
Purdue University
Purdue e-Pubs

Open Access Dissertations Theses and Dissertations

Fall 2013

Dependence-Based Source Level Tracing and
Replay for Networked Embedded Systems
Man Wang
Purdue University

Follow this and additional works at: https://docs.lib.purdue.edu/open_access_dissertations

Part of the Computer Sciences Commons

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact epubs@purdue.edu for
additional information.

Recommended Citation
Wang, Man, "Dependence-Based Source Level Tracing and Replay for Networked Embedded Systems" (2013). Open Access
Dissertations. 23.
https://docs.lib.purdue.edu/open_access_dissertations/23

https://docs.lib.purdue.edu?utm_source=docs.lib.purdue.edu%2Fopen_access_dissertations%2F23&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/open_access_dissertations?utm_source=docs.lib.purdue.edu%2Fopen_access_dissertations%2F23&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/etd?utm_source=docs.lib.purdue.edu%2Fopen_access_dissertations%2F23&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/open_access_dissertations?utm_source=docs.lib.purdue.edu%2Fopen_access_dissertations%2F23&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=docs.lib.purdue.edu%2Fopen_access_dissertations%2F23&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/open_access_dissertations/23?utm_source=docs.lib.purdue.edu%2Fopen_access_dissertations%2F23&utm_medium=PDF&utm_campaign=PDFCoverPages

Graduate School ETD Form 9
(Revised 12/07)

PURDUE UNIVERSITY
GRADUATE SCHOOL

Thesis/Dissertation Acceptance

This is to certify that the thesis/dissertation prepared

By

Entitled

For the degree of

Is approved by the final examining committee:

 Chair

To the best of my knowledge and as understood by the student in the Research Integrity and
Copyright Disclaimer (Graduate School Form 20), this thesis/dissertation adheres to the provisions of
Purdue University’s “Policy on Integrity in Research” and the use of copyrighted material.

Approved by Major Professor(s): ____________________________________

Approved by:
 Head of the Graduate Program Date

Man Wang

Dependence-Based Source Level Tracing and Replay for Networked Embedded Systems

Doctor of Philosophy

Zhiyuan Li

Jan Vitek

Xiangyu Zhang

Dongyan Xu

Zhiyuan Li

Sunil Prabhakar / William J. Gorman 11/26/2013

DEPENDENCE-BASED SOURCE LEVEL TRACING AND REPLAY FOR

NETWORKED EMBEDDED SYSTEMS

A Dissertation

Submitted to the Faculty

of

Purdue University

by

Man Wang

In Partial Fulfillment of the

Requirements for the Degree

of

Doctor of Philosophy

December 2013

Purdue University

West Lafayette, Indiana

ii

ACKNOWLEDGMENTS

I would like to take this opportunity to express my deepest appreciation to all the

people who have helped and supported me during my doctoral study.

I thank Professor Zhiyuan Li for being an ideal advisor. He has provided me with

the great combination of guidance and freedom, perspectives on research, technical

direction and material support. Without him, the dissertation would not be possible.

I thank Professor Jan Vitek and Professor Xiangyu Zhang for being on my advisory

committee, and Professor Dongyan Xu for being an external member on both my

preliminary and final exam. Their valuable and constructive comments have greatly

improved this dissertation.

I thank my colleagues and friends at Purdue: Lixia Liu, Situ Yingchong, Pengxuan

Zheng, Hou-Jen Ko, Ye Wang, Lei Zhao, Yunhui Zheng, Matthew Tan Creti, Hongtao

Yu, Feng Li, Guiqin Li, Yalin Dong and Shuxian Jiang. Their collaboration and

friendship have made my life as a graduate student so much easier and more enjoyable.

I thank my parents, without whose understanding and unconditional support I

would never have started this study.

Finally, I thank my husband Lin Dong, who is always there to provide me with

love and support.

iii

TABLE OF CONTENTS

Page

LIST OF TABLES . v

LIST OF FIGURES . vi

ABSTRACT . vii

1 INTRODUCTION . 1

2 OVERVIEW . 7
2.1 Error and Error Source . 7
2.2 Global Properties vs. Local Properties 8
2.3 Deterministic Tracing and Replay 10

2.3.1 Source-Level Instrumentation 10
2.3.2 Main Assumptions . 11

2.4 System Framework . 12

3 GLOBAL PROPERTY VIOLATION DETECTION 15
3.1 SensorC: How to Specify Properties 15

3.1.1 SensorC G . 16
3.1.2 SensorC L . 20

3.2 How to decompose a global property 21
3.2.1 A Global Property Decomposition (GPD) Algorithm 22
3.2.2 Local Property Simplification 29

3.3 Improving Decomposition by Using #NETWORK and #ROUTING
Segments . 31

3.4 Implementation and Experiments 33

4 DEPENDENCE-BASED TRACING AND REPLAY METHODOLOGY
FOR A SINGLE NODE . 39
4.1 What to Record . 39
4.2 How to Replay . 43
4.3 Decision on Inlining a Function . 50
4.4 Multi-level Tracing . 51

4.4.1 An Iterative Tracing and Replay Procedure 51
4.4.2 Termination of the Iterative Tracing Procedure 57

4.5 Experiments . 58

iv

Page

5 DEPENDENCE-BASED TRACING AND REPLAY METHODOLOGY
FOR THE ENTIRE WSN SYSTEM . 63
5.1 How to Log . 64
5.2 How to Replay . 66

5.2.1 Replay Preprocessor . 66
5.2.2 Independent Replay . 69

5.3 Experiments . 70
5.3.1 Test Case Study . 71

6 Related Work . 75
6.1 Wireless Sensor Networks Software Debugging 75
6.2 Record and Replay . 78
6.3 System Behavior Synthesis . 80

7 CONCLUSION AND FUTURE WORK 81

LIST OF REFERENCES . 83

VITA . 89

v

LIST OF TABLES

Table Page

1.1 Sensor nodes . 4

2.1 Source-level instrumentation vs. binary instrumentation 11

3.1 Property checking description . 24

3.2 Conversion rules . 25

3.3 Global properties under detection . 34

3.4 Data collected from a 20-node WSN on TOSSIM 37

4.1 Functions instrumented using dependence information as a fraction of the
total functions . 61

4.2 Code size (bytes) . 61

4.3 Instrumentation overhead . 61

5.1 Global properties under detection . 71

vi

LIST OF FIGURES

Figure Page

2.1 Framework of the proposed system . 14

3.1 Framework of property decomposition tool 15

3.2 Examples of SensorC programs. (a) SensorC G; (b) SensorC L 17

3.3 Basic grammar for writing SensorC G programs 18

3.4 A production rule for property checking in SensorC L 21

3.5 TC1-Link Creation in SensorC . 35

4.1 An example of instrumented code for recording 41

4.2 The replay scheme . 43

4.3 An illustration for proof of Theorem 4.1 48

4.4 An example of invariant-based PFDG 53

4.5 Framework of tracing and replay tool for a single WSN node 58

4.6 Inlined functions as a fraction of the total 61

5.1 Error propagation . 63

5.2 Example of setting < R ID, x > . 65

5.3 Decide which part of trace used by replay based on message matching 68

5.4 Source code of Error#1 . 71

5.5 Source code of Error#2 . 72

5.6 Source code of Error#3 . 73

vii

ABSTRACT

Wang, Man Ph.D., Purdue University, December 2013. Dependence-Based Source
Level Tracing and Replay for Networked Embedded Systems. Major Professor:
Zhiyuan Li.

