
Purdue University
Purdue e-Pubs

Open Access Dissertations Theses and Dissertations

Fall 2013

A Dynamic Magnetic Equivalent Circuit Model
For Design And Control Of Wound Rotor
Synchronous Machines
Xiaoqi Wang
Purdue University

Follow this and additional works at: https://docs.lib.purdue.edu/open_access_dissertations

Part of the Electromagnetics and Photonics Commons, and the Mechanical Engineering
Commons

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact epubs@purdue.edu for
additional information.

Recommended Citation
Wang, Xiaoqi, "A Dynamic Magnetic Equivalent Circuit Model For Design And Control Of Wound Rotor Synchronous Machines"
(2013). Open Access Dissertations. 33.
https://docs.lib.purdue.edu/open_access_dissertations/33

https://docs.lib.purdue.edu?utm_source=docs.lib.purdue.edu%2Fopen_access_dissertations%2F33&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/open_access_dissertations?utm_source=docs.lib.purdue.edu%2Fopen_access_dissertations%2F33&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/etd?utm_source=docs.lib.purdue.edu%2Fopen_access_dissertations%2F33&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/open_access_dissertations?utm_source=docs.lib.purdue.edu%2Fopen_access_dissertations%2F33&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/271?utm_source=docs.lib.purdue.edu%2Fopen_access_dissertations%2F33&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/293?utm_source=docs.lib.purdue.edu%2Fopen_access_dissertations%2F33&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/293?utm_source=docs.lib.purdue.edu%2Fopen_access_dissertations%2F33&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/open_access_dissertations/33?utm_source=docs.lib.purdue.edu%2Fopen_access_dissertations%2F33&utm_medium=PDF&utm_campaign=PDFCoverPages

Graduate School ETD Form 9

(Revised 12/07)

PURDUE UNIVERSITY
GRADUATE SCHOOL

Thesis/Dissertation Acceptance

This is to certify that the thesis/dissertation prepared

By

Entitled

For the degree of

Is approved by the final examining committee:

 Chair

To the best of my knowledge and as understood by the student in the Research Integrity and

Copyright Disclaimer (Graduate School Form 20), this thesis/dissertation adheres to the provisions of

Purdue University’s “Policy on Integrity in Research” and the use of copyrighted material.

Approved by Major Professor(s): ____________________________________

Approved by:
 Head of the Graduate Program Date

Xiaoqi Wang

 A Dynamic Magnetic Equivalent Circuit Model for Design and Control of Wound Rotor Synchronous
 Machines

Doctor of Philosophy

STEVEN D. PEKAREK

ANAND RAGHUNATHAN

OLEG WASYNCZUK

SCOTT D. SUDHOFF

STEVEN D. PEKAREK

M. R. Melloch 10-09-2013

A DYNAMIC MAGNETIC EQUIVALENT CIRCUIT MODEL FOR DESIGN AND

CONTROL OF WOUND ROTOR SYNCHRONOUS MACHINES

A Dissertation

Submitted to the Faculty

of

Purdue University

by

Xiaoqi Wang

In Partial Fulfillment of the

Requirements for the Degree

of

Doctor of Philosophy

December 2013

Purdue University

West Lafayette, Indiana

ii

ACKNOWLEDGMENTS

 Foremost, I would like to gratefully and sincerely thank my advisor, Prof.

Pekarek, for his support, guidance and patience. Although standing in front of his

immense knowledge was like a sand looking at the sea, he gave me the courage and

eagerness to make a jump and become part of the ocean. His mentorship and friendship

are great treasures of my life. I would also like to thank Professors Sudhoff, Wasynczuk,

and Raghunathan for the added support they have provided and for serving on my

advisory committee. I acknowledge the financial support of Kohler Power Systems, the

National Science Foundation under grant 1102303-ECCS, and the Office of Naval

Research under grant N000-14-08-1-0080.

I truly appreciate for the endless love and unconditional support from my parents,

even though they barely know what I was exactly doing on the other side of the earth. In

addition, I owe many thanks to Michelle, Nir, Ross, Ahmed, Rob, Dan, Yimin, Grant,

Anand, Rick, and Adam, for making this work possible. Finally, it is a blessing for me to

meet the Szetos and the Cantonese groups, from whom I see light.

iii

TABLE OF CONTENTS

Page

LIST OF TABLES ...v

LIST OF FIGURES ... vi

ABSTRACT ... ix

1. INTRODUCTION ..1

1.1 Literature Review of WRSMs Control ..3

1.2 Literature Review of Dynamic MEC Modeling ..6

2. BACKGROUND ..11

2.1 Magnetic Equivalent Circuit Basics ..11

2.2 Optimization Tools – Genetic Algorithm & Multi-Objective Optimization14
2.3 Reference MEC Model ..16

2.3.1 Building MEC model..16

2.3.2 Solving MEC model ...19

2.3.3 Performance calculation ...22

3. CONTROL OPTIMIZATION OF WRSMS ..26

3.1 Motivation ...26
3.2 Background ..28
3.3 Model Details ..31
3.4 Optimal Excitation ...33
3.5 Sub-optimal Excitation ..38
3.6 Hardware Validation ..42
3.7 Variable Speed Operation ..46
3.8 Discussion ..52

4. DYNAMIC MAGNETIC EQUIVALENT CIRCUIT MODEL54

4.1 Enhanced MEC Network ...54
4.1.1 Stator flux tubes ..57
4.1.2 Flux tubes in the rotor pole with damper holes ..59

4.1.3 Flux tubes of rotor pole tip leakage ..63

4.1.4 Damper bar placement ..66

4.2 Meshed-Based MEC Model Formulation ..67

4.2.1 Single-pole symmetry ...67

iv

Page

4.2.2 KVL MEC model ...68

4.3 Dynamic System Equations ...70
4.4 Validation of Dynamic MEC Model ...76

4.4.1 Hardware environment ...76

4.4.2 Open circuit voltage ..80
4.4.3 Excitation scheme generation ...81

4.4.4 Balanced three-phase load test ...83

4.4.5 Stand still frequency response ..86

5. IMPLEMENTATION OF SKEWING ...92

5.1 Literature Review of Skewing ...92
5.2 Multi-slices MEC Model ...93
5.3 Simulation Results ...97

5.3.1 Open circuit voltage ..97
5.3.2 Balanced three-phase load test ...100

6. OPTIMAL DESIGN OF WRSM/RECTIFIER SYSTEMS103

6.1 Design Overview ...103
6.2 Design of WRSM/Active Rectifier Systems ...106

6.3 Design of WRSM/Passive Rectifier Systems ..107

6.4 Results and Discussion ..109

7. CONCLUSION AND FUTURE WORK ...115

7.1 Conclusion ...115
7.2 Future Work ...116

LIST OF REFERENCES ...117

A. MATLAB CODE ...125

VITA ..240

v

LIST OF TABLES

Table Page

2.1 Parameters for core loss estimation using MSE for M19 ... 25

3.1 Genes Used in the WRSM Design Program ... 28

3.2 Parameters used in qd Models .. 33

3.3 Comparison of MEC and hardware for optimal control currents at 3600 rpm 44

3.4 Comparison of MEC and hardware for simplified control currents at 3600 rpm 44

3.5 Comparison of MEC and hardware for optimal control currents at 1800 rpm 45

3.6 Comparison of MEC and hardware for simplified control currents at 1800 rpm 45

4.1 Wound-rotor synchronous machine parameters ... 79

4.2 Damper bar dimension and resistance .. 79

4.3 Parameters for calculating permeability for 50WW800 ... 79

4.4 Parameters for core loss estimation using MSE for 50WW800 79

4.5 Stator and field excitation estimations .. 83

4.6 Comparison of RMS values of phase current ... 84

4.7 Comparison of average input torque ... 84

4.8 Comparison of output power .. 84

4.9 Comparison of power loss .. 85

5.1 Comparison of skew factors calculated by analytical and MEC models 100

A.1 Filenames and description .. 125

vi

LIST OF FIGURES

Figure Page

1.1: Depiction of an inductor and the equivalent electric circuit using a gyrator. 8

2.1: Uniform flux tube. ... 11

2.2: Non-uniform flux tubes. .. 13

2.3: UI inductor and magnetic equivalent circuit. ... 14

2.4: Basic steps of a genetic algorithm. .. 15

2.5: Representative cross-section of a WRSM. .. 17

2.6: Representative WRSM MEC. .. 17

2.7: Block diagram of the overall solution procedure. .. 20

2.8: Block diagram of Newton-Raphson solution procedure.. 21

3.1: Block diagram of a representative WRSM drive. .. 27

3.2: Representative electric drive control without access to commanded prime
mover velocity. (Starred quantities represent commanded values.) 27

3.3: Pareto-optimal front for 2 kW machine design. .. 29

3.4: q- and d-axis flux linkage versus current. .. 30

3.5: Current control schemes for optimal control based on MEC model, linear qd
model, and nonlinear qd model respectively. a) q-axis current, b) d-axis
current, c) field current. .. 35

3.6: Comparison of power loss for the MEC model, linear qd model, and
nonlinear qd model. .. 36

3.7: q- and d-axis stator current, torque and core loss versus stator current phase
angle for constructed machine. ... 38

3.8: Current control schemes for a) optimal control, b) zero d-axis, and c) constant
field controls. .. 39

3.9: Total power loss for optimal control, zero d-axis current control, and constant
field controls. .. 39

vii

Figure Page

3.10: Current control schemes and total power loss for simplified control. 40

3.11: Comparison of power loss between optimal and simplified control at
variable speed.. 41

3.12: Hardware test bench... 42

3.13: Torque and output power envelopes of optimal and simplified controls. 47

3.14: Comparison of Pareto fronts. ... 49

3.15: Comparison of conduction loss, core loss, and resistive loss. 51

3.16: Comparison of design variables in variable speed design and rated speed design. . 51

3.17: Torque and output power envelopes of simplified control 2 using a
simplified control design... 52

4.1: Example WRSM geometry/configuration. .. 54

4.2: Representative WRSM MEC with damper bars inactive. ... 55

4.3: Representative WRSM MEC with damper bars active. .. 57

4.4: Illustration of stator flux tubes. .. 58

4.5: Description of rotor tooth tip flux tubes. ... 59

4.6: Illustration of rotor pole shank and rotor pole tip flux tubes. 61

4.7: Configuration of rotor pole tip flux tube with damper bar. 62

4.8: Configuration of rotor pole tip leakage flux tubes. .. 64

4.9: Single pole representative of the MEC network. ... 67

4.10: Basic structure of the dynamic model shown in contrast with the KVL model. 71

4.11: Damper winding circuit. .. 75

4.12: 10 kW WRSM hardware.. 76

4.13:Comparison of design cross-section to the stator and rotor laminations. 78

4.14: Comparison of RMS values of open circuit line-to-line voltage. 80

4.15: Comparison of MEC (left) and hardware (right) open circuit line-to-line
voltage waveforms. ... 81

4.16: Comparison of line-to-line voltage waveforms at rated power (10 kW). 86

4.17: Measurement of q- and d- axis operational impedance. .. 87

4.18: Standstill frequency response test with αdp=0.08. .. 89

4.19: Standstill frequency response test with αdp=0.5. .. 90

viii

Figure Page

4.20: Standstill frequency response test with αdp=0.0001. .. 90

4.21: Standstill frequency response test with αdp=0.0001, with damper bar
connections are only made on a single pole.. 91

5.1: Basic structure of the dynamic model shown in contrast with the KVL model. 93

5.2: Comparison of the skewed and non-skewed open circuit voltage waveforms. 98

5.3: Open circuit voltage for each slice. ... 99

5.4: Harmonics spectrum of the open circuit voltage waveforms. 99

5.5: Comparison of skewed and non-skewed phase voltage... 101

5.6: Comparison of skewed and non-skewed phase current. .. 102

5.7: Comparison of skewed and non-skewed electromagnetic torque. 102

6.1: 25 MW generation system. .. 103

6.2: Example WRSM geometry/configuration. .. 105

6.3: Representative WRSM MEC. .. 105

6.4: WRSM/active rectifier system. .. 106

6.5: WRSM/passive rectifier system... 108

6.6: Relationship between the rectifier voltage and rectifier line current. 109

6.7: Pareto fronts of alternative WRSM/rectifier topologies. ... 110

6.8: Comparison of genes of alternative WRSM/rectifier systems (a). 111

6.9: Comparison of genes of alternative WRSM/rectifier systems (b). 111

6.10: Example design of an 8-pole WRSM connected to active rectifier. 112

6.11: Example design of a 6-pole WRSM connected to active rectifier. 113

6.12: Example design of a 6-pole WRSM connected to passive rectifier. 113

6.13: Example design of a 4-pole WRSM connected to passive rectifier. 114

ix

ABSTRACT

Wang, Xiaoqi Ph.D., Purdue University, December 2013. A Dynamic Magnetic
Equivalent Circuit Model for Design and Control of Wound Rotor Synchronous
Machines. Major Professor: Steve Pekarek.

Recently, a new magnetic equivalent circuit (MEC) model was developed to

support automated multi-objective design of wound-rotor synchronous machines

(WRSMs). In this research, the MEC model and its application have been enhanced.

Initial enhancement has focused on using the MEC model to explore machine design and

control as a unified problem. Excitation strategies for optimal steady-state performance

have been developed. The optimization is implemented in two phases. First, stator and

field excitation at rated power is obtained as part of a WRSM design in which the

objectives are to minimize machine mass and loss. Second, a map between current and

torque is generated using a single-objective optimization in which core, resistive, and

switch conduction loss are minimized. Optimal as well as sub-optimal and traditional

controls are studied and compared. An interesting result is that a relatively

straightforward field-oriented control is consistent with a desire for mass/loss reduction

and control simplicity. The applicability of the excitation to systems in which prime

mover angular velocity varies and is (un)controllable is considered, as well as its impact

on machine design.

A second contribution has been the derivation of a mesh-based dynamic MEC

model for WRSMs. As part of this effort, a reluctance network has been derived to model

flux distribution around damper bar openings. The reluctance network is applicable to a

user-defined damper bar pattern, which enables the study of optimal damper bar

placement. In addition, Faraday’s law is applied to establish a state model in which stator,

field, and damper winding flux linkages are selected as state variables. The resulting

coupled MEC/state model is solved to obtain transient machine dynamics, including

x

damper bar currents. In addition, skew of the rotor pole is incorporated using a multi-

slices model. The proposed dynamic model opens new paths for exploration. Perhaps

most significantly, it enables rigorous design of coupled synchronous machine/diode

rectifier systems, which are used in numerous applications, but are often designed using

rules of tradition created prior to the availability of efficient numerical simulation.

1

1. INTRODUCTION

Wound-rotor synchronous machine (WRSM) drive systems are widely used in

utility, air, ship, and portable power generation. Numerous models including lumped

parameter, Finite Element (FE), and magnetic equivalent circuits have been developed

for electric machine design and performance analysis. A growing interest in the

application of automated design optimization methods such as population-based design

(PBD) motivates the need for an accurate and efficient machine model. Recently, a mesh-

based steady state magnetic equivalent circuit (MEC) model has been proposed in [1] to

address this need.

An initial focus of this research is to use the model proposed in [1] to explore

excitation strategies that consider machine design and control as a united problem. A

drive system that consists of a WRSM connected to a 3-phase active rectifier and a prime

mover that holds the rotor speed constant is studied. In the optimization and excitation

development process, several interesting results are observed. First, the d-axis current that

is selected tends to be negative, which contrasts what would be expected from a

traditional qd model, since the resulting salient torque opposes that of the torque

produced by stator/field interaction. Second, it is shown that utilizing qd models

with/without saturation incorporated along the d-axis leads to suboptimal excitation that

is appreciably different than obtained from a MEC over much of the expected operating

region. Third, it is observed that similar to the strategies considered in [2]-[4], a look-up

table is the most convenient means to implement the optimal torque versus current map.

It is recognized that the traditional methods of excitation are often used for their

relative simplicity, speed of response (i.e. very fast torque response), and in some cases

the attractiveness of having closed form expressions that relate torque and current.

Therefore, two alternative controls are considered using the MEC-based optimization

strategy. In one, the field current is held constant (similar to a field-oriented control), and

2

the q- and d-axis current versus load is determined that minimizes overall system loss. In

another, the d-axis current is held fixed at zero and the field and q-axis current versus

load is selected to minimize system loss. Through evaluation of both of these sub-optimal

strategies, it is found that a very simple field-oriented-type control (simplified control)

approach can be established in which q-axis current maps linearly with torque, d-axis

current is held at zero, and the field current is held constant. Since the resulting torque/q-

axis current map is linear, the need to utilize a look-up table for control is eliminated.

Moreover, there is a relatively minor impact on overall system loss.

Furthermore, although the machine was originally designed for fixed-speed

operation, the applicability of the simplified control is considered for the case in which

prime mover angular velocity varies but is not controlled by the electrical system.

Envelopes that characterize the constant torque and constant output power region over a

wide speed range are established to explore the impact that the ‘optimal’ and simplified

controls have on the overall operating envelope of the machine/drive. Interestingly, under

variable speed operation, it has been found that the power loss generated by the ‘optimal’

and simplified controls at different rotor speeds is relatively minor. However, it is also

found that if one holds d-axis current at zero and only uses field current for field

weakening, the range over which constant power can be achieved is reduced. Therefore,

in an additional study, a new machine design study is performed in which Pareto-optimal

fronts are established for a variable-speed drive in which one assumes an ‘optimal’

control and one in which the simplified control is applied. A comparison of the fronts and

machines is used to assess the impact of the control on the design of a machine. Finally,

the extension/applicability of the techniques to cases in which prime mover angular

velocity varies and is controllable is discussed.

A second focus of this research is to develop a dynamic MEC model of a WRSM

starting with the steady state MEC model in [1]. As part of this effort, a reluctance

network has been derived to model flux tubes of stator tooth tips and damper bar

openings. Damper bar leakage reluctance has been introduced to model the flux

distribution around the damper bar openings for the case that the damper bar currents are

active. The reluctance network is applicable to assign an arbitrary number of damper bars

3

placed at an arbitrary depth in the rotor pole tip. This enables a designer to explore

alternative damper winding topologies as part of an optimization. In addition, Faraday’s

law is applied to establish a state model in which winding and damper bar flux linkages

are selected as state variables and winding voltage is an input. The resulting coupled

MEC/state model is solved to obtain transient machine dynamics, including damper bar

currents. An important attribute of the model is that saturation is represented without the

need for a relaxation factor, which enables its use as a practical tool in machine design.

The proposed MEC model is validated by FEA or hardware results through various tests,

including open circuit voltage, three-phase balanced load test, and stand still frequency

response.

In order to model skewing effect, the dynamic MEC model is augmented to a

multi-slices model with a uniformly shifted angle for each slice. The multi-slices model

satisfies the constraint that each slice conveys the same stator, field, and damper currents.

The convergence benefit and computational efficiency of the mesh-based MEC model

ensure a relatively fast, well-converged solution for a large slice number.

Finally, the optimal design of coupled WRSM/rectifier systems has been

explored. There is a desire within the community to understand the tradeoffs between

using a machine/active rectifier and a machine/diode rectifier. Of particular interest is the

expected difference in the size of the machines required under each topology. One may

argue that a dynamic model is not required to assess the difference. However, the steady-

state voltage versus current of the machine/diode rectifier is a function of subtransient

inductances. In other words, damper bar currents are non-zero in a machine/diode

rectifier system. As a result, a dynamic model that includes damper bars is required for

rigorous optimization. Once the dynamic model validation was complete, GA-based

optimization studies have been performed to compare the Pareto-optimal fronts of the

machine/rectifier topologies.

1.1 Literature Review of WRSMs Control

A goal of exploring excitation strategies for synchronous machines is to consider

its role when one attempts to minimize the active mass and power loss. Reduction of

4

active mass reduces component cost and also improves portability. Reducing power loss

saves fuel, reduces emissions, and helps to reduce thermal signature. Presently, three

common techniques for control of torque of a WRSM are field oriented control (FOC),

maximum torque per ampere (MTPA) control, and direct torque control (DTC).

FOC algorithms in AC machines are intended to create torque versus current

maps that are similar to DC machines. Specifically, in a DC machine, a field winding or

magnet is used to establish a fixed magnetizing flux along a direct axis. The current in an

armature (control) winding is then used to adjust torque. A convenience of an FOC is that

(in theory) with the field winding flux held fixed, the torque versus armature current map

is linear. A performance advantage is that FOC results in a relatively high torque

bandwidth. Specifically electromagnetic torque can be changed nearly instantaneously. A

disadvantage of FOC approaches in many AC machines is that at low values of torque,

one pays a price of excess loss associated with maintaining a rated field flux. Details of

FOC strategies are provided in [5]-[7].

In contrast to FOC, in maximum torque per ampere control (MTPA), a fixed d-

axis constant field flux is abandoned in lieu of attempting to obtain the most torque from

the moving charge. At low values of torque, this translates into lower loss than FOC.

However, it does add complexity to the torque versus stator winding current map. It also

reduces the torque bandwidth. In [8], a MTPA algorithm for an induction machine was

presented and compared to the FOC. Instead of holding d-axis current as a constant value,

both qd-axis currents are regulated to minimize the stator current amplitude for a given

torque and speed. Decoupled analytical expressions for torque command in terms of qd-

axis currents have been developed in [9], [10]. However, core loss and the inductance

change due to saturation are not considered in the qd model based analysis. Since the

power capability and the voltage limit constraints have a significant sensitivity on the

machine parameters, especially the saliency ratio Xq/Xd[11], an online adaptive self-

tuning parameters estimator and a feed-forward torque correction method are proposed in

[12], [13] in order to analyze the effect of saturation and cross-magnetization.

The basic idea of DTC is to directly select a stator voltage vector according to the

difference between a reference torque and stator flux linkage and their actual values. In

5

[14], a DTC scheme was applied to an interior permanent magnet synchronous machine

(IPMSM). In [15] and [16], a similar DTC algorithm is used to control a surface PMSM

with space vector modulation (SVM) so that a fixed switching frequency can be obtained.

In [17] and [18], DTC is applied to a PM-assisted reluctance synchronous machine and

an induction machine, respectively, in a starter alternator application. Although DTC is

an inherently position sensorless control scheme, accurate stator flux and initial rotor

position estimation is required.

However, the majority of the literature has focused on methods for permanent

magnet and induction machines. Although well established, there remain interesting

questions associated with these controls. Specifically, optimization of the excitation is

rarely included as part of the machine design where geometry, turns, and core material

are selected. Rather, the torque versus current map is derived subsequent to machine

design using lumped parameter models that often assume linear magnetics and/or do not

account for core loss or semiconductor loss. As a result, one can question whether these

excitation approaches are consistent with design goals of minimization of mass or overall

system loss. Indeed, when researchers in [2]-[4] used a finite element model and included

core/semiconductor losses in calculating ‘optimal’ excitation of a wound-rotor

synchronous machine, the control was implanted using a look-up table of currents versus

speed and torque, rather than an analytical map. This of course raises a question as to

whether a look-up table-based approach is required when one does include saturation,

core loss, and semiconductor loss in the machine/excitation design.

In the 2 kW system considered in this research, the stator and field current at rated

load are obtained as part of a multi-objective machine design optimization that includes

16 design variables. The optimization utilizes evolutionary strategies to establish the

Pareto-optimal front between mass versus loss at rated load. Subsequently, the magnetic

equivalent circuit is used to establish a map between torque and excitation that minimizes

system loss (core, winding, conduction of the switches) at loads less than rated. Within

this process, both optimal and sub-optimal control strategies have been developed and

compared at rotor speed less than rated. Finally, the tradeoffs and limitations of the

6

proposed simplified control are explored when the desire is to optimize available torque

at speeds beyond rated values.

1.2 Literature Review of Dynamic MEC Modeling

It has been decades since magnetic equivalent circuits (MEC) were introduced for

machine analysis. After the basic properties and elements of the MEC were formally

defined in 1941 [19], the duality between electric and magnetic circuits was proposed in

[20], [21].This subsequently expanded the concept and use of MEC models. In [22],

Ostović outlined the fundamental theory and structure of MEC for electric machines that

forms the basis for most existing techniques. In his formulations, the MEC model

solution is structured using Kirchoff’s Current Law (KCL) utilizing nodal analysis.

A mesh-based alternative to the nodal MEC has been receiving more attention

over the past decade. In such a formulation, Kirchhoff’s Voltage Law (KVL) is applied to

establish an algebraic system in which loop flux is an unknown and winding current

(MMF) is the input. One of the challenges for the mesh-based MEC is that the flux tubes

between stator and rotor appear and disappear as rotor position changes due to rotation.

In a recent study [23], a relatively straightforward shape algorithm was proposed to

automatically update the loop equations with rotor position. Within the shape algorithm,

the airgap permeances are used to identify the number of meshes, and the permeance

connections are used to determine the loop configuration so that the coefficients in the

KVL equations can be updated. Utilizing the shape algorithm, a detailed steady state

mesh-based MEC model for WRSMs is presented in [1].

The MEC model in [1] is used as a basis to derive a model that efficiently predicts

the dynamic behavior of WRSMs. This is motivated by the fact that in many designs,

dynamic performance is of interest. For example, to determine the voltage regulation

characteristic of machine-diode rectifier systems requires one to model subtransient

behavior. In addition, in some applications the subtransient inductances are constrained in

an attempt to limit fault current. The impact that the constraints on inductance/fault

current have on machine mass and efficiency has not been explored. The proposed model

is intended to enable such exploration.

7

In contrast to steady state MEC formulations, dynamic MEC models have

received relatively minor attention, particularly for WRSMs. In most cases, the transient

responses of electric machines are obtained using equivalent electrical circuits [26]. A

voltage behind reactance model with saturation in d-axis incorporated is proposed in [27].

Both stator and rotor dynamics are estimated using such model. In [28] and [29], an

average-value model is introduced to analyze the transient response of the synchronous

machine-rectifier system, in which the synchronous machines are modeled using a

reduced order model and a full order model, respectively. In [30], a synchronous machine

is modeled using a network formulation in qd variables. Magnetizing inductances in both

axes are modified to portray saturation.

Of the research that has been placed on deriving dynamic MEC models for

electrical machines, there are primarily five common approaches. One is to use a static

MEC model to establish the lumped electric parameters of a dynamic machine model. For

example, in [31], the winding inductances of an induction machine are determined using

a static nodal-based MEC model within each simulation time step of a q-d-based model

of the induction machine. In [32], a nodal-based MEC is applied to establish expressions

for the stator winding back-emf and inductance of a non-salient-pole turbo-generator

using within an electrical circuit simulation.

In a second approach, G. Slemon introduced what he referred to as a λ-i model in

[33], [34], in which duality arguments are used to convert the steady-state MEC and

damper bar current/flux linkage relationship into a dynamic electrical circuit consisting of

inductors and capacitors. Although dualities can offer convenience, the proposed model

structure relies on numerical differentiation to establish the coupling between the

machine model and external circuits. This is not favorable for design studies requiring

large numbers of evaluation owing to the ill conditioning of difference-based derivative

approximations. In addition, the convergence behavior of the proposed model in

saturation is unknown.

In a third approach, a differential gyrator model shown in Figure 1.1 is used to

couple the electric and magnetic quantities so that the system can be solved as electric

circuits with current-controlled voltage sources and voltage-controlled current sources.

8

One example of such approach is proposed in [35], where the magnetic circuit is

represented by electric components using a permeance-capacitance analogy. A more

extensive gyrator-based circuit of inverter-fed synchronous machines is presented in [36].

In [36], a gyrator circuit is used to couple the dynamic electric model of the stator and

field windings to the MEC of the core so that the WRSM is represented using current-

controlled voltage sources and capacitors. To structure the machine model in a gyrator

form, winding flux and the rate of change of flux are taken to be analogous to electric

charge and current, respectively. Although potentially convenient, a gyrator approach is

generally limited to those who intend to use circuit solvers, such as SPICE or PLECS

[37], to implement the model. In addition, in [36] the method to include saturation is to

set the relative permeability of several iron elements to low values that are constant,

rather than to determine values of permeability numerically within the simulation. This

approach is more applicable for an analysis of a single machine in which flux levels are

known apriori, rather than a design environment without such knowledge. The proposed

gyrator model is applied to recent studies [38], [39] to couple the electric and magnetic

domains for power electronic transformers, in which a HFMEC model that is considered

as modular assembly of flux tubes is used to capture the eddy current dynamics.

Figure 1.1: Depiction of an inductor and the equivalent electric circuit using a gyrator.

A fourth approach is that the MEC equations for a nodal-based model are

differentiated with respect to time so that the node potentials and winding currents

become state variables [40]. The inputs to resulting state model are the time changing rate

of stator and rotor flux linkage. The outputs of the MEC state model are stator winding

and rotor damper bar currents. The MEC state equations can be coupled to models of

vv N

i i
m

 dφ /dt

e

i

e F=Ni C
m
 P

q
m
 φ

Gyrator

9

external circuits that accept voltage as a model input, with current as a state. Instead of

using a nonlinear solver, the permeability is calculated directly from the states, i.e. node

potentials and currents, to avoid numerical issue. However, neither simulation nor

hardware results are provided in [40]. Using a similar formulation, a nodal-based steady-

state MEC model of a WRSM is proposed in [41]. A challenge with this approach is

numerical convergence, which was cited in [42] and has been identified as an issue in

nodal-based MEC formulations in general. Methods to address convergence using

relaxation factors have been proposed, but add complexity and computational cost.

A fifth approach is one in which Faraday’s law is used in tandem with the

algebraic MEC relationships to establish a system of differential algebraic equations.

Typically in such an approach, winding flux linkages are selected as the state variables.

The winding flux linkages are established through numerical integration and used as an

input to the algebraic MEC equations. The winding current is an output of the MEC

model and is used along with winding voltage as an input for the winding flux linkage

state equations. This type of formulation has been used to model induction machines

under healthy [43], [44], [45] and faulted conditions [46], [47]. In [44], [45], the MEC

network is expanded into 3-D so that local saturation, leakage and skewing can be

represented. Although flux linkage is used as a state variable in [43]-[47], the

formulations are all based upon a nodal-based MEC. It has been shown in [42] that mesh-

based MECs have better convergence properties in components with nonlinear magnetic

materials. In [48], mesh-based MEC techniques are applied to take place of a FE model

with a MEC. The combined FE-MEC model is coupled to external electric circuit by

augmenting the system equations. The augmented system is discretized in time and

solved by numerical methods.

In this research, Faraday’s law is used in tandem with the MEC expressions to

establish a system of differential algebraic equations. This general approach has been

applied in the dynamic models of machines using nodal-based MECs in [43]-[47], but has

received limited attention in design owing to convergence issues. The judiciously

restructured/scaled mesh-based model proposed herein has the strong convergence

10

properties necessary for population-based design. Indeed, the model is solved without the

need for a relaxation factor to obtain convergence.

To model dynamic behavior, permeances are derived that represent the flux

distribution of a damper winding structure that consists of an arbitrary number of bars of

arbitrary radius with/without end connections between poles. This enables a designer to

explore alternative damper winding topologies as part of an optimization. The model is

readily coupled to models of external balanced or unbalanced electrical circuits, including

passive or active rectifiers. The model is validated through comparison with hardware

experiment as well as a finite element-based model.

11

2. BACKGROUND

 This chapter describes the background information on the MEC modeling and GA

optimization techniques applied within this research. The fundamental physics of MEC

modeling are presented in the first section. The underlying theory of GA optimization is

illustrated in the second section. The steady state mesh-based MEC model proposed in

[1] is used as reference in this research and a brief review of it is given in the third

section.

2.1 Magnetic Equivalent Circuit Basics

The basic element of the MEC is a flux tube defined by a volumetric space between

two planes of equal magnetic scalar potential. Magnetic flux is assumed to enter the flux

tube perpendicular to one equipotential plane to exit perpendicular to the other plane. The

flux does not leave the boundaries of the volume except at the end surfaces. A diagram of

a flux tube is shown in Figure 2.1. It is noted that u1 and u2 are the values of magnetic

scalar potential at the two planes. The configurations and connections of each flux tube

representing an electric machine depend on an analyst’s knowledge and understanding of

flux behavior.

Figure 2.1: Uniform flux tube.

u

u

1

2

dx

A(x)
φ

12

 Conceptually, a flux tube is represented as a circuit element that is similar to the

elements of an electric circuit. In particular, the equipotential planes are treated as

equipotential nodes in an electric circuit, while the flux through the tube is analogous to

the current in an electric conductor. Therefore, as a counterpart of resistance in electric

circuit, the flux tube can be represented using a magnetic reluctance that is defined as,

 1 2u u
R

φ
−= (2.1)

Similar to the calculation of electric resistance, the reluctance of a flux tube with

uniform cross-sectional area and length can be calculated as

l

R
Aµ

= (2.2)

wherel is the length of the flux tube, A is the cross-sectional area of the flux tube, and

µ is the permeability of the flux tube material. The inverse of reluctance is defined as

the permeance (P), and can be expressed as the inverse of either (2.1) or (2.2).

 In most cases, the flux tubes have non-uniform geometries where either the length

or area changes along the flux path. In such applications, it is convenient to discretize the

flux tube into differential sections and compute the overall reluctance or permeance using

integration. Figure 2.2 shows two types of non-uniform flux tubes. For a flux tube with a

varying area as shown in Figure 2.2(a), the reluctance can be derived as follows,

 ()
dx

R
A xµ

= ∫ (2.3)

wheredx is the differential tube length and ()A x is the position-dependent tube area. On

the other hand, for a flux tube with a varying length as shown in Figure 2.2(b), the

permeance can be calculated as follows,

 (),A

dA
P

l x y

µ= ∫ (2.4)

wheredAis the differential flux tube area and (,)l x y is the position dependent length.

For the case that the length has an insignificant amount of variation, the mean path length

can be approximated as the uniform length of the flux tube.

13

In general, an analytical expression of the flux tube area or length is required for

calculating the reluctance or permeance respectively.

(a) Non-uniform area (b) Non-uniform length
Figure 2.2: Non-uniform flux tubes.

 In an MEC, magnetomotive force (MMF) is used to represent the effect of electric

current on the magnetic system. An MMF source is analogous to a voltage source in an

electric circuit and its value can be determined using Ampere’s law,

 Ni=∫ H dl
� �
i� (2.5)

where H
���

 is the magnetic field, and the integral is taken over a closed surface that

encloses N turns of a current-carrying conductor. In (2.5), the MMF source F is

defined as,

 F Ni≜ (2.6)

An example showing how an electromagnetic system can be related to an

equivalent magnetic circuit is presented in Figure 2.3, where the magnetic behavior of the

UI inductor on the left is modeled using the equivalent circuit on the right. The inductor

winding is represented as the MMF source Fui, the steel I component is represented by

reluctance Ri, the steel U component is represented by reluctances Rub and Rus, the flux

tubes in the airgap are represented by the reluctance Rag, and the leakage flux tube is

represented by Rl.

φ
l(x,y)

dA

y

x

u
1

14

Figure 2.3: UI inductor and magnetic equivalent circuit.

Since the UI inductor in Figure 2.3 has a uniform geometry, the reluctance

elements can be calculated using (2.2). The airgap reluctance and leakage reluctance have

the permeability of free space, while the steel reluctances are calculated based upon the

permeability of the steel material determined from its anhysteretic B-H curve. The steel

reluctances are constant if the system is operating in the linear region. On the other hand,

if saturation is considered, a nonlinear solver is needed to calculate to reluctances in the

steel. Once the magnetic circuit network is created, the system can be described using a

set of equations based upon common circuit analysis technique such as nodal or mesh

analysis. Using appropriate solution algorithms, the flux (φui) and/or node potentials (u0-

u3) can be calculated.

2.2 Optimization Tools – Genetic Algorithm & Multi-Obje ctive Optimization

A genetic algorithm (GA) based upon the theory of biological evolution is applied

in this research to execute the single and multi-objective optimization. The essential steps

of a GA are presented in [49] and shown in Figure 2.6. In the algorithm, each individual

contains a set of genes. For the initial population, genes are selected arbitrarily within a

user-defined range. Over subsequent generations, the population of individuals evolves

based upon the evaluation of a user-defined fitness function.

The basic steps of evolution include selection, crossover, and mutation. During

selection, an individual is considered as a parent to the next generation of designs and

placed into a mating pool. During crossover, parts of the genetic information are

exchanged between parents so that new individuals can be formed. Some parents will

15

stay without crossover to the next generation. At last, random gene mutation takes place

in a small percentage of the population. Through repetition, the evolution process leads to

a final population.

Figure 2.4: Basic steps of a genetic algorithm.

GA can be configured to solve single or multi-objective optimization problems.

For single objective optimization, it is relatively straightforward that the best design is

determined by determining the individual from the final population that has a maximum

fitness. On the other hand, multi-objective optimization (MOO) employs a fitness value

for each objective. The idea of dominance is thus introduced to evaluate how fit an

individual is in general. An individual, x1, is defined to dominate another individual, x2, if

x1 performs as well as x2 in all objectives and better than x2 in at least one objective. For

example, let mass and loss be the two objectives in the design. x1 dominates x2 if x1 has

the same loss and a better mass than x2. However, neither x1 nor x2 are considered to

dominate each other if x1 has a better mass and a worse loss than x2. If an individual is not

dominated by any other members of the population, then it is considered as non-

dominated. The Pareto-optimal set is defined as a collection of all of the non-dominated

Fitness Evaluation

Selection

Crossover

Stop?

Final Population

Mutation

Initial Population

Evolution

16

solutions in the final population. Plotting this set in the objective space yields a boundary

termed the Pareto-optimal front [50].

In this research, all GAs are executed using a Purdue-developed Genetic

Optimization Systems Engineering Toolbox (GOSET) [51]. In this toolbox, more

functionality, including elitism, migration, death, and diversity control, has been

introduced than is shown in Figure 2.4. GOSET has been selected for ease of availability

and its strong performance in addressing related machine optimization problems [52] and

[53].

2.3 Reference MEC Model

2.3.1 Building MEC model

The steady-state MEC network upon which this research was initially based is

designed to model the performance of a salient-pole WRSM with an arbitrary number of

poles, integer number of slots/pole/phase, and symmetric winding configuration. Figure

2.5 shows an example cross section of a 4-pole WRSM. The flux tube geometries can be

defined using the geometric variables indicated in Figure 2.5. The q-, d-, and as-axis of

the machine are also listed. It is noted that mechanical rotor position θrm is defined by the

position of q-axis with respect to the as-axis.

Figure 2.6 shows a representative network of the proposed MEC, wherein loop flux

Φ is defined in the clockwise direction. The airgap reluctances correspond to the nonzero

airgap permeances at the respective θrm. Within the network, each stator and field coil

becomes a MMF source in the loop where the respective current locates.

17

Figure 2.5: Representative cross-section of a WRSM.

Figure 2.6: Representative WRSM MEC.

d
st

d
b

r
rt

r
rc

r
si

r
o

stator

airgap

rotor

w
ss

w
st

d
rc

d
rpg

r
sh

w
rp

h
rp

w
rt

h
rt

as-axis

q-axis

d-axis

θ
rm

h
rtb

l - axial length

of machine

R
Y

R

R
TL

R
RTO

R
RTI

R
RP

R
RYP

R
RY

R
RFB R

RPL
R

FL
R

RFB

φ
st1 φ

st2 φ
st3

φ
st4 φ

st5 φ
st6

φ
rt1

φ
rt2

φ
rt3

φ
ag1

φ
ag2

φ
ag3

φ
ag4

φ
ag5

φ
ag6 φ

ag9
φ

ag12
φ

ag16 φ
ag19

φ
ag17

R
RF

slot 2

i
cs

'i
cs

'

slot 3

i
as

i
as i

bs
' i

bs
'

I
fd

I
fd

'

slot 4

R
RTE

R
ag

18

Details of the calculation of reluctance values used in the original model are

presented in [1]. A few details related to this model are of note. First, the stator tooth flux

tubes do not include stator tooth tips. Second, the airgap flux tubes are connection

between the stator and rotor, which varies according to rotor position. In order to

calculate the airgap permeances, the stator, rotor pole, and inter-polar region are

discretized into subsections. Third, the rotor poles and rotor shank flux tubes are

considered solid pieces, which have no damper bar slot. Fourth, the inter-polar region can

be divided into four types of flux tubes, field winding leakage (RFL), rotor pole leakage

(RRPL), rotor fringing (RRF), and rotor fringing to the bottom of the pole tip (RRFB).A

challenge of implementing the MEC model shown in Figure 2.6 is that the reluctance

network in the airgap changes with rotor position. Moreover, the values of the airgap

permeances are dependent upon the dimensions of the stator teeth and rotor pole tip

(genes of the GA). To enable a relatively large search space, the derivations of airgap

permeance must account for many potential tooth width/pole body width combinations.

In [23], the potential airgap permeance calculations was categorized into 5 8 40× =

conditions, according to the relation of the width of stator tooth tip, stator tooth slot, and

rotor pole tip section, as well as the relation of the position of stator tooth and rotor pole

tip section.

As part of the initial research effort, tooth tips are added into the respective case

conditions. Although at first glance one would consider that all the cases would need to

be re-written, a straightforward alternative was developed. Specifically, the original stator

tooth flux tube is reshaped as stator tooth tip flux tube in the updated model. An extra

component called stator tooth shank is added in between with stator yoke and stator tooth

tip, which shares the same flux loop with the stator tooth tip. By doing so, the interface

between airgap and stator will not change, and what effectively happens is the automated

program now sees a larger stator tooth width because the tips are included.

Once reluctance values in the network have been determined, a system of

nonlinear algebraic equations related to each loop can be established based upon KVL,

 (×) (×1) (×1)
R l l=nl nl nl nlA φ F (2.7)

19

where RA is a symmetric matrix composed of reluctances, lφ is a vector of loop fluxes,

lF is a vector of MMF sources, and nl is the number of loops. The components of (2.7)

can be expanded as

T

l st1 stns rt1 rtnr ag1 agna=φ φ φ φ φ φ  φ (2.8)

where the subscripts “st ”, “ rt ”, and “ag” denote loop fluxes in the stator, rotor, and

airgap, respectively, and the subscripts “ns”, “ nr ”, and “na” denote the number of the

stator slots per pole, the number of rotor loops per pole, and the number of airgap loops

per pole, respectively. Using similar subscripts, lF can be expressed as

T T T T

(ns×1) (nr×1) (na×1)
l st rt=  
 

F F F 0 (2.9)

The mmf source in the stator loops is given by

 (1) (3) (3 1)
st abc abcs

ns ns× × ×=F N i (2.10)

where abcsi is a vector of balanced stator currents with rms value Is and phase angle β,and

the turns matrix abcN is built using the a, b, and c-phase turn vectors. The mmf in the

rotor loops is given by,

 []T(1) (1)
rt rt fd fd fd1 1 0nr nr I N I× ×= = −F N (2.11)

where fdI is the field current andfdN is the number of field turns. Due to the use of single-

pole symmetry, the sign of the rotor mmf changes with respect to rotor position.

Within the model program, the matrix RA is constructed using a building

algorithm similar to that used in general circuit analysis programs (i.e., Spice). Details of

the construction of matrix RA are provided in [1].

2.3.2 Solving MEC model

The overall solution procedure for the static MEC model is shown in Figure 2.7.

The inputs to the model are the machine geometry (including winding configuration), the

material properties, and the stator and field currents. The outputs calculated in the post-

processing include flux linkage, electromagnetic torque, power loss, and phase and field

voltages.

20

Within the solution procedure shown in Figure 2.7, a Newton-Raphson (N-R)

method is used to solve the nonlinear magnetic system in (2.7) at any given rotor

position, and the solution procedure is described in Figure 2.8. The maximum possible

relative permeability is used to calculate the initial guess of steel reluctance, which is

further used to generate an initial guess of loop fluxes through (2.7). The permeability is

updated in each iteration and ready for next step.

Figure 2.7: Block diagram of the overall solution procedure.

Pre-processing

Build Mesh System
(Shape algorithm)

θr = 0 rad

Newton-Raphson Solver

No

Yes

l r()θφ

r r rθ θ θ= + ∆

Mesh-Based
MEC model

θr = θr,stop?

Post-processing

�geometry
�material properties
� stator and rotor current

Inputs

21

Figure 2.8: Block diagram of Newton-Raphson solution procedure.

The iterative solver starts by computing the branch flux density in the steel as,

 br
br

br

=
φ

B
A

 (2.12)

where brB is the branch flux density, brφ is the flux through the branch, and brA is the

average cross-sectional area. Once the flux density is obtained, the relative permeability

rµ and the partial derivative of relative permeability r / Bµ∂ ∂ can be calculated in the B-

H model using an exponential-based curve fit equation for r ()Bµ presented in [54].

After the reluctance values are updated with the new permeabilities, the Jacobian

matrix can be formed as follow,

()R l l

l l

= -
∂ ∂

∂ ∂
A φ F

J
φ φ

 (2.13)

where the term l l∂ ∂F φ is zero since lF is not dependent on flux. Using the product rule,

the Jacobian can be expanded in the form of

 R R= +J A D (2.14)

Calculate flux density

B-H model

() 1(1)
l r R r l r() () ()θ θ θ

−
=φ A F

(1)
lφ

Recalculate permeances

Update Update Jacobian, J(k)

() ()1(k+1) (k) (k) (k) (k)
l l R l l

−
= − −φ φ J A φ F

(k+1) (k)
l l TOL ?ε− ≤φ φ

No

Yes
(k+1)

l r l()θ =φ φ

1k k= +

N-R solver

(k)
RA

22

where RD is a matrix containing all the partial derivative terms and is automatically

generated from a branch connection matrix. If the branch connection matrix determined

that iR is only within one loop vφ , then the following line of code is executed,

 () () ()R R, , i
v

v

R
v v v v φ

φ
∂= +
∂

D D (2.15)

If iR is within two loops, x and y , then the following updates can be applied,

() () ()
() () ()
() () ()
() () ()

R R

R R

R R

R R

, ,

, ,

, ,

, ,

i x x y

i y y x

i y x y

i x y x

x x x x R b

y y y y R b

x y x y R b

y x y x R b

φ φ φ

φ φ φ

φ φ φ

φ φ φ

= + ∂ ∂ −

= + ∂ ∂ −

= + ∂ ∂ −

= + ∂ ∂ −

D D

D D

D D

D D

 (2.16)

whereb is equal to +1 when iR is a non-boundary reluctance and -1 when iR does lie on

the boundary of the pole. Calculation of the Jacobian and reluctance partial derivative

terms is well established in [42].

2.3.3 Performance calculation

Electromagnetic Torque

An expression of field energy in terms of MEC quantities is presented in [22] as,

2n
j

mag
j 1 j

1

2
W P

P

φ
=

= ∑ (2.17)

where jP is the j-th permeance and P is the number of poles. The torque equation based

on (2.17) is developed in [55] as,

 ()
22

agj agj
e r

1 agj r

,
2

na

j

PP
T

P

φ
φ θ

θ=

  ∂ =      ∂   
∑ (2.18)

where agjP is the j-th airgap permeance and the number of airgap permeances changes

with rotor position.

23

Stator Phase Voltage

The calculation of phase voltage is based on the phase voltage equations in the

rotor reference frame [26],

 qs s qs r ds qs
r r r rv r i pω λ λ= + + (2.19)

 ds s ds r qs ds
r r r rv r i pω λ λ= − + (2.20)

where qs
rf and ds

rf are the q- and d-axis variables with f can be voltage (v), current (i), or

flux linkage (λ), and p is the operator /d dt . From the machine geometry and conductor

properties, the stator resistance (sr) can be derived as,

()slot endc

s
c c c c

2l ll
r

A Aσ σ
+

= = (2.21)

where cA is the area of the conductor, cσ is the conductivity (copper is used herein), and

cl is the length of the conductor including the length in both slots and end windings. The

length of end windings is defined as the arc length between the centers of two adjacent

stator tooth slots. Similarly, the field resistance and damper bar resistance can be

calculated.

The phase winding flux linkages can be expressed in terms of MEC quantities as,

 T
abcs abc st=Pλ N φ (2.22)

whereP is the number of poles,stφ is the vector of stator loop fluxes, and abcN is the turns

matrix. qs
rλ and ds

rλ can be obtained by applying Park’s transformation to the phase flux

linkage abcsλ . Considering slot harmonics and non-sinusoidally distributed windings,

qs
rpλ and ds

rpλ are not zero. Application of a numerical differentiation can yield a voltage

waveform. However, taking the average value of (2.19) and (2.20), the steady-state stator

voltages can be expressed as:

 qs s qs r ds
r r rv r i ω λ= + (2.23)

 ds s ds r qs
r r rv r i ω λ= − (2.24)

24

where the superscript represents average value. Once the stator voltages in the rotor

reference frame are calculated, the values in machine variables can be determined by

applying the inverse rotor reference frame transformation.

Power Loss

Within the static MEC model, the total machine/rectifier system loss is

represented as,

 loss res core condP P P P= + + (2.25)

where resP is the total resistive loss in the machine, coreP is the core loss in the stator, and

condP is the semiconductor conduction losses. Notice that core loss in the rotor, losses

associated with switching (turning on and off semiconductor devices), and friction and

windage losses are neglected within the model. The resistive loss is calculated as,

 ()22 2

0

3

2res fd fd s as r rP r I r i d
π

θ θ
π

= + ∫ (2.26)

where the phase currents are balanced and the field current is a constant dc value.

In the core loss calculation, a volumetric power loss density (W/m3), ldP ,is

approximated based on the Modified Steinmetz Equation (MSE) [56],

 ()
2

1 max
2

0

T
e

ld h eq
b b

Eddy Current LossHysteresis Loss

B k f dB
P B k f f dt

B B dt

β
α −    = +   

  
∫

���	��
����	���

 (2.27)

where f and T are the fundamental frequency and period of the current; bB is the base

flux density (1TbB =); maxB is the maximum value of the flux density waveform; α , β ,

hk and ek are parameters of the MSE that are defined in [54] and their values are listed

in Table 2.1. The equivalent frequency is given by,

()

2

2 2
0max min

2 T

eq

dB
f dt

dtB B π
 =  
 − ∫ (2.28)

25

In (2.27) and (2.28), the derivative and integral terms are calculated using a

forward Euler formula and the composite trapezoidal rule, respectively. Thus, the final

value of core loss in the stator can be developed as,

 , ,core ld T ST ld Y SYP P V P V= + (2.29)

where ,ld TP and ,ld YP are the volumetric power loss density in the stator teeth and stator

yoke, respectively; and STV and SYV are the volume of the stator teeth and stator yoke,

respectively.

Table 2.1
Parameters for core loss estimation using MSE for M19.

α 1.338 β 1.817
ke 5.044e-5 kh 0.09294

By assuming the forward voltage drop of a transistor and a diode are the same, the

conduction losses is given by,

 ()2

0

1
3

2cond drop as r rP V i d
π

θ θ
π

= ∫ (2.30)

where dropV is the forward switch and diode voltage drop and

 2 22 rms qs dsI I I= + (2.31)

Switching loss is not represented in the model. Its potential influence is the

subject of ongoing research. In the studies conducted herein it was assumed that 2dropV =

V for all devices.

26

3. CONTROL OPTIMIZATION OF WRSMS

3.1 Motivation

Prior to derivations, it is convenient to view the block diagram of a representative

WRSM drive shown in Figure 3.1 to place the questions addressed in this research in

context. In Figure 3.1 it can be seen that the WRSM is connected mechanically to a prime

mover. The stator windings are connected to an active rectifier, which is used to control

the stator phase currents and convert ac to dc. The field winding is connected to a dc

source, which herein is assumed to regulate the field current. Typically, the dc bus is

capacitive, as shown. Although the prime mover could be categorized by type (i.e. diesel

engine, gas turbine, wind turbine), herein it is classified by whether one does or does not

have the capability to adjust commanded prime mover angular velocity (speed). An

example where one does not have the capability to control speed is aircraft power

generation systems, where the turbine or engine speed is not specified by the electrical

power system and indeed varies considerably. A similar situation is encountered in

traditional automotive charging systems. A third example is ship and portable power

applications where the commanded speeds of turbine or engine sets are often fixed by the

manufacturer.

A representative control for systems without access to commanded prime mover

velocity is shown in Figure 3.2. As shown, the difference between commanded and

measured dc voltage is input to a voltage regulator (often a proportional plus integral

control). The output of the voltage regulator is the commanded electromagnetic torque

that is desired from the WRSM. The electric drive controller is responsible for translating

the commanded torque to stator and field current commands that are used to adjust the

switching devices in the active rectifier and field winding circuits. Through this process,

27

the commanded torque effectively sets the dc current out of the electric drive that in

steady-state will match the load current at the commanded voltage.

Figure 3.1: Block diagram of a representative WRSM drive.

Figure 3.2: Representative electric drive control without access to commanded prime

mover velocity. (Starred quantities represent commanded values.)

The overall question addressed herein is how to establish the map between

commanded torque and commanded winding currents. This question yields additional

questions as to what model should be applied to create the map, whether the proposed

map is consistent with the goals of mass/loss reduction, the simplicity of the control, and

what is the influence on the machine design? These questions are addressed for the case

in which one does not have the capability to adjust commanded prime mover angular

velocity in Sections 3.3-3.7. It is noted that without this capability, the prime mover has

no role in the design of the electric drive controls, other than to provide the lower/upper

limits on angular velocity.

The case in which prime mover commanded angular velocity is adjustable does

change the overall picture and enables one to consider the coupled prime mover/electric

28

drive together when establishing controls. A description of how this can be approached is

provided in Section 3.8. Finally, although the questions raised are herein considered for a

generator application, the answers presented are directly applicable for a WRSM drive

operating as a motor (i.e. as an engine starter).

3.2 Background

Over the past several years, a multi-objective (i.e. minimize mass, minimize loss)

evolutionary-based design toolbox [51] has been created for WRSMs. The variables

listed in Table 3.1 are used as genes. Genes 1-7 are geometric variables that define the

depth/length of all the major machine sections. These are shown in Figure 2.5. Genes 8-

11 are scaling factors between 0 and 1 that are used to establish the geometry of the stator

teeth/slots and the rotor poles. Genes 12-13 are used to define the stator and field

windings. Genes 14-16 are used to define the field and stator winding excitation.

Table 3.1
Genes Used in the WRSM Design Program.

Gene Gene Description
1 rsh Shaft radius (m)
2 drc Rotor core depth (m)
3 drp Rotor pole depth (m)
4 g Airgap length (m)
5 dst Stator tooth depth (m)
6 db Stator yoke depth (m)
7 l Stack length (m)
8 fwss Fraction to find wss

9 fhrt Fraction to find hrt

10 fwrt Fraction to find wrt
11 fwrp Fraction to find wrp

12 Ns Turns per slot
13 Nfd Number of field turns
14 Is Stator current, rms (A)
15 β Stator phase angle (rad)

16 Ifd Field current (A)

29

Within the toolbox, the constraints and fitness function are evaluated using the

steady-state MEC model described in Section 2.3. The MEC model has been structured

for rapid evaluation of candidate designs by modeling only a single pole and using a

mesh-based solution of the circuit. Within optimization studies, a single machine is

evaluated at 91 discrete positions over half of an electrical cycle. This requires on the

order of 0.6-.0.8 son a single-core desktop PC. The variance in the time is due to the

convergence of the Newton Raphson algorithm, which has been found to require less than

5 iterations, regardless of saturation level.

The toolbox is configured for the electromagnetic design of machines of arbitrary

power level. To date, thermal effects are considered in a simplified way by setting a

current density limit on the stator and rotor windings. Initial testing and toolbox

implementation has focused upon an air-cooled drive system with constraints of a dc-link

voltage < 200 V, output power > 2 kW, and winding current densities < 7.6 A/mm2 at a

rotor speed of 3600 rpm. An initial optimization was performed using a population of 600

individuals over 800 generations. The Pareto-optimal front from which a design to be

constructed was selected is shown in Figure 3.3. Details of the design process and

hardware validation are provided in [1].

Figure 3.3: Pareto-optimal front for 2 kW machine design.

0 10 20 30 40 50 60
60

80

100

120

140

160

180

200

Mass (kg)

L
o
ss

 (
W

)

Selected Design

30

It is noted that in the initial validation, focus was placed upon the machine. Losses

of the rectifier were not included in establishing the Pareto-optimal front. Subsequently,

conduction loss of the rectifier has been included. In using the tool to study machine

designs with/without conduction loss, it has been found that the machines are similar in

terms of geometry and field and stator winding ampere-turns [57]. The notable difference

is that in the machines with rectifier conduction loss included, ampere-turns are achieved

by higher turns and lower current compared to machines without rectifier conduction

loss.

Among the lessons learned in the design and validation is that there can be

relatively wide variability in the anhysteretic BH curves of M19 steel. Specifically,

toroidal samples of the core material obtained pre- and post-machine construction were

obtained and were found to have differences. This is not unexpected, since material

classification is based upon a loss characterization and not an anhysteretic BH

characterization [58]. The qd-axis flux linkage calculated with BH1 (pre-construction)

and BH2 (post-construction) are shown in Figure 3.4. BH2 was shown to have a more

accurate material characterization in [59] and thus is used in developing the excitation

strategies in the following sections.

Figure 3.4: q- and d-axis flux linkage versus current.

0 5 10 15 20 25 30 35 40 45
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

Current (A)

F
lu

x
Li

nk
ag

e
(V

s)

q−axis Meas.
d−axis Meas.
q−axis MEC−BH1
d−axis MEC−BH1

0 5 10 15 20 25 30 35 40 45
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

Current (A)

F
lu

x
Li

nk
ag

e
(V

s)

q−axis MEC−BH2
d−axis MEC−BH2
q−axis Meas.
d−axis Meas.

31

3.3 Model Details

From Table 3.1, it is observed that the genes of the machine design optimization

include stator and field excitation for rated output power. One may suggest that the

currents over a range of operating points could be obtained within the machine design

optimization. However, the computational effort required to do so is significant, since

each operating point would require the solution of the MEC. In addition, as one increases

the number of genes (which would need to include currents at each operating point), the

time required to obtain convergence increases.

As an alternative, for power less than rated, a second optimization is performed to

establish a map between commanded torque and stator/field excitation for any machine

upon the Pareto-optimal front. Herein, the map is obtained for the machine that was

constructed using three approaches. In the first, a standard qd-model is utilized. In the

second, a qd-model in which saturation is included along the d-axis is utilized. In the

final approach, the MEC model is applied.

qd model – saturation neglected

Since the machines are connected to an active rectifier, damper windings are not

utilized in the rotor of the machine studied. The voltage and flux linkage equations of a

traditional qd model that are used for optimization are expressed as,

 r r r
qs s qs r dsV r I ω λ= + (3.1)

 r r r
ds s ds r qsV r I ω λ= − (3.2)

 ' ' '
fd fd fdV r I= (3.3)

 r r
qs q qsL iλ = (3.4)

 'r r
ds d ds md fdL i L iλ = + (3.5)

The electromagnetic torque is expressed as,

3

()
2 2

r r r r
e ds qs qs ds

P
T i iλ λ= − (3.6)

32

In (3.1)-(3.6), mdL and mqL are the d-axis and q-axis magnetizing inductances,

respectively, sr is the stator winding resistance, and '
fdr is the referred field resistance. In

(3.3) and (3.5), the primes are used to denote that the field quantities are referred to the

stator winding.

The values of dL , qL are obtained from the MEC model by taking the ratio of the

respective q- and d-axis flux linkage to q- and d-axis test currents. mdL and mqL are

obtained by subtracting the stator leakage inductance lsL from dL and qL . The stator

leakage inductance is approximated as the zero-sequence inductance 0L which is the

ratio of zero-sequence flux linkage to zero-sequence current. The ratio between actual

and referred rotor windings was obtained using a developed diagram of the MMF of the

rotor and stator windings [26]. The equivalent turns of a sinusoidally distributed winding

were computed and used to establish' 2

3
fd

fd fd
s

N
I I

N
= and ' s

fd fd
fd

N
V V

N
= . The stator and

field winding resistances are calculated within the machine design program using (2.21)

to calculate dc winding resistance. All parameters of the steady-state qd model are shown

in Table 3.2.

qd model – saturation along d-axis

Often, in the analysis of salient-pole synchronous machines, saturation is

represented along the d-axis. With knowledge that the machine selected has flux densities

that are beyond the knee of the BH curve, it was of interest to observe the influence that

modeling d-axis saturation has on the optimized winding currents. To model saturation,

(3.5) is represented in a form

 r r r
ds ls ds mdL iλ λ= + (3.7)

where

 ()r
md mdf iλ = (3.8)

 'r
md ds fdI I I= + (3.9)

33

To determine the relationship between magnetizing current and flux linkage, the

MEC model was utilized. The rotor was positioned at 90rθ = ° and the stator winding

currents were set to zero. The field current was increased and the respective d-axis flux

linkage determined. The relationship between magnetizing current and flux linkage can

be expressed mathematically using the map proposed in [27] as,

{ }
{ }2 2 2 2

2
() tan[()] tan()

 ln(1) ln[1 ()]

d
md md T T md T T T T

d
T T T md T a md

T

M
i a a

M
M

λ λ τ λ λ λ τ λ
π

τ λ τ λ λ λ
πτ

= − − + − +

+ − + − + (3.10)

where Md and Ma are related to the initial and final slopes, τT and λT define the tightness

of the transition from initial slope to final slope and the point of transition, respectively.

