr(dpmid+k)+ymid;             
            dpy(dpmid-k) = -dpy(dpmid+k);  
            dpx(dpmid-k) = dpx(dpmid+k);  
            [THETA,RHO] = cart2pol(dpx(dpmid+k),dpy (dpmid+k));  
            [dpx(dpmid+k),dpy(dpmid+k)] = pol2cart( THETA-
pi/RP+pos+angoff,RHO);  
            [THETA,RHO] = cart2pol(dpx(dpmid-k),dpy (dpmid-k));  
            [dpx(dpmid-k),dpy(dpmid-k)] = pol2cart( THETA-
pi/RP+pos+angoff,RHO);  
        else  
            dpy(dplength-k+Nrtt/4) = xout-WRTS2*(k- Nrtt/4+1);  
            dpx(dplength-k+Nrtt/4) = (ytNR(k-Nrtt/4 +1)-yb-2*dpr(k-
Nrtt/4+1))*(1-damper_dtip)+dpr(k-Nrtt/4+1)+yb;  
            dpy(k-Nrtt/4+1) = -dpy(dplength-k+Nrtt/ 4);  
            dpx(k-Nrtt/4+1) = dpx(dplength-k+Nrtt/4 );  
            [THETA,RHO] = cart2pol(dpx(k-Nrtt/4+1), dpy(k-Nrtt/4+1));  
            [dpx(k-Nrtt/4+1),dpy(k-Nrtt/4+1)] = pol 2cart(THETA-
pi/RP+pos+angoff,RHO);  
            [THETA,RHO] = cart2pol(dpx(dplength-k+N rtt/4),dpy(dplength-
k+Nrtt/4));  
            [dpx(dplength-k+Nrtt/4),dpy(dplength-k+ Nrtt/4)] = 
pol2cart(THETA-pi/RP+pos+angoff,RHO);  
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        end  
    end  
     
    for  k = 1:dplength  
        if  dpr(k) > 0  
            x = linspace(dpr(k),-dpr(k),100);  
            y = sqrt(dpr(k)^2-x.^2);  
            x_new = [x+dpx(k) -x+dpx(k)];  
            y_new = [y -y]+dpy(k);  
            plot(x_new,y_new)  
        end  
    end  
    angoff = angoff+2*pi/RP;  
end  
% Plot rotor pole shank dampers ------------------- --------------------  
angoff = 0;  
l    = ymid - SD/2 - (DC-SD)/4;  
shank_sec = l/(2*damper_nshank);  
dpx2 = zeros(1,damper_nshank);  
dpy2 = zeros(1,damper_nshank);  
dpr2 = damper_rshank*mtomm;  
for  rt = 1:RP  
    angmid = (rtoend+rtostrt)/2+angoff;  
    for  k = 1:damper_nshank  
        if  k == 1  
            [dpx2(k),dpy2(k)] = pol2cart(angmid,SD/ 2+(DC-SD)/4+2*dpr2);  
        elseif  k == damper_nshank  
            [dpx2(k),dpy2(k)] = pol2cart(angmid,ymi d-2*dpr2);  
        else  
            [dpx2(k),dpy2(k)] = pol2cart(angmid,((2 *k-
1)*shank_sec+SD/2+(DC-SD)/4));  
        end  
        if  dpr2 > 0  
            x = linspace(dpr2,-dpr2,100);  
            y = sqrt(dpr2^2-x.^2);  
            x_new = [x+dpx2(k) -x+dpx2(k)];  
            y_new = [y -y]+dpy2(k);  
            plot(x_new,y_new)  
        end  
    end  
    angoff = angoff+2*pi/RP;  
end       
% LENGTH ------------------------------------------  
plot([OD/2+0.03*OD OD/2+0.03*OD],[-GLS/2 GLS/2], 'r' )  
% Format plot  
xlabel( 'x (mm)' )  
ylabel( 'y (mm)' )  
title( 'WRSM geometry' )  
axlim = max(GLS/2+0.1*GLS/2,OD/2+0.1*OD/2);  
axis([-axlim axlim -axlim axlim])  
box on 
hold off  
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%-------------------------------------------------- --------------------  
% AUTHORS:  Michelle Bash, Steven D. Pekarek  
%-------------------------------------------------- --------------------  
% CONTACT:  School of Electrical & Computer Enginee ring  
%           Purdue University  
%           465 Northwestern Ave.  
%           West Lafayette, IN 47907  
%           765-494-3434, spekarek@ecn.purdue.edu  
%-------------------------------------------------- --------------------  
% Version 1 - May 1, 2009  
%-------------------------------------------------- --------------------  
% [V,idc] = rect(iabcl,vdc,parx)  
%  
% Calculates the rectifier voltages based on the re ctifier currents.  
% 
% OUTPUTS: V        - vector of rectifier voltages (vag,vbg,vcg)  
%          idc      - dc bus current  
% 
% INPUTS:  iabcl    - rectifier currents  
%          parx     - simulation parameters  
%          vdc      - dc bus voltage  
%-------------------------------------------------- --------------------  
function  [V,idc] = rect(iabcl,vdc,parx)  
  
dalpha = parx(18);  
dbeta  = parx(19);  
eps = 0.005;  
vdend = 1/dbeta*log(eps/dalpha + 1);  
i1 = 0.0; i3 = 0.0; i5 = 0.0;  
% Rectifier phase currents  
ial = iabcl(1);  
ibl = iabcl(2);  
icl = iabcl(3);  
  
if  (ial <= -eps)  
   vag = -1/dbeta*log(abs(ial)/dalpha + 1);  
elseif  (ial >= eps)  
   vag = vdc + 1/dbeta*log(abs(ial)/dalpha + 1);  
elseif (ial < eps && ial > -eps)  
   vag = ((vdc + 2*vdend)/(2*eps))*ial + vdc/2;  
end  
  
if  (ibl <= -eps)  
   vbg = -1/dbeta*log(abs(ibl)/dalpha + 1);  
elseif  (ibl >= eps)  
   vbg = vdc + 1/dbeta*log(abs(ibl)/dalpha + 1);  
elseif (ibl < eps && ibl > -eps)  
   vbg = ((vdc + 2*vdend)/(2*eps))*ibl + vdc/2;  
end  
  
if  (icl <= -eps)  
   vcg = -1/dbeta*log(abs(icl)/dalpha + 1);  
elseif (icl >= eps)  
   vcg = vdc + 1/dbeta*log(abs(icl)/dalpha + 1);  
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elseif (icl < eps && icl > -eps)  
   vcg = ((vdc + 2*vdend)/(2*eps))*icl + vdc/2;  
end  
  