Error detection and diagnosis for networked embedded systems remain challeng-

ing and tedious due to issues such as a large number of computing entities, hardware

resource constraints, and non-deterministic behaviors. The run-time checking is often

necessitated by the fact that the static verification fails whenever there exist condi-

tions unknown prior to execution. Complexities in hardware, software and even the

operating environments can also defeat the static analysis and simulations. Record-

and-replay has long been proposed for distributed systems error diagnosis. Under this

method, assertions are inserted in the target program for run-time error detection. At

run-time, the violation of any asserted property triggers actions for reporting an error

and saving an execution trace for error replay. This dissertation takes wireless sensor

networks, a special but representative type of networked embedded systems, as an

example to propose a dependence-based source-level tracing-and-replay methodology

for detecting and reproducing errors. This work makes three main contributions to-

wards making error detection and replay automatic. First, SensorC, a domain-specific

language for wireless sensor networks, is proposed to specify properties at a high

level. This property specification approach can be not only used in our record-replay

methodology but also integrated with other verification analysis approaches, such as

model checking. Second, a greedy heuristic method is developed to decompose global

properties into a set of local ones with the goal of minimizing the communication traf-

viii

fic for state information exchanges. Each local property is checked by a certain sensor

node. Third, a dependence-based multi-level method for memory-efficient tracing and

replay is proposed. In the interest of portability across different hardware platforms,

this method is implemented as a source-level tracing and replaying tool. To test our

methodology, we have built different wireless sensor networks by using TelosB motes

and Zolertia Z1 motes separately. The experiments’ results show that our work has

made it possible to instrument several test programs on wireless sensor networks un-

der the stringent program memory constraint, reduce the data transferring required

for error detection, and find and diagnose realistic errors.

1

1 INTRODUCTION

Networked embedded systems [1], including wireless sensor networks (WSNs), dis-

tributed control systems, and so on, have gained increasing attention due to their

wide range of applications. To improve the reliability of such systems, techniques

ranging from static program analysis to model checking and so on, have been pro-

posed. However, due to their attributes such as large number of computing entities,

hardware resource constraints, and non-deterministic behaviors, runtime error detec-

tion and diagnosis for networked embedded systems is needed.

Run-time checking [2–4] is often necessitated by the fact that static verification

fails whenever there exist conditions unknown prior to execution. Complexities in

hardware, software, and even the operating environment can also defeat a static

analysis. Deterministic replay (or record-replay) is an error diagnosis method which

has long been proposed for distributed systems to enhance the programmer’s abil-

ity to find complex software errors. Under this method, nondeterministic events are

recorded throughout the system operation. When an error is reported, the program

can be re-run with the recorded events. The replayed program can reproduce the

detected error and allow the programmer to inspect the executed statements. There-

fore, the source of the error, namely the incorrectly written statements or unexpected

events causing the error, can be located by the programmer with the understanding

of the incorrect execution.

Although numerous replay techniques [5–9] that differ mainly in how to handle

nondeterministic events and reduce runtime overhead have emerged, two main obsta-

2

cles prevent the practical use of deterministic replay in networked embedded systems

for error detection and diagnosis.

The first obstacle regards the method of detecting run time errors that are not

as obvious as the system crash. Both the deterministic replay and software verifica-

tion tools assume the availability of specifications of correct behaviors (or inversely,

incorrect behaviors). The most natural way to specify the correct behaviors of a

networked embedded system is to define a set of global properties that must be satis-

fied by quantities collected from multiple nodes, since most of the time, nodes in the

entire system work together to perform a task. It is commonly known that, in most

cases, a global property cannot be verified in a static way because there will likely be

quantities that are unknown until the system is either deployed or simulated. One

way to verify global properties at run time is to perform a centralized checking [10],

i.e., to select a single node (e.g. base-station) so as to collect all the quantities from

the nodes involved in the predicates. Such a centralized approach, however, requires

all the nodes whose states are involved in the global property to send their execu-

tion traces to the base station, which incurs bookkeeping and networking cost that

are excessive in most cases. Furthermore, the program execution, including message

passing, on all the involved nodes must be replayed in order to diagnose the error. In

contrast, by using a global property that can be decomposed into a conjunction of

several sub-properties such that each involves only the quantities from a single entity,

the ideal goal of distributed local checking by multiple entities can be attained. In

general, a networked embedded system reacts to events whose timing is difficult to

predict or to specify during the program development, and the data transmission is

complex and dynamic. Due to these reasons, it is often a challenging task for the

application programmer to decide what sub-properties to check for each node.

3

The second obstacle is how to run deterministic replay efficiently in networked

embedded system. On the one hand, even for resource-rich distributed and parallel

systems, the high runtime overhead is a traditional barrier for deterministic replay.

Some recent works try to reduce the runtime overhead of production time in the cost

of increasing debugging time. However, these approaches may fail to expose the real

root of an error [11]. For the networked embedded systems, this overhead is more

critical. In addition, in the resource-rich systems, compared with the original pro-

gram size and the available memory, the instrumented code size is too small to be

a problem. However, the limited program memory on embedded devices (e.g., 48

KB on the popular TelosB motes used in wireless sensor networks) has forced most

existing schemes for run-time tracing on networked embedded systems to record only

coarse information, which is far from sufficient for deterministic replay. This makes

it difficult to pinpoint the source of the errors which are detected at run time. On

the other hand, an error could propagate along with the message transmission. As

a consequence, an error may be caused by the incorrect execution on one node but

later detected on another node. Distributed replay can faithfully reenact the runtime

execution, but if the system has a large number of nodes and complex message trans-

mission, the programmer may not be able to reason logically about the recorded logs

and to find the errors. From our experiments, which will be discussed in Chapter

5, not all the nodes need to be analyzed for locating the error, especially in a large

networked embedded system. Replaying all the nodes together will generate redun-

dant information which would actually hamper the programmer’s ability to inspect

the execution trace efficiently. Therefore, trimming redundant traces without losing

the accuracy of the diagnosis also has an important role in deterministic replay.

By focusing on the two main challenges stated above, this dissertation investigates

how to detect and diagnose errors efficiently in networked embedded systems. As

4

one special type of the networked embedded systems, wireless sensor networks [12]

are gaining an increased attention for their possible wide use in applications such

as military applications, structural health monitoring, environmental surveillance,

scientific observation, industrial monitoring, and so on [13–17]. A WSN can consist

of many small sensor nodes, each of which is an embedded system and communicates

with others via a radio transmitter. Severe resource constraints represent one of the

distinctive features of wireless sensor networks, which makes the conventional error

diagnosis techniques derived from wired networks not be suited for WSNs [18]. In

particular, small memory (Table 1.1 lists several popular commercial motes/sensor

nodes) makes applying tracing and replay approach on WSNs more challenging as we

discussed above. That is why, we use WSNs, a special kind of networked embedded

systems, as our experiment target object. We believe that our proposed methodology

and the developed tools can be extended to other types of networked embedded

systems.

Table 1.1 Sensor nodes

Name RAM Flash
Memory

Micro-controller

Mica2 [19] 4KB 128KB ATMEGA 128L

MicaZ [20] 4KB 128KB ATMEGA 128

TelosB [21] 10KB 48KB Texas Instru-
ments MSP430
micro-controller

Zolertia Z1
[22]

8KB 92KB Texas In-
struments
MSP430F-2617

TinyNode
[23]

8KB 512KB Texas Instru-
ments MSP430
micro-controller

5

The main contributions of this dissertation are as follows:

(1) We design a domain specific language SensorC and develop the corresponding

SensorC compiler to specify the global properties which must be satisfied when

the system and its application software are deployed. The SensorC language

allows programmers to specify properties using propositional logic with bounded

time variables. It also provides programmers more flexibility to describe a fine

system behavior by introducing the network topology and routing information.