The values are shown in Table 3.2.

Table 3.2
Parameters used in qd Models.

Md 451.42 Ma 612.83
τT 173.09 λT 0.127

rs(Ω) 0.16 r fd(Ω) 2.55

Lq (mH) 3.76 Ld (mH) 5.15
L0 (mH) 0.82 Ns 19.67

Nfd 215.26

MEC model

The electromagnetic torque and power loss calculation are shown in Section 2.3.3.

The same equations can be used to calculate the resistive and conduction loss for the qd

models, however, core loss can only be calculated in the MEC model.

3.4 Optimal Excitation

Consistent with the desire to minimize loss, an optimization was established to

minimize loss subject to the constraint of meeting the specified electromagnetic torque

command. Additional constraints include not exceeding the current limit and the phase

voltage limit. Mathematically, the optimization is expressed as,

34

 Minimize (, ,)r r
loss qs ds fdP i i i (3.11)

 Subject to:

 *
e eT T= (3.12)

 maxstator sJ J≤ (3.13)

 maxrotor rJ J≤ (3.14)

 2 23 r r
qs ds dcV V V+ ≤ (3.15)

In (3.12), and throughout this chapter, a * is used to denote a commanded value.

The maximum stator and rotor current densities were assumed

2
max max 7.6A / mms rJ J= = The dc bus voltage limit was 200dcV = V. The optimization

was performed using the evolutionary approach used for the machine design.

Initially, the optimization was performed using the MEC model upon which the

design was based. The optimization was then repeated using the traditional qd model (no

saturation) and the qd model incorporated with d-axis saturation. Within the qd models,

only resistive loss and switch conduction loss is represented (no core loss). The resulting

currents obtained from optimization of (3.11)-(3.15) using the three models are shown in

Figure 3.5. The comparison of the total power loss obtained from the optimization using

the three models is shown in Figure 3.6. From the plots in Figure 3.6, one can see that the

power loss is significantly under estimated when using the qd models due to the absence

of core loss within these models. This would lead to an overestimate of the output power

from the qd models. In addition, if one applies the currents obtained from the qd models

into the MEC model, one finds that at higher power levels the torque is significantly less

than the commanded torque.

From Figure 3.5, there are several interesting observations. First, at lighter loads

both qd models yield nearly the same optimal stator current commands. This is expected

since under the relatively small currents, saturation is unlikely to play a dominant role. As

load increases, the currents obtained by the three models tend to have more significant

differences.

35

Figure 3.5: Current control schemes for optimal control based on MEC model, linear qd
model, and nonlinear qd model respectively. a) q-axis current, b) d-axis current, c) field

current.

0 2 4 6
−20

−15

−10

−5

0

Absolute Value of Average Torque (Nm)

Iq
s

(A
)

(a) q−axis Current

0 2 4 6
−6

−4

−2

0

2

Absolute Value of Average Torque (Nm)

Id
s

(A
)

(b) d−axis Current

0 2 4 6
0

1

2

3

4

5

Absolute Value of Average Torque (Nm)

Ifd
 (

A
)

(c) Field Current

MEC
linear qd
saturated qd

36

Figure 3.6: Comparison of power loss for the MEC model, linear qd model, and nonlinear
qd model.

One of the more interesting trends is in the d-axis current. From Figure 3.5(b), it

can be seen that the d-axis currents obtained from the unsaturated and saturated qd

models transition from positive to negative values as load increases, while those obtained

from the MEC model are always negative. Without considering saturation, core loss, or a

dc link voltage constraint, one would expect that the d-axis current would be positive in

order to provide additional torque resulting from saliency (note that torque is defined

negative for generator operation). Therefore, the d-axis current in the unsaturated qd

model is positive in most of the load region until a voltage constraint is met at higher load

and becomes negative to weaken the field. It is interesting that the field current is not

used to weaken the field. As for the saturated qd model, saturation effects the selection of

qd-axis currents so that the d-axis current transition to negative occurs earlier than the

unsaturated model.

0 1 2 3 4 5 6 7
0

50

100

150

200

250

Absolute Value of Commanded Torque (Nm)

P
ow

er
 L

os
s

(W
)

MEC model
linear qd model
saturated qd model

37

Within the MEC model, saturation and core loss are included. At light load, one

can argue that the only possible reason for a negative d-axis is to minimize core loss. A

careful inspection at the q-axis and field currents under light load shows that they are

larger in magnitude than those obtained by the qd models. This is to counteract the

reduction in torque created by the negative d-axis current.

To help explain the prevalence of negative d-axis current at higher loads, an

additional study was performed. Specifically, taking the phase current amplitude and

field current at rated load, the current phase angle was varied and the impact on the

machine performance was investigated using the MEC model. Variation of the phase

angle directly impacts the amount of q-axis and d-axis current. This variation has no

impact on the resistive/conduction loss since rms stator current remains the same. The

main variables of interest for this study were core loss and torque, and these variables

along with q- and d-axis current are plotted in Figure 3.7 as a function of phase angle.

These results illustrate that a negative d-axis current provides a benefit in terms of core

loss, although the amount of the reduction in core loss is perhaps relatively small. In

addition, if one looks at the impact on torque, it can be seen that for a set of field current,

the maximum torque point is achieved by using a negative d-axis current. Referring back

to (3.6) with (3.4) and (3.5) substituted for the flux linkages, this seems counterintuitive,

but it is reasonable considering that the MEC model accounts for saturation whereas the

lumped parameter equation does not. Indeed, this also explains why the d-axis current

obtained by the saturated qd model becomes negative as load increases.

38

Figure 3.7: q- and d-axis stator current, torque and core loss versus stator current phase
angle for constructed machine.

3.5 Sub-optimal Excitation

Simplicity of control is often of interest. In addition, to provide a rapid dynamic

response there is often a desire to establish a field-oriented approach similar to that of a

DC machine in which the rotor field is constant and the torque command is mapped

directly to armature excitation.

To address these potential interests, three alternative excitation schemes are

considered. In the first, the field current is held fixed at the optimized 2 kW level (3.8 A),

and the q- and d-axis currents are optimized to minimize system loss at each value of

commanded torque. A second control is considered in which the torque attributed to

saliency is eliminated by setting d-axis current to zero. Therein, the field and q-axis

current are solved to minimize system loss. The currents obtained for these two schemes

are shown along with the optimal control currents in Figure 3.8. The total system loss

resulting from these controls are shown in Figure 3.9.

150 160 170 180 190 200
−19

−18

−17

−16

q−
ax

is
 C

ur
re

nt
 (

A
)

Stator Current Phase Angle (deg)
150 160 170 180 190 200

−10

−5

0

5

10

d−
ax

is
 C

ur
re

nt
 (

A
)

Stator Current Phase Angle (deg)

150 160 170 180 190 200

30

35

40

45

C
or

e
Lo

ss
 (

W
)

Stator Current Phase Angle (deg)
150 160 170 180 190 200

−6

−5.5

−5

−4.5

A
ve

ra
ge

 T
or

qu
e

(N
m

)

Stator Current Phase Angle (deg)

Varied Phase Angle

Maximun Torque Design

39

Figure 3.8: Current control schemes for a) optimal control, b) zero d-axis, and c) constant

field controls.

Figure 3.9: Total power loss for optimal control, zero d-axis current control, and constant
field controls.

0 2 4 6
−20

−10

0

10

Absolute Value of Average Torque (Nm)

C
ur

re
nt

 (
A

)

(a) Optimal Control

0 2 4 6
−30

−20

−10

0

10

Absolute Value of Average Torque (Nm)

C
ur

re
nt

 (
A

)

(b) Zeros Ids Control

0 2 4 6
−20

−10

0

10

Absolute Value of Average Torque (Nm)

C
ur

re
nt

 (
A

)

(c) Constant Ifd Control

Ids

Ifd

Iqs

0 1 2 3 4 5 6 7
0

50

100

150

200

250

300

Absolute Value of Average Torque (Nm)

T
ot

al
 P

ow
er

 L
os

s
(W

)

Optimal Control
Zero Ids Control
Constant Ifd Control

40

From Figure 3.9, it can be seen that with the exception of powers below 30%

rated, a constant field control provides minimal difference with those of the original

optimized current. It can also be observed that setting d-axis current to zero does lead to

an increase in loss at higher power levels. However, this loss increase is relatively minor.

The results of the first two alternative controls sets the stage for a third control in

which the d-axis current is set to zero, the field current is held constant, and a torque

versus q-axis current map is utilized over the entire power range. Figure 3.10 shows this

simplified current control. The field current in this scheme is obtained so that the overall

power loss in creating electromagnetic torque from 0 to rated (6.3 Nm) is minimized. Its

value is 3.28 A in this case. A comparison of total system loss resulting from the

simplified control and the optimal control is also shown in Figure 3.10. From the results,

it can be seen that the simplified control is nearly as efficient as the optimal control over

much of the power range.

Figure 3.10: Current control schemes and total power loss for simplified control.

In many applications, operation at low and high powers occurs over a relatively

low percent of time, which would tend to minimize the overall energy loss if such a

control were implemented. In addition, one notes that since the field current is held fixed,

0 1 2 3 4 5 6 7
−30

−20

−10

0

10

Absolute Value of Average Torque (Nm)

C
ur

re
nt

 (
A

)

Iqs
Ids
Ifd

0 1 2 3 4 5 6 7
0

100

200

300
Power Loss

Absolute Value of Average Torque (Nm)

T
ot

al
 P

ow
er

 L
os

s
(W

)

Optimal Control
Simplified Control

41

such a control is relatively straightforward for both brushed and brushless exciters.

Specifically, for a brushless excitation system, a single point map is needed between field

current and excitation field voltage. Another point to consider is that it is interesting that

the torque versus q-axis current is indeed linear in this simplified control, despite the

machine operating in saturation. This is a result that saturation is primarily set by the field

current. The q-axis current from zero through rated value appears to have relatively minor

influence on the magnetic operating point. In addition, since the d-axis current is held

fixed at zero and the q-axis does not have an appreciate influence on the magnetic

operating point, changes in torque would not translate to transients in the field current.

Theoretically, this would ensure a fast transient response.

Finally, there was interest in establishing performance for speeds less than rated.

Within this region, studies were performed to establish the power loss between the

simplified and optimal controls at various speeds and torque levels. The results are shown

in Figure 3.11. From these curves one can see there is relatively minor difference

between the loss obtained from the two controls, as one might expect.

Figure 3.11: Comparison of power loss between optimal and simplified control at

variable speed.

0 2 4 6
0

100

200

300

Absolute Value of Average Torque (Nm)

P
ow

er
 L

os
s

(W
)

10% Rated Speed

0 2 4 6
0

100

200

300

Absolute Value of Average Torque (Nm)

P
ow

er
 L

os
s

(W
)

25% Rated Speed

0 2 4 6
0

100

200

300

Absolute Value of Average Torque (Nm)

P
ow

er
 L

os
s

(W
)

50% Rated Speed

0 2 4 6
0

100

200

300

Absolute Value of Average Torque (Nm)

P
ow

er
 L

os
s

(W
)

75% Rated Speed

Optimal Control

Simplified Control

42

3.6 Hardware Validation

Hardware-based performance of the controls for speeds up to 3600 rpm was

evaluated using the bench set up shown in Figure 3.12. A dynamometer working as a

prime-mover was connected with the WRSM through a torque transducer. The WRSM is

driven electrically by an active rectifier that used a ST microelectronics STG3P3M25N60

3-phase inverter bridge with an International Rectifier half-bridge gate driver (IR2183) to

perform delta-hysteresis current regulation. The delta interval and hysteresis band were

set to 50 µs and 0.5 A, respectively. At the output of the inverter is a 6.6 mF capacitor in

parallel with a 20 Ω resistor. An encoder is used to obtain rotor position and a power

supply operating as a current source is used to provide field excitation. The current

control vectors generated by the optimal control and the simplified control were tested at

3600 rpm and 1800 rpm.

Figure 3.12: Hardware test bench.

Prior to the experiments, the dynamometer was used to spin the de-energized

machine to 3600 rpm and 1800 rpm. An in-line torque transducer was used to establish an

estimate of 100 W and 50 W loss due to friction/windage at rated and half-rated speed,

respectively. Stator and field windings resistances were measured as 0.2 Ω and 2.81 Ω,

respectively. The measured values of resistance are used for loss calculation in the MEC

43

model in this section. The machine was then run under load and the respective

mechanical input power and dc output power were measured. ‘Measured’

electromagnetic torque was estimated by taking the measurement of the torque

transducer, and subtracting the torque associated with friction/windage. Total loss was

estimated as

 loss e rm fd fd dc dcP T V I V Iω= + − (3.16)

where eT is the estimated electromagnetic torque, rmω is the rotor angular velocity,

fd fdV I is the input power to the exciter, and dc dcV I is the average of the product of

measured dc-link current and voltage.

Table 3.3 and Table 3.4 contain the MEC and hardware performance for the

optimal control and simplified control at rated speed, respectively.

Table 3.5 and Table 3.6 contain the MEC and hardware performance for the

optimal control and simplified control at half-rated speed, respectively. From the tables,

one can see that the simulation and experimental results match well. As expected, the

simplified control produces slightly more machine loss than the optimized control at

higher torque levels.

For both current commands one can see error between the MEC model predicted

loss and the measured loss. A difference is certainly expected, since in the MEC model,

switching loss is not represented. In addition, only core loss of the stator (not the rotor) is

considered. Within the delta-hysteresis control a synchronous current regulator was not

applied. Thus, there is likely some minor error between commanded current and actual

current that could lead to a difference in expected/measured torque that was perhaps

favorable in some instances and unfavorable in others. However, it does not appear that

these differences were appreciable. In general, one can conclude that the difference

between the loss of the optimal and simplified controls is minor, and that a relatively

simple control can be achieved that is consistent with goals of minimizing mass and loss

of this machine/drive system.

44

Table 3.3
Comparison of MEC and hardware for optimal control currents at 3600 rpm.

Table 3.4
Comparison of MEC and hardware for simplified control currents at 3600 rpm.

Current (A) Torque (Nm) DC Output
Power (W)

Power Loss
(W) Iq Id Ifd

-10.6

-0.8

3.13

MEC 2.99 1022.3 131.3
Hardware 3.16 1067.3 151.6

Error 5.7% 4.4% 15.5%

-14.0

-2.1

3.56
MEC 4.31 1476.3 184.6

Hardware 4.60 1565.8 204.0
Error 6.7% 6.1% 10.5%

-15.8

-2.5

3.71

MEC 4.97 1698.9 213.5
Hardware 5.37 1826.0 237.2

Error 8.0% 7.5% 11.1%

-17.4

-3.7

3.93
MEC 5.63 1923.9 243.5

Hardware 6.06 2055.3 272.7
Error 7.6% 6.8% 12.0%

-18.6

-5.3

4.20

MEC 6.29 2146.3 275.4
Hardware 6.65 2236.6 320.0

Error 5.7% 4.2% 16.2%

Current (A) Torque (Nm) DC Output
Power (W)

Power Loss
(W) Iq Id Ifd

-10.3

0

3.28

MEC 2.99 1024.4 132.2
Hardware 3.17 1071.9 153.3

Error 6.0% 4.6% 16.0%

-14.8

0

3.28

MEC 4.31 1467.7 187.7
Hardware 4.55 1538.6 207.0

Error 5.6% 4.8% 10.3%

-17.1

0

3.28

MEC 4.97 1683.8 220.8
Hardware 5.25 1752.0 257.4

Error 5.6% 4.1% 16.7%

-19.4

0

3.28

MEC 5.63 1896.6 257.7
Hardware 5.93 1986.6 279.1

Error 5.3% 4.7% 8.3%

-21.7

0

3.28

MEC 6.29 2105.1 298.5
Hardware 6.55 2165.5 334.0

Error 4.1% 2.9% 11.9%

45

Table 3.5
Comparison of MEC and hardware for optimal control currents at 1800 rpm.

Table 3.6
Comparison of MEC and hardware for simplified control currents at 1800 rpm.

Current (A) Torque (Nm) DC Output
Power (W)

Power Loss
(W) Iq Id Ifd

-10.4

-0.6

3.20

MEC 2.99 477.3 112.9
Hardware 3.12 484.6 132.2

Error 4.3% 1.5% 17.1%

-13.9

-2.1

3.61
MEC 4.31 684.9 163.5

Hardware 4.54 704.9 187.4
Error 5.3% 2.9% 14.6%

-15.7

-2.8

3.78

MEC 4.97 785.5 191.1
Hardware 5.30 827.9 211.2

Error 6.6% 5.4% 10.5%

-17.3

-3.7

3.97
MEC 5.63 885.5 220.2

Hardware 6.01 932.7 244.4
Error 6.7% 5.3% 11.0%

-18.8

-4.6

4.16

MEC 6.29 984.1 250.7
Hardware 6.57 1017.4 269.6

Error 4.5% 3.4% 7.5%

Current (A) Torque (Nm) DC Output
Power (W)

Power Loss
(W) Iq Id Ifd

-10.2

0

3.28

MEC 2.99 449.6 113.4
Hardware 3.13 484.2 136.0

Error 4.7% 7.7% 19.9%

-14.8

0

3.28

MEC 4.31 646.0 166.3
Hardware 4.45 672.7 196.3

Error 3.2% 4.1% 18.0%

-17.1

0

3.28

MEC 4.97 739.2 197.8
Hardware 5.13 776.2 221.0

Error 3.2% 5.0% 11.7%

-19.4

0

3.28

MEC 5.63 828.9 232.8
Hardware 5.85 878.1 254.8

Error 3.9% 5.9% 9.5%

-21.7

0

3.28

MEC 6.29 914.9 271.5
Hardware 6.48 955.5 296.2

Error 3.0% 4.4% 9.1%

46

3.7 Variable Speed Operation

Although the given machine was not originally designed for variable speed

application, it is interesting to consider the impact of these alternative excitations

strategies as speed increases beyond rated value. To do so, the envelopes that establish

the maximum possible torque at each speed were created following an optimization:

 Maximize (, , ,)r r
e qs ds fd rT i i i ω (3.17)

 Subject to:

 _e e ratedT T≤ (3.18)

 maxstator sJ J≤ (3.19)

 maxrotor rJ J≤ (3.20)

 2 23 r r
qs ds dcV V V+ ≤ (3.21)

where the rated torque is 6.3 Nm. To create the envelopes for the simplified control, rdsi

in (3.17) is set to zero for all speeds, and the field current is held constant at 3.28 A. The

maximum torque versus speed under each of the controls is shown in Figure 3.13.

Comparing the envelopes of performance, one notes that the torque achievability

from the simplified control is a subset of that of the optimal control. Of course, for speeds

up to rated there is no difference in the torque availability and the performance was

considered in Sections 3.5 and 3.6. However, if one extends beyond rated speed, the peak

torque that can be obtained is much different between the two controls. Considering

Figure 3.13, several details catch the eye. First, although the machine was not designed

for variable speed operation, when using the optimal control, one can achieve rated

torque for speeds exceeding roughly twice rated speed. Moreover, once the available

torque decreases, the decrease is proportional to rotor speed and therefore a constant

power region extends to at least four times rated speed. Of course, design constraints and

mechanical loss for high speeds were not considered and so this result is useful in that it

allows comparison to the performance from the simplified control.

47

Figure 3.13: Torque and output power envelopes of optimal and simplified controls.

As one would expect, the torque that can be achieved using the simplified control

is much less as speeds extend beyond rated speed. This is due to the fact that if the field

current is held fixed and the d-axis current fixed at zero, no field weakening occurs. Thus

the q-axis current achievable is diminished. Of course, the simplified control can be

modified so that the field current is reduced in proportion to rotor speed. To consider

such a method, a study was performed in which the field current is adjusted according to

, ,

,
, ,

,

(),

fd fd sc rm rm rated

rm rated
fd fd rated rm rm rated

rm

i i

i i

ω ω
ω

ω ω
ω

= ≤



= >


 (3.22)

and the q-axis current adjusted to solve (3.17). In (3.22), ,fd sci is the field current for

simplified control at less than rated speed (3.28 A), ,fd ratedi is the field current at the

optimized 2 kW level (3.8 A) and ,rm ratedω is the rated speed of the machine (3600 rpm).

The resulting torque envelope is shown in Figure 3.13 as Simplified Control 2. One can

0 5000 10000 15000
0

2

4

6

8

Rotor Speed (rpm)A
bs

ol
ut

e
V

al
ue

 o
f M

ax
im

um
 T

or
qu

e
(N

m
)

Optimal Control

Simplified Control

Simplified Control 2

0 5000 10000 15000
0

1

2

3

4

Rotor Speed (rpm)

M
ax

im
um

 P
ow

er
 (

kW
)

48

observe from the curve that the field weakening of the field does enable an increase in

available torque. However, it remains much less than that of the optimal control.

There are many questions that arise for optimization of a machine intended to

operate over a wide speed range. Addressing them is outside the scope of this paper.

However one question that was of interest is whether a machine can be designed with a

wide speed range and yet with d-axis current fixed at zero. To consider this question, an

optimization study was performed. Within the study, the stator phase angle, which is gene

15 in Table 3.1, is set to 180° so that d-axis current is zero. In addition, an extra

constraint is added so that the rated output power (2 kW) is obtained at four times rated

speed with one fourth of the field current used at rated speed.

To obtain a perspective on the potential mass penalty that results from setting d-

axis current to zero, a repeat of the original 2 kW design was performed with the updated

BH properties included. For this case the d-axis current is allowed to be nonzero. With

the three currents to manipulate, all the machines can achieve rated torque at 2 kW at

3600 rpm and constant power at four times rated speed. Conduction loss of the rectifier is

included within the loss calculation in both cases.

The resulting Pareto fronts of power loss at rated speed versus mass is shown in

Figure 3.14. As shown in Figure 3.14, at rated speed, the machines that are designed

assuming the use of Simplified Control 2 with the constant power constraint have more

mass for a given loss than the machines designed for the machines with the optimal

control. Comparing the fronts provides some measure of the cost (increase in mass) of

keeping with a simplified control under variable speed operation. For systems with higher

loss, the mass difference is relatively small. However, as loss decreases, the difference in

mass becomes more appreciable.

49

Figure 3.14: Comparison of Pareto fronts.

To investigate the difference in the machines from the two fronts, the conduction

loss, core loss, and resistive loss have been compared for rated speed/rated torque

conditions in Figure 3.15. A comparison of different design variables in the two design

optimizations is shown in Figure 3.16 to help understand how the designs are different.

As shown in Figure 3.16, although the field currents at rated speed for both designs are

very close, the designs assuming Simplified Control 2 tend to have a much smaller field

current at high speed (one fourth of the rated value at four times rated speed). Therefore,

a larger stator current is required to compensate for the torque reduced by the smaller

field current. This increases the rectifier conduction loss. Since the modified designs have

larger stator current, the optimization process tends to use less stator turns in order to

reduce the stator resistance, thus the resistive loss of the machines designed to use

Simplified Control 2 and optimal control are very close. Moreover, since negative d-axis

current helps to reduce core loss as discussed previously, setting them to zero one expects

to have more core loss. It is also interesting that in general, the size of machines and turns

of the field winding created by both designs are very close. The key difference is the

0 20 40 60 80 100 120
100

150

200

250

300

350

Mass (kg)

T
ot

al
 P

ow
er

 L
os

s
(W

)

Simplified Control Design
Selected Design
Optimal Control Design

50

stator winding turns and current. If one summarizes these trends, one can surmise that for

systems in which the conduction loss is a small percentage of overall loss, the two fronts

would approach each other.

As a final study, a machine (shown as a star in Figure 3.14) was selected for

evaluation of the excitation optimization. Following (3.17)-(3.21), the same control

optimization process was applied to generate the torque and output power envelopes of

simplified control 2 for this machine. The envelopes are shown in Figure 3.17.

Comparing the torque and power envelopes of the Simplified Control 2 with that

observed for Simplified Control 2 of the original machine shown in Figure 3.13, one can

see that the speeds over which constant torque is achieved is expanded significantly. In

addition, once rated torque cannot be achieved, the field weakening leads to a torque

envelop that yields in excess of 2 kW power at speeds up to four times rated. Thus, one

observes that it is possible to have a simplified field-oriented type control with d-axis

current set to zero and yet have a wide constant power range, provided the simplified

control is included in the design stage.

51

Figure 3.15: Comparison of conduction loss, core loss, and resistive loss.

Figure 3.16: Comparison of design variables in variable speed design and rated speed

design.

0 50 100 150
30

40

50

60

70

Mass (kg)

C
or

e
Lo

ss
 (

W
)

0 50 100 150
0

100

200

300

Mass (kg)

R
es

is
tiv

e
Lo

ss
 (

W
)

0 50 100 150
40

60

80

100

Mass (kg)

 C
on

du
ct

io
n

Lo
ss

 (
W

)

Simplified Control Design

Optimal Control Design

0 20 40
0.1

0.15

0.2

0.25

0.3

0.35

O
ut

er
 S

ta
to

r
D

ia
m

et
er

 (
m

)

0 20 40
0.1

0.12

0.14

0.16

0.18

0.2

O
ut

er
 R

ot
or

 D
ia

m
et

er
 (

m
)

0 20 40
0.5

1

1.5

2
x 10

−3

A
irg

ap
 (

m
)

0 20 40
0.05

0.1

0.15

0.2

0.25
S

ta
ck

 L
en

gt
h

(m
)

0 20 40
0

200

400

600

800

Design Number

F
ie

ld
 T

ur
ns

0 20 40
8

10

12

14

16

18

Design Number

S
ta

to
r

T
ur

ns

0 20 40
0

1

2

3

4

5

Design Number

F
ie

ld
 C

ur
re

nt
 (

A
)

0 20 40
8

10

12

14

Design Number

S
ta

to
r

C
ur

re
nt

 R
M

S
 (

A
)

Optimal Control Design

Simplified Control Design

52

Figure 3.17: Torque and output power envelopes of simplified control 2 using a
simplified control design.

3.8 Discussion

In Section 3.1 several questions were raised and it is helpful to consider them in

light of the results presented. From the control perspective, it has been found that when

establishing the torque versus current map there are significant differences between the

currents that are obtained from the MEC and those one would obtain using traditional qd

models. The differences come from the impact of saturation as well as the influence of

core loss. At first glance this is discouraging since the resulting ‘optimal’ torque/current

map from the MEC model is difficult to express analytically. However, through analysis

of the optimized currents, an alternative simplified control is obtained that is

straightforward to implement. Its main property – a linear map between torque and q-axis

current- is precisely what drive control designers seek. The caveat of the simplified

control is that one must be willing to accept an increase in loss over an ‘optimized’

current.

0 5000 10000 15000
0

2

4

6

8

Rotor Speed (rpm)A
bs

ol
ut

e
V

al
ue

 o
f M

ax
im

um
 T

or
qu

e
(N

m
)

0 5000 10000 15000
0

1

2

3

4

Rotor Speed (rpm)

M
ax

im
um

 P
ow

er
 (

kW
)

53

This leads to a question of whether a control designer needs to communicate their

desire to use a simplified control to the machine designer? For variable speed

applications the results in Section 3.7 show the answer is yes. Without this

communication, the torque versus speed capabilities of the drive is greatly diminished

under the simplified control. Moreover, the machine designer will be able to inform the

control engineer of the added cost of the simplified control since, as shown in Figure

3.14, the mass of the machine may increase.

Finally, one may ask how this research applies to applications in which one can

adjust the commanded prime mover angular velocity. Going back to Figure 3.2, in this

case, the output of the voltage regulator is now a power command. Due to the capability

to adjust speed, an optimization can be performed to obtain the torque/speed

combination:

 Minimize (,)loss e rP T ω (3.23)

 Subject to *(,)e rP T Pω = (3.24)

where the loss includes those of the WRSM, active rectifier, prime mover, and rotation.

The output of the optimization is a torque command provided to the electric drive and a

speed command provided to the prime mover. Again, a torque command to current

command map is required. The results of Section 3.7 are readily applied, with the caveat

that for a wide speed range, any desire to use a simplified control requires one to include

the control as part of the machine design process.

54

4. DYNAMIC MAGNETIC EQUIVALENT CIRCUIT MODEL

4.1 Enhanced MEC Network

The dynamic MEC-based model is designed to predict the performance of a salient-

pole WRSM with an arbitrary number of poles, integer number of slots/pole/phase, and

damper bars. An example cross section of a 4-pole WRSM with 3 damper bars is shown

in Figure 4.1. The q-, d-, and as-axis of the machine are also listed. It is noted that

mechanical rotor position θrm is defined by the position of the q-axis with respect to the

as-axis.

Figure 4.1: Example WRSM geometry/configuration.

ro

55

An initial network of the proposed MEC is shown in Figure 4.2, wherein loop flux

Φ is defined in the clockwise direction. Within the network, each stator and field coil

becomes a MMF source in the loop where the respective current is located. Single-pole

symmetry is applied to reduce the number of unknowns [23]. Therefore, the MEC

network shown includes a single pole. Regarding the network, the reluctances of the

stator leakage (RTL), stator yoke (RY), rotor interpolar region (RRY), rotor shank (RRSH),

rotor yoke (RRYP), and the nonzero airgap reluctances (Rag) at the respective θrm are

identical to those developed for the steady state model [1].

Figure 4.2: Representative WRSM MEC with damper bars inactive.

The first enhancement that the dynamic MEC network provides is that the stator

tooth is divided into two components, that is stator tooth shank (RSH) and stator tooth tip

(RTT). The challenge of this effort is to determine the airgap permeance based on the

updated network. Since the airgap flux tubes are formed between the stator and rotor,

they are dependent on the rotor position. For purposes of calculating the airgap

permeances, the stator, rotor pole, and rotor slot are all discretized into subsections. The

stator is discretized by the number of stator teeth. In general, the number of rotor pole and

56

slot sections can be user-defined variables. The airgap permeance between the i-th stator

tooth (STi) and the j-th rotor section (RSj) is calculated as a parallel combination of flux

tubes that represent flux paths directly from a stator tooth to a rotor section and fringing

from the side of a stator tooth to a rotor section. In an automated design program

considering arbitrary geometries, the calculation of the airgap permeance is dependent on

several factors. Specifically, one must know how the angular span of the rotor section

compares to the angular spans of the stator tooth and half the stator slot. In [1], logic that

was used to determine overlap angles for arbitrary geometries is provided, assuming the

stator teeth do not have tooth tips. Within the enhanced MEC model, the same logic is

used to determine the reluctance between stator teeth and rotor sections is applied using

the geometry of the stator tooth tip to establish angular overlap.

The uniqueness of the MEC network for the dynamic model is centered on the

reluctance network of the rotor pole tips. A goal is to develop a general model that can be

applied for arbitrary number of damper bars and also, at their arbitrary positioning (with

some limitation), both horizontally and vertically. An issue that is often confronted by

manufacturers is that a single lamination is used across a large product range. Thus,

damper bar holes are often included in rotor laminations, but in some products left

unfilled. Within the model, provisions are included to represent damper bar holes that are

inactive and those that are active.

For the case in which the damper bar currents are inactive, the MEC network is

shown in Figure 4.2. Therein it is shown the flux tubes that represent the rotor pole tip

include the “inner” pole tip (RRTIi), the “outer” pole tip (RRTOi), and the “outer end” of the

pole tip (RRTEi). Within the model, it is assumed that to the left and right of the pole body

flux mainly flows tangentially, and directly above the rotor pole body, flows radially. If

an outer section includes a damper hole, the value of RRTOi is derived assuming the tube

geometry is a rectangular section of steel with a cylindrical damper hole at the center.

This has been found to provide a reasonable estimate of the tangential flux flow in the

outer sections.

For the case in which the damper bar currents are active, the MEC network in the

rotor changes appreciably as shown in Figure 4.3. Specifically, it is observed from 2D

57

FEA that a leakage path exists around a damper hole and the leakage flux varies

appreciably according to the depth of damper hole. Therefore, if an outer section RRTOi

includes an active damper bar, then the section is represented using a parallel

combination of two reluctances RRTOi
* and RRLOi. The reluctance RRTOi

*
 is used to

represent a main path in which flux flows in the same direction of RRTOi. The reluctance

RRLOi is used to represent a leakage path around a damper bar.

Figure 4.3: Representative WRSM MEC with damper bars active.

4.1.1 Stator flux tubes

As can be seen from Figure 4.2 and Figure 4.3, the stator is composed of 4 types of

flux tubes, the stator tooth tip (RTT), stator tooth shank (RSH), stator yoke (RY), and stator

tooth leakage (RTL). A close-up of configuration of stator flux tubes is shown in Figure

4.4.

R
Y

R
TT

R
TL

R
SH

i
cs
'

Φ
st1

i
cs
'

Φ
st2

i
cs
'

Φ
st3

i
as

Φ
st4

i
as

Φ
st5

i
as

Φ
st6

i
bs
'

Φ
st7

i
bs
'

Φ
st8

i
bs
'

Φ
st9

X X X

R
RLO1

R
RTI1

R
ag

i
dp1 i

dp2
i
dp3

R
RSH1

R
RSH2

R
RYP

i
fd
' i

fd
X

R
FL

R
RY

R
RFB

R
RFB

R
RF

R
RPL

Φ
ag1

Φ
ag2

Φ
ag4

Φ
ag6

Φ
ag8

Φ
ag10

Φ
ag12

Φ
ag15

Φ
ag17

Φ
ag20

Φ
rt1 Φ

rt2

λ
dp,1

λ
dp,2

λ
dp,3

R
RTO1

*

R
RTE

R
RLO2 R

RLI1
R
RLO3

R
RLO4

R
RTO2

* R
RTO3

* R
RTO4

*

R
RTE

R
RTI2 R

RTE
Φ
rp1

R
RFB

Φ
rp2

Φ
rp3

Φ
rp4

Φ
rp5

58

Figure 4.4: Illustration of stator flux tubes.

Within the model, sttw and tiph represent the width and length of stator tooth tip

respectively, while()– 2stt tipw w and ()–st tipd h are the width and length of stator tooth

shank respectively. As for the stator yoke, the width and length are given as bd and

() 2 / / 2st o bN r dπ − respectively, where stN is the number of stator teeth. The lengths of

RSH and RY are selected as the mean path length and the equipotential planes intersect to

form a node in the MEC. The reluctances for the stator tooth shank, the tooth tip, and the

yoke are calculated as,

(2)

st tip
SH

stt tip

d h
R

l w wµ
−

=
−

 (4.1)

 tip
TT

stt

h
R

lwµ
= (4.2)

() 2 / / 2st so b

Y
b

N r d
R

ld

π
µ

−
= (4.3)

where µ is the magnetic permeability. The calculation of stator tooth leakage reluctance

(RTL) is provided in [60].

R
SH

R
TT

R
Y

d
st

w
stt

h
tip

w
tip

R
TL

4.1.2 Flux tubes in the rotor

In [1], the reluctance network of the rotor did no

bar holes. In the enhanced model, such holes are included. To establish the difference

between the models, it is convenient to first consider the model without damper holes

which is taken directly from

various rotor tooth tip flux tubes

configuration is that to the left and right of the shank, flux mainly flows tangentially in

the tooth tip; and directly above the rotor shank, flux flows radially

Figure

The flux tube at the outer edge of the rotor tooth tip is represented by reluctance

RRTEi, and it provides a path for fringing through the side of the rotor tooth. The length of

the flux tube is half of a rotor tooth section. The width can be estimated by the function

fwrto(x) shown in Figure 4

where x is the distance from the center of the rotor shank to the middle of the respective

flux tube. The reluctance expression is given by

in the rotor pole with damper holes

, the reluctance network of the rotor did not account for support or damper

bar holes. In the enhanced model, such holes are included. To establish the difference

between the models, it is convenient to first consider the model without damper holes

which is taken directly from [1]. Without damper holes, the general configuration of the

various rotor tooth tip flux tubes is illustrated in Figure 4.5. The basic idea behind the

configuration is that to the left and right of the shank, flux mainly flows tangentially in

the tooth tip; and directly above the rotor shank, flux flows radially.

Figure 4.5: Description of rotor tooth tip flux tubes.

The flux tube at the outer edge of the rotor tooth tip is represented by reluctance

, and it provides a path for fringing through the side of the rotor tooth. The length of

the flux tube is half of a rotor tooth section. The width can be estimated by the function

4.5, which is established from simple geometry,

() ()22
wrto ro rtbf x r x h= − −

is the distance from the center of the rotor shank to the middle of the respective

The reluctance expression is given by

59

t account for support or damper

bar holes. In the enhanced model, such holes are included. To establish the difference

between the models, it is convenient to first consider the model without damper holes

he general configuration of the

. The basic idea behind the

configuration is that to the left and right of the shank, flux mainly flows tangentially in

The flux tube at the outer edge of the rotor tooth tip is represented by reluctance

, and it provides a path for fringing through the side of the rotor tooth. The length of

the flux tube is half of a rotor tooth section. The width can be estimated by the function

 (4.4)

is the distance from the center of the rotor shank to the middle of the respective

60

 ()
/ 2

/ 2 / 4
rts

RTEi
RTEi wrto rt rts

w
R

f w w lµ
=

−
 (4.5)

where wrts is the width of a rotor tooth section (wrt /Nrts), and Nrts is the number of user-

defined rotor tooth sections.

The remaining tangential flux tubes are represented by the outer rotor tooth tip

reluctances (RRTOi). The number of outer reluctances is dependent on the number of rotor

tooth sections (Nrts) and on the total length of tangential reluctances, lRtot, which is

defined herein as,

 () ()/ 2 min / 4,Rtot rt rp rp rtml w w w h= − + (4.6)

where hrtm = fwrto(wrp/2)/2. The length of the individual flux tubes is equal to wrts except

for the inner-most flux tube which has a length in Figure 4.5 of 3 2.5RTO Rtot rtsl l w= − . The

approximate width of each flux tube is again determined using fwrto(x) from (4.4).

As for the inner rotor pole tip section (RRTI), the width is equal tortsw , and the

length is calculated as,

 ()RTIi wrto rtml f x h= − (4.7)

Similarly, the rotor pole shank reluctance (RRSH) has a width of rpw and a length of

()/ 2 rc rp rtmd h h+ + .

Next, if damper bar opening are included and the damper currents are inactive, the

flux tubes of the rotor sections, except for the outer edge of the pole tip (RRTE), become

non-uniform flux tubes. This is shown using a representative pole with hole openings in

Figure 4.6. In general, the ideas of having tangential flux tubes to the left and right of the

shank and radial tubes above the rotor shank is continued. However, the tubes are

modified to incorporate the effects of the holes.

61

Figure 4.6: Illustration of rotor pole shank and rotor pole tip flux tubes.

Herein the highlighted section RRTO1 is used as an example to illustrate the

derivation of the reluctance for a flux tube with a damper bar opening. A close-up of the

highlighted section RRTO1 is shown in Figure 4.7. In order to derive the reluctance of the

flux tube, an assumption is made that the damper holes are placed at the center of a

respective rotor pole section.

h
R
T
O
1

62

Figure 4.7: Configuration of rotor pole tip flux tube with damper bar.

In Figure 4.7, RRTO1 is divided into three subsections, RRTO1_1, RRTO1_2, and

RRTO1_3. RRTO1_1, and RRTO1_3 are subsections of RRTO1 before and after the damper hole.

RRTO1_2 is the subsection of RRTO1 that contains the damper hole. Since all three are

serially connected and RRTO1_1 and RRTO1_3 are assumed to have the same cross-sectional

area, RRTO1_1 and RRTO1_3 can be combined as a single reluctance RRTO1_1,3. It is determined

using

 1
1_1,3

1

2RTO dt
RTO

RTO

l r
R

lhµ
−= (4.8)

where 1RTOh is the width of the section obtained using (4.4). Using symmetry and

considering the appropriate series and parallel combinations, one can obtain the

reluctance of the subsection with the damper hole (1_ 2RTOR) through consideration of the

reluctance of only a quarter of the subsection region as shown in Figure 4.7. Specifically,

it can be shown that 1_ 2RTOR and subR are equal. To calculate their value,

dt dt

dt

63

2

2 2 2 2

1_ 2
210

11

1 1

()
2

2
tan ()

2 24 4

dtr

RTO
RTO

dt

RTO dt

RTO dt RTO dt

dx
R

h
l r x

h r

l l h r h r

µ

π π
µ µ

−

=
− −

 
 = − + +
 − − 

∫

 (4.9)

The cross-sectional area of the component 1_ 2RTOR used to evaluate the

permeability value is the mean value of the section. Finally, the component RRTO1_1,3 and

RRTO1_2 are combined and represented as RRTO1 in the MEC network in Figure 4.2.

A similar approach has been applied to calculate RRTIi when a damper hole is

included within the inner pole region.

4.1.3 Flux tubes of rotor pole tip leakage

From observations of flux line distribution using finite elements, leakage path

exists around a damper hole when damper current is active. Therefore, leakage reluctance

in rotor pole tip is incorporated to the MEC network as shown in Figure 4.3. To derive

RRLO1, the section RRTO1 is highlighted in Figure 4.6 and enlarged in Figure 4.8 to

illustrate the configuration of rotor pole tip leakage flux tube.

64

Figure 4.8: Configuration of rotor pole tip leakage flux tubes.

An assumption has been made that the leakage path is circling around the damper

slot. Thus the damper slot leakage flux tube (RRLO1) is structured as a parallel

combination of three leakage permeances, that is P1, P2, and P3, as shown in the shaded

area of Figure 4.8. P1 represents the leakage path in the copper (or air) inside the damper

slot, with a radius of rdt. P2 represents the leakage path in the steel in the rotor section,

which is modeled as a ring with a width of ddp that is equal to the depth of the damper

hole. Herein, a scaling factor dpα is introduced to describe the vertical position of the

damper holes with respect to the section height. Specifically 0dpα = or 1dpα = then the

damper holes locate at the top or the bottom of the rotor pole tip, respectively. Thus, the

depth of damper hole dpd is equal to 1(2)dp RTO dth rα − . P3 represents the leakage path in

the air gap, in which the MMF drop in the steel is neglected. Therefore, the reluctance of

damper slot leakage RRLO1 for the cylindrical tube can be expressed as,

r dt

65

�
1

2

3

0

1

2

0

1
ln()

8 2

2 ()
 ln()

2

dp dt

RLO dt
P

P

dp dt dp dt

dp dt

P

d rl l

R r

g d r g g d rl

d r

µ µ
π π

µ

+
= +

+ + + + +
+

+

���	��

��������	�������

 (4.10)

where µ is the magnetic permeability in the steel, and µ0 is the magnetic permeability in

the air. The value of RRTO1
* is then calculated in a way to keep the parallel combination of

it and RRLO1 to be the same as RRTO1. Doing so, the reluctance of RRTO1
* can be expressed

as,

2 2 2 2

* 11
1

1 1

11

1

1 1

2
tan ()

24 4

2 1

2

RTO dt
RTO

RTO dt RTO dt

RTO dt

RTO RLO

h r
R

l h r h r

l r

l lh R

π

µ

π
µ µ

−

−−

  
  = + −

 − −  

− − + − 
 

 (4.11)

One can observe from Figure 4.3 that in the outer pole sections the two

reluctances are placed in parallel by assuming that the reluctance in the vertical direction

is negligible. As for those rotor sections without damper bars (e.g. RRTO2 and RRTO3), the

total reluctance of the section is decomposed into two equivalent reluctances placed in

parallel in the rotor pole network. For instance, the rotor section RRTO2 is decomposed

into two branches, that is RRLO2 and RRTO2
*, in the reluctance network, with values that

*
2 2 22RLO RTO RTOR R R= = .

For an inner section with a damper bar, a leakage reluctance RRLIi calculated in the

same fashion of RRLOi is added in between the adjacent two inner sections RRTIi.

In practice, the topology of the network in Figure 4.3 can be applied to machines

without active damper bars by simply removing all of the rotor pole tip leakage

reluctances and the MMF sources of damper currents. Therefore, the initial MEC network

in Figure 4.2 can be replaced by the enhanced MEC network in Figure 4.3.

66

4.1.4 Damper bar placement

In general, the rotor pole tip can be discretized into a user-defined arbitrary

number of sections. The number of damper bars is also a user-defined arbitrary number.

If the number of rotor pole tip damper bars is an odd number, then one of the bars is

located in the center of the most inner two RRTI sections. Otherwise, with an even number,

there is no hole in the center of the most inner two RRTIi sections, but they are

symmetrically distributed on the two sides of the rest of the rotor pole sections. Within

the design program, the horizontal distribution of the damper bars is described using a

damper winding vector as

 3 2 1 2 3[... ...]dt dt dt dt dtr r r r r=damper_rtip (4.12)

where dtir is the radius of the one in the middle of the rotor pole and the other values are

the radii of damper bars at two sides. By manipulating the value of dtir in (4.12), the

horizontal distribution and the shape of the damper bars is readily modified. For example,

if the number of damper bars on each rotor pole tip is three, a damper winding vector

2 1 2[0 0 0 0]dt dt dtr r r gives a more scattered damper bars distribution compare to

a damper winding vector 2 1 2[0 0 0 0]dt dt dtr r r .

In addition, the vertical depth of the damper bars can be assigned by adjusting the

scaling factor dpα . Therefore, the proposed MEC model provides the ability to

investigate both horizontal and vertical placement of the damper bar in the rotor pole tips.

Practically, damper current is not present in the rotor shank. The slot openings in

the rotor shank are used to bind the rotor laminations and confine the field windings.

Therefore, in practice they are likely not located in the center of the rotor shank but at the

edges of the rotor shank. However, the reluctance of the rotor shank component does not

change when the holes are placed at different locations along the radial direction.

67

4.2 Meshed-Based MEC Model Formulation

4.2.1 Single-pole symmetry

Single-pole symmetry has already been studied in [23] in which it was shown that

only a single pole is required for analysis of an integer slot/pole/phase machine.

Therefore, Figure 4.9 shows an example MEC network with a single pole span. One can

imagine that if the MEC network was continued for the pole to the right, the MEC

network over a full pole pair can be formed.

Figure 4.9: Single pole representative of the MEC network.

Considering the symmetry of the magnetic circuit topology in each pole, the

reluctance networks are identical on both sides of the pole demarcation line. In addition,

the MMF sources have the same amplitude but opposite polarity to the left and right of

R
Y

R
TT

R
TL

R
SH

i
cs
'

Φ
st1

i
cs
'

Φ
st2

i
cs
'

Φ
st3

i
as

Φ
st4

i
as

Φ
st5

i
as

Φ
st6

i
bs
'

Φ
st7

i
bs
'

Φ
st8

i
bs
'

Φ
st9

X X X

R
RLO1

R
RTI1

R
ag

i
dp1 i

dp2
i
dp3

R
RSH1

R
RSH2

R
RYP

i
fd
' i

fd
X

R
FL

R
RY

R
RFB

R
RFB

R
RF

R
RPL

Φ
ag1

Φ
ag2

Φ
ag4

Φ
ag6

Φ
ag8

Φ
ag10

Φ
ag12

Φ
ag15

Φ
ag17

Φ
ag20

Φ
rt1 Φ

rt2

λ
dp,1

λ
dp,2

λ
dp,3

R
RTO1

*

R
RTE

R
RLO2 R

RLI1
R
RLO3

R
RLO4

R
RTO2

* R
RTO3

* R
RTO4

*

R
RTE

R
RTI2 R

RTE
Φ
rp1

R
RFB

Φ
rp2

Φ
rp3

Φ
rp4

Φ
rp5

Pole demarcation line

68

the line. As a result, it is apparent that the loop fluxes in the left of the line are equal to

the negative of the corresponding loop fluxes in the right.

If damper windings are activated, care must be given to incorporate the single-pole

symmetry. Specifically, whenever a rotor tooth tip section crosses the pole demarcation

line, the direction of damper winding current must be reversed so that the MMF source of

the damper winding has the same amplitude but opposite direction. Moreover, the

direction of the flux linkage crossing each of two damper windings has to be reversed

since the positive direction changes from one pole to the other.

4.2.2 KVL MEC model

Often, MEC models are structured to explore steady-state behavior in which case

the model is structured to accept stator and rotor currents as inputs. Once reluctance

values in the network have been determined, a system of nonlinear algebraic equations

related to each loop is then established based upon KVL as,

 () (1) (1)
R l l=nl nl nl nl× × ×A φ F (4.13)

where RA is a symmetric matrix composed of reluctances, lφ is a vector of loop fluxes,

lF is a vector of MMF sources, and nl is the number of loops. The loop flux vector lφ

can be expanded as,

 l st1 st rt1 rt ag1 ag rp1 rp

T

ns nr na npφ φ φ φ φ φ φ φ =  φ ⋯ ⋯ ⋯ ⋯ (4.14)

where the subscripts ‘st’, ‘rt’, ‘ag’, and ‘rp’ indicate loop fluxes in the stator, rotor,

airgap, and rotor pole tip leakage respectively, and the subscripts ‘ns’, ‘nr’, ‘na’, and ‘np’

denote the number (per pole) of the stator slots, rotor loops, airgap loops, and rotor pole

tip leakage loops respectively. The source vector lF can be expressed as,

T T T T T

(1) (1) (1) (1)
l st rt rp= ns nr na np× × × × 
 

F F F 0 F (4.15)

The mmf source in the stator loops is given by,

 (1) (3) (3 1)
st abc abcs

ns ns× × ×=F N i (4.16)

where abcsi is a vector of balanced stator currents and the turns matrix abcN is built using

the a, b, and c-phase turn vectors. The mmf in the rotor loops is given by,

69

 []T(1) (1)
rt rt fd fd fd1 1 0nr nr I N I× ×= = −F N (4.17)

where fdI is the field current and fdN is the number of field turns. Due to the use of

single-pole symmetry, the sign of the rotor MMF changes with rotor position.

The last element inlF , i.e. rpF , represents the damper winding mmf source within

the meshes of the rotor pole tip leakage. It can be expressed as,

 (1) () (1)
rp dp dp()= (,) ()np np nd ndj j k k× × ×F N i (4.18)

where the subscript ‘nd’ denotes the number of damper bars on each rotor pole tip.

()(1)
rp

np j×F is the j th rotor pole tip leakage loop MMF, ()(1)
dp
nd k×i is the kth damper winding

current. ()()
dp ,np nd j k×N indicates the number of damper winding turns, which has a value

of 1 if the kth damper winding current is in the j th rotor pole tip leakage loop and,

otherwise, has a value of 0. For example, for the geometry shown in Figure 4.3,

 (5 1) (3 1)
rp dp

1 0 0
0 0 0

= 0 1 0
0 0 0
0 0 1

× ×

 
 
 
 
  

F i (4.19)

The derivation of dynamic system equations in the remainder of this section is

based upon a configuration in which there is a pole to pole connection between the

damper windings. However, the proposed model is readily modified to the case in which

damper winding connections are only made on a single pole by using the fact that the

damper winding currents satisfy the relationship,

-1

dp dp
1

()=- ()
nd

k

nd k
=
∑i i (4.20)

Using (4.20) one can see that, a number of (nd-1) damper winding current is

needed to be solved and all of the entries of the mth row of the matrix dpN are -1, where m

is the rotor pole tip leakage loop index that ()dpi nd is present.

70

4.3 Dynamic System Equations

Prior to deriving the dynamic model, it is convenient to view the intended dynamic

model structure in the block diagram form shown in Figure 4.10. Therein it can be seen

that a dynamic model is obtained by first restructuring the KVL MEC system of

equations so that stator and damper winding flux linkage is used as an input to the MEC

model, and stator and damper winding current is an output of the MEC model. State

equations are then established to obtain stator and damper winding flux linkage based

upon winding voltage and current, which is obtained from the coupling to external

circuits and the MEC respectively. From Figure 4.10, unlike the stator and damper

winding currents, the field winding currents remain an input to the MEC derived herein.

This is used to consider machines in which the field winding is coupled to a power

electronic circuit that acts as a current source. For the case in which the field winding is

connected to a power electronic circuit that appears as a voltage source (i.e. a rotating

rectifier exciter), the field winding dynamics are readily included using a similar

approach that is applied to the stator and damper windings.

71

Figure 4.10: Basic structure of the dynamic model shown in contrast with the KVL
model.

As a first step in restructuring the MEC model, (4.13) is expanded as,

 R l l,abc abcs l,dp dp l,fd fd- - = IA φ N i N i N (4.21)

where the turns matrices are defined as,

(3)

(3) abc
(() 3)l,abc =

ns
nl

nr na np

×
×

+ + ×
 
  

NN
0

 (4.22)

(1)

(1) (1)
l,fd rt

(() 1)
=

ns

nl nr

na np

×

× ×

+ ×

 
 
 
 

0
N N

0
 (4.23)

(())

(nl×nd)
()l,dp
dp

=
ns nr na nd

np nd

+ + ×

×
 
 
 

0
N

N (4.24)

Next, the system matrix RA in (4.21) is augmented so that the loop flux is not

only related to the MMF sources, but also to the flux linkage. To do so, the stator flux

linkage is first expressed as,

[]R l l l() = =A φ φ F Ni
lφ T

abcs abc st=λ N φP

abcs= (,)v f i λ

= ()v f i

()i k

= (,)λ f v ip

(1)= (, ())λ g λ λk p k+

()λ k

()i k
()v k

()v k

R 1 l fd

2

I
=

A W φ
B

W 0 i λ

     
     

    

72

 abcs l,abc st=Pλ N φ (4.25)

where P is the number of poles. A matrix l,dpM is used to relate the damper bar flux

linkage (which is identical to flux since there is only a single turn) to the loop fluxes lφ .

Specifically,

 (1) () (1) (() () (1)
dp l,dp l l,dp_sub l=nd nd nl nl nd nl nd nd nd nl× × × × − × × =  λ M φ 0 M φ (4.26)

where dpλ is the net flux linkage (flux) between two adjacent damper bars. The net flux

crossing damper bars is readily established through inspection of the circuit. In general, it

can be shown that the only contributions to the net flux are from the loop flux that

circulates around the two corresponding damper bars. For example, from Figure 4.3, the

net flux between bars 1 and 2 can be expressed as,1 1 3dp rp rpλ φ φ= −
.
 The net flux between

bars 2 and 3 can be expressed as ,2 3 5dp rp rpλ φ φ= − . The net flux between bar 3 and the

first bar in the next pole is obtained using symmetry. Specifically, the loop flux of the

first damper bar in the next pole is the opposite of 1rpφ . Therefore, ,3 5 1dp rp rpλ φ φ= + . Thus,

for the circuit shown in Figure 4.3, the relationship between loop fluxes and damper flux

linkages can be expressed as,

l,dp_sub

,1 1

,2 3

,3 5

1 1 0
0 1 1
1 0 1

dp rp

dp rp

dp rp

λ φ
λ φ
λ φ

   − 
    = −
        

M
��	�

 (4.27)

Straightforward logic is used to generate the matrix for an arbitrary damper

structure.

From the first two steps, the MEC system of equations for the dynamic model is

expanded as,

R l,abc l,dp

fdl l,fdT
l,abc abcs abcs

dp dpl,dp

- - I0 0
= 0 / 0

0 0 0
P

      
      
      
       

A N N φ N
N i I λ

Ii λM

 (4.28)

where I is an identity matrix. To simplify further the stator windings can be transformed

into an arbitrary reference frame using the following transformation,

73

() () ()
() () ()s

qd0s s abcs

cos cos 2 / 3 cos 2 / 3
2

sin sin 2 / 3 sin 2 / 3
3 1/ 2 1/ 2 1/ 2

=

θ θ π θ π
θ θ π θ π

− + 
 = − +
 
 

K

f K f

 (4.29)

where θ is the reference frame position, and f can be voltage (v), current (i), or flux

linkage (λ).

Applying the arbitrary reference frame transformation to the MEC system of

equations (4.28), the following dynamic MEC system can be obtained,

()

dyn

-1

R l,abc s l,dp l
T

s l,abc qd0s,scl

dp,scl
l,dp

l,fd

- -

0

I0 0
 = 0 / 0

0 0

scale scale

scale

scale

scale

scale

f f

f

f

f P
f

   
   
   
      

 
 
 
 

A

A N K N φ

K N i
iM

N
I

I

���������	��������

fd

qd0s

dp

 
 
 
  

λ

λ

 (4.30)

where

 qd0s qd0s,scl= scalefi i (4.31)

 dp dp,scl = scalefi i (4.32)

and scalef is a user-defined scaling factor that is used to increase the magnitude of the

smallest terms to avoid an ill-conditioned system matrix. In practice, with 310scalef = , it

has been observed that potential ill-conditioning is eliminated.

In comparing (4.30) to the block diagram in Figure 4.10, relations among the

notations are,

74

 () 1

1 scale l,abc s l,dpscalef f
− = − −  

W N K N (4.33)

T

s l,abc
2

l,dp

scale

scale

f
f

 
=  
 

K N
W

M
 (4.34)

l,fd 0 0
0 / 0
0 0

scale

scale

f P
f

 
 =
 
 

N
B I

I
 (4.35)

A Newton-Raphson method is used to solve the dynamic model for the loop

fluxes and currents. The Jacobian matrix of the dynamic model in (4.30) is expressed,

()

()

-1

l,abc s qd0s,scl l,dp dp,sclR l

l qd0s,scl dp,scl
T

s l,abc l
dyn

l

l,dp l

l

-1

R R l,abc s l,dp
T

s l,abc

- -

=

0

+ - -

=

scale scale

scale

scale

scale scale

scale

f f

f

f

f f

f

f

 ∂ ∂∂ 
 ∂ ∂ ∂
 ∂
 

∂ 
 
∂ 
 ∂ 

N K i N iA φ

φ i i
K N φ

J
φ

M φ

φ

A D N K N
K N

l,dp

R
dyn

0

0= + 0 0

scale

 
 
 
 
  

 
  

M

DA

 (4.36)

where dynA is the augmented system matrix in (4.30), and RD is a matrix that contains

the partial derivation of the network reluctances with respect to the loop fluxes.

Derivation of RD is provided in [1].

The next step in the dynamic model development is to establish the state

equations of the system that enable calculation of the flux linkages that are inputs in

(4.30). The derivation of the state equations is divided into two parts, one for the rotor

electrical system, and the second for the stator electrical system.

75

Figure 4.11: Damper winding circuit.

To help describe the state equations for the rotor, the electrical connection circuit

shown in Figure 4.11 is used. Within the circuit, ,dp kr is the resistance of each damper

bar, and ,e kr is the resistance of the connection end between bars. From Ohm’s and

Faraday’s laws, the damper winding currents are related to the flux linkage crossing each

of two bars as follow,

 dp dp dp=pλ T i (4.37)

where /p d dt= is the Heaviside operator for differentiation, and dpT can be express as,

,1 ,1 ,2 ,1 ,1

dp ,2 ,2 ,2 ,3 ,2

,1 ,3 ,3 ,3 ,3

dp e dp e e

e dp e dp e

dp e e dp e

r r r r r
r r r r r

r r r r r

 + − − −
 = + − −
 + + 

T (4.38)

where ,dp kr is the resistance of each damper bar, and ,e kr is the resistance of the

connection end between bars.

As for the stator electrical system, the stator winding voltage equations can be

expressed in the arbitrary reference frame as,

 qd0s qd0s qd0s qd0s

0 1 0
= - - -1 0 0

0 0 0
sp r ω

 
 
  

λ v i λ (4.39)

where the stator voltage qd0sv can be either a user-defined input or calculated by an

external circuit model Numerical integration is used to solve (4.37) and (4.39) for the

3

e dp,k
k=1

1
i i

2
= ∑

76

damper and stator winding flux linkages, given the stator winding voltages, stator

winding currents, and damper bar currents.

Based upon the calculations of electromagnetic torque and power losses presented

in Section 2.3.3, the calculation of resistive loss is updated to incorporate the damper

current loss with an expression as,

()

() ()

2 2 2

0

2 2 2
, , , ,0

1

3

2

2

res s as r r fd fd

stator field

nd

dp k dp k r e k e k r r
k

damper

P r i d r i

P
r i r i d

π

π

θ θ
π

θ θ θ
π

+

=

= +

 + + 

∫

∑∫

�����	����

��������	�������

 (4.40)

where ,dp kr and ,dp ki are the resistance and current of each damper bar, and ,e kr and ,e ki are

the resistance and current of the connection end between bars.

4.4 Validation of Dynamic MEC Model

4.4.1 Hardware environment

Two stator and rotor geometries were created by Kohler Power System Co. for the

validation of the dynamic MEC model. The two stators are identical with the exception

that one is wound for single-phase and three-phase generation, respectively. The two

rotors are identical with the exception that one has rotor poles (and damper bars) that are

straight as one proceeds from the front to the back of the machine. The other has rotor

poles and damper bars that are skewed. Skewing is a common method to reduce

harmonics introduced by non-ideal magnetic fields. Using the two stators and rotors, four

WRSMs can be assembled for test. Figure 4.12 shows the three-phase and single-phase

stator, and the straight and skewed rotor. In the following sections, a 3-phase 10 kW

WRSM with a straight rotor that is designed to operate at 1800 rpm was built for

hardware validation.