% Calculate idc     
if  (ial > 0.0)  
    i1 = ial;  
end  
  
if  (ibl > 0.0)  
    i3 = ibl;  
end  
  
if  (icl > 0.0)  
    i5 = icl;  
end  
  
idc = i1 + i3 + i5;  
V = [vag;vbg;vcg];  
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%-------------------------------------------------- --------------------  
% AUTHORS:  Michelle Bash, Steven D. Pekarek  
%-------------------------------------------------- --------------------  
% CONTACT:  School of Electrical & Computer Enginee ring  
%           Purdue University  
%           465 Northwestern Ave.  
%           West Lafayette, IN 47907  
%           765-494-3434, spekarek@ecn.purdue.edu  
%-------------------------------------------------- --------------------  
% May 1, 2009  
%-------------------------------------------------- --------------------  
% [xrms,xavg,xrip]=tools(which_one, x, cycles, f, D T)  
% 
% Finds the average value, rms value, and/or ripple  of a given signal.  
% 
% OUTPUTS: xrms      - rms value of the signal  
%          xavg      - average value of the signal  
%          xrip      - ripple value of the signal  
% 
% INPUTS:  which_one - tool_rms,tool_avg,tool_rip, or tool_all  
%          x         - signal to be analyzed  
%          cycles    - number of cycles to use in a nalysis  
%          f         - fundamental freq  
%          DT        - sampling period  
%-------------------------------------------------- --------------------  
function  [xrms,xavg,xrip]=tools(which_one, x, cycles, f, DT )  
switch  which_one  
    case  'tool_rms'  
        xrms = tool_rms(x,cycles,f,DT);  
        xavg = 0;  
        xrip = 0;  
    case  'tool_avg'  
        xrms = 0;  
        xavg = tool_avg(x,cycles,f,DT);  
        xrip = 0;  
    case  'tool_rip'  
        xrms = 0;  
        xavg = 0;  
        xrip = tool_rip(x,cycles,f,DT);  
    case  'tool_all'  
        xrms = tool_rms(x,cycles,f,DT);  
        xavg = tool_avg(x,cycles,f,DT);  
        xrip = tool_rip(x,cycles,f,DT);  
end  
%-------------------------------------------------- --------------------  
% TOOL_RMS 
%-------------------------------------------------- --------------------  
function  x_rms = tool_rms(x,cycles,f,DT)  
%DEFINE NUMBER OF CYCLES OF AC WAVEFORM TO USE 
num_cycles = cycles*round((1/f)/DT);  
%LENGTH OF DATA VECTORS 
n = length(x);  
%OBTAIN WAVEFORM PORTION OF INTEREST 
x_1 = x(n-num_cycles:n);  
%RMS CALCULATION 
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px_rms = (f/cycles)*x_1.*x_1;  
x_rms = 0;  
for  i = 1:num_cycles  
    x_rms = x_rms + px_rms(i+1)*DT;  
end  
x_rms = sqrt(x_rms);  
%-------------------------------------------------- --------------------  
% TOOL_AVG 
%-------------------------------------------------- --------------------  
function  x_avg = tool_avg(x,cycles,f,DT)  
%DEFINE NUMBER OF CYCLES OF AC WAVEFORM TO USE 
num_cycles = cycles*round((1/f)/DT);  
%LENGTH OF DATA VECTORS 
n = length(x);  
%OBTAIN WAVEFORM PORTION OF INTEREST 
x_1 = x(n-num_cycles:n);  
%AVG CALCULATION 
px_avg = (f/cycles)*x_1;  
x_avg = 0;  
for  i = 1:num_cycles  
    x_avg = x_avg + px_avg(i+1)*DT;  
end  
%-------------------------------------------------- --------------------  
% TOOL_RIP 
%-------------------------------------------------- --------------------  
function  x_rip = tool_rip(x,cycles,f,DT)  
%DEFINE NUMBER OF CYCLES OF AC WAVEFORM TO USE 
num_cycles = cycles*round((1/f)/DT);  
%LENGTH OF DATA VECTORS 
n = length(x);  
%OBTAIN WAVEFORM PORTION OF INTEREST 
x_1 = x(n-num_cycles:n) - tool_avg(x,cycles,f,DT);  
%RIPPLE CALCULATION 
xmin = 0;  
xmax = 0;  
for  i = 1:num_cycles+1  
    if  x_1(i) >= xmax  
        xmax = x_1(i);  
    end  
    if  x_1(i) <= xmin  
        xmin = x_1(i);  
    end  
end  
x_rip = abs(xmax) + abs(xmin);  
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%-------------------------------------------------- --------------------  
% AUTHORS:  Xiaoqi Wang, Michelle Bash, Steven D. P ekarek  
%-------------------------------------------------- --------------------  
% CONTACT:  School of Electrical & Computer Enginee ring  
%           Purdue University  
%           465 Northwestern Ave.  
%           West Lafayette, IN 47907  
%           765-494-3434, spekarek@ecn.purdue.edu  
%-------------------------------------------------- --------------------  
% Apr 1, 2013  
%-------------------------------------------------- --------------------  
% 
[t,vabc,lamabcpp,lamdamper,iabc,idamper,idc,vdc,vc, torque,qrm,phit,BY,B
T,BTT,nrconverge,saturate,BIRON] =  
%wrsmdynamics_multislice(parx,pars,turns,damperdata ,mudata,qr_init)  
%  
% Solves the Dynamics of the MEC network.  
% 
% OUTPUTS: t        - time vector (s)  
%          vabcs    - phase voltages (V)  
%          lamabcpp - phase flux linkage per pole ( Vs)  
%          lamdamper - damper flux linkage (Vs)  
%          iabcs    - phase currents (A)  
%          idamper  - damper bar currents (A)  
%          idc      - dc bus currents (A)  
%          vdc      - dc bus voltage (V)  
%          vc       - dc bus capacitor voltage (V)  
%          torque   - torque (Nm)  
%          qrm      - mechanical rotor position (ra dians)  
%          phit     - stator teeth flux (Wb)  
%          BY,BT,BTT    - flux density in the stato r yoke, stator 
teeth, and stator tooth tips (T)  
%          nrconverge - flag indicating if newton r aphson converged  
%          saturate   - indicates if the flux densi ty limit is violated  
%          BIRON    - flux density in iron (Wb)  
% 
% INPUTS:  pars     - geometric parameters  
%          parx     - simulation parameters  
%          turns    - phase winding turns (turn cou nt)  
%          damperdata   - information of damper bar s  
%          mudata   - magnetic material data for fi nding permeability  
%          qr_init  - initial rotor position in ele ctric degree  
%-------------------------------------------------- --------------------
----  
function  
[t,vabc,lamabcpp,lamdamper,iabc,idamper,idc,vdc,vc, torque,qrm,phit,BY,B
T,BTT,nrconverge,saturate,BIRON] = wrsmdynamics_mul tislice 
(parx,pars,turns,damperdata,mudata,qr_init)  
%-------------------------------------------------- --------------------  
% INITIALIZE THE SYSTEM  
%-------------------------------------------------- --------------------  
mu0     = pi*4e-7;      % Permeability of free space  
RP      = pars(28);     % Poles  
S       = parx(3)/RP;   % Number of stator slots per pole  
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D       = 2*(parx(2));  % Number of rotor pole tip sections per pole 
pair  
Dsl     = 4*parx(29);   % Number of inter-polar regions per pole pair  
SPT     = parx(2);      % SECTIONS PER ROTOR TOOTH, including radial 
and tangential  
NRrtrt  = parx(27);     % Number of outer pole tip reluctances per pole 
pair  
damper_ntip = damperdata.damper_ntip;     % Number of damper windings 
on rotor tip  
damper_nshank = damperdata.damper_nshank; % Number of damper windings 
on rotor shank  
bartype = damperdata.bartype;             % Type of damper bars 
connnection  
Rd = damperdata.Rd;     % Damper bar body resistance  
Re = damperdata.Re;     % Damper bar end connection resistance  
Rload   = 22.81 ;      % Parallel resistance load  
Lload   = 0.0807 ;     % Parallel resistance load  
Cload   = 100e-6;       % Filter capacitance  
taus    = 0.1;          % Filter time constant  
rs      = pars(23);     % Stator windings resistance  
wrm     = parx(4)*2*pi/60;          % Mechanical rotor speed in rad/s  
wr      = (pars(28)/2)*wrm;  
scl     = parx(16);  
ifld    = pars(47);                 % Field current (A)  
vrms    = pars(49);                 % rms Stator voltage (V)  
vphase  = pars(50);                 % Current phase angle (degrees)  
vm      = vrms*sqrt(2);             % Magnitude of vas,vbs,vcs  
DT      = parx(12);                 % Time step in s  
iter    = parx(30);                 % Number of iterations  
vdcmax  = parx(25);                 % Maximum dc voltage  
NPTS    = parx(7);                  % NUMBER OF DATA POINTS PER CYCLE 
skew_angle = pars(30);              % Electrical skew angle, rad  
stack_num = pars(31);               % Number of stack for skew  
% For machine design with RL load producing rated p ower ---------------
----  
% Vll_rms = 480;  
% pf = 0.8;  
% P = parx(24);  
% Q = sqrt((P/pf)^2-P^2);  
% Rload = 3*(Vll_rms/sqrt(3))^2/P;  
% Lload = (Vll_rms/sqrt(3))^2/Q/wr;  
% ------------------------------------------------- --------------------
----  
% INITIALIZE VARIABLES  
slB     = 3*S;                      % Number of iron elements in stator  
rlB     = 6+D/2+damper_nshank+SPT+(SPT-1); % Number of iron elements in 
rotor  
lB      = slB+rlB;                  % Number of iron elements  
nriter  = zeros(1,iter);            % Keeps track of N-R iterations  
torque  = zeros(1,iter);  
PTC     = zeros(S,D+Dsl,iter);      % Matrix of airgap permeances  
dPTC    = zeros(S,D+Dsl,iter);  
phit    = zeros(S,iter,stack_num); % Stator tooth flux  
phiiron = zeros(lB,iter); % Flux in iron  
BY      = zeros(S,iter,stack_num); % Stator yoke flux density  
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BT      = zeros(S,iter,stack_num); % Stator tooth shank flux density  
BTT     = zeros(S,iter,stack_num); % Stator tooth tip flux density  
BIRON   = zeros(lB,iter,stack_num); % Flus density in all iron elements  
saturate = ones(1,iter);            % Saturation constraint (is Bsat 
violated)  
smuiron = get_mur_exp(zeros(slB,1),mudata.s); % Initial permeabilities 
of stator  
rmuiron = get_mur_exp(zeros(rlB,1),mudata.r); % Initial permeabilities 
of rotor  
muiron  = [smuiron;rmuiron];        % Initial permeabilities  
TOL     = parx(21);                 % tolerance for convergence of 
Newton-Raphson  
k       = 1;                        % Simulation step  
t(k)    = parx(10);  
% ARTIFICIAL ROTOR POSITION MODIFICATION used in th e calculation of 
airgap  
% permeances.----  
SLL     = parx(3);  
ID      = pars(2);  
ROD     = pars(24);  
STTW    = pars(21);  
WRT     = pars(34);  
WAIRT   = pars(35);  
shift1  = WRT/(ROD/2);  
shift2  = (WAIRT/2)/(ROD/2);  
shift3  = 2*pi/SLL;  
shift4  = (STTW/2)/(ID/2);  
shift5  = (pi/2)/(RP/2);  
shift   = shift1 + shift2 - (S/2)*shift3 - shift4 -  shift5;   
% TIME AND ROTOR POSITION VECTORS 
t       = (0:DT:DT*(iter-1))+t(k);  
qrm     = t*wrm + qr_init/(RP/2);   % Actual rotor position  
qrm_shift =  qrm + shift;           % Angle fed to airgap permeance 
function  
%-------------------------------------------------- --------------------  
% CALCULATE VARIABLES/MATRICES WHICH WILL NOT CHANGE DURING SIM  
%-------------------------------------------------- --------------------  
% Variables/matrices to be used in airgap permeance  calculation  
WRS     = pars(35)/(2*parx(29));  
WRTS    = pars(36);  
B0      = pars(9);  
SPT     = parx(2);  
RPIT    = pars(32);  
WRTSang = 2*pi*RPIT/RP/SPT;  
WRTang  = 2*pi*RPIT/RP;  
WRSang  = 2*pi*(1-RPIT)/RP/(Dsl/2);  
qs      = STTW/ID*RP;               % Span of stator tooth in 
electrical radians  
qs1     = B0/ID*RP;                 % Span of stator slot  
qrr     = WRTSang*RP/2;             % Span of rotor pole tip section  
qrs     = WRSang*RP/2;              % Span of inter-polar section  
Gmaxrt = pi*4e-7*pars(3)/stack_num/(ID-
ROD)*2*(WRTS*(STTW>=WRTS)+STTW*(STTW<WRTS)); % if-else  
Gmaxsl = pi*4e-7*pars(3)/stack_num/(ID-
ROD)*2*(WRS*(STTW>=WRS)+STTW*(STTW<WRS)); % if-else  
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rt      = 1:D; rtsl    = 1:Dsl; st      = (1:S)';  
% Matrices defining the angle between every stator tooth and rotor 
section  
anglert = ones(S,1)*(-mod(rt-1,(D/2))*WRTSang - flo or((rt-
1)/(D/2))*2*pi/RP) ...  
    + ((st-1)*(STTW+B0)/(ID/2))*ones(1,D);  
anglesl = ones(S,1)*(-WRTang - mod(rtsl-1,(Dsl/2))* WRSang - ...  
    floor((rtsl-1)/(Dsl/2))*2*pi/RP) + ((st-
1)*(STTW+B0)/(ID/2))*ones(1,Dsl);  
  
% Establish the geometric case for the rotor tooth section  
if  qrr <= qs1/2  
    qrrcs = 1;  
elseif  (qrr <= qs)  
    qrrcs = 2;  
elseif  (qrr <= qs +qs1/2)  
    qrrcs = 3;  
elseif  (qrr <= qs+qs1)  
    qrrcs = 4;  
else  
    qrrcs = 5;  
end  
% Establish the geometric case for the rotor slot s ection     
if  qrs <= qs1/2  
    qrscs = 1;  
elseif  (qrs <= qs)  
    qrscs = 2;  
elseif  (qrs <= qs +qs1/2)  
    qrscs = 3;  
elseif  (qrs <= qs+qs1)  
    qrscs = 4;  
else  
    qrscs = 5;  
end  
 