This property-specification approach can be not only used in our record-replay

methodology, but also integrated with other verification analysis, such as model

checking.

(2) We design a Global Property Decomposition (GPD) algorithm to decompose

global properties automatically into local ones, which can be detected on single

sensor nodes. This decomposition can (a) reduce the communication traffic

for state information exchanges caused by centralized checking and (b) reduce

the collected trace used for replay. This GPD algorithm is integrated with our

developed SensorC compiler.

(3) We present a dependence-based source level tracing and replay method for error

diagnosis. This scheme lends an effective solution for the memory size problem.

We develop a source-level tracing and replaying tool which is independent of

the hardware platforms and the cross compiler (except for a system library call

to make certain memory accesses atomic). The source-level tracing, compared

with the assembly-level tracing, offers a high portability of the tool. It also

enables the user to take advantage of the many existing source-level debuggers,

such as GNU’s gdb, when replaying on a desktop machine.

6

(4) To improve the efficiency of replay, especially when an error propagates along

with messages in a large WSN, we design a new program analysis which identifies

program sub-traces that can be skipped for replay without losing the accuracy

of the diagnosis.

(5) We build WSNs by using TelosB motes and Zolertia Z1 motes separately to test

our methodology. The results of our experiments demonstrate that our work has

made it possible to instrument several test programs on wireless sensor networks

under the stringent program memory constraint, reduce the data transferring

required for error detection, and find and diagnose realistic errors.

The rest of the dissertation is organized as follows. Chapter 2 defines the problem

model addressed by this dissertation and gives an overview of our work. Chapter

3 first presents the SensorC specification language and the corresponding SensorC

compiler, and then discusses the Global Property Decomposition algorithm. Chapter

4 discusses the record and replay methodology for a single node. Chapter 5 proposes

the ways to extend this methodology to the entire system. Chapter 6 summarizes

related works on wireless sensor network debugging, deterministic replay, and system

behavior synthesis. Finally, Chapter 7 offers the main conclusions and proposes future

work.

7

2 OVERVIEW

In this chapter, we define the error detection and diagnosis problem discussed in this

dissertation, and then we propose the methodology and system framework at a high

level.

2.1 Error and Error Source

First, we discuss the detected error and the error source targeted in this disserta-

tion.

Error The types of errors targeted by our scheme go beyond the system crash. In

order to verify if a program is implemented correctly at run-time, the application

programmer may specify a set of correctness properties, e.g., sensor data must

be reported from each mote to the base station within a certain time limit.

Such properties are specified using predicates defined over a list of program

variables under a certain system of logic, e.g., temporal logic [24]. The program

is required to satisfy this set of properties within a specified program scope,

e.g., the entire program (as long as all the variables in the predicate are global),

individual functions, individual program segments, or any point between two

specific program statements. In this dissertation, an error is detected if any

violation of certain properties can be detected at run time.

Error Source Assuming that the property correctness predicates themselves are

composed correctly, when a predicate becomes violated, we know that at least

one of its variables has obtained an incorrect value through some point in the

8

program where the variable was updated. That value may be the result of

earlier operations that used incorrect operands. Eventually, the violation must

be traced back to its source through a chain of data/control dependence and/or

message send/receive relationship. Although the properties violation, or errors,

caused by hardware, such as messages delay/loss in the network, can be detected

at run-time by our error detection method, locating the origin of the violation

requires debugging not only the program implemented by programmers but

also the hardware equipments. Our error diagnosis work focuses on software

bugs. Therefore, for the purpose of this work, we consider the possibility of

error sources: one or more program statements are written incorrectly. This

possibility can cause certain unexpected events to occur, e.g., messages are sent

with incorrect contents. Therefore, the error source can be located in the same

sensor node where the error is detected, or it can also be located in a different

node due to error propagation along with message transmission.

2.2 Global Properties vs. Local Properties

The properties considered in this dissertation are those that can be formally spec-

ified by propositional logic [25]. Time variables are allowed in the predicates as long

as arithmetic expressions containing such variables are bounded by constants. For

example, one may require the network routing protocol to establish a path from

any arbitrary sensor mote to the base station within t time units. As another ex-

ample, the clause “event E1 must happen before event E2” is also allowed as long

as both events can be timed during the operation. One can then simply state that

“E1.time < E2.time.” However, clauses such as “event E eventually happens” are by

nature not suitable for error detection because the fact that E has not happened yet

never indicates an error. Hence, such clauses are not considered in this dissertation.

9

Based on the nodes involved, we categorize properties targeted by this dissertation

into two classes, global properties and local properties, which are defined as follows:

Definition 1 Let W be a wireless sensor network that contains n nodes (also known

as motes). The programs executing on different nodes do not need to be the same. If

a property P concerns only the state of the program execution on node i, 1≤i≤n, we

call P a local property on node i. Any property that concerns the program states on

more than one node is called a global property.

In the distributed approach stated in the introduction, the global property is first

rewritten as a conjunction, such that each conjunctive clause P i is assigned to a node

i. If P i contains a data item, di, that is not local to node i, then message passing

must be inserted in the programs such that the up-to-date copy of di is made available

on node i, perhaps after a certain delay. We say that di becomes local. After all the

remote data items become local, P i becomes a local property that can be verified on

node i.

Formally, let PG represent a global property and Li (1≤i≤n) a local property of

node i. If we have

PG = L1 ∧ L2 ∧ . . . ∧ Ln, (2.1)

and then the violation of PG can be represented by

¬PG = ¬L1 ∨ ¬L2 ∨ . . . ∨ ¬Ln. (2.2)

With Equation 2.2, we can insert operations to evaluate each predicate Li on node i.

If the truth value is false, node i reports the error to the base station. Assuming there

to be no constraints on the placement of message passing, there will be, in general,

more than one way to decompose any given global property. The minimization of

message passing is used in this dissertation as the metric of optimality.

10

2.3 Deterministic Tracing and Replay

If the entire sequence of executed instructions and operands are recorded, one

could follow the dynamic use-def chain (in a node) or send-receive chain (between

nodes)backward to inspect the program statements along the way until the origin of

the error is found. The cost of such a complete recording is prohibitive in both time

and space. Under the record-and-replay scheme, however, we only need to record

all the nondeterministic events on each mote, which mainly includes all external

messages, task scheduling decisions, hardware register status, and internal interrupts

in a wireless sensor network.

2.3.1 Source-Level Instrumentation

To record run-time logs, we can use either of the two types of instrumentation

compared in Table 2.1 [26]. In our work, we have adopted source-level instrumentation

tracing and replaying methodology due to the following reasons.

(1) The source-level instrumentation offers a high portability across different de-

vices. There are a variety of embedded system platforms. However, C is the

most common language for embedded systems [27]. In addition, it is easier for

programmers to modify the software rather than the hardware.

(2) The objective of our work is not only to detect errors but also to help pro-

grammers locate error sources in the original program. Therefore, the logs and

replayed traces must be readable and tractable. The source-level instrumenta-

tion allows execution behaviors to be linked back to source code. It is obvious

that reading source code is easier than reading binary code, and the original

data/control dependence can be observed.

11

(3) By applying source level instrumentation, our approach enables the user to take

advantage of many existing source-level debuggers, such as GNU’s gdb, when

replaying on a desktop machine.