77

A view of the cross-section of the stator and rotor laminations of the MEC model

and hardware is shown in Figure 4.13. The geometry of the stator and rotor laminations,

as well as the measured values of stator and field resistances are listed in Table 4.1. In the

rotor geometry, there are 5 damper slots with unequal radii filled with copper.

Dimensions and resistances of the damper bars and end connections are shown in Table

4.2. It is noted that the temperature of the stator and rotor are measured by wireless

temperature sensor so that the resistance values can be calculated at loaded condition.

The BH curve of the steel material used in laminations is characterized using the

fit equations developed in [61] and expressed as,

(a) Three-phase stator (b) Straight rotor

(c) Single-phase stator (d) Skewed rotor

78

 0

()
()

() 1B

f B
B

f B
µ µ=

−
 (4.41)

1

() ln()
1

k

K
Br

k k k k
kr

B
f B B e

M
βµ α δ ε ζ

µ
−

=

 = = + + + − ∑ (4.42)

 / ,
1

k k

k k

k kk k k k k

e
e

e

β γ
β γ

β γδ α β ε ζ
−

−
−= = =

+
 (4.43)

where rµ , kα , kβ , and kγ are the parameters with values listed in

Table 4.3, and M is the magnetization. The parameters for core loss estimation using
MSE is shown in Table 4.4.

−100 −50 0 50 100

−100

−50

0

50

100

x (mm)

y
(m

m
)

Figure 4.13:Comparison of design cross-section to the stator and rotor laminations.

79

Table 4.1
Wound-rotor synchronous machine parameters.

Table 4.2
Damper bar dimension and resistance.

Table 4.3

Parameters for calculating permeability for 50WW800.
µr = 5349.922 (initial relative permeability), K = 4

α = [0.12542 0.00019835 0.00019835 0.00019835] 1/T

β = [13.14573 0.1971988 129.4606 8.358885] 1/T
γ = [1.6445 0.01 1.4157 0.58577] T

Table 4.4
Parameters for core loss estimation using MSE for 50WW800.

α 1.0529 β 1.5969
ke 8.2813e-5 kh 0.3314

rsh: 44.4 mm drc: 15.3 mm g: 1.21 mm l: 11.1 cm
dstt: 1.02 mm dst: 17.3 mm wstt:13.8 mm wst: 8.4 mm
wss: 2.5 mm db: 22.97 mm hrto: 52.1 mm hrtt: 6.9 mm
wrp: 4.81cm wrt: 8.99 cm drp: 54.76 mm rro:18.45 cm
Nph: 3 Pp: 2 αdp: 0.08
Number of stator teeth: 36 Field winding turns per pole: 214
Stator turns (Ns): 14 Stator winding connection: series

a-phase winding distribution: []0 0 0s s s s s sN N N N N N

Stator resistance rs: 0.748 ohm (25 °C) / 0.852 ohm (58.5 °C)
Field resistance r fd: 3.046 ohm (25 °C) / 3.627 ohm (72.2 °C)

Number of rotor tip dampers: 5 Number of rotor shank dampers: 2
Radius of damper bars on rotor tip (rdt): rdt1 - 3.4mm , rdt2 - 2.4mm
Radius of damper bars on rotor shank (rds): 3.3mm
Damper winding vector: []2 1 1 1 20 0 0 0 0 0dt dt dt dt dtr r r r r

Damper bar body resistance (rdp):

[]0.184 0.091 0.091 0.091 0.184mohm (25 °C) /

[]0.219 0.108 0.108 0.108 0.219mohm (72.2 °C)

Damper bar end connection resistance (re):

[]0.133 0.100 0.100 0.133 0.871mohm (25 °C) /

[]0.158 0.119 0.119 0.158 1.037mohm (72.2 °C)

80

4.4.2 Open circuit voltage

For validation a series of experiments was performed. In the first, the machine

was operated under open-circuit conditions at rated speed. The instantaneous and RMS

value of the line-line voltage was then obtained for a range of field currents from 0 to

10.2 A. The RMS values of line-to-line voltage are compared in Figure 4.14. The largest

difference between the predicted and measured values is approximately 5.0%. Plots of the

line-line voltage for three of the field currents are shown in Figure 4.15. Therein it can be

seen that there are significant slot harmonics in both measured and MEC waveforms.

This is due to the fact that neither the stator slots nor the rotor poles are skewed.

Figure 4.14: Comparison of RMS values of open circuit line-to-line voltage.

0 2 4 6 8 10 12
0

100

200

300

400

500

600

Field Current (A)

Li
ne

−
to

−
Li

ne
 R

M
S

 V
ol

ta
ge

 (
V

)

Test data
MEC data

81

Figure 4.15: Comparison of MEC (left) and hardware (right) open circuit line-to-line
voltage waveforms.

4.4.3 Excitation scheme generation

In practice, commercial alternators typically operate a at fixed power factor and

line-to-line voltage. Field excitation is adjusted to change power level. The proposed

MEC model provides the ability to determine the stator and field excitations for a given

output power, power factor, and line-to-line voltage. Values for the MEC under

0 20 40 60 80 100 120 140 160 180
−1000

−800

−600

−400

−200

0

200

400

600

800

1000

Rotor Position (deg)

V
ol

ta
ge

 (
V

)

Ifd = 3 A

0 20 40 60 80 100 120 140 160 180
−1000

−800

−600

−400

−200

0

200

400

600

800

1000

Rotor Position (deg)

V
ol

ta
ge

 (
V

)

Ifd = 5 A

0 20 40 60 80 100 120 140 160 180
−1000

−800

−600

−400

−200

0

200

400

600

800

1000

Rotor Position (deg)

V
ol

ta
ge

 (
V

)

Ifd = 7 A

0 20 40 60 80 100 120 140 160 180
−1000

−800

−600

−400

−200

0

200

400

600

800

1000

Rotor Position (deg)

V
ol

ta
ge

 (
V

)

Ifd = 3 A

0 20 40 60 80 100 120 140 160 180
−1000

−800

−600

−400

−200

0

200

400

600

800

1000

Rotor Position (deg)

V
ol

ta
ge

 (
V

)

Ifd = 7 A

0 20 40 60 80 100 120 140 160 180
−1000

−800

−600

−400

−200

0

200

400

600

800

1000

Rotor Position (deg)

V
ol

ta
ge

 (
V

)

Ifd = 5 A

82

alternative loading were obtained as part of an optimization in which the objective is

expressed as,

 Minimize
_ _ _2 2 2

* * *
() () ()error error errorV P pf

V P pf
+ + (4.44)

where *V , *P , and
*pf are commanded values for line-to-line voltage, output power,

and power factor, respectively. _errorV , _errorP , and _errorpf are the difference between

calculated and commanded values. The output power, reactive power and power factor in

the MEC model are calculated using,

3

()
2

r r r r
out qs qs ds dsP v i v i= + (4.45)

3

()
2

r r r r
out qs ds ds qsQ v i v i= − (4.46)

2 2

() out
out

out out

P
pf sign Q

P Q
=

+
 (4.47)

where ()outsign Q is the sign of reactive power. A negative value represents leading power

factor and vice versa. The MEC model is run under steady-state mode, with RMS value

of stator current, stator current phase angle and field current set as genes. Using a

population of 100 and a generation of 25, the optimization for each operation point takes

about 3 minutes. The rotor speed was set 1800 rpm, the power factor to -0.8, and the

RMS value of line-to-line voltage to 480 V. The results obtained by MEC model is

compared with those from measurement in Table 4.5.

From Table 4.5, the RMS value of stator phase current has a very strong relation

between the MEC model and measured values. The error in the field current increases as

the load increases, although is remains at a reasonable level. One reason to explain this

could be the material is not precisely characterized, particularly in saturation as shown in

the open circuit test in Figure 4.14. Another reason could be that the damper winding

currents are deactivated in the steady state analysis, which in fact changes the rotor

equivalent circuit.

83

Table 4.5
Stator and field excitation estimations.

Output
Power
(kW)

Field current RMS values of stator phase current
Measured

(A)
MEC
(A)

Error
(%)

Measured
(A)

MEC
(A)

Error
(%)

10.103 11.6 10.69 7.84 15.2 15.19 0.07
8.6446 10.4 9.67 7.02 13.0 13.0 0.00
6.5613 8.7 8.28 4.83 9.8 9.87 0.71
4.7491 7.5 7.13 4.93 7.1 7.14 0.56
2.2018 5.7 5.63 1.23 3.3 3.31 0.30

4.4.4 Balanced three-phase load test

In a third validation, the WRSM was operated at rated speed and stator windings

connected to Y-connected balanced three-phase parallel RL (resistance and inductance)

loads that have 0.8 lagging power factor. For each load, the RMS value of the line-to-line

voltage was regulated to 480 V by adjusting the field current applied. The measured

values of RMS stator currents, average input torque, and output power were measured

and are compared to those predicted by the MEC Model in Table 4.6-Table 4.8,

respectively.

It is important to note that within the MEC model the electromagnetic torque is

calculated, not the input torque. In addition, the core loss is not within the dynamic

model, but rather it is obtained as part of post-processing calculations. Thus, input torque

from the MEC model was estimated using,

 _
e rm mech core

in avg
rm

T P P
T

ω
ω

+ += (4.48)

where the electromagnetic torque eT is defined as positive in generation mode here, coreP

is the core loss, rmω is the mechanical rotor speed, 303WmechP = is the rotational loss that

was measured experimentally at no load conditions. The output power is calculated using,

 out e rm resP T Pω= − (4.49)

where the calculation of Pres is shown in (4.40). In practice, the brushes attached to the

rotor slip ring increase the field resistance by 1 Ω.

84

Table 4.6
Comparison of RMS values of phase current.

Field
Current (A)

Load

RMS values of phase current
Measured

(A)
MEC
 (A)

Error
(%)

6.2 77.16 (Ω)
0.2729 (H)

4.5 4.8 6.25

7.6 45.44 (Ω)
0.1607 (H)

7.6 8.0 5.00

9.6 30.35 (Ω)
0.1073 (H)

11.4 12.0 5.00

11.6 22.81 (Ω)
0.0807 (H)

15.2 15.9 4.40

Table 4.7
Comparison of average input torque.

Field
Current (A)

Load

Average input torque
Measured

(Nm)
MEC
 (Nm)

Error
(%)

6.2 77.16 (Ω)
0.2729 (H)

19.98 21.01 4.90

7.6 45.44 (Ω)
0.1607 (H)

32.26 33.81 4.58

9.6 30.35 (Ω)
0.1073 (H)

47.78 49.95 4.34

11.6 22.81 (Ω)
0.0807 (H)

64.16 66.11 2.95

Table 4.8

Comparison of output power.
Field

Current (A)

Load
Output power

Measured
(kW)

MEC
 (kW)

Error
(%)

6.2 77.16 (Ω)
0.2729 (H)

3.1775 2.9858 6.03

7.6 45.44 (Ω)
0.1607 (H)

5.3641 5.0707 5.47

9.6 30.35 (Ω)
0.1073 (H)

7.9783 7.5915 4.85

11.6 22.81 (Ω)
0.0807 (H)

10.4445 10.1030 3.27

85

Table 4.9
Comparison of power loss.

Load

MEC Test
Ps+f
(W)

Pcore
(W)

Pdp
(W)

Pcore+dp
(W)

Ps+f
(W)

Pcore+dp
(W)

1 235.5 232.3 12.5 244.7 229.5 247.9
2 431.2 241.8 32.9 274.7 414.5 292.8
3 793.2 254.2 86.4 340.6 757.6 354.4
4 1267.4 265.3 181.9 447.2 1211.2 477.0

From the results in Table 4.6-Table 4.8, there is a strong correlation between the

model and hardware results. The error is approximately 6% at low load, and 3% at full

load. A study of the power loss components is shown in Table 4.9, in which Ps+f is the

resistive loss in the stator and field windings, Pcore is the core loss, and Pdp is the damper

loss. The difference between the measured and predicted Ps+f values causes by the

difference of stator currents. The measured Pcore+dp is calculated by subtracting Ps+f and

Pmech from the total power loss. One might see that the predicted Pcore+dp values are

slightly lower than the measured values. This is due to the fact that in practice the field

winding is sourced by the stator winding through an exciter, which is not modeled in the

MEC.

In addition, The line-to-line voltage waveforms at rated output power (10 kW) are

compared between MEC and hardware in Figure 4.16. The error of RMS values of phase

current and voltage is approximately 5%.

86

Figure 4.16: Comparison of line-to-line voltage waveforms at rated power (10 kW).

4.4.5 Stand still frequency response

As a final experiment, a standstill frequency response test [62] was applied to

obtain qd-axis operational impedances. This test was motivated by the fact that in many

cases, the subtransient inductances are used in design specifications. In addition, the

switching behavior of the diodes in machine-rectifier systems is a function of the

subtransient inductances [24], [25]. The SSFR circuit configuration and test procedure

have been described in details in IEEE Std. 115. An SSFR similar to the standard has

been executed to date. The circuit configuration used for the test is shown in Figure 4.17,

where b and c phase stator windings are parallel-connected, and the field winding is short

circuited. A function generator was connected to a power amplifier which was used to

provide ac voltage in a range of frequencies from 0.1 to 1 k Hz.

0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016
−1000

−800

−600

−400

−200

0

200

400

600

800

1000

time (s)

Li
ne

−
to

−
lin

e
V

ol
ta

ge
 (

V
)

MEC
Test

87

Figure 4.17: Measurement of q- and d- axis operational impedance.

The test procedure for d-axis operational reactance measurement can be divided

into two steps. First, the rotor is positioned atr 90θ = ° . The rotor angle was determined

by setting the source voltage to a frequency of 100Hz, and rotating the rotor until the

induced field voltage becomes a maximum value. At this point, the magnetic axis of field

winding is aligned and ready to be used for d-axis test. Second, after applying a variable-

frequency source voltage, inv and ini signals are measured so that d-axis impedance can

be calculated as

()2

()
3 ()

in
d

in

v s
Z s

i s
= (4.50)

And the d-axis operational reactance can be calculated using

(())

() b d s
d

Z s r
X s

s

ω −= (4.51)

where bω is the base radian frequency, and s jω= . Finally, the rotor is tuned at a

position such that the induced field voltage achieves its null and a q-axis impedance

measured.

Prior to describing the results, it is noted that in the physical construction,

connections between damper end bars is made through copper plates that are connected

to each end of the rotor. In constructing the machine with these plates, an additional

conductive path is created through the rotor shaft, which was not modeled.

The magnitude of the operational impedance between hardware and the MEC is

shown in Figure 4.18. The high-frequency asymptote of the operational impedances

88

corresponds to subtransient impedances. The low-frequency asymptotes correspond to

magnetizing impedances. Comparing results from the MEC model with measurement, the

d-axis data matches very well. However, a discrepancy does exist in the q-axis. At low

frequencies (below 0.4 Hz), the measured and predicted values match closely.

At mid frequencies (between 0.4 Hz and 20 Hz), the experimental data begins to

deviate. This is attributed to the additional conduction path that exists between the copper

plates and the rotor shaft. These components provide a path for q-axis current which is

not modeled in the MEC. To confirm this conjecture, a 2D FEA model was created and

used to obtain q-axis (and d-axis) operational impedances. Within the FEA model, eddy

currents were not represented, which is consistent with the MEC model. Comparing the

FEA and MEC curves, the match is very strong through the mid frequency range.

At higher frequencies (above 100 Hz), a slight difference exists between the FEA

and MEC impedances. This is likely caused by some error in modeling the rotor pole tip

leakage flux paths, since the operational impedance is dominated by leakage impedance

at high frequency. It is also noted that at the measured q-axis impedance drops more

significantly than both the FEA and MEC-based curves. This is mainly attributed to the

eddy currents in the shaft/copper plates. Other factors such as the variation of resistance

due to skin effect could also lead to some difference among the three traces.

As shown in the Section 4.1.3, the reluctance of the rotor pole tip leakage is a

function of the depth of the damper bars. Therefore, in order to study the influence that

damper bar placement has on the operational impedances, two additional machines were

modeled in MEC and FEA. In these two machines, the geometries of the hardware-based

machine were used. However, the depth of bars was adjusted by modifying the scaling

factor αdp. In the first case, the bars were positioned relatively deep into the rotor tips by

setting αdp=0.5, which provides for a leakage flux paths with relatively small reluctance.

In the second case, the bars were placed at the top of the rotor tips very close to the airgap

by setting αdp=0.0001, which nearly eliminates the leakage flux path around the damper

bars. The frequency responses obtained are provided in Figure 4.19 and Figure 4.20. In

Figure 4.19, one observes that the MEC and FEA models match very well. One can note

that under this design, the q-axis impedance is nearly constant. This is attributed to the

89

fact that the damper leakage inductances are relatively large. In Figure 4.20, there is a

small difference in the high frequency asymptotes in the q-axis curves. This is attributed

to the fact that the damper slot leakage between the poles is not represented within the

MEC model, and thus the leakage inductance is under estimated. The study in Figure

4.20 is then repeated with damper bar connections are only made on a single pole in order

to eliminate the leakage path between poles. The result is shown in Fig. 15 and indicates

a strong match between the two models.

Figure 4.18: Standstill frequency response test with αdp=0.08.

10
−1

10
0

10
1

10
2

10
3

10
0

10
1

10
2

Frequency (Hz)

O
pe

ra
tio

na
l I

m
pe

da
nc

e
(O

hm
)

Test−q
FEA−q
MEC−q
Test−d
FEA−d
MEC−d

90

Figure 4.19: Standstill frequency response test with αdp=0.5.

Figure 4.20: Standstill frequency response test with αdp=0.0001.

10
−1

10
0

10
1

10
2

10
3

10
0

10
1

10
2

Frequency (Hz)

O
pe

ra
tio

na
l I

m
pe

da
nc

e
(O

hm
)

FEA−q
MEC−q
FEA−d
MEC−d

10
−1

10
0

10
1

10
2

10
3

10
4

10
0

10
1

10
2

Frequency (Hz)

O
pe

ra
tio

na
l I

m
pe

da
nc

e
(O

hm
)

FEA−q
MEC−q
FEA−d
MEC−d

91

Figure 4.21: Standstill frequency response test with αdp=0.0001, with damper bar

connections are only made on a single pole.

It is also important to note that the precision in capturing leakage flux behavior and

calculating the flux crossing the damper bar paths for the MEC and FEA is different.

Specifically, within the FEA model, the flux densities are vector quantities and thus the

normal component of the flux crossing the damper path is readily modeled. However,

flux densities in the MEC model are represented as scalars. Therefore, a difference

between FEA and MEC results is certainly expected.

10
−1

10
0

10
1

10
2

10
3

10
4

10
0

10
1

10
2

Frequency (Hz)

O
pe

ra
tio

na
l I

m
pe

da
nc

e
(O

hm
)

FEA−q
MEC−q
FEA−d
MEC−d

92

5. IMPLEMENTATION OF SKEWING

5.1 Literature Review of Skewing

The electromagnetic torque in synchronous machines include three main

components: 1) torque produced by the interaction of poles resulting from the stator

currents and the rotor field; 2) reluctance torque, which is generated by the interaction of

the poles produced by the stator winding attempting to align with a minimum reluctance

path; and 3) cogging torque, which is created by the interaction of poles produced by the

rotor field and the attempting to align with stator teeth. Often, to minimize acoustic noise

and vibration there is a need to minimize cogging torque.

Stacking the stator teeth or rotor poles with a slight offset down the axial length,

which is often referred to as skewing, tends to reduce cogging torque and also eliminate

stator-slot-induced harmonics in current and voltage waveforms [63]-[65]. Approaches to

model skewing in electric machine models generally fall into one of five categories.

Within lumped-parameter models, a conventional approach is to apply analytically-

derived skew factors to represent its impact on airgap flux density harmonics, which is

then used to calculate skew-based induced voltages and machine parameters [60], [66]. In

a second path, an analytical model that describes flux density and airgap permeance with

axial variation was proposed in [67], [68]. Within the model, input data from a finite

number of magnetostatic FEA solutions is used to predict the flux density that includes

slot harmonics and saturation. In a third method which is focused on MEC models, V.

Ostovic introduced a ‘3D’ calculation of airgap permeances that is based upon the

overlap of a stator and rotor tooth sections with axial variation included [69]. In general,

this requires sophisticated logic, and hence is impractical in generalized machine design

problems. A fourth approach is to create separate 2D models with appropriate shifts of

the rotor relative to the stator teeth [70]. The energy values obtained from each model are

averaged and used to calculate electromagnetic torque. Similarly, flux linkage values are

93

averaged and used to calculate open-circuit voltage. Although straightforward to

implement, it has been shown in [71] that using this process leads to inaccuracies in

machines that have short-circuited rotor cages. This inaccuracy results from the

neglecting of the coupling of the flux linkage and induced cage currents.

The fifth approach, which has been used in FEA [71]-[74], is referred to as a multi-

slice method. Within a multi-slice model, the machine is separated into a finite number of

cross-sections along axial direction. Within each of the finite sections, a shift is

introduced between the stator teeth and rotor poles. Each of the slices is then modeled in

two-dimensions with a constraint that the axial currents are the same. Therefore, within

the model, flux and currents of the respective slices are not averaged, but are all solved

within a unified system matrix. Herein, this approach is extended to both the steady-state

and dynamic MEC models.

5.2 Multi-slices MEC Model

Figure 5.1: Basic structure of the dynamic model shown in contrast with the KVL model.

[]R l l l() = =A φ φ F Ni
lφ T

abcs abc st=λ N φP

abcs= (,)v f i λ

= ()v f i

()i k

= (,)λ f v ip

(1)= (, ())λ g λ λk p k+

()λ k

()i k
()v k

()v k

R 1 l fd

2

I
=

A W φ
B

W 0 i λ

     
     

    

94

To establish the multi-slice method, the block diagram of the steady state and

dynamic MEC models shown in Figure 4.10 is useful and is included here as Figure 5.1

for convenience. Applying the multi-slice technique to the steady state MEC model is

relatively straightforward due to the fact that currents are set as inputs to the model so

that the constraint that each of the slices shares the same axial currents is automatically

satisfied. The steady state MEC system equations are shown in Figure 5.1 as,

R l =A φ Ni (5.1)

Here we consider n slices of equal axial length. The step angle, which is used to

provide the offset between the stator teeth and pole sections within each slice, can be

expressed as,

(1)

skew

n

θα =
−

 (5.2)

where skewθ is the complete skew angle down the axial length of the machine. If the rotor

position for the first slice is 1θ , then the kth slice has a rotor position that is expressed as,

1 (1), 1,...,k k k nθ θ α= + − = (5.3)

Applying kθ to the algorithm to determine the reluctance and turns matrices, the

system equations (5.1) for the kth slice can be written as,

R,k l,k k=A φ N i (5.4)

By combining and manipulating all of the slice models, the overall multi-slice

system equations can be expressed in matrix form as,

() (1) (4)
R,1 l,1 1

(4 1)

() (1) (4)
R,n l,n n

nl nl nl nl

nl nl nl nl

× × ×

×

× × ×

     
     =
     

    

A 0 φ N
i

0 A φ N
⋱ ⋮ ⋮ (5.5)

As can be seen from (5.5), the inputs for the multi-slice system equations are stator

and field currents (i), and the unknowns are the loop fluxes (lφ) for each individual slice.

A Newton-Raphson method is used to solve the multi-slice system of equations.

The derivation of the Jacobian matrix for the single slice dynamic system has been

presented in [1]. The same technique is applied to the system equation in (5.4), and thus

the Jacobian matrix for the kth slices is expressed as,

95

k R,k R,k= +J A D (5.6)

By combining and manipulating all of the slice Jacobian matrices, the overall

multi-slice Jacobian matrix for (5.5) can be expressed as,

R,1

tot R,tot

R,n

= +
 
 
 
 

D 0
J A

0 D
⋱ (5.7)

where R,totA is the system matrix in (5.5). The calculation of electromagnetic torque can

be expressed as,

 ()
22

agj,k agj,k
e r

1 1 agj,k r

,
2

n na

k j

PP
T

P

φ
φ θ

θ= =

   ∂  =       ∂    
∑ ∑ (5.8)

In the steady-state MEC model, stator phase voltage is calculated as a post-process

of the flux linkage, which is calculated as the product of phase winding function and flux.

When the multi-slice model is applied, the phase flux in the calculation is substituted by

the sum of each separate slice.

As for the dynamic MEC model, the currents are no longer the inputs. Therefore,

one of the challenges to implement the multi-slice technique to the dynamic MEC model

is that the same currents should be solved for each separate slice. The dynamic MEC

system equations are shown in Figure 5.1 as,

 l,fdR 1 fdl

2
=

/P
     
           

N 0A W Iφ
W 0 i λ0 I

 (5.9)

Similar to the steady-state MEC model, applying kθ to the algorithm to determine

the reluctance and turns matrices, the system equations (5.9) for the kth slice can be

written as,

 R,k 1,k l,k l,fd fd

2,k k
=

/P
       
            

A W φ N 0 I
W 0 λi 0 I

 (5.10)

Since the total flux linkage (λ) is the sum of the flux linkage for each separate

slices (kλ), therefore

2,k l,k

1

/
n

k

P
=

=∑W φ Iλ (5.11)

96

By combining and manipulating (5.10) and (5.11), the overall multi-slice system of

equations can be expressed in matrix form as,

() ((2)) (1)
R,1 1,1 l,1

() ((2)) (1)
R,1 1,n l,n

((2)) ((2)) ((2) 1)
2,1 2,n

(1)
l,fd

(1)
l,fd

((2) (2))

 =

/

nl nl nl nd nl

nl nl nl nd nl

nd nl nd nl nd

nl

nl

nd nd P

× × + ×

× × + ×

+ × + × + ×

×

×

+ × +

   
   
   
   

     

 



 

A 0 W φ

0 A W φ

W W 0 i

N
0

N
0 I

⋱ ⋮ ⋮

⋯

⋱
fd

fd
((2) 1)nd+ ×

 
  
  
  
 

I

I
λ

⋮

(5.12)

As can be seen from (5.12), the inputs for the multi-slice system of equations are

field current (fdI) for each separate slices and the flux linkage (λ) of the phases and the

damper bars, which can be calculated by the same state equation and numerical

integration as shown in Figure 5.1. The unknowns are the loop fluxes (l,kφ) for each

separate slice and the currents (i) of the phases and the damper bars. The currents (i) in

the unknown vector satisfy the constraint that all slices share the same axial currents.

A Newton-Raphson method is used to solve the multi-slice system of equations for

the loop fluxes and currents. The derivation of the Jacobian matrix for the single slice

dynamic system has been presented in Chapter 4. The same technique can be applied to

the system equation in (5.12), and thus the Jacobian matrix for the kth slices is expressed

as,

 R,k
dyn,k dyn,k= +  

  

D 0J A
0 0

 (5.13)

By combining and manipulating all of the slice Jacobian matrices, the overall

multi-slice Jacobian matrix for (5.12) can be expressed as,

R,1

dyn,tot dyn,tot
R,n

= +

 
 
 
 
 

D 0
0J A 0 D

0 0

⋱ (5.14)

where dyn,totA is the system matrix in (5.12).

97

5.3 Simulation Results

5.3.1 Open circuit voltage

For validation, the multi-slice MEC model is configured with a slice number of five

and a skew degree of one stator slot. The skewed and non-skewed open circuit voltage

waveforms are obtained for the machine described in Chapter 4, at a field excitation Ifd =

7 A, as shown in Figure 5.2. The open circuit voltage waveforms for each of the slices in

the multi-slices model are shown in Figure 5.3. One can see in Figure 5.3 that the

waveforms are shifted evenly by
4
skewθ

. The harmonics spectrum of the open circuit

voltage waveforms in Figure 5.2 is shown in Figure 5.4. One can see that the skewing

reduces the (6k+1)th and (6k-1)th harmonics, where k = 1, 2, … . The results match

analytical prediction [60] that the skew influence on the hth harmonic of open-circuit

voltage can be modeled as,

sin()

2

2

skew

skew
skew

h

k
h

θ

θ= (5.15)

The comparison of skew factors calculated based upon (5.15) and Figure 5.3 is shown in

Table 5.1. From Table 5.1 one can see that the harmonic components are significantly

reduced. The differences in the higher slot-induced harmonics is attributed to saturation,

numerical error, and approximations of flux behavior around slots used in both analytical

and MEC derivations.

98

Figure 5.2: Comparison of the skewed and non-skewed open circuit voltage waveforms.

0 50 100 150 200 250 300 350 400
−600

−400

−200

0

200

400

600

Rotor Position (deg)

P
ha

se
 O

pe
n

C
irc

ui
t V

ol
ta

ge
 (

V
)

Skew
Non−skew

99

Figure 5.3: Open circuit voltage for each slice.

Figure 5.4: Harmonics spectrum of the open circuit voltage waveforms.

0 50 100 150 200 250 300 350
−150

−100

−50

0

50

100

150

Rotor Position (deg)

O
pe

n
C

irc
ui

t V
ol

ta
ge

 (
V

)

Slice1
Slice2
Slice3
Slice4
Slice5

0 10 20 30 40 50
0

50

100

150

200

250

300

350

400

450

Order of Harmonics

M
ag

ni
tu

de
 o

f H
ar

m
on

ic
s

(V
)

MEC−skewed
MEC−nonskew

100

Table 5.1
 Comparison of skew factors calculated by analytical and MEC models.

Order of
Harmonics

Analytical MEC Error

1 0.9949 0.9946 0.1%
5 0.8778 0.8393 5.4%
7 0.7691 0.8557 11.3%
11 0.4895 0.5812 18.7%
13 0.3376 0.3481 3.1%
17 0.0585 0.0783 33.8%
19 0.0524 0.0994 89.7%

5.3.2 Balanced three-phase load test

As a second validation, it is assumed that the WRSM is connected to 3-phase

balanced resistive load, providing output power of 7 kW. The load resistance is 40 Ω, and

the field excitation is set to 7 A. Comparisons of the skewed and non-skewed waveforms,

including phase current, phase voltage, and electromagnetic torque, are shown in Figure

5.5-Figure 5.7. As expected, the waveforms predicted by the multi-slice model have

much lower harmonic content.

101

Figure 5.5: Comparison of skewed and non-skewed phase voltage.

0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016
−600

−400

−200

0

200

400

600

time (s)

P
ha

se
 V

ol
ta

ge
 (

V
)

Skewed
Nonskew

102

Figure 5.6: Comparison of skewed and non-skewed phase current.

Figure 5.7: Comparison of skewed and non-skewed electromagnetic torque.

0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016
−15

−10

−5

0

5

10

15

time (s)

P
ha

se
 C

ur
re

nt
 (

A
)

Skewed
Nonskew

0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016
−60

−55

−50

−45

−40

−35

−30

−25

−20

−15

time (s)

T
or

qu
e

(N
m

)

Skewed
Nonskew

103

6. OPTIMAL DESIGN OF WRSM/RECTIFIER SYSTEMS

6.1 Design Overview

In this chapter, a goal was to apply the model developed in Chapter 4 to

demonstrate its use in machine design. Toward this goal, the design of electric machines

for a 25 MW, 3600 rpm dc power generation system is considered. As shown in Figure

6.1, the generation system consists of a prime mover, e.g. the turbine of the vessel. The

output shaft of the turbine is connected to an electric machine that sources power

electronic converters used to supply dc power. Designs were explored for connection of

the WRSM to power electronic converters that enable the control of winding current.

Such converters are herein referred to as active rectifiers. In addition, designs were

explored for connection of the WRSM to diode-based converters, which are herein

referred to as passive rectifiers. The passive rectifier designs are also applicable to

architectures in which thyristors are used in place of diodes for fault protection.

Figure 6.1: 25 MW generation system.

A question of particular interest in formulating the design studies was whether

passive rectifiers can be applied in such high power applications. Passive rectifiers have

the desirable property that they do not require a rotor position sensor to establish the

converter switching and do not require gate-drive circuitry. Thus, they are simpler to

control/maintain and have a higher reliability. However, it is generally believed that the

104

harmonics associated with diode rectifiers lead to electric machines that are too large for

practical consideration, particularly at high power levels. To consider whether this is

indeed the case, multi-objective optimizations were performed. Within each optimization,

the performance metrics were machine mass and machine/rectifier loss. A Pareto optimal

front, which represents the tradeoff between mass and loss (including resistive loss, core

loss in the stator, and conduction loss), was obtained for machine/active rectifier and

machine/passive rectifier systems.

For the design of all machines considered herein, it was assumed that the dc bus

voltage is 5 kV, the output power required is 25 MW, the prime mover operates at a fixed

speed of 3600 rpm, and all winding current densities are less than 10 A/mm�. Although a

thermal analysis was not performed, the current density limit is within reason, provided

that the machines are liquid cooled. The maximum packing factor of the stator slots was

assumed to be 0.5 and that of the rotor 0.6. The on-state voltage drop of IGBTs was

assumed to be 6 V. The drop of the diodes (thyristors) was taken to be 4 V. These were

based upon values obtained from datasheets of high power switching devices. The multi-

objective optimization of each topology was carried out using GOSET 2.4 [51].

The core of the WRSM/rectifier system design study is the dynamic MEC model

for WRSMs proposed in Chapter 4. The example cross-sectional WRSM geometry and

representative MEC network are shown in Figure 6.2 and Figure 6.3, respectively. In

Figure 6.2, the rotor of the machine consists of the shaft with radius rsh, the rotor core

which conducts flux circumferentially around the machine with depth drc, and the rotor

teeth with depth drp and outer radius rro. The rotor teeth consist of a tooth shank

connected to the rotor core with width wrp and a tooth tip with width wrt. The rotor

damper bar has a radius rds on the rotor shank and a radius rdt on the rotor tip. The

number of rotor teeth is equivalent to the number of poles. The airgap has a uniform

depth between stator and rotor teeth of g. The stator of the machine consists of the stator

teeth with depth dst and inner radius rsi, the stator slots with a width of wss at the airgap,

and the stator back iron of depth db and outer radius rso. The stator can have any integer

number of slots per pole per phase. The length of the active part of the machine is

denoted l.

105

Figure 6.2: Example WRSM geometry/configuration.

Figure 6.3: Representative WRSM MEC.

ro

R
Y

R
TT

R
TL

R
SH

i
cs
'

Φ
st1

i
cs
'

Φ
st2

i
cs
'

Φ
st3

i
as

Φ
st4

i
as

Φ
st5

i
as

Φ
st6

i
bs
'

Φ
st7

i
bs
'

Φ
st8

i
bs
'

Φ
st9

X X X

R
RLO1

R
RTI1

R
ag

i
dp1 i

dp2
i
dp3

R
RSH1

R
RSH2

R
RYP

i
fd
' i

fd
X

R
FL

R
RY

R
RFB

R
RFB

R
RF

R
RPL

Φ
ag1

Φ
ag2

Φ
ag4

Φ
ag6

Φ
ag8

Φ
ag10

Φ
ag12

Φ
ag15

Φ
ag17

Φ
ag20

Φ
rt1 Φ

rt2

λ
dp,1

λ
dp,2

λ
dp,3

R
RTO1

*

R
RTE

R
RLO2 R

RLI1
R
RLO3

R
RLO4

R
RTO2

* R
RTO3

* R
RTO4

*

R
RTE

R
RTI2 R

RTE
Φ
rp1

R
RFB

Φ
rp2

Φ
rp3

Φ
rp4

Φ
rp5

106

6.2 Design of WRSM/Active Rectifier Systems

The first system was structured as a wound-rotor synchronous machine connected

to an active rectifier as shown in Figure 6.4. In this system, it was assumed that the phase

currents ias, ibs, and ics are regulated to be sinusoidal waveforms, and the field current Ifd is

also regulated to be an ideal current source.

Figure 6.4: WRSM/active rectifier system.

The MEC model is structured as a current input voltage output, steady-state model,

in which damper bars are not included. The design space variables for the studies relating

to the WRSM/active rectifier are given by,

[rc rt st bs ss rt rt

T

rp s s fd fd p

d l d g d d fw fh fw

fw N I N I P ftipw ftiphβ

=



θ ⋯
 (6.1)

Within (6.1), the first six variables relate to the machine geometry, and they were

defined earlier when discussing Figure 6.2. Genes number 7, 8, 9, 10, 17, and 18 are

scaling factors between 0 and 1 that are used to establish machine geometry based upon

calculations. For instance, with the stator tooth height known, ftiph defines the height of

the stator tooth tip as a fraction of the total height of the stator tooth. The gene Ns

represents the number of turns in the phase windings function. It is noted that the stator

winding has a slots/pole/phase number of 2 and the a-phase winding function is

expressed as []0 0 0 0s sN N . With appropriate phase shift, the b- and c-phase

107

winding function can be achieved. The variable Is defines the rms phase current, and β

defines the phase angle of the stator currents. Thus the phase currents are expressed as,

()

()
()

ras

bs s r

cs r

cos
2 cos 2 / 3

cos 2 / 3

i
i I
i

θ β
θ β π
θ β π

+  
   = + −
   + +   

 (6.2)

The variable Pp denotes the number of pole pairs. The choice of material can be

readily included in the design space; however, M19 was selected as the stator and rotor

lamination and copper was used for the stator and field windings in this study. The

properties of these materials are defined in [61].

6.3 Design of WRSM/Passive Rectifier Systems

The second system considered was a wound-rotor synchronous machine interfaced

to the dc bus with a passive rectifier as shown in Figure 6.5. The influence of damper

bars is of interest in passive rectifier systems because the system behavior is based upon

subtransient dynamics of the machine [24], [25]. More specifically, the regulation

characteristic of the output voltage is dependent on the subtransient reactances. Arguably,

a lower value of these reactance could yield an increase in current (power) for a given dc

voltage. However, adjusting subtransient reactance requires one to introduce damper

bars. The current in the damper bars produces additional resistive losses, which likely

impacts the loss for a given generator size. Therefore, the sizing, number, and true benefit

of the bars were largely unknown prior to this study.

The MEC model is structured as a voltage input current output, dynamic model, in

which damper current dynamics are included. By coupling with the passive rectifier

model, the phase voltage can be calculated using the phase currents through the following

steps. First, the phase currents (iabcs or iqd0s) can be transformed to the rectifier line

currents (iabcl). For a machine with wye-connection, the rectifier line currents are equal to

the negative of the phase currents based on the assumption that phase currents flow

outside to the machine in generator mode. For a machine with delta-connection, the line

currents are calculated as

 () 1

abcl s qd0s

1 0 1
1 1 0
0 1 1

−− 
 = −
 − 

i K i (6.3)

Figure

Next, the rectifier voltage (

(iabcl), using the relationship shown in

current is above ε, the rectifier voltage logarithmically appro

Vdrop, according to the current direction.

current magnitude is below

voltage drop.

Using the above logic, the

to calculate the phase voltage in

for a machine with wye-connection

for a machine with delta-connection

Figure 6.5: WRSM/passive rectifier system.

Next, the rectifier voltage (vabcg) can be calculated by the rectifier line

), using the relationship shown in Figure 6.6. When the magnitude of the rectifier line

, the rectifier voltage logarithmically approaches either

the current direction. Otherwise, a linear relationship is used when the

below ε. It is noted that ε has a value of 0.005 and

Using the above logic, the rectifier voltages can be determined and

to calculate the phase voltage in the arbitrary reference frame as,

qds s abcg
1 0 0
0 1 0
 =
  

v K v

connection and,

qd0s s abcg

1 3 / 3 0
3

3 / 3 1 0
2 0 0 0

 
 = − 
  

v K v

connection.

108

) can be calculated by the rectifier line current

of the rectifier line

aches either vdc + Vdrop or –

Otherwise, a linear relationship is used when the

has a value of 0.005 and Vdrop is the diode

rectifier voltages can be determined and finally be used

(6.4)

(6.5)

109

Figure 6.6: Relationship between the rectifier voltage and rectifier line current.

The design space variables for the studies relating to the WRSM/active rectifier

are given by,

[rc rt st bs ss rt rt

T

rp s fd fd p dt num con

d l d g d d fw fh fw

fw N N I P ftipw ftiph r d d

=



θ ⋯
 (6.6)

where the variables related to the phase currents have been removed and the radius dtr ,

number dnum, and connection type (pole or pole-pole) dcon, of the damper bars have

been included. All design assumptions and constraints of active rectifier design also

apply with one exception. The constraint on the calculated dc bus voltage is no longer

needed since the output bus voltage is pre-defined.

6.4 Results and Discussion

Design optimizations for both of the system topologies have been studied using the

GOSET tool box, with a population number of 800 and a generation number of 600. An

estimation of the elapsed time for the optimizations process of the WRSM/active rectifier

system is approximately 10 hours, while it takes about 250 hours for the WRSM/passive

rectifier system. The design optimization was performed several times to ensure

convergence and repeatability of the design process. The final Pareto front obtained for

the passive rectifier design is shown in Figure 6.7.

vag

vdc/2

v + Vdc drop

ial
ε−ε-Vdrop

110

Figure 6.7: Pareto fronts of alternative WRSM/rectifier topologies.

Comparing the pareto fronts of alternative WRSM/rectifier topologies in Figure

6.7, a surprising result is that for a given system loss, the mass of a passive rectifier

machine is less than that of an active rectifier machine. This is partly due to the fact that

the on-state voltage drop of the power diodes are less than those of IGBTs. In addition,

through the evolutionary optimization process, the core and winding geometry of the

passive rectifier machines are different than those of the active rectifier machines. This

difference effectively compensates for the difference in harmonic content of the stator

current that results from diode rectification. In order to observe differences in

geometry/configuration of the alternative WRSM/rectifier systems, the comparison of

genes in the design studies are shown in Figure 6.8 and Figure 6.9.

0 0.5 1 1.5 2 2.5

x 10
4

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3
x 10

5

Mass (kg)

Lo
ss

 (
W

)

WRSM/Active
WRSM/Passive

111

Figure 6.8: Comparison of genes of alternative WRSM/rectifier systems (a).

Figure 6.9: Comparison of genes of alternative WRSM/rectifier systems (b).

0 100 200
0

0.2

0.4

0.6

0.8

D
R

C
 (

m
)

0 100 200
0.5

1

1.5

2

2.5

G
LS

 (
m

)

0 100 200
0.2

0.3

0.4

0.5

0.6

0.7

H
R

T
 (

m
)

0 100 200
0.02

0.03

0.04

0.05

0.06

G
 (

m
)

0 100 200
0.05

0.06

0.07

0.08

0.09

0.1

H
S

T
 (

m
)

0 100 200
0

0.2

0.4

0.6

0.8

D
B

S
 (

m
)

0 100 200
2

2.5

3

3.5

4

P
p

Active
Passive

0 100 200
2

2.5

3

3.5

4

N
s

0 100 200
100

200

300

400

N
fld

0 100 200
0.1

0.2

0.3

0.4

0.5

0.6

fW
S

S

0 100 200
0.05

0.1

0.15

0.2

0.25

0.3
fH

R
T

0 100 200
0.4

0.5

0.6

0.7

0.8

fW
R

T

0 100 200
0.2

0.3

0.4

0.5

0.6

0.7

fW
R

P

0 100 200
0.1

0.15

0.2

0.25

0.3

0.35

fT
IP

W

0 100 200
0.05

0.1

0.15

0.2

0.25

0.3

fT
IP

H

Active
Passive

112

From Figure 6.8 and Figure 6.9 one can see that the WRSM/active rectifier design

has larger height of rotor teeth (HRT), airgap length (G), and pole pair (Pp). On the other

hand, the WRSM/passive rectifier design has larger stack length (GLS), stator turns (Ns)

and field turns (Nfld). Of note is that all machines on the front have zero damper bars.

Thus, a conclusion is that there appears to be no advantage, in either mass or loss, to

utilize damper bars in the system topologies considered. In addition, since the pole pair

(Pp) number is 3 or 4 for the WRSM/active rectifier design, and is 2 or 3 for the

WRSM/passive rectifier design, thus four example machine designs with different pole

pair number are shown in Figure 6.10 - Figure 6.13 for comparison.

Figure 6.10: Example design of an 8-pole WRSM connected to active rectifier.

−500 0 500

−800

−600

−400

−200

0

200

400

600

800

x (mm)

y
(m

m
)

113

Figure 6.11: Example design of a 6-pole WRSM connected to active rectifier.

Figure 6.12: Example design of a 6-pole WRSM connected to passive rectifier.

−500 0 500

−800

−600

−400

−200

0

200

400

600

800

x (mm)

y
(m

m
)

−600 −400 −200 0 200 400 600

−600

−400

−200

0

200

400

600

x (mm)

y
(m

m
)

114

Figure 6.13: Example design of a 4-pole WRSM connected to passive rectifier.

−500 0 500

−800

−600

−400

−200

0

200

400

600

800

x (mm)

y
(m

m
)

115

7. CONCLUSION AND FUTURE WORK

7.1 Conclusion

The key contributions of this research are twofold. First has been the result of the

study of optimized excitation strategies that are consistent with goals of minimizing mass

and loss for a WRSM drive system. It is shown that utilizing qd models with/without

saturation incorporated along the d-axis leads to suboptimal excitation that is different

than obtained from a MEC over much of the expected operating region. However, based

upon analysis of several alternative strategies, a simplified control is derived in which d-

axis current is zero, field current is held fixed, and q-axis current is varied linearly with

torque. This control results in system-level efficiencies nearly the same as a control

designed to maximize efficiency. Finally, the tradeoffs and limitations of the simplified

control are explored when the desire is to optimize available torque over variable speeds

that may or may not be controllable.

Second, an enhanced dynamic MEC model for WRSMs has been developed. The

model enables one to include the dynamics of an arbitrary number of damper bars with

and without connection between poles. The dynamic model is structured to accept

terminal winding voltage as input, which leads to relatively straightforward coupling with

external circuits. As part of the dynamic model development, new geometry features,

including stator tooth tips and rotor damper bars have been added, which greatly

increases the dimension of potential machine topologies that can be analyzed and design.

In addition, a multi-slices approach has been implemented to the steady state and

dynamic MEC to model the skewing effect. Finally, alternative WRSM/rectifier systems

are compared based on the steady-state and dynamic MEC models.

A 10 kW and a 2 kW WRSM have been used to validate the proposed dynamic

MEC model and control approaches, respectively. Several test cases have been run and

have shown relatively strong correlation among MEC, FEA, and hardware results.

116

7.2 Future Work

Further validation of the dynamic model will be performed. The required parts to

assemble and set up the 10 kW WRSM have been machined. Once the WRSM has been

mounted on the test bench and ready to operate, more time-domain waveforms of phase

current, phase voltage, and torque will be measured and analyze. Different load circuits,

including resistive-inductive (RL) load, active rectifier, and passive rectifier are of

interest. A particular focus will be to compare transients in the time-domain and the

operational impedances at various frequencies. To compare hardware and simulated

transient performance, it is desirable to measure the damper winding currents. This is

challenging when the rotor is moving at 1800 rpm. Thus, a goal will be to develop a

technique to measure the damper winding currents in-situ. A Rowgowski coil connected

with a wireless voltage sensor will be evaluated for this purpose.

Simulation results of the skew model has been presented and compared to

analytical model. In order to achieve more thorough validation, a 10 kW WRSM with a

skewed rotor will be constructed so that different time-domain waveforms can be

measured. 3D FEA analysis is also preferred if more computational power is accessible.

In addition, although the dynamic MEC model is designed for three-phase

machines, it sets up the baseline to explore the applications of single-phase or multi-

phase machines design. Compared to three-phase machines, the single-phase machines

operate at lower power level and usually constant frequency. The single-phase machines

can be connected to the ac grid directly without any power electronics, but with an

auxiliary winding, which draws an industrial desire for its simplicity. On the other hand,

the multi-phase machines provide lower harmonics content at the price of extra phases of

windings. Due to the extra number of phases, the rating of the semiconductor switches for

each inverter leg can be reduced accordingly, and the fault tolerance for phase failure

may be improved as well.

LIST OF REFERENCES

117

LIST OF REFERENCES

[1] Bash, M.L., Pekarek, S.D., “Modeling of Salient-Pole Wound-Rotor
Synchronous Machines for Population-Based Design,” IEEE Transactions on
Energy Conversion, vol.26, no.2, pp.381-392, June 2011.

[2] Friedrich, G., “Experimental comparison between Wound Rotor and
permanent magnet synchronous machine for Integrated Starter Generator
applications,” 2010 IEEE Energy Conversion Congress and Exposition
(ECCE), 12-16 Sept. 2010.

[3] G Friedrich, A Girardin, “Integrated starter generator,” IEEE Industry
Applications Magazine, 2009.

[4] Janiaud N., Vallet F.-X., Petit M., Sandou G., “Electric Vehicle Powertrain
Architecture and Control Global Optimization,” EVS24 International Battery,
Hybrid and Fuel Cell Electric Vehicle Symposium, Stavanger, Norway, May
13-16, 2009.

[5] Sudhoff, S.D., Corzine, K.A., Glover, S.F., Hegner, H.J., Robey, H.N., Jr.
“DC link stabilized field oriented control of electric propulsion systems,”IEEE
Transactions on Energy Conversion, vol.12, no.1, pp.27-33, 1998.

[6] Nordin, Kamarudin B., Novotny, Donald W., Zinger, Donald S., “The
Influence of Motor Parameter Deviations in Feedforward Field Orientation
Drive Systems,” IEEE Transactions on Industry Applications, vol.IA-21, no.4,
pp.1009-1015, 1985.

[7] Corley, M.J., Lorenz, R.D., “Rotor position and velocity estimation for a
salient-pole permanent magnet synchronous machine at standstill and high
speeds,” IEEE Transactions on Industry Applications, vol.34, no.4, pp.784-
789, 1998.

[8] Wasynczuk, O., Sudhoff, S.D., Corzine, K.A., Tichenor, J.L., “A maximum
torque per ampere control strategy for induction motor drives,” IEEE
Transactions on Energy Conversion, vol.13, no.2, pp.163-169, 1998.

[9] Ching-Tsai Pan, Sue, S.-M., “A linear maximum torque per ampere control
for IPMSM drives over full-speed range,” IEEE Transactions on Energy
Conversion, June 2005.

118

[10] Morimoto, S., Sanada, M., Takeda, Y., “Wide-speed operation of interior
permanent magnet synchronous motors with high-performance current
regulator,” IEEE Transactions on Industry Applications, Jul/Aug 1994.

[11] Uddin, M.N., Radwan, T.S., Rahman, M.A., “Performance of interior
permanent magnet motor drive over wide speed range,” IEEE Transactions on
Energy Conversion, Mar 2002.

[12] Mohamed, Y.A.-R.I., Lee, T.K., “Adaptive self-tuning MTPA vector
controller for IPMSM drive system,” IEEE Transactions on Energy
Conversion, Sept. 2006.

[13] Bing Cheng, Tesch, T.R., “Torque Feedforward Control Technique for
Permanent-Magnet Synchronous Motors,” IEEE Transactions on Industrial
Electronics, March 2010.

[14] M.F. Rahman, L. Zhong, and K. W. Lim, “A direct torque controlled interior
permanent magnet synchronous motor drive incorporating field weakening,”
Industry Application, IEEE Transactions on, vol. 34, iss. 6, pp. 1246-1253,
Nov. 1998.

[15] Lixin Tang, LiminZhong, M. F. Rahman, “A novel direct torque controlled
interior permanent magnet synchronous machine drive with low ripple in flux
and torque and fixed switching frequency,” Power Electronics, IEEE
Transactions on, vol. 19, iss. 2, pp. 346-354, 2004.

[16] Sanda V. Paturca, MirceaCovrig, Leonard Melcescu, “Direct torque control of
permanent magnet synchronous motor (PMSM) – an approach by using space
vector modulation (SVM),” Proceedings of the 6th WSEAS/IASME Int. Conf.
on Electric Power Systems, High Voltage, Electric Machines, Tenerife, Spain.
Dec. 2006.

[17] Ion Boldea, “DTFC-SVM motion-sensorless control of a PM-assisted
reluctance synchronous machine as starter-alternator for hybrid electric
vehicles,” Power Electronics, IEEE Transactions on, vol. 21, iss. 3, pp. 711-
719, 2006.

[18] Jun Zhang, M. F. Rahman, “A direct-flux-vector-controlled induction
generator with space-vector modulation for integrated starter-alternator,”
Industrial Electronics, IEEE Transactions on, vol. 54, iss. 5, pp. 2512-2520,
2007.

[19] H.C. Roters, Electromagnetic Devices, John Wiley & Sons, Inc., New York,
1941.

119

[20] E.C. Cherry, “The duality between interlinked electric and magnetic circuits
and the formation of transformer equivalent circuits,” Proc. Physical Soc. of
London, pp. 101-111, 1949.

[21] E.R. Laithwaite, “Magnetic equivalent circuits for electrical machines,” Proc.
IEE, vol.114, pp. 1805-1809, Nov. 1967.

[22] V. Ostović, Dynamics of Saturated Electric Machines, Springer-Verlag, New
York, 1989.

[23] M. Bash, J. Williams, and S. Pekarek, “Incorporating motion in mesh-based
magnetic equivalent circuits,” IEEE Transactions on Energy Conversion, vol.
25, iss. 2, pp. 329 – 338, 2010.

[24] Warner, T. H., Kassakian, J.G., “Transient Characteristics and Modeling of
Large Turboalternator Driver Rectifier/Inverter Systerms Based on Field Test
Data,” IEEE Transactions on Power Apparatus and Systems, vol. 104, No. 7,
pp. 1804-1811, Jul. 1985.

[25] Sudhoff, Scott D., Wasynczuk, Oleg, “Analysis and average-value modeling
of line-commutated converter-synchronous machine systems,” IEEE Trans.
Energy Conv., vol. 8, No. 1, pp. 92-99, Mar. 1993.

[26] P. Krause, O. Wasynczuk, and S. Sudhoff, Analysis of Electric Machinery and
Drive Systems, 2nd ed. Piscataway, NJ: IEEE Press, 2002.

[27] Pekarek, S.D., Walters, E.A., Kuhn, B.T., “An efficient and accurate method
of representing magnetic saturation in physical-variable models of
synchronous machines,” IEEE Transactions on Energy Conversion, vol.14,
no.1, pp.72-79, Mar 1999.

[28] Sudhoff, S.D., Corzine, K.A., Hegner, H.J., Delisle, D.E., “Transient and
dynamic average-value modeling of synchronous machine fed load-
commutated converters,” IEEE Transactions on Energy Conversion, vol.11,
no.3, pp.508-514, Sept 1996.

[29] Jatskevich, J., Pekarek, S.D., Davoudi, A., “Parametric average-value model
of synchronous machine-rectifier systems,” IEEE Transactions on Energy
Conversion, vol.21, no.1, pp.9-18, Mar 2006.

[30] Aliprantis, D.C., Sudhoff, S.D., Kuhn, B.T., “A Synchronous Machine Model
With Saturation and Arbitrary Rotor Network Representation,” IEEE
Transactions on Energy Conversion, vol.20, no.3, pp.584-594, Sept 2005.

[31] K.J. Bradley and A. Tami, “Reluctance mesh modeling of induction motors
with healthy and faulty rotors,” Proc. IEEE Ind. Applications Conf., vol. 1, pp.
625-632, Oct. 1996.

120

[32] W. Shuting, L. Heming, L. Yonggang, and X. Zhaofeng, “Reluctance network
model of turbo-generator and its application – Part I: Model,” Proc. 8th Int.
Electrical Machines and Systems, vol. 3, pp. 1988-1993, Sept. 2005.

[33] G.R. Slemon, “An equivalent circuit approach to analysis of synchronous
machines with saliency and saturation,” IEEE Trans. Energy Conv., vol.5, No.
3, Sept. 1990.

[34] Xiao, Y., Slemon, G.R., Iravani, M.R., “Implementation of an equivalent
circuit approach to the analysis of synchronous machines,”IEEE Trans.
Energy Conv., vol.9, No. 4, Dec. 1994.

[35] Hamill, David C.," Lumped equivalent circuits of magnetic components: the
gyrator-capacitor approach," IEEE Transactions on Power Electronics, vol. 8,
no. 2, pp. 97-103, Apr. 1993.

[36] Carpenter, M.J., Macdonald, D.C., “Circuit representation of inverter-fed
synchronous motors,” IEEE Trans. Energy Conv., vol. 4, No. 3, pp.531-537,
Sep. 1989.

[37] Piecewise Linear Electrical Circuit Simulation (PLECS) User Manual,
Version 1.5, Plexim GmbH, 2006. Available at: http://www.plexim.com
(accessed on January 21, 2013).

[38] Davoudi, A., Chapman, P.L., Jatskevich, J., Khaligh, A., “Reduced-Order
Modeling of High-Fidelity Magnetic Equivalent Circuits,” IEEE Trans. Power
Electronics, vol.24, No. 12, pp. 2847 - 2855, Dec. 2009.

[39] Davoudi, A., Chapman, P.L., Jatskevich, J., Behjati, H. , “Reduced-Order
Dynamic Modeling of Multiple-Winding Power Electronic Magnetic
Components,” IEEE Trans. Power Electronics, vol.27, No. 5, pp. 2220 - 2226,
May 2012.

[40] V. Ostović, “A novel method for evaluation of transient states in saturated
electric machines,” IEEE Trans. Ind. Appl., vol. 25, pp. 96-100, Jan.-Feb.
1989.

[41] Li Yao, “Magnetic Field Modelling of Machine and Multiple Machine
Systems Using Dynamic Reluctance Mesh Modelling,” PhD dissertation,
Department of Electrical and Computer Engineering, University of
Nottingham, Nottinghan, England, May 2006.

[42] H.W. Derbas, J.M. Williams, A.C. Koenig, and S.D. Pekarek, “A comparison
of nodal- and mesh-based magnetic equivalent circuit models,” IEEE Trans.
Energy Conv., vol. 24, iss. 2, pp. 388-396, June 2009.

121

[43] S.D. Sudhoff, B.T. Kuhn, K.A. Corzine, and B.T. Branecky, “Magnetic
equivalent circuit modeling of induction motors,” IEEE Trans. Energy Conv.,
vol. 22, no. 2, pp. 259-270, June 2007.

[44] M. Amrhein and P.T. Krein, “Magnetic equivalent circuit modeling of
induction machines design-oriented approach with extension to 3-D,” Proc.
IEEE Electric Mach & Drives Conf., vol. 2, pp. 1557-1563, May 2007.

[45] M. Amrhein, “Induction machine performance improvements – design-
oriented approaches,” PhD dissertation, Department of Electrical and
Computer Engineering, University of Illinois at Urbana-Champaign, Urbana,
IL, Apr. 2007.

[46] E. Sarani, K, Abbaszadeh, and M. Ardebili, “Modeling and simulation of turn
fault and unbalanced magnetic pull in induction motor based on magnetic
equivalent circuit method,” Proc. 8th Int. Electrical Machines and Systems,
vol. 1, pp. 52-56, Sept. 2005.

[47] G.Y. Sizov, A. Sayed-Ahmed, Y. Chia-Cho, and N.A. Demerdash, “Analysis
and Diagnostics of Adjacent and Nonadjacent Broken-Rotor-Bar Faults in
Squirrel-Cage Induction Machines”; Industrial Electronics, IEEE
Transactions on, vol. 56, iss. 11, pp. 4627 – 4641, 2009.

[48] J. Gyselinck, L. Vandevelde, and J. Melkebeek, “Coupling finite elements and
magnetic and electrical networks in magnetodynamics,” International
conference on electrical machines, vol. 2, Sept. 1998, pp. 1431-1436.

[49] E.K.P. Chong and S.H. Żak, An Introduction to Optimization, 2nd ed. John
Wiley & Sons, Inc., 2001, pp. 237-250.

[50] K. Deb, Multi-Objective Optimization using Evolutionary Algorithms, John
Wiley & Sons, Inc., 2001.

[51] Genetic Optimization System Engineering Tool (GOSET) For Use with
MATLAB, Manual Version 2.4, School of Electrical and Computer
Engineering, Purdue University, West Lafayette, IN, with United States Naval
Academy, Annapolis,
MD, 2005. Avaliable: https://engineering.purdue.edu/ECE/Research/Areas/PE
DS/go_system_engineering_toolbox.

[52] B.N. Cassimere and S.D. Sudhoff, “Population-based design of surface-
mounted permanent-magnet synchronous machines,” IEEE Trans on Energy
Conversion, vol. 24, no. 2, June 2009, pp. 338-346.

122

[53] J. Cale and S.D. Sudhoff, “EI core inductor designs using population-based
design algorithms,” 22nd IEEE Applied Power Electronics Conference, APEC
2007, pp. 1062-1069, Feb. 2007.