% ------------------------------------------------- -------------------  
% turns matrix to be used in system of equations  
Natrn   = [-turns turns]';  
Nbtrn   = [Natrn(2*SLL/(3*RP)+1:end);Natrn(1:2*SLL/ (3*RP))];  
Nctrn   = [Natrn(4*SLL/(3*RP)+1:end);Natrn(1:4*SLL/ (3*RP))];  
Nabc    = [Natrn Nbtrn Nctrn];  
Nfld    = pars(41);  
Nabcf   = [Nabc(1:S,:) zeros(S,1);0 0 0 Nfld;0 0 0 -Nfld];  
% ------------------------------------------------- -------------------  
% MEC loops with MMF sources  
Cvcfixed = (1:S+2)';  
%-------------------------------------------------- --------------  
% Calculate the reluctances  
[Rxm,areas,Rair,NPRTS,NPRTB] = 
get_reluctances(mu0,parx,pars,damperdata);  
Riron = Rxm./muiron;  
%-------------------------------------------------- --------------  
% Identify type of node in rotor tooth and slot  
% 1 = node of rotor pole tip radial branch  
% 2 = node of rotor pole tip tangential branch  
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% 3 = rotor slot branch going to rotor edge  
% 4 = rotor slot branch going to bottom of rotor po le tip  
rtid = [2*ones(NRrtrt,1);ones(D/2-2*NRrtrt,1);2*one s(NRrtrt,1); ...  
        3*ones(NPRTS,1);4*ones(2*NPRTB,1);3*ones(NP RTS,1); ...  
        2*ones(NRrtrt,1);ones(D/2-2*NRrtrt,1);2*one s(NRrtrt,1); ...  
        3*ones(NPRTS,1);4*ones(2*NPRTB,1);3*ones(NP RTS,1)];  
% Identify how many RRTOUT branches border the roto r loop  
NRBRL = ceil((NRrtrt+1)/2);  % Number of RRTOUT branches Bordering 
Rotor Loop  
NRTBD = NRrtrt-NRBRL; % Number of RRTOUT branches with bordering loop 
To Be Determined  
% ------------------------------------------------- -------------------  
% Define reluctance connections in stator and rotor  which do not change  
% Stator tooth tip, damper slots, and leakage of da mper slots are not  
% presented here, but will be derived as postproces s in shape_alg.m  
% IRON 
% Stator yoke - S  
% Stator teeth - S  
% Rotor yoke below the slot - 1  
% Rotor tooth shank - 1  
% Rotor yoke connected to shank - 2  
% Rotor tooth tips radial - (D - 4*NRrtrt)  
% Rotor tooth to rotor tooth tangential - 4*NRrtrt  
% Rotor tooth tangential at sides of tooth tips - 4  
% AIR  
% Stator tooth leakage - S  
% Field winding leakage - 2  
% Middle rotor slot leakage - 2  
% Fringing permeance from rotor side to airgap boun dary - Dsl  
% Fringing permeance from rotor slot side to bottom  of tooth tip - 4  
% RY R RRYSL RRTSH RRYSH RRTIN RRTOUT RRTS RSTL RFDL RRTL RAGFR RFRB 
Crcfixed = zeros(2*S+8+D+S+3+Dsl,3);  
% RY (all)  
Crcfixed(1:S,2)=(1:S)';  
% R (all)  
Crcfixed(S+1:2*S,2) = [1 2:S]';  
Crcfixed(S+1:2*S,3) = [-S 1:S-1]';  
% RRYSL (all)  
Crcfixed(2*S+1,3) = S+3;  
% RRTSH (all)  
Crcfixed(2*S+2,2:3) = [S+1 S+2];  
% RRYSH (all)  
Crcfixed(2*S+2+(1:2)',2) = [S+1;S+2];  
% RRTIN (Determined by shape algorithm)  
% RRTOUT - One side known if reluctance borders rot or loop  
Crcfixed(2*S+2+D-4*NRrtrt+2+(1:4*NRrtrt)',2) = ...  
 
[[zeros(NRTBD,1);ones(NRBRL,1)]*(S+1);[ones(NRBRL,1 );zeros(NRTBD,1)]*(S
+2); ...  
 -[zeros(NRTBD,1);ones(NRBRL,1)]*(S+1);-
[ones(NRBRL,1);zeros(NRTBD,1)]*(S+2)];  
% RRTS - (Determined by shape algorithm)  
% RSTL (one side known, use shape alg for other)  
Crcfixed(2*S+2+D+6+(1:S)',2) = (1:S)';  
% RFDL (all)  
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Crcfixed(2*S+2+D+6+S+(1:2)',2:3) = [-(S+3) S+1;S+2 S+3];  
% RRTL (one side known, use shape alg for other)  
Crcfixed(2*S+2+D+6+S+2+(1:2)',2) = [S+3;-(S+3)];  
% RAGFR - (Determined by shape algorithm)  
% RFRB (one side, use shape alg for other)  
Crcfixed(2*S+2+D+6+S+4+Dsl+(1:4)',2) = [-(S+3);S+3; S+3;-(S+3)];  
%-------------------------------------------------- --------------------
----  
% Initialize variables  
if  parx(15) == 1 %Delta  
    nio = 3;  
    mlam = [0 1 0;-1 0 0;0 0 0];  
    m_isil = [-1 0 1;1 -1 0;0 1 -1];  
    m_vgvs = 1.5*[1 sqrt(3)/3 0;-sqrt(3)/3 1 0;0 0 0];  
else  %Wye 
    nio = 2;  
    mlam = [0 1;-1 0];  
    m_isil = -eye(3);  
    m_vgvs = [1 0 0;0 1 0];  
end  
iabc  = zeros(3,iter);  
lamabcpp = zeros(3,iter);  
vqd0sr = zeros(nio,iter);  
iqd0sr = zeros(nio,iter);  
lamqd0srpp = zeros(nio,iter+1);  
plamqd0srpp = zeros(nio,iter);  
idamper = zeros(damper_ntip,iter);  
lamdamper = zeros(damper_ntip,iter+1);  
plamdamper = zeros(damper_ntip,iter);  
il = zeros(3,iter+1);  
pil = zeros(3,iter);  
vc = ones(1,iter+1)*vdcmax;  
pvc = zeros(1,iter);  
idc = ones(1,iter+1)*vdcmax/Rload;  
vdc = ones(1,iter+1)*vdcmax;  
Ivdc = zeros(1,iter+1);  
Ivc = zeros(1,iter+1);  
index_vect = zeros(damper_ntip,3,iter+1,stack_num);  
flag_vect = ones(damper_ntip,iter+1,stack_num);  
  
% Calculate the voltages for SSFR test  
if  wrm>0  
    vas = vm*cos((RP/2)*(qrm) + (pi*vphase/180));  
    vbs = vm*cos((RP/2)*(qrm) + (pi*vphase/180) - ( 2*pi/3));  
    vcs = vm*cos((RP/2)*(qrm) + (pi*vphase/180) - ( 4*pi/3));  
else  
    vfreq = parx(5);  
    vas = 2/3*vm*cos(2*pi*vfreq*t);  
    vbs = -1/3*vm*cos(2*pi*vfreq*t);  
    vcs = -1/3*vm*cos(2*pi*vfreq*t);  
end  
vabc = [vas;vbs;vcs];  
  
% Initial stator flux linkage per pole values  
if  wrm > 0  
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    Ksr_prime = (2/3)*[-sin((RP/2)*(qrm(k))) -sin(( RP/2)*(qrm(k))-
2*pi/3) -sin((RP/2)*(qrm(k))+2*pi/3);  
        cos((RP/2)*(qrm(k))) cos((RP/2)*(qrm(k))-2* pi/3) 
cos((RP/2)*(qrm(k))+2*pi/3)];  
    lamqd0srpp(1:2,k) = Ksr_prime*vabc(:,k)/wr/RP;  
else  
    lamqd0srpp(1:2,k) = [0.00;0.001];  
end  
%-------------------------------------------------- --------------------  
% Determine transformation matrix for plamdamper  
if  bartype == 1  
    % Version-1: No end connection resistance --------- ----------------  
    % For example damper_ntip = 5  
    % Tdp = [-rb1 rb2 0 0;0 -rb2 rb3 0;0 0 -rb3 rb4;-rb 5 -rb5 -rb5 -
rb5-rb4];  
     
    % if damper_ntip == 2  
    %     Tdp = -Rd(1)-Rd(2);  
    % else  
    %     Tdp = -diag(Rd(1:end-1));  
    %     for i = 1:damper_ntip-2  
    %         Tdp(i,i+1) = Rd(i+1);  
    %     end  
    %     Tdp(damper_ntip-1,:) = -Rd(damper_ntip)*ones( 1,damper_ntip-
1);  
    %     Tdp(damper_ntip-1,damper_ntip-1) = Tdp(damper _ntip-
1,damper_ntip-1)-Rd(damper_ntip-1);  
    % end  
     
    % Version-2: With end connection resistance ------- ----------------  
    % Tdp = [-rb1-2*re1 rb2 0 0;  
    %        -2*re2 -rb2-2*re2 rb3 0;  
    %        -2*re3 -2*re3 -rb3-2*re3 rb4;  
    %        -rb5-2*re4 -rb5-2*re4 -rb5-2*re4 -rb5-2*re 4-rb4];  
     
    % Re = [0.1 0.1 0.1 0.1 0.1]*1e-3;  
    if  damper_ntip < 2  
        Tdp = [];  
    elseif  damper_ntip == 2  
        Tdp = -Rd(1)-Rd(2)-2*Re(1);  
    else  
        Tdp = -diag(Rd(1:end-1));  
        for  i = 1:damper_ntip-2  
            Tdp(i,i+1) = Rd(i+1);  
        end  
        for  i = 1:damper_ntip-1  
            for  j = 1:i  
                Tdp(i,j) = Tdp(i,j)-2*Re(i);  
            end  
        end  
        Tdp(damper_ntip-1,:) = Tdp(damper_ntip-1,:) -
Rd(damper_ntip)*ones(1,damper_ntip-1);  
    end  
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elseif  bartype == 2  
    % Version-1: No end connection resistance --------- ----------------  
    % For example damper_ntip = 5  
    % Tdp = [-Rd(1) Rd(2) 0 0 0;0 -Rd(2) Rd(3) 0 0;0 0 -Rd(3) Rd(4) 0;0 
0 0 -Rd(4) Rd(5);-Rd(1) 0 0 0 -Rd(5)];  
     
    % if damper_ntip == 1  
    %     Tdp = -2*Rd(1);  
    % else  
    %     Tdp = -diag(Rd(1:end));  
    %     for i = 1:damper_ntip-1  
    %         Tdp(i,i+1) = Rd(i+1);  
    %     end  
    %     Tdp(damper_ntip,1) = -Rd(1);  
    % end  
     
    % Version-2: With end connection resistance ------- ----------------  
    % Re = [0.1 0.1 0.1 0.1 0.1]*1e-3;  
    % Tdp = -[Rd(1)+Re(1) -Rd(2)-Re(1) -Re(1) -Re(1) -R e(1); ...  
    %         Re(2) Rd(2)+Re(2) -Rd(3)-Re(2) -Re(2) -Re (2); ...  
    %         Re(3) Re(3) Rd(3)+Re(3) -Rd(4)-Re(3) -Re( 3); ...  
    %         Re(4) Re(4) Re(4) Rd(4)+Re(4) -Rd(5)-Re(4 ); ...  
    %         Rd(1)+Re(5) Re(5) Re(5) Re(5) Rd(5)+Re(5) ];  
    % 
    % Re = [0.1 0.1 0.1 0.1 1]*1e-3;  
    if  damper_ntip == 0  
        Tdp = [];  
    elseif  damper_ntip == 1  
        Tdp = -2*Rd(1)-2*Re(1);  
    else  
        Tdp = -diag(Rd(1:end));  
        for  i = 1:damper_ntip  
            for  j = 1:damper_ntip  
                if  j <= i  
                    Tdp(i,j) = Tdp(i,j)-Re(i);  
                else  
                    Tdp(i,j) = Tdp(i,j)+Re(i);  
                end  
            end  
        end  
        for  i = 1:damper_ntip-1  
            Tdp(i,i+1) = Tdp(i,i+1)+Rd(i+1);  
        end  
        Tdp(damper_ntip,1) = Tdp(damper_ntip,1)-Rd( 1);  
    end  
end  
  