Table 2.1 Source-level instrumentation vs. binary instrumentation

Source-Level Instrumenta-
tion

Binary Instrumentaion

Portability Good across devices Good across languages

Source Correlation Possible Generally impossible

Generated Replay
Code

Source level, easily under-
stood by programmers

Binary level

After an error is found, we still leave the instrumented code in the program.

This is because the program may still have other hidden errors. Moreover, removing

instrumentation may cause certain timing-dependent errors to resurface, and we lose

the means to record the trace.

2.3.2 Main Assumptions

Since the program on each sensor node may run indefinitely, the length of the

trace is unbounded. With limited storage for the trace, generally one retrieves only

a tail of the full trace. Replay is therefore often partial in practice. In order to

enable deterministic replay corresponding to the retrieved trace tail, we require the

considered program to satisfy the following assumptions:

Assumption 1: The infinite running of the program is controlled by one or more

infinite loops which are recognized at compile time.

Assumption 2: The source code of each application is available. If some functions

such as system call is unreachable, their side effects are predicable.

12

Under Assumption 1, we insert in each infinite loop an anchor checkpoint(or an-

chor point) at which we record the values of all variables needed to enable replaying

the program starting from this program point. The function containing an anchor

point is called boundary function. The local variables of the callers of a boundary

function are not recorded at the anchor point.

Assumption 2 guarantees that the source-level instrumentation is applicable.

2.4 System Framework

Figure 2.1 is the framework of the whole system, which contains three parts:

Part I: Given a global property, the system automatically decomposes it into several

local properties which could be inserted into different nodes. The design and

implementation details of this part are discussed in Chapter 3.

Part II: Using the error checking invariants as the slicing criteria, a compiler is used

to do backward slicing and dependence analysis to decide and instrument code

for run-time logging. If the error checking invariants are different on each node,

the instrumented program running on each node might be different. For this

part, Chapter 4 focuses on a single node and Chapter 5 extends the work to the

entire system.

Part III: When an error is reported, the trace of each node is retrieved, and the

replayed program, which will execute on a desktop machine and reproduce the

reported error, is generated. The work of this part is presented in both Chapter

4 and 5.

We use TinyOS [28], which is written in nesC [29], as our testing environment for

the developed tool discussed in the following chapters. TinyOS is one of the most

popular operating systems for sensor network applications. It has been used by more

13

than 100 research groups worldwide. TinyOS supports an event-driven concurrency

model, the core of which consists of tasks and interrupt handlers [30]. Tasks are

run to completion, and they are not preempted by each other. However, tasks are

not atomic to interrupt handlers which can be triggered at any time. Typically, a

TinyOS application consists of a group of components which are wired together by

a top-level configuration. The nesC compiler first converts the application into a C

program, which is then compiled by the cross compiler into machine code executable

on the specific hardware. Although we use TinyOS application as our test cases, our

work focuses on the intermediate C program generated by nesC compiler. Therefore,

our methodology and implementation can be easily extended to other networked

embedded systems whose applications are written by C or can be transferred to C

language as nesC does.

14

Global

Property

Property

Decomposition

Tool

Local

Properties

Source Code
assembly

code

Networked Embedded System

Invariants handling tool

+

Dependence analysis tool

Source code

with trace

generation code

inserted
Compiler

Existing knowledge for

possible error source scope

Trace

Replay Tool
Collected

Traces

Error source

Developer’s site

Developer’s site

Collected

Traces

from

nodes

Replayed

Execution (in c)

Debugging

(manually,

or tools such

as gdb)

PartI

PartII

PartIII

Mainparts in this

project

Source code

with trace

generation code

inserted

Source code

with trace

generation code

inserted

assembly

codeassembly

code

...

Figure 2.1. Framework of the proposed system

15

3 GLOBAL PROPERTY VIOLATION DETECTION

In this chapter, we discuss how to define a property using propositional logic and

how to convert a defined global property into local invariants inserted into programs

installed on motes for runtime checking. In Section 3.1, we design a domain specific

language, called SensorC, to specify global properties for WSN applications. Section

3.2 discusses the design of a source-to-source compiler, simply called the SensorC

compiler to decompose global properties into conjunctions of local properties. The

framework is illustrated in Figure 3.1.

SensorC
Compiler

Global Properties
(SensorC_G

Program)

Local Properties on
Node 1

(SensorC_L
programs)

Resource Pool
(Optional)

Local Properties on
Node n

(SensorC_L
programs)

Figure 3.1. Framework of property decomposition tool

3.1 SensorC: How to Specify Properties

SensorC is a domain specific language which can be used to specify WSN global

properties and local properties. It is designed for programmers who want to specify

properties for detecting their own WSN programs. The global property specification

16

written in SensorC is called a SensorC G program, which refers to the variables in the

given application program to specify the desired property. Illustrated in Figure 3.1,

a sensorC G program will be translated by the SensorC compiler into a set of Sen-

sorC L programs after decomposing the global properties into the conjunctions of

local properties. Each SensorC L program, which is responsible for checking the local

properties, is integrated into the application program for recording the trace needed

for replay in case an error is detected. The integrated program will be deployed and

run on a certain node (A set of nodes may run copies of the same program). Program-

mers need to write their own SensorC G program and the corresponding SensorC L

programs will be generated automatically by SensorC compiler.

As an example, consider the Loop Free property required for the AODV routing

protocol [31]. This property states that the routing tables of all nodes must not form

a routing loop. This property can be specified by the SensorC G program shown in

Figure 3.2(a), which is then translated by the SensorC compiler into SensorC L pro-

grams. Figure 3.2(b) shows the SensorC L program that contains the local property

to be checked at run time on node 7.

In the following, we present the syntax forms of SensorC G and SensorC L pro-

grams and describe how to define global properties checking using such syntax forms.

3.1.1 SensorC G

A SensorC G program begins with a pragma #GLOBAL and is followed by four

program segments: two essential segments #DEFINITION and #PROPERTY, and

two optional segments #NETWORK and #ROUTING. The main production rules

are listed in Figure 3.3, where the bold words represent terminal symbols. This

section only discusses the essential segments and the optional ones will be discussed

in Section 3.3.

17

#GLOBAL

#DEFINITION

GLOBAL var rt = AODV_M__route_table_;

TEMP P1,P2;

NODE n = [ALL];

NODE d = [0];

NODE m = [ALL];

#NETWORK

#ROUTING

#PROPERTY

P1 = (rt[n].dest == d) AND (rt[n].next == m) ;

P2 = (rt[n].seq < rt[m].seq) OR

(rt[n].seq == rt[m].seq AND

rt[n].hop>rt[m].hop);

IF (NOT (P1->P2)) ERROR ;

#LOCAL 7

#DEFINITION

GLOBAL var rt = AODV_M__route_table_;

NODE m = [ALL];

#PROPERTY

IF ((rt.dest==0) AND (rt.next==m))

IF ((rt.seq >= rt[m].seq) AND

(rt.seq <> rt[m].seq OR

rt<=rt[m].hop))

ERROR;

(a) (b)