[54] Sudhoff, S.D. and G. Shane, PMM Toolbox: Power Magnetic Material
Toolbox (Version 1.0) [MATLAB Toolbox], School of Electrical and
Computer Engr.,
Purdue Univ., https://engineering.purdue.edu/ECE/Research/Areas/PEDS/pow
er_magnetic_material_toolbox, 2010.

[55] W. Zhu, S. Pekarek, and B. Fahimi, “Derivation of a magnetic equivalent
circuit model for analysis and design of synchronous generators,” University
of Missouri-Rolla, Tech. Report, Dec. 2003.

[56] J. Reinert, A. Brockmeyer, and R. W. A. A. De Doncker, “Calculation of
losses in ferro- and ferrimagnetic materials based on the modified Steinmetz
equation,” IEEE Trans. Ind. Appl., vol. 37, no. 4, pp. 1055–1061, Jul. 2001.

[57] Bash, M.L., Pekarek, S.D., "Trends on the Pareto-optimal fronts of a portable
generator drive system," 2012 Twenty-Seventh Annual IEEEApplied Power
Electronics Conference and Exposition (APEC), vol., no., pp.931-937, 5-9
Feb. 2012.

[58] Standard Specification for Nonoriented Electrical Steel Fully Processed
Types, ASTM Standard A677-07, American Society for testing and Materials
International, West Conshohocken, PA, 2003.

[59] Bash, M.L., Pekarek, S.D., “Analysis and validation of a population-based
design of a wound-rotor synchronous machine,” IEEE Transactions on
Energy Conversion, vol.27, no.3, pp.603-614, Sept 2012.

[60] T.A. Lipo, Introduction to AC Machine Design, 2nd ed. Madison,WI:
Wisconsin Power Electronics Research Center, 2004.

[61] Shane, Grant M., Sudhoff, Scott D., “Refinements in Anhysteretic
Characterization and Permeability Modeling,” IEEE Transactions on
Magnetic, vol. 46, No. 11, pp. 3834-3843, Nov. 2010.

[62] “IEEE Standard Procedures for Obtaining Synchronous Machine Parameters
by Standstill Frequency Response Testing (Supplement to ANSI/IEEE Std
115-1983, IEEE Guide: Test Procedures for Synchronous Machines),” IEEE
Std 115A-1987, 1987.

[63] Jahns, T.M. , Soong, W.L. , “Pulsating torque minimization techniques for
permanent magnet AC motor drives-a review,” IEEE Transactions on
Industrial Electronics, vol.43, No. 2, pp. 321-330, Apr 1996.

123

[64] Bianchi, N. , Bolognani, S. , “Design techniques for reducing the cogging
torque in surface-mounted PM motors,” Conference Record of the 2000 IEEE
Industry Applications Conference, vol.1, pp. 179-185, Oct 2000.

[65] Islam, R. , Husain, I. , Fardoun, A. , McLaughlin, K. , “Permanent-Magnet
Synchronous Motor Magnet Designs With Skewing for Torque Ripple and
Cogging Torque Reduction,” IEEE Transactions on Industrial Applications,
vol.45, No. 1, pp. 152-160, Jan-Feb 2009.

[66] Alhamadi, M.A. , Demerdash, N.A. , “Modeling of effects of skewing of rotor
mounted permanent magnets on the performance of brushless DC motors,”
IEEE Transactions on Energy Conversion, vol.6, No. 4, pp. 721-729, Dec
1991.

[67] Knight, A.M. , Troitskaia, S. ; Stranges, N. ; Merkhouf, A. , “Analysis of large
synchronous machines with axial skew, part 1: flux density and open-circuit
voltage harmonics,” IET Electric Power Applications, vol.3, No. 5, pp. 389-
397, Sept 2009.

[68] Knight, A.M. , Troitskaia, S. ; Stranges, N. ; Merkhouf, A. , “Analysis of large
synchronous machines with axial skew, part 2: inter-bar resistance, skew and
losses,” IET Electric Power Applications, vol.3, No. 5, pp. 398-406, Sept
2009.

[69] V. Ostovic, Dynamics of saturated electric machines, New York: Springer
Verlag Press, 1989.

[70] Sizov, G.Y. , Zhang, P. , Ionel, D.M. , Demerdash, N.A.O. , Brown, I.P. ,
Smith, A.O. , Solveson, M.G. , “Modeling and analysis of effects of skew on
torque ripple and stator tooth forces in permanent magnet AC machines,”
IEEE Energy Conversion Congress and Exposition (ECCE), pp. 3055-3061,
Sept 2012.

[71] Williamson, Stephen , Flack, T.J. ; Volschenk, A.F. , “Representation of skew
in time-stepped two-dimensional finite-element models of electrical machines,”
IEEE Transactions on Industrial Applications, vol.31, No. 5, pp. 1009-1015,
Sept-Oct 1995.

[72] Gyselinck, Johan, Melkebeek, Jan, “Modelling of electrical machines with
skewed slots using the two-dimensional finite element method,” Proceedings
of the 13th International Conference on Electrical Machines, pp. 125-130,
Sept 1996.

[73] Piriou, F. , Razek, A. , “A model for coupled magnetic-electric circuits in
electric machines with skewed slots,” IEEE Transactions on Magnetics,
vol.26, No. 2, pp. 1096-1100, Mar 1990.

124

[74] Gyselinck, J.J.C. , Vandevelde, L. ; Melkebeek, J.A.A. , “Multi-slice FE
modeling of electrical machines with skewed slots-the skew discretization
error,” IEEE Transactions on Magnetics, vol.37, No. 5, pp. 3233-3237, Sept
2001.

APPENDICES

125

A. MATLAB CODE

The code for the enhanced steady-state and dynamic MEC models are provided
herein. A list of the filenames with the corresponding description is shown in Table A.1.

Table A.1
Filenames and description.

File Description Page

wrsm_design.m Run WRSM design study. 127

wrsmfit.m Evaluates a particular machine design (set of

design variables) based on the constraints and

objectives. Assigns each design a fitness

value.

129

wrsm_model.m Intializes MEC simulation variables, solves

the MEC system of equations and plots

results.

135

design_param.m Creates a vector of machine/simulation

parameters for a given machine using design

variables.

140

wrsmdynamics.m Solves the Dynamics of the MEC network. 149

get_reluctances.m Calculates all terms in the reluctance equation

except for the relative permeability. This is

done for all iron permeances in the stator and

rotor. Calculates cross-sectional area.

Calculates all reluctances residing in air.

164

get_Pag.m Determines the airgap permeance between 171

126

each rotor tooth/slot section and stator tooth.

get_J.m Determines the Jacobian. 180

get_meshmatrices.m Builds the matrices A and d used to solve for

flux. Outputs Cr for use by get_J.m

182

shape_alg.m Determines the mesh connections for each

reluctance and mmf source for a given rotor

position. The first column of the connection

matrics is left as zero and is later updated

with the specific reluctance/source value.

184

get_mur_exp.m Calculate mur and pmur from exponential

curve fit formulation in PMMT.

197

get_mass.m Calculates the weight of the machine. 198

coreloss.m Calculates the core loss of the iron sections

for any given material.

201

calc_dploss.m Calculates damper loss. 202

wrsmpostprocess.m Calculates postprocessing values (voltage,

flux linkage, etc.) after modeling a machine.

203

plotwrsm.m Depicts the machine topology in a plot. 204

rect.m Calculates the rectifier voltages based on the

rectifier currents.

209

tools.m Finds the average value, rms value, and/or

ripple of a given signal.

211

wrsmdynamics_ multislice.m Similar to wrsmdynamics.m, but with skew

model incorporated.

213

wrsmdynamics_ss_multislice.m Similar to wrsmdynamics.m, but with skew

model incorporated to analyze steady-state

model.

232

127

%-- --------------------
% AUTHORS: Xiaoqi Wang, Michelle Bash, Steven D. P ekarek
%-- --------------------
% CONTACT: School of Electrical & Computer Enginee ring
% Purdue University
% 465 Northwestern Ave.
% West Lafayette, IN 47907
% 765-494-3434, spekarek@ecn.purdue.edu
%-- --------------------
% Apr 1, 2013
%-- --------------------
% M-FILE: wrsm_design.m
%
% Run WRSM design study
%-- --------------------
close all
clear
clc
addpath([pwd, '\goset_2.5'])

% units
mm = 1e-3;
cm = 1e-2;

% set up parameters for machine design
param.SD = 0*mm;
param.damper_rshank = 0*mm;
param.damper_nshank = 0;
param.damper_dtip = 0.5;
param.vrms = 0;
param.vph = 0;
param.vfreq = 60;
param.NCYC = 2;
param.NPTS = 1e3;

% --- --------------------
% Multi-objective optimization
GAP = gapdefault(2,0,500,500);
GAP.op_list = [1 2];
GAP.pp_list = [1 2];
% GAP.rp_lvl = 0;
GAP.mc_alg = 6.0;
GAP.ev_pp = true; % parallel process [Set to true]
GAP.ev_npg = 2; % number of evaluation groups for non-
block [Set to number of cores allocated by matlabpo ol]
% Set up genes
% 1-min, 2-max, 3-type, 4-chromosome
GAP.gd = [10*cm 80*cm 3 1; % DRC-1
 0.5 3 3 1; % GLS-2
 30*cm 80*cm 3 1; % HRT-3
 20*mm 60*mm 3 1; % G1-4
 1*cm 40*cm 3 1; % HST-5
 5*cm 80*cm 3 1; % DBS-6
 0.1 0.6 3 1; % fB0-7
 0.05 0.3 3 1; % fHRTT-8

128

 0.3 0.9 3 1; % RPIT-9
 0.1 0.7 3 1; % fWRTSH-10
 1 5 1 1; % Ns-11
 1 1000 1 1; % Nfld-12
 50 150 2 1; % ifld-13
 1 7 1 1; % Pp-14
 0 0.3 2 1; % tipw-15
 0.05 0.3 2 1; % tiph-16
 0 20*mm 3 1; % damper_rtip_1-17
 0 20*mm 3 1; % damper_rtip_2-18
 0 3 1 1; % damper_ntip-19
 0 2 1 1]; % bar connection type-20

% START GENETIC ALGORITHM OPTIMIZATION
[fp,GAS,final_designs] = gaoptimize(@wrsmfit,GAP,pa ram);
% --- --------------------

save results final_designs fp GAS GAP param

129

%-- --------------------
% AUTHORS: Xiaoqi Wang, Michelle Bash, Steven D. P ekarek
%-- --------------------
% CONTACT: School of Electrical & Computer Enginee ring
% Purdue University
% 465 Northwestern Ave.
% West Lafayette, IN 47907
% 765-494-3434, spekarek@ecn.purdue.edu
%-- --------------------
% Apr 1, 2013
%-- --------------------
% fitness = wrsmfit(design)
%
% Evaluates a particular machine design (set of des ign variables) based
on
% the constraints and objectives. Assigns each desi gn a fitness value.
% OUTPUTS: fitness - fitness of a machine design
%
% INPUTS: design - design variables
%-- --------------------
function fitness = wrsmfit(GAP,param,varnum)

design(1) = param.SD;
design(2) = GAP(1);
design(3) = GAP(2);
design(4) = GAP(3);
design(5) = GAP(4);
design(6) = GAP(5);
design(7) = GAP(6);
design(8) = GAP(7);
design(9) = GAP(8);
design(10) = GAP(9);
design(11) = GAP(10);
design(12) = GAP(11);
design(13) = GAP(12);
design(14) = param.vrms;
design(15) = param.vph;
design(16) = GAP(13);
design(17) = GAP(14);
design(18) = GAP(15);
design(19) = GAP(16);
design(20) = GAP(17);
design(21) = GAP(18);
design(22) = param.damper_rshank;
design(23) = GAP(19);
design(24) = param.damper_nshank;
design(25) = param.damper_dtip;
design(26) = GAP(20);
design(27) = param.vfreq;
design(28) = param.NCYC;
design(29) = param.NPTS;

% GET GEOMETRY, WINDING, AND SIMULATION PARAMETERS
[parx,pars,turns,damperdata,mudata] = design_params (design);
%-- --------------------

130

% CONSTRAINTS:
%-- --------------------
nc = 8; % Number of constraints
constraints = zeros(1,nc);
%-- --------------------
% Constraint 1: Realizable and realistic geometry.
% Rotor tooth shank does not overlap at core
WRTSHchord = pars(56);
DC = pars(25);
RP = pars(28);
chordmax = (DC)*sin(pi/RP);
c1a = lessthan(WRTSHchord,chordmax,0.1*chordmax);
% rotor pole tips do not overlap in the slot
WAIRT = pars(35);
HRTT = pars(44);
ROD = pars(24);
maxHRT = sin(pi/2-
pi/RP)/sin(2*pi/RP)*ROD*sin(WAIRT/ROD)+2*HRTT*(RP== 2);
c1b = lessthan(HRTT,maxHRT,0.01*maxHRT);
% Length constraint is met - no pancake machines
% c1c = lessthan(pars(1)/pars(3),1.82,0.182);
c1c = 1;
% HRTT is real and positive
if abs(HRTT) ~= HRTT
 HRTT = -1;
end
c1d = greaterthan(HRTT,0,0.01);
% Radius of damper bars has to be less than width o f rotor sections
if c1d == 1
 SPT = parx(2);
 WRT = pars(34);
 ROD = pars(24); % Rotor outer diameter, m
 WRTang = 2*WRT/ROD;
 xout = sin(WRTang/2)*ROD/2; % (xout = WRTchord/2)
 WRTS2 = xout*2/SPT; % Horizontal width (not arc width) of the
rotor tooth sections
 damper_rtip = damperdata.damper_rtip; % Radius of damper windings
 if max(damper_rtip) > WRTS2/2
 Rxm = -1;
 else
 mu0 = pi*4e-7; % Permeability of free space
 [Rxm,areas,Rair,NPRTS,NPRTB] =
get_reluctances(mu0,parx,pars,damperdata);
 end
 c1e = greaterthan(min(Rxm),0,0.01);
else
 c1e = 0;
end
% Outer diameter constraint
c1f = lessthan(pars(1),2.5,0.25);
constraints(1) = (c1a+c1b+c1c+c1d+c1e+c1f)/6;
% constraints(1) = 1;
if constraints(1) == 1 % Machine is realizable
 %-- ----------------
 % Evaluate the MEC model over one stator tooth and slot

131

 % PARAMETERS
 NCYC = parx(6); % Number of cycles
 DT = parx(12); % Time step in s
 wrm = parx(4)*2*pi/60; % Mechanical rotor speed in rad/s
 wr = (pars(28)/2)*wrm; % Electrical rotor speed in rad/s
 rs = pars(23); % Phase resistance in ohm
 rfld = pars(43); % Field resistance in ohms
 ifld = pars(47); % Field current (A)
 Pmin = parx(24); % Minimun output power (w)
 synfreq = (pars(28)/2)*parx(4)/60; % Frequency of vas,vbs,vcs -
(assumed to be synchronized with rotor speed)
 damper_ntip = damperdata.damper_ntip; % Number of damper windings
on rotor tip
 Rd = damperdata.Rd; % Resistance of damper windings on rotor tip
 % DYNAMICS DESCRIPTION
[t,vabc,lamabcpp,lamdamper,iabc,idamper,idc,vdc,vc, torque,qrm,phit,BY,B
T,BTT,nrconverge,saturate,BIRON] =
wrsmdynamics(parx,pars,turns,damperdata,mudata,0);
 SL = parx(3);
 SPPPP = SL/RP/3;
 SPT = parx(2);
 NRrtrt = parx(27);
 damper_nshank = damperdata.damper_nshank; % Number of damper
windings on rotor shank
 BRY = abs(BIRON(SPPPP*9+[1 3+damper_nshank 4+da mper_nshank],:));
 BRTSH = abs(BIRON(SPPPP*9+2,:));
 BRT = abs(BIRON(SPPPP*9+4+damper_nshank+[1:(SPT - 2*NRrtrt) (2*SPT
- 4*NRrtrt)+1:(2*SPT - 4*NRrtrt)+2*NRrtrt],:));
 %-- -----
 % Constraint 2: Newton-Raphson Nonlinear Solver Con verges &
Operation meets flux density constraint
 constraints(2) = nrconverge & min(saturate);
 % constraints(2) = 1;
 if constraints(2) == 1
 %-- ------------
 % Constraint 3: Avarage torque be negative.
 Te_avg = tool_avg(torque,1,synfreq,DT); % Compute average
torque
 constraints(3) = lessthan(Te_avg,-(0.7*Pmin /wrm),0.1*Pmin/wrm);
 if constraints(3) == 1;
 %-- --------
 % Constraint 4: Voltage is above minimum allowed va lue, vdc
is actually Vas_rated.
 vdcmax = parx(25);
 % Calculaion of current, voltage rms, avg
 irms = tools('tool_rms' ,iabc(1,:),1,synfreq,DT);
 vrms = tools('tool_rms' ,vabc(1,:),1,synfreq,DT);
 constraints(4) = lessthan(vrms,vdcmax/s qrt(6),0.01*vdcmax);
% V_error = abs(vrms-vdcmax)/vdcmax;
% constraints(4) =
lessthan(V_error,0.01*vdcmax,0.001*vdcmax);
% constraints(4) = 1;
 %-- --------
 % Constraint 5: Minimum power output met.
 % WEIGHT CALCULATION

132

 [wstt,wst,wsy,wrt,wrsh,wry,wsw,wrw,weig ht] =
get_mass(pars,parx,turns,damperdata);
 % LOSS CALCULATION
 DENS = pars(37);
 GLS = pars(3);
 clBTT =
coreloss(BTT(1,:),synfreq,DT,mudata.s)*wstt/DENS*10 00;
 clBT =
coreloss(BT(1,:),synfreq,DT,mudata.s)*wst/DENS*1000 ;
 clBY =
coreloss(BY(1,:),synfreq,DT,mudata.s)*wsy/DENS*1000 ;
 clWRT =
coreloss(sum(BRT,1)/SPT,synfreq,DT,mudata.s)*wrt/DE NS*1000;
 clWRSH =
coreloss(BRTSH,synfreq,DT,mudata.s)*wrsh/DENS*1000;
 clWRY =
coreloss(BRY(1,:),synfreq,DT,mudata.s)*wry/DENS*100 0;
 core_losses = clBTT+clBT+clBY+clWRT+clW RSH+clWRY;
 resistive_losses = parx(1)*rs*irms^2 +
rfld*mean(ifld)*mean(ifld);
 conduction_losses = parx(20)*(irms*sq rt(2)*2/pi)*parx(1);
 damper_losses = calc_dploss(idamp er, damperdata,
pars, parx);
 total_losses = resistive_losses + core _losses +
damper_losses + conduction_losses;
 Pelec = abs(Te_avg*wrm) - total_losses;
 constraints(5) = greaterthan(Pelec,Pmin ,0.1*Pmin);
 % P_error = abs(Pelec-Pmin)/Pmin;
 % constraints(5) =
lessthan(P_error,0.01*Pmin,0.001*Pmin);
 % constraints(5) = 1;
 %-- --------
 % Constraint 6: Stator Current Density less than ma x.
 B1 = pars(10);
 BS = pars(12);
 Ncond = max(turns);
 H3 = pars(8);
 slotarea = (0.5*(B1+BS))*H3;
 pfs = pars(48);
 Js = irms*sqrt(2)*Ncond/(slotarea*pfs);
 Jmax = parx(26);
 constraints(6) = lessthan(Js,Jmax,0.1*J max);
 % constraints(6) = 1;
 %-- --------
 % Constraint 7: Rotor Current Density less than max .
 HRTSH = pars(45);
 WCOIL = pars(51);
 Nfld = pars(41);
 slotareaf = WCOIL*HRTSH;
 pfr = pars(52);
 ifld = pars(47);
 Jr = ifld*Nfld/(slotareaf*pfr);
 constraints(7) = lessthan(Jr,Jmax,0.1*J max);
 % constraints(7) = 1;
 %-- --------

133

 % Constraint 8: power factor above 0.8.
 pf = sign(Qelec)*Pmin/sqrt(Pmin^2+Qelec ^2);
 pf_error = abs(pf-0.8);
 constraints(8) = lessthan(pf_error,0.01 *0.8,0.001*0.8);
 % constraints(8) = lessthan(pf,0.8,0.1*0.8) ;
 constraints(8) = 1;
 end
 end
end
%-- --------------------
% FITNESS EVALUATION:
%-- --------------------
cmin = min(constraints); % Minimum value of the constraint variables.
Value of 1 indicates that the constraint is met.
if cmin < 1
 fitness = (sum(constraints) - 1e12*nc)*[1;1];
else
 fitness = [-total_losses;-weight];
end
%-- --------------------
if nargin>2
 disp('Geometric Parameters')
 disp(['Shaft Diameter (SD): ' ,num2str(1e3*param.SD), 'mm'])
 disp(['Depth of Rotor Core (DRC): ' ,num2str(1e3*GAP(1)), 'mm'])
 disp(['Core length (GLS): ' ,num2str(1e2*GAP(2)), 'cm'])
 disp(['Height of Rotor Tooth (HRT): ' ,num2str(1e3*GAP(3)), 'mm'])
 disp(['Airgap Length (G1): ' ,num2str(1e3*GAP(4)), 'mm'])
 disp(['Height of Stator Tooth (HST): ' ,num2str(1e3*GAP(5)), 'mm'])
 disp(['Depth of Stator Yoke (DBS): ' ,num2str(1e3*GAP(6)), 'mm'])
 disp(['Width of Stator Tooth Shank (STW):
' ,num2str(1e3*pars(20)), 'mm'])
 disp(['Height of Rotor Tooth Tip Side (HRTT):
' ,num2str(1e3*pars(44)), 'mm'])
 disp(['Chord Length of Rotor Tooth Tip (WRTchord):
' ,num2str(1e3*pars(55)), 'mm'])
 disp(['Chord Width of Rotor Tooth Shank (WRTSHchord):
' ,num2str(1e3*pars(56)), 'mm'])
 disp(['Stator Turns (Ns): ' ,num2str(GAP(11))])
 disp(['Field Turns (Nfld): ' ,num2str(GAP(12))])
 disp(['Pole Pairs (Pp): ' ,num2str(GAP(14))])
 disp(['Width of Stator Tooth Tip (STTW):
' ,num2str(1e3*pars(21)), 'mm'])
 disp(['Height of Stator Tooth Tip (STTW):
' ,num2str(1e3*pars(58)), 'mm'])
 disp(['Number of Damper bars on Rotor Tip (damper_ntip):
' ,num2str(damperdata.damper_ntip)])
 fprintf('Radius of Damper bars on Rotor Tip (damper_rtip): %f
mm.\n' ,1e3*damperdata.damper_rtip);
 disp(['Number of Damper bars on Rotor Shank (damper_nshan k):
' ,num2str(damperdata.damper_nshank)])
 disp(['Radius of Damper bars on Rotor Shank (damper_rshan k):
' ,num2str(1e3*damperdata.damper_rshank), 'mm'])
 disp('Electric Parameters')
 disp(['Phase Current RMS: ' ,num2str(irms), 'A'])

134

 disp(['Phase Current Angle: ' ,num2str(atan2(-
mean(idsr),mean(iqsr))*180/pi), 'deg'])
 disp(['Phase Voltage RMS: ' ,num2str(vrms), 'V'])
 disp(['Phase Voltage Angle: ' ,num2str(atan2(-
mean(vdsr),mean(vqsr))*180/pi), 'deg'])
 disp(['Field Current: ' ,num2str(ifld), 'A'])
 disp(['Stator Current Density: ' ,num2str(Js), 'A/m^2'])
 disp(['Rotor Current Density: ' ,num2str(Jr), 'A/m^2'])
 disp(['Output Power: ' ,num2str(Pelec/1000), 'kW'])
 disp(['Reactive Power: ' ,num2str(Qelec/1000), 'kVA'])
 disp(['Electromagnetic Torque: ' ,num2str(Te_avg), 'Nm'])
 disp(['Total Loss: ' ,num2str(total_losses), 'W'])
 disp(['Efficiency: ' ,num2str(Pelec/abs(Te_avg*wrm))])
 disp('Losses')
 disp(['Resistive Loss: ' ,num2str(resistive_losses), 'W'])
 disp(['Core Loss: ' ,num2str(core_losses), 'W'])
 disp(['Conduction Loss: ' ,num2str(conduction_losses), 'W'])
 disp(['Damper Loss: ' ,num2str(damper_losses), 'W'])
 disp('Mass')
 disp(['Stator Mass: ' ,num2str(wsy+wst+wstt), 'kg'])
 disp(['Rotor Mass: ' ,num2str(wry+wrt+wrsh), 'kg'])
 disp(['Copper Mass: ' ,num2str(wsw+wrw), 'kg'])
 disp(['Total Machine Mass: ' ,num2str(weight), 'kg'])

 plotwrsm(pars,parx,damperdata,0,varnum);
end
% greaterthan and lessthan functions used to comput e constraint values.
function c = greaterthan(x,xmin,deltax)
if x > xmin
 c = 1;
else
 c = 1/(1+abs((xmin-x)/deltax));
end

 function c = lessthan(x,xmax,deltax)
 if x < xmax
 c = 1;
 else
 c = 1/(1+abs((x-xmax)/deltax));
 end

135

%-- --------------------
% AUTHORS: Xiaoqi Wang, Michelle Bash, Steven D. P ekarek
%-- --------------------
% CONTACT: School of Electrical & Computer Enginee ring
% Purdue University
% 465 Northwestern Ave.
% West Lafayette, IN 47907
% 765-494-3434, spekarek@ecn.purdue.edu
%-- --------------------
% April 1, 2012
%-- --------------------
% M-FILE: wrsm_model.m
%
% Intializes MEC simulation variables, solves the M EC
% system of equations and plots results.
%-- --------------------
clear all
close all
clc
% --- ---------
% % EVALUATE A MACHINE FROM MULTI-OBJECTIVE DESIGN RESULTS
% fdi = input('Which design would you like to evalu ate: ');
% filename = input('Filename of the saved data: ');
% % Load design results and process genes
load('init_test.mat')
[parx,pars,turns,damperdata,mudata] = design_params (final_design(:,1));
% --- ---------
fprintf('********* Dynamic Mesh Based MEC Model *********** \n')
% SIMULATION TIME AND PARAMETERS
NCYC = parx(6); % Number of cycles
DT = parx(12); % Time step in s
iter = parx(30); % Number of iterations
wrm = parx(4)*2*pi/60; % Mechanical rotor speed in rad/s
wr = (pars(28)/2)*wrm; % Electrical rotor speed in rad/s
rs = pars(23); % Phase resistance in ohm
rfld = pars(43); % Field resistance in ohms
ifld = pars(47); % Field current (A)
synfreq = (pars(28)/2)*parx(4)/60; % Frequency of vas,vbs,vcs -
(assumed to be synchronized with rotor speed)
damper_ntip = damperdata.damper_ntip; % Number of damper windings on
rotor tip
damper_nshank = damperdata.damper_nshank; % Number of damper windings
on rotor shank
Rd = damperdata.Rd; % Resistance of damper windings on rotor tip
Re = damperdata.Re; % Resistance of damper windings connection

% DYNAMICS DESCRIPTION
qr_init = 0;
[t,vabc,lamabcpp,lamdamper,iabc,idamper,idc,vdc,vc, torque,qrm,phit,BY,B
T,BTT,nrconverge,saturate,BIRON] =
wrsmdynamics(parx,pars,turns,damperdata,mudata,qr_i nit);

% POST-PROCESSING
qrmdeg = qrm*180/pi;
RP = pars(28);

136

SL = parx(3);
SPPPP = SL/RP/3;
SPT = parx(2);
NRrtrt = parx(27);
BRY = abs(BIRON(SPPPP*9+[1 3+damper_nshank 4+damper _nshank],1:iter));
BRTSH = abs(BIRON(SPPPP*9+2,1:iter));
BRT = abs(BIRON(SPPPP*9+4+damper_nshank+[1:(SPT - 2 *NRrtrt) (2*SPT -
4*NRrtrt)+1:(2*SPT - 4*NRrtrt)+2*NRrtrt],1:iter));
if wrm > 0
 ias = iabc(1,:);
 ibs = iabc(2,:);
 ics = iabc(3,:);
 wrsmpostprocess;
 % CALCULATING AVERAGE AND RIPPLE TORQUE
 [Te_rms,Te_avg,Te_rip] = tools('tool_all' ,torque,1,synfreq,DT);
 % Calculaion of current, voltage rms
 irms = tools('tool_rms' ,iabc(1,:),1,synfreq,DT);
 vrms = tools('tool_rms' ,vabc(1,:),1,synfreq,DT);
 % Calculate current density in a slot
 B1 = pars(10);
 BS = pars(12);
 Ncond = max(turns);
 H3 = pars(8);
 slotarea = (0.5*(B1+BS))*H3;
 pfs = pars(48);
 Ac = slotarea*pfs/Ncond;
 Js = irms*sqrt(2)/Ac;
 fprintf('The current density in a stator slot is %f
A/mm^2.\n' ,Js*1e-6);
 HRTSH = pars(45);
 WCOIL = pars(51);
 Nfld = pars(41);
 slotareaf = WCOIL*HRTSH;
 pfr = pars(52);
 Acfld = slotareaf*pfr/Nfld;
 Jr = ifld/Acfld;
 fprintf('The current density in a field slot is %f
A/mm^2.\n' ,Jr*1e-6);
 % WEIGHT CALCULATION
 [wstt,wst,wsy,wrt,wrsh,wry,wsw,wrw,weight] =
get_mass(pars,parx,turns,damperdata);
 msg = sprintf('Stator Mass = %f kg' ,wsy+wst+wstt); disp(msg);
 msg = sprintf('Rotor Mass = %f kg' ,wry+wrt+wrsh); disp(msg);
 msg = sprintf('Copper Mass = %f kg' ,wsw+wrw); disp(msg);
 msg = sprintf('Total Machine Mass = %f kg' ,weight); disp(msg);
 % LOSS CALCULATION
 DENS = pars(37);
 GLS = pars(3);
 clBTT = coreloss(BTT(1,:),synfreq,DT,mudata.s)*wstt/DENS*1000;
 clBT = coreloss(BT(1,:),synfreq,DT,mudata.s) *wst/DENS*1000;
 clBY = coreloss(BY(1,:),synfreq,DT,mudata.s) *wsy/DENS*1000;
 clWRT =
coreloss(sum(BRT,1)/SPT,synfreq,DT,mudata.s)*wrt/DE NS*1000;
 clWRSH = coreloss(BRTSH,synfreq,DT,mudata.s)*w rsh/DENS*1000;
 clWRY = coreloss(BRY(1,:),synfreq,DT,mudata.s)*wry/DENS*1000;

137

 core_losses = clBTT+clBT+clBY+clWRT+clWRSH+clWR Y;
 resistive_losses = parx(1)*rs*irms^2 +
rfld*mean(ifld)*mean(ifld);
 conduction_losses = parx(20)*(irms*sqrt(2)*2/ pi)*parx(1);
 damper_losses = calc_dploss(idamper, damp erdata, pars, parx);
 total_losses = resistive_losses + core_losses + damper_losses +
303;
 % Input mechanical torque calculation
 Te_mech = sign(Te_avg)*(abs(Te_avg*wrm)+core_lo sses+303)/wrm;
 % OUTPUT INFO TO COMMAND WINDOW
 fprintf('Current: %f A\n' , irms);
 fprintf('Voltage: %f V\n' , vrms*sqrt(3));
 fprintf('Output power: %f kW\n' , (abs(Te_avg*wrm)-resistive_losses-
damper_losses)/1000);
 fprintf('Mechanical torque: %f Nm\n' , Te_mech);
 fprintf('Electrical torque: %f Nm\n' , Te_avg);
 fprintf('Torque ripple: %f Nm\n\n' , Te_rip);
 fprintf('The resistive loss is %f W\n' ,resistive_losses);
 fprintf('Core loss in the teeth: %f W\n' , clBT+clBTT);
 fprintf('Core loss in the yoke: %f W\n' , clBY);
 fprintf('The core loss is %f W\n' ,core_losses);
 fprintf('The damper loss is %f W\n' ,damper_losses);
 fprintf('The conduction loss is %f W\n' ,conduction_losses);
 fprintf('The total loss is %f W\n' ,total_losses);
 fprintf('The machine efficiency is %f\n\n' ,(abs(Te_mech*wrm)-
total_losses)/abs(Te_mech*wrm));
 fprintf('Max stator yoke flux density: %f T\n' , max(max(BY)));
 fprintf('Max stator tooth flux density: %f T\n' , max(max(BT)));
 fprintf('Max rotor yoke flux density: %f T\n' , max(max(BRY)));
 fprintf('Max rotor shank flux density: %f T\n' , max(max(BRTSH)));
 fprintf('Max flux density: %f T\n' , max(max(abs(BIRON))));
end

% PLOT RESULTS
if wrm > 0
 xax = qrmdeg; % xaxis value
else
 xax = linspace(0,DT*(iter-1),iter);
end
figure(1)
box on
hold on
plot(t,iabc(1,:), 'b');
plot(t,iabc(2,:), 'r');
plot(t,iabc(3,:), 'g');
plot(t,ifld, 'c');
set(gca, 'FontName' , 'Times New Roman')
set(gca, 'FontSize' ,12)
title('Phase Currents');
xlabel('Time (s)')
ylabel('Current (A)')
figure(2)
box on
hold on
plot(t,torque(1:iter), 'b');

138

set(gca, 'XLim' ,[t(1) t(iter)])
set(gca, 'FontName' , 'Times New Roman')
set(gca, 'FontSize' ,12)
title('Torque');
xlabel('Time (s)')
ylabel('Torque (Nm)')
figure(3)
hold on
box on
plot(t,-(BY(1,1:iter)), 'b');
plot(t,-(BY(2,1:iter)), 'r');
set(gca, 'FontName' , 'Times New Roman')
set(gca, 'FontSize' ,12)
xlabel('Time (s)')
title('Stator Yoke Section Flux Density');
ylabel('Flux Density (T)')
figure(4)
hold on
box on
plot(t,(BT(1,1:iter)), 'b');
plot(t,(BT(2,1:iter)), 'b');
plot(t,(BT(3,1:iter)), 'r');
set(gca, 'FontName' , 'Times New Roman')
set(gca, 'FontSize' ,12)
title('Stator Tooth Flux Density');
xlabel('Time (s)')
ylabel('Flux Density (T)')
figure(5)
hold on
box on
plot(t,(BRY(1,1:iter)), 'r');
plot(t,(BRY(2,1:iter)), 'b');
plot(t,(BRY(3,1:iter)), 'b');
set(gca, 'FontName' , 'Times New Roman')
set(gca, 'FontSize' ,12)
title('Rotor Yoke Flux Density');
xlabel('Time (s)')
ylabel('Flux Density (T)')
figure(6)
hold on
box on
plot(t,BRTSH(1,1:iter), 'b');
set(gca, 'FontName' , 'Times New Roman')
set(gca, 'FontSize' ,12)
title('Rotor Tooth Shank Flux Density');
xlabel('Time (s)')
ylabel('Flux Density (T)')
figure(7)
box on
hold on
plot(t,vabc(1,:), 'b');
plot(t,vabc(2,:), 'r');
plot(t,vabc(3,:), 'g');
set(gca, 'XLim' ,[t(1) t(iter)])
set(gca, 'FontName' , 'Times New Roman')

139

set(gca, 'FontSize' ,12)
title('Phase and field voltage');
xlabel('Time (s)')
ylabel('Voltage (V)')
figure(8)
box on
hold on
plot(t,lamabcpp(1,:), 'b');
plot(t,lamabcpp(2,:), 'r');
plot(t,lamabcpp(3,:), 'g');
set(gca, 'XLim' ,[t(1) t(iter)])
set(gca, 'FontName' , 'Times New Roman')
set(gca, 'FontSize' ,12)
title('Phase and field flux linkage');
xlabel('Time (s)')
ylabel('Flux linkage (Vs)')
plotwrsm(pars,parx,damperdata,0,9);
figure(10)
hold on
% for i = 1:damper_ntip
% plot(t,idamper(i,:))
% end
plot(t,idamper(1,:), 'b');
plot(t,idamper(2,:), 'r');
plot(t,idamper(3,:), 'g');
plot(t,idamper(4,:), 'c');
plot(t,idamper(5,:), 'm');
set(gca, 'FontName' , 'Times New Roman')
set(gca, 'FontSize' ,12)
title('Damper Winding Currents');
xlabel('Time (s)')
ylabel('Current (A)')
legend('1' , '2' , '3' , '4' , '5')

140

%-- --------------------
% AUTHORS: Xiaoqi Wang, Michelle Bash, Steven D. P ekarek
%-- --------------------
% CONTACT: School of Electrical & Computer Enginee ring
% Purdue University
% 465 Northwestern Ave.
% West Lafayette, IN 47907
% 765-494-3434, spekarek@ecn.purdue.edu
%-- --------------------
% April 1, 2012
%-- --------------------
% [parx,pars,turns,damperdata,matdata] = design_par ams(design)
%
% Creates a vector of machine/simulation parameters for a given machine
% using design variables.
%
% OUTPUTS: pars - geometric parameters
% parx - simulation parameters
% turns - conductor turns
% damperdata - damper properties
% matdata - magnetic material propertie s
%
% INPUTS: design - vector of genes from machin e optimization
%-- --------------------
function [parx,pars,turns,damperdata,matdata] = design_para ms(design)
% USER DEFINED MACHINE PARAMETERS --------->
%-- --------------------
% MEC Simulation Data
%-- --------------------
NPH = 3; % NUMBER OF PHASES
damper_rtip_1 = design(20); % Radius of damper windings on rotor tip
damper_rtip_2 = design(21); % Radius of damper windings on rotor tip
damper_rshank = design(22); % Radius of damper windings on rotor shank
damper_ntip = design(23); % Number of damper windings on rotor tip
damper_nshank = design(24); % Number of damper windings on rotor shank
damper_dtip = design(25); % Ratio of the depth of dampers on rotor tip
bartype = design(26); % Bartype: 0-no connection, 1-connent within
poles, 2-connect between poles
%-- --------------------
% Rotor section division & Damper windings distribu tion
% And this is a "mirror half" vector, for example
%
% (rotor sections)
% --- --------
% | | | | | | | | |
% --- --------
% [rdp1 rdp2 rdp3 rdp4 ...]
%
switch damper_ntip
 case 0
 damper_rtip = zeros(4,1);
 case 1
 damper_rtip = [damper_rtip_1 0 0 0]';
 case 2
 damper_rtip = [0 damper_rtip_1 0 0]';

141

 case 3
 damper_rtip = [damper_rtip_1 0 damper_rtip_ 1 0]';
 case 4
 damper_rtip = [0 damper_rtip_1 0 damper_rti p_2 0]';
 case 5
 damper_rtip = [damper_rtip_1 damper_rtip_1 0 damper_rtip_2 0
0]';
 otherwise
 damper_rtip = [damper_rtip_1*mod(damper_nti p,2) damper_rtip_1
damper_rtip_2 damper_rtip_2*ones(1,floor((damper_nt ip+2)/2)-3)]';
end
SPT = 2*length(damper_rtip);
%-- --------------------

SPAIR = 3; % SECTIONS PER HALF THE ROTOR "SLOT"
SLL = 3*design(17)*3*2; % NUMBER OF STATOR SLOTS (change to
correspond with poles)
RP = design(17)*2; % NUMBER OF POLES
vfreq = design(27); % Input voltage frequency
WRMRPM = 1800; % MECHANICAL ROTOR SPEED, RPM
% If WRMRPM==0, then the system is in SSFR mode
if WRMRPM == 0
 ONECYC = 1/vfreq; % ONE PERIOD, s
else
 ONECYC = 1./(WRMRPM/60*RP/2); % ONE PERIOD, s
end
NCYC = design(28); % NUMBER OF ELECTRICAL CYCLES TO SIMULATE
NPTS = design(29); % NUMBER OF DATA POINTS PER CYCLE
TSTART = 0; % INITIAL TIME, s
TSTOP = NCYC*ONECYC; % FINAL TIME, s
ITER = NCYC*NPTS+1; % NUMBER OF ITERATIONS
DT = ONECYC/NPTS; % TIME STEP, s
ALPHAX = 1; % CONVERGENCE FACTOR FOR NEWTON-RAPHSON
MAXIT = 50; % MAXIMUM NUMBER OF ITERATIONS
VDROP = 2; % FORWARD SWITCH AND DIODE DROP, V
scl1 = 1e3; % scaling factor for stator windings
scl2 = 1e1; % scaling factor for field windings
DALPHA = 0.442307; % Rectifier Parameters
DBETA = 2.352236;
%-- --------------------
% Stator Input Data
%-- --------------------
SLTINS = 0; % SLOT INSULATION WIDTH, m
ESC = 2.5e-2; % ARMATURE WINDING EXTENSION BEYOND STACK,
M
%-- --------------------
% Rotor Input Data
%-- --------------------
SHDENS = 0; % SHAFT DENSITY:
%-- --------------------
% Parameters calculated from the design vector
% --- --------------------
SD = design(1); % ROTOR SHAFT DIAMETER
DRC = design(2); % DEPTH OF THE ROTOR CORE
HRT = design(4); % HEIGHT OF THE ROTOR TOOTH

142

G1 = design(5); % MAIN AIR GAP LENGTH, m
HST = design(6); % HEIGHT OF THE STATOR TOOTH
DBS = design(7); % STATOR YOKE DEPTH, m
OD = SD+(DRC+HRT+G1+HST+DBS)*2 ; % STATOR OUTER DIAMETER, m
ROD = SD+(DRC+HRT)*2; % ROTOR OUTER DIAMETER, m
GLS = design(3); % STATOR STACK LENGTH, m
ID = ROD + 2*G1; % STATOR INNER DIAMETER, m
STTW = (ID/2)*(2*pi/SLL)*(1-design(8)); % WIDTH OF STATOR TOOTH TIP, m
tipw = STTW*design(18); % width of stator tooth tip side
tiph = HST*design(19); % height of stator tooth tip
STW = STTW-2*tipw; % STATOR TOOTH SHANK WIDTH, m
B0 = (ID/2)*(2*pi/SLL)*design(8); % STATOR SLOT DIMENSION, m
fHRTT = design(9); % VALUE TO DETERMINE HEIGHT OF ROTOR TOOTH TIP
RPIT = design(10); % ROTOR POLE PITCH COEFFICIENT
fWRTSH = design(11); % VALUE TO DETERMINE WIDTH OF ROTOR TOOTH SHANK
CL = GLS; % ROTOR CORE LENGTH, m
GLP = GLS; % LENGTH OF ROTOR POLE, m

% TURNS VECTOR - DEPENDS ON SLOTS PER POLE PER PHASE
SPPPP = SLL/RP/NPH;
if SPPPP == 1
 Npmax = round(design(12));
 Nphase = [0 Npmax 0];
elseif SPPPP == 2
 Npmax = round(design(12));
 Nphase = [0 0 Npmax Npmax 0 0];
elseif SPPPP == 3
 Npmax = round(design(12));
 Nphase = [Npmax Npmax Npmax Npmax Npmax Npmax 0 0 0];
elseif SPPPP == 4
 Npmax = round(design(12));
 Nphase = [0 0 0 0 Npmax Npmax Npmax Npmax 0 0 0 0];
elseif rem(SPPPP,1)~=0
 error('There must be an integer number of slots per pole per
phase.')
else
 error('Number of stator slots per pole per phase is unacc ounted
for.')
end
frms = design(14); % RMS Stator Voltage or current
fph = design(15); % Phase of stator voltage or current, degrees
ffld = design(16); % FIELD CURRENT or voltage
Nfld = round(design(13)); % FIELD TURNS
%-- ---------------
% STATOR TOOTH DIMENSIONS
fH3 = 0.95; % FRACTION OF SLOT HEIGHT OCCUPIED BY WDG
H0 = (OD/2 - DBS - SLTINS - ID/2)*(1-fH3); % STATOR SLOT HEIGHT
NOT OCCUPIED BY WDG, m
H1 = 0; % STATOR SLOT HEIGHT DIMENSION, m
H2 = 0; % STATOR SLOT HEIGHT DIMENSION, m
H3 = (OD/2 - DBS - SLTINS - ID/2)*fH3; % STATOR SLOT HEIGHT
DIMENSION, m
B1 = (2*pi/SLL)*(ID/2 + H0 + H1) - STW; % STATOR SLOT WIDTH
DIMENSION, m

143

B2 = (2*pi/SLL)*(ID/2 + H0 + H1 + H2) - STW; % STATOR SLOT WIDTH
DIMENSION, m
BS = (2*pi/SLL)*(ID/2 + H0 + H1 + H2 + H3) - S TW; % STATOR SLOT
WIDTH DIMENSION, m
% TURNS
turns = Nphase;
winding = abs(cumsum(turns) - 0.5*sum(turns));
% ROTOR DIMENSIONS
WRTang = 2*pi*RPIT/RP; % ANGLE AT OUTSIDE EDGE OF ROTOR TOOTH TIP
WRTchord= 2*(ROD/2)*sin(0.5*WRTang); % CHORD LENGTH OF ROTOR TOOTH TIP
WRT = WRTang*ROD/2; % WIDTH OF ROTOR TOOTH (arc length)
WAIRT = pi*ROD/RP - WRT; % WIDTH OF AIR BETWEEN ROTOR TEETH (arc
length)
WRTS = WRT/SPT; % WIDTH OF ROTOR TOOTH SECTION (arc length)
DC = SD + DRC*2; % ROTOR CORE DIAMETER
WRTSHchord= fWRTSH*WRTchord; % CHORD WIDTH OF ROTOR TOOTH SHANK
yRT = ROD/2*cos(0.5*WRTang); % VERTICAL HEIGHT TO TOP OF TOOTH TIP
SIDE
yRC = 0.5*sqrt(DC^2-WRTSHchord^2); % VERTICAL HEIGHT TO BOTTOM OF
ROTOR TOOTH SHANK SIDE
HRTT = fHRTT*(yRT-yRC); % VERTICAL HEIGHT OF ROTOR TOOTH TIP SIDE
HRTSH = (yRT-yRC)*(1-fHRTT); % VERTICAL HEIGHT OF ROTOR TOOTH SHANK
WRTSHang= 2*atan(WRTSHchord/(2*(HRTSH+yRC))); % ANGLE OF ROTOR TOOTH
SHANK AT INSIDE OF ROTOR TOOTH TIP
WRTSHrad= (HRTSH+yRC)/(cos(0.5*WRTSHang)); % RADIUS AT TOP OF ROTOR
TOOTH SHANK
WRTSH = WRTSHrad*WRTSHang; % WIDTH OF ROTOR TOOTH SHANK (arc length)
WCOILout= (WRTchord-WRTSHchord)/2; % WIDTH OF FIELD COIL AT OUTER EDGE
WCOILin = (pi*DC/RP - WRTSH)/2; % APPROXIMATE WIDTH OF FIELD COIL AT
INNER EDGE
WCOIL = 0.5*(WCOILout+WCOILin); % AVERAGE WIDTH OF AVAILABLE SPACE
FOR THE FIELD COIL
% --- ---------
% Determination of the number of tangential rotor t eeth permeances
(NRrtrt)
ytmid = sqrt((ROD/2)^2-(0.5*WRTSHchord).^2);
lR = (WRTchord-WRTSHchord)/2+min(0.5*(ytmid-(yRT-
HRTT)),0.25*WRTSHchord);
Nsect = lR/(WRTchord/SPT);
NRrtrt = round(Nsect)*(Nsect-floor(Nsect)~=0.5) + f loor(Nsect)*(Nsect-
floor(Nsect)==0.5);
NRrtrt = NRrtrt - 1*(2*NRrtrt==SPT);
% CROSS-SECTIONAL AREA OF CONDUCTOR IN THE STATOR AND ROTOR
Ncond = max(turns);
slotarea = (0.5*(B1+BS))*H3; % Approximate slot as trapezoid
slotareaf = WCOIL*HRTSH;
Ac = 2*1.0403e-6; % Wire gauge #17, 2 conductors
Acfld = 2.0865e-6; % Wire gauge #14
pfs = 2*Ncond*Ac/slotarea; % STATOR CONDUCTOR PACKING FACTOR
pfr = Nfld*Acfld/slotareaf; % ROTOR CONDUCTOR PACKING FACTOR
% pfs = 0.5; % STATOR CONDUCTOR PACKIN G FACTOR
% pfr = 0.6; % ROTOR CONDUCTOR PACKING FACTOR
% Ac = slotarea*pfs/Ncond;
% Acfld = slotareaf*pfr/Nfld;
%-- --------------------

144

% Conductor Characteristics
%-- --------------------
WIREDENS = 8900; % DENSITY, kg/m^3
sigmac = 58e6; % CONDUCTIVITY of copper
sigalu = 35e6; % Conductivity of aluminium
% WIRE CHARACTERISTICS
SR = 1/(sigmac*Ac);
RR = 1/(sigmac*Acfld);
% LENGTH OF STATOR CONDUCTOR AND STATOR RESISTANCE
DZ = ID + 2*(H0+H1);
DW = 0.5*(OD-DZ) - SLTINS - DBS;
lslot = GLS + 2*ESC;
lend = (2*pi/SLL)*(DZ/2 + DW/2);
lcond = sum(turns)*lslot*RP + 2*sum(winding)*lend *RP;
RS = lcond*SR;
% LENGTH OF ROTOR CONDUCTOR AND FIELD RESISTANCE
lcondfld = 2*(GLP + WRTSH + WCOIL*pi/2)*Nfld*RP;
Rfld = lcondfld*RR;

% --- --------------------
% Resistance of the rotor tooth tip damper bar body
CL_dp = CL; % Damper bar length with extended portion
dp_pos = find(damper_rtip);
Rd_r1 = damper_rtip(dp_pos);
Rd_r2 = flipdim(Rd_r1,1);
if damper_ntip == 0
 Rd_r = [];
elseif dp_pos(1) == 1
 Rd_r = [Rd_r2(1:end-1);Rd_r1];
else
 Rd_r = [Rd_r2;Rd_r1];
end
Rd = CL_dp./(sigmac*pi*Rd_r.^2)*(1+0.004041*47.2);

% Resistance of the rotor tooth tip damper bar end connection
switch damper_ntip
 case 0
 Re_ang = [];
 case 1
 Re_ang = 2*(length(damper_rtip)-
dp_pos(end)+1)*WRTang/(SPT+1)+(2*pi/RP-WRTang);
 case 2
 Re_ang = [(2*dp_pos(1)-1)*WRTang/(SPT+1); ...
 2*(length(damper_rtip)-
dp_pos(end)+1)*WRTang/(SPT+1)+(2*pi/RP-WRTang)];
 otherwise
 if dp_pos(1) == 1
 Re_ang_1 = zeros(length(dp_pos),1);
 for i = 1:length(dp_pos)-1
 Re_ang_1(i) = (dp_pos(i+1)-
dp_pos(i)+0.5*(i==1))*WRTang/(SPT+1);
 end
 Re_ang_1(end) = 2*(length(damper_rtip)-
dp_pos(end)+1)*WRTang/(SPT+1)+(2*pi/RP-WRTang);
 Re_ang_2 = flipdim(Re_ang_1,1);

145

 Re_ang = [Re_ang_2(2:end);Re_ang_1];
 else
 Re_ang_1 = zeros(length(dp_pos)+1,1);
 Re_ang_1(1) = (2*dp_pos(1)-1)*WRTang/(S PT+1);
 for i = 1:length(dp_pos)-1
 Re_ang_1(i+1) = (dp_pos(i+1)-dp_pos (i))*WRTang/(SPT+1);
 end
 Re_ang_1(end) = 2*(length(damper_rtip)-
dp_pos(end)+1)*WRTang/(SPT+1)+(2*pi/RP-WRTang);
 Re_ang_2 = flipdim(Re_ang_1,1);
 Re_ang = [Re_ang_2(2:end-1);Re_ang_1];
 end
end
Re_b = 0.1e-3; % Base value
Re = Re_b*Re_ang/min(Re_ang)*(1+0.004041*47.2);

%-- --------------------
% Additional Simulation and Optimization Parameters
%-- --------------------
TOL = 1e-5; % Convergence tolerance
PTCmin = 1e-16; % Minimum allowed airgap permeance to avoid inf Rag
Pmin = 1e4; % Constraint on power output
vdcmax = 480/sqrt(3); % Constraint on bus voltage
Jmax = 7.6*1e6; % Constraint on current density
slopes = pi/2; % Slopes to calculate fringing airgap permeances
%-- --------------------
% Material data
%-- --------------------
% Kohler
DENS = 7437.49; % Kohler
Bsat = 2.5; % Kohler
% Stator steel
matdata.s.K = 4;
matdata.s.mur = 5349.922;
matdata.s.a = [0.12542 0.00019835 0.00019835 0.000 19835];
matdata.s.b = [13.14573 0.1971988 129.4606 8.358885];
matdata.s.g = [1.6445 0.01 1.4157 0. 58577];
matdata.s.d = matdata.s.a./matdata.s.b;
matdata.s.e = matdata.s.b.*matdata.s.g;
matdata.s.z = 1+exp(matdata.s.e);
matdata.s.alpha = 1.0529;
matdata.s.beta = 1.5969;
matdata.s.kh = 0.33143;
matdata.s.ke = 8.2813e-05;
slB = 3*SLL/RP;
matdata.s.a = ones(slB,1)*matdata.s.a;
matdata.s.b = ones(slB,1)*matdata.s.b;
matdata.s.d = ones(slB,1)*matdata.s.d;
matdata.s.e = ones(slB,1)*matdata.s.e;
matdata.s.z = ones(slB,1)*matdata.s.z;
% Rotor steel
matdata.r.K = 4;
matdata.r.mur = 5349.922;
matdata.r.a = [0.12542 0.00019835 0.00019835 0.000 19835];
matdata.r.b = [13.14573 0.1971988 129.4606 8.358885];

146

matdata.r.g = [1.6445 0.01 1.4157 0. 58577];
matdata.r.d = matdata.r.a./matdata.r.b;
matdata.r.e = matdata.r.b.*matdata.r.g;
matdata.r.z = 1+exp(matdata.r.e);
matdata.r.alpha = 1.0529;
matdata.r.beta = 1.5969;
matdata.r.kh = 0.33143;
matdata.r.ke = 8.2813e-05;
rlB = 6+SPT+damper_nshank+SPT+(SPT-1);
matdata.r.a = ones(rlB,1)*matdata.r.a;
matdata.r.b = ones(rlB,1)*matdata.r.b;
matdata.r.d = ones(rlB,1)*matdata.r.d;
matdata.r.e = ones(rlB,1)*matdata.r.e;
matdata.r.z = ones(rlB,1)*matdata.r.z;
% --- --------------------
% % M19 - PROPERTIES FROM PMMT
% DENS = 7402; % DENSITY OF M19
% Bsat = 1.4311; % Maximum allowed satur ation
% % Stator steel
% matdata.s.K = 4;
% matdata.s.mur = 32685.6784;
% matdata.s.a = [0.098611 0.0014823 0.001435 0.0014 35];
% matdata.s.b = [69.73973 1.949541 162.2767 3.59855 3];
% matdata.s.g = [1.399 2.1619 1.2475 2.0377];
% matdata.s.d = matdata.s.a./matdata.s.b;
% matdata.s.e = matdata.s.b.*matdata.s.g;
% matdata.s.z = 1+exp(matdata.s.e);
% matdata.s.alpha = 1.338;
% matdata.s.beta = 1.817;
% matdata.s.kh = 0.09294;
% matdata.s.ke = 0.00005044;
% slB = 3*SLL/RP;
% matdata.s.a = ones(slB,1)*matdata.s.a;
% matdata.s.b = ones(slB,1)*matdata.s.b;
% matdata.s.d = ones(slB,1)*matdata.s.d;
% matdata.s.e = ones(slB,1)*matdata.s.e;
% matdata.s.z = ones(slB,1)*matdata.s.z;
% % Rotor steel
% matdata.r.K = 4;
% matdata.r.mur = 32685.6784;
% matdata.r.a = [0.098611 0.0014823 0.001435 0.0014 35];
% matdata.r.b = [69.73973 1.949541 162.2767 3.59855 3];
% matdata.r.g = [1.399 2.1619 1.2475 2.0377];
% matdata.r.d = matdata.r.a./matdata.r.b;
% matdata.r.e = matdata.r.b.*matdata.r.g;
% matdata.r.z = 1+exp(matdata.r.e);
% matdata.r.alpha = 1.338;
% matdata.r.beta = 1.817;
% matdata.r.kh = 0.09294;
% matdata.r.ke = 0.00005044;
% rlB = 6+SPT+damper_nshank+SPT+(SPT-1);
% matdata.r.a = ones(rlB,1)*matdata.r.a;
% matdata.r.b = ones(rlB,1)*matdata.r.b;
% matdata.r.d = ones(rlB,1)*matdata.r.d;
% matdata.r.e = ones(rlB,1)*matdata.r.e;

147

% matdata.r.z = ones(rlB,1)*matdata.r.z;
%
%-- --------------------
% Damper data
%-- --------------------
damperdata.Rd = Rd;
damperdata.Re = Re;
damperdata.Rd_r = Rd_r;
damperdata.damper_rtip = damper_rtip;
damperdata.damper_rshank = damper_rshank;
damperdata.damper_ntip = damper_ntip;
damperdata.damper_nshank = damper_nshank;
damperdata.damper_dtip = damper_dtip;
damperdata.bartype = bartype;
%
% PARS - PARAMETER VECTOR, PRIMARILY GEOMETRY
pars = zeros(1,63);
pars(1) = OD;
pars(2) = ID;
pars(3) = GLS;
pars(4) = DBS;
pars(5) = H0;
pars(6) = H1;
pars(7) = H2;
pars(8) = H3;
pars(9) = B0;
pars(10) = B1;
pars(11) = B2;
pars(12) = BS;
pars(13) = SLTINS;
pars(14) = G1;
pars(15) = 0; % UNUSED
pars(16) = 0; % UNUSED
pars(17) = ESC;
pars(18) = 0; % UNUSED
pars(19) = 0; % UNUSED
pars(20) = STW;
pars(21) = STTW;
pars(22) = 0; % UNUSED
pars(23) = RS;
pars(24) = ROD;
pars(25) = DC;
pars(26) = CL;
pars(27) = GLP;
pars(28) = RP;
pars(29) = SD;
pars(30) = 0; % UNUSED
pars(31) = 0; % UNUSED
pars(32) = RPIT;
pars(33) = HRT;
pars(34) = WRT;
pars(35) = WAIRT;
pars(36) = WRTS;
pars(37) = DENS;
pars(38) = SHDENS;

148

pars(39) = WIREDENS;
pars(40) = Ac;
pars(41) = Nfld;
pars(42) = Acfld;
pars(43) = Rfld;
pars(44) = HRTT;
pars(45) = HRTSH;
pars(46) = WRTSH;
pars(47) = ffld;
pars(48) = pfs;
pars(49) = frms;
pars(50) = fph;
pars(51) = WCOIL;
pars(52) = pfr;
pars(53) = 0; % UNUSED
pars(54) = slopes;
pars(55) = WRTchord; % UNUSED
pars(56) = WRTSHchord;
pars(57) = tipw; % Width of stator teeth tip
pars(58) = tiph; % Height of stator teeth tip
% PARX - SIMULATION PARAMETERS
parx = zeros(1,30);
parx(1) = NPH;
parx(2) = SPT;
parx(3) = SLL;
parx(4) = WRMRPM;
parx(5) = vfreq;
parx(6) = NCYC; % Number of cycles
parx(7) = 0; % UNUSED
parx(8) = 0; % UNUSED
parx(9) = 0; % UNUSED
parx(10) = TSTART;
parx(11) = TSTOP;
parx(12) = DT;
parx(13) = ALPHAX;
parx(14) = MAXIT;
parx(15) = 0; % 1:Delta connection; 0:Wye connection
parx(16) = scl1; % Scaling factor for stator windings
parx(17) = scl2; % Scaling factor for field windings
parx(18) = DALPHA;
parx(19) = DBETA;
parx(20) = VDROP;
parx(21) = TOL;
parx(22) = PTCmin;
parx(23) = Bsat;
parx(24) = Pmin;
parx(25) = vdcmax;
parx(26) = Jmax;
parx(27) = NRrtrt;
parx(28) = 0; % UNUSED
parx(29) = SPAIR;
parx(30) = ITER;