%-------------------------------------------------- --------------------  
% SOLVING LOOP 
%-------------------------------------------------- --------------------  
nrconverge = 1;  
if  stack_num == 1  
    stack_span = 0;  
else  
    stack_span = floor(skew_angle/(2*pi)*NPTS/(stac k_num-1));  
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end  
% AIR-GAP PERMEANCES 
for  i = 1:iter  
    [PTC(:,:,i),dPTC(:,:,i)] = 
get_Pag(qrm_shift(i),pars,parx,Gmaxrt,Gmaxsl,angler t,anglesl,qrrcs,qrsc
s);  
end  
[l,m,n] = size(PTC);  
PTC_prime = zeros(l,m,n,stack_num);  
dPTC_prime = zeros(l,m,n,stack_num);  
for  i = 1:stack_num  
    PTC_prime(:,:,1:(i-1)*stack_span,i) = PTC(:,:,e nd-(i-
1)*stack_span+1:end);  
    PTC_prime(:,:,(i-1)*stack_span+1:end,i) = PTC(: ,:,1:end-(i-
1)*stack_span);  
    dPTC_prime(:,:,1:(i-1)*stack_span,i) = dPTC(:,: ,end-(i-
1)*stack_span+1:end);  
    dPTC_prime(:,:,(i-1)*stack_span+1:end,i) = dPTC (:,:,1:end-(i-
1)*stack_span);  
end  
  
while  k <= iter  
    % Using rotor reference frame  
    Ksr = (2/3)*[cos((RP/2)*(qrm(k))) cos((RP/2)*(q rm(k))-2*pi/3) 
cos((RP/2)*(qrm(k))+2*pi/3);  
        sin((RP/2)*(qrm(k))) sin((RP/2)*(qrm(k))-2* pi/3) 
sin((RP/2)*(qrm(k))+2*pi/3);  
        0.5 0.5 0.5];  
    Ksrinv = [cos((RP/2)*(qrm(k))) sin((RP/2)*(qrm( k))) 1;  
        cos((RP/2)*(qrm(k))-2*pi/3) sin((RP/2)*(qrm (k))-2*pi/3) 1;  
        cos((RP/2)*(qrm(k))+2*pi/3) sin((RP/2)*(qrm (k))+2*pi/3) 1];  
    for  i = 1:stack_num  
        if  k==1 || sum(sum((PTC_prime(:,:,k-
1,i)~=0)~=(PTC_prime(:,:,k,i)~=0)))>0  
            [Crconn,Cvconn,O,PTCind,d_damper_1,d_da mper_2,index,flag] 
...  
                = 
shape_alg(PTC_prime(:,:,k,i),parx,pars,damperdata,C rcfixed,Cvcfixed,rti
d,index_vect(:,:,k,i),flag_vect(:,k,i));  
            if  length(Crconn)~=length([Riron;Rair;PTCind])  
                nrconverge = 0;  
                break  
            end  
            % Save variables  
            [row_Crconn(i),col_Crconn(i)] = size(Cr conn);  
            [row_O(i),col_O(i)] = size(O);  
            [row_PTCind(i),col_PTCind(i)] = size(PT Cind);  
            [row_d_damper_1(i),col_d_damper_1(i)] =  size(d_damper_1);  
            [row_d_damper_2(i),col_d_damper_2(i)] =  size(d_damper_2);  
            if  i == 1 && k == 1  
                Crconn_prime = -
1e12*ones(row_Crconn(i)+5,col_Crconn(i),stack_num);  
                O_prime = -1e12*ones(row_O(i)+5,col _O(i)+5,stack_num);  
                PTCind_prime = -1e12*ones(row_PTCin d(i)+5,stack_num);  
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                d_damper_1_prime = -
1e12*ones(row_d_damper_1(i)+5,col_d_damper_1(i),sta ck_num);  
                d_damper_2_prime = -
1e12*ones(row_d_damper_2(i)+5,col_d_damper_2(i),sta ck_num);  
            end  
            Cvconn_prime(:,i) = Cvconn;  
            Crconn_prime(1:row_Crconn(i),:,i) = Crc onn;  
            O_prime(1:row_O(i),1:col_O(i),i) = O;  
            PTCind_prime(1:row_PTCind(i),i) = PTCin d;  
            d_damper_1_prime(1:row_d_damper_1(i),:, i) = d_damper_1;  
            d_damper_2_prime(1:row_d_damper_2(i),:, i) = d_damper_2;  
        end  
         
        % Obtain list of airgap permeances and their deriva tives for 
this rotor position  
        ptc           = PTC_prime(:,:,k,i)';  
        PTClist       = ptc(PTCind_prime(1:row_PTCi nd(i),i));  
        dptc          = dPTC_prime(:,:,k,i)';  
        dPTClist      = dptc(PTCind_prime(1:row_PTC ind(i),i));  
        % Find the system of equations and solve for the in itial guess  
        [A,d] = 
get_meshmatrices(Rair,PTClist,Riron,parx,pars,Nabcf ,Crconn_prime(1:row_
Crconn(i),:,i),Cvconn_prime(:,i));  
        % Total number of meshes  
        Nm(i) = 3 + S + length(PTClist) + (SPT-1);  
         
        % Save variables  
        [row_PTClist(i),col_PTClist(i)] = size(PTCl ist);  
        [row_dPTClist(i),col_dPTClist(i)] = size(dP TClist);  
        [row_A(i),col_A(i)] = size(A);  
        [row_d(i),col_d(i)] = size(d);  
        if  i == 1 && k == 1  
            PTClist_prime = -1e12*ones(row_PTClist( i)+5,stack_num);  
            dPTClist_prime = -1e12*ones(row_dPTClis t(i)+5,stack_num);  
            A_prime = -1e12*ones(row_A(i)+5,col_A(i )+5,stack_num);  
            d_prime = -1e12*ones(row_d(i)+5,col_d(i ),stack_num);  
        end  
        PTClist_prime(1:row_PTClist(i),i) = PTClist ;  
        dPTClist_prime(1:row_dPTClist(i),i) = dPTCl ist;  
        A_prime(1:row_A(i),1:col_A(i),i) = A;  
        d_prime(1:row_d(i),:,i) = d;  
        index_vect(:,:,k+1,i) = index;  
        flag_vect(:,k+1,i) = flag;  
    end  
     
    % ------------------------------------------------- ----------------  
    if  bartype == 0 || (bartype==1 && damper_ntip<2) || ( bartype==2 && 
damper_ntip<1)  
        for  i = 1:stack_num  
            if  i == 1  
                A_multi = A_prime(1:row_A(i),1:col_ A(i),i);  
                d1_multi = -
scl*d_prime(1:row_d(i),1:3,i)*Ksrinv(:,1:nio);  
                d2_multi = scl*Ksr(1:nio,:)*d_prime (1:row_d(i),1:3,i)';  
                d3_multi = d_prime(1:row_d(i),4,i);  
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            else  
                A_multi = 
blkdiag(A_multi,A_prime(1:row_A(i),1:col_A(i),i));  
                d1_multi = [d1_multi;-
scl*d_prime(1:row_d(i),1:3,i)*Ksrinv(:,1:nio)];  
                d2_multi = [d2_multi 
scl*Ksr(1:nio,:)*d_prime(1:row_d(i),1:3,i)'];  
                d3_multi = blkdiag(d3_multi,d_prime (1:row_d(i),4,i));  
            end  
        end  
        Aaug_multi = [A_multi d1_multi;d2_multi zer os(nio,nio)];  
        daug_multi = blkdiag(d3_multi,eye(nio));  
        if  rcond(Aaug_multi)<1e-16  
            fprintf( 'Warning: rcond(Aaug) = %d at 
k=%i.\n' ,rcond(Aaug_multi),k);  
        end          
        % Solve for vector of loop flux and current  
        lam_multi = [ifld*ones(stack_num,1);scl*lam qd0srpp(:,k)];  
        xg_multi = Aaug_multi\(daug_multi*lam_multi );  
        % Identify just the loop fluxes  
        fluxm_multi = xg_multi(1:end-nio);  
        % NEWTON-RAPHSON SOLVER 
        it = 1; % Keeps track of N-R iterations  
        NRSOLVE = 1;  
        while  NRSOLVE 
            xg_multi_temp = xg_multi;  
            fluxm_multi_temp = fluxm_multi;  
            for  i = 1:stack_num  
                % Assign variables  
                Cvconn = Cvconn_prime(:,i);  
                Crconn = Crconn_prime(1:row_Crconn( i),:,i);  
                O = O_prime(1:row_O(i),1:col_O(i),i );  
                d_damper_1 = d_damper_1_prime(1:row _d_damper_1(i),:,i);  
                d_damper_2 = d_damper_2_prime(1:row _d_damper_2(i),:,i);  
                PTClist = PTClist_prime(1:row_PTCli st(i),i);  
                dPTClist = dPTClist_prime(1:row_dPT Clist(i),i);  
                % Find xg and fluxm for each stack  
                xg = [xg_multi_temp(1:Nm(i));xg_mul ti_temp(end-
nio+1:end)];  
                xg_multi_temp = removerows(xg_multi _temp,1:Nm(i));  
                fluxm = fluxm_multi_temp(1:Nm(i));  
                fluxm_multi_temp = 
removerows(fluxm_multi_temp,1:Nm(i));  
                % DETERMINE FLUXES FOR THE GUESS VECTOR xg 
                phi = O*fluxm;  
                phiiron(:,k) = phi(1:lB);  
                % DETERMINE B-FIELDs  
                BIRON(:,k,i) = phiiron(:,k)./areas;  
                % Store flux/flux density values after converging  
                phit(:,k,i) = phi(S+1:2*S);  
                phiag = 
phi(4*S+11+D/2+Dsl/2+1+damper_nshank+D/2+2*(SPT-1): end);  
                BY(:,k,i) = BIRON(1:S,k,i);  
                BT(:,k,i) = BIRON(S+1:2*S,k,i);  
                BTT(:,k,i) = BIRON(2*S+1:3*S,k,i);  
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                % GET PERMEABILITY FOR EACH RESPECTIVE PERM 
                [sMU,sdmdb] = get_mur_exp(BIRON(1:s lB,k,i),mudata.s);  
                [rMU,rdmdb] = 
get_mur_exp(BIRON(slB+1:end,k,i),mudata.r);  
                MU = [sMU;rMU];  
                dmdb = [sdmdb;rdmdb];  
                % UPDATE MATRICIES 
                Riron = Rxm./MU;  
                [Ag,d,Cr] = 
get_meshmatrices(Rair,PTClist,Riron,parx,pars,Nabcf ,Crconn,Cvconn);  
                % Pure Newton Raphson Iterator - find Jacobian and 
update x for each stack  
                Aaug = [Ag -
scl*d(:,1:3)*Ksrinv(:,1:nio);scl*Ksr(1:nio,:)*d(:,1 :3)' 
zeros(nio,nio)];  
                J = get_J(Cr(1:lB,:),O(1:lB,:),Aaug ,MU,areas,dmdb,xg);  
                DR = J-Aaug;  
                DR = DR(1:Nm(i),1:Nm(i));  
                 
                if  i == 1  
                    Ag_multi = Ag;  
                    DR_multi = DR;  
                    torque(k) = 
((RP/2)^2)*(sum(phiag.^2.*dPTClist./(PTClist.^2)));  
                else  
                    Ag_multi = blkdiag(Ag_multi,Ag) ;  
                    DR_multi = blkdiag(DR_multi,DR) ;  
                    torque(k) = torque(k) + 
((RP/2)^2)*(sum(phiag.^2.*dPTClist./(PTClist.^2)));  
                end  
            end  
            % Solve the multi-stack system equations  
            Aaug_multi = [Ag_multi d1_multi;d2_mult i zeros(nio,nio)];  
            daug_multi = blkdiag(d3_multi,eye(nio)) ;  
            if  rcond(Aaug_multi)<1e-16  
                fprintf( 'Warning: rcond(Aaug) = %d at 
k=%i.\n' ,rcond(Aaug_multi),k);  
            end  
            DR_multi = blkdiag(DR_multi,zeros(nio,n io));  
            J_multi = Aaug_multi+DR_multi;  
            xnewp = xg_multi -  J_multi\(Aaug_multi *xg_multi - 
daug_multi*lam_multi);  
             