Figure 3.2. Examples of SensorC programs. (a) SensorC G; (b) SensorC L

18

segment1→ #DEFINITION

declList

declList → ε
� ����List decl

decl → GLOBAL globa������ | TEMP declname; | NODE declname = [indices];

globaldecl →alias_event | alias_var

alias_even → event declname = app_expression

alias_var → var declname = app_var

indices → ALL | nodeIDlist

segment2 → #NETWORK

file

file → ε | file_name;

segment3 → #ROUTING

protocol

protocol → ε | protocol_name;

segment4 → #PROPERTY

propertyDef

propertyDef → ε | propertyDef assignment | propertyDef prochecking

assignment → declname = propositional_formula ;

prochecking → IF (NOT property) ERROR ;

property → propositional_formula

propositional_atom → boolean_expression | wsn_expression | #(event)

wsn_expression → declname SEND data TO declname cond

| declname RECEIVE data FROM declname cond

| declname BROADCAST data cond

cond → ε| condition| time

time → LESS_THAN x | EVERY x | NEVER

(a)

(b)

(c)

(d)

Figure 3.3. Basic grammar for writing SensorC G programs

19

#DEFINITION

As illustrated in Figure 3.3(a), the #DEFINITION segment contains a list of

declarations. There are three types of declarations (symbol decl): GLOBAL,

TEMP and NODE, which are explained as follows:

GLOBAL This group of declaration establishes correspondence between the

variables used to specify properties (in the later #PROPERTY segment)

and the ones appearing in the WSN program. There are two kinds of

GLOBAL declarations. The first kind, alias event, corresponds to events

recognized and handled by the WSN application, and the second kind,

alias var, corresponds to program variables. In the third line of Fig-

ure 3.2(a), rt corresponds to application variable AODV M route table ,

which points to the routing table used in the AODV protocol. As shown in

Figure 3.2(b), the declaration of rt is copied to the generated local property

specification.

TEMP If a variable is declared as TEMP, then it is a temporary variable used

to build a property and does not correspond to any WSN program variable.

After global property decomposition, TEMP variables will disappear from

the SensorC L programs.

NODE A NODE variable is used to identify a node in the WSN. In the next

program segment, NODE variables will be mapped to real node IDs refer-

enced in the WSN application. In the grammar, the non-terminal symbol

nodeIDlist can represent (i) a single integer; (ii) a list of integers which are

separated by commas; or (iii) a list of consecutive integers in the form of

“first integer ... last integer”. In Figure 3.2, variable d can only represent

the node whose id index is 0, while n and m represent all nodes in this

WSN.

20

#PROPERTY

This segment specifies properties in terms of variables declared in the #DEFI-

NITION segment. Each property is represented as a propositional formula [25].

The propositional atom used in the formulas can be any Boolean expression or

wsn expression as defined in Figure 3.3(d). The production rules define three

main types of constructs: (i) productions that specify assignments of proposi-

tional formulas to TEMP variables; (ii) productions that define properties in

the form of propositional formulas; (iii) the “prochecking” production which

explicitly claims that, if a certain property is violated, then the ERROR condi-

tion must be raised. The programmer can make as many claims as desired. At

run time, as soon as any property is violated, an error is reported.

Unlike in the #DEFINITION segment, all GLOBAL variables used in the

#PROPERTY segment are followed by a pair of square brackets (i.e. “[]”)

which encloses a NODE variable (e.g. [n]) or an integer (e.g. [0]). This indi-

cates the node from which the data will be collected to check the property.

Consider the “Loop Free” example in Figure 3.2 again. Every reference to

GLOBAL variable rt is followed by a NODE variable. The property defined

here means that, if node m is the next hop of node n towards the destination

d (P1), the corresponding sequence number in n′s routing table should be less

than the one in m′s routing table. If, instead, they are the same, then the

number of hops from n to d should be greater than the number of hops from m

to d (P2) [32].

3.1.2 SensorC L

Different from SensorC G programs which are written by programmers, a Sen-

sorC L program is generated by the SensorC compiler. It shares most of the gram-

21

mars with SensorC G and its main differences from the SensorC G counterpart are

listed as follows.

(1) A SensorC L program starts with the “#LOCAL” pragma which is followed by

a node ID to indicate on which node this local property will be checked at run

time.

(2) Compared with SensorC G programs, a SensorC L program contains only two

essential segments: #DEFINITION and #PROPERTY, whose grammars are

similar to that for a SensorC G program. In the #PROPERTY segment, if a

GLOBAL variable represents the data from this local node, the index does not

have to be added. For example, in Figure 3.2, the “rt.dest” means the value of

rt.dest collected from node 7.

(3) A SensorC L program allows another form of property checking (represented by

the production for nonterminal prochecking2) in the #PROPERTY segment.

The production rule is shown in Figure 3.4. The reason for introducing this

type of production will be explained in the next sub-section.

prochecking2 � IF ��	
��	�� ����
lation)

IF (property_2_violation)

ERROR ;

Figure 3.4. A production rule for property checking in SensorC L

3.2 How to decompose a global property

As discussed in Section 2.2, if a global property can be rewritten as Equation 2.1,

the violation can be represented by Equation 2.2. We can then follow Equation 2.2

to insert local invariants into different nodes for error detection. We now present a

22

property decomposition algorithm to find a set of Li which satisfy Equation 2.1. In

order to describe the decomposition algorithm, some definitions are made as follows.

Definition 2 Consider a property P specified in the #PROPERTY segment. If it

contains any NODE variables, it is called a template property. By replacing each

NODE variable with any integer belonging to its assigned indices, the generated new

property is called an instantiated property of P .

For example, suppose a WSN has 10 nodes. The property defined in Figure 3.2 has

10*10=100 instantiated properties (without explicitly declaration, different NODE

variables used in one property may represent the same node) , an example of which

being the following:

((rt[1].dest == 0) ∧ (rt[1].next == 2)) →

(rt[1].seq < rt[2].seq ∨ (rt[1].seq == rt[2].seql ∧ rt[1].hop > rt[2].hop))

Obviously, if any instantiated property is violated at run time, an error must be

reported.

Definition 3 For a property assigned to node i, let V (Li) be the set of GLOBAL

variables in Li. For each variable (v ∈ V (Li)), if the index followed by v is equal to

i, v is a local variable of node i. If the index followed by v is equal to j(j ≥ 0, j 6= i),

then v is a remote variable of node i. If all variables used in Li are local variables,

then Li is a local property.

3.2.1 A Global Property Decomposition (GPD) Algorithm

We follow Algorithm 1 to decompose the global properties. First of all, for each

global property P , we substitute each TEMP variable with its defined expression(step

23

1), which can be achieved by backward substitution. The substitution does not change

the truth value of P .

Algorithm 1 (GPD algorithm) Decompose a global property P into local properties

1: Replace TEMP variables used in P by their assigned values recursively, until there
are no TEMP variables any more.

2: If P is a template property, enumerate all the possibilities of each NODE variables
in P to generate S, a set which contains all t instantiated properties of P :

S = {P 1, P 2, . . . , P t}

3: For each P i , let P
′
i be the formula converted from P i by replacing wsn expression

(if there is any included in P i) based on the rules listed in Table 3.1 and Table 3.2.
4: for i = 1 → t do
5: Convert P ′

i to its equivalent Conjunctive Normal Form:

P ′
i = P ′

i,1 ∧ P ′
i,2 ∧ . . . ∧ P ′

i,ki

6: For each P ′
i,j, find the node loc that, if property P i,j is checked on node loc,

P ′
i,j contains the smallest number of remote variables.

7: end for
8: Let Li = ∧(P ′

i,j|P
′
i,j will be checked on node mi, 1 ≤ i ≤ t, 1 ≤ j ≤ ki). If there

is no any such P ′
i,j, Li = NULL. ⋄

In the second step, all instantiated properties of P are generated. The reason for

generating instantiated properties is to accurately calculate the number of remote

variables in the next steps and to reduce the data transmission during run time

error detection. In Algorithm 2 presented later, we will regroup suitable instantiated

properties and reintroduce NODE variables to make the local properties compact,

which will reduce the program size and the run time checking cost. According to

Definition 3, we get Equation 3.1.