149

%-- --------------------
% AUTHORS: Xiaoqi Wang, Michelle Bash, Steven D. P ekarek
%-- --------------------
% CONTACT: School of Electrical & Computer Enginee ring
% Purdue University
% 465 Northwestern Ave.
% West Lafayette, IN 47907
% 765-494-3434, spekarek@ecn.purdue.edu
%-- --------------------
% Apr 1, 2013
%-- --------------------
%
[t,vabc,lamabcpp,lamdamper,iabc,idamper,idc,vdc,vc, torque,qrm,phit,BY,B
T,BTT,nrconverge,saturate,BIRON] =
% wrsmdynamics(parx,pars,turns,damperdata,mudata,qr _init)
%
% Solves the Dynamics of the MEC network.
%
% OUTPUTS: t - time vector (s)
% vabcs - phase voltages (V)
% lamabcpp - phase flux linkage per pole (Vs)
% lamdamper - damper flux linkage (Vs)
% iabcs - phase currents (A)
% idamper - damper bar currents (A)
% idc - dc bus currents (A)
% vdc - dc bus voltage (V)
% vc - dc bus capacitor voltage (V)
% torque - torque (Nm)
% qrm - mechanical rotor position (ra dians)
% phit - stator teeth flux (Wb)
% BY,BT,BTT - flux density in the stato r yoke, stator
teeth, and stator tooth tips (T)
% nrconverge - flag indicating if newton r aphson converged
% saturate - indicates if the flux densi ty limit is violated
% BIRON - flux density in iron (Wb)
%
% INPUTS: pars - geometric parameters
% parx - simulation parameters
% turns - phase winding turns (turn cou nt)
% damperdata - information of damper bar s
% mudata - magnetic material data for fi nding permeability
% qr_init - initial rotor position in ele ctric degree
%-- --------------------
function
[t,vabc,lamabcpp,lamdamper,iabc,idamper,idc,vdc,vc, torque,qrm,phit,BY,B
T,BTT,nrconverge,saturate,BIRON] =
wrsmdynamics(parx,pars,turns,damperdata,mudata,qr_i nit)
%-- --------------------
% INITIALIZE THE SYSTEM
%-- --------------------
mu0 = pi*4e-7; % Permeability of free space
RP = pars(28); % Poles
S = parx(3)/RP; % Number of stator slots per pole
D = 2*(parx(2)); % Number of rotor pole tip sections per pole pair
Dsl = 4*parx(29); % Number of inter-polar regions per pole pair

150

SPT = parx(2); % SECTIONS PER ROTOR TOOTH, including radial and
tangential
NRrtrt = parx(27); % Number of outer pole tip reluctances per pole pai r
damper_ntip = damperdata.damper_ntip; % Number of damper windings
on rotor tip
damper_nshank = damperdata.damper_nshank; % Number of damper windings
on rotor shank
bartype = damperdata.bartype; % Type of damper bars connnection
Rd = damperdata.Rd; % Damper bar body resistance
Re = damperdata.Re; % Damper bar end connection resistance
Rload = 22.81; % Parallel resistance load
Lload = 0.0807; % Parallel resistance load
Cload = 100e-6; % Filter capacitance
taus = 0.1; % Filter time constant
rs = pars(23); % Stator windings resistance
wrm = parx(4)*2*pi/60; % Mechanical rotor speed in rad/s
wr = (pars(28)/2)*wrm;
scl = parx(16);
ifld = pars(47); % Field current (A)
vrms = pars(49); % rms Stator voltage (V)
vphase = pars(50); % Current phase angle (degrees)
vm = vrms*sqrt(2); % Magnitude of vas,vbs,vcs
DT = parx(12); % Time step in s
iter = parx(30); % Number of iterations
vdcmax = parx(25); % Maximum dc voltage
% For machine design with RL load producing rated p ower ---------------
% Vll_rms = 480;
% pf = 0.8;
% P = parx(24);
% Q = sqrt((P/pf)^2-P^2);
% Rload = 3*(Vll_rms/sqrt(3))^2/P;
% Lload = (Vll_rms/sqrt(3))^2/Q/wr;
% --- --------------------
% INITIALIZE VARIABLES
slB = 3*S; % Number of iron elements in stator
rlB = 6+D/2+damper_nshank+SPT+(SPT-1); % Number of iron elements in
rotor
lB = slB+rlB; % Number of iron elements
nriter = zeros(1,iter); % Keeps track of N-R iterations
torque = zeros(1,iter);
PTC = zeros(S,D+Dsl,iter); % Matrix of airgap permeances
dPTC = zeros(S,D+Dsl,iter);
phit = zeros(S,iter); % Stator tooth flux
phiiron = zeros(lB,iter); % Flux in iron
BY = zeros(S,iter); % Stator yoke flux density
BT = zeros(S,iter); % Stator tooth shank flux density
BTT = zeros(S,iter); % Stator tooth tip flux density
BIRON = zeros(lB,iter); % Flus density in all iron elements
saturate = ones(1,iter); % Saturation constraint (is Bsat
violated)
smuiron = get_mur_exp(zeros(slB,1),mudata.s); % Initial permeabilities
of stator
rmuiron = get_mur_exp(zeros(rlB,1),mudata.r); % Initial permeabilities
of rotor
muiron = [smuiron;rmuiron]; % Initial permeabilities

151

TOL = parx(21); % tolerance for convergence of
Newton-Raphson
k = 1; % Simulation step
t(k) = parx(10);
% ARTIFICIAL ROTOR POSITION MODIFICATION used in th e calculation of
airgap
% permeances.----
SLL = parx(3);
ID = pars(2);
ROD = pars(24);
STTW = pars(21);
WRT = pars(34);
WAIRT = pars(35);
shift1 = WRT/(ROD/2);
shift2 = (WAIRT/2)/(ROD/2);
shift3 = 2*pi/SLL;
shift4 = (STTW/2)/(ID/2);
shift5 = (pi/2)/(RP/2);
shift = shift1 + shift2 - (S/2)*shift3 - shift4 - shift5;
% TIME AND ROTOR POSITION VECTORS
t = (0:DT:DT*(iter-1))+t(k);
qrm = t*wrm + qr_init/(RP/2); % Actual rotor position
qrm_shift = qrm + shift; % Angle fed to airgap permeance
function
%-- --------------------
% CALCULATE VARIABLES/MATRICES WHICH WILL NOT CHANGE DURING SIM
%-- --------------------
% Variables/matrices to be used in airgap permeance calculation
WRS = pars(35)/(2*parx(29));
WRTS = pars(36);
B0 = pars(9);
SPT = parx(2);
RPIT = pars(32);
WRTSang = 2*pi*RPIT/RP/SPT;
WRTang = 2*pi*RPIT/RP;
WRSang = 2*pi*(1-RPIT)/RP/(Dsl/2);
qs = STTW/ID*RP; % Span of stator tooth in
electrical radians
qs1 = B0/ID*RP; % Span of stator slot
qrr = WRTSang*RP/2; % Span of rotor pole tip section
qrs = WRSang*RP/2; % Span of inter-polar section
Gmaxrt = pi*4e-7*pars(3)/(ID-
ROD)*2*(WRTS*(STTW>=WRTS)+STTW*(STTW<WRTS)); % if-else
Gmaxsl = pi*4e-7*pars(3)/(ID-ROD)*2*(WRS*(STTW>=WRS)+STTW*(STTW<WRS));
% if-else
rt = 1:D; rtsl = 1:Dsl; st = (1:S)';
% Matrices defining the angle between every stator tooth and rotor
section
anglert = ones(S,1)*(-mod(rt-1,(D/2))*WRTSang - flo or((rt-
1)/(D/2))*2*pi/RP) ...
 + ((st-1)*(STTW+B0)/(ID/2))*ones(1,D);
anglesl = ones(S,1)*(-WRTang - mod(rtsl-1,(Dsl/2))* WRSang - ...
 floor((rtsl-1)/(Dsl/2))*2*pi/RP) + ((st-
1)*(STTW+B0)/(ID/2))*ones(1,Dsl);

152

% Establish the geometric case for the rotor tooth section
if qrr <= qs1/2
 qrrcs = 1;
elseif (qrr <= qs)
 qrrcs = 2;
elseif (qrr <= qs +qs1/2)
 qrrcs = 3;
elseif (qrr <= qs+qs1)
 qrrcs = 4;
else
 qrrcs = 5;
end
% Establish the geometric case for the rotor slot s ection
if qrs <= qs1/2
 qrscs = 1;
elseif (qrs <= qs)
 qrscs = 2;
elseif (qrs <= qs +qs1/2)
 qrscs = 3;
elseif (qrs <= qs+qs1)
 qrscs = 4;
else
 qrscs = 5;
end

% --- -------------------
% turns matrix to be used in system of equations
Natrn = [-turns turns]';
Nbtrn = [Natrn(2*SLL/(3*RP)+1:end);Natrn(1:2*SLL/ (3*RP))];
Nctrn = [Natrn(4*SLL/(3*RP)+1:end);Natrn(1:4*SLL/ (3*RP))];
Nabc = [Natrn Nbtrn Nctrn];
Nfld = pars(41);
Nabcf = [Nabc(1:S,:) zeros(S,1);0 0 0 Nfld;0 0 0 -Nfld];
% --- -------------------
% MEC loops with MMF sources
Cvcfixed = (1:S+2)';
%-- --------------
% Calculate the reluctances
[Rxm,areas,Rair,NPRTS,NPRTB] =
get_reluctances(mu0,parx,pars,damperdata);
Riron = Rxm./muiron;
%-- --------------
% Identify type of node in rotor tooth and slot
% 1 = node of rotor pole tip radial branch
% 2 = node of rotor pole tip tangential branch
% 3 = rotor slot branch going to rotor edge
% 4 = rotor slot branch going to bottom of rotor po le tip
rtid = [2*ones(NRrtrt,1);ones(D/2-2*NRrtrt,1);2*one s(NRrtrt,1); ...
 3*ones(NPRTS,1);4*ones(2*NPRTB,1);3*ones(NP RTS,1); ...
 2*ones(NRrtrt,1);ones(D/2-2*NRrtrt,1);2*one s(NRrtrt,1); ...
 3*ones(NPRTS,1);4*ones(2*NPRTB,1);3*ones(NP RTS,1)];
% Identify how many RRTOUT branches border the roto r loop
NRBRL = ceil((NRrtrt+1)/2); % Number of RRTOUT branches Bordering
Rotor Loop

153

NRTBD = NRrtrt-NRBRL; % Number of RRTOUT branches with bordering loop
To Be Determined
% --- -------------------
% Define reluctance connections in stator and rotor which do not change
% Stator tooth tip, damper slots, and leakage of da mper slots are not
% presented here, but will be derived as postproces s in shape_alg.m
% IRON
% Stator yoke - S
% Stator teeth - S
% Rotor yoke below the slot - 1
% Rotor tooth shank - 1
% Rotor yoke connected to shank - 2
% Rotor tooth tips radial - (D - 4*NRrtrt)
% Rotor tooth to rotor tooth tangential - 4*NRrtrt
% Rotor tooth tangential at sides of tooth tips - 4
% AIR
% Stator tooth leakage - S
% Field winding leakage - 2
% Middle rotor slot leakage - 2
% Fringing permeance from rotor side to airgap boun dary - Dsl
% Fringing permeance from rotor slot side to bottom of tooth tip - 4
% RY R RRYSL RRTSH RRYSH RRTIN RRTOUT RRTS RSTL RFDL RRTL RAGFR RFRB
Crcfixed = zeros(2*S+8+D+S+3+Dsl,3);
% RY (all)
Crcfixed(1:S,2)=(1:S)';
% R (all)
Crcfixed(S+1:2*S,2) = [1 2:S]';
Crcfixed(S+1:2*S,3) = [-S 1:S-1]';
% RRYSL (all)
Crcfixed(2*S+1,3) = S+3;
% RRTSH (all)
Crcfixed(2*S+2,2:3) = [S+1 S+2];
% RRYSH (all)
Crcfixed(2*S+2+(1:2)',2) = [S+1;S+2];
% RRTIN (Determined by shape algorithm)
% RRTOUT - One side known if reluctance borders rot or loop
Crcfixed(2*S+2+D-4*NRrtrt+2+(1:4*NRrtrt)',2) = ...

[[zeros(NRTBD,1);ones(NRBRL,1)]*(S+1);[ones(NRBRL,1);zeros(NRTBD,1)]*(S
+2); ...
 -[zeros(NRTBD,1);ones(NRBRL,1)]*(S+1);-
[ones(NRBRL,1);zeros(NRTBD,1)]*(S+2)];
% RRTS - (Determined by shape algorithm)
% RSTL (one side known, use shape alg for other)
Crcfixed(2*S+2+D+6+(1:S)',2) = (1:S)';
% RFDL (all)
Crcfixed(2*S+2+D+6+S+(1:2)',2:3) = [-(S+3) S+1;S+2 S+3];
% RRTL (one side known, use shape alg for other)
Crcfixed(2*S+2+D+6+S+2+(1:2)',2) = [S+3;-(S+3)];
% RAGFR - (Determined by shape algorithm)
% RFRB (one side, use shape alg for other)
Crcfixed(2*S+2+D+6+S+4+Dsl+(1:4)',2) = [-(S+3);S+3; S+3;-(S+3)];
%-- --------------------
% Initialize variables
if parx(15) == 1 %Delta

154

 nio = 3;
 mlam = [0 1 0;-1 0 0;0 0 0];
 m_isil = [-1 0 1;1 -1 0;0 1 -1];
 m_vgvs = 1.5*[1 sqrt(3)/3 0;-sqrt(3)/3 1 0;0 0 0];
else %Wye
 nio = 2;
 mlam = [0 1;-1 0];
 m_isil = -eye(3);
 m_vgvs = [1 0 0;0 1 0];
end
iabc = zeros(3,iter);
lamabcpp = zeros(3,iter);
vqd0sr = zeros(nio,iter);
iqd0sr = zeros(nio,iter);
lamqd0srpp = zeros(nio,iter+1);
plamqd0srpp = zeros(nio,iter);
idamper = zeros(damper_ntip,iter);
lamdamper = zeros(damper_ntip,iter+1);
plamdamper = zeros(damper_ntip,iter);
index_vect = zeros(damper_ntip,3,iter+1);
flag_vect = ones(damper_ntip,iter+1);
il_qd = zeros(2,iter+1);
pil_qd = zeros(2,iter);
vc = ones(1,iter+1)*vdcmax;
pvc = zeros(1,iter);
idc = ones(1,iter+1)*vdcmax/Rload;
vdc = ones(1,iter+1)*vdcmax;
Ivdc = zeros(1,iter+1);
Ivc = zeros(1,iter+1);

% Calculate the voltages for SSFR test
if wrm>0
 vas = vm*cos((RP/2)*(qrm) + (pi*vphase/180));
 vbs = vm*cos((RP/2)*(qrm) + (pi*vphase/180) - (2*pi/3));
 vcs = vm*cos((RP/2)*(qrm) + (pi*vphase/180) - (4*pi/3));
else
 vfreq = parx(5);
 vas = 2/3*vm*cos(2*pi*vfreq*t);
 vbs = -1/3*vm*cos(2*pi*vfreq*t);
 vcs = -1/3*vm*cos(2*pi*vfreq*t);
end
vabc = [vas;vbs;vcs];

% Initial stator flux linkage per pole values
if wrm > 0
 Ksr_prime = (2/3)*[-sin((RP/2)*(qrm(k))) -sin((RP/2)*(qrm(k))-
2*pi/3) -sin((RP/2)*(qrm(k))+2*pi/3);
 cos((RP/2)*(qrm(k))) cos((RP/2)*(qrm(k))-2* pi/3)
cos((RP/2)*(qrm(k))+2*pi/3)];
 lamqd0srpp(1:2,k) = Ksr_prime*vabc(:,k)/wr/RP;
else
 lamqd0srpp(1:2,k) = [0.00;0.001];
end
%-- --------------------
% Determine transformation matrix for plamdamper

155

if bartype == 1
 % Version-1: No end connection resistance --------- ----------------
 % For example damper_ntip = 5
 % Tdp = [-rb1 rb2 0 0;0 -rb2 rb3 0;0 0 -rb3 rb4;-rb 5 -rb5 -rb5 -
rb5-rb4];

 % if damper_ntip == 2
 % Tdp = -Rd(1)-Rd(2);
 % else
 % Tdp = -diag(Rd(1:end-1));
 % for i = 1:damper_ntip-2
 % Tdp(i,i+1) = Rd(i+1);
 % end
 % Tdp(damper_ntip-1,:) = -Rd(damper_ntip)*ones(1,damper_ntip-
1);
 % Tdp(damper_ntip-1,damper_ntip-1) = Tdp(damper _ntip-
1,damper_ntip-1)-Rd(damper_ntip-1);
 % end

 % Version-2: With end connection resistance ------- ----------------
 % Tdp = [-rb1-2*re1 rb2 0 0;
 % -2*re2 -rb2-2*re2 rb3 0;
 % -2*re3 -2*re3 -rb3-2*re3 rb4;
 % -rb5-2*re4 -rb5-2*re4 -rb5-2*re4 -rb5-2*re 4-rb4];

 % Re = [0.1 0.1 0.1 0.1 0.1]*1e-3;
 if damper_ntip < 2
 Tdp = [];
 elseif damper_ntip == 2
 Tdp = -Rd(1)-Rd(2)-2*Re(1);
 else
 Tdp = -diag(Rd(1:end-1));
 for i = 1:damper_ntip-2
 Tdp(i,i+1) = Rd(i+1);
 end
 for i = 1:damper_ntip-1
 for j = 1:i
 Tdp(i,j) = Tdp(i,j)-2*Re(i);
 end
 end
 Tdp(damper_ntip-1,:) = Tdp(damper_ntip-1,:) -
Rd(damper_ntip)*ones(1,damper_ntip-1);
 end

elseif bartype == 2
 % Version-1: No end connection resistance --------- ----------------
 % For example damper_ntip = 5
 % Tdp = [-Rd(1) Rd(2) 0 0 0;0 -Rd(2) Rd(3) 0 0;0 0 -Rd(3) Rd(4) 0;0
0 0 -Rd(4) Rd(5);-Rd(1) 0 0 0 -Rd(5)];

 % if damper_ntip == 1
 % Tdp = -2*Rd(1);
 % else
 % Tdp = -diag(Rd(1:end));

156

 % for i = 1:damper_ntip-1
 % Tdp(i,i+1) = Rd(i+1);
 % end
 % Tdp(damper_ntip,1) = -Rd(1);
 % end

 % Version-2: With end connection resistance ------- ----------------
 % Re = [0.1 0.1 0.1 0.1 0.1]*1e-3;
 % Tdp = -[Rd(1)+Re(1) -Rd(2)-Re(1) -Re(1) -Re(1) -R e(1); ...
 % Re(2) Rd(2)+Re(2) -Rd(3)-Re(2) -Re(2) -Re (2); ...
 % Re(3) Re(3) Rd(3)+Re(3) -Rd(4)-Re(3) -Re(3); ...
 % Re(4) Re(4) Re(4) Rd(4)+Re(4) -Rd(5)-Re(4); ...
 % Rd(1)+Re(5) Re(5) Re(5) Re(5) Rd(5)+Re(5)];
 %
 % Re = [0.1 0.1 0.1 0.1 1]*1e-3;
 if damper_ntip == 0
 Tdp = [];
 elseif damper_ntip == 1
 Tdp = -2*Rd(1)-2*Re(1);
 else
 Tdp = -diag(Rd(1:end));
 for i = 1:damper_ntip
 for j = 1:damper_ntip
 if j <= i
 Tdp(i,j) = Tdp(i,j)-Re(i);
 else
 Tdp(i,j) = Tdp(i,j)+Re(i);
 end
 end
 end
 for i = 1:damper_ntip-1
 Tdp(i,i+1) = Tdp(i,i+1)+Rd(i+1);
 end
 Tdp(damper_ntip,1) = Tdp(damper_ntip,1)-Rd(1);
 end
end
%-- --------------------
% SOLVING LOOP
%-- --------------------
nrconverge = 1;
while k <= iter
 % AIR-GAP PERMEANCES
 [PTC(:,:,k),dPTC(:,:,k)] =
get_Pag(qrm_shift(k),pars,parx,Gmaxrt,Gmaxsl,angler t,anglesl,qrrcs,qrsc
s);
 % Shape algorithm - Find the loop topology in the a irgap if it has
changed
 if k==1 || sum(sum((PTC(:,:,k-1)~=0)~=(PTC(:,:,k)~=0)))>0
 [Crconn,Cvconn,O,PTCind,d_damper_1,d_damper _2,index,flag] =
shape_alg(PTC(:,:,k),parx,pars,damperdata,Crcfixed, Cvcfixed,rtid,index_
vect(:,:,k),flag_vect(:,k));
 if length(Crconn)~=length([Riron;Rair;PTCind])
 nrconverge = 0;
 break
 end

157

 end

 % Obtain list of airgap permeances and their deriva tives for this
rotor position
 ptc = PTC(:,:,k)';
 PTClist = ptc(PTCind);
 dptc = dPTC(:,:,k)';
 dPTClist = dptc(PTCind);

 % Using rotor reference frame
 Ksr = (2/3)*[cos((RP/2)*(qrm(k))) cos((RP/2)*(q rm(k))-2*pi/3)
cos((RP/2)*(qrm(k))+2*pi/3);
 sin((RP/2)*(qrm(k))) sin((RP/2)*(qr m(k))-2*pi/3)
sin((RP/2)*(qrm(k))+2*pi/3);
 0.5 0.5 0.5];
 Ksrinv = [cos((RP/2)*(qrm(k))) sin((RP/2)*(qrm(k))) 1;
 cos((RP/2)*(qrm(k))-2*pi/3) sin((RP/2) *(qrm(k))-2*pi/3) 1;
 cos((RP/2)*(qrm(k))+2*pi/3) sin((RP/2) *(qrm(k))+2*pi/3)
1];

 % Find the system of equations and solve for the in itial guess
 [A,d] =
get_meshmatrices(Rair,PTClist,Riron,parx,pars,Nabcf ,Crconn,Cvconn);

 % --- ----------------
 if bartype == 0 || (bartype==1 && damper_ntip<2) || (bartype==2 &&
damper_ntip<1)
 Aaug = [A -scl*d(:,1:3)*Ksrinv(:,1:nio) ;
scl*Ksr(1:nio,:)*d(:,1:3)' zeros(nio,nio)];
 daug = [d(:,4) zeros(length(A),nio) ;zeros(nio,1) eye(nio)];
 if rcond(Aaug)<1e-16
 fprintf('Warning: rcond(Aaug) = %d at
k=%i.\n' ,rcond(Aaug),k);
 end

 % Solve for vector of loop flux and current
 lam = [ifld;scl*lamqd0srpp(:,k)];
 xg = Aaug\(daug*lam);
 % Identify just the loop fluxes
 fluxm = xg(1:end-nio);
 % NEWTON-RAPHSON SOLVER
 it = 1; % Keeps track of N-R iterations
 NRSOLVE = 1;
 while NRSOLVE
 % DETERMINE FLUXES FOR THE GUESS VECTOR xg
 phi = O*fluxm;
 phiiron(:,k) = phi(1:lB);
 % DETERMINE B-FIELDs
 BIRON(:,k) = phiiron(:,k)./areas;
 % GET PERMEABILITY FOR EACH RESPECTIVE PERM
 [sMU,sdmdb] = get_mur_exp(BIRON(1:slB,k),mudata.s);
 [rMU,rdmdb] = get_mur_exp(BIRON(slB+1:e nd,k),mudata.r);
 MU = [sMU;rMU];
 dmdb = [sdmdb;rdmdb];

158

 % UPDATE MATRICIES
 Riron = Rxm./MU;
 [Ag,d,Cr] =
get_meshmatrices(Rair,PTClist,Riron,parx,pars,Nabcf ,Crconn,Cvconn);
 Aaug = [Ag -scl*d(:,1:3)*Ksrinv(:,1:nio) ;
scl*Ksr(1:nio,:)*d(:,1:3)' zeros(nio,nio)];
 daug = [d(:,4) zeros(length(Ag),nio) ;z eros(nio,1)
eye(nio)];
 if rcond(Aaug)<1e-16
 fprintf('Warning: rcond(Aaug) = %d at
k=%i.\n' ,rcond(Aaug),k);
 end
 % Pure Newton Raphson Iterator - find Jacobian and update x
 J =
get_J(Cr(1:lB,:),O(1:lB,:),Aaug,MU,areas,dmdb,xg);
 xnewp = xg - J\(Aaug*xg - daug*lam);

 % Check for convergence
 if ((sqrt((xnewp-xg)'*(xnewp-
xg))/(length(xg)*max(abs([xnewp;xg]))) ...
 < TOL) || (it == parx(14)))
 if (it == parx(14))
 % Maximum N-R iterations reached
 disp(['Max Iterations Reached: IT = ' num2str(it)
', Data Point = ' num2str(k)]);
 nrconverge = 0;
 end
 NRSOLVE = 0;
 nriter(k) = it;
 else
 xg = xnewp;
 fluxm = xg(1:end-nio);
 it = it+1;
 end
 end
 if ~nrconverge
 break
 end
 % Store flux/flux density values after converging
 phit(:,k) = phi(S+1:2*S);
 phiag = phi(4*S+11+D/2+Dsl/2+1+damper_nshan k+D/2+2*(SPT-
1):end);
 BY(:,k) = BIRON(1:S,k);
 BT(:,k) = BIRON(S+1:2*S,k);
 BTT(:,k) = BIRON(2*S+1:3*S,k);
 % Calculate torque
 torque(k) = ((RP/2)^2)*sum(phiag.^2.*dPTCli st./(PTClist.^2));
 % Phase current calculation
 iqd0sr(:,k) = xg(end-nio+1:end)*scl;
 iabc(:,k) = Ksrinv(:,1:nio)*iqd0sr(:,k);
 % Phase flux linkage calculation
 lamabcpp(:,k) = Ksrinv(:,1:nio)*lamqd0srpp(:,k);

 elseif bartype == 1 % ---
 % Solve for initial guess of damper flux linkage

159

 if k == 1
 Aaug_prime = [A -scl*d(:,1:3)*Ksrinv(:, 1:nio) ;
scl*Ksr(1:nio,:)*d(:,1:3)' zeros(nio,nio)];
 daug_prime = [d(:,4) zeros(length(A),ni o) ;zeros(nio,1)
eye(nio)];
 lam_prime = [ifld;scl*lamqd0srpp(:,k)];
 xg_prime = Aaug_prime\(daug_prime*lam_p rime);
 lamdamper(1:damper_ntip-1,k) = d_damper _2'*xg_prime(1:end-
nio);
 end

 % Solve for vector of loop flux and current
 Aaug = [A -scl*d(:,1:3)*Ksrinv(:,1:nio) -sc l*d_damper_1; ...
 scl*Ksr(1:nio,:)*d(:,1:3)' zeros(nio,ni o+damper_ntip-1);
...
 scl*d_damper_2' zeros(damper_ntip-1,nio +damper_ntip-1)];
 daug = [d(:,4) zeros(length(A),nio+damper_n tip-1) ; ...
 zeros(nio+damper_ntip-1,1) eye(nio+damp er_ntip-1)];
 if rcond(Aaug)<1e-16
 fprintf('Warning: rcond(Aaug) = %d at
k=%i.\n' ,rcond(Aaug),k);
 end
 lam = [ifld;scl*lamqd0srpp(:,k);scl*lamdamp er(1:damper_ntip-
1,k)];
 xg = Aaug\(daug*lam);

 % Identify just the loop fluxes
 fluxm = xg(1:end-nio-damper_ntip+1);
 % NEWTON-RAPHSON SOLVER
 it = 1; % Keeps track of N-R iterations
 NRSOLVE = 1;
 while NRSOLVE
 % DETERMINE FLUXES FOR THE GUESS VECTOR xg
 phi = O*fluxm;
 phiiron(:,k) = phi(1:lB);
 % DETERMINE B-FIELDs
 BIRON(:,k) = phiiron(:,k)./areas;
 % GET PERMEABILITY FOR EACH RESPECTIVE PERM
 [sMU,sdmdb] = get_mur_exp(BIRON(1:slB,k),mudata.s);
 [rMU,rdmdb] = get_mur_exp(BIRON(slB+1:e nd,k),mudata.r);
 MU = [sMU;rMU];
 dmdb = [sdmdb;rdmdb];
 % UPDATE MATRICIES
 Riron = Rxm./MU;
 [Ag,d,Cr] =
get_meshmatrices(Rair,PTClist,Riron,parx,pars,Nabcf ,Crconn,Cvconn);
 Aaug = [Ag -scl*d(:,1:3)*Ksrinv(:,1:nio) -scl*d_damper_1;
...
 scl*Ksr(1:nio,:)*d(:,1:3)' zeros(ni o,nio+damper_ntip-
1); ...
 scl*d_damper_2' zeros(damper_ntip-1 ,nio+damper_ntip-
1)];
 daug = [d(:,4) zeros(length(Ag),nio+dam per_ntip-1) ; ...
 zeros(nio+damper_ntip-1,1) eye(nio+ damper_ntip-1)];
 if rcond(Aaug)<1e-16

160

 fprintf('Warning: rcond(Aaug) = %d at
k=%i.\n' ,rcond(Aaug),k);
 end
 % Pure Newton Raphson Iterator - find Jacobian and update x
 J =
get_J(Cr(1:lB,:),O(1:lB,:),Aaug,MU,areas,dmdb,xg);
 xnewp = xg - J\(Aaug*xg - daug*lam);

 % Check for convergence
 if ((sqrt((xnewp-xg)'*(xnewp-
xg))/(length(xg)*max(abs([xnewp;xg]))) ...
 < TOL) || (it == parx(14)))
 if (it == parx(14))
 % Maximum N-R iterations reached
 disp(['Max Iterations Reached: IT = ' num2str(it)
', Data Point = ' num2str(k)]);
 nrconverge = 0;
 end
 NRSOLVE = 0;
 nriter(k) = it;
 else
 xg = xnewp;
 fluxm = xg(1:end-nio-damper_ntip+1) ;
 it = it+1;
 end
 end
 if ~nrconverge
 break
 end

 % Store flux/flux density values after converging
 phit(:,k) = phi(S+1:2*S);
 phiag = phi(4*S+11+D/2+Dsl/2+1+damper_nshan k+D/2+2*(SPT-
1):end);
 BY(:,k) = BIRON(1:S,k);
 BT(:,k) = BIRON(S+1:2*S,k);
 BTT(:,k) = BIRON(2*S+1:3*S,k);
 % Calculate torque
 torque(k) = ((RP/2)^2)*sum(phiag.^2.*dPTCli st./(PTClist.^2));
 % Phase current calculation
 iqd0sr(:,k) = xg(end-nio-damper_ntip+2:end- damper_ntip+1)*scl;
 iabc(:,k) = Ksrinv(:,1:nio)*iqd0sr(:,k); % terminals series
connected
 % Phase flux linkage calculation
 lamabcpp(:,k) = Ksrinv(:,1:nio)*lamqd0srpp(:,k);
 % Damper windings current
 idamper(1:damper_ntip-1,k) = xg(end-damper_ ntip+2:end)*scl;
 idamper(damper_ntip,k) = -sum(idamper(1:dam per_ntip-1,k));

 elseif bartype == 2 % ---
 % Solve for initial guess of damper flux linkage
 if k == 1
 Aaug_prime = [A -scl*d(:,1:3)*Ksrinv(:, 1:nio) ;
scl*Ksr(1:nio,:)*d(:,1:3)' zeros(nio,nio)];

161

 daug_prime = [d(:,4) zeros(length(A),ni o) ;zeros(nio,1)
eye(nio)];
 lam_prime = [ifld;scl*lamqd0srpp(:,k)];
 xg_prime = Aaug_prime\(daug_prime*lam_p rime);
 lamdamper(:,k) = d_damper_2'*xg_prime(1 :end-nio);
 end

 % Solve for vector of loop flux and current
 Aaug = [A -scl*d(:,1:3)*Ksrinv(:,1:nio) -sc l*d_damper_1; ...
 scl*Ksr(1:nio,:)*d(:,1:3)' zeros(nio,ni o+damper_ntip); ...
 scl*d_damper_2' zeros(damper_ntip,nio+d amper_ntip)];
 daug = [d(:,4) zeros(length(A),nio+damper_n tip) ; ...
 zeros(nio+damper_ntip,1) eye(nio+damper _ntip)];
 if rcond(Aaug)<1e-16
 fprintf('Warning: rcond(Aaug) = %d at
k=%i.\n' ,rcond(Aaug),k);
 end
 lam = [ifld;scl*lamqd0srpp(:,k);scl*lamdamp er(:,k)];
 xg = Aaug\(daug*lam);

 % Identify just the loop fluxes
 fluxm = xg(1:end-nio-damper_ntip);
 % NEWTON-RAPHSON SOLVER
 it = 1; % Keeps track of N-R iterations
 NRSOLVE = 1;
 while NRSOLVE
 % DETERMINE FLUXES FOR THE GUESS VECTOR xg
 phi = O*fluxm;
 phiiron(:,k) = phi(1:lB);
 % DETERMINE B-FIELDs
 BIRON(:,k) = phiiron(:,k)./areas;
 % GET PERMEABILITY FOR EACH RESPECTIVE PERM
 [sMU,sdmdb] = get_mur_exp(BIRON(1:slB,k),mudata.s);
 [rMU,rdmdb] = get_mur_exp(BIRON(slB+1:e nd,k),mudata.r);
 MU = [sMU;rMU];
 dmdb = [sdmdb;rdmdb];
 % UPDATE MATRICIES
 Riron = Rxm./MU;
 [Ag,d,Cr] =
get_meshmatrices(Rair,PTClist,Riron,parx,pars,Nabcf ,Crconn,Cvconn);
 Aaug = [Ag -scl*d(:,1:3)*Ksrinv(:,1:nio) -scl*d_damper_1;
...
 scl*Ksr(1:nio,:)*d(:,1:3)' zeros(ni o,nio+damper_ntip);
...
 scl*d_damper_2' zeros(damper_ntip,n io+damper_ntip)];
 daug = [d(:,4) zeros(length(Ag),nio+dam per_ntip) ; ...
 zeros(nio+damper_ntip,1) eye(nio+da mper_ntip)];
 if rcond(Aaug)<1e-16
 fprintf('Warning: rcond(Aaug) = %d at
k=%i.\n' ,rcond(Aaug),k);
 end
 % Pure Newton Raphson Iterator - find Jacobian and update x
 J =
get_J(Cr(1:lB,:),O(1:lB,:),Aaug,MU,areas,dmdb,xg);
 xnewp = xg - J\(Aaug*xg - daug*lam);

162

 % Check for convergence
 if ((sqrt((xnewp-xg)'*(xnewp-
xg))/(length(xg)*max(abs([xnewp;xg]))) ...
 < TOL) || (it == parx(14)))
 if (it == parx(14))
 % Maximum N-R iterations reached
 disp(['Max Iterations Reached: IT = ' num2str(it)
', Data Point = ' num2str(k)]);
 nrconverge = 0;
 end
 NRSOLVE = 0;
 nriter(k) = it;
 else
 xg = xnewp;
 fluxm = xg(1:end-nio-damper_ntip);
 it = it+1;
 end
 end
 if ~nrconverge
 break
 end

 % Store flux/flux density values after converging
 phit(:,k) = phi(S+1:2*S);
 phiag = phi(4*S+11+D/2+Dsl/2+1+damper_nshan k+D/2+2*(SPT-
1):end);
 BY(:,k) = BIRON(1:S,k);
 BT(:,k) = BIRON(S+1:2*S,k);
 BTT(:,k) = BIRON(2*S+1:3*S,k);
 % Calculate torque
 torque(k) = ((RP/2)^2)*sum(phiag.^2.*dPTCli st./(PTClist.^2));
 % Phase current calculation
 iqd0sr(:,k) = xg(end-nio-damper_ntip+1:end- damper_ntip)*scl;
 iabc(:,k) = Ksrinv(:,1:nio)*iqd0sr(:,k); % terminals series
connected
 % Phase flux linkage calculation
 lamabcpp(:,k) = Ksrinv(:,1:nio)*lamqd0srpp(:,k);
 % Damper windings current
 idamper(:,k) = xg(end-damper_ntip+1:end)*sc l;
 end
 %-- ----------------
 % External voltage model--------------------------- ----------------
 % R load
% vqd0sr(:,k) = -iqd0sr(:,k)*Rload;
 % Parallel RL load
 vqd0sr(:,k) = (-iqd0sr(:,k)-il_qd(:,k))*Rload;
 pil_qd(:,k) = vqd0sr(:,k)/Lload - wr*[0 1;-1 0] *il_qd(:,k);
 il_qd(:,k+1) = il_qd(:,k)+pil_qd(:,k)*DT;

% abc voltage calculation
 vabc(:,k) = Ksrinv(:,1:nio)*vqd0sr(:,k); % Terminals series
connected

163

 % Connected to rectifier with constant vdc
% iabcl = m_isil*iabc(:,k);
% [V,idc(k)] = rect(iabcl,vdcmax,parx);
% vqd0gr = Ksr*V;
% vqd0sr(:,k) = m_vgvs*vqd0gr;
% vabc(:,k) = Ksrinv(:,1:nio)*vqd0sr(:,k);
 % Connected to rectifier with RLC load
% iabcl = m_isil*iabc(:,k);
% [V,idc(k)] = rect(iabcl,vdc(k),parx);
% vqd0gr = Ksr*V;
% vqd0sr(:,k) = m_vgvs*vqd0gr;
% vabc(:,k) = Ksrinv(:,1:nio)*vqd0sr(:,k);
% pvc(k) = (idc(k)-vc(k)/Rload)/Cload;
% vc(k+1) = vc(k)+pvc(k)*DT;
% Ivc(k+1) = Ivc(k)+(vc(k+1)+vc(k))/2*DT;
% vdc(k+1) = (-
(Ivdc(k)+vdc(k)*DT/2)+taus*vc(k+1)+Ivc(k+1)+Lload*i dc(k))/(taus+DT/2);
% Ivdc(k+1) = Ivdc(k)+(vdc(k+1)+vdc(k))/2*DT;
 %-- ----------------

 % Forward Euler to solve state model--------------- ----------------
 plamqd0srpp(:,k) = (vqd0sr(:,k) - rs.*iqd0sr(:, k) -
wr*mlam*lamqd0srpp(:,k)*RP)/RP;
 lamqd0srpp(:,k+1) = lamqd0srpp(:,k) + plamqd0sr pp(:,k)*DT;

 if bartype == 0
 if damper_ntip > 0
 lamdamper(:,k) = d_damper_2'*xg(1:end-n io);
 end
 elseif bartype == 1
 plamdamper(1:damper_ntip-1,k) = -Tdp*idampe r(1:damper_ntip-
1,k);
 lamdamper(:,k+1) = lamdamper(:,k) + plamdam per(:,k)*DT;
 elseif bartype == 2
 plamdamper(:,k) = -Tdp*idamper(:,k);
 lamdamper(:,k+1) = lamdamper(:,k) + plamdam per(:,k)*DT;
 end
 %-- ----------------

 index_vect(:,:,k+1) = index;
 flag_vect(:,k+1) = flag;

 % Increment time/rotor position
 k = k+1;
end

% Check for flux densities above limit
Bsat = parx(23);
maxB = max(abs(BIRON));
saturate(maxB>=Bsat) = 1./(1+abs((maxB(maxB>=Bsat)- Bsat)./(0.1*Bsat)));

164

%-- --------------------
% AUTHORS: Xiaoqi Wang, Michelle Bash, Steven D. P ekarek
%-- --------------------
% CONTACT: School of Electrical & Computer Enginee ring
% Purdue University
% 465 Northwestern Ave.
% West Lafayette, IN 47907
% 765-494-3434, spekarek@ecn.purdue.edu
%-- --------------------
% April 1, 2012
%-- --------------------
% [Rxm,areas,Rair,NPRTS,NPRTB] =
get_reluctances(mu0,parx,pars,damperdata)
%
% Calculates all terms in the reluctance equation e xcept for the
% relative permeability. This is done for all iron permeances in the
% stator and rotor. Calculates cross-sectional are a. Calculates all
% reluctances residing in air.
%
% OUTPUTS: Rxm - iron reluctances times mur
% areas - reluctance areas
% Rair - reluctances in air
% NPRTS - # of permeances connected to the rotor pole tip
side
% NPRTB - # of permeances connected to the pole tip bottom
%
% INPUTS: mu0 - permeability of air
% parx - simulation parameters
% pars - geometric parameters
% damperdata - damper properties
%-- --------------------
function [Rxm,areas,Rair,NPRTS,NPRTB] =
get_reluctances(mu0,parx,pars,damperdata)
% Define reluctance connections in stator and rotor which do not change
% IRON
% Stator yoke - S
% Stator shank - S
% Stator teeth - S
% Rotor yoke below the slot - 1
% Rotor tooth shank - 1
% Damper bar in Rotor tooth shank - damper_nshank
% Rotor yoke connected to shank - 2
% Rotor tooth tips radial - (D - 4*NRrtrt)/2
% Damper windings in Rotor tooth tips radial - (D - 4*NRrtrt)/2
% Rotor tooth to rotor tooth tangential - 4*NRrtrt/ 2
% Damper windings in Rotor tooth to rotor tooth tan gential - 4*NRrtrt/2
% Leakage of damper windings - 2*Nldp
% Rotor tooth tangential at sides of tooth tips - 4 /2
% AIR
% Stator tooth leakage - S
% Field winding leakage - 2
% Middle rotor slot leakage - 2/2
% Fringing permeance from rotor side to airgap boun dary - Dsl
% Fringing permeance from rotor slot side to bottom of tooth tip - 4/2

165

% Machine parameters
G1 = pars(14); % Airgap length, m
DBS = pars(4); % stator yoke depth, m
STW = pars(20); % width of tooth shank, m
CL = pars(26); % rotor core length, m
SL = parx(3); % number of teeth in one mechanical cycle
OD = pars(1); % stator outside diameter of yoke, m
ID = pars(2); % stator inner diameter (tooth tip to tooth tip), m
WRT = pars(34);
WRTSH = pars(46);
SD = pars(29);
WRTSHchord = pars(56);
NRrtrt = parx(27);
SPT = parx(2);
Nrtt = 2*SPT - 4*NRrtrt; % Number of radial rotor tooth
branches
GLS = pars(3); % Stator stack length, m
H0 = pars(5); % Stator slot dimension, m
H3 = pars(8); % Stator slot dimension, m
B0 = pars(9); % Stator slot dimension, m
B1 = pars(10); % Stator slot dimension, m
B2 = pars(11); % Stator slot dimension, m
BS = pars(12); % Stator slot dimension, m
GLP = pars(27); % Rotor stack length, m
HRTT = pars(44); % Height of rotor tooth tip, m
HRTSH = pars(45); % Height of rotor tooth shank, m
WCOIL = pars(51); % Equivalent width of field wdg, m
SPAIR = parx(29); % Number of rotor sections in half the slot
RPIT = pars(32); % Rotor pole pitch coefficient
ROD = pars(24); % Rotor outer diameter, m
RP = pars(28); % Number of rotor poles
S = parx(3)/pars(28); % Number of stator teeth per pole
SPT = parx(2); % number of rotor sections in the pole tip
DC = pars(25); % Rotor core diameter, m
tipw = pars(57);
tiph = pars(58);
damper_rtip = damperdata.damper_rtip;
damper_rshank = damperdata.damper_rshank;
damper_ntip = damperdata.damper_ntip;
damper_nshank = damperdata.damper_nshank;
damper_dtip = damperdata.damper_dtip;
WRTang = 2*WRT/ROD;
xout = sin(WRTang/2)*ROD/2; % (xout = WRTchord/2)
yb = cos(WRTang/2)*ROD/2-HRTT; % Vertical height to the bottom of
the rotor tooth tip
xin = WRTSHchord/2;
WRTS2 = xout*2/SPT; % Horizontal width (not arc width) of the rotor
tooth sections
% yt__ = Vertical height to the top of the rotor to oth tip at a given
"x"
% position
% **Stator yoke
AY = ones(S,1)*GLS*DBS;
RY = (pi*(OD-DBS))/((mu0)*GLS*SL*DBS);
% **Stator tooth shank

166

AT_shank = ones(S,1)*STW*GLS;
LT_shank = (OD/2-DBS/2)-ID/2-tiph;
RT_shank = LT_shank./(mu0*STW*GLS);
% **Stator tooth tip
AT_tip = ones(S,1)*(STW+2*tipw)*GLS;
RT_tip = tiph./(mu0*(STW+2*tipw)*GLS);
% **Rotor yoke below the slot and connected to shan k
ARY = 0.5*(DC - SD)*CL;
rad = DC/4+SD/4;
thsh_core = 2*asin(WRTSHchord/DC); % Angle of the rotor shank at the
outside of the rotor core
thsl_core = 2*pi/RP - thsh_core; % Angle of the rotor slot at the
outside of the rotor core
thsl = thsl_core/2; % Angular length of the rotor yoke reluctance
below the slot
thsh = thsl_core/4+thsh_core/2; % Angular length of the rotor yoke
reluctance connected to the shank
RRYSL = rad*thsl./(mu0*ARY);
RRYSH = rad*thsh./(mu0*ARY);
%-- --------------------
% **Rotor tooth tip (inner)
ARTIN = ones(Nrtt/2,1)*GLP*WRTS2;
ymid = (sqrt((ROD/2)^2-(xin).^2)+yb)/2;
ytRTT = sqrt((ROD/2)^2-abs(xout-WRTS2*NRrtrt-WRTS2* ((1:Nrtt/2)-
0.5)').^2);
RTTlength = ytRTT - ymid;
RTTlength_IN = zeros(Nrtt/2,1);
for i = 0:(Nrtt/4-1)
 RTTlength_IN(Nrtt/4+i+1) = RTTlength(Nrtt/4+i+1)-
2*damper_rtip(i+1);
 RTTlength_IN(end-(Nrtt/4+i+1)+1) = RTTlength_IN (Nrtt/4+i+1);
end
RRTIN = RTTlength_IN./(mu0*ARTIN);
% damper windings on Rotor tooth tip (inner)
ARD_tip_in = ARTIN;
RRD_tip_in = zeros(Nrtt/2,1);
for i = 0:(Nrtt/4-1)
 if i == 0
 ARD_tip_in(Nrtt/4+i+1) = (WRTS2-damper_rtip (1)/2)*GLP;
 ARD_tip_in(end-(Nrtt/4+i+1)+1) = ARD_tip_in (Nrtt/4+i+1);
 RRD_tip_in(Nrtt/4+i+1) = 2*(-pi/(2*mu0*GLP) +
WRTS2/(mu0*GLP*sqrt(WRTS2^2-damper_rtip(1)^2)) ...
 *(pi/2+atan(damper_rtip(1)/sq rt(WRTS2^2-
damper_rtip(1)^2))));
 RRD_tip_in(Nrtt/4+i+1) =
RRD_tip_in(Nrtt/4+i+1)*(RRD_tip_in(Nrtt/4+i+1)>0.01 *min(RRTIN));
 RRD_tip_in(end-(Nrtt/4+i+1)+1) = RRD_tip_in (Nrtt/4+i+1);
 else
 ARD_tip_in(Nrtt/4+i+1) = (WRTS2-damper_rtip (i+1))*GLP;
 ARD_tip_in(end-(Nrtt/4+i+1)+1) = ARD_tip_in (Nrtt/4+i+1);
 RRD_tip_in(Nrtt/4+i+1) = -pi/(2*mu0*GLP) +
WRTS2/(mu0*GLP*sqrt(WRTS2^2-4*damper_rtip(i+1)^2)) ...
 *(pi/2+atan(2*damper_rtip(i+1)/sqrt(WRTS2^2-
4*damper_rtip(i+1)^2)));

167

 RRD_tip_in(Nrtt/4+i+1) =
RRD_tip_in(Nrtt/4+i+1)*(RRD_tip_in(Nrtt/4+i+1)>0.01 *min(RRTIN));
 RRD_tip_in(end-(Nrtt/4+i+1)+1) = RRD_tip_in (Nrtt/4+i+1);
 end
end

%-- --------------------
% **Rotor tooth shank
ARTSH = GLP*WRTSH;
l = ymid - SD/2 - (DC-SD)/4;
RRTSH = (l-2*damper_nshank*damper_rshank)/(mu0*ARTS H);
% damper windings on Rotor tooth shank
ARD_shank = ones(damper_nshank,1)*GLP*(WRTSH-damper _rshank);
RRD_shank = ones(damper_nshank,1)*(-pi/(2*mu0*GLP) +
WRTSH/(mu0*GLP*sqrt(WRTSH^2-4*damper_rshank^2)) ...
 *(pi/2+atan(2*damper_rshank/s qrt(WRTSH^2-
4*damper_rshank^2))));
%-- --------------------
% **Rotor tooth section to rotor tooth section perm eance
damper_rtip_out_2 = damper_rtip(end-NRrtrt+1:end);
damper_rtip_out_1 = flipdim(damper_rtip_out_2,1);
damper_rtip_out = [damper_rtip_out_1;damper_rtip_ou t_2];
ytend = sqrt((ROD/2)^2-(xout-WRTS2/4)^2);
ARTOUT = zeros(2*NRrtrt,1);
for jj = 1:NRrtrt
 ytNR = sqrt((ROD/2)^2-(xout-WRTS2*jj).^2);
 ARTOUT(jj) = (ytNR-yb)*GLP;
 ARTOUT(end-jj+1) = (ytNR-yb)*GLP;
end
lR = xout - xin + min(0.5*xin,(ymid-yb)); % Total length of the
estimated tangential reluctance from the side of th e rotor tooth tip
WRTSIN = lR - (NRrtrt-1)*WRTS2 - WRTS2/2; % Adjusted length of the
inner rotor tooth tip tangential reluctance
lRRTOUT = [WRTS2*ones((NRrtrt-1),1);WRTSIN;WRTSIN;W RTS2*ones((NRrtrt-
1),1)];
lRRTOUT = lRRTOUT-2*damper_rtip_out;
RRTOUT = lRRTOUT./(mu0*ARTOUT);
% damper windings on Rotor tooth section to rotor t ooth section
ARD_tip_out = zeros(2*NRrtrt,1);
RRD_tip_out = zeros(2*NRrtrt,1);
for jj = 1:NRrtrt
 ytNR = sqrt((ROD/2)^2-(xout-WRTS2*jj).^2);
 ARD_tip_out(jj) = (ytNR-yb-damper_rtip_out(jj)) *GLP;
 ARD_tip_out(end-jj+1) = ARD_tip_out(jj);
 RRD_tip_out(jj) = -pi/(2*mu0*GLP) + (ytNR-yb)/(mu0*GLP*sqrt((ytNR-
yb)^2-4*damper_rtip_out(jj)^2)) ...
 *(pi/2+atan(2*damper_rtip_out (jj)/sqrt((ytNR-
yb)^2-4*damper_rtip_out(jj)^2)));
 RRD_tip_out(jj) =
RRD_tip_out(jj)*(RRD_tip_out(jj)>0.01*min(RRTOUT));
 RRD_tip_out(end-jj+1) = RRD_tip_out(jj);
end
%-- --------------------
% Leakage reluctance of damper windings in iron
% Leakage components on tangential path

168

ARD_ldp_out = zeros(2*NRrtrt,1);
RRD_ldp_out = zeros(2*NRrtrt,1);
for i = 1:2*NRrtrt
 if damper_rtip_out(i) == 0
 ARD_ldp_out(i) = ARTOUT(i)/2;
 RRD_ldp_out(i) = lRRTOUT(i)/(mu0*ARD_ldp_ou t(i));
 else
 ARD_ldp_out(i) = (ARTOUT(i)/GLP-
2*damper_rtip_out(i))*damper_dtip*GLP;
 RRD_ldp_out(i) =
2*pi/(mu0*GLP*log((ARD_ldp_out(i)/GLP+damper_rtip_o ut(i))/damper_rtip_o
ut(i)));
 end
end
% Leakage components on radial path
damper_rtip_in_2 = damper_rtip(1:Nrtt/4);
damper_rtip_in_1 = flipdim(damper_rtip_in_2,1);
damper_rtip_in = [damper_rtip_in_1;damper_rtip_in_2];
ARD_ldp_in = (RTTlength-2*damper_rtip_in)*GLP*dampe r_dtip;
RRD_ldp_in =
2*pi./(mu0*GLP*log((ARD_ldp_in/GLP+damper_rtip_in). /damper_rtip_in));
% Combine the tangential and radial components
ARD_ldp =
[ARD_ldp_out(1:end/2);ARD_ldp_in(1:end/2);ARD_ldp_i n(end/2+2:end);ARD_l
dp_out(end/2+1:end)];
RRD_ldp =
[RRD_ldp_out(1:end/2);RRD_ldp_in(1:end/2);RRD_ldp_i n(end/2+2:end);RRD_l
dp_out(end/2+1:end)];
% Correction of RRTOUT due to leakage
RRTOUT = 1./(1./(RRTOUT+RRD_tip_out)-1./RRD_ldp_out)-RRD_tip_out;

%-- --------------------
% **side rotor tangential reluctances
ARTRTS = (ytend-yb)*GLP*ones(2,1); % Area of the side rotor
tangential reluctances
lRTRTS = WRTS2/2*ones(2,1); % length of the side rotor tangential
reluctances
RRTRTS = lRTRTS./(mu0*ARTRTS);

% AREAS AND RELUCTANCES*MUR FOR IRON ELEMENTS
areas =
[AY;AT_shank;AT_tip;ARY;ARTSH;ARD_shank;ARY;ARY;ART IN;ARD_tip_in;ARTOUT
;ARD_tip_out;ARD_ldp;ARTRTS];
Rxm =
[RY*ones(S,1);RT_shank*ones(S,1);RT_tip*ones(S,1);R RYSL;RRTSH;RRD_shank
;RRYSH*ones(2,1);RRTIN;RRD_tip_in;RRTOUT;RRD_tip_ou t;RRD_ldp;RRTRTS];
%-- --------------------
% **Stator tooth tip leakage
P012 = mu0*H0/(B1-B0)*log(B1/B0);
beta = B2/BS;
P3 = mu0*(H3/BS)*(((beta^2) - ((beta^4)*0.25) - lo g(beta) - 0.75)/(
(1-beta)*((1-beta^2)^2)));
RSTL = 1/((P012 + P3)*GLS);
% **Field wdg leakage permeance
RFDL = 3*HRTSH/(mu0*GLP*WCOIL);

169

% Geometry calculations needed for determining roto r fringing
permeances
WRTang = 2*pi*RPIT/RP; % ANGLE AT OUTSIDE EDGE OF
ROTOR TOOTH TIP
WRTchord= (ROD)*sin(0.5*WRTang); % CHORD LENGTH OF ROTOR
TOOTH TIP
Rint = WRTchord/(2*sin(pi/RP)); % Radius at the point where
a line extended from the rotor tooth side intersect s with a line
through the center of the rotor slot
halfWAIRTchd = ROD*sin(0.5*pi/RP*(1-RPIT)); % Chord length of the arc
encompassing half the outer rotor slot
theta_Rfr = asin((ROD/2-Rint)/halfWAIRTchd*sin(pi/R P)); % Angle between
the rotor tooth side and the line halfWAIRTchd
WAIRTSchd = halfWAIRTchd/(SPAIR); % Width of a fringing flux
tube
WRTTS = (WRTchord - pars(56))/2; % Width of one side of the
rotor tooth tip not including the rotor shank
lRinttoROD = sqrt(halfWAIRTchd^2+(ROD/2-Rint)^2-2*(ROD/2-
Rint)*halfWAIRTchd*cos(pi-pi/RP-theta_Rfr)); % length of the line
extending from the rotor tooth tip side to the inte rsection point in
the middle of the rotor slot
% ** Fringing permeance from rotor slot to rotor bo ttom
WRTB2 = WRTTS; % Ending radius of RFRB
flux tube
WRTB1 = max(min([WRTchord/SPT/4 HRTSH/2 WRTTS/2]) , 0.0001); %
Starting radius of RFRB flux tube
RFRB = 1./(mu0*GLP*2/pi*log(WRTB2/WRTB1));
% ** Fringing permeance from airgap to rotor side
if halfWAIRTchd < (HRTSH+HRTT)
 % Uniform flux tube widths can be used
 NPRTS = max(ceil((HRTT+WRTB1)/WAIRTSchd),1);
 NPRTS = NPRTS*(NPRTS<SPAIR) + SPAIR*(NPRTS>=SPA IR); % if-else
 NPRTB = (SPAIR-NPRTS)*(NPRTS<SPAIR); % if-else
 lPAGFR = theta_Rfr*(0.5*WAIRTSchd+(0:WAIRTSchd: WAIRTSchd*(SPAIR-
1))'); % for-loop
 % Length of flux tube overlapping side and bottom
 lPAGFR(NPRTS) = lPAGFR(NPRTS)+WRTB1/WAIRTSchd*(WRTB1/2*pi/2);
 RAGFR = lPAGFR./(mu0*WAIRTSchd*GLP);
 % **Middle rotor slot leakage
 lmeanRTSL = 2*sin(pi/RP)*(lRinttoROD-halfWAIRTc hd);
 wRTSL = (ROD/2-DC/2)/3;
 RRTL = lmeanRTSL/(mu0*GLP*wRTSL);
else
 % Flux tubes with decreasing width must be used
 theta_Rfr2 = min(acos((HRTSH+HRTT)/halfWAIRTchd),theta_Rfr);
%Portion of theta_Rfr where the flux tube is a tria ngle with non-
uniform width
 theta_Rfr1 = theta_Rfr - theta_Rfr2; %Portion of theta_Rfr where
the flux tube is still an arc with uniform width
 WRFR2 = HRTSH+HRTT; % Total width of the flux tubes at the
rotor and field winding side
 WRFRs = WRFR2/SPAIR; % Width of an individual flux tube at the
small end
 WRFRavg = (WRFRs*theta_Rfr2+WAIRTSchd*theta_Rfr 1)/theta_Rfr; %
Average width of the flux tubes

170

 NPRTS = max(ceil((HRTT+WRTB1)/WRFRs),1);
 NPRTS = NPRTS*(NPRTS<SPAIR) + SPAIR*(NPRTS>=SPA IR); % if-else
 NPRTB = (SPAIR-NPRTS)*(NPRTS<SPAIR); % if-elsE
 lPAGFR = theta_Rfr*(0.5*WAIRTSchd+(0:WAIRTSchd: WAIRTSchd*(SPAIR-
1))'); % for-loop
 % Length of flux tube overlapping side and bottom
 lPAGFR(NPRTS) = lPAGFR(NPRTS)+WRTB1/WRFRs*(WRTB 1/2*pi/2);
 RAGFR = lPAGFR./(mu0*WRFRavg*GLP);
 % **Middle rotor slot leakage
 lmeanRTSL = 2*sin(pi/RP)*(lRinttoROD-WRFR2);
 wRTSL = (ROD/2-DC/2)/3;
 RRTL = lmeanRTSL/(mu0*GLP*wRTSL);
end

% Leakage reluctance of damper windings in air
Rair_ldp_out = 1e16*ones(2*NRrtrt,1);
for i = 1:2*NRrtrt
 if damper_rtip_out(i) > 0
 Rair_ldp_out(i) = 1./(mu0*GLP/8/pi + mu0*GL P/2* ...

log((sqrt(2*G1*(ARD_ldp_out(i)/GLP+damper_rtip_out(i))+G1^2) ...

+G1+ARD_ldp_out(i)/GLP+damper_rtip_out(i))./(ARD_ld p_out(i)/GLP+damper_
rtip_out(i))));
 end
end
Rair_ldp_in = 1./(mu0*GLP/8/pi + mu0*GLP/2* ...
 log((sqrt(2*G1*(ARD_ldp_in/GLP+damper_r tip_in)+G1^2) ...