            % Check for convergence  
            if  ((sqrt((xnewp-xg_multi)'*(xnewp-
xg_multi))/(length(xg_multi)*max(abs([xnewp;xg_mult i]))) ...  
                    < TOL) || (it == parx(14)))  
                if  (it == parx(14))  
                    % Maximum N-R iterations reached  
                    disp([ 'Max Iterations Reached: IT = '  num2str(it) 
', Data Point = '  num2str(k)]);  
                    nrconverge = 0;  
                end  
                NRSOLVE = 0;  
                nriter(k) = it;  



225 
 

 

            else  
                xg_multi = xnewp;  
                fluxm_multi = xg_multi(1:end-nio);  
                it = it+1;  
            end  
        end  
        if  ~nrconverge  
            break  
        end  
         
        % Phase current calculation  
        iqd0sr(:,k) = xg_multi(end-nio+1:end)*scl;  
        iabc(:,k) = Ksrinv(:,1:nio)*iqd0sr(:,k);  
        % Phase flux linkage calculation  
        lamabcpp(:,k) = Ksrinv(:,1:nio)*lamqd0srpp( :,k);  
         
    elseif  bartype == 1 % ---------------------------------------------  
        for  i = 1:stack_num  
            if  i == 1  
                A_multi = A_prime(1:row_A(i),1:col_ A(i),i);  
                d1_multi = -
scl*[d_prime(1:row_d(i),1:3,i)*Ksrinv(:,1:nio) ...  
                    d_damper_1_prime(1:row_d_damper _1(i),:,i)];  
                d2_multi = 
scl*[Ksr(1:nio,:)*d_prime(1:row_d(i),1:3,i)'; ...  
                    d_damper_2_prime(1:row_d_damper _2(i),:,i)'];  
                d3_multi = d_prime(1:row_d(i),4,i);  
            else  
                A_multi = 
blkdiag(A_multi,A_prime(1:row_A(i),1:col_A(i),i));  
                d1_multi = [d1_multi;-
scl*[d_prime(1:row_d(i),1:3,i)*Ksrinv(:,1:nio) ...  
                    d_damper_1_prime(1:row_d_damper _1(i),:,i)]];  
                d2_multi = [d2_multi 
scl*[Ksr(1:nio,:)*d_prime(1:row_d(i),1:3,i)'; ...  
                    d_damper_2_prime(1:row_d_damper _2(i),:,i)']];  
                d3_multi = blkdiag(d3_multi,d_prime (1:row_d(i),4,i));  
            end  
        end  
        Aaug_multi = [A_multi d1_multi;d2_multi zer os(nio+damper_ntip-
1,nio+damper_ntip-1)];  
        daug_multi = blkdiag(d3_multi,eye(nio+dampe r_ntip-1));  
        if  rcond(Aaug_multi)<1e-16  
            fprintf( 'Warning: rcond(Aaug) = %d at 
k=%i.\n' ,rcond(Aaug_multi),k);  
        end  
        lam_multi = 
[ifld*ones(stack_num,1);scl*lamqd0srpp(:,k);scl*lam damper(1:damper_ntip
-1,k)];  
        xg_multi = Aaug_multi\(daug_multi*lam_multi );        
        % Identify just the loop fluxes  
        fluxm_multi = xg_multi(1:end-nio-damper_nti p+1);  
        % NEWTON-RAPHSON SOLVER 
        it = 1; % Keeps track of N-R iterations  
        NRSOLVE = 1;  



226 
 

 

        while  NRSOLVE 
            xg_multi_temp = xg_multi;  
            fluxm_multi_temp = fluxm_multi;  
            for  i = 1:stack_num  
                % Assign variables  
                Cvconn = Cvconn_prime(:,i);  
                Crconn = Crconn_prime(1:row_Crconn( i),:,i);  
                O = O_prime(1:row_O(i),1:col_O(i),i );  
                d_damper_1 = d_damper_1_prime(1:row _d_damper_1(i),:,i);  
                d_damper_2 = d_damper_2_prime(1:row _d_damper_2(i),:,i);  
                PTClist = PTClist_prime(1:row_PTCli st(i),i);  
                dPTClist = dPTClist_prime(1:row_dPT Clist(i),i);  
                % Find xg and fluxm for each stack  
                xg = [xg_multi_temp(1:Nm(i));xg_mul ti_temp(end-nio-
damper_ntip+2:end)];  
                xg_multi_temp = removerows(xg_multi _temp,1:Nm(i));  
                fluxm = fluxm_multi_temp(1:Nm(i));  
                fluxm_multi_temp = 
removerows(fluxm_multi_temp,1:Nm(i));  
                % DETERMINE FLUXES FOR THE GUESS VECTOR xg 
                phi = O*fluxm;  
                phiiron(:,k) = phi(1:lB);  
                % DETERMINE B-FIELDs  
                BIRON(:,k,i) = phiiron(:,k)./areas;  
                % Store flux/flux density values after converging  
                phit(:,k,i) = phi(S+1:2*S);  
                phiag = 
phi(4*S+11+D/2+Dsl/2+1+damper_nshank+D/2+2*(SPT-1): end);  
                BY(:,k,i) = BIRON(1:S,k,i);  
                BT(:,k,i) = BIRON(S+1:2*S,k,i);  
                BTT(:,k,i) = BIRON(2*S+1:3*S,k,i);  
                % GET PERMEABILITY FOR EACH RESPECTIVE PERM 
                [sMU,sdmdb] = get_mur_exp(BIRON(1:s lB,k,i),mudata.s);  
                [rMU,rdmdb] = 
get_mur_exp(BIRON(slB+1:end,k,i),mudata.r);  
                MU = [sMU;rMU];  
                dmdb = [sdmdb;rdmdb];  
                % UPDATE MATRICIES 
                Riron = Rxm./MU;  
                [Ag,d,Cr] = 
get_meshmatrices(Rair,PTClist,Riron,parx,pars,Nabcf ,Crconn,Cvconn);  
                % Pure Newton Raphson Iterator - find Jacobian and 
update x for each stack  
                Aaug = [Ag -scl*d(:,1:3)*Ksrinv(:,1 :nio) -
scl*d_damper_1; ...  
                    scl*Ksr(1:nio,:)*d(:,1:3)' 
zeros(nio,nio+damper_ntip-1); ...  
                    scl*d_damper_2' zeros(damper_nt ip-
1,nio+damper_ntip-1)];  
                J = get_J(Cr(1:lB,:),O(1:lB,:),Aaug ,MU,areas,dmdb,xg);  
                DR = J-Aaug;  
                DR = DR(1:Nm(i),1:Nm(i));  
             
                if  i == 1  
                    Ag_multi = Ag;  
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                    DR_multi = DR;  
                    torque(k) = 
((RP/2)^2)*(sum(phiag.^2.*dPTClist./(PTClist.^2)));  
                else  
                    Ag_multi = blkdiag(Ag_multi,Ag) ;  
                    DR_multi = blkdiag(DR_multi,DR) ;  
                    torque(k) = torque(k) + 
((RP/2)^2)*(sum(phiag.^2.*dPTClist./(PTClist.^2)));  
                end  
            end  
  
            % Solve the multi-stack system equations         
            Aaug_multi = [Ag_multi d1_multi;d2_mult i 
zeros(nio+damper_ntip-1,nio+damper_ntip-1)];  
            daug_multi = blkdiag(d3_multi,eye(nio+d amper_ntip-1));  
            if  rcond(Aaug_multi)<1e-16  
                fprintf( 'Warning: rcond(Aaug) = %d at 
k=%i.\n' ,rcond(Aaug_multi),k);  
            end  
            DR_multi = blkdiag(DR_multi,zeros(nio+d amper_ntip-
1,nio+damper_ntip-1));  
            J_multi = Aaug_multi+DR_multi;  
            xnewp = xg_multi -  J_multi\(Aaug_multi *xg_multi - 
daug_multi*lam_multi);  
             
            % Check for convergence  
            if  ((sqrt((xnewp-xg_multi)'*(xnewp-
xg_multi))/(length(xg_multi)*max(abs([xnewp;xg_mult i]))) ...  
                    < TOL) || (it == parx(14)))  
                if  (it == parx(14))  
                    % Maximum N-R iterations reached  
                    disp([ 'Max Iterations Reached: IT = '  num2str(it) 
', Data Point = '  num2str(k)]);  
                    nrconverge = 0;  
                end  
                NRSOLVE = 0;  
                nriter(k) = it;  
            else  
                xg_multi = xnewp;  
                fluxm_multi = xg_multi(1:end-nio-da mper_ntip+1);  
                it = it+1;  
            end  
        end  
        if  ~nrconverge  
            break  
        end  
  
        % Phase current calculation  
        iqd0sr(:,k) = xg_multi(end-nio-damper_ntip+ 2:end-
damper_ntip+1)*scl;  
        iabc(:,k) = Ksrinv(:,1:nio)*iqd0sr(:,k); % terminals series 
connected  
        % Phase flux linkage calculation  
        lamabcpp(:,k) = Ksrinv(:,1:nio)*lamqd0srpp( :,k);  
        % Damper windings current  
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        idamper(1:damper_ntip-1,k) = xg_multi(end-
damper_ntip+2:end)*scl;  
        idamper(damper_ntip,k) = -sum(idamper(1:dam per_ntip-1,k));  
         
    elseif  bartype == 2 % ---------------------------------------------  
        for  i = 1:stack_num  
            if  i == 1  
                A_multi = A_prime(1:row_A(i),1:col_ A(i),i);  
                d1_multi = -
scl*[d_prime(1:row_d(i),1:3,i)*Ksrinv(:,1:nio) ...  
                    d_damper_1_prime(1:row_d_damper _1(i),:,i)];  
                d2_multi = 
scl*[Ksr(1:nio,:)*d_prime(1:row_d(i),1:3,i)'; ...  
                    d_damper_2_prime(1:row_d_damper _2(i),:,i)'];  
                d3_multi = d_prime(1:row_d(i),4,i);  
            else  
                A_multi = 
blkdiag(A_multi,A_prime(1:row_A(i),1:col_A(i),i));  
                d1_multi = [d1_multi;-
scl*[d_prime(1:row_d(i),1:3,i)*Ksrinv(:,1:nio) ...  
                    d_damper_1_prime(1:row_d_damper _1(i),:,i)]];  
                d2_multi = [d2_multi 
scl*[Ksr(1:nio,:)*d_prime(1:row_d(i),1:3,i)'; ...  
                    d_damper_2_prime(1:row_d_damper _2(i),:,i)']];  
                d3_multi = blkdiag(d3_multi,d_prime (1:row_d(i),4,i));  
            end  
        end  
        Aaug_multi = [A_multi d1_multi;d2_multi 
zeros(nio+damper_ntip,nio+damper_ntip)];  
        daug_multi = blkdiag(d3_multi,eye(nio+dampe r_ntip));         
        if  rcond(Aaug_multi)<1e-16  
            fprintf( 'Warning: rcond(Aaug) = %d at 
k=%i.\n' ,rcond(Aaug_multi),k);  
        end  
        lam_multi = 
[ifld*ones(stack_num,1);scl*lamqd0srpp(:,k);scl*lam damper(1:damper_ntip
,k)];  
        xg_multi = Aaug_multi\(daug_multi*lam_multi );  
         