P = P 1 ∧ P 2 ∧ . . . ∧ P t (3.1)

24

Table 3.1 Property checking description

Property Checking Function Property Checking Description

Send rule(n, m, data.type, cond) On node n, check: node n must suc-
cessfully send message[src:n, dest:m,
type:data.type] under the condition
cond

Recv rule(m , n, data.type, cond) On node n, check: node n must
successfully receive message [src:m,
dest:n,type:data.type] under the condi-
tion cond

Routing rule(src, dest) Based on WSN domain knowledge, for
any node on the path from src to dest,
once it receives a message with desti-
nation dest, it must forward the msg
to its next hop.

25

Table 3.2 Conversion rules

Property Checking Function

wsn expression Without #NETWORK and
#ROUTING

With #NETWORK and
#ROUTING

n SEND data

TO m cond

Send rule(n, m, data.type,
cond), Recv rule(m , n,
data.type, cond)

Send rule(n, m, data.type,
cond), Recv rule(m, n,
data.type, cond), Rout-
ing rule(n, m)

n RECEIVE
data FROM m

cond

Recv rule(n, m, data.type,
cond), Send rule(m , n,
data.type, cond)

Recv rule(n, m, data.type,
cond), Send rule(m , n,
data.type, cond), Rout-
ing rule(m, n)

n BROADCAST
data cond

Send rule(n, n′s neighbour,
data.type, cond)

Send rule(n, n’s neighbour,
data.type, cond),
Recv rule(n′s neighbour, n,
data.type, cond)

In WSN applications, the wsn expression defined by SensorC grammar is used

as a propositional atom and can be checked locally without requiring any extra in-

formation. However, to further reduce the replay workload, step 3 applies the sub-

stitution rules in Table 3.2, which introduce redundant error detection, to replace

each wsn expression in a property by pre-defined property-checking functions whose

semantics are defined in Table 3.1. To be consistent with the result after step 2, all

variables used in Figure 3.2 belong to the same node. Each replaced wsn expression

involves only data from a single node and it can be checked locally. To explain the rea-

son of introducing redundant error checking, we consider a property “After the first

10 seconds, base-station must receive messages from other nodes every 5 seconds”

which should be satisfied. Assume node 1 fails to send any message to base-station.

If the property is only detected on the receiver node, once an error is detected, we

must first replay the receiver node. Since no error is found in the program executing

on the receiver, we need to replay all the nodes on the possible paths from the sender

26

to the receiver. In contrast, with redundant error detection inserted in the sender

node (step 3 of Algorithm 1), the error can be detected before it is propagated from

where it originates. Hence, only the sender needs to be replayed. The redundant

error detection is performed locally and no extra message transmission is required.

All logical formulae can be converted into an equivalent formula in conjunctive

normal form by utilizing logic equivalence laws [25]. Step 4-7 converts each P ′
i(1 ≤

i ≤ t) into its equivalent conjunctive normal form, and we can get Equation 3.2.

P =

P ′
1,1 ∧ P ′

1,2 ∧ . . . ∧ P ′
1,k1∧

P ′
2,1 ∧ P ′

2,2 ∧ . . . ∧ P ′
2,k2∧

. . .

P ′
t,1 ∧ P ′

t,2 ∧ . . . ∧ P ′
t,kt

(3.2)

Step 6 is responsible for finding a node to check each sub property P ′
i,j. If we

decide to check P ′
i,j on node i, we have the local property Li = P ′

i,j. We obtain

L1, L2 ,. . ., Ln by changing the node on which P ′
i,j is checked. The equation P ′

i,j

= L1 = L2 = . . .=Ln is established in terms of the checking result (or truth table).

However, as stated by Definition 3, the number of remote variables may vary for each

Li(1 ≤ i ≤ n). Every time when a local property is checked, the larger number of

remote variables will cause more data transmission. Therefore, we try to find the way

which can minimize the message passing.

To formalize the optimization problem, we suppose that there are n nodes in a

WSN and m global properties to check. Further we suppose that, after converting

every global property into CNF we have t clauses in total. Each clause must be

assigned to one and only node for checking. Let R be a matrix with t rows and n

columns. Each element in the matrix is a set R[i][j] (1 ≤ i ≤ t, 1 ≤ j ≤ n) that

contains distinct remote variables in clause C i if it is assigned to node j to check.

27

Otherwise, R[i][j] is an empty set. Given an assignment decision, we define the

message passing cost for checking all clauses assigned to node j as the cardinality of

the union of R[i][j], 1 ≤ i ≤ t. Adding such costs for all j, 1 ≤ j ≤ n, we have the total

cost. Our minimization problem is to find an assignment decision such that the total

cost is minimized, i.e.,
∑n

j=1 |
⋃t

i=1R[i][j]| is minimized. We name the minimization

problem stated above as clause-assign problem. Restating this optimization problem

as a decision problem, we wish to determine whether a matrix R has an assignment

of a given cost k. The formal definition is

CLAUSE-ASSIGN={< R, k >: Matrix R has an assignment, which allows

MIN =
∑n

j=1 |
⋃t

i=1R[i][j]| = k. }

We can proof the CLAUSE-ASSIGN is a NP-hard problem.

Theorem 3.2.1 CLAUSE-ASSIGN is NP-hard.

Proof It is known that the VERTEX-COVER problem is NP-Complete [33]. We

will show that VERTEX-COVER ≤ p CLAUSE-ASSIGN.

The reduction algorithm takes as input an instance < G, k > of the VERTEX-

COVER problem. Let G =< V,E >. We generate a |E| ∗ |V | matrix R as follow:

1. If edge ei is covered by a vertex vj in G, R[i][j] = {j}.

2. If edge ei is not covered by a vertex vj in G, R[i][j] = φ.

The time complexity of this matrix generation is O(|E||V |). Now we prove: the graph

G has a vertex cover of size k if and only if the matrix R has an assignment, which

let MIN be k.

⇒ : Suppose that G has a vertex cover V ′ with |V ′| = k. Then we select k

columns each of which is corresponding to a vertex in V ′. Since V ′ covers all edges, in

the selected columns, for each row, there is at least one element that is not empty. If

there are more than one non-empty in a row, we just keep the one with the smallest

28

j (i.e. the column index). Since for each column, all the elements are the same, the

MIN of matrix R equals to the number of columns, i.e. k.

⇐ : Suppose matrix R has an assignment which makes MIN = k. For each

column j, since R[i][j](1 ≤ i ≤ |E|) is either {j} or φ, |
⋃|V |

i=1R[i][j]| can be only 1 or

0. Let V be the set of columns, where V = {j||
⋃|V |

i=1R[i][j]| = 1}. According to how

MIN is calculated, we get |V | = k. In addition, R has an assignment which means

there is one and only one non-empty element in each row of R. Therefore, the column

index of each non-empty element must belong to V . As a result, in graph G, all edges

are covered by the k vertices.

Therefore, we take a greedy approach that assigns P ′
i,j to Li (such that P ′

i,j = Li

), where Li contains the fewest remote variables.

No P ′
i,j is modified in step 6. The only operation is that it is assigned to one and

only one node. Consequently, we can deduce that, after step 6 is executed,

L1 ∧ L2 ∧ . . . ∧ Ln =

P ′
1,1 ∧ P ′

1,2 ∧ . . . ∧ P ′
1,k1∧

P ′
2,1 ∧ P ′

2,2 ∧ . . . ∧ P ′
2,k2∧

. . .