+G1+ARD_ldp_in/GLP+damper_rtip_in)./(ARD_ldp_in/GLP +damper_rtip_in)));
Rair_ldp =
[Rair_ldp_out(1:end/2);Rair_ldp_in(1:end/2);Rair_ld p_in(end/2+2:end);Ra
ir_ldp_out(end/2+1:end)];

% **Air permeances
Rair =
[RSTL*ones(S,1);RFDL*ones(2,1);RRTL;RAGFR;flipud(RA GFR);RFRB*ones(2,1);
Rair_ldp];

171

%-- --------------------
% AUTHORS: Michelle Bash, Steven D. Pekarek, Hamza Derbas
%-- --------------------
% CONTACT: School of Electrical & Computer Enginee ring
% Purdue University
% 465 Northwestern Ave.
% West Lafayette, IN 47907
% 765-494-3434, spekarek@ecn.purdue.edu
%-- --------------------
% Feb, 2010
%-- --------------------
% [G,dG] =
% get_Pag(theta_rm,pars,parx,Gmaxrt,Gmaxsl,anglert, anglesl,qrrcs,qrscs)
%
% Determines the airgap permeance between each roto r tooth/slot section
and
% stator tooth.
%
% OUTPUTS: G - matrix of airgap permeances, size S x D+Dslot
% dG - derivative of G w.r.t. thetar , size S x D+Dslot
%
% INPUTS: theta_rm - mechanical rotor position (sh ifted to work
herein)
% pars - parameters
% parx - simulation parameters
% Gmaxrt - permeance when a rotor tooth section is
completely
% under a stator tooth
% Gmaxsl - permeance when a rotor slot s ection is completely
% under a stator tooth
% anglert - angle between each rotor toot h section and stator
% tooth
% anglesl - angle between each rotor slot section and stator
% tooth
% qrrcs - geometric case for rotor toot h section
% qrscs - geometric case for rotor slot section
%-- --------------------
function [G,dG] =
get_Pag(theta_rm,pars,parx,Gmaxrt,Gmaxsl,anglert,an glesl,qrrcs,qrscs)
%DIMENSIONS & PARAMETERS
ID = pars(2); % Stator inner diameter, m
GLS = pars(3); % Stator stack length, m
ROD = pars(24); % Rotor outer diameter, m
RP = pars(28); % Number of rotor poles
STTW = pars(21); % Width of stator tooth, m
RPIT = pars(32); % Rotor pole pitch coefficient, m
B0 = pars(9); % Stator slot width, m
g = pars(14); % Airgap length, m
slope = pars(54); % Used to calculate airgap permeance, rad
SPT = parx(2); % Number of rotor tooth sections
D = SPT*2; % Number of rotor tooth sections over a pole
pair
S1P = parx(3)/RP; % Number of stator teeth per pole
Dslot = 4*parx(29); % Number of rotor slot sections over a pole
pair

172

mu0 = pi*4e-7; % Permeability of free space
% Relevant angular spans
WRTSang = 2*pi*RPIT/RP/SPT; % Angular width of rotor tooth section
WRSang = 2*pi*(1-RPIT)/RP/(Dslot/2); % Angular width of rotor slot
section
qs = STTW/ID*RP; % Electrical angular width of stator tooth
qs1 = B0/ID*RP; % Electrical angular width of stator slot
qrr = WRTSang*RP/2; % Electrical angular width of rotor tooth
section
qrs = WRSang*RP/2; % Electrical angular width of rotor slot section
aoff = 1e-13; % Angular offset used to avoid numerical errors
% Initialize matrices
Grt = zeros(S1P,D);
dGrt = zeros(S1P,D);
Gsl = zeros(S1P,Dslot);
dGsl = zeros(S1P,Dslot);
% position (Electrical) of rotor tooth and rotor
% slot sections in relation to stator teeth
posrt = mod(RP/2*(theta_rm+anglert),2*pi); % defined as shown below
possl = mod(RP/2*(theta_rm+anglesl),2*pi); % defined as shown below
% Calculate airgap permeances over the rotor tooth (pole)
% Common terms in permeances and derivative calcula tions
Pm1 = (mu0*GLS/slope);
Pm2 = ROD/RP*slope;
dPm1 = (mu0*GLS*ROD/RP);
switch qrrcs
 case 1 % qrr <= qs1/2
 Gedges = [0 qrr qs1/2 qs1/2+qrr-aoff (2*S1P-1)* (qs+qs1)+qs1/2+aoff
...
 (2*S1P-1)*(qs+qs1)+qs1/2+qrr (2*S1P-1)*(qs+qs 1)+qs1 ...
 (2*S1P-1)*(qs+qs1)+qs1+qrr 2*pi];
 [ncs,Gcs] = histc(posrt,Gedges,2);
 % calculate permeances for non-zero cases (Case 4 P =0)
 % Case 1
 Grt(Gcs==1) = (Gmaxrt*(qrr - posrt(Gcs==1))/qrr) + ...
 Pm1*log((posrt(Gcs==1)*Pm2 + g)/g);
 dGrt(Gcs==1) = -Gmaxrt/qrr + dPm1./(posrt(Gcs== 1)*Pm2 + g);
 % Case 2
 Grt(Gcs==2) = Pm1*log((posrt(Gcs==2)*Pm2+g)./((posrt(Gcs==2)-
qrr)*Pm2+g));
 dGrt(Gcs==2) = dPm1*(1./(posrt(Gcs==2)*Pm2 + g) - ...
 1./((posrt(Gcs==2)-qrr)*Pm2 + g));
 % Case 3
 Grt(Gcs==3) = Pm1*(log(qs1/2*Pm2 + g) - log((po srt(Gcs==3)-qrr)*Pm2
+ g));
 dGrt(Gcs==3) = dPm1*(-1./((posrt(Gcs==3)-qrr)*P m2 + g));
 % Case 5
 Grt(Gcs==5) = Pm1*(log(qs1/2*Pm2 + g) - ...
 log((2*pi - posrt(Gcs==5) - qs)*Pm2 + g));
 dGrt(Gcs==5) = dPm1*(1./((2*pi - posrt(Gcs==5) - qs)*Pm2 + g));
 % Case 6
 Grt(Gcs==6) = Pm1*(log((2*pi-posrt(Gcs==6)-qs+q rr)*Pm2 + g) - ...
 log((2*pi-posrt(Gcs==6)-qs)*Pm2 + g));
 dGrt(Gcs==6) = dPm1*(-1./((2*pi-posrt(Gcs==6)-q s+qrr)*Pm2 + g) +
...

173

 1./((2*pi-posrt(Gcs==6)-qs)*Pm2 + g));
 % Case 7
 Grt(Gcs==7) = Gmaxrt*(posrt(Gcs==7)-2*pi+qs)/qr r + ...
 Pm1*log(((2*pi-qs-posrt(Gcs==7)+qrr)*Pm2 + g)/g);
 dGrt(Gcs==7) = Gmaxrt/qrr+dPm1*(-1./((2*pi-qs-
posrt(Gcs==7)+qrr)*Pm2+g));
 % Case 8
 Grt(Gcs>=8) = Gmaxrt;
 dGrt(Gcs>=8) = 0;
 case 2 % (qrr > qs1/2) && (qrr <= qs)
 Gedges = [0 qs1/2 qrr qrr+qs1/2-aoff (2*S1P-1)* (qs+qs1) +
qs1/2+aoff ...
 (2*S1P-1)*(qs+qs1) + qs1 (2*S1P-1)*(qs+qs1) + qs1/2 + qrr ...
 (2*S1P-1)*(qs+qs1) + qs1 + qrr max(2*S1P*(q s+qs1),2*pi)];
 [ncs,Gcs] = histc(posrt,Gedges,2);
 % calculate permeances for non-zero cases (Case 4 P =0)
 % Case 1
 Grt(Gcs==1) = (Gmaxrt*(qrr - posrt(Gcs==1))/qrr) + ...
 Pm1*log((posrt(Gcs==1)*Pm2 + g)/g);
 dGrt(Gcs==1) = -Gmaxrt/qrr + dPm1./(posrt(Gcs== 1)*Pm2 + g);
 % Case 2
 Grt(Gcs==2) = (Gmaxrt*(qrr-posrt(Gcs==2))/qrr)+ Pm1*log((qs1/2*Pm2 +
g)/g);
 dGrt(Gcs==2) = -Gmaxrt/qrr;
 % Case 3
 Grt(Gcs==3) = Pm1*(log(qs1/2*Pm2 + g) - log((po srt(Gcs==3)-
qrr)*Pm2+ g));
 dGrt(Gcs==3) = -dPm1./((posrt(Gcs==3) - qrr)*Pm 2 + g);
 % Case 5
 Grt(Gcs==5) = Pm1*(log(qs1/2*Pm2+g)-log((2*pi-p osrt(Gcs==5)-qs)*Pm2
+ g));
 dGrt(Gcs==5) = dPm1./((2*pi - posrt(Gcs==5) - q s)*Pm2 + g);
 % Case 6
 Grt(Gcs==6)=(Gmaxrt*(posrt(Gcs==6)+qs-
2*pi)/qrr)+Pm1*log((qs1/2*Pm2+g)/g);
 dGrt(Gcs==6) = Gmaxrt/qrr;
 % Case 7
 Grt(Gcs==7) = (Gmaxrt*(posrt(Gcs==7) + qs - 2*p i)/qrr) + ...
 Pm1*log(((2*pi - posrt(Gcs==7) - qs + qrr)* Pm2 + g)/g);
 dGrt(Gcs==7) = Gmaxrt/qrr - dPm1./((2*pi-posrt(Gcs==7)-qs+qrr)*Pm2
+ g);
 % Case 8
 Grt(Gcs>=8) = Gmaxrt;
 dGrt(Gcs>=8) = 0;
 case 3 % (qrr > qs) && (qrr <= qs +qs1/2)
 Gedges = [0 qrr-qs qs1/2 qrr qrr+qs1/2-aoff ...
 (2*S1P-1)*(qs+qs1)+qs1/2+aoff (2*S1P-1)*(qs +qs1)+qs1 ...
 (2*S1P-1)*(qs+qs1)+qs1/2+qrr max(2*S1P*(qs+ qs1),2*pi)];
 [ncs,Gcs] = histc(posrt,Gedges,2);
 % calculate permeances for non-zero cases (Case 5 P =0)
 % Case 1
 Grt(Gcs==1) = Gmaxrt+Pm1*(log((posrt(Gcs==1)*RO D/RP)*slope+g)-
log(g))+ ...
 Pm1*(log((qrr-qs-posrt(Gcs==1))*Pm2 + g) - log(g));
 dGrt(Gcs==1) = dPm1*(-1./((qrr-qs-posrt(Gcs==1))*Pm2 + g) + ...

174

 1./((posrt(Gcs==1))*Pm2 + g));
 % Case 2
 Grt(Gcs==2) = Gmaxrt*(qrr - posrt(Gcs==2))/qs + ...
 Pm1*(log((posrt(Gcs==2)*ROD/RP)*slope + g) - log(g));
 dGrt(Gcs==2) = -Gmaxrt/qs + dPm1*(1./(posrt(Gcs ==2)*Pm2 + g));
 % Case 3
 Grt(Gcs==3) = Gmaxrt*(qrr - posrt(Gcs==3))/qs + ...
 Pm1*(log((qs1/2*ROD/RP)*slope + g) - log(g));
 dGrt(Gcs==3) = -Gmaxrt/qs;
 % Case 4
 Grt(Gcs==4) = Pm1*(log((qs1/2*ROD/RP)*slope + g) - ...
 log((posrt(Gcs==4)-qrr)*Pm2 + g));
 dGrt(Gcs==4) = dPm1*(-1./((posrt(Gcs==4)-qrr)*P m2 + g));
 % Case 6
 Grt(Gcs==6) = Pm1*(log((qs1/2*ROD/RP)*slope + g) - ...
 log((2*pi-qs-posrt(Gcs==6))*Pm2 + g));
 dGrt(Gcs==6) = dPm1*(1./((2*pi-qs-posrt(Gcs==6))*Pm2 + g));
 % Case 7
 Grt(Gcs==7) = Gmaxrt*(qs-(2*pi-posrt(Gcs==7)))/ qs + ...
 Pm1*(log((qs1/2*ROD/RP)*slope + g) - log(g));
 dGrt(Gcs==7) = Gmaxrt/qs;
 % Case 8
 Grt(Gcs>=8) = Gmaxrt*(qs-(2*pi-posrt(Gcs>=8)))/ qs + ...
 Pm1*(log((2*pi-qs-posrt(Gcs>=8)+qrr)*Pm2 + g) - log(g));
 dGrt(Gcs>=8) = Gmaxrt/qs + dPm1*(-1./((2*pi-qs-
posrt(Gcs>=8)+qrr)*Pm2+g));
 case 4 % (qrr > qs+qs1/2) && (qrr <= qs+qs1)
 Gedges = [0 qrr-qs-qs1/2 qs1/2 qrr-qs qrr qs1/2 +qrr-aoff ...
 (2*S1P-1)*(qs+qs1)+qs1/2+aoff (2*S1P-1)*(qs +qs1)+qs1 2*pi];
 [ncs,Gcs] = histc(posrt,Gedges,2);
 % calculate permeances for non-zero cases (Case 6 P =0)
 % Case 1
 Grt(Gcs==1) = Gmaxrt + Pm1*(log((posrt(Gcs==1)) *Pm2 + g) - log(g))
+ ...
 Pm1*(log(qs1/2*Pm2 + g) - log(g));
 dGrt(Gcs==1) = dPm1*(1./((posrt(Gcs==1))*Pm2 + g));
 % Case 2
 Grt(Gcs==2) = Gmaxrt + Pm1*(log((posrt(Gcs==2)) *Pm2 + g) - log(g))
+ ...
 Pm1*(log((qrr-posrt(Gcs==2)-qs)*Pm2 + g) - log(g));
 dGrt(Gcs==2) = dPm1*(1./((posrt(Gcs==2))*Pm2 + g) - ...
 1./((qrr-posrt(Gcs==2)-qs)*Pm2 + g));
 % Case 3
 Grt(Gcs==3) = Gmaxrt + Pm1*(log(qs1/2*Pm2 + g) - log(g)) + ...
 Pm1*(log((qrr-posrt(Gcs==3)-qs)*Pm2 + g) - log(g));
 dGrt(Gcs==3) = dPm1*(-1./((qrr-posrt(Gcs==3)-qs)*Pm2 + g));
 % Case 4
 Grt(Gcs==4) = Gmaxrt*(qrr-posrt(Gcs==4))/qs + P m1*(log(qs1/2*Pm2 +
g) ...
 - log(g));
 dGrt(Gcs==4) = -Gmaxrt/qs;
 % Case 5
 Grt(Gcs==5) = Pm1*(log(qs1/2*Pm2 + g) - log((po srt(Gcs==5)-qrr)*Pm2
+ g));
 dGrt(Gcs==5) = dPm1*(-1./((posrt(Gcs==5)-qrr)*P m2 + g));

175

 % Case 7
 Grt(Gcs==7) = Pm1*(log(qs1/2*Pm2 + g)-log((2*pi -posrt(Gcs==7)-
qs)*Pm2+g));
 dGrt(Gcs==7) = dPm1*(1./((2*pi-posrt(Gcs==7)-qs)*Pm2 + g));
 % Case 8
 Grt(Gcs>=8) = Gmaxrt*(posrt(Gcs>=8)-2*pi+qs)/qs + ...
 Pm1*(log(qs1/2*Pm2+g) - log(g));
 dGrt(Gcs>=8) = Gmaxrt/qs;
 case 5 % (qrr > qs+qs1)
 Gedges = [0 qs1/2 qrr-qs-qs1/2 qrr-qs qrr qs1/2 +qrr-aoff ...
 (2*S1P-1)*(qs+qs1)+qs1/2+aoff (2*S1P-1)*(qs +qs1)+qs1 2*pi];
 [ncs,Gcs] = histc(posrt,Gedges,2);
 % calculate permeances for non-zero cases (Case 6 P =0)
 % Case 1
 Grt(Gcs==1) = Gmaxrt + Pm1*(log((posrt(Gcs==1)) *Pm2 + g) - log(g))
+ ...
 Pm1*(log(qs1/2*Pm2 + g) - log(g));
 dGrt(Gcs==1) = dPm1*(1./((posrt(Gcs==1))*Pm2 + g));
 % Case 2
 Grt(Gcs==2) = Gmaxrt + Pm1*(log(qs1/2*Pm2 + g) - log(g)) + ...
 Pm1*(log(qs1/2*Pm2 + g) - log(g));
 dGrt(Gcs==2) = 0;
 % Case 3
 Grt(Gcs==3) = Gmaxrt + Pm1*(log(qs1/2*Pm2 + g) - log(g)) + ...
 Pm1*(log((qrr-posrt(Gcs==3)-qs)*Pm2 + g) - log(g));
 dGrt(Gcs==3) = dPm1*(-1./((qrr-posrt(Gcs==3)-qs)*Pm2 + g));
 % Case 4
 Grt(Gcs==4) = Gmaxrt*(qrr-posrt(Gcs==4))/qs + ...
 Pm1*(log(qs1/2*Pm2 + g) - log(g));
 dGrt(Gcs==4) = -Gmaxrt/qs;
 % Case 5
 Grt(Gcs==5) = Pm1*(log(qs1/2*Pm2 + g) - log((po srt(Gcs==5)-qrr)*Pm2
+ g));
 dGrt(Gcs==5) = dPm1*(-1./((posrt(Gcs==5)-qrr)*P m2 + g));
 % Case 7
 Grt(Gcs==7) = Pm1*(log(qs1/2*Pm2+g) - log((2*pi -posrt(Gcs==7)-
qs)*Pm2+g));
 dGrt(Gcs==7) = dPm1*(1./((2*pi-posrt(Gcs==7)-qs)*Pm2 + g));
 % Case 8
 Grt(Gcs>=8) = Gmaxrt*(posrt(Gcs>=8)-2*pi+qs)/qs + ...
 Pm1*(log(qs1/2*Pm2 + g) - log(g));
 dGrt(Gcs>=8) = Gmaxrt/qs;
end
% Calculate airgap permeances over the rotor slot (inter-polar region)
switch qrscs
 case 1 % qrs <= qs1/2
 Gedges = [0 qrs qs1/2 qs1/2+qrs-aoff (2*S1P-1)* (qs+qs1)+qs1/2+aoff
...
 (2*S1P-1)*(qs+qs1)+qs1/2+qrs (2*S1P-1)*(qs+ qs1)+qs1 ...
 (2*S1P-1)*(qs+qs1)+qs1+qrs 2*pi];
 [ncs,Gcs] = histc(possl,Gedges,2);
 % calculate permeances for non-zero cases (Case 4 P =0)
 % Case 1
 Gsl(Gcs==1) = (Gmaxsl*(qrs - possl(Gcs==1))/qrs) + ...
 Pm1*log((possl(Gcs==1)*Pm2 + g)/g);

176

 dGsl(Gcs==1) = -Gmaxsl/qrs + dPm1./(possl(Gcs== 1)*Pm2 + g);
 % Case 2
 Gsl(Gcs==2) = Pm1*log((possl(Gcs==2)*Pm2+g)./((possl(Gcs==2)-
qrs)*Pm2+g));
 dGsl(Gcs==2) = dPm1*(1./(possl(Gcs==2)*Pm2 + g) - ...
 1./((possl(Gcs==2)-qrs)*Pm2 + g));
 % Case 3
 Gsl(Gcs==3) = Pm1*(log(qs1/2*Pm2 + g) - log((po ssl(Gcs==3)-qrs)*Pm2
+ g));
 dGsl(Gcs==3) = dPm1*(-1./((possl(Gcs==3)-qrs)*P m2 + g));
 % Case 5
 Gsl(Gcs==5) = Pm1*(log(qs1/2*Pm2+g) - log((2*pi -possl(Gcs==5)-
qs)*Pm2+g));
 dGsl(Gcs==5) = dPm1*(1./((2*pi - possl(Gcs==5) - qs)*Pm2 + g));
 % Case 6
 Gsl(Gcs==6) = Pm1*(log((2*pi-possl(Gcs==6)-qs+q rs)*Pm2 + g) - ...
 log((2*pi-possl(Gcs==6)-qs)*Pm2 + g));
 dGsl(Gcs==6) = dPm1*(-1./((2*pi-possl(Gcs==6)-q s+qrs)*Pm2 + g) +
...
 1./((2*pi-possl(Gcs==6)-qs)*Pm2 + g));
 % Case 7
 Gsl(Gcs==7) = Gmaxsl*(possl(Gcs==7)-2*pi+qs)/qr s + ...
 Pm1*log(((2*pi-qs-possl(Gcs==7)+qrs)*Pm2 + g)/g);
 dGsl(Gcs==7) = Gmaxsl/qrs+dPm1*(-1./((2*pi-qs-
possl(Gcs==7)+qrs)*Pm2+g));
 % Case 8
 Gsl(Gcs>=8) = Gmaxsl;
 dGsl(Gcs>=8) = 0;
 case 2 % (qrs > qs1/2) && (qrs <= qs)
 Gedges = [0 qs1/2 qrs qrs+qs1/2-aoff (2*S1P-1)* (qs+qs1) +
qs1/2+aoff ...
 (2*S1P-1)*(qs+qs1) + qs1 (2*S1P-1)*(qs+qs1) + qs1/2 + qrs ...
 (2*S1P-1)*(qs+qs1) + qs1 + qrs max(2*S1P*(q s+qs1),2*pi)];
 [ncs,Gcs] = histc(possl,Gedges,2);
 % calculate permeances for non-zero cases (Case 4 P =0)
 % Case 1
 Gsl(Gcs==1) = (Gmaxsl*(qrs - possl(Gcs==1))/qrs) + ...
 Pm1*log((possl(Gcs==1)*Pm2 + g)/g);
 dGsl(Gcs==1) = -Gmaxsl/qrs + dPm1./(possl(Gcs== 1)*Pm2 + g);
 % Case 2
 Gsl(Gcs==2) = (Gmaxsl*(qrs-possl(Gcs==2))/qrs) +
Pm1*log((qs1/2*Pm2+g)/g);
 dGsl(Gcs==2) = -Gmaxsl/qrs;
 % Case 3
 Gsl(Gcs==3) = Pm1*(log(qs1/2*Pm2 + g) - log((po ssl(Gcs==3)-qrs)*Pm2
+ g));
 dGsl(Gcs==3) = -dPm1./((possl(Gcs==3) - qrs)*Pm 2 + g);
 % Case 5
 Gsl(Gcs==5) = Pm1*(log(qs1/2*Pm2+g) - log((2*pi -possl(Gcs==5)-
qs)*Pm2+g));
 dGsl(Gcs==5) = dPm1./((2*pi - possl(Gcs==5) - q s)*Pm2 + g);
 % Case 6
 Gsl(Gcs==6) = (Gmaxsl*(possl(Gcs==6) + qs - 2*p i)/qrs) + ...
 Pm1*log((qs1/2*Pm2 + g)/g);
 dGsl(Gcs==6) = Gmaxsl/qrs;

177

 % Case 7
 Gsl(Gcs==7) = (Gmaxsl*(possl(Gcs==7) + qs - 2*p i)/qrs) + ...
 Pm1*log(((2*pi - possl(Gcs==7) - qs + qrs)* Pm2 + g)/g);
 dGsl(Gcs==7) = Gmaxsl/qrs - dPm1./((2*pi-possl(Gcs==7)-qs+qrs)*Pm2
+ g);
 % Case 8
 Gsl(Gcs>=8) = Gmaxsl;
 dGsl(Gcs>=8) = 0;
 case 3 % (qrs > qs) && (qrs <= qs +qs1/2)
 Gedges = [0 qrs-qs qs1/2 qrs qrs+qs1/2-aoff ...
 (2*S1P-1)*(qs+qs1)+qs1/2+aoff (2*S1P-1)*(qs +qs1)+qs1 ...
 (2*S1P-1)*(qs+qs1)+qs1/2+qrs max(2*S1P*(qs+ qs1),2*pi)];
 [ncs,Gcs] = histc(possl,Gedges,2);
 % calculate permeances for non-zero cases (Case 5 P =0)
 % Case 1
 Gsl(Gcs==1) = Gmaxsl+Pm1*(log((possl(Gcs==1)*RO D/RP)*slope+g)-
log(g))+ ...
 Pm1*(log((qrs-qs-possl(Gcs==1))*Pm2 + g) - log(g));
 dGsl(Gcs==1) = dPm1*(-1./((qrs-qs-possl(Gcs==1))*Pm2 + g) + ...
 1./((possl(Gcs==1))*Pm2 + g));
 % Case 2
 Gsl(Gcs==2) = Gmaxsl*(qrs - possl(Gcs==2))/qs + ...
 Pm1*(log((possl(Gcs==2)*ROD/RP)*slope + g) - log(g));
 dGsl(Gcs==2) = -Gmaxsl/qs + dPm1*(1./(possl(Gcs ==2)*Pm2 + g));
 % Case 3
 Gsl(Gcs==3) = Gmaxsl*(qrs - possl(Gcs==3))/qs + ...
 Pm1*(log((qs1/2*ROD/RP)*slope + g) - log(g));
 dGsl(Gcs==3) = -Gmaxsl/qs;
 % Case 4
 Gsl(Gcs==4) = Pm1*(log((qs1/2*ROD/RP)*slope + g) - ...
 log((possl(Gcs==4)-qrs)*Pm2 + g));
 dGsl(Gcs==4) = dPm1*(-1./((possl(Gcs==4)-qrs)*P m2 + g));
 % Case 6
 Gsl(Gcs==6) = Pm1*(log((qs1/2*ROD/RP)*slope + g) - ...
 log((2*pi-qs-possl(Gcs==6))*Pm2 + g));
 dGsl(Gcs==6) = dPm1*(1./((2*pi-qs-possl(Gcs==6))*Pm2 + g));
 % Case 7
 Gsl(Gcs==7) = Gmaxsl*(qs-(2*pi-possl(Gcs==7)))/ qs + ...
 Pm1*(log((qs1/2*ROD/RP)*slope + g) - log(g));
 dGsl(Gcs==7) = Gmaxsl/qs;
 % Case 8
 Gsl(Gcs>=8) = Gmaxsl*(qs-(2*pi-possl(Gcs>=8)))/ qs + ...
 Pm1*(log((2*pi-qs-possl(Gcs>=8)+qrs)*Pm2 + g) - log(g));
 dGsl(Gcs>=8) = Gmaxsl/qs + dPm1*(-1./((2*pi-qs-
possl(Gcs>=8)+qrs)*Pm2+g));
 case 4 % (qrs > qs+qs1/2) && (qrs <= qs+qs1)
 Gedges = [0 qrs-qs-qs1/2 qs1/2 qrs-qs qrs qs1/2 +qrs-aoff ...
 (2*S1P-1)*(qs+qs1)+qs1/2+aoff (2*S1P-1)*(qs +qs1)+qs1 2*pi];
 [ncs,Gcs] = histc(possl,Gedges,2);
 % calculate permeances for non-zero cases (Case 6 P =0)
 % Case 1
 Gsl(Gcs==1) = Gmaxsl + Pm1*(log((possl(Gcs==1)) *Pm2 + g) - log(g))
+ ...
 Pm1*(log(qs1/2*Pm2 + g) - log(g));
 dGsl(Gcs==1) = dPm1*(1./((possl(Gcs==1))*Pm2 + g));

178

 % Case 2
 Gsl(Gcs==2) = Gmaxsl + Pm1*(log((possl(Gcs==2)) *Pm2 + g) - log(g))
+ ...
 Pm1*(log((qrs-possl(Gcs==2)-qs)*Pm2 + g) - log(g));
 dGsl(Gcs==2) = dPm1*(1./((possl(Gcs==2))*Pm2 + g) - ...
 1./((qrs-possl(Gcs==2)-qs)*Pm2 + g));
 % Case 3
 Gsl(Gcs==3) = Gmaxsl + Pm1*(log(qs1/2*Pm2 + g) - log(g)) + ...
 Pm1*(log((qrs-possl(Gcs==3)-qs)*Pm2 + g) - log(g));
 dGsl(Gcs==3) = dPm1*(-1./((qrs-possl(Gcs==3)-qs)*Pm2 + g));
 % Case 4
 Gsl(Gcs==4) = Gmaxsl*(qrs-possl(Gcs==4))/qs + ...
 Pm1*(log(qs1/2*Pm2 + g) - log(g));
 dGsl(Gcs==4) = -Gmaxsl/qs;
 % Case 5
 Gsl(Gcs==5) = Pm1*(log(qs1/2*Pm2 + g) - log((po ssl(Gcs==5)-qrs)*Pm2
+ g));
 dGsl(Gcs==5) = dPm1*(-1./((possl(Gcs==5)-qrs)*P m2 + g));
 % Case 7
 Gsl(Gcs==7) = Pm1*(log(qs1/2*Pm2+g) - log((2*pi -possl(Gcs==7)-
qs)*Pm2+g));
 dGsl(Gcs==7) = dPm1*(1./((2*pi-possl(Gcs==7)-qs)*Pm2 + g));
 % Case 8
 Gsl(Gcs>=8) = Gmaxsl*(possl(Gcs>=8)-2*pi+qs)/qs + ...
 Pm1*(log(qs1/2*Pm2 + g) - log(g));
 dGsl(Gcs>=8) = Gmaxsl/qs;
 case 5 % (qrs > qs+qs1)
 Gedges = [0 qs1/2 qrs-qs-qs1/2 qrs-qs qrs qs1/2 +qrs-aoff ...
 (2*S1P-1)*(qs+qs1)+qs1/2+aoff (2*S1P-1)*(qs +qs1)+qs1 2*pi];
 [ncs,Gcs] = histc(possl,Gedges,2);
 % calculate permeances for non-zero cases (Case 6 P =0)
 % Case 1
 Gsl(Gcs==1) = Gmaxsl + Pm1*(log((possl(Gcs==1)) *Pm2 + g) - log(g))
+ ...
 Pm1*(log(qs1/2*Pm2 + g) - log(g));
 dGsl(Gcs==1) = dPm1*(1./((possl(Gcs==1))*Pm2 + g));
 % Case 2
 Gsl(Gcs==2) = Gmaxsl + Pm1*(log(qs1/2*Pm2 + g) - log(g)) + ...
 Pm1*(log(qs1/2*Pm2 + g) - log(g));
 dGsl(Gcs==2) = 0;
 % Case 3
 Gsl(Gcs==3) = Gmaxsl + Pm1*(log(qs1/2*Pm2 + g) - log(g)) + ...
 Pm1*(log((qrs-possl(Gcs==3)-qs)*Pm2 + g) - log(g));
 dGsl(Gcs==3) = dPm1*(-1./((qrs-possl(Gcs==3)-qs)*Pm2 + g));
 % Case 4
 Gsl(Gcs==4) = Gmaxsl*(qrs-possl(Gcs==4))/qs+Pm1 *(log(qs1/2*Pm2+g)-
log(g));
 dGsl(Gcs==4) = -Gmaxsl/qs;
 % Case 5
 Gsl(Gcs==5) = Pm1*(log(qs1/2*Pm2 + g) - log((po ssl(Gcs==5)-qrs)*Pm2
+ g));
 dGsl(Gcs==5) = dPm1*(-1./((possl(Gcs==5)-qrs)*P m2 + g));
 % Case 7
 Gsl(Gcs==7) = Pm1*(log(qs1/2*Pm2+g) - log((2*pi -possl(Gcs==7)-
qs)*Pm2+g));

179

 dGsl(Gcs==7) = dPm1*(1./((2*pi-possl(Gcs==7)-qs)*Pm2 + g));
 % Case 8
 Gsl(Gcs>=8) = Gmaxsl*(possl(Gcs>=8)-2*pi+qs)/qs + ...
 Pm1*(log(qs1/2*Pm2 + g) - log(g));
 dGsl(Gcs>=8) = Gmaxsl/qs;
end
% Construct final matrices
G = [Grt(:,1:SPT) Gsl(:,1:Dslot/2) Grt(:,SPT+1:D)
Gsl(:,Dslot/2+1:Dslot)];
dG=[dGrt(:,1:SPT) dGsl(:,1:Dslot/2) dGrt(:,SPT+1:D)
dGsl(:,Dslot/2+1:Dslot)];

180

%-- --------------------
% AUTHORS: Michelle Bash, Steven D. Pekarek
%-- --------------------
% CONTACT: School of Electrical & Computer Enginee ring
% Purdue University
% 465 Northwestern Ave.
% West Lafayette, IN 47907
% 765-494-3434, spekarek@ecn.purdue.edu
%-- --------------------
% May 1, 2009
%-- --------------------
% J = get_J(Crfe,Ofe,A,mus,areas,dm_dbs,x)
%
% Determines the Jacobian.
%
% OUTPUTS: J - Jacobian
%
% INPUTS: Crfe - Reluctance connection matrix
% Ofe - orientation matrix
% A - A * x = F
% mus - relative permeability correspon ding to iron
branches
% areas - areas of the iron branches
% dm_dbs - derivative of relative permeabi lities
% x - mesh fluxes
%-- --------------------
function J = get_J(Crfe,Ofe,A,mus,areas,dm_dbs,x)
% IRON
% Stator yoke - S
% Stator teeth - S
% Rotor yoke below the slot - 1
% Rotor tooth shank - 1
% Rotor yoke connected to shank - 2
% Rotor tooth tips radial - (D - 4*NRrtrt)
% Rotor tooth to rotor tooth tangential - 4*NRrtrt
% Rotor tooth tangential at sides of tooth tips - 4
% AIR
% Stator tooth leakage - S
% Field winding leakage - 2
% Middle rotor slot leakage - 1
% Fringing permeance from rotor side to airgap boun dary - Dsl
% Remaining air gap terms - Nam --air
% Build Jacobian using building algorithm
pA = zeros(size(A));
ind1 = abs(Crfe(:,2));
ind2 = abs(Crfe(:,3));
dRdPhi = -Crfe(:,1).*dm_dbs./(mus.*areas);
for i=1:length(Crfe)
 if ind1(i)*ind2(i)>0 %&& ind2(i)>0
 neg = sign(Crfe(i,2)*Crfe(i,3));
 pA(ind1(i),ind1(i)) = pA(ind1(i),ind1(i)) + ...
 dRdPhi(i)*Ofe(i,ind1(i))*(x(ind1(i)) - ne g*x(ind2(i)));
 pA(ind2(i),ind2(i)) = pA(ind2(i),ind2(i)) + ...
 dRdPhi(i)*Ofe(i,ind2(i))*(x(ind2(i)) - ne g*x(ind1(i)));
 pA(ind1(i),ind2(i)) = pA(ind1(i),ind2(i)) + ...

181

 dRdPhi(i)*Ofe(i,ind2(i))*(x(ind1(i)) - ne g*x(ind2(i)));
 pA(ind2(i),ind1(i)) = pA(ind1(i),ind2(i));
 elseif ind1(i)>0
 neg = sign(Crfe(i,2));
 pA(ind1(i),ind1(i)) = pA(ind1(i),ind1(i)) + ...
 dRdPhi(i)*Ofe(i,ind1(i))*neg*x(ind1(i));
 elseif ind2(i)>0
 neg = sign(Crfe(i,3));
 pA(ind2(i),ind2(i)) = pA(ind2(i),ind2(i)) + ...
 dRdPhi(i)*Ofe(i,ind2(i))*neg*x(ind2(i));
 end
end
J = A+pA;

182

%-- --------------------
% AUTHORS: Xiaoqi Wang, Michelle Bash, Steven D. P ekarek
%-- --------------------
% CONTACT: School of Electrical & Computer Enginee ring
% Purdue University
% 465 Northwestern Ave.
% West Lafayette, IN 47907
% 765-494-3434, spekarek@ecn.purdue.edu
%-- --------------------
% Apr 1, 2013
%-- --------------------
% [A,d,Cr] =
get_meshmatrices(Rair,PTClist,Riron,parx,pars,Nabcf ,Cr,Cvconn)
%
% Builds the matrices A and d used to solve for flu x. Outputs Cr for
use by
% get_J.m
%
% OUTPUTS: A,d - matrices describing the MEC s ystem, A*x =
d*current
% Cr - connection matrix complete wi th reluctances
%
% INPUTS: Rair - air reluctances
% PTClist - air gap permeances
% Riron - iron reluctance
% parx - simulation parameters
% pars - geometry parameters
% Nabcf - matrix of stator and rotor co nductor turns
% Cr - Reluctance connection matrix
% Cvconn - mmf source connection matrix
%-- --------------------
function [A,d,Cr] =
get_meshmatrices(Rair,PTClist,Riron,parx,pars,Nabcf ,Cr,Cvconn)
% --- --------------------
%PARAMETERS
S = parx(3)/pars(28); % Number of stator teeth per pole
SPT = parx(2);
Dsl = 4*parx(29);
Nldp = SPT-1; % Number of damper leakage meshes
Nm = 3 + S + length(PTClist) + Nldp; % Total number of meshes
% ---------------------------------------
% Determine connection matrix size
% Nrym = 3; % Number of rotor yoke me shes
% Nsm = S; % Number of stator tooth meshes
% Nam = length(PTClist); % Number of air gap meshe s
% Connection matrix reluctances
% IRON
% Stator yoke - S
% Stator shank - S
% Stator teeth - S
% Rotor yoke below the slot - 1
% Rotor tooth shank - 1
% Damper bar in Rotor tooth shank - damper_nshank
% Rotor yoke connected to shank - 2
% Rotor tooth tips radial - (D - 4*NRrtrt)/2

183

% Damper windings in Rotor tooth tips radial - (D - 4*NRrtrt)/2
% Rotor tooth to rotor tooth tangential - 4*NRrtrt/ 2
% Damper windings in Rotor tooth to rotor tooth tan gential - 4*NRrtrt/2
% Leakage of rotor pole tip - Nldp
% Rotor tooth tangential at sides of tooth tips - 4 /2
% AIR
% Stator tooth leakage - S
% Field winding leakage - 2
% Middle rotor slot leakage - 2/2
% Fringing permeance from rotor side to airgap boun dary - Dsl/2
% Fringing permeance from rotor slot side to bottom of tooth tip - 4/2
% Airgap - Nam
% --- ----------------
% Combine the rotor pole tip leakage in the iron an d air
Riron(end-2-Nldp+1:end-2) = ...
 1./(1./Riron(end-2-Nldp+1:end-2) + 1./Rair(end- Nldp+1:end));
Rair(end-Nldp+1:end) = Rair(end-Nldp+1:end)*0;
%------------------------------------
% Add reluctances to connection matrix
RTC = 1./PTClist;
Cr(:,1) = [Riron;Rair;RTC];
% --- ----------------
% Find A using building algorithm
A = zeros(Nm);
ind1 = abs(Cr(:,2));
ind2 = abs(Cr(:,3));
pm = sign(Cr(:,3).*Cr(:,2));
for i=1:length(Cr)
 if ind1(i)*ind2(i)>0
 A(ind1(i),ind1(i)) = A(ind1(i),ind1(i))+Cr(i,1);
 A(ind2(i),ind2(i)) = A(ind2(i),ind2(i))+Cr(i,1);
 A(ind1(i),ind2(i)) = A(ind1(i),ind2(i))-pm(i)*Cr(i,1);
 A(ind2(i),ind1(i)) = A(ind2(i),ind1(i))-pm(i)*Cr(i,1);
 elseif ind1(i)>0
 A(ind1(i),ind1(i)) = A(ind1(i),ind1(i))+Cr(i,1);
 elseif ind2(i)>0
 A(ind2(i),ind2(i)) = A(ind2(i),ind2(i))+Cr(i,1);
 end
end
% ------------------------------------
% Find d: d = zeros(Nm,NPH+1);
d = zeros(Nm,4);
d(1:S+2,:) = Nabcf;
d(S+1,:) = d(S+1,:)*sign(Cvconn(S+1));
d(S+2,:) = d(S+2,:)*sign(Cvconn(S+2));

184

%-- --------------------
% AUTHORS: Xiaoqi Wang, Michelle Bash, Steven D. P ekarek
%-- --------------------
% CONTACT: School of Electrical & Computer Enginee ring
% Purdue University
% 465 Northwestern Ave.
% West Lafayette, IN 47907
% 765-494-3434, spekarek@ecn.purdue.edu
%-- --------------------
% Apr 1, 2013
%-- --------------------
% [Crconn,Cvconn,O,PTCind,d_damper_1,d_damper_2,ind ex,flag] =
%
shape_alg(PTC,parx,pars,damperdata,Crcfixed,Cvcfixe d,rtid,index_old,fla
g_old)
%
% Determines the mesh connections for each reluctan ce and mmf source
for a
% given rotor position. The first column of the co nnection matrics is
left
% as zero and is later updated with the specific re luctance/source
value.
%
% OUTPUTS: Crconn - reluctance connections for the MEC mesh
% Cvconn - mmf source connections for the MEC mesh
% O - orientation matrix: FLUX = O * mesh_flux, where
FLUX is
% the flux through a reluctance
% PTCind - ordered indices of the relevant airgap permeances
% d_damper_1 - represents MMF of damper cu rrents
% d_damper_2 - relates loop fluxes and the flux linkage
crossing each of two dampers
% index, flag - identify poles crossing
%
% INPUTS: PTC - Permeances in the air gap (S x D)
% parx - machine parameters
% pars - machine parameters
% damperdata - informations of damper bars
% Crcfixed - reluctance connections that d o not change
% Cvcfixed - mmf source connections
% rtid - vector identifying type of node in each rotor
section
%-- --------------------
function [Crconn,Cvconn,O,PTCind,d_damper_1,d_damper_2,inde x,flag] =
shape_alg(PTC,parx,pars,damperdata,Crcfixed,Cvcfixe d,rtid,index_old,fla
g_old)
%PARAMETERS
SPT = parx(2);
SL = parx(3);
RP = pars(28);
S = SL/RP;
D = 2*SPT;
SPAIR = parx(29);
Dsl = 4*parx(29);
NRrtrt = parx(27);

185

Nrtt = D - 4*NRrtrt;
damper_rtip = damperdata.damper_rtip;
damper_ntip = damperdata.damper_ntip;
damper_nshank = damperdata.damper_nshank;
bartype = damperdata.bartype;
% --- -------------------
% Build source connections
Cvconn = Cvcfixed;
% --- -------------------
% Based on airgap permeances, determine if a reorde ring is necessary
and if
% the rotor source mmf is negative. (Necessary beca use of single pole
% model.)
% st contains list of stator teeth with connections in order
% and rt is the corresponding list of rotor teeth s ections.
% PTCind contains the indices of the non-zero perme ances in the correct
% order.
[rt,st] = find(PTC');
rtup = sort(rt,1, 'ascend');
rtdown = sort(rt,1, 'descend');
if ~isequal(rt,rtup) && ~isequal(rt,rtdown)
 PTCnew = [PTC(:,(D+Dsl)/2+1:Dsl+D) PTC(:,1:(D+D sl)/2)];
 [rt,st] = find(PTCnew');
 PTCind1 = find([zeros(S,(D+Dsl)/2) PTC(:,(D+Dsl)/2+1:D+Dsl)]');
 PTCind2 = find([PTC(:,1:(D+Dsl)/2) zeros(S,(D+D sl)/2)]');
 PTCind = [PTCind1;PTCind2];
 Cvconn(S+1) = -(S+1);
 Cvconn(S+2) = -(S+2);
elseif (rt(1)==(D+Dsl)/2+1)
 Cvconn(S+1) = -(S+1);
 Cvconn(S+2) = -(S+2);
 PTCind = find(PTC');
else
 PTCind = find(PTC');
end
% --- -------------------
% Build reluctance connections
% Determine connection matrix size
% Nrym = 3; % Number of rotor yoke me shes
% Nsm = S; % Number of stator tooth meshes
Nam = length(rt); % Number of air gap meshes
Nldp = SPT-1; % Number of damper leakage meshes
Nm = 3 + S + Nam + Nldp; % Total number of meshes
% Initialize matrix
Crconn = [Crcfixed;zeros(Nam,3)];
% Connection matrix reluctances
% IRON
% Stator yoke - S
% Stator teeth - S
% Rotor yoke below the slot - 1
% Rotor tooth shank - 1
% Rotor yoke connected to shank - 2
% Rotor tooth tips radial - (D - 4*NRrtrt)
% Rotor tooth to rotor tooth tangential - 4*NRrtrt
% Rotor tooth tangential at sides of tooth tips - 4

186

% AIR
% Stator tooth leakage - S
% Field winding leakage - 2
% Middle rotor slot leakage - 2
% Fringing permeance from rotor side to airgap boun dary - Dsl
% Fringing permeance from rotor slot side to bottom of tooth tip - 4
% Remaining air gap terms - Nam
% Indexing variables and other terms used in algori thm
rtcs = S*3+16+D+Dsl; % start index for air gap reluct
rt1s = 2*S+4; % start index for radial rotor tooth reluct
rt2s = 2*S+4+D-4*NRrtrt; % start index for tangential rotor tooth reluct
rt34s = S*3+12+D; % start index for fringing permeances
rtrts = 2*S+4+D; % start index for side tangential rotor tooth
reluct
rfrbs = 3*S+12+D+Dsl; % start index for rotor fringing to the bottom
of the tooth tip
rtposs = 1:D+Dsl; % List of possible rotor nodes connecting to
airgap reluctances
rt1 = rtposs(rtid==1); % Rotor nodes corresponding to RRTIN
rt2 = rtposs(rtid==2); % Rotor nodes corresponding to RRTOUT
rt34 = rtposs(rtid>2); % Rotor nodes corresponding to RAGFR
rt5 = rt2([1 2*NRrtrt 2*NRrtrt+1 end]); % Rotor nodes corresponding to
RRTS
NRTBD = length(find(Crconn(rt2s+1:rt2s+NRrtrt,2)==0)); % number of
RRTOUT branches with both meshes unknown
% Connections in stator and rotor which depend on a irgap config but do
not
% rely on shape algorithm
% RSTL connection (stator tooth leakage)
Crconn(3*S+8+D,3) = S+3+Nam;
% RAG Connections (Air gap reluctances)
Crconn(rtcs+1:rtcs+Nam,3) = (S+4:Nam+S+3)';
Crconn(rtcs+1:rtcs+Nam,2) = [-(Nam+S+3) S+4:Nam+S+2]';
%-- --------------
% PROCESS SHAPES
for i=1:Nam-1
% Current mesh (loop flux) to be assigned to a relu ctance
currm = S+3+i;
% Condition for the reluctance to be connected to a negative loop
neg = 1-2*(rt(1)+(D+Dsl)/2==rt(i+1));
 if st(i)==st(i+1) && rt(i)+1==rt(i+1)
 % Base down triangle ------------------------------ -------------
 bdt_cs = rtid(rt(i))*10 + rtid(rt(i+1));
 switch bdt_cs
 case 11
 % Connecting to 2 radial rotor tooth branches
 Crconn(rt1s+find(rt1==rt(i)),3) = currm;
 Crconn(rt1s+find(rt1==rt(i+1)),2) = neg*c urrm;
 case 12
 % Connecting to a radial branch and a tangential br anch
 Crconn(rt1s+find(rt1==rt(i)),3) = currm;
 Crconn(rt2s+find(rt2==rt(i+1)),3) = currm ;
 case 22
 % Connecting to 2 tangential branches
 rt2off = rt(i)>D/4&&rt(i)<(D+Dsl)/2 || rt (i)>D*3/4+Dsl/2;

187

 Crconn(rt2s+find(rt2==rt(i))+rt2off,3) = currm;
 case 21
 % Connecting to a tangential branch and a radial br anch
 Crconn(rt2s+find(rt2==rt(i)),3) = currm;
 Crconn(rt1s+find(rt1==rt(i+1)),2) = neg*c urrm;
 case 23
 % Connecting to tangential branch & fringing to out er edge
 Crconn(rtrts+find(rt5==rt(i)),3) = currm;
 Crconn(rt34s+find(rt34==rt(i+1)),2) = neg *currm;
 case 33
 % Connecting to 2 fringing branch
 rt3i = find(rt34==rt(i));
 if mod(rt3i,2*SPAIR) == SPAIR
 Crconn(3*S+10+D+ceil(rt3i/(2*SPAIR)), 3) = currm;
 if rt3i<2*SPAIR
 Crconn(rt2s+(2*NRrtrt-NRTBD+1:2*N Rrtrt+NRTBD)',2) =
currm*ones(2*NRTBD,1);
 Crconn(rt2s+(4*NRrtrt-NRTBD+1:4*N Rrtrt)',2) = -
currm*ones(NRTBD,1);
 Crconn(rt2s+(1:NRTBD)',2) = -curr m*ones(NRTBD,1);
 Crconn(rtrts+(2:3)',2) = [currm;c urrm];
 Crconn(rtrts+[1;4],2) = [-currm;- currm];
 Crconn(rfrbs+(2:3)',3) = [currm;c urrm];
 else
 Crconn(rt2s+(1:NRTBD)',2) = currm *ones(NRTBD,1);
 Crconn(rt2s+(4*NRrtrt-NRTBD+1:4*N Rrtrt)',2) =
currm*ones(NRTBD,1);
 Crconn(rt2s+(2*NRrtrt-NRTBD+1:2*N Rrtrt+NRTBD)',2) = -
currm*ones(2*NRTBD,1);
 Crconn(rtrts+[1;4],2) = [currm;cu rrm];
 Crconn(rtrts+(2:3)',2) = [-currm; -currm];
 Crconn(rfrbs+[1;4]',3) = [currm;c urrm];
 end
 end
 Crconn(rt34s+find(rt34==rt(i)),3) = currm ;
 Crconn(rt34s+find(rt34==rt(i+1)),2) = neg *currm;
 case 34
 % Connecting to fringing going to edge and bottom
 Crconn(rt34s+find(rt34==rt(i)),3) = currm ;
 Crconn(rt34s+find(rt34==rt(i+1)),2) = neg *currm;
 whichtt = ceil(find(rt34==rt(i))/SPAIR)+1 ;
 whichtt = whichtt*(whichtt<=4)+(whichtt>4); % if-else
 Crconn(rtrts+whichtt,2) = currm;
 Crconn(rfrbs+whichtt,3) = currm;
 if whichtt==1
 Crconn(rt2s+(1:NRTBD)',2) = currm*one s(NRTBD,1);
 Crconn(rt2s+2*NRrtrt+(1:NRTBD)',2) = -
currm*ones(NRTBD,1);
 Crconn(rtrts+3,2) = -currm;
 elseif whichtt==2
 Crconn(rt2s+2*NRrtrt-NRTBD+(1:NRTBD)' ,2) =
currm*ones(NRTBD,1);
 Crconn(rt2s+4*NRrtrt-NRTBD+(1:NRTBD)' ,2) = -
currm*ones(NRTBD,1);
 Crconn(rtrts+4,2) = -currm;

188

 elseif whichtt==3
 Crconn(rt2s+2*NRrtrt+(1:NRTBD)',2) = currm*ones(NRTBD,1);
 Crconn(rt2s+(1:NRTBD)',2) = -currm*on es(NRTBD,1);
 Crconn(rtrts+1,2) = -currm;
 else
 Crconn(rt2s+4*NRrtrt-NRTBD+(1:NRTBD)' ,2) =
currm*ones(NRTBD,1);
 Crconn(rt2s+2*NRrtrt-NRTBD+(1:NRTBD)' ,2) = -
currm*ones(NRTBD,1);
 Crconn(rtrts+2,2) = -currm;
 end
 case 32
 % Connecting to fringing and tangential branch
 Crconn(rt34s+find(rt34==rt(i)),3) = currm ;
 Crconn(rtrts+find(rt5==rt(i+1)),3) = curr m;
 case 44
 % Connecting to 2 fringing paths both going to bott om
 rt4i = find(rt34==rt(i));
 if mod(rt4i,2*SPAIR) == SPAIR
 Crconn(3*S+10+D+ceil(rt4i/(2*SPAIR)), 3) = currm;
 end
 Crconn(rt34s+find(rt34==rt(i)),3) = currm ;
 Crconn(rt34s+find(rt34==rt(i+1)),2) = neg *currm;
 case 43
 % Connecting to fringing to bottom and edge
 Crconn(rt34s+find(rt34==rt(i)),3) = currm ;
 Crconn(rt34s+find(rt34==rt(i+1)),2) = neg *currm;
 whichtt = ceil(find(rt34==rt(i))/SPAIR)+1 ;
 whichtt = whichtt*(whichtt<=4)+(whichtt>4); % if-else
 Crconn(rtrts+whichtt,2) = currm;
 Crconn(rfrbs+whichtt,3) = currm;
 if whichtt==1
 Crconn(rt2s+(1:NRTBD)',2) = currm*one s(NRTBD,1);
 Crconn(rt2s+2*NRrtrt+(1:NRTBD)',2) = -
currm*ones(NRTBD,1);
 Crconn(rtrts+3,2) = -currm;
 elseif whichtt==2
 Crconn(rt2s+2*NRrtrt-NRTBD+(1:NRTBD)' ,2) =
currm*ones(NRTBD,1);
 Crconn(rt2s+4*NRrtrt-NRTBD+(1:NRTBD)' ,2) = -
currm*ones(NRTBD,1);
 Crconn(rtrts+4,2) = -currm;
 elseif whichtt==3
 Crconn(rt2s+2*NRrtrt+(1:NRTBD)',2) = currm*ones(NRTBD,1);
 Crconn(rt2s+(1:NRTBD)',2) = -currm*on es(NRTBD,1);
 Crconn(rtrts+1,2) = -currm;
 else
 Crconn(rt2s+4*NRrtrt-NRTBD+(1:NRTBD)' ,2) =
currm*ones(NRTBD,1);
 Crconn(rt2s+2*NRrtrt-NRTBD+(1:NRTBD)' ,2) = -
currm*ones(NRTBD,1);
 Crconn(rtrts+2,2) = -currm;
 end
 end
 elseif rt(i)==rt(i+1) && st(i)+1==st(i+1)

189

 % Base up triangle -------------------------------- -------------
 Crconn(2*S+8+D+st(i),3) = currm;
 elseif rt(i)+1==rt(i+1) && st(i+1)>=st(i)+1
 % Four-sided polygon ------------------------------ -------------
 bdt_cs = rtid(rt(i))*10 + rtid(rt(i+1));
 switch bdt_cs
 case 11
 % Connecting to 2 radial rotor tooth branches
 Crconn(rt1s+find(rt1==rt(i)),3) = currm;
 Crconn(rt1s+find(rt1==rt(i+1)),2) = neg*c urrm;
 case 12
 % Connecting to a radial branch and a tangential br anch
 Crconn(rt1s+find(rt1==rt(i)),3) = currm;
 Crconn(rt2s+find(rt2==rt(i+1)),3) = currm ;
 case 22
 % Connecting to 2 tangential branches
 rt2off = rt(i)>D/4&&rt(i)<(D+Dsl)/2 || rt (i)>D*3/4+Dsl/2;
 Crconn(rt2s+find(rt2==rt(i))+rt2off,3) = currm;
 case 21
 % Connecting to a tangential branch and a radial br anch
 Crconn(rt2s+find(rt2==rt(i)),3) = currm;
 Crconn(rt1s+find(rt1==rt(i+1)),2) = neg*c urrm;
 case 23
 % Connecting to tangential branch & fringing to out er edge
 Crconn(rtrts+find(rt5==rt(i)),3) = currm;
 Crconn(rt34s+find(rt34==rt(i+1)),2) = neg *currm;
 case 33
 % Connecting to 2 fringing branch
 rt3i = find(rt34==rt(i));
 if mod(rt3i,2*SPAIR) == SPAIR
 Crconn(3*S+10+D+ceil(rt3i/(2*SPAIR)), 3) = currm;
 if rt3i<2*SPAIR
 Crconn(rt2s+(2*NRrtrt-NRTBD+1:2*N Rrtrt+NRTBD)',2) =
currm*ones(2*NRTBD,1);
 Crconn(rt2s+(4*NRrtrt-NRTBD+1:4*N Rrtrt)',2) = -
currm*ones(NRTBD,1);
 Crconn(rt2s+(1:NRTBD)',2) = -curr m*ones(NRTBD,1);
 Crconn(rtrts+(2:3)',2) = [currm;c urrm];
 Crconn(rtrts+[1;4],2) = [-currm;- currm];
 Crconn(rfrbs+(2:3)',3) = [currm;c urrm];
 else
 Crconn(rt2s+(1:NRTBD)',2) = currm *ones(NRTBD,1);
 Crconn(rt2s+(4*NRrtrt-NRTBD+1:4*N Rrtrt)',2) =
currm*ones(NRTBD,1);
 Crconn(rt2s+(2*NRrtrt-NRTBD+1:2*N Rrtrt+NRTBD)',2) = -
currm*ones(2*NRTBD,1);
 Crconn(rtrts+[1;4],2) = [currm;cu rrm];
 Crconn(rtrts+(2:3)',2) = [-currm; -currm];
 Crconn(rfrbs+[1;4]',3) = [currm;c urrm];
 end
 end
 Crconn(rt34s+find(rt34==rt(i)),3) = currm ;
 Crconn(rt34s+find(rt34==rt(i+1)),2) = neg *currm;
 case 34
 % Connecting to fringing going to edge and bottom

190

 Crconn(rt34s+find(rt34==rt(i)),3) = currm ;
 Crconn(rt34s+find(rt34==rt(i+1)),2) = neg *currm;
 whichtt = ceil(find(rt34==rt(i))/SPAIR)+1 ;
 whichtt = whichtt*(whichtt<=4)+(whichtt>4); % if-else
 Crconn(rtrts+whichtt,2) = currm;
 Crconn(rfrbs+whichtt,3) = currm;
 if whichtt==1
 Crconn(rt2s+(1:NRTBD)',2) = currm*one s(NRTBD,1);
 Crconn(rt2s+2*NRrtrt+(1:NRTBD)',2) = -
currm*ones(NRTBD,1);
 Crconn(rtrts+3,2) = -currm;
 elseif whichtt==2
 Crconn(rt2s+2*NRrtrt-NRTBD+(1:NRTBD)' ,2) =
currm*ones(NRTBD,1);
 Crconn(rt2s+4*NRrtrt-NRTBD+(1:NRTBD)' ,2) = -
currm*ones(NRTBD,1);
 Crconn(rtrts+4,2) = -currm;
 elseif whichtt==3
 Crconn(rt2s+2*NRrtrt+(1:NRTBD)',2) = currm*ones(NRTBD,1);
 Crconn(rt2s+(1:NRTBD)',2) = -currm*on es(NRTBD,1);
 Crconn(rtrts+1,2) = -currm;
 else
 Crconn(rt2s+4*NRrtrt-NRTBD+(1:NRTBD)' ,2) =
currm*ones(NRTBD,1);
 Crconn(rt2s+2*NRrtrt-NRTBD+(1:NRTBD)' ,2) = -
currm*ones(NRTBD,1);
 Crconn(rtrts+2,2) = -currm;
 end
 case 32
 % Connecting to fringing and tangential branch
 Crconn(rt34s+find(rt34==rt(i)),3) = currm ;
 Crconn(rtrts+find(rt5==rt(i+1)),3) = curr m;
 case 44
 % Connecting to 2 fringing paths both going to bott om
 rt4i = find(rt34==rt(i));
 if mod(rt4i,2*SPAIR) == SPAIR
 Crconn(3*S+10+D+ceil(rt4i/(2*SPAIR)), 3) = currm;
 end
 Crconn(rt34s+find(rt34==rt(i)),3) = currm ;
 Crconn(rt34s+find(rt34==rt(i+1)),2) = neg *currm;
 case 43
 % Connecting to fringing to bottom and edge
 Crconn(rt34s+find(rt34==rt(i)),3) = currm ;
 Crconn(rt34s+find(rt34==rt(i+1)),2) = neg *currm;
 whichtt = ceil(find(rt34==rt(i))/SPAIR)+1 ;
 whichtt = whichtt*(whichtt<=4)+(whichtt>4); % if-else
 Crconn(rtrts+whichtt,2) = currm;
 Crconn(rfrbs+whichtt,3) = currm;
 if whichtt==1
 Crconn(rt2s+(1:NRTBD)',2) = currm*one s(NRTBD,1);
 Crconn(rt2s+2*NRrtrt+(1:NRTBD)',2) = -
currm*ones(NRTBD,1);
 Crconn(rtrts+3,2) = -currm;
 elseif whichtt==2

191

 Crconn(rt2s+2*NRrtrt-NRTBD+(1:NRTBD)' ,2) =
currm*ones(NRTBD,1);
 Crconn(rt2s+4*NRrtrt-NRTBD+(1:NRTBD)' ,2) = -
currm*ones(NRTBD,1);
 Crconn(rtrts+4,2) = -currm;
 elseif whichtt==3
 Crconn(rt2s+2*NRrtrt+(1:NRTBD)',2) = currm*ones(NRTBD,1);
 Crconn(rt2s+(1:NRTBD)',2) = -currm*on es(NRTBD,1);
 Crconn(rtrts+1,2) = -currm;
 else
 Crconn(rt2s+4*NRrtrt-NRTBD+(1:NRTBD)' ,2) =
currm*ones(NRTBD,1);
 Crconn(rt2s+2*NRrtrt-NRTBD+(1:NRTBD)' ,2) = -
currm*ones(NRTBD,1);
 Crconn(rtrts+2,2) = -currm;
 end
 end
 Crconn(2*S+8+D+st(i):2*S+8+D+st(i+1)-1,3) = cur rm;
 end
end
% PROCESS BOUNDARY SHAPE
currm = S+3+Nam; % final airgap loop
if rt(1)+D/2+Dsl/2~=rt(Nam) % First and last airgap reluct not
connected to the same rotor tooth
 % Base-down triangle or four-sided polygon
 neg = -1;
 bdtbound_cs = rtid(rt(Nam))*10 + rtid(rt(1));
 switch bdtbound_cs
 case 11
 % Connecting to 2 radial rotor tooth branches
 Crconn(rt1s+find(rt1==rt(Nam)),3) = cur rm;
 Crconn(rt1s+find(rt1==rt(1)),2) = neg*c urrm;
 case 12
 % Connecting to a radial branch and a tangential br anch
 Crconn(rt1s+find(rt1==rt(Nam)),3) = cur rm;
 Crconn(rt2s+find(rt2==rt(1)),3) = neg*c urrm;
 case 22
 % Connecting to 2 tangential branches
 rt2off = rt(Nam)>D/4&&rt(Nam)<(D+Dsl)/2 ||
rt(Nam)>D*3/4+Dsl/2;
 Crconn(rt2s+find(rt2==rt(Nam))+rt2off,3) = currm;
 case 21
 % Connecting to a tangential branch and a radial br anch
 Crconn(rt2s+find(rt2==rt(Nam)),3) = cur rm;
 Crconn(rt1s+find(rt1==rt(1)),2) = neg*c urrm;
 case 23
 % Connecting to tangential branch & fringing to out er edge
 Crconn(rtrts+find(rt5==rt(Nam)),3) = cu rrm;
 Crconn(rt34s+find(rt34==rt(1)),2) = neg *currm;
 case 33
 % Connecting to 2 fringing branch
 rt3i = find(rt34==rt(Nam));
 if mod(rt3i,2*SPAIR) == SPAIR
 Crconn(3*S+10+D+ceil(rt3i/(2*SPAIR)),3) = currm;
 Crconn(rfrbs+[1;4],3) = [currm;curr m];