        % Identify just the loop fluxes  
        fluxm_multi = xg_multi(1:end-nio-damper_nti p);  
        % NEWTON-RAPHSON SOLVER 
        it = 1; % Keeps track of N-R iterations  
        NRSOLVE = 1;  
        while  NRSOLVE 
            xg_multi_temp = xg_multi;  
            fluxm_multi_temp = fluxm_multi;  
            for  i = 1:stack_num  
                % Assign variables  
                Cvconn = Cvconn_prime(:,i);  
                Crconn = Crconn_prime(1:row_Crconn( i),:,i);  
                O = O_prime(1:row_O(i),1:col_O(i),i );  
                d_damper_1 = d_damper_1_prime(1:row _d_damper_1(i),:,i);  
                d_damper_2 = d_damper_2_prime(1:row _d_damper_2(i),:,i);  
                PTClist = PTClist_prime(1:row_PTCli st(i),i);  



229 
 

 

                dPTClist = dPTClist_prime(1:row_dPT Clist(i),i);  
                % Find xg and fluxm for each stack  
                xg = [xg_multi_temp(1:Nm(i));xg_mul ti_temp(end-nio-
damper_ntip+1:end)];  
                xg_multi_temp = removerows(xg_multi _temp,1:Nm(i));  
                fluxm = fluxm_multi_temp(1:Nm(i));  
                fluxm_multi_temp = 
removerows(fluxm_multi_temp,1:Nm(i));  
                % DETERMINE FLUXES FOR THE GUESS VECTOR xg 
                phi = O*fluxm;  
                phiiron(:,k) = phi(1:lB);  
                % DETERMINE B-FIELDs  
                BIRON(:,k,i) = phiiron(:,k)./areas;  
                % Store flux/flux density values after converging  
                phit(:,k,i) = phi(S+1:2*S);  
                phiag = 
phi(4*S+11+D/2+Dsl/2+1+damper_nshank+D/2+2*(SPT-1): end);  
                BY(:,k,i) = BIRON(1:S,k,i);  
                BT(:,k,i) = BIRON(S+1:2*S,k,i);  
                BTT(:,k,i) = BIRON(2*S+1:3*S,k,i);  
                % GET PERMEABILITY FOR EACH RESPECTIVE PERM 
                [sMU,sdmdb] = get_mur_exp(BIRON(1:s lB,k,i),mudata.s);  
                [rMU,rdmdb] = 
get_mur_exp(BIRON(slB+1:end,k,i),mudata.r);  
                MU = [sMU;rMU];  
                dmdb = [sdmdb;rdmdb];  
                % UPDATE MATRICIES 
                Riron = Rxm./MU;  
                [Ag,d,Cr] = 
get_meshmatrices(Rair,PTClist,Riron,parx,pars,Nabcf ,Crconn,Cvconn);  
                % Pure Newton Raphson Iterator - find Jacobian and 
update x for each stack  
                Aaug = [Ag -scl*d(:,1:3)*Ksrinv(:,1 :nio) -
scl*d_damper_1; ...  
                    scl*Ksr(1:nio,:)*d(:,1:3)' 
zeros(nio,nio+damper_ntip); ...  
                    scl*d_damper_2' 
zeros(damper_ntip,nio+damper_ntip)];  
                J = get_J(Cr(1:lB,:),O(1:lB,:),Aaug ,MU,areas,dmdb,xg);  
                DR = J-Aaug;  
                DR = DR(1:Nm(i),1:Nm(i));  
             
                if  i == 1  
                    Ag_multi = Ag;  
                    DR_multi = DR;  
                    torque(k) = 
((RP/2)^2)*(sum(phiag.^2.*dPTClist./(PTClist.^2)));  
                else  
                    Ag_multi = blkdiag(Ag_multi,Ag) ;  
                    DR_multi = blkdiag(DR_multi,DR) ;  
                    torque(k) = torque(k) + 
((RP/2)^2)*(sum(phiag.^2.*dPTClist./(PTClist.^2)));  
                end  
            end  
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            % Solve the multi-stack system equations  
            Aaug_multi = [Ag_multi d1_multi;d2_mult i 
zeros(nio+damper_ntip,nio+damper_ntip)];  
            daug_multi = blkdiag(d3_multi,eye(nio+d amper_ntip));  
            if  rcond(Aaug_multi)<1e-16  
                fprintf( 'Warning: rcond(Aaug) = %d at 
k=%i.\n' ,rcond(Aaug_multi),k);  
            end  
            DR_multi = 
blkdiag(DR_multi,zeros(nio+damper_ntip,nio+damper_n tip));  
            J_multi = Aaug_multi+DR_multi;  
            xnewp = xg_multi -  J_multi\(Aaug_multi *xg_multi - 
daug_multi*lam_multi);  
             
            % Check for convergence  
            if  ((sqrt((xnewp-xg_multi)'*(xnewp-
xg_multi))/(length(xg_multi)*max(abs([xnewp;xg_mult i]))) ...  
                    < TOL) || (it == parx(14)))  
                if  (it == parx(14))  
                    % Maximum N-R iterations reached  
                    disp([ 'Max Iterations Reached: IT = '  num2str(it) 
', Data Point = '  num2str(k)]);  
                    nrconverge = 0;  
                end  
                NRSOLVE = 0;  
                nriter(k) = it;  
            else  
                xg_multi = xnewp;  
                fluxm_multi = xg_multi(1:end-nio-da mper_ntip);  
                it = it+1;  
            end  
        end  
        if  ~nrconverge  
            break  
        end  
         
        % Phase current calculation  
        iqd0sr(:,k) = xg_multi(end-nio-damper_ntip+ 1:end-
damper_ntip)*scl;  
        iabc(:,k) = Ksrinv(:,1:nio)*iqd0sr(:,k); % terminals series 
connected  
        % Phase flux linkage calculation  
        lamabcpp(:,k) = Ksrinv(:,1:nio)*lamqd0srpp( :,k);  
        % Damper windings current  
        idamper(:,k) = xg_multi(end-damper_ntip+1:e nd)*scl;  
    end  
    %-------------------------------------------------- ----------------  
    % External voltage model--------------------------- ----------------  
    % R load  
%     vabc(:,k) = -iabc(:,k)*Rload;  
    % Parallel RL load  
    vabc(:,k) = (-iabc(:,k)-il(:,k))*Rload;  
    pil(:,k) = vabc(:,k)/Lload;  
    il(:,k+1) = il(:,k)+pil(:,k)*DT;  
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    % qd voltage calculation  
    vqd0sr(:,k) = Ksr(1:nio,:)*vabc(:,k); % Terminals series connected  
     
    % Connected to rectifier with constant vdc  
    %     iabcl = m_isil*iabc(:,k);  
    %     [V,idc(k)] = rect(iabcl,vdcmax,parx);  
    %     vqd0gr = Ksr*V;  
    %     vqd0sr(:,k) = m_vgvs*vqd0gr;  
    %     vabc(:,k) = Ksrinv(:,1:nio)*vqd0sr(:,k);  
    % Connected to rectifier with RLC load  
    %     iabcl = m_isil*iabc(:,k);  
    %     [V,idc(k)] = rect(iabcl,vdc(k),parx);  
    %     vqd0gr = Ksr*V;  
    %     vqd0sr(:,k) = m_vgvs*vqd0gr;  
    %     vabc(:,k) = Ksrinv(:,1:nio)*vqd0sr(:,k);  
    %     pvc(k) = (idc(k)-vc(k)/Rload)/Cload;  
    %     vc(k+1) = vc(k)+pvc(k)*DT;  
    %     Ivc(k+1) = Ivc(k)+(vc(k+1)+vc(k))/2*DT;  
    %     vdc(k+1) = (-
(Ivdc(k)+vdc(k)*DT/2)+taus*vc(k+1)+Ivc(k+1)+Lload*i dc(k))/(taus+DT/2);  
    %     Ivdc(k+1) = Ivdc(k)+(vdc(k+1)+vdc(k))/2*DT;  
    %-------------------------------------------------- ----------------  
     
    % Forward Euler to solve state model--------------- ----------------  
    plamqd0srpp(:,k) = (vqd0sr(:,k) - rs.*iqd0sr(:, k) - 
wr*mlam*lamqd0srpp(:,k)*RP)/RP;  
    lamqd0srpp(:,k+1) = lamqd0srpp(:,k) + plamqd0sr pp(:,k)*DT;  
     
    if  bartype == 1  
        plamdamper(1:damper_ntip-1,k) = -Tdp*idampe r(1:damper_ntip-
1,k);  
        lamdamper(:,k+1) = lamdamper(:,k) + plamdam per(:,k)*DT;  
    elseif  bartype == 2  
        plamdamper(:,k) = -Tdp*idamper(:,k);  
        lamdamper(:,k+1) = lamdamper(:,k) + plamdam per(:,k)*DT;  
    end  
    %-------------------------------------------------- ----------------  
     