P ′
t,1 ∧ P ′

t,2 ∧ . . . ∧ P ′
t,kt

(3.3)

From Equation 3.2 and Equation 3.3, we get:

P = L1 ∧ L2 ∧ . . . ∧ Ln (3.4)

From the above discussion, we conclude that, the GPD algorithm correctly de-

composes a global property into a conjunction of local properties.

29

3.2.2 Local Property Simplification

After decomposing global properties, the SensorC compiler generates SensorC L

program for each Li if Li is not assigned as “true” (i.e. no runtime property checking

is necessary on node i). There are two main steps.

(1) The generation of instantiated properties in step 2 of the GPD algorithm has

accurately calculated the number of remote variables and reduced data trans-

mission. Nonetheless, this step may increase the size of the decomposed local

properties. As a consequence, it may increase the size of the error detection

code. The limited program memory on individual nodes motivates improve-

ment of the basic algorithm. Hence, we apply Algorithm 2 to reorganize the

local property.

Algorithm 2 Combine formulas in a local property

Require: Let L = P 1 ∧ P 2 ∧ . . . ∧ P S is a local property generated by Algorithm1.
1: Let P ’

i be the formula obtained by removing all indices associated with GLOBAL
variables from P i .

2: Separate P i into groups such that, if P i and P j in the same group, we have
P ’

i = P ’
j = Gk, where k is group id.

3: In each group k, define NODE variables and assign them possible indices, and
match the GLOBAL variables to the corresponding NODE variables in Gk.

4: Obtain L = G1 ∧G2 ∧ . . . ∧Gq, where q is the number of groups. ⋄

After Algorithm2, all formulas which differ only with the node IDs are repre-

sented by only one formula. Figure 3.2 uses NODE variables m to stand for

node 1 . . . 9.

(2) In Figure 3.4, property 1 violation is a propositional formula defined over only

local variables, while propery 2 violation contains also remote variables. This

implies that, only when property 1 violation is satisfied, the remote value needs

to be obtained in order to check property 2 violation. Therefore, during the

30

detection phase, the number of messages containing the remote value can be

further reduced. Taking Figure 3.2 as an example, node 7 does not need to

obtain data from node m to check the expression in the second IF until after

it sends a message to node 0 and finds the next hop to be m.

Local properties generated thus far cannot be directly inserted into the application

code. Instead, another tool should be used to analyze the SensorC L programs and

instrument the error checking code into the application. The basic idea is described

as follows.

First, for properties which should be satisfied all the time when the program is

executing, instrument property checking code (or assertions) at every place where

the variables used in the predicates are loaded. Otherwise, based on the scope, the

property checking code is inserted. This step is rather straightforward and will be

skipped in this dissertation.

Second, additional SEND/RECEIVE operations are instrumented for getting re-

mote values. If node i needs a remote value x from node j, two steps are executed:

(1)in the program running on node i, before every assertion where x is used, a call

to the routine that is responsible for requesting x and receiving x is added; (2)in

the program running on node j, a call to the sending routine that is responsible for

sending value x after receiving the request is added. Note that a remote variable

may appear in more than one assertion. If a recently obtained value of the variable

remains valid for multiple assertions, then no additional SEND/RECEIVE routines

need to be inserted before verifying such assertions. This, however, often depends on

the nature of the specific application and is therefore an optimization opportunity

for the programmer to exploit. Furthermore, opportunities may exist to aggregate

several remote data pieces (used in the same or different assertions) into a single

message. In order to let the programmer take advantage of these opportunities, we

31

allow the programmer to explicitly mark the program points for SEND/RECEIVE

operations and the data items to be combined.

3.3 Improving Decomposition by Using #NETWORK and #ROUTING Segments

Besides the two essential segments #DEFINITION and #PROPERTY in a Sen-

sorC G program, programmers are allowed to specify #NETWORK and #ROUTING

segments optionally if the following two assumptions are satisfied.

Assumption 3-1 TheWSN deployment information, including the number of nodes,

the noise floor for each node, and the gain for each link, can be pre-acquired.

Assumption 3-2 The routing protocol is known and when a route is established,

the routing table for each node is stationary.

#NETWORK The #NETWORK segment includes the name of a file that contains

the network topology information. The topology is described in the same way

as in TOSSIM [18], which is a widely used simulator for TinyOS-based WSNs.

The topology file contains the noise floor for each node and the gain for each

link. The network is abstracted as a directed graph, in which each vertex is a

node and each edge is a link. Each node has a private piece of state representing

what it hears on the radio channel. In our work, we assume that there are no

transmission errors at the radio level. When parsing this segment, SensorC

compiler reads the file content and builds a network graph described above.

#ROUTING The Resource Pool shown in the diagram in Figure 3.1 is a library

that contains WSN routing algorithms implemented in C language. After gener-

ating the WSN model according to the #NETWORK segment discussed above,

we automatically generate a routing table for each node according to the WSN

32

model. Alternatively, the global property specification may include a #ROUT-

ING segment that names the routing protocol used in the application. If the

SensorC compiler recognizes the protocol name, it looks in the Resource Pool

for a matching function. By invoking that function at compile time, routing

tables are generated.

With the assumptions and domain specified information provided in #NET-

WORK and #ROUTING segments, the conversion rules discussed in Section 3.2

can be extended such that a more refined decomposition can be attained.

Refinement of global property decomposition based on these two additional seg-

ments concerns wsn expressions only. In step 3 of Algorithm 1, a wsn expression is

converted using the third column in Table 3.2. In contrast to the second column, this

conversion checks each relay nodes behavior. Take ERROR#3 in Table 3.3 for exam-

ple. Without #NETWORK and #ROUTING, the error is detected on the receiver

node, and we replay the program execution on 7 nodes before we locate the origin of

the detected error. However, with the Routing rule being checked on the relay nodes,

the error can be detected on a relay node and we can locate the origin of the error

by replaying this relay node alone. On the one hand, since Routing rule needs to be

checked on relay nodes, Assumption 2 is required. If routing table is changed during

the run time, a false positive (i.e., a violation is reported but there is no error) may

be triggered, because the new local properties added to the relay node are implied

by the global property (or more specifically, by the wsn expression) only if the relay

node is on the true routing path. On the other hand, any changes to the routing at

run time will never introduce a false negative, because the routing rules checked on

a wrong relay node simply widens the error definition.

33

3.4 Implementation and Experiments

We have implemented the proposed tool targeting WSN applications based on

TinyOS 2.1.2. The tool is built upon the GNU Compiler Collection [34]. A SensorC

front end is implemented and integrated in GCC-4.7. Two new passes are added

to the GCC middle-end for decomposing global properties and for generating local

properties, respectively.

We pick two WSN applications, whose objectives are familiar to us, as our test

cases in the preliminary experiments.

TC1 (AODV) – This is a published code which can be download from the website

[35]. It implements the basic functions, such as the route discovery, of Ad-hoc

Ondemand Distance Vector (AODV) routing protocol for TinyOS-2.x.

TC2 (Multihoposcilloscope) This program is included in TinyOS-2.1.2 directory

to test CTP(Collection Tree Protocol) [36].