192

 Crconn(rtrts+[1;4],2) = [currm;curr m];
 Crconn(rtrts+[2;3],2) = [-currm;-cu rrm];
 Crconn(rt2s+2*NRrtrt+(1:NRTBD)',2) = -
currm*ones(NRTBD,1);
 Crconn(rt2s+(4*NRrtrt-NRTBD+1:4*NRr trt)',2) =
currm*ones(NRTBD,1);
 end
 Crconn(rt34s+find(rt34==rt(Nam)),3) = c urrm;
 Crconn(rt34s+find(rt34==rt(1)),2) = neg *currm;
 case 34
 % Connecting to fringing going to edge and bottom
 Crconn(rt34s+find(rt34==rt(Nam)),3) = c urrm;
 Crconn(rt34s+find(rt34==rt(1)),2) = neg *currm;
 whichtt = ceil(find(rt34==rt(Nam))/SPAI R)+1;
 whichtt = whichtt*(whichtt<=4)+(whichtt >4); % if-else
 Crconn(rtrts+whichtt,2) = currm;
 Crconn(rfrbs+whichtt,3) = currm;
 Crconn(rt2s+(4*NRrtrt-NRTBD+1:4*NRrtrt) ',2) =
currm*ones(NRTBD,1);
 case 32
 % Connecting to fringing and tangential branch
 Crconn(rt34s+find(rt34==rt(Nam)),3) = c urrm;
 if rt(1)>(D+Dsl)/2
 Crconn(rtrts+find(rt5==(rt(1)-(D+Ds l)/2)),3) = currm;
 else
 Crconn(rtrts+find(rt5==(rt(1)+(D+Ds l)/2)),3) = currm;
 end
 case 44
 % Connecting to 2 fringing paths both going to bott om
 rt4i = find(rt34==rt(Nam));
 if mod(rt4i,2*SPAIR) == SPAIR
 Crconn(3*S+10+D+ceil(rt4i/(2*SPAIR)),3) = currm;
 end
 Crconn(rt34s+find(rt34==rt(Nam)),3) = c urrm;
 Crconn(rt34s+find(rt34==rt(1)),2) = neg *currm;
 case 43
 % Connecting to fringing to bottom and edge
 Crconn(rt34s+find(rt34==rt(Nam)),3) = c urrm;
 Crconn(rt34s+find(rt34==rt(1)),2) = neg *currm;
 whichtt = ceil(find(rt34==rt(1))/SPAIR) +1;
 whichtt = whichtt*(whichtt<=4)+(whichtt >4);
 Crconn(rtrts+whichtt,2) = neg*currm;
 Crconn(rfrbs+whichtt,3) = neg*currm;
 Crconn(rt2s+(whichtt-1)*NRrtrt+(1:NRTBD)',2) = -
currm*ones(NRTBD,1);
 end
else
 % Base-up triangle
 if rtid(rt(1)) == 1
 Crconn(rt1s+find(rt1==rt(1)),2) =
Crconn(rt1s+find(rt1==rt(Nam)),2);
 elseif rtid(rt(1)) > 2
 Crconn(rt34s+find(rt34==rt(1)),2) =
Crconn(rt34s+find(rt34==rt(Nam)),2);
 end

193

end
% GET RID OF UNUSED ROTOR TEETH RELUCTANCES IN Crco nn (D/2 positions)
% Cut down rotor reluctances to one pole instead of a pole pair
remov = (Crconn(:,2)==0 | Crconn(:,3) ==0) &
[zeros(2*S+4,1);ones(D+4+S+8+Dsl+Nam,1)];
firstpole = [zeros(2*S+4,1);ones(D/2-2*NRrtrt,1);ze ros(D/2-
2*NRrtrt,1);ones(2*NRrtrt,1);zeros(2*NRrtrt,1);zero s(S+2+4+2,1);ones(Ds
l/2,1);zeros(Dsl/2+4+Nam,1)];
secpole = [zeros(2*S+4,1);zeros(D/2-2*NRrtrt,1);one s(D/2-
2*NRrtrt,1);zeros(2*NRrtrt,1);ones(2*NRrtrt,1);zero s(S+6+2,1);zeros(Dsl
/2,1);ones(Dsl/2,1);zeros(4+Nam,1)];
Crconn(firstpole&remov,:)=Crconn(secpole&~remov,:);
Crconn(secpole&secpole|remov&~firstpole,:) = [];
% Crconn is ordered such that the flux through a re luctance branch is
equal
% to the loop flux in column 2 - loop flux in colum n 3

% --- --------------------
% Crconn matrix postprocess to incorporate the bran ches of
% stator tooth tip, damper slots, and leakage of da mper slots
% --- --------------------
% Add branches for stator tooth tip --------------- --------------------
Crconn_stt = Crconn(S+1:2*S,:);
Crconn_temp_1 = Crconn(1:2*S,:);
Crconn_temp_2 = Crconn(2*S+1:end,:);
Crconn = [Crconn_temp_1;Crconn_stt;Crconn_temp_2];

% Add branches for damper slots in shank ---------- --------------------
if damper_nshank == 0
 Crconn_shank = [];
else
 for i = 1:damper_nshank
 Crconn_shank(i,:) = Crconn(3*S+2,:);
 end
end
Crconn_temp_1 = Crconn(1:3*S+2,:);
Crconn_temp_2 = Crconn(3*S+3:end,:);
Crconn = [Crconn_temp_1;Crconn_shank;Crconn_temp_2] ;

% Add branches for damper slots on tip ------------ --------------------
Crconn_in = Crconn(3*S+4+damper_nshank+1:3*S+4+damp er_nshank+Nrtt/2,:);
Crconn_out =
Crconn(3*S+4+damper_nshank+Nrtt/2+1:3*S+4+damper_ns hank+D/2,:);
Crconn_temp_1 = Crconn(1:3*S+4+damper_nshank+Nrtt/2 ,:);
Crconn_temp_2 = Crconn(3*S+4+damper_nshank+Nrtt/2+1 :end,:);
Crconn = [Crconn_temp_1;Crconn_in;Crconn_out;Crconn _temp_2];

% Add branches for leakage path of rotor pole tip i ron-----------------
rt1s = 3*S+4+damper_nshank;
ldp_start = 3*S+4+damper_nshank+D;
Crconn_ldp = zeros(Nldp,3);

for i = 1:ceil(Nldp/2)
 if i <= Nrtt/4

194

 c1 = sign(Crconn_in(Nrtt/4-i+1,3))*(S+3+Nam +ceil(Nldp/2)-i+1);
 c2 = sign(Crconn_in(Nrtt/4-i+2,2))*(S+3+Nam +ceil(Nldp/2)-i+1);
 Crconn(rt1s+Nrtt/4-i+1,3) = c1;
 Crconn(rt1s+Nrtt/4-i+2,2) = c2;
 Crconn_ldp(ceil(Nldp/2)-i+1,2) = c1;
 Crconn_ldp(ceil(Nldp/2)-i+1,3) = Crconn_in(Nrtt/4-i+1,3);

 c1 = sign(Crconn_in(Nrtt/4+i-1,3))*(S+3+Nam +floor(Nldp/2)+i);
 c2 = sign(Crconn_in(Nrtt/4+i,2))*(S+3+Nam+f loor(Nldp/2)+i);
 Crconn(rt1s+Nrtt/4+i-1,3) = c1;
 Crconn(rt1s+Nrtt/4+i,2) = c2;
 Crconn_ldp(floor(Nldp/2)+i,2) = c1;
 Crconn_ldp(floor(Nldp/2)+i,3) = Crconn_in(N rtt/4+i-1,3);
 else
 c1 = sign(Crconn_out(length(damper_rtip)-
i+1,3))*(S+3+Nam+ceil(Nldp/2)-i+1);
 Crconn(rt1s+D-4*NRrtrt+length(damper_rtip)- i+1,3) = c1;
 Crconn_ldp(ceil(Nldp/2)-i+1,2) = c1;
 Crconn_ldp(ceil(Nldp/2)-i+1,3) =
Crconn_out(length(damper_rtip)-i+1,3);

 c1 = sign(Crconn_out(2*NRrtrt-(length(dampe r_rtip)-
i),3))*(S+3+Nam+floor(Nldp/2)+i);
 Crconn(rt1s+D-4*NRrtrt+2*NRrtrt-(length(dam per_rtip)-i),3) =
c1;
 Crconn_ldp(floor(Nldp/2)+i,2) = c1;
 Crconn_ldp(floor(Nldp/2)+i,3) = Crconn_out(2*NRrtrt-
(length(damper_rtip)-i),3);

 if i == Nrtt/4+1
 Crconn(rt1s+1,2) =
sign(Crconn_in(1,2))*Crconn_ldp(ceil(Nldp/2)-i+1,2) ;
 Crconn(rt1s+Nrtt/2,3) =
sign(Crconn_in(Nrtt/2,3))*Crconn_ldp(floor(Nldp/2)+ i,2);
 end
 end
end
Crconn(rt1s+Nrtt/2+(1:Nrtt/2),:) = Crconn(rt1s+(1:N rtt/2),:);
Crconn(rt1s+D-2*NRrtrt+(1:2*NRrtrt),:) = Crconn(rt1 s+D-
4*NRrtrt+(1:2*NRrtrt),:);
Crconn_temp_1 = Crconn(1:ldp_start,:);
Crconn_temp_2 = Crconn(ldp_start+1:end,:);
Crconn = [Crconn_temp_1;Crconn_ldp;Crconn_temp_2];

% Add branches for leakage path of rotor pole tip a ir------------------
Crconn_temp_1 = Crconn(1:ldp_start+Nldp+S+Dsl/2+7,:);
Crconn_temp_2 = Crconn(ldp_start+Nldp+S+Dsl/2+7+1:e nd,:);
Crconn = [Crconn_temp_1;Crconn_ldp;Crconn_temp_2];

% Final output connection matrix Crconn ----------- --------------------
% IRON
% Stator yoke - S
% Stator shank - S
% Stator teeth - S

195

% Rotor yoke below the slot - 1
% Rotor tooth shank - 1
% Damper bar in Rotor tooth shank - damper_nshank
% Rotor yoke connected to shank - 2
% Rotor tooth tips radial - (D - 4*NRrtrt)/2
% Damper windings in Rotor tooth tips radial - (D - 4*NRrtrt)/2
% Rotor tooth to rotor tooth tangential - 4*NRrtrt/ 2
% Damper windings in Rotor tooth to rotor tooth tan gential - 4*NRrtrt/2
% Leakage of rotor pole tip - Nldp
% Rotor tooth tangential at sides of tooth tips - 4 /2
% AIR
% Stator tooth leakage - S
% Field winding leakage - 2
% Middle rotor slot leakage - 2/2
% Fringing permeance from rotor side to airgap boun dary - Dsl/2
% Fringing permeance from rotor slot side to bottom of tooth tip - 4/2
% Airgap - Nam

% --- --------------------
% Create a matrix O such that [branch flux] = O*[lo op flux]
Osize = [length(Crconn),Nm];
O = zeros(Osize)';
% vec_ind used to convert indexing to one long vect or, instead of using
% (row,col) indexing
vec_ind = (0:Osize(2):Osize(2)*(Osize(1)-1))';
Ocols = ([vec_ind vec_ind]+abs(Crconn(:,2:3))).*(Cr conn(:,2:3)~=0);
% find fluxes in the positive column which are actu ally negative
because of
% symmetry conditions, place -1 in O
oposopp = find((Crconn(:,2)<0)==1);
O(Ocols(oposopp)) = -1;
Ocols(oposopp) = 0;
% find fluxes in the neg column which are actually pos, place 1 in O
onegopp = find((Crconn(:,3)<0)==1);
O(Ocols(onegopp,2)) = 1;
Ocols(onegopp,2) = 0;
% add a -1 in O for the remaining fluxes in neg col umn
Oneg = Ocols(Ocols(:,2)~=0,2);
O(Oneg) = O(Oneg)-1;
% add a +1 in O for remaining fluxes in the pos col umn
Opos = Ocols(Ocols(:,1)~=0,1);
O(Opos) = O(Opos)+1;
O = O';

%-- --------------------
% Update turn matrix for damper windings
% d_damper_1 represents MMF of damper currents
% d_damper_2 relates loop fluxes and the flux linka ge crossing each of
two dampers
damper_rtip_prime = flipdim(damper_rtip,1);
damper_rtip_full = [damper_rtip_prime;damper_rtip(2 :end)];
dp_pos = find(damper_rtip_full);
index = Crconn_ldp(dp_pos,:);
flag = flag_old;
% Damper bars disconnected between poles

196

if bartype == 1
 if damper_ntip < 2
 d_damper_1 = [];
 d_damper_2 = [];
 else
 d_damper_1 = zeros(Nm,damper_ntip-1);
 d_damper_2 = zeros(Nm,damper_ntip-1);
 for i = 1:damper_ntip-1
 if abs(index(i,3)-index_old(i,3)) > Nam/2
 flag(i) = -flag(i);
 end
 d_damper_1(abs(index(i,2)),i) = flag(i) ;
 end
 if abs(index(i+1,3)-index_old(i+1,3)) > Nam/2
 flag(i+1) = -flag(i+1);
 end
 d_damper_1(abs(index(i+1,2)),:) = -ones(1,d amper_ntip-
1)*flag(i+1);

 for i = 1:damper_ntip-1
 d_damper_2(abs(index(i,2)),i) = -flag(i);
 d_damper_2(abs(index(i+1,2)),i) = flag(i+1);
 end
 end
% Damper bars connected between poles or no connect ion
elseif bartype == 2 || bartype == 0
 if damper_ntip < 1
 d_damper_1 = [];
 else
 d_damper_1 = zeros(Nm,damper_ntip);
 d_damper_2 = zeros(Nm,damper_ntip);
 for i = 1:damper_ntip
 if abs(index(i,3)-index_old(i,3)) > Nam/2
 flag(i) = -flag(i);
 end
 d_damper_1(abs(index(i,2)),i) = flag(i) ;
 end
 end

 if damper_ntip == 0
 d_damper_2 = [];
 elseif damper_ntip == 1
 d_damper_2(abs(index(1,2)),1) = -2*flag(1);
 else
 for i = 1:damper_ntip-1
 d_damper_2(abs(index(i,2)),i) = -flag(i);
 d_damper_2(abs(index(i+1,2)),i) = flag(i+1);
 end
 d_damper_2(abs(index(damper_ntip,2)),damper _ntip) = -
flag(damper_ntip);
 d_damper_2(abs(index(1,2)),damper_ntip) = - flag(1);
 end
end

197

%-- --------------------
% AUTHORS: Michelle Bash, Steven D. Pekarek
%-- --------------------
% CONTACT: School of Electrical & Computer Enginee ring
% Purdue University
% 465 Northwestern Ave.
% West Lafayette, IN 47907
% 765-494-3434, spekarek@ecn.purdue.edu
%-- --------------------
% May 1, 2009
%-- --------------------
% [mur,pmur] = get_mur_exp(B,mubd)
%
% Calculate mur and pmur from exponential curve fit formulation in
PMMT.
%
% OUTPUTS: mur - relative permeability
% pmur - derivative of the relative perm eability
%
% INPUTS: B - flux density (T)
% mubd - structure containing curve fit parameters
%-- --------------------
function [mur,pmur] = get_mur_exp(B,mubd)
B_w_sign = sign(B);
B_w_sign(B==0) = 1;
% Flux density is copied into a matrix to enable ca lculation without a
for
% loop. The parameters are already in matrix form.
B = abs(B)*ones(1,mubd.K);
fofB = mubd.mur/(mubd.mur-1) + ...
 sum(mubd.a.*B+mubd.d.*log((1+exp(-mubd.b.*B+mub d.e))./mubd.z),2);
dfofBdB = B_w_sign.*sum(mubd.a./(1+exp(-mubd.b.*B+m ubd.e)),2);
% Relative permeability and its derivative
mur = fofB./(fofB-1);
pmur = -dfofBdB./((fofB-1).^2);

198

%-- --------------------
% AUTHORS: Xiaoqi Wang, Michelle Bash, Steven D. P ekarek
%-- --------------------
% CONTACT: School of Electrical & Computer Enginee ring
% Purdue University
% 465 Northwestern Ave.
% West Lafayette, IN 47907
% 765-494-3434, spekarek@ecn.purdue.edu
%-- --------------------
% June 1, 2012
%-- --------------------
% [WSTT,WST,WSY,WRT,WRY,WSW,WRW,WTOT] = get_mass(pars,parx,trns)
%
% Calculates the weight of the machine.
%
% OUTPUTS: WSTT - stator teeth tip weight
% WST - stator teeth shank weight
% WSY - stator yoke weight
% WRT - rotor teeth weight
% WRSH - rotor shank weight
% WRY - rotor yoke weight
% WSW,WRW - stator and rotor copper weigh t
% WTOT - total weight
%
% INPUTS: pars - geometric parameters
% parx - simulation parameters
% trns - conductor turns
%-- --------------------
function [WSTT,WST,WSY,WRT,WRSH,WRY,WSW,WRW,WTOT] =
get_mass(pars,parx,trns,damperdata)
% Parameters
OD = pars(1);
ID = pars(2);
GLS = pars(3);
DBS = pars(4);
H0 = pars(5);
H1 = pars(6);
SLTINS = pars(13);
ESC = pars(17);
STW = pars(20);
DC = pars(25);
CL = pars(26);
GLP = pars(27);
RP = pars(28);
DENS = pars(37);
SHDENS = pars(38);
SD = pars(29);
WIREDENS = pars(39);
Ac = pars(40);
Nfld = pars(41);
Acfld = pars(42);
ROD = pars(24);
RPIT = pars(32);
HRTT = pars(44);
WRTSH = pars(46);

199

NPH = parx(1);
SL = parx(3);
WRTang = 2*pi*RPIT/RP; % ANGLE AT OUTSIDE EDGE OF ROTOR TOOTH TIP
WRTchord = 2*(ROD/2)*sin(0.5*WRTang); % CHORD LENGTH OF ROTOR TOOTH
TIP
WRTSHchord = pars(56); % CHORD WIDTH OF ROTOR TOOTH SHANK
yRT = ROD/2*cos(0.5*WRTang); % VERTICAL HEIGHT TO TOP OF
TOOTH TIP SIDE
yRC = 0.5*sqrt(DC^2-WRTSHchord^2); % VERTICAL HEIGHT TO BOTTOM
OF ROTOR TOOTH SHANK SIDE
HRTSH = pars(45); % VERTICAL HEIGHT OF ROTOR TOOTH SHANK
WCOIL = pars(51);
tipw = pars(57); % Width of stator teeth tip
tiph = pars(58); % Height of stator teeth tip
damper_rtip = damperdata.damper_rtip;
damper_rshank = damperdata.damper_rshank;
damper_nshank = damperdata.damper_nshank;
%%%STATOR WEIGHT
%STATOR T00TH SHANK WEIGHT
rb = OD/2 - DBS; % Radius to back iron
rsi = ID/2; % Inner stator radius
% STW is the tooth arc width at the inner stator ra dius
thetats = 0.5*STW/rsi;
STWchd = sin(thetats)*rsi*2; %linear width of tooth
thetatb = asin((STWchd/2)/rb);
a1 = thetatb*(rb^2);
a3 = rb*rsi*sin(thetats-thetatb)/2;
a2 = thetats*(rsi^2);
area_stator_tooth_shank = a1 + 2*a3 - a2 - STW*tiph ;
WST = DENS*(GLS*area_stator_tooth_shank)*SL;
%STATOR T00TH TIP WEIGHT
area_stator_tooth_tip = (2*tipw+STW)*tiph;
WSTT = DENS*(GLS*area_stator_tooth_tip)*SL;
%STATOR YOKE WEIGHT
volume_stator_outer_slice = GLS*pi*(OD/2)^2;
volume_stator_inner_slice = GLS*pi*(OD/2-DBS)^2;
WSY = DENS*(volume_stator_outer_slice - volume_stat or_inner_slice);
% STATOR WEIGHT
SWEIGHT = WST + WSY + WSTT;
%%%ROTOR WEIGHT
%ROTOR CORE WEIGHT
volume_rotor_core_yoke = CL*pi*((DC/2)^2 - (SD/2)^2);
volume_shaft = CL*pi*(SD/2)^2;
WRY = DENS*volume_rotor_core_yoke + SHDENS*volume_s haft;
%ROTOR POLE TIP WEIGHT
artslice = WRTang/2*(ROD/2)^2;
arttri = WRTchord/2*yRT;
apt = HRTT*WRTchord;
area_damper_tip = sum(pi*damper_rtip.^2);
area_rotor_tip = artslice-arttri + apt - area_dampe r_tip;
volume_rotor_tip = GLP*RP*area_rotor_tip;
WRT = DENS*volume_rotor_tip;
% ROTOR POLE SHANK WEIGHT
apb = WRTSHchord*HRTSH;
arcslice = (DC/2)^2*asin(WRTSHchord/DC);

200

arctri = WRTSHchord/2*yRC;
area_damper_shank = damper_nshank*pi*damper_rshank. ^2;
area_rotor_shank = apb - (arcslice-arctri) - area_d amper_shank;
volume_rotor_shank = GLP*RP*area_rotor_shank;
WRSH = DENS*volume_rotor_shank;

% ROTOR WEIGHT
RWEIGHT = WRY + WRT + WRSH;
%%%COPPER WEIGHT
winding = abs(cumsum(trns) - 0.5*sum(trns));
DZ = ID + 2*(H0+H1);
DW = 0.5*(OD-DZ) - SLTINS - DBS;
lslot = GLS + 2*ESC;
lend = (2*pi/SL)*(DZ/2 + DW/2);
lcond = sum(trns)*lslot*RP + 2*sum(winding)*lend* RP;
volume_stator_copper = Ac*lcond*NPH;
WSW = WIREDENS*volume_stator_copper;
%ROTOR WINDINGS
lcondfld = 2*(GLP + WRTSH + WCOIL*pi/2)*Nfld;
volume_rotor_copper = Acfld*lcondfld*RP;
WRW = WIREDENS*volume_rotor_copper;
% Copper weight
CUWEIGHT = WSW + WRW;
%TOTAL WEIGHT
WTOT = SWEIGHT + RWEIGHT + CUWEIGHT;

201

%-- --------------------
% AUTHORS: Michelle Bash, Steven D. Pekarek
%-- --------------------
% CONTACT: School of Electrical & Computer Enginee ring
% Purdue University
% 465 Northwestern Ave.
% West Lafayette, IN 47907
% 765-494-3434, spekarek@ecn.purdue.edu
%-- --------------------
% November 1, 2009
%-- --------------------
% Pld = coreloss(B,f,DT,matdata)
%
% Calculates the core loss of the iron sections for any given material.
%
% OUTPUTS: Pld - Volumetric power loss density
%
% INPUTS: B - flux density
% f - fundamental frequency
% DT - time step
% matdata - structure containing material data
%-- --------------------
function Pld = coreloss(B,f,DT,matdata)
% Bb = 1;
deltB = max(B) - min(B);
% Coefficients for magnetic material
alp = matdata.alpha;
beta = matdata.beta;
kh = matdata.kh;
ke = matdata.ke;
% DEFINE NUMBER OF POINTS FOR ONE CYCLE
num_pts=round((1/f)/DT);
% LENGTH OF DATA VECTORS
n=length(B);
% OBTAIN WAVEFORM PORTION OF INTEREST
B_1=B(n-num_pts:n);
npts = length(B_1);
% NUMERICALLY DIFFERENTIATE
dBdt = (B_1(2:npts) - B_1(1:npts-1))./DT;
dBdt(npts) = dBdt(1);
dBdt2 = dBdt.*dBdt;
% INTEGRATE dB/dt^2
int_0toT = DT*(sum(dBdt2(1:npts-1))/2 + sum(dBdt2(2 :npts))/2);
% EQUIVALENT FREQUENCY
feq = 2/(deltB^2*pi*pi)*int_0toT;
% POWER LOSS DENSITY
Pld = kh*feq^(alp-1)*max(B)^beta*f + ke*f*int_0toT;

202

%-- --------------------
% AUTHORS: Wang Xiaoqi, Steven D. Pekarek
%-- --------------------
% CONTACT: School of Electrical & Computer Enginee ring
% Purdue University
% 465 Northwestern Ave.
% West Lafayette, IN 47907
% 765-494-3434, spekarek@ecn.purdue.edu
%-- --------------------
% August 1, 2013
%-- --------------------
% damper_losses = calc_dploss(idamper, damperdata, pars, parx)
%
% Calculates the damper loss.
%
% OUTPUTS: damper_losses - damper loss
%
% INPUTS: idamper - damper currents
% damperdata - information of damper bar s
% pars - geometric parameters
% parx - simulation parameters
%-- --------------------

function [damper_losses] = calc_dploss(idamper, damperdata, pars, parx)

synfreq = (pars(28)/2)*parx(4)/60; % Fundamental frequency
DT = parx(12); % Time step in s
RP = pars(28); % Number of rotor poles
damper_ntip = damperdata.damper_ntip; % Number of damper windings on
rotor tip
Rd = damperdata.Rd; % Resistance of damper windings on rotor tip
Re = damperdata.Re; % Resistance of damper windings connection
bartype = damperdata.bartype; % Type of damper bars connnection

if damper_ntip == 0
 damper_losses = 0;
else
 % Current in the bars
 idp_rms = zeros(damper_ntip,1);
 for i = 1:damper_ntip
 idp_rms(i) = tools('tool_rms' ,idamper(i,:),1,synfreq,DT);
 end
 % Current in the end connections
 dp_conn = tril(ones(damper_ntip-(bartype==1),da mper_ntip-
(bartype==1)),-1) ...
 + diag(ones(damper_ntip-(bartype==1),1));
 idp_end = dp_conn*idamper(1:damper_ntip-(bartyp e==1),:);
 idp_end_rms = zeros(damper_ntip-(bartype==1),1) ;
 for i = 1:damper_ntip-(bartype==1)
 idp_end_rms(i) = tools('tool_rms' ,idp_end(i,:),1,synfreq,DT);
 end
 % Calculate loss
 damper_losses = RP*(sum(Rd.*idp_rms.^2,1)+sum(R e(1:damper_ntip-
(bartype==1)).*idp_end_rms.^2,1));
end

203

%-- --------------------
% AUTHORS: Xiaoqi Wang, Michelle Bash, Steven D. P ekarek
%-- --------------------
% CONTACT: School of Electrical & Computer Enginee ring
% Purdue University
% 465 Northwestern Ave.
% West Lafayette, IN 47907
% 765-494-3434, spekarek@ecn.purdue.edu
%-- --------------------
% July 1, 2012
%-- --------------------
% wrsmpostprocess.m - NOT A FUNCTION
%
% Calculates postprocessing values (voltage, flux l inkage, etc.) after
% modeling a machine.
%-- --------------------
qr = (RP/2)*(qrm); % Electrical rotor position
% qd current, flux linkage, and voltage
iqsr = (2/3)*(ias.*cos(qr) + ibs.*cos(qr - 2*pi/3) + ics.*cos(qr -
4*pi/3));
idsr = (2/3)*(ias.*sin(qr) + ibs.*sin(qr - 2*pi/3) + ics.*sin(qr -
4*pi/3));
i0sr = (2/3)*(ias*0.5 + ibs*0.5 + ics*0.5);
lamqsr = (2/3)*(lamabcpp(1,:).*cos(qr) + lamabcpp(2 ,:).*cos(qr -
2*pi/3) + lamabcpp(3,:).*cos(qr - 4*pi/3))*RP;
lamdsr = (2/3)*(lamabcpp(1,:).*sin(qr) + lamabcpp(2 ,:).*sin(qr -
2*pi/3) + lamabcpp(3,:).*sin(qr - 4*pi/3))*RP;
lam0sr = (2/3)*(lamabcpp(1,:)*0.5 + lamabcpp(2,:)*0 .5 +
lamabcpp(3,:)*0.5)*RP;
% Vqd method 1
vqsr = (2/3)*(vabc(1,:).*cos(qr) + vabc(2,:).*cos(q r - 2*pi/3) +
vabc(3,:).*cos(qr - 4*pi/3));
vdsr = (2/3)*(vabc(1,:).*sin(qr) + vabc(2,:).*sin(q r - 2*pi/3) +
vabc(3,:).*sin(qr - 4*pi/3));
% Vqd method 2
% vqsr = rs*iqsr + wr*lamdsr+[0 (lamqsr(2:end)-lamq sr(1:end-1))]/DT;
% vdsr = rs*idsr - wr*lamqsr+[0 (lamdsr(2:end)-lamd sr(1:end-1))]/DT;

% Torque based on qd
torque_qd = mean(3/2*RP/2*(lamdsr(floor((NCYC-
1)/NCYC*end)+1:end).*iqsr(floor((NCYC-1)/NCYC*end)+ 1:end) ...
 -lamqsr(floor((NCYC-1)/NCYC*end)+1:end).*idsr((floor((NCYC-
1)/NCYC*end)+1:end))));
% compute reactive power
Qelec = 3/2*(mean(vqsr(floor((NCYC-
1)/NCYC*end)+1:end).*idsr(floor((NCYC-1)/NCYC*end)+ 1:end)) ...
 -mean(vdsr(floor((NCYC-1)/NCYC*end)+1:end).*iqs r(floor((NCYC-
1)/NCYC*end)+1:end)));
Pelec = 3/2*(mean(vqsr(floor((NCYC-
1)/NCYC*end)+1:end).*iqsr(floor((NCYC-1)/NCYC*end)+ 1:end)) ...
 +mean(vdsr(floor((NCYC-1)/NCYC*end)+1:end).*ids r(floor((NCYC-
1)/NCYC*end)+1:end)));

204

%-- --------------------
% AUTHORS: Xiaoqi Wang, Michelle Bash, Steven D. P ekarek
%-- --------------------
% CONTACT: School of Electrical & Computer Enginee ring
% Purdue University
% 465 Northwestern Ave.
% West Lafayette, IN 47907
% 765-494-3434, spekarek@ecn.purdue.edu
%-- --------------------
% June 1, 2012
%-- --------------------
% plothand = plotwrsm(pars,parx,pos,fign)
%
% Depicts the machine topology in a plot.
%
% OUTPUTS: plothand - handle to the plot created
%
% INPUTS: pars - geometric parameters
% parx - simulation parameters
% pos - rotor position in radians
% fign - figure number for the plot (o ptional)
%-- --------------------
function plothand = plotwrsm(pars,parx,damperdata,pos,fign)
% INITIALIZE FIGURE
if nargin==4
 plothand = figure(fign);
else
 plothand = figure;
end
plot(0,0)
axis square
hold on
% MACHINE PARAMETERS
mtomm = 1000;
OD = pars(1)*mtomm;
ID = pars(2)*mtomm;
GLS = pars(3)*mtomm;
DBS = pars(4)*mtomm;
H0 = pars(5)*mtomm;
H1 = pars(6)*mtomm;
H2 = pars(7)*mtomm;
H3 = pars(8)*mtomm;
B0 = pars(9)*mtomm;
B1 = pars(10)*mtomm;
B2 = pars(11)*mtomm;
BS = pars(12)*mtomm;
G1 = pars(14)*mtomm;
STW = pars(20)*mtomm;
STTW = pars(21)*mtomm;
ROD = pars(24)*mtomm;
DC = pars(25)*mtomm;
RP = pars(28);
SD = pars(29)*mtomm;
HRT = pars(33)*mtomm;
WRT = pars(34)*mtomm;

205

WAIRT = pars(35)*mtomm;
HRTT = pars(44)*mtomm;
HRTSH = pars(45)*mtomm;
WRTSH = pars(46)*mtomm;
RPIT = pars(32);
WRTSHchord = pars(56)*mtomm;
NPH = parx(1);
SPT = parx(2);
SLL = parx(3);
NRrtrt = parx(27);
Nrtt = 2*SPT - 4*NRrtrt; % Number of radial rotor tooth
branches
tipw = pars(57)*mtomm; % width of stator teeth tip
tiph = pars(58)*mtomm; % height of stator teeth tip
damper_rtip = damperdata.damper_rtip;
damper_rshank = damperdata.damper_rshank;
damper_ntip = damperdata.damper_ntip;
damper_nshank = damperdata.damper_nshank;
damper_dtip = damperdata.damper_dtip;

% Plot stator ------------------------------------- -------
% Plot outer diameter
theta = 0:0.1:2*pi+0.1;
polar(theta,repmat(OD/2,1,length(theta)))
% Initialize terms used to plot stator teeth
angoff = 0; % angle offset of next tooth
strep = 2*pi/SLL; % angle between adjacent teeth
sistart = 0.5*STW/(OD/2-DBS); % angle associated with inner slot
boundary
siend = 2*pi/SLL - STW/(OD/2-DBS)+sistart;
tostart = -0.5*STTW/(ID/2); % angle associated with outer tooth
boundary
toend = STTW/(ID/2)+tostart;
tistart = -0.5*STTW/(ID/2+tiph); % angles associated with the left &
right inner tooth boundary
tiend = -0.5*STW/(ID/2+tiph);
tioff = (STW+tipw)/(ID/2+tiph);
tilango = 0.5*STW/(ID/2+tiph); % angles associated with the left &
right inner tooth edge
tirango = -0.5*STW/(ID/2+tiph);
tilangi = 0.5*STW/(OD/2-DBS);
tirangi = -0.5*STW/(OD/2-DBS);
tolango = 0.5*STTW/(ID/2); % angles associated with the left & right
outer tooth edge
torango = -0.5*STTW/(ID/2);
tolangi = 0.5*STTW/(ID/2+tiph);
torangi = -0.5*STTW/(ID/2+tiph);
% Plot stator teeth/slots
for st = 1:SLL
 % Plot "curved" portions
 arang = (sistart:(siend-sistart)/10:siend)+ango ff;
 polar(arang,repmat(OD/2-DBS,1,length(arang)))
 arang = (tostart:(toend-tostart)/10:toend)+ango ff;
 polar(arang,repmat(ID/2,1,length(arang)))
 arang = (tistart:(tiend-tistart)/10:tiend)+ango ff;

206

 polar(arang,repmat((ID/2+tiph),1,length(arang)))
 arang = (tistart:(tiend-tistart)/10:tiend)+ango ff+tioff;
 polar(arang,repmat((ID/2+tiph),1,length(arang)))
 % Plot radial portions
 polar([tilango+angoff tilangi+angoff],[ID/2+tip h OD/2-DBS])
 polar([tirango+angoff tirangi+angoff],[ID/2+tip h OD/2-DBS])
 polar([tolango+angoff tolangi+angoff],[ID/2 ID/ 2+tiph])
 polar([torango+angoff torangi+angoff],[ID/2 ID/ 2+tiph])
 % Increment angle offset to plot next tooth
 angoff = angoff+strep;
end
% PLOT ROTOR -------------------------------------- --
%Plot shaft
theta = 0:0.1:2*pi+0.1;
polar(theta,repmat(SD/2,1,length(theta)))
% Initialize terms used to plot rotor
WRTang = 2*pi*RPIT/RP; % ANGLE AT OUTSIDE EDGE OF ROTOR TOOTH TIP
WRTchord= 2*(ROD/2)*sin(0.5*WRTang); % CHORD LENGTH OF ROTOR TOOTH TIP
yRC = 0.5*sqrt(DC^2-WRTSHchord^2); % VERTICAL HEIGHT TO BOTTOM OF
ROTOR TOOTH SHANK SIDE
WRTSHang= 2*atan(WRTSHchord/(2*(HRTSH+yRC))); % ANGLE OF ROTOR TOOTH
SHANK AT INSIDE OF ROTOR TOOTH TIP
WRTSHrad= (HRTSH+yRC)/(cos(0.5*WRTSHang)); % RADIUS AT TOP OF ROTOR
TOOTH SHANK
RTToutrad = sqrt((WRTchord*0.5)^2+(HRTSH+yRC)^2); % Radius at bottom of
outer tooth tip edge
WRTinang = 2*asin(WRTchord/(2*RTToutrad)); % INNER ANGLE OF ROTOR TOOTH
TIP
WRTSHinang = 2*asin(WRTSHchord/DC);
% angles associated with the inner rotor slot bound ary (inter-polar
region)
rsistrt = pos - (2*pi/RP - WRTSHinang)/2;
rsiend = rsistrt + (2*pi/RP - WRTSHinang);
% angles associated with the rotor pole tip and pol e body
rtostrt = pos + (WAIRT/(ROD/2))/2;
rtoend = rtostrt + WRT/(ROD/2);
rttistrt = pos + (2*pi/RP - WRTinang)/2;
rttiend = rttistrt + 0.5*(WRTinang-WRTSHang);
rttioff = (WRTSHang + 0.5*(WRTinang-WRTSHang));
rtrep = 2*pi/RP; % angle between adjacent rotor poles
angoff = 0;
for rt = 1:RP
 % Plot curved portions
 arang = (rsistrt:(rsiend-rsistrt)/10:rsiend)+an goff;
 polar(arang,repmat(DC/2,1,length(arang)))
 arang = (rtostrt:(rtoend-rtostrt)/10:rtoend)+an goff;
 polar(arang,repmat(ROD/2,1,length(arang)))
 % Plot straight portions
 polar([rttistrt rttiend]+angoff,[RTToutrad WRTS Hrad])
 polar([rttistrt rttiend]+angoff+rttioff,[WRTSHr ad RTToutrad])
 polar([rttiend+rttioff rtoend]+angoff,[RTToutra d ROD/2])
 polar([rttistrt rtostrt]+angoff,[RTToutrad ROD/ 2])
 polar([rsiend rttiend]+angoff,[DC/2 WRTSHrad])
 polar([rsistrt+rtrep rttistrt+rttioff]+angoff,[DC/2 WRTSHrad])
 % Increment offset angle to plot next tooth

207

 angoff = angoff+rtrep;
end

% Plot rotor pole tip dampers --------------------- ------------------
WRTang = 2*WRT/ROD;
xout = sin(WRTang/2)*ROD/2; % (xout = WRTchord/2)
yb = cos(WRTang/2)*ROD/2-HRTT; % Vertical height to the bottom of
the rotor tooth tip
xin = WRTSHchord/2;
WRTS2 = xout*2/SPT; % Horizontal width (not arc width) of the rotor
tooth sections
ymid = (sqrt((ROD/2)^2-(xin).^2)+yb)/2;
ytRTT = sqrt((ROD/2)^2-abs(xout-WRTS2*NRrtrt-WRTS2* ((1:Nrtt/2)-
0.5)').^2);
ytNR = sqrt((ROD/2)^2-(xout-WRTS2*(1:NRrtrt)).^2);
angoff = 0;
dplength = length(damper_rtip)*2-1;
dpmid = length(damper_rtip);
dpx = zeros(1,dplength);
dpy = zeros(1,dplength);
dpr = [flipud(damper_rtip(2:end));damper_rtip]*mtom m;
for rt = 1:RP
 for k = 0:dpmid-1
 if k == 0
 dpy(dpmid) = 0;
 dpx(dpmid) = (ROD/2-ymid-2*dpr(dpmid))* (1-
damper_dtip)+dpr(dpmid)+ymid;
 [THETA,RHO] = cart2pol(dpx(dpmid),dpy(d pmid));
 [dpx(dpmid),dpy(dpmid)] = pol2cart(THET A-
pi/RP+pos+angoff,RHO);
 elseif k < Nrtt/4
 dpy(dpmid+k) = WRTS2*(k+0.5);
 dpx(dpmid+k) = (ytRTT(Nrtt/4-k)-ymid-2* dpr(dpmid+k))*(1-
damper_dtip)+dpr(dpmid+k)+ymid;
 dpy(dpmid-k) = -dpy(dpmid+k);
 dpx(dpmid-k) = dpx(dpmid+k);
 [THETA,RHO] = cart2pol(dpx(dpmid+k),dpy (dpmid+k));
 [dpx(dpmid+k),dpy(dpmid+k)] = pol2cart(THETA-
pi/RP+pos+angoff,RHO);
 [THETA,RHO] = cart2pol(dpx(dpmid-k),dpy (dpmid-k));
 [dpx(dpmid-k),dpy(dpmid-k)] = pol2cart(THETA-
pi/RP+pos+angoff,RHO);
 else
 dpy(dplength-k+Nrtt/4) = xout-WRTS2*(k- Nrtt/4+1);
 dpx(dplength-k+Nrtt/4) = (ytNR(k-Nrtt/4 +1)-yb-2*dpr(k-
Nrtt/4+1))*(1-damper_dtip)+dpr(k-Nrtt/4+1)+yb;
 dpy(k-Nrtt/4+1) = -dpy(dplength-k+Nrtt/ 4);
 dpx(k-Nrtt/4+1) = dpx(dplength-k+Nrtt/4);
 [THETA,RHO] = cart2pol(dpx(k-Nrtt/4+1), dpy(k-Nrtt/4+1));
 [dpx(k-Nrtt/4+1),dpy(k-Nrtt/4+1)] = pol 2cart(THETA-
pi/RP+pos+angoff,RHO);
 [THETA,RHO] = cart2pol(dpx(dplength-k+N rtt/4),dpy(dplength-
k+Nrtt/4));
 [dpx(dplength-k+Nrtt/4),dpy(dplength-k+ Nrtt/4)] =
pol2cart(THETA-pi/RP+pos+angoff,RHO);

208

 end
 end

 for k = 1:dplength
 if dpr(k) > 0
 x = linspace(dpr(k),-dpr(k),100);
 y = sqrt(dpr(k)^2-x.^2);
 x_new = [x+dpx(k) -x+dpx(k)];
 y_new = [y -y]+dpy(k);
 plot(x_new,y_new)
 end
 end
 angoff = angoff+2*pi/RP;
end
% Plot rotor pole shank dampers ------------------- --------------------
angoff = 0;
l = ymid - SD/2 - (DC-SD)/4;
shank_sec = l/(2*damper_nshank);
dpx2 = zeros(1,damper_nshank);
dpy2 = zeros(1,damper_nshank);
dpr2 = damper_rshank*mtomm;
for rt = 1:RP
 angmid = (rtoend+rtostrt)/2+angoff;
 for k = 1:damper_nshank
 if k == 1
 [dpx2(k),dpy2(k)] = pol2cart(angmid,SD/ 2+(DC-SD)/4+2*dpr2);
 elseif k == damper_nshank
 [dpx2(k),dpy2(k)] = pol2cart(angmid,ymi d-2*dpr2);
 else
 [dpx2(k),dpy2(k)] = pol2cart(angmid,((2 *k-
1)*shank_sec+SD/2+(DC-SD)/4));
 end
 if dpr2 > 0
 x = linspace(dpr2,-dpr2,100);
 y = sqrt(dpr2^2-x.^2);
 x_new = [x+dpx2(k) -x+dpx2(k)];
 y_new = [y -y]+dpy2(k);
 plot(x_new,y_new)
 end
 end
 angoff = angoff+2*pi/RP;
end
% LENGTH --
plot([OD/2+0.03*OD OD/2+0.03*OD],[-GLS/2 GLS/2], 'r')
% Format plot
xlabel('x (mm)')
ylabel('y (mm)')
title('WRSM geometry')
axlim = max(GLS/2+0.1*GLS/2,OD/2+0.1*OD/2);
axis([-axlim axlim -axlim axlim])
box on
hold off

209

%-- --------------------
% AUTHORS: Michelle Bash, Steven D. Pekarek
%-- --------------------
% CONTACT: School of Electrical & Computer Enginee ring
% Purdue University
% 465 Northwestern Ave.
% West Lafayette, IN 47907
% 765-494-3434, spekarek@ecn.purdue.edu
%-- --------------------
% Version 1 - May 1, 2009
%-- --------------------
% [V,idc] = rect(iabcl,vdc,parx)
%
% Calculates the rectifier voltages based on the re ctifier currents.
%
% OUTPUTS: V - vector of rectifier voltages (vag,vbg,vcg)
% idc - dc bus current
%
% INPUTS: iabcl - rectifier currents
% parx - simulation parameters
% vdc - dc bus voltage
%-- --------------------
function [V,idc] = rect(iabcl,vdc,parx)

dalpha = parx(18);
dbeta = parx(19);
eps = 0.005;
vdend = 1/dbeta*log(eps/dalpha + 1);
i1 = 0.0; i3 = 0.0; i5 = 0.0;
% Rectifier phase currents
ial = iabcl(1);
ibl = iabcl(2);
icl = iabcl(3);

if (ial <= -eps)
 vag = -1/dbeta*log(abs(ial)/dalpha + 1);
elseif (ial >= eps)
 vag = vdc + 1/dbeta*log(abs(ial)/dalpha + 1);
elseif (ial < eps && ial > -eps)
 vag = ((vdc + 2*vdend)/(2*eps))*ial + vdc/2;
end

if (ibl <= -eps)
 vbg = -1/dbeta*log(abs(ibl)/dalpha + 1);
elseif (ibl >= eps)
 vbg = vdc + 1/dbeta*log(abs(ibl)/dalpha + 1);
elseif (ibl < eps && ibl > -eps)
 vbg = ((vdc + 2*vdend)/(2*eps))*ibl + vdc/2;
end

if (icl <= -eps)
 vcg = -1/dbeta*log(abs(icl)/dalpha + 1);
elseif (icl >= eps)
 vcg = vdc + 1/dbeta*log(abs(icl)/dalpha + 1);

210

elseif (icl < eps && icl > -eps)
 vcg = ((vdc + 2*vdend)/(2*eps))*icl + vdc/2;
end

% Calculate idc
if (ial > 0.0)
 i1 = ial;
end

if (ibl > 0.0)
 i3 = ibl;
end

if (icl > 0.0)
 i5 = icl;
end

idc = i1 + i3 + i5;
V = [vag;vbg;vcg];

211

%-- --------------------
% AUTHORS: Michelle Bash, Steven D. Pekarek
%-- --------------------
% CONTACT: School of Electrical & Computer Enginee ring
% Purdue University
% 465 Northwestern Ave.
% West Lafayette, IN 47907
% 765-494-3434, spekarek@ecn.purdue.edu
%-- --------------------
% May 1, 2009
%-- --------------------
% [xrms,xavg,xrip]=tools(which_one, x, cycles, f, D T)
%
% Finds the average value, rms value, and/or ripple of a given signal.
%
% OUTPUTS: xrms - rms value of the signal
% xavg - average value of the signal
% xrip - ripple value of the signal
%
% INPUTS: which_one - tool_rms,tool_avg,tool_rip, or tool_all
% x - signal to be analyzed
% cycles - number of cycles to use in a nalysis
% f - fundamental freq
% DT - sampling period
%-- --------------------
function [xrms,xavg,xrip]=tools(which_one, x, cycles, f, DT)
switch which_one
 case 'tool_rms'
 xrms = tool_rms(x,cycles,f,DT);
 xavg = 0;
 xrip = 0;
 case 'tool_avg'
 xrms = 0;
 xavg = tool_avg(x,cycles,f,DT);
 xrip = 0;
 case 'tool_rip'
 xrms = 0;
 xavg = 0;
 xrip = tool_rip(x,cycles,f,DT);
 case 'tool_all'
 xrms = tool_rms(x,cycles,f,DT);
 xavg = tool_avg(x,cycles,f,DT);
 xrip = tool_rip(x,cycles,f,DT);
end
%-- --------------------
% TOOL_RMS
%-- --------------------
function x_rms = tool_rms(x,cycles,f,DT)
%DEFINE NUMBER OF CYCLES OF AC WAVEFORM TO USE
num_cycles = cycles*round((1/f)/DT);
%LENGTH OF DATA VECTORS
n = length(x);
%OBTAIN WAVEFORM PORTION OF INTEREST
x_1 = x(n-num_cycles:n);
%RMS CALCULATION

212

px_rms = (f/cycles)*x_1.*x_1;
x_rms = 0;
for i = 1:num_cycles
 x_rms = x_rms + px_rms(i+1)*DT;
end
x_rms = sqrt(x_rms);
%-- --------------------
% TOOL_AVG
%-- --------------------
function x_avg = tool_avg(x,cycles,f,DT)
%DEFINE NUMBER OF CYCLES OF AC WAVEFORM TO USE
num_cycles = cycles*round((1/f)/DT);
%LENGTH OF DATA VECTORS
n = length(x);
%OBTAIN WAVEFORM PORTION OF INTEREST
x_1 = x(n-num_cycles:n);
%AVG CALCULATION
px_avg = (f/cycles)*x_1;
x_avg = 0;
for i = 1:num_cycles
 x_avg = x_avg + px_avg(i+1)*DT;
end
%-- --------------------
% TOOL_RIP
%-- --------------------
function x_rip = tool_rip(x,cycles,f,DT)
%DEFINE NUMBER OF CYCLES OF AC WAVEFORM TO USE
num_cycles = cycles*round((1/f)/DT);
%LENGTH OF DATA VECTORS
n = length(x);
%OBTAIN WAVEFORM PORTION OF INTEREST
x_1 = x(n-num_cycles:n) - tool_avg(x,cycles,f,DT);
%RIPPLE CALCULATION
xmin = 0;
xmax = 0;
for i = 1:num_cycles+1
 if x_1(i) >= xmax
 xmax = x_1(i);
 end
 if x_1(i) <= xmin
 xmin = x_1(i);
 end
end
x_rip = abs(xmax) + abs(xmin);

213

%-- --------------------
% AUTHORS: Xiaoqi Wang, Michelle Bash, Steven D. P ekarek
%-- --------------------
% CONTACT: School of Electrical & Computer Enginee ring
% Purdue University
% 465 Northwestern Ave.
% West Lafayette, IN 47907
% 765-494-3434, spekarek@ecn.purdue.edu
%-- --------------------
% Apr 1, 2013
%-- --------------------
%
[t,vabc,lamabcpp,lamdamper,iabc,idamper,idc,vdc,vc, torque,qrm,phit,BY,B
T,BTT,nrconverge,saturate,BIRON] =
%wrsmdynamics_multislice(parx,pars,turns,damperdata ,mudata,qr_init)
%
% Solves the Dynamics of the MEC network.
%
% OUTPUTS: t - time vector (s)
% vabcs - phase voltages (V)
% lamabcpp - phase flux linkage per pole (Vs)
% lamdamper - damper flux linkage (Vs)
% iabcs - phase currents (A)
% idamper - damper bar currents (A)
% idc - dc bus currents (A)
% vdc - dc bus voltage (V)
% vc - dc bus capacitor voltage (V)
% torque - torque (Nm)
% qrm - mechanical rotor position (ra dians)
% phit - stator teeth flux (Wb)
% BY,BT,BTT - flux density in the stato r yoke, stator
teeth, and stator tooth tips (T)
% nrconverge - flag indicating if newton r aphson converged
% saturate - indicates if the flux densi ty limit is violated
% BIRON - flux density in iron (Wb)
%
% INPUTS: pars - geometric parameters
% parx - simulation parameters
% turns - phase winding turns (turn cou nt)
% damperdata - information of damper bar s
% mudata - magnetic material data for fi nding permeability
% qr_init - initial rotor position in ele ctric degree
%-- --------------------

function
[t,vabc,lamabcpp,lamdamper,iabc,idamper,idc,vdc,vc, torque,qrm,phit,BY,B
T,BTT,nrconverge,saturate,BIRON] = wrsmdynamics_mul tislice
(parx,pars,turns,damperdata,mudata,qr_init)
%-- --------------------
% INITIALIZE THE SYSTEM
%-- --------------------
mu0 = pi*4e-7; % Permeability of free space
RP = pars(28); % Poles
S = parx(3)/RP; % Number of stator slots per pole

214

D = 2*(parx(2)); % Number of rotor pole tip sections per pole
pair
Dsl = 4*parx(29); % Number of inter-polar regions per pole pair
SPT = parx(2); % SECTIONS PER ROTOR TOOTH, including radial
and tangential
NRrtrt = parx(27); % Number of outer pole tip reluctances per pole
pair
damper_ntip = damperdata.damper_ntip; % Number of damper windings
on rotor tip
damper_nshank = damperdata.damper_nshank; % Number of damper windings
on rotor shank
bartype = damperdata.bartype; % Type of damper bars
connnection
Rd = damperdata.Rd; % Damper bar body resistance
Re = damperdata.Re; % Damper bar end connection resistance
Rload = 22.81 ; % Parallel resistance load
Lload = 0.0807 ; % Parallel resistance load
Cload = 100e-6; % Filter capacitance
taus = 0.1; % Filter time constant
rs = pars(23); % Stator windings resistance
wrm = parx(4)*2*pi/60; % Mechanical rotor speed in rad/s
wr = (pars(28)/2)*wrm;
scl = parx(16);
ifld = pars(47); % Field current (A)
vrms = pars(49); % rms Stator voltage (V)
vphase = pars(50); % Current phase angle (degrees)
vm = vrms*sqrt(2); % Magnitude of vas,vbs,vcs
DT = parx(12); % Time step in s
iter = parx(30); % Number of iterations
vdcmax = parx(25); % Maximum dc voltage
NPTS = parx(7); % NUMBER OF DATA POINTS PER CYCLE
skew_angle = pars(30); % Electrical skew angle, rad
stack_num = pars(31); % Number of stack for skew
% For machine design with RL load producing rated p ower ---------------

% Vll_rms = 480;
% pf = 0.8;
% P = parx(24);
% Q = sqrt((P/pf)^2-P^2);
% Rload = 3*(Vll_rms/sqrt(3))^2/P;
% Lload = (Vll_rms/sqrt(3))^2/Q/wr;
% --- --------------------

% INITIALIZE VARIABLES
slB = 3*S; % Number of iron elements in stator
rlB = 6+D/2+damper_nshank+SPT+(SPT-1); % Number of iron elements in
rotor
lB = slB+rlB; % Number of iron elements
nriter = zeros(1,iter); % Keeps track of N-R iterations
torque = zeros(1,iter);
PTC = zeros(S,D+Dsl,iter); % Matrix of airgap permeances
dPTC = zeros(S,D+Dsl,iter);
phit = zeros(S,iter,stack_num); % Stator tooth flux
phiiron = zeros(lB,iter); % Flux in iron
BY = zeros(S,iter,stack_num); % Stator yoke flux density

215

BT = zeros(S,iter,stack_num); % Stator tooth shank flux density
BTT = zeros(S,iter,stack_num); % Stator tooth tip flux density
BIRON = zeros(lB,iter,stack_num); % Flus density in all iron elements
saturate = ones(1,iter); % Saturation constraint (is Bsat
violated)
smuiron = get_mur_exp(zeros(slB,1),mudata.s); % Initial permeabilities
of stator
rmuiron = get_mur_exp(zeros(rlB,1),mudata.r); % Initial permeabilities
of rotor
muiron = [smuiron;rmuiron]; % Initial permeabilities
TOL = parx(21); % tolerance for convergence of
Newton-Raphson
k = 1; % Simulation step
t(k) = parx(10);
% ARTIFICIAL ROTOR POSITION MODIFICATION used in th e calculation of
airgap
% permeances.----
SLL = parx(3);
ID = pars(2);
ROD = pars(24);
STTW = pars(21);
WRT = pars(34);
WAIRT = pars(35);
shift1 = WRT/(ROD/2);
shift2 = (WAIRT/2)/(ROD/2);
shift3 = 2*pi/SLL;
shift4 = (STTW/2)/(ID/2);
shift5 = (pi/2)/(RP/2);
shift = shift1 + shift2 - (S/2)*shift3 - shift4 - shift5;
% TIME AND ROTOR POSITION VECTORS
t = (0:DT:DT*(iter-1))+t(k);
qrm = t*wrm + qr_init/(RP/2); % Actual rotor position
qrm_shift = qrm + shift; % Angle fed to airgap permeance
function
%-- --------------------
% CALCULATE VARIABLES/MATRICES WHICH WILL NOT CHANGE DURING SIM
%-- --------------------
% Variables/matrices to be used in airgap permeance calculation
WRS = pars(35)/(2*parx(29));
WRTS = pars(36);
B0 = pars(9);
SPT = parx(2);
RPIT = pars(32);
WRTSang = 2*pi*RPIT/RP/SPT;
WRTang = 2*pi*RPIT/RP;
WRSang = 2*pi*(1-RPIT)/RP/(Dsl/2);
qs = STTW/ID*RP; % Span of stator tooth in
electrical radians
qs1 = B0/ID*RP; % Span of stator slot
qrr = WRTSang*RP/2; % Span of rotor pole tip section
qrs = WRSang*RP/2; % Span of inter-polar section
Gmaxrt = pi*4e-7*pars(3)/stack_num/(ID-
ROD)*2*(WRTS*(STTW>=WRTS)+STTW*(STTW<WRTS)); % if-else
Gmaxsl = pi*4e-7*pars(3)/stack_num/(ID-
ROD)*2*(WRS*(STTW>=WRS)+STTW*(STTW<WRS)); % if-else

216

rt = 1:D; rtsl = 1:Dsl; st = (1:S)';
% Matrices defining the angle between every stator tooth and rotor
section
anglert = ones(S,1)*(-mod(rt-1,(D/2))*WRTSang - flo or((rt-
1)/(D/2))*2*pi/RP) ...
 + ((st-1)*(STTW+B0)/(ID/2))*ones(1,D);
anglesl = ones(S,1)*(-WRTang - mod(rtsl-1,(Dsl/2))* WRSang - ...
 floor((rtsl-1)/(Dsl/2))*2*pi/RP) + ((st-
1)*(STTW+B0)/(ID/2))*ones(1,Dsl);

% Establish the geometric case for the rotor tooth section
if qrr <= qs1/2
 qrrcs = 1;
elseif (qrr <= qs)
 qrrcs = 2;
elseif (qrr <= qs +qs1/2)
 qrrcs = 3;
elseif (qrr <= qs+qs1)
 qrrcs = 4;
else
 qrrcs = 5;
end
% Establish the geometric case for the rotor slot s ection
if qrs <= qs1/2
 qrscs = 1;
elseif (qrs <= qs)
 qrscs = 2;
elseif (qrs <= qs +qs1/2)
 qrscs = 3;
elseif (qrs <= qs+qs1)
 qrscs = 4;
else
 qrscs = 5;
end

% --- -------------------
% turns matrix to be used in system of equations
Natrn = [-turns turns]';
Nbtrn = [Natrn(2*SLL/(3*RP)+1:end);Natrn(1:2*SLL/ (3*RP))];
Nctrn = [Natrn(4*SLL/(3*RP)+1:end);Natrn(1:4*SLL/ (3*RP))];
Nabc = [Natrn Nbtrn Nctrn];
Nfld = pars(41);
Nabcf = [Nabc(1:S,:) zeros(S,1);0 0 0 Nfld;0 0 0 -Nfld];
% --- -------------------
% MEC loops with MMF sources
Cvcfixed = (1:S+2)';
%-- --------------
% Calculate the reluctances
[Rxm,areas,Rair,NPRTS,NPRTB] =
get_reluctances(mu0,parx,pars,damperdata);
Riron = Rxm./muiron;
%-- --------------
% Identify type of node in rotor tooth and slot
% 1 = node of rotor pole tip radial branch
% 2 = node of rotor pole tip tangential branch

217

% 3 = rotor slot branch going to rotor edge
% 4 = rotor slot branch going to bottom of rotor po le tip
rtid = [2*ones(NRrtrt,1);ones(D/2-2*NRrtrt,1);2*one s(NRrtrt,1); ...
 3*ones(NPRTS,1);4*ones(2*NPRTB,1);3*ones(NP RTS,1); ...
 2*ones(NRrtrt,1);ones(D/2-2*NRrtrt,1);2*one s(NRrtrt,1); ...
 3*ones(NPRTS,1);4*ones(2*NPRTB,1);3*ones(NP RTS,1)];
% Identify how many RRTOUT branches border the roto r loop
NRBRL = ceil((NRrtrt+1)/2); % Number of RRTOUT branches Bordering
Rotor Loop
NRTBD = NRrtrt-NRBRL; % Number of RRTOUT branches with bordering loop
To Be Determined
% --- -------------------
% Define reluctance connections in stator and rotor which do not change
% Stator tooth tip, damper slots, and leakage of da mper slots are not
% presented here, but will be derived as postproces s in shape_alg.m
% IRON
% Stator yoke - S
% Stator teeth - S
% Rotor yoke below the slot - 1
% Rotor tooth shank - 1
% Rotor yoke connected to shank - 2
% Rotor tooth tips radial - (D - 4*NRrtrt)
% Rotor tooth to rotor tooth tangential - 4*NRrtrt
% Rotor tooth tangential at sides of tooth tips - 4
% AIR
% Stator tooth leakage - S
% Field winding leakage - 2
% Middle rotor slot leakage - 2
% Fringing permeance from rotor side to airgap boun dary - Dsl
% Fringing permeance from rotor slot side to bottom of tooth tip - 4
% RY R RRYSL RRTSH RRYSH RRTIN RRTOUT RRTS RSTL RFDL RRTL RAGFR RFRB
Crcfixed = zeros(2*S+8+D+S+3+Dsl,3);
% RY (all)
Crcfixed(1:S,2)=(1:S)';
% R (all)
Crcfixed(S+1:2*S,2) = [1 2:S]';
Crcfixed(S+1:2*S,3) = [-S 1:S-1]';
% RRYSL (all)
Crcfixed(2*S+1,3) = S+3;
% RRTSH (all)
Crcfixed(2*S+2,2:3) = [S+1 S+2];
% RRYSH (all)
Crcfixed(2*S+2+(1:2)',2) = [S+1;S+2];
% RRTIN (Determined by shape algorithm)
% RRTOUT - One side known if reluctance borders rot or loop
Crcfixed(2*S+2+D-4*NRrtrt+2+(1:4*NRrtrt)',2) = ...