    % Increment time/rotor position  
    k = k+1;  
end  
  
% Check for flux densities above limit  
Bsat = parx(23);  
maxB = max(abs(BIRON));  
saturate(maxB>=Bsat) = 1./(1+abs((maxB(maxB>=Bsat)- Bsat)./(0.1*Bsat)));  
  
end  
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%-------------------------------------------------- --------------------  
% AUTHORS:  Xiaoqi Wang, Michelle Bash, Steven D. P ekarek  
%-------------------------------------------------- --------------------  
% CONTACT:  School of Electrical & Computer Enginee ring  
%           Purdue University  
%           465 Northwestern Ave.  
%           West Lafayette, IN 47907  
%           765-494-3434, spekarek@ecn.purdue.edu  
%-------------------------------------------------- --------------------  
% April 1, 2012  
%-------------------------------------------------- --------------------  
% [t,ias,ibs,ics,torque,qrm,phit,BY,BT,nrconverge,s aturate,BIRON] =  
% wrsmdynamics_ss_multislice(parx,pars,turns,mudata )  
%  
% Solves the MEC network.  
% 
% OUTPUTS: t        - time vector (s)  
%          ias,ibs,ics  - phase currents (s)  
%          torque   - torque (Nm)  
%          qrm      - mechanical rotor position (ra dians)  
%          phit     - stator teeth flux (Wb)  
%          BY,BT,BTT    - flux density in the stato r yoke, stator 
teeth, and stator tooth tips (T)  
%          nrconverge - flag indicating if newton r aphson converged  
%          saturate   - indicates if the flux densi ty limit is violated  
%          BIRON    - flux density in iron (Wb)  
% 
% INPUTS:  pars     - geometric parameters  
%          parx     - simulation parameters  
%          turns    - phase winding turns (turn cou nt)  
%          mudata   - magnetic material data for fi nding permeability  
%-------------------------------------------------- --------------------  
function  
[t,ias,ibs,ics,torque,qrm,phit,BY,BT,BTT,nrconverge ,saturate,BIRON] = 
wrsmdynamics_ss_multislice (parx,pars,turns,damperd ata,mudata,qr_init)  
%-------------------------------------------------- --------------------  
% INITIALIZE THE SYSTEM  
%-------------------------------------------------- --------------------  
DT      = parx(12);                 % Time step in s  
iter    = parx(30);                 % Number of iterations  
wrm     = parx(4)*2*pi/60;          % Mechanical rotor speed in rad/s  
ifld    = pars(47);                 % Field current (A)  
irms    = pars(49);                 % rms Stator current (A)  
iph     = pars(50);                 % Current phase angle (degrees)  
im      = irms*sqrt(2);             % Magnitude of ias,ibs,ics  
mu0     = pi*4e-7;      % Permeability of free space  
RP      = pars(28);     % Poles  
S       = parx(3)/RP;   % Number of stator slots per pole  
D       = 2*(parx(2));  % Number of rotor pole tip sections per pole 
pair  
Dsl     = 4*parx(29);   % Number of inter-polar regions per pole pair  
SPT     = parx(2);      % SECTIONS PER ROTOR TOOTH, including radial 
and tangential  
NRrtrt  = parx(27);     % Number of outer pole tip reluctances per pole 
pair  
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damper_ntip = damperdata.damper_ntip;     % Number of damper windings 
on rotor tip  
damper_nshank = damperdata.damper_nshank; % Number of damper windings 
on rotor shank  
bartype = damperdata.bartype; % Type of damper bars connnection  
Rd = damperdata.Rd;     % Damper bar body resistance  
Re = damperdata.Re;     % Damper bar end connection resistance  
NPTS    = parx(7);                  % NUMBER OF DATA POINTS PER CYCLE 
skew_angle = pars(30);              % Electrical skew angle, rad  
stack_num = pars(31);               % Number of stack for skew  
% INITIALIZE VARIABLES  
slB     = 3*S; % Number of iron elements in stator  
rlB     = 6+D/2+damper_nshank+SPT+(SPT-1); % Number of iron elements in 
rotor  
lB      = slB+rlB; % Number of iron elements  
nriter  = zeros(1,iter); % Keeps track of N-R iterations  
torque  = zeros(1,iter);  
PTC     = zeros(S,D+Dsl,iter); % Matrix of airgap permeances  
dPTC    = zeros(S,D+Dsl,iter);  
phit    = zeros(S,iter,stack_num); % Stator tooth flux  
phiiron = zeros(lB,iter); % Flux in iron  
BY      = zeros(S,iter,stack_num); % Stator yoke flux density  
BT      = zeros(S,iter,stack_num); % Stator tooth shank flux density  
BTT     = zeros(S,iter,stack_num); % Stator tooth tip flux density  
BIRON   = zeros(lB,iter,stack_num); % Flus density in all iron elements  
saturate = ones(1,iter); % Saturation constraint (is Bsat violated)  
smuiron = get_mur_exp(zeros(slB,1),mudata.s); % Initial permeabilities 
of stator  
rmuiron = get_mur_exp(zeros(rlB,1),mudata.r); % Initial permeabilities 
of rotor  
muiron  = [smuiron;rmuiron]; % Initial permeabilities   
TOL     = parx(21); % tolerance for convergence of Newton-Raphson  
k       = 1; % Simulation step  
t(k)    = parx(10);  
% ARTIFICIAL ROTOR POSITION MODIFICATION used in th e calculation of 
airgap  
% permeances.----  
SLL     = parx(3);  
ID      = pars(2);  
ROD     = pars(24);  
STTW    = pars(21);  
WRT     = pars(34);  
WAIRT   = pars(35);  
shift1  = WRT/(ROD/2);  
shift2  = (WAIRT/2)/(ROD/2);  
shift3  = 2*pi/SLL;  
shift4  = (STTW/2)/(ID/2);  
shift5  = (pi/2)/(RP/2);  
shift   = shift1 + shift2 - (S/2)*shift3 - shift4 -  shift5;   
% TIME AND ROTOR POSITION VECTORS 
t       = (0:DT:DT*(iter-1))+t(k);  
qrm     = t*wrm + qr_init/(RP/2) ; % Actual rotor position  
qrm_shift =  qrm + shift +pi/12+pi/4; % Angle fed to airgap permeance 
function  
%-------------------------------------------------- --------------------  
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% CALCULATE VARIABLES/MATRICES WHICH WILL NOT CHANGE DURING SIM  
%-------------------------------------------------- --------------------  
% Variables/matrices to be used in airgap permeance  calculation  
WRS     = pars(35)/(2*parx(29));  
WRTS    = pars(36);  
B0      = pars(9);  
SPT     = parx(2);  
RPIT    = pars(32);  
WRTSang = 2*pi*RPIT/RP/SPT;  
WRTang  = 2*pi*RPIT/RP;  
WRSang  = 2*pi*(1-RPIT)/RP/(Dsl/2);  
qs      = STTW/ID*RP; % Span of stator tooth in electrical radians  
qs1     = B0/ID*RP; % Span of stator slot  
qrr     = WRTSang*RP/2; % Span of rotor pole tip section  
qrs     = WRSang*RP/2;  % Span of inter-polar section  
Gmaxrt = pi*4e-7*pars(3)/stack_num/(ID-
ROD)*2*(WRTS*(STTW>=WRTS)+STTW*(STTW<WRTS)); % if-else  
Gmaxsl = pi*4e-7*pars(3)/stack_num/(ID-
ROD)*2*(WRS*(STTW>=WRS)+STTW*(STTW<WRS)); % if-else  
rt      = 1:D; rtsl    = 1:Dsl; st      = (1:S)';  
% Matrices defining the angle between every stator tooth and rotor 
section  
anglert = ones(S,1)*(-mod(rt-1,(D/2))*WRTSang - flo or((rt-
1)/(D/2))*2*pi/RP) ...  
    + ((st-1)*(STTW+B0)/(ID/2))*ones(1,D);  
anglesl = ones(S,1)*(-WRTang - mod(rtsl-1,(Dsl/2))* WRSang - ...  
    floor((rtsl-1)/(Dsl/2))*2*pi/RP) + ((st-
1)*(STTW+B0)/(ID/2))*ones(1,Dsl);  
  
% Establish the geometric case for the rotor tooth section  
if  qrr <= qs1/2  
    qrrcs = 1;  
elseif  (qrr <= qs)  
    qrrcs = 2;  
elseif  (qrr <= qs +qs1/2)  
    qrrcs = 3;  
elseif  (qrr <= qs+qs1)  
    qrrcs = 4;  
else  
    qrrcs = 5;  
end  
% Establish the geometric case for the rotor slot s ection     
if  qrs <= qs1/2  
    qrscs = 1;  
elseif  (qrs <= qs)  
    qrscs = 2;  
elseif  (qrs <= qs +qs1/2)  
    qrscs = 3;  
elseif  (qrs <= qs+qs1)  
    qrscs = 4;  
else  
    qrscs = 5;  
end  
 
% ------------------------------------------------- -------------------  
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% turns matrix to be used in system of equations  
Natrn   = [-turns turns]';  
Nbtrn   = [Natrn(2*SLL/(3*RP)+1:end);Natrn(1:2*SLL/ (3*RP))];  
Nctrn   = [Natrn(4*SLL/(3*RP)+1:end);Natrn(1:4*SLL/ (3*RP))];  
Nabc    = [Natrn Nbtrn Nctrn];  
Nfld    = pars(41);  
Nabcf   = [Nabc(1:S,:) zeros(S,1);0 0 0 Nfld;0 0 0 -Nfld];  
% ------------------------------------------------- -------------------  
% MEC loops with MMF sources  
Cvcfixed = (1:S+2)';  
%-------------------------------------------------- --------------  
% Calculate the reluctances  
[Rxm,areas,Rair,NPRTS,NPRTB] = 
get_reluctances(mu0,parx,pars,damperdata);  
Riron = Rxm./muiron;  
%-------------------------------------------------- --------------  
% Identify type of node in rotor tooth and slot  
% 1 = node of rotor pole tip radial branch  
% 2 = node of rotor pole tip tangential branch  
% 3 = rotor slot branch going to rotor edge  
% 4 = rotor slot branch going to bottom of rotor po le tip  
rtid = [2*ones(NRrtrt,1);ones(D/2-2*NRrtrt,1);2*one s(NRrtrt,1); ...  
        3*ones(NPRTS,1);4*ones(2*NPRTB,1);3*ones(NP RTS,1); ...  
        2*ones(NRrtrt,1);ones(D/2-2*NRrtrt,1);2*one s(NRrtrt,1); ...  
        3*ones(NPRTS,1);4*ones(2*NPRTB,1);3*ones(NP RTS,1)];  
% Identify how many RRTOUT branches border the roto r loop  
NRBRL = ceil((NRrtrt+1)/2);  % Number of RRTOUT branches Bordering 
Rotor Loop  
NRTBD = NRrtrt-NRBRL; % Number of RRTOUT branches with bordering loop 
To Be Determined  
% ------------------------------------------------- -------------------  
% Define reluctance connections in stator and rotor  which do not change  
% Stator tooth tip, damper slots, and leakage of da mper slots are not  
% presented here, but will be derived as postproces s in shape_alg.m  
% IRON 
% Stator yoke - S  
% Stator teeth - S  
% Rotor yoke below the slot - 1  
% Rotor tooth shank - 1  
% Rotor yoke connected to shank - 2  
% Rotor tooth tips radial - (D - 4*NRrtrt)  
% Rotor tooth to rotor tooth tangential - 4*NRrtrt  
% Rotor tooth tangential at sides of tooth tips - 4  
% AIR  
% Stator tooth leakage - S  
% Field winding leakage - 2  
% Middle rotor slot leakage - 2  
% Fringing permeance from rotor side to airgap boun dary - Dsl  
% Fringing permeance from rotor slot side to bottom  of tooth tip - 4  
% RY R RRYSL RRTSH RRYSH RRTIN RRTOUT RRTS RSTL RFDL RRTL RAGFR RFRB 
Crcfixed = zeros(2*S+8+D+S+3+Dsl,3);  
% RY (all)  
Crcfixed(1:S,2)=(1:S)';  
% R (all)  
Crcfixed(S+1:2*S,2) = [1 2:S]';  
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Crcfixed(S+1:2*S,3) = [-S 1:S-1]';  
% RRYSL (all)  
Crcfixed(2*S+1,3) = S+3;  
% RRTSH (all)  
Crcfixed(2*S+2,2:3) = [S+1 S+2];  
% RRYSH (all)  
Crcfixed(2*S+2+(1:2)',2) = [S+1;S+2];  
% RRTIN (Determined by shape algorithm)  
% RRTOUT - One side known if reluctance borders rot or loop  
Crcfixed(2*S+2+D-4*NRrtrt+2+(1:4*NRrtrt)',2) = ...  
 
[[zeros(NRTBD,1);ones(NRBRL,1)]*(S+1);[ones(NRBRL,1 );zeros(NRTBD,1)]*(S
+2); ...  
 -[zeros(NRTBD,1);ones(NRBRL,1)]*(S+1);-
[ones(NRBRL,1);zeros(NRTBD,1)]*(S+2)];  
% RRTS - (Determined by shape algorithm)  
% RSTL (one side known, use shape alg for other)  
Crcfixed(2*S+2+D+6+(1:S)',2) = (1:S)';  
% RFDL (all)  
Crcfixed(2*S+2+D+6+S+(1:2)',2:3) = [-(S+3) S+1;S+2 S+3];  
% RRTL (one side known, use shape alg for other)  
Crcfixed(2*S+2+D+6+S+2+(1:2)',2) = [S+3;-(S+3)];  
% RAGFR - (Determined by shape algorithm)  
% RFRB (one side, use shape alg for other)  
Crcfixed(2*S+2+D+6+S+4+Dsl+(1:4)',2) = [-(S+3);S+3; S+3;-(S+3)];  
%-------------------------------------------------- --------------  
% Initialization  
index_vect = zeros(damper_ntip,3,iter+1,stack_num);  
flag_vect = ones(damper_ntip,iter+1,stack_num);  
% Calculate the currents  
ias = im*cos((RP/2)*(qrm) + (pi*iph/180));  
ibs = im*cos((RP/2)*(qrm) + (pi*iph/180) - (2*pi/3) );  
ics = im*cos((RP/2)*(qrm) + (pi*iph/180) - (4*pi/3) );  
curr = [ias;ibs;ics;ifld*ones(1,iter)];  
  
%-------------------------------------------------- --------------------  
% SOLVING LOOP 
%-------------------------------------------------- --------------------  
nrconverge = 1;  
if  stack_num == 1  
    stack_span = 0;  
else  
    stack_span = floor(skew_angle/(2*pi)*NPTS/(stac k_num-1));  
end  
% AIR-GAP PERMEANCES 
for  i = 1:iter  
    [PTC(:,:,i),dPTC(:,:,i)] = 
get_Pag(qrm_shift(i),pars,parx,Gmaxrt,Gmaxsl,angler t,anglesl,qrrcs,qrsc
s);  
end  
[l,m,n] = size(PTC);  
PTC_prime = zeros(l,m,n,stack_num);  
dPTC_prime = zeros(l,m,n,stack_num);  
for  i = 1:stack_num  



237 
 

 

    PTC_prime(:,:,1:(i-1)*stack_span,i) = PTC(:,:,e nd-(i-
1)*stack_span+1:end);  
    PTC_prime(:,:,(i-1)*stack_span+1:end,i) = PTC(: ,:,1:end-(i-
1)*stack_span);  
    dPTC_prime(:,:,1:(i-1)*stack_span,i) = dPTC(:,: ,end-(i-
1)*stack_span+1:end);  
    dPTC_prime(:,:,(i-1)*stack_span+1:end,i) = dPTC (:,:,1:end-(i-
1)*stack_span);  
end  
  
while  k <= iter  
    % Shape algorithm - Find the loop topology in the a irgap if it has 
changed  
    for  i = 1:stack_num  
        if  k==1 || sum(sum((PTC_prime(:,:,k-
1,i)~=0)~=(PTC_prime(:,:,k,i)~=0)))>0  
            [Crconn,Cvconn,O,PTCind,d_damper_1,d_da mper_2,index,flag] 
...  
                = 
shape_alg(PTC_prime(:,:,k,i),parx,pars,damperdata,C rcfixed,Cvcfixed,rti
d,index_vect(:,:,k,i),flag_vect(:,k,i));  
            if  length(Crconn)~=length([Riron;Rair;PTCind])  
                nrconverge = 0;  
                break  
            end  
            % Save variables  
            [row_Crconn(i),col_Crconn(i)] = size(Cr conn);  
            [row_O(i),col_O(i)] = size(O);  
            [row_PTCind(i),col_PTCind(i)] = size(PT Cind);  
            if  i == 1 && k == 1  
                Crconn_prime = -
1e12*ones(row_Crconn(i)+5,col_Crconn(i),stack_num);  
                O_prime = -1e12*ones(row_O(i)+5,col _O(i)+5,stack_num);  
                PTCind_prime = -1e12*ones(row_PTCin d(i)+5,stack_num);  
            end  
            Cvconn_prime(:,i) = Cvconn;  
            Crconn_prime(1:row_Crconn(i),:,i) = Crc onn;  
            O_prime(1:row_O(i),1:col_O(i),i) = O;  
            PTCind_prime(1:row_PTCind(i),i) = PTCin d;  
        end           
        % Obtain list of airgap permeances and their deriva tives for 
this rotor position  
        ptc           = PTC_prime(:,:,k,i)';  
        PTClist       = ptc(PTCind_prime(1:row_PTCi nd(i),i));  
        dptc          = dPTC_prime(:,:,k,i)';  
        dPTClist      = dptc(PTCind_prime(1:row_PTC ind(i),i));             
        % Find the system of equations and solve for the in itial guess  
        [A,d] = 
get_meshmatrices(Rair,PTClist,Riron,parx,pars,Nabcf ,Crconn_prime(1:row_
Crconn(i),:,i),Cvconn_prime(:,i));  
        % Total number of meshes  
        Nm(i) = 3 + S + length(PTClist) + (SPT-1);  
        % Save variables  
        [row_PTClist(i),col_PTClist(i)] = size(PTCl ist);  
        [row_dPTClist(i),col_dPTClist(i)] = size(dP TClist);  
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        if  i == 1 && k == 1  
            PTClist_prime = -1e12*ones(row_PTClist( i)+5,stack_num);  
            dPTClist_prime = -1e12*ones(row_dPTClis t(i)+5,stack_num);  
        end  
        PTClist_prime(1:row_PTClist(i),i) = PTClist ;  
        dPTClist_prime(1:row_dPTClist(i),i) = dPTCl ist;  
        index_vect(:,:,k+1,i) = index;  
        flag_vect(:,k+1,i) = flag;  
         
        if  i == 1  
            A_multi = A;  
            d_multi = d;  
        else  
            A_multi = blkdiag(A_multi,A);  
            d_multi = [d_multi;d];  
        end  
    end  
    xg_multi = A_multi\(-d_multi*curr(:,k));  
    % NEWTON-RAPHSON SOLVER 
    it = 1; % Keeps track of N-R iterations  
    NRSOLVE = 1;  
    while  NRSOLVE 
        xg_multi_temp = xg_multi;  
        for  i = 1:stack_num  
            % Assign variables  
            Cvconn = Cvconn_prime(:,i);  
            Crconn = Crconn_prime(1:row_Crconn(i),: ,i);  
            O = O_prime(1:row_O(i),1:col_O(i),i);  
            PTClist = PTClist_prime(1:row_PTClist(i ),i);  
            dPTClist = dPTClist_prime(1:row_dPTClis t(i),i);  
            % Find xg and fluxm for each stack  
            xg = xg_multi_temp(1:Nm(i));  
            xg_multi_temp = removerows(xg_multi_tem p,1:Nm(i));  
            % DETERMINE FLUXES FOR THE GUESS VECTOR xg 
            phi = O*xg;  
            phiiron(:,k) = phi(1:lB);  
            % DETERMINE B-FIELDs  
            BIRON(:,k,i) = phiiron(:,k)./areas;  
            % Store flux/flux density values after converging  
            phit(:,k,i) = phi(S+1:2*S);  
            phiag = phi(4*S+11+D/2+Dsl/2+1+damper_n shank+D/2+2*(SPT-
1):end);  
            BY(:,k,i) = BIRON(1:S,k,i);  
            BT(:,k,i) = BIRON(S+1:2*S,k,i);  
            BTT(:,k,i) = BIRON(2*S+1:3*S,k,i);  
            % GET PERMEABILITY FOR EACH RESPECTIVE PERM 
            [sMU,sdmdb] = get_mur_exp(BIRON(1:slB,k ,i),mudata.s);  
            [rMU,rdmdb] = get_mur_exp(BIRON(slB+1:e nd,k,i),mudata.r);  
            MU = [sMU;rMU];  
            dmdb = [sdmdb;rdmdb];  
            % UPDATE MATRICIES 
            Riron = Rxm./MU;  
            [Ag,d,Cr] = 
get_meshmatrices(Rair,PTClist,Riron,parx,pars,Nabcf ,Crconn,Cvconn);  
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            % Pure Newton Raphson Iterator - find Jacobian and update x 
for each stack  
            J = get_J(Cr(1:lB,:),O(1:lB,:),Ag,MU,ar eas,dmdb,xg);  
            DR = J-Ag;  
             
            if  i == 1  
                Ag_multi = Ag;  
                d_multi = d;  
                DR_multi = DR;  
                torque(k) = 
((RP/2)^2)*(sum(phiag.^2.*dPTClist./(PTClist.^2)));  
            else  
                Ag_multi = blkdiag(Ag_multi,Ag);  
                d_multi = [d_multi;d];  
                DR_multi = blkdiag(DR_multi,DR);  
                torque(k) = torque(k) + 
((RP/2)^2)*(sum(phiag.^2.*dPTClist./(PTClist.^2)));  
            end  
        end  
        % Solve the multi-stack system equations  
        if  rcond(Ag_multi)<1e-16  
            fprintf( 'Warning: rcond(Aaug) = %d at 
k=%i.\n' ,rcond(Ag_multi),k);  
        end  
        J_multi = Ag_multi+DR_multi;  
        xnewp = xg_multi -  J_multi\(Ag_multi*xg_mu lti + 
d_multi*curr(:,k));  
        % Check for convergence  
        if  ((sqrt((xnewp-xg_multi)'*(xnewp-
xg_multi))/(length(xg_multi)*max(abs([xnewp;xg_mult i]))) ...  
                < TOL) || (it == parx(14)))  
            if  (it == parx(14))  
                % Maximum N-R iterations reached  
                disp([ 'Max Iterations Reached: IT = '  num2str(it) ', 
Data Point = '  num2str(k)]);  
                nrconverge = 0;  
            end  
            NRSOLVE = 0;  
            nriter(k) = it;  
        else  
            xg_multi = xnewp;  
            it = it+1;  
        end  
    end  
    if  ~nrconverge  
        break  
    end  
    % Increment time/rotor position  
    k = k+1;  
end  
% Check for flux densities above limit  
Bsat = parx(23);  
maxB = max(abs(BIRON));  
saturate(maxB>=Bsat) = 1./(1+abs((maxB(maxB>=Bsat)- Bsat)./(0.1*Bsat)));  
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