[[zeros(NRTBD,1);ones(NRBRL,1)]*(S+1);[ones(NRBRL,1);zeros(NRTBD,1)]*(S
+2); ...
 -[zeros(NRTBD,1);ones(NRBRL,1)]*(S+1);-
[ones(NRBRL,1);zeros(NRTBD,1)]*(S+2)];
% RRTS - (Determined by shape algorithm)
% RSTL (one side known, use shape alg for other)
Crcfixed(2*S+2+D+6+(1:S)',2) = (1:S)';
% RFDL (all)

218

Crcfixed(2*S+2+D+6+S+(1:2)',2:3) = [-(S+3) S+1;S+2 S+3];
% RRTL (one side known, use shape alg for other)
Crcfixed(2*S+2+D+6+S+2+(1:2)',2) = [S+3;-(S+3)];
% RAGFR - (Determined by shape algorithm)
% RFRB (one side, use shape alg for other)
Crcfixed(2*S+2+D+6+S+4+Dsl+(1:4)',2) = [-(S+3);S+3; S+3;-(S+3)];
%-- --------------------

% Initialize variables
if parx(15) == 1 %Delta
 nio = 3;
 mlam = [0 1 0;-1 0 0;0 0 0];
 m_isil = [-1 0 1;1 -1 0;0 1 -1];
 m_vgvs = 1.5*[1 sqrt(3)/3 0;-sqrt(3)/3 1 0;0 0 0];
else %Wye
 nio = 2;
 mlam = [0 1;-1 0];
 m_isil = -eye(3);
 m_vgvs = [1 0 0;0 1 0];
end
iabc = zeros(3,iter);
lamabcpp = zeros(3,iter);
vqd0sr = zeros(nio,iter);
iqd0sr = zeros(nio,iter);
lamqd0srpp = zeros(nio,iter+1);
plamqd0srpp = zeros(nio,iter);
idamper = zeros(damper_ntip,iter);
lamdamper = zeros(damper_ntip,iter+1);
plamdamper = zeros(damper_ntip,iter);
il = zeros(3,iter+1);
pil = zeros(3,iter);
vc = ones(1,iter+1)*vdcmax;
pvc = zeros(1,iter);
idc = ones(1,iter+1)*vdcmax/Rload;
vdc = ones(1,iter+1)*vdcmax;
Ivdc = zeros(1,iter+1);
Ivc = zeros(1,iter+1);
index_vect = zeros(damper_ntip,3,iter+1,stack_num);
flag_vect = ones(damper_ntip,iter+1,stack_num);

% Calculate the voltages for SSFR test
if wrm>0
 vas = vm*cos((RP/2)*(qrm) + (pi*vphase/180));
 vbs = vm*cos((RP/2)*(qrm) + (pi*vphase/180) - (2*pi/3));
 vcs = vm*cos((RP/2)*(qrm) + (pi*vphase/180) - (4*pi/3));
else
 vfreq = parx(5);
 vas = 2/3*vm*cos(2*pi*vfreq*t);
 vbs = -1/3*vm*cos(2*pi*vfreq*t);
 vcs = -1/3*vm*cos(2*pi*vfreq*t);
end
vabc = [vas;vbs;vcs];

% Initial stator flux linkage per pole values
if wrm > 0

219

 Ksr_prime = (2/3)*[-sin((RP/2)*(qrm(k))) -sin((RP/2)*(qrm(k))-
2*pi/3) -sin((RP/2)*(qrm(k))+2*pi/3);
 cos((RP/2)*(qrm(k))) cos((RP/2)*(qrm(k))-2* pi/3)
cos((RP/2)*(qrm(k))+2*pi/3)];
 lamqd0srpp(1:2,k) = Ksr_prime*vabc(:,k)/wr/RP;
else
 lamqd0srpp(1:2,k) = [0.00;0.001];
end
%-- --------------------
% Determine transformation matrix for plamdamper
if bartype == 1
 % Version-1: No end connection resistance --------- ----------------
 % For example damper_ntip = 5
 % Tdp = [-rb1 rb2 0 0;0 -rb2 rb3 0;0 0 -rb3 rb4;-rb 5 -rb5 -rb5 -
rb5-rb4];

 % if damper_ntip == 2
 % Tdp = -Rd(1)-Rd(2);
 % else
 % Tdp = -diag(Rd(1:end-1));
 % for i = 1:damper_ntip-2
 % Tdp(i,i+1) = Rd(i+1);
 % end
 % Tdp(damper_ntip-1,:) = -Rd(damper_ntip)*ones(1,damper_ntip-
1);
 % Tdp(damper_ntip-1,damper_ntip-1) = Tdp(damper _ntip-
1,damper_ntip-1)-Rd(damper_ntip-1);
 % end

 % Version-2: With end connection resistance ------- ----------------
 % Tdp = [-rb1-2*re1 rb2 0 0;
 % -2*re2 -rb2-2*re2 rb3 0;
 % -2*re3 -2*re3 -rb3-2*re3 rb4;
 % -rb5-2*re4 -rb5-2*re4 -rb5-2*re4 -rb5-2*re 4-rb4];

 % Re = [0.1 0.1 0.1 0.1 0.1]*1e-3;
 if damper_ntip < 2
 Tdp = [];
 elseif damper_ntip == 2
 Tdp = -Rd(1)-Rd(2)-2*Re(1);
 else
 Tdp = -diag(Rd(1:end-1));
 for i = 1:damper_ntip-2
 Tdp(i,i+1) = Rd(i+1);
 end
 for i = 1:damper_ntip-1
 for j = 1:i
 Tdp(i,j) = Tdp(i,j)-2*Re(i);
 end
 end
 Tdp(damper_ntip-1,:) = Tdp(damper_ntip-1,:) -
Rd(damper_ntip)*ones(1,damper_ntip-1);
 end

220

elseif bartype == 2
 % Version-1: No end connection resistance --------- ----------------
 % For example damper_ntip = 5
 % Tdp = [-Rd(1) Rd(2) 0 0 0;0 -Rd(2) Rd(3) 0 0;0 0 -Rd(3) Rd(4) 0;0
0 0 -Rd(4) Rd(5);-Rd(1) 0 0 0 -Rd(5)];

 % if damper_ntip == 1
 % Tdp = -2*Rd(1);
 % else
 % Tdp = -diag(Rd(1:end));
 % for i = 1:damper_ntip-1
 % Tdp(i,i+1) = Rd(i+1);
 % end
 % Tdp(damper_ntip,1) = -Rd(1);
 % end

 % Version-2: With end connection resistance ------- ----------------
 % Re = [0.1 0.1 0.1 0.1 0.1]*1e-3;
 % Tdp = -[Rd(1)+Re(1) -Rd(2)-Re(1) -Re(1) -Re(1) -R e(1); ...
 % Re(2) Rd(2)+Re(2) -Rd(3)-Re(2) -Re(2) -Re (2); ...
 % Re(3) Re(3) Rd(3)+Re(3) -Rd(4)-Re(3) -Re(3); ...
 % Re(4) Re(4) Re(4) Rd(4)+Re(4) -Rd(5)-Re(4); ...
 % Rd(1)+Re(5) Re(5) Re(5) Re(5) Rd(5)+Re(5)];
 %
 % Re = [0.1 0.1 0.1 0.1 1]*1e-3;
 if damper_ntip == 0
 Tdp = [];
 elseif damper_ntip == 1
 Tdp = -2*Rd(1)-2*Re(1);
 else
 Tdp = -diag(Rd(1:end));
 for i = 1:damper_ntip
 for j = 1:damper_ntip
 if j <= i
 Tdp(i,j) = Tdp(i,j)-Re(i);
 else
 Tdp(i,j) = Tdp(i,j)+Re(i);
 end
 end
 end
 for i = 1:damper_ntip-1
 Tdp(i,i+1) = Tdp(i,i+1)+Rd(i+1);
 end
 Tdp(damper_ntip,1) = Tdp(damper_ntip,1)-Rd(1);
 end
end

%-- --------------------
% SOLVING LOOP
%-- --------------------
nrconverge = 1;
if stack_num == 1
 stack_span = 0;
else
 stack_span = floor(skew_angle/(2*pi)*NPTS/(stac k_num-1));

221

end
% AIR-GAP PERMEANCES
for i = 1:iter
 [PTC(:,:,i),dPTC(:,:,i)] =
get_Pag(qrm_shift(i),pars,parx,Gmaxrt,Gmaxsl,angler t,anglesl,qrrcs,qrsc
s);
end
[l,m,n] = size(PTC);
PTC_prime = zeros(l,m,n,stack_num);
dPTC_prime = zeros(l,m,n,stack_num);
for i = 1:stack_num
 PTC_prime(:,:,1:(i-1)*stack_span,i) = PTC(:,:,e nd-(i-
1)*stack_span+1:end);
 PTC_prime(:,:,(i-1)*stack_span+1:end,i) = PTC(: ,:,1:end-(i-
1)*stack_span);
 dPTC_prime(:,:,1:(i-1)*stack_span,i) = dPTC(:,: ,end-(i-
1)*stack_span+1:end);
 dPTC_prime(:,:,(i-1)*stack_span+1:end,i) = dPTC (:,:,1:end-(i-
1)*stack_span);
end

while k <= iter
 % Using rotor reference frame
 Ksr = (2/3)*[cos((RP/2)*(qrm(k))) cos((RP/2)*(q rm(k))-2*pi/3)
cos((RP/2)*(qrm(k))+2*pi/3);
 sin((RP/2)*(qrm(k))) sin((RP/2)*(qrm(k))-2* pi/3)
sin((RP/2)*(qrm(k))+2*pi/3);
 0.5 0.5 0.5];
 Ksrinv = [cos((RP/2)*(qrm(k))) sin((RP/2)*(qrm(k))) 1;
 cos((RP/2)*(qrm(k))-2*pi/3) sin((RP/2)*(qrm (k))-2*pi/3) 1;
 cos((RP/2)*(qrm(k))+2*pi/3) sin((RP/2)*(qrm (k))+2*pi/3) 1];
 for i = 1:stack_num
 if k==1 || sum(sum((PTC_prime(:,:,k-
1,i)~=0)~=(PTC_prime(:,:,k,i)~=0)))>0
 [Crconn,Cvconn,O,PTCind,d_damper_1,d_da mper_2,index,flag]
...
 =
shape_alg(PTC_prime(:,:,k,i),parx,pars,damperdata,C rcfixed,Cvcfixed,rti
d,index_vect(:,:,k,i),flag_vect(:,k,i));
 if length(Crconn)~=length([Riron;Rair;PTCind])
 nrconverge = 0;
 break
 end
 % Save variables
 [row_Crconn(i),col_Crconn(i)] = size(Cr conn);
 [row_O(i),col_O(i)] = size(O);
 [row_PTCind(i),col_PTCind(i)] = size(PT Cind);
 [row_d_damper_1(i),col_d_damper_1(i)] = size(d_damper_1);
 [row_d_damper_2(i),col_d_damper_2(i)] = size(d_damper_2);
 if i == 1 && k == 1
 Crconn_prime = -
1e12*ones(row_Crconn(i)+5,col_Crconn(i),stack_num);
 O_prime = -1e12*ones(row_O(i)+5,col _O(i)+5,stack_num);
 PTCind_prime = -1e12*ones(row_PTCin d(i)+5,stack_num);

222

 d_damper_1_prime = -
1e12*ones(row_d_damper_1(i)+5,col_d_damper_1(i),sta ck_num);
 d_damper_2_prime = -
1e12*ones(row_d_damper_2(i)+5,col_d_damper_2(i),sta ck_num);
 end
 Cvconn_prime(:,i) = Cvconn;
 Crconn_prime(1:row_Crconn(i),:,i) = Crc onn;
 O_prime(1:row_O(i),1:col_O(i),i) = O;
 PTCind_prime(1:row_PTCind(i),i) = PTCin d;
 d_damper_1_prime(1:row_d_damper_1(i),:, i) = d_damper_1;
 d_damper_2_prime(1:row_d_damper_2(i),:, i) = d_damper_2;
 end

 % Obtain list of airgap permeances and their deriva tives for
this rotor position
 ptc = PTC_prime(:,:,k,i)';
 PTClist = ptc(PTCind_prime(1:row_PTCi nd(i),i));
 dptc = dPTC_prime(:,:,k,i)';
 dPTClist = dptc(PTCind_prime(1:row_PTC ind(i),i));
 % Find the system of equations and solve for the in itial guess
 [A,d] =
get_meshmatrices(Rair,PTClist,Riron,parx,pars,Nabcf ,Crconn_prime(1:row_
Crconn(i),:,i),Cvconn_prime(:,i));
 % Total number of meshes
 Nm(i) = 3 + S + length(PTClist) + (SPT-1);

 % Save variables
 [row_PTClist(i),col_PTClist(i)] = size(PTCl ist);
 [row_dPTClist(i),col_dPTClist(i)] = size(dP TClist);
 [row_A(i),col_A(i)] = size(A);
 [row_d(i),col_d(i)] = size(d);
 if i == 1 && k == 1
 PTClist_prime = -1e12*ones(row_PTClist(i)+5,stack_num);
 dPTClist_prime = -1e12*ones(row_dPTClis t(i)+5,stack_num);
 A_prime = -1e12*ones(row_A(i)+5,col_A(i)+5,stack_num);
 d_prime = -1e12*ones(row_d(i)+5,col_d(i),stack_num);
 end
 PTClist_prime(1:row_PTClist(i),i) = PTClist ;
 dPTClist_prime(1:row_dPTClist(i),i) = dPTCl ist;
 A_prime(1:row_A(i),1:col_A(i),i) = A;
 d_prime(1:row_d(i),:,i) = d;
 index_vect(:,:,k+1,i) = index;
 flag_vect(:,k+1,i) = flag;
 end

 % --- ----------------
 if bartype == 0 || (bartype==1 && damper_ntip<2) || (bartype==2 &&
damper_ntip<1)
 for i = 1:stack_num
 if i == 1
 A_multi = A_prime(1:row_A(i),1:col_ A(i),i);
 d1_multi = -
scl*d_prime(1:row_d(i),1:3,i)*Ksrinv(:,1:nio);
 d2_multi = scl*Ksr(1:nio,:)*d_prime (1:row_d(i),1:3,i)';
 d3_multi = d_prime(1:row_d(i),4,i);

223

 else
 A_multi =
blkdiag(A_multi,A_prime(1:row_A(i),1:col_A(i),i));
 d1_multi = [d1_multi;-
scl*d_prime(1:row_d(i),1:3,i)*Ksrinv(:,1:nio)];
 d2_multi = [d2_multi
scl*Ksr(1:nio,:)*d_prime(1:row_d(i),1:3,i)'];
 d3_multi = blkdiag(d3_multi,d_prime (1:row_d(i),4,i));
 end
 end
 Aaug_multi = [A_multi d1_multi;d2_multi zer os(nio,nio)];
 daug_multi = blkdiag(d3_multi,eye(nio));
 if rcond(Aaug_multi)<1e-16
 fprintf('Warning: rcond(Aaug) = %d at
k=%i.\n' ,rcond(Aaug_multi),k);
 end
 % Solve for vector of loop flux and current
 lam_multi = [ifld*ones(stack_num,1);scl*lam qd0srpp(:,k)];
 xg_multi = Aaug_multi\(daug_multi*lam_multi);
 % Identify just the loop fluxes
 fluxm_multi = xg_multi(1:end-nio);
 % NEWTON-RAPHSON SOLVER
 it = 1; % Keeps track of N-R iterations
 NRSOLVE = 1;
 while NRSOLVE
 xg_multi_temp = xg_multi;
 fluxm_multi_temp = fluxm_multi;
 for i = 1:stack_num
 % Assign variables
 Cvconn = Cvconn_prime(:,i);
 Crconn = Crconn_prime(1:row_Crconn(i),:,i);
 O = O_prime(1:row_O(i),1:col_O(i),i);
 d_damper_1 = d_damper_1_prime(1:row _d_damper_1(i),:,i);
 d_damper_2 = d_damper_2_prime(1:row _d_damper_2(i),:,i);
 PTClist = PTClist_prime(1:row_PTCli st(i),i);
 dPTClist = dPTClist_prime(1:row_dPT Clist(i),i);
 % Find xg and fluxm for each stack
 xg = [xg_multi_temp(1:Nm(i));xg_mul ti_temp(end-
nio+1:end)];
 xg_multi_temp = removerows(xg_multi _temp,1:Nm(i));
 fluxm = fluxm_multi_temp(1:Nm(i));
 fluxm_multi_temp =
removerows(fluxm_multi_temp,1:Nm(i));
 % DETERMINE FLUXES FOR THE GUESS VECTOR xg
 phi = O*fluxm;
 phiiron(:,k) = phi(1:lB);
 % DETERMINE B-FIELDs
 BIRON(:,k,i) = phiiron(:,k)./areas;
 % Store flux/flux density values after converging
 phit(:,k,i) = phi(S+1:2*S);
 phiag =
phi(4*S+11+D/2+Dsl/2+1+damper_nshank+D/2+2*(SPT-1): end);
 BY(:,k,i) = BIRON(1:S,k,i);
 BT(:,k,i) = BIRON(S+1:2*S,k,i);
 BTT(:,k,i) = BIRON(2*S+1:3*S,k,i);

224

 % GET PERMEABILITY FOR EACH RESPECTIVE PERM
 [sMU,sdmdb] = get_mur_exp(BIRON(1:s lB,k,i),mudata.s);
 [rMU,rdmdb] =
get_mur_exp(BIRON(slB+1:end,k,i),mudata.r);
 MU = [sMU;rMU];
 dmdb = [sdmdb;rdmdb];
 % UPDATE MATRICIES
 Riron = Rxm./MU;
 [Ag,d,Cr] =
get_meshmatrices(Rair,PTClist,Riron,parx,pars,Nabcf ,Crconn,Cvconn);
 % Pure Newton Raphson Iterator - find Jacobian and
update x for each stack
 Aaug = [Ag -
scl*d(:,1:3)*Ksrinv(:,1:nio);scl*Ksr(1:nio,:)*d(:,1 :3)'
zeros(nio,nio)];
 J = get_J(Cr(1:lB,:),O(1:lB,:),Aaug ,MU,areas,dmdb,xg);
 DR = J-Aaug;
 DR = DR(1:Nm(i),1:Nm(i));

 if i == 1
 Ag_multi = Ag;
 DR_multi = DR;
 torque(k) =
((RP/2)^2)*(sum(phiag.^2.*dPTClist./(PTClist.^2)));
 else
 Ag_multi = blkdiag(Ag_multi,Ag) ;
 DR_multi = blkdiag(DR_multi,DR) ;
 torque(k) = torque(k) +
((RP/2)^2)*(sum(phiag.^2.*dPTClist./(PTClist.^2)));
 end
 end
 % Solve the multi-stack system equations
 Aaug_multi = [Ag_multi d1_multi;d2_mult i zeros(nio,nio)];
 daug_multi = blkdiag(d3_multi,eye(nio)) ;
 if rcond(Aaug_multi)<1e-16
 fprintf('Warning: rcond(Aaug) = %d at
k=%i.\n' ,rcond(Aaug_multi),k);
 end
 DR_multi = blkdiag(DR_multi,zeros(nio,n io));
 J_multi = Aaug_multi+DR_multi;
 xnewp = xg_multi - J_multi\(Aaug_multi *xg_multi -
daug_multi*lam_multi);

 % Check for convergence
 if ((sqrt((xnewp-xg_multi)'*(xnewp-
xg_multi))/(length(xg_multi)*max(abs([xnewp;xg_mult i]))) ...
 < TOL) || (it == parx(14)))
 if (it == parx(14))
 % Maximum N-R iterations reached
 disp(['Max Iterations Reached: IT = ' num2str(it)
', Data Point = ' num2str(k)]);
 nrconverge = 0;
 end
 NRSOLVE = 0;
 nriter(k) = it;

225

 else
 xg_multi = xnewp;
 fluxm_multi = xg_multi(1:end-nio);
 it = it+1;
 end
 end
 if ~nrconverge
 break
 end

 % Phase current calculation
 iqd0sr(:,k) = xg_multi(end-nio+1:end)*scl;
 iabc(:,k) = Ksrinv(:,1:nio)*iqd0sr(:,k);
 % Phase flux linkage calculation
 lamabcpp(:,k) = Ksrinv(:,1:nio)*lamqd0srpp(:,k);

 elseif bartype == 1 % ---
 for i = 1:stack_num
 if i == 1
 A_multi = A_prime(1:row_A(i),1:col_ A(i),i);
 d1_multi = -
scl*[d_prime(1:row_d(i),1:3,i)*Ksrinv(:,1:nio) ...
 d_damper_1_prime(1:row_d_damper _1(i),:,i)];
 d2_multi =
scl*[Ksr(1:nio,:)*d_prime(1:row_d(i),1:3,i)'; ...
 d_damper_2_prime(1:row_d_damper _2(i),:,i)'];
 d3_multi = d_prime(1:row_d(i),4,i);
 else
 A_multi =
blkdiag(A_multi,A_prime(1:row_A(i),1:col_A(i),i));
 d1_multi = [d1_multi;-
scl*[d_prime(1:row_d(i),1:3,i)*Ksrinv(:,1:nio) ...
 d_damper_1_prime(1:row_d_damper _1(i),:,i)]];
 d2_multi = [d2_multi
scl*[Ksr(1:nio,:)*d_prime(1:row_d(i),1:3,i)'; ...
 d_damper_2_prime(1:row_d_damper _2(i),:,i)']];
 d3_multi = blkdiag(d3_multi,d_prime (1:row_d(i),4,i));
 end
 end
 Aaug_multi = [A_multi d1_multi;d2_multi zer os(nio+damper_ntip-
1,nio+damper_ntip-1)];
 daug_multi = blkdiag(d3_multi,eye(nio+dampe r_ntip-1));
 if rcond(Aaug_multi)<1e-16
 fprintf('Warning: rcond(Aaug) = %d at
k=%i.\n' ,rcond(Aaug_multi),k);
 end
 lam_multi =
[ifld*ones(stack_num,1);scl*lamqd0srpp(:,k);scl*lam damper(1:damper_ntip
-1,k)];
 xg_multi = Aaug_multi\(daug_multi*lam_multi);
 % Identify just the loop fluxes
 fluxm_multi = xg_multi(1:end-nio-damper_nti p+1);
 % NEWTON-RAPHSON SOLVER
 it = 1; % Keeps track of N-R iterations
 NRSOLVE = 1;

226

 while NRSOLVE
 xg_multi_temp = xg_multi;
 fluxm_multi_temp = fluxm_multi;
 for i = 1:stack_num
 % Assign variables
 Cvconn = Cvconn_prime(:,i);
 Crconn = Crconn_prime(1:row_Crconn(i),:,i);
 O = O_prime(1:row_O(i),1:col_O(i),i);
 d_damper_1 = d_damper_1_prime(1:row _d_damper_1(i),:,i);
 d_damper_2 = d_damper_2_prime(1:row _d_damper_2(i),:,i);
 PTClist = PTClist_prime(1:row_PTCli st(i),i);
 dPTClist = dPTClist_prime(1:row_dPT Clist(i),i);
 % Find xg and fluxm for each stack
 xg = [xg_multi_temp(1:Nm(i));xg_mul ti_temp(end-nio-
damper_ntip+2:end)];
 xg_multi_temp = removerows(xg_multi _temp,1:Nm(i));
 fluxm = fluxm_multi_temp(1:Nm(i));
 fluxm_multi_temp =
removerows(fluxm_multi_temp,1:Nm(i));
 % DETERMINE FLUXES FOR THE GUESS VECTOR xg
 phi = O*fluxm;
 phiiron(:,k) = phi(1:lB);
 % DETERMINE B-FIELDs
 BIRON(:,k,i) = phiiron(:,k)./areas;
 % Store flux/flux density values after converging
 phit(:,k,i) = phi(S+1:2*S);
 phiag =
phi(4*S+11+D/2+Dsl/2+1+damper_nshank+D/2+2*(SPT-1): end);
 BY(:,k,i) = BIRON(1:S,k,i);
 BT(:,k,i) = BIRON(S+1:2*S,k,i);
 BTT(:,k,i) = BIRON(2*S+1:3*S,k,i);
 % GET PERMEABILITY FOR EACH RESPECTIVE PERM
 [sMU,sdmdb] = get_mur_exp(BIRON(1:s lB,k,i),mudata.s);
 [rMU,rdmdb] =
get_mur_exp(BIRON(slB+1:end,k,i),mudata.r);
 MU = [sMU;rMU];
 dmdb = [sdmdb;rdmdb];
 % UPDATE MATRICIES
 Riron = Rxm./MU;
 [Ag,d,Cr] =
get_meshmatrices(Rair,PTClist,Riron,parx,pars,Nabcf ,Crconn,Cvconn);
 % Pure Newton Raphson Iterator - find Jacobian and
update x for each stack
 Aaug = [Ag -scl*d(:,1:3)*Ksrinv(:,1 :nio) -
scl*d_damper_1; ...
 scl*Ksr(1:nio,:)*d(:,1:3)'
zeros(nio,nio+damper_ntip-1); ...
 scl*d_damper_2' zeros(damper_nt ip-
1,nio+damper_ntip-1)];
 J = get_J(Cr(1:lB,:),O(1:lB,:),Aaug ,MU,areas,dmdb,xg);
 DR = J-Aaug;
 DR = DR(1:Nm(i),1:Nm(i));

 if i == 1
 Ag_multi = Ag;

227

 DR_multi = DR;
 torque(k) =
((RP/2)^2)*(sum(phiag.^2.*dPTClist./(PTClist.^2)));
 else
 Ag_multi = blkdiag(Ag_multi,Ag) ;
 DR_multi = blkdiag(DR_multi,DR) ;
 torque(k) = torque(k) +
((RP/2)^2)*(sum(phiag.^2.*dPTClist./(PTClist.^2)));
 end
 end

 % Solve the multi-stack system equations
 Aaug_multi = [Ag_multi d1_multi;d2_mult i
zeros(nio+damper_ntip-1,nio+damper_ntip-1)];
 daug_multi = blkdiag(d3_multi,eye(nio+d amper_ntip-1));
 if rcond(Aaug_multi)<1e-16
 fprintf('Warning: rcond(Aaug) = %d at
k=%i.\n' ,rcond(Aaug_multi),k);
 end
 DR_multi = blkdiag(DR_multi,zeros(nio+d amper_ntip-
1,nio+damper_ntip-1));
 J_multi = Aaug_multi+DR_multi;
 xnewp = xg_multi - J_multi\(Aaug_multi *xg_multi -
daug_multi*lam_multi);

 % Check for convergence
 if ((sqrt((xnewp-xg_multi)'*(xnewp-
xg_multi))/(length(xg_multi)*max(abs([xnewp;xg_mult i]))) ...
 < TOL) || (it == parx(14)))
 if (it == parx(14))
 % Maximum N-R iterations reached
 disp(['Max Iterations Reached: IT = ' num2str(it)
', Data Point = ' num2str(k)]);
 nrconverge = 0;
 end
 NRSOLVE = 0;
 nriter(k) = it;
 else
 xg_multi = xnewp;
 fluxm_multi = xg_multi(1:end-nio-da mper_ntip+1);
 it = it+1;
 end
 end
 if ~nrconverge
 break
 end

 % Phase current calculation
 iqd0sr(:,k) = xg_multi(end-nio-damper_ntip+ 2:end-
damper_ntip+1)*scl;
 iabc(:,k) = Ksrinv(:,1:nio)*iqd0sr(:,k); % terminals series
connected
 % Phase flux linkage calculation
 lamabcpp(:,k) = Ksrinv(:,1:nio)*lamqd0srpp(:,k);
 % Damper windings current

228

 idamper(1:damper_ntip-1,k) = xg_multi(end-
damper_ntip+2:end)*scl;
 idamper(damper_ntip,k) = -sum(idamper(1:dam per_ntip-1,k));

 elseif bartype == 2 % ---
 for i = 1:stack_num
 if i == 1
 A_multi = A_prime(1:row_A(i),1:col_ A(i),i);
 d1_multi = -
scl*[d_prime(1:row_d(i),1:3,i)*Ksrinv(:,1:nio) ...
 d_damper_1_prime(1:row_d_damper _1(i),:,i)];
 d2_multi =
scl*[Ksr(1:nio,:)*d_prime(1:row_d(i),1:3,i)'; ...
 d_damper_2_prime(1:row_d_damper _2(i),:,i)'];
 d3_multi = d_prime(1:row_d(i),4,i);
 else
 A_multi =
blkdiag(A_multi,A_prime(1:row_A(i),1:col_A(i),i));
 d1_multi = [d1_multi;-
scl*[d_prime(1:row_d(i),1:3,i)*Ksrinv(:,1:nio) ...
 d_damper_1_prime(1:row_d_damper _1(i),:,i)]];
 d2_multi = [d2_multi
scl*[Ksr(1:nio,:)*d_prime(1:row_d(i),1:3,i)'; ...
 d_damper_2_prime(1:row_d_damper _2(i),:,i)']];
 d3_multi = blkdiag(d3_multi,d_prime (1:row_d(i),4,i));
 end
 end
 Aaug_multi = [A_multi d1_multi;d2_multi
zeros(nio+damper_ntip,nio+damper_ntip)];
 daug_multi = blkdiag(d3_multi,eye(nio+dampe r_ntip));
 if rcond(Aaug_multi)<1e-16
 fprintf('Warning: rcond(Aaug) = %d at
k=%i.\n' ,rcond(Aaug_multi),k);
 end
 lam_multi =
[ifld*ones(stack_num,1);scl*lamqd0srpp(:,k);scl*lam damper(1:damper_ntip
,k)];
 xg_multi = Aaug_multi\(daug_multi*lam_multi);

 % Identify just the loop fluxes
 fluxm_multi = xg_multi(1:end-nio-damper_nti p);
 % NEWTON-RAPHSON SOLVER
 it = 1; % Keeps track of N-R iterations
 NRSOLVE = 1;
 while NRSOLVE
 xg_multi_temp = xg_multi;
 fluxm_multi_temp = fluxm_multi;
 for i = 1:stack_num
 % Assign variables
 Cvconn = Cvconn_prime(:,i);
 Crconn = Crconn_prime(1:row_Crconn(i),:,i);
 O = O_prime(1:row_O(i),1:col_O(i),i);
 d_damper_1 = d_damper_1_prime(1:row _d_damper_1(i),:,i);
 d_damper_2 = d_damper_2_prime(1:row _d_damper_2(i),:,i);
 PTClist = PTClist_prime(1:row_PTCli st(i),i);

229

 dPTClist = dPTClist_prime(1:row_dPT Clist(i),i);
 % Find xg and fluxm for each stack
 xg = [xg_multi_temp(1:Nm(i));xg_mul ti_temp(end-nio-
damper_ntip+1:end)];
 xg_multi_temp = removerows(xg_multi _temp,1:Nm(i));
 fluxm = fluxm_multi_temp(1:Nm(i));
 fluxm_multi_temp =
removerows(fluxm_multi_temp,1:Nm(i));
 % DETERMINE FLUXES FOR THE GUESS VECTOR xg
 phi = O*fluxm;
 phiiron(:,k) = phi(1:lB);
 % DETERMINE B-FIELDs
 BIRON(:,k,i) = phiiron(:,k)./areas;
 % Store flux/flux density values after converging
 phit(:,k,i) = phi(S+1:2*S);
 phiag =
phi(4*S+11+D/2+Dsl/2+1+damper_nshank+D/2+2*(SPT-1): end);
 BY(:,k,i) = BIRON(1:S,k,i);
 BT(:,k,i) = BIRON(S+1:2*S,k,i);
 BTT(:,k,i) = BIRON(2*S+1:3*S,k,i);
 % GET PERMEABILITY FOR EACH RESPECTIVE PERM
 [sMU,sdmdb] = get_mur_exp(BIRON(1:s lB,k,i),mudata.s);
 [rMU,rdmdb] =
get_mur_exp(BIRON(slB+1:end,k,i),mudata.r);
 MU = [sMU;rMU];
 dmdb = [sdmdb;rdmdb];
 % UPDATE MATRICIES
 Riron = Rxm./MU;
 [Ag,d,Cr] =
get_meshmatrices(Rair,PTClist,Riron,parx,pars,Nabcf ,Crconn,Cvconn);
 % Pure Newton Raphson Iterator - find Jacobian and
update x for each stack
 Aaug = [Ag -scl*d(:,1:3)*Ksrinv(:,1 :nio) -
scl*d_damper_1; ...
 scl*Ksr(1:nio,:)*d(:,1:3)'
zeros(nio,nio+damper_ntip); ...
 scl*d_damper_2'
zeros(damper_ntip,nio+damper_ntip)];
 J = get_J(Cr(1:lB,:),O(1:lB,:),Aaug ,MU,areas,dmdb,xg);
 DR = J-Aaug;
 DR = DR(1:Nm(i),1:Nm(i));

 if i == 1
 Ag_multi = Ag;
 DR_multi = DR;
 torque(k) =
((RP/2)^2)*(sum(phiag.^2.*dPTClist./(PTClist.^2)));
 else
 Ag_multi = blkdiag(Ag_multi,Ag) ;
 DR_multi = blkdiag(DR_multi,DR) ;
 torque(k) = torque(k) +
((RP/2)^2)*(sum(phiag.^2.*dPTClist./(PTClist.^2)));
 end
 end

230

 % Solve the multi-stack system equations
 Aaug_multi = [Ag_multi d1_multi;d2_mult i
zeros(nio+damper_ntip,nio+damper_ntip)];
 daug_multi = blkdiag(d3_multi,eye(nio+d amper_ntip));
 if rcond(Aaug_multi)<1e-16
 fprintf('Warning: rcond(Aaug) = %d at
k=%i.\n' ,rcond(Aaug_multi),k);
 end
 DR_multi =
blkdiag(DR_multi,zeros(nio+damper_ntip,nio+damper_n tip));
 J_multi = Aaug_multi+DR_multi;
 xnewp = xg_multi - J_multi\(Aaug_multi *xg_multi -
daug_multi*lam_multi);

 % Check for convergence
 if ((sqrt((xnewp-xg_multi)'*(xnewp-
xg_multi))/(length(xg_multi)*max(abs([xnewp;xg_mult i]))) ...
 < TOL) || (it == parx(14)))
 if (it == parx(14))
 % Maximum N-R iterations reached
 disp(['Max Iterations Reached: IT = ' num2str(it)
', Data Point = ' num2str(k)]);
 nrconverge = 0;
 end
 NRSOLVE = 0;
 nriter(k) = it;
 else
 xg_multi = xnewp;
 fluxm_multi = xg_multi(1:end-nio-da mper_ntip);
 it = it+1;
 end
 end
 if ~nrconverge
 break
 end

 % Phase current calculation
 iqd0sr(:,k) = xg_multi(end-nio-damper_ntip+ 1:end-
damper_ntip)*scl;
 iabc(:,k) = Ksrinv(:,1:nio)*iqd0sr(:,k); % terminals series
connected
 % Phase flux linkage calculation
 lamabcpp(:,k) = Ksrinv(:,1:nio)*lamqd0srpp(:,k);
 % Damper windings current
 idamper(:,k) = xg_multi(end-damper_ntip+1:e nd)*scl;
 end
 %-- ----------------
 % External voltage model--------------------------- ----------------
 % R load
% vabc(:,k) = -iabc(:,k)*Rload;
 % Parallel RL load
 vabc(:,k) = (-iabc(:,k)-il(:,k))*Rload;
 pil(:,k) = vabc(:,k)/Lload;
 il(:,k+1) = il(:,k)+pil(:,k)*DT;

231

 % qd voltage calculation
 vqd0sr(:,k) = Ksr(1:nio,:)*vabc(:,k); % Terminals series connected

 % Connected to rectifier with constant vdc
 % iabcl = m_isil*iabc(:,k);
 % [V,idc(k)] = rect(iabcl,vdcmax,parx);
 % vqd0gr = Ksr*V;
 % vqd0sr(:,k) = m_vgvs*vqd0gr;
 % vabc(:,k) = Ksrinv(:,1:nio)*vqd0sr(:,k);
 % Connected to rectifier with RLC load
 % iabcl = m_isil*iabc(:,k);
 % [V,idc(k)] = rect(iabcl,vdc(k),parx);
 % vqd0gr = Ksr*V;
 % vqd0sr(:,k) = m_vgvs*vqd0gr;
 % vabc(:,k) = Ksrinv(:,1:nio)*vqd0sr(:,k);
 % pvc(k) = (idc(k)-vc(k)/Rload)/Cload;
 % vc(k+1) = vc(k)+pvc(k)*DT;
 % Ivc(k+1) = Ivc(k)+(vc(k+1)+vc(k))/2*DT;
 % vdc(k+1) = (-
(Ivdc(k)+vdc(k)*DT/2)+taus*vc(k+1)+Ivc(k+1)+Lload*i dc(k))/(taus+DT/2);
 % Ivdc(k+1) = Ivdc(k)+(vdc(k+1)+vdc(k))/2*DT;
 %-- ----------------

 % Forward Euler to solve state model--------------- ----------------
 plamqd0srpp(:,k) = (vqd0sr(:,k) - rs.*iqd0sr(:, k) -
wr*mlam*lamqd0srpp(:,k)*RP)/RP;
 lamqd0srpp(:,k+1) = lamqd0srpp(:,k) + plamqd0sr pp(:,k)*DT;

 if bartype == 1
 plamdamper(1:damper_ntip-1,k) = -Tdp*idampe r(1:damper_ntip-
1,k);
 lamdamper(:,k+1) = lamdamper(:,k) + plamdam per(:,k)*DT;
 elseif bartype == 2
 plamdamper(:,k) = -Tdp*idamper(:,k);
 lamdamper(:,k+1) = lamdamper(:,k) + plamdam per(:,k)*DT;
 end
 %-- ----------------

 % Increment time/rotor position
 k = k+1;
end

% Check for flux densities above limit
Bsat = parx(23);
maxB = max(abs(BIRON));
saturate(maxB>=Bsat) = 1./(1+abs((maxB(maxB>=Bsat)- Bsat)./(0.1*Bsat)));

end

232

%-- --------------------
% AUTHORS: Xiaoqi Wang, Michelle Bash, Steven D. P ekarek
%-- --------------------
% CONTACT: School of Electrical & Computer Enginee ring
% Purdue University
% 465 Northwestern Ave.
% West Lafayette, IN 47907
% 765-494-3434, spekarek@ecn.purdue.edu
%-- --------------------
% April 1, 2012
%-- --------------------
% [t,ias,ibs,ics,torque,qrm,phit,BY,BT,nrconverge,s aturate,BIRON] =
% wrsmdynamics_ss_multislice(parx,pars,turns,mudata)
%
% Solves the MEC network.
%
% OUTPUTS: t - time vector (s)
% ias,ibs,ics - phase currents (s)
% torque - torque (Nm)
% qrm - mechanical rotor position (ra dians)
% phit - stator teeth flux (Wb)
% BY,BT,BTT - flux density in the stato r yoke, stator
teeth, and stator tooth tips (T)
% nrconverge - flag indicating if newton r aphson converged
% saturate - indicates if the flux densi ty limit is violated
% BIRON - flux density in iron (Wb)
%
% INPUTS: pars - geometric parameters
% parx - simulation parameters
% turns - phase winding turns (turn cou nt)
% mudata - magnetic material data for fi nding permeability
%-- --------------------
function
[t,ias,ibs,ics,torque,qrm,phit,BY,BT,BTT,nrconverge ,saturate,BIRON] =
wrsmdynamics_ss_multislice (parx,pars,turns,damperd ata,mudata,qr_init)
%-- --------------------
% INITIALIZE THE SYSTEM
%-- --------------------
DT = parx(12); % Time step in s
iter = parx(30); % Number of iterations
wrm = parx(4)*2*pi/60; % Mechanical rotor speed in rad/s
ifld = pars(47); % Field current (A)
irms = pars(49); % rms Stator current (A)
iph = pars(50); % Current phase angle (degrees)
im = irms*sqrt(2); % Magnitude of ias,ibs,ics
mu0 = pi*4e-7; % Permeability of free space
RP = pars(28); % Poles
S = parx(3)/RP; % Number of stator slots per pole
D = 2*(parx(2)); % Number of rotor pole tip sections per pole
pair
Dsl = 4*parx(29); % Number of inter-polar regions per pole pair
SPT = parx(2); % SECTIONS PER ROTOR TOOTH, including radial
and tangential
NRrtrt = parx(27); % Number of outer pole tip reluctances per pole
pair

233

damper_ntip = damperdata.damper_ntip; % Number of damper windings
on rotor tip
damper_nshank = damperdata.damper_nshank; % Number of damper windings
on rotor shank
bartype = damperdata.bartype; % Type of damper bars connnection
Rd = damperdata.Rd; % Damper bar body resistance
Re = damperdata.Re; % Damper bar end connection resistance
NPTS = parx(7); % NUMBER OF DATA POINTS PER CYCLE
skew_angle = pars(30); % Electrical skew angle, rad
stack_num = pars(31); % Number of stack for skew
% INITIALIZE VARIABLES
slB = 3*S; % Number of iron elements in stator
rlB = 6+D/2+damper_nshank+SPT+(SPT-1); % Number of iron elements in
rotor
lB = slB+rlB; % Number of iron elements
nriter = zeros(1,iter); % Keeps track of N-R iterations
torque = zeros(1,iter);
PTC = zeros(S,D+Dsl,iter); % Matrix of airgap permeances
dPTC = zeros(S,D+Dsl,iter);
phit = zeros(S,iter,stack_num); % Stator tooth flux
phiiron = zeros(lB,iter); % Flux in iron
BY = zeros(S,iter,stack_num); % Stator yoke flux density
BT = zeros(S,iter,stack_num); % Stator tooth shank flux density
BTT = zeros(S,iter,stack_num); % Stator tooth tip flux density
BIRON = zeros(lB,iter,stack_num); % Flus density in all iron elements
saturate = ones(1,iter); % Saturation constraint (is Bsat violated)
smuiron = get_mur_exp(zeros(slB,1),mudata.s); % Initial permeabilities
of stator
rmuiron = get_mur_exp(zeros(rlB,1),mudata.r); % Initial permeabilities
of rotor
muiron = [smuiron;rmuiron]; % Initial permeabilities
TOL = parx(21); % tolerance for convergence of Newton-Raphson
k = 1; % Simulation step
t(k) = parx(10);
% ARTIFICIAL ROTOR POSITION MODIFICATION used in th e calculation of
airgap
% permeances.----
SLL = parx(3);
ID = pars(2);
ROD = pars(24);
STTW = pars(21);
WRT = pars(34);
WAIRT = pars(35);
shift1 = WRT/(ROD/2);
shift2 = (WAIRT/2)/(ROD/2);
shift3 = 2*pi/SLL;
shift4 = (STTW/2)/(ID/2);
shift5 = (pi/2)/(RP/2);
shift = shift1 + shift2 - (S/2)*shift3 - shift4 - shift5;
% TIME AND ROTOR POSITION VECTORS
t = (0:DT:DT*(iter-1))+t(k);
qrm = t*wrm + qr_init/(RP/2) ; % Actual rotor position
qrm_shift = qrm + shift +pi/12+pi/4; % Angle fed to airgap permeance
function
%-- --------------------

234

% CALCULATE VARIABLES/MATRICES WHICH WILL NOT CHANGE DURING SIM
%-- --------------------
% Variables/matrices to be used in airgap permeance calculation
WRS = pars(35)/(2*parx(29));
WRTS = pars(36);
B0 = pars(9);
SPT = parx(2);
RPIT = pars(32);
WRTSang = 2*pi*RPIT/RP/SPT;
WRTang = 2*pi*RPIT/RP;
WRSang = 2*pi*(1-RPIT)/RP/(Dsl/2);
qs = STTW/ID*RP; % Span of stator tooth in electrical radians
qs1 = B0/ID*RP; % Span of stator slot
qrr = WRTSang*RP/2; % Span of rotor pole tip section
qrs = WRSang*RP/2; % Span of inter-polar section
Gmaxrt = pi*4e-7*pars(3)/stack_num/(ID-
ROD)*2*(WRTS*(STTW>=WRTS)+STTW*(STTW<WRTS)); % if-else
Gmaxsl = pi*4e-7*pars(3)/stack_num/(ID-
ROD)*2*(WRS*(STTW>=WRS)+STTW*(STTW<WRS)); % if-else
rt = 1:D; rtsl = 1:Dsl; st = (1:S)';
% Matrices defining the angle between every stator tooth and rotor
section
anglert = ones(S,1)*(-mod(rt-1,(D/2))*WRTSang - flo or((rt-
1)/(D/2))*2*pi/RP) ...
 + ((st-1)*(STTW+B0)/(ID/2))*ones(1,D);
anglesl = ones(S,1)*(-WRTang - mod(rtsl-1,(Dsl/2))* WRSang - ...
 floor((rtsl-1)/(Dsl/2))*2*pi/RP) + ((st-
1)*(STTW+B0)/(ID/2))*ones(1,Dsl);

% Establish the geometric case for the rotor tooth section
if qrr <= qs1/2
 qrrcs = 1;
elseif (qrr <= qs)
 qrrcs = 2;
elseif (qrr <= qs +qs1/2)
 qrrcs = 3;
elseif (qrr <= qs+qs1)
 qrrcs = 4;
else
 qrrcs = 5;
end
% Establish the geometric case for the rotor slot s ection
if qrs <= qs1/2
 qrscs = 1;
elseif (qrs <= qs)
 qrscs = 2;
elseif (qrs <= qs +qs1/2)
 qrscs = 3;
elseif (qrs <= qs+qs1)
 qrscs = 4;
else
 qrscs = 5;
end

% --- -------------------

235

% turns matrix to be used in system of equations
Natrn = [-turns turns]';
Nbtrn = [Natrn(2*SLL/(3*RP)+1:end);Natrn(1:2*SLL/ (3*RP))];
Nctrn = [Natrn(4*SLL/(3*RP)+1:end);Natrn(1:4*SLL/ (3*RP))];
Nabc = [Natrn Nbtrn Nctrn];
Nfld = pars(41);
Nabcf = [Nabc(1:S,:) zeros(S,1);0 0 0 Nfld;0 0 0 -Nfld];
% --- -------------------
% MEC loops with MMF sources
Cvcfixed = (1:S+2)';
%-- --------------
% Calculate the reluctances
[Rxm,areas,Rair,NPRTS,NPRTB] =
get_reluctances(mu0,parx,pars,damperdata);
Riron = Rxm./muiron;
%-- --------------
% Identify type of node in rotor tooth and slot
% 1 = node of rotor pole tip radial branch
% 2 = node of rotor pole tip tangential branch
% 3 = rotor slot branch going to rotor edge
% 4 = rotor slot branch going to bottom of rotor po le tip
rtid = [2*ones(NRrtrt,1);ones(D/2-2*NRrtrt,1);2*one s(NRrtrt,1); ...
 3*ones(NPRTS,1);4*ones(2*NPRTB,1);3*ones(NP RTS,1); ...
 2*ones(NRrtrt,1);ones(D/2-2*NRrtrt,1);2*one s(NRrtrt,1); ...
 3*ones(NPRTS,1);4*ones(2*NPRTB,1);3*ones(NP RTS,1)];
% Identify how many RRTOUT branches border the roto r loop
NRBRL = ceil((NRrtrt+1)/2); % Number of RRTOUT branches Bordering
Rotor Loop
NRTBD = NRrtrt-NRBRL; % Number of RRTOUT branches with bordering loop
To Be Determined
% --- -------------------
% Define reluctance connections in stator and rotor which do not change
% Stator tooth tip, damper slots, and leakage of da mper slots are not
% presented here, but will be derived as postproces s in shape_alg.m
% IRON
% Stator yoke - S
% Stator teeth - S
% Rotor yoke below the slot - 1
% Rotor tooth shank - 1
% Rotor yoke connected to shank - 2
% Rotor tooth tips radial - (D - 4*NRrtrt)
% Rotor tooth to rotor tooth tangential - 4*NRrtrt
% Rotor tooth tangential at sides of tooth tips - 4
% AIR
% Stator tooth leakage - S
% Field winding leakage - 2
% Middle rotor slot leakage - 2
% Fringing permeance from rotor side to airgap boun dary - Dsl
% Fringing permeance from rotor slot side to bottom of tooth tip - 4
% RY R RRYSL RRTSH RRYSH RRTIN RRTOUT RRTS RSTL RFDL RRTL RAGFR RFRB
Crcfixed = zeros(2*S+8+D+S+3+Dsl,3);
% RY (all)
Crcfixed(1:S,2)=(1:S)';
% R (all)
Crcfixed(S+1:2*S,2) = [1 2:S]';

236

Crcfixed(S+1:2*S,3) = [-S 1:S-1]';
% RRYSL (all)
Crcfixed(2*S+1,3) = S+3;
% RRTSH (all)
Crcfixed(2*S+2,2:3) = [S+1 S+2];
% RRYSH (all)
Crcfixed(2*S+2+(1:2)',2) = [S+1;S+2];
% RRTIN (Determined by shape algorithm)
% RRTOUT - One side known if reluctance borders rot or loop
Crcfixed(2*S+2+D-4*NRrtrt+2+(1:4*NRrtrt)',2) = ...

[[zeros(NRTBD,1);ones(NRBRL,1)]*(S+1);[ones(NRBRL,1);zeros(NRTBD,1)]*(S
+2); ...
 -[zeros(NRTBD,1);ones(NRBRL,1)]*(S+1);-
[ones(NRBRL,1);zeros(NRTBD,1)]*(S+2)];
% RRTS - (Determined by shape algorithm)
% RSTL (one side known, use shape alg for other)
Crcfixed(2*S+2+D+6+(1:S)',2) = (1:S)';
% RFDL (all)
Crcfixed(2*S+2+D+6+S+(1:2)',2:3) = [-(S+3) S+1;S+2 S+3];
% RRTL (one side known, use shape alg for other)
Crcfixed(2*S+2+D+6+S+2+(1:2)',2) = [S+3;-(S+3)];
% RAGFR - (Determined by shape algorithm)
% RFRB (one side, use shape alg for other)
Crcfixed(2*S+2+D+6+S+4+Dsl+(1:4)',2) = [-(S+3);S+3; S+3;-(S+3)];
%-- --------------
% Initialization
index_vect = zeros(damper_ntip,3,iter+1,stack_num);
flag_vect = ones(damper_ntip,iter+1,stack_num);
% Calculate the currents
ias = im*cos((RP/2)*(qrm) + (pi*iph/180));
ibs = im*cos((RP/2)*(qrm) + (pi*iph/180) - (2*pi/3));
ics = im*cos((RP/2)*(qrm) + (pi*iph/180) - (4*pi/3));
curr = [ias;ibs;ics;ifld*ones(1,iter)];

%-- --------------------
% SOLVING LOOP
%-- --------------------
nrconverge = 1;
if stack_num == 1
 stack_span = 0;
else
 stack_span = floor(skew_angle/(2*pi)*NPTS/(stac k_num-1));
end
% AIR-GAP PERMEANCES
for i = 1:iter
 [PTC(:,:,i),dPTC(:,:,i)] =
get_Pag(qrm_shift(i),pars,parx,Gmaxrt,Gmaxsl,angler t,anglesl,qrrcs,qrsc
s);
end
[l,m,n] = size(PTC);
PTC_prime = zeros(l,m,n,stack_num);
dPTC_prime = zeros(l,m,n,stack_num);
for i = 1:stack_num

237

 PTC_prime(:,:,1:(i-1)*stack_span,i) = PTC(:,:,e nd-(i-
1)*stack_span+1:end);
 PTC_prime(:,:,(i-1)*stack_span+1:end,i) = PTC(: ,:,1:end-(i-
1)*stack_span);
 dPTC_prime(:,:,1:(i-1)*stack_span,i) = dPTC(:,: ,end-(i-
1)*stack_span+1:end);
 dPTC_prime(:,:,(i-1)*stack_span+1:end,i) = dPTC (:,:,1:end-(i-
1)*stack_span);
end

while k <= iter
 % Shape algorithm - Find the loop topology in the a irgap if it has
changed
 for i = 1:stack_num
 if k==1 || sum(sum((PTC_prime(:,:,k-
1,i)~=0)~=(PTC_prime(:,:,k,i)~=0)))>0
 [Crconn,Cvconn,O,PTCind,d_damper_1,d_da mper_2,index,flag]
...
 =
shape_alg(PTC_prime(:,:,k,i),parx,pars,damperdata,C rcfixed,Cvcfixed,rti
d,index_vect(:,:,k,i),flag_vect(:,k,i));
 if length(Crconn)~=length([Riron;Rair;PTCind])
 nrconverge = 0;
 break
 end
 % Save variables
 [row_Crconn(i),col_Crconn(i)] = size(Cr conn);
 [row_O(i),col_O(i)] = size(O);
 [row_PTCind(i),col_PTCind(i)] = size(PT Cind);
 if i == 1 && k == 1
 Crconn_prime = -
1e12*ones(row_Crconn(i)+5,col_Crconn(i),stack_num);
 O_prime = -1e12*ones(row_O(i)+5,col _O(i)+5,stack_num);
 PTCind_prime = -1e12*ones(row_PTCin d(i)+5,stack_num);
 end
 Cvconn_prime(:,i) = Cvconn;
 Crconn_prime(1:row_Crconn(i),:,i) = Crc onn;
 O_prime(1:row_O(i),1:col_O(i),i) = O;
 PTCind_prime(1:row_PTCind(i),i) = PTCin d;
 end
 % Obtain list of airgap permeances and their deriva tives for
this rotor position
 ptc = PTC_prime(:,:,k,i)';
 PTClist = ptc(PTCind_prime(1:row_PTCi nd(i),i));
 dptc = dPTC_prime(:,:,k,i)';
 dPTClist = dptc(PTCind_prime(1:row_PTC ind(i),i));
 % Find the system of equations and solve for the in itial guess
 [A,d] =
get_meshmatrices(Rair,PTClist,Riron,parx,pars,Nabcf ,Crconn_prime(1:row_
Crconn(i),:,i),Cvconn_prime(:,i));
 % Total number of meshes
 Nm(i) = 3 + S + length(PTClist) + (SPT-1);
 % Save variables
 [row_PTClist(i),col_PTClist(i)] = size(PTCl ist);
 [row_dPTClist(i),col_dPTClist(i)] = size(dP TClist);

238

 if i == 1 && k == 1
 PTClist_prime = -1e12*ones(row_PTClist(i)+5,stack_num);
 dPTClist_prime = -1e12*ones(row_dPTClis t(i)+5,stack_num);
 end
 PTClist_prime(1:row_PTClist(i),i) = PTClist ;
 dPTClist_prime(1:row_dPTClist(i),i) = dPTCl ist;
 index_vect(:,:,k+1,i) = index;
 flag_vect(:,k+1,i) = flag;

 if i == 1
 A_multi = A;
 d_multi = d;
 else
 A_multi = blkdiag(A_multi,A);
 d_multi = [d_multi;d];
 end
 end
 xg_multi = A_multi\(-d_multi*curr(:,k));
 % NEWTON-RAPHSON SOLVER
 it = 1; % Keeps track of N-R iterations
 NRSOLVE = 1;
 while NRSOLVE
 xg_multi_temp = xg_multi;
 for i = 1:stack_num
 % Assign variables
 Cvconn = Cvconn_prime(:,i);
 Crconn = Crconn_prime(1:row_Crconn(i),: ,i);
 O = O_prime(1:row_O(i),1:col_O(i),i);
 PTClist = PTClist_prime(1:row_PTClist(i),i);
 dPTClist = dPTClist_prime(1:row_dPTClis t(i),i);
 % Find xg and fluxm for each stack
 xg = xg_multi_temp(1:Nm(i));
 xg_multi_temp = removerows(xg_multi_tem p,1:Nm(i));
 % DETERMINE FLUXES FOR THE GUESS VECTOR xg
 phi = O*xg;
 phiiron(:,k) = phi(1:lB);
 % DETERMINE B-FIELDs
 BIRON(:,k,i) = phiiron(:,k)./areas;
 % Store flux/flux density values after converging
 phit(:,k,i) = phi(S+1:2*S);
 phiag = phi(4*S+11+D/2+Dsl/2+1+damper_n shank+D/2+2*(SPT-
1):end);
 BY(:,k,i) = BIRON(1:S,k,i);
 BT(:,k,i) = BIRON(S+1:2*S,k,i);
 BTT(:,k,i) = BIRON(2*S+1:3*S,k,i);
 % GET PERMEABILITY FOR EACH RESPECTIVE PERM
 [sMU,sdmdb] = get_mur_exp(BIRON(1:slB,k ,i),mudata.s);
 [rMU,rdmdb] = get_mur_exp(BIRON(slB+1:e nd,k,i),mudata.r);
 MU = [sMU;rMU];
 dmdb = [sdmdb;rdmdb];
 % UPDATE MATRICIES
 Riron = Rxm./MU;
 [Ag,d,Cr] =
get_meshmatrices(Rair,PTClist,Riron,parx,pars,Nabcf ,Crconn,Cvconn);

239

 % Pure Newton Raphson Iterator - find Jacobian and update x
for each stack
 J = get_J(Cr(1:lB,:),O(1:lB,:),Ag,MU,ar eas,dmdb,xg);
 DR = J-Ag;

 if i == 1
 Ag_multi = Ag;
 d_multi = d;
 DR_multi = DR;
 torque(k) =
((RP/2)^2)*(sum(phiag.^2.*dPTClist./(PTClist.^2)));
 else
 Ag_multi = blkdiag(Ag_multi,Ag);
 d_multi = [d_multi;d];
 DR_multi = blkdiag(DR_multi,DR);
 torque(k) = torque(k) +
((RP/2)^2)*(sum(phiag.^2.*dPTClist./(PTClist.^2)));
 end
 end
 % Solve the multi-stack system equations
 if rcond(Ag_multi)<1e-16
 fprintf('Warning: rcond(Aaug) = %d at
k=%i.\n' ,rcond(Ag_multi),k);
 end
 J_multi = Ag_multi+DR_multi;
 xnewp = xg_multi - J_multi\(Ag_multi*xg_mu lti +
d_multi*curr(:,k));
 % Check for convergence
 if ((sqrt((xnewp-xg_multi)'*(xnewp-
xg_multi))/(length(xg_multi)*max(abs([xnewp;xg_mult i]))) ...
 < TOL) || (it == parx(14)))
 if (it == parx(14))
 % Maximum N-R iterations reached
 disp(['Max Iterations Reached: IT = ' num2str(it) ',
Data Point = ' num2str(k)]);
 nrconverge = 0;
 end
 NRSOLVE = 0;
 nriter(k) = it;
 else
 xg_multi = xnewp;
 it = it+1;
 end
 end
 if ~nrconverge
 break
 end
 % Increment time/rotor position
 k = k+1;
end
% Check for flux densities above limit
Bsat = parx(23);
maxB = max(abs(BIRON));
saturate(maxB>=Bsat) = 1./(1+abs((maxB(maxB>=Bsat)- Bsat)./(0.1*Bsat)));

VITA

240

VITA

Xiaoqi (Ron) Wang, obtained his Bachelor degree at the Electrical Engineering

department in Zhejiang University, China. He is currently pursuing his Ph.D. in the area

of Power and Energy Devices and Systems at the ECE department in Purdue University.

As a research assistant, he is responsible for multiple design, modeling, and simulation

projects in the areas of Electromechanical Devices, Power Electronics, Design of Electric

Machines, and Control of Drives.

	Purdue University
	Purdue e-Pubs
	Fall 2013

	A Dynamic Magnetic Equivalent Circuit Model For Design And Control Of Wound Rotor Synchronous Machines
	Xiaoqi Wang
	Recommended Citation

	thesis_final