Table 3.3 lists the global properties checked in our experiments and the errors

found using our approach. Both programs were tested under TinyOS 2.1.2 installed

on wireless sensor networks with different size. The WSNs were deployed in a 4-story

building. These WSNs consisted of up 150 Z1 motes, each having 8KB RAM, 92KB

ROM, and 2 MB external flash memory. We found three errors in TC1 that had

not been reported prior to this experiment, but we found no violation of the checked

properties in TC2. We note that TC2 has been published for over 5 years and has

been subjected to several debugging studies, e.g., the T-Check study [37]. Therefore,

it is not too surprising if previously existing errors have been fixed already. In this

section, we only discuss the experiment results related to error detection, and the

details of the source of each detected error will be discussed in Chapter 5.

34

Table 3.3 Global properties under detection

Property # of
Nodes

Description Detected
Error

1. TC1
Link Cre-
ation

30/150 During the first
20 seconds, Des-
tination node 0
must receive an
RREQ message
from source
node 1 and node
1 must receive a
RREP message
from node 0

ERROR#1
ERROR#3

2. TC1-
Message
Transmis-
sion

30 After the first
20 seconds, node
0 must receive
message from
node 1 period-
ically with the
interval of less
than 5 seconds

ERROR#2

3. TC1-
Loop Free

30/150 The routing ta-
bles of all nodes
do not form a
routing loop

N/A

4. TC2-
Link Cre-
ation

150 During the first
10 seconds,
base-station
must receive
at least one
message from
other nodes.

N/A

5. TC2-
Message
Transmis-
sion

150 After the first
10 seconds,
base-station
must receive
messages from
other nodes
every 5 seconds

N/A

35

To check the TC1-Link Creation property listed in Table 3.3, we first deployed

30 Z1 motes with fixed topology. The SensorC G program and the decomposed

SensorC L programs are shown in Figure 3.5. The SensorC L programs on mote 3

to mote 29 are almost identical to that on mote 2, with the only difference being

in the parameters in Routing rule. Hence, we do not list those SensorC L programs.

Next, we continued the experiment with a wireless sensor network consisting of 150 Z1

motes deployed without specifying the network topology. In this case, #NETWORK

and #ROUTING segments can not be defined and only mote 0 and mote 1 have

SensorC L programs generated, as we explained in Sections 3.2 and 3.3.

#GLOBAL

#DEFINITION

GLOBAL var ���� �
p_rre

�����
_;

GLOBAL var ���� �
p_rrep_msg_;

TEMP P1,P2;

NODE n = [1];

NODE m = [0];

#NETWORK��������� �!�"
#ROUTING�#$%&"
#PROPERTY'(

 = m RECEIVE ����
 FROM n LESS_THAN)*+') = m SEND rrep TO n LESS_THAN)*+

IF (NOT ,'(--
ERROR ;

IF (NOT ,')--
ERROR;

#LOCAL 0

#DEFINITION

GLOBAL var ����
 = p_rre

�����
_;

GLOBAL var rrep = p_rrep_msg_;

#PROPERTY

IF (
.$/ ,0�12��3��,*4(4 ���� ����4

LESS_THAN 20)))

ERROR;

IF (NOT (Send_rule(0,1, rrep.type, LESS_THAN 20)))

ERROR;

#LOCAL 1

#DEFINITION

GLOBAL var rreq = p_rreq_msg_;

GLOBAL var rrep = p_rrep_msg_;

#PROPERTY

IF (NOT (Send_rule(1,0, rreq.type, LESS_THAN 20)))

ERROR;

IF (NOT (Recv_rule(1, 0, rrep.type, LESS_THAN 20)))

ERROR;

#LOCAL 2

#DEFINITION

#PROPERTY

IF (NOT (Routing_rule(1,0))) ERROR;

IF (NOT (Routing_rule(0,1))) ERROR;

Figure 3.5. TC1-Link Creation in SensorC

The TC1-Loop Free global property specification is previously given in Figure 3.2

(a). In this example, all nodes have local properties after decomposition. The re-

36

maining global properties in Table 3.3 are similar to the TC1-Link Creation property.

Hence, we omit the decomposition result.

Our GPD algorithm can also be applied to simulation tools. After the errors were

detected in real wireless sensor networks, we also run the comparison experiment

with/o GPD-based distributed checking on the TOSSIM simulator [38] to further

show that our methodology can also be used for software testing prior to the de-

ployment. TOSSIM can simulate the wireless network behaviors with a high fidelity

while scaling to thousands of nodes. Table 3.4 compares the error detection time

and number of network messages with and without applying GPD-based distributed

detection.

According to GPD algorithm, in our test cases, extra messages were required

for local property checking only when TC1-Loop property was checked, but so far

there is no error found. To compare the number of extra messages, we injected

an error, called ERROR#4 by exchanging the sequence of increasing a sequence

number and comparing it with an existing one, which would cause local property

violation. The modified AODV program was tested on TOSSIM as well. With the

centralized checking approach, we designated a server node whose only responsibility

was to collect information required for error checking. The server node can be reached

by all other nodes through multiple hops, but it didn’t relay the application data.

Furthermore, the server node must require information for error checking from every

node every 5 seconds. That is, every 5 second, the routing table of each node must

be sent to the server node. Each message carried exactly one row of the routing

table. After decomposition, the local property still required the source node to send

data every 5 seconds. The result shows, when the error was reported, the number of

extra messages under our approach was 37 while the number was 94 under centralized

checking. The reason is, for each node, since we only consider destination node (called

37

node 0) and source node (called node 1), each time, at most two messages were

required from its next hops (in two directions). Moreover, in each routing table, the

row with node 0 or node 1 did not exist at the very beginning. Based on Section 3.2,

if no such rows exist in a node’s routing table, it is unnecessary to require data. For

centralized checking, it required data every time, which contained redundant data.

Table 3.4 Data collected from a 20-node WSN on TOSSIM

Error Detection

Time with

Decom-

position

applied (s)

Detection Time

without Decom-

position applied

(s)

of extra

transmitted

message with

Decomposition

applied

of extra

transmit-

ted message

without De-

composition

applied

ERROR#1 20.000 20.000 0 0
ERROR#2 25.000 25.000 0 0
ERROR#3 2.169 25.000 0 0
ERROR#4 4.062 4.068 37 94

Considering the time when the errors were detected, ERROR#3 shows great ad-

vantages while other do not. The reason is, ERROR#3 was caused by duplicated

increment in the number of hops during the forwarding of a RREQ message (the

diagnosis details will be discussed in Chapter 5) . With our SensorC and property-

decomposition-based tool, we inserted error detection in every node on the expected

message transmission path according to pre-defined wireless sensor network domain

knowledge. Consequently, an error was reported on a relay node at 2.169 second,

shown in Table 3.4. Without applying the decomposition approach, the property

checking was inserted into the base-station which did the centralized checking. The

property was not checked until the timer (20 seconds) was fired on the base station.

For other errors, due to the property specification, they were detected when the timer

was fired with and without applying our GPD decomposition approach. Under this

circumstance, our approach did not lengthen the error detection time.

38

In Chapter 5, we will also show that this decomposition can reduce the number

of nodes being replayed for error diagnosis.

39

4 DEPENDENCE-BASED TRACING AND REPLAY METHODOLOGY FOR A

SINGLE NODE

In this chapter, we discuss how to trace and replay a property violation when the

error and error source are on the same node. The approach will be extended to a

general case in Chapter 5. First, we propose the dependence-based tracing and replay

methodology by assuming that the trace storage is sufficiently large such that, when

an error is detected, the stored trace will contain at least one anchor point prior

to the source of the error. This assumption guarantees the replay tool to capture

the source of the error. If it is unsatisfied, then either the trace cannot be replayed

(because of the lack of any anchor point) or the replay will not lead to the source

of the error (because the error source falls off the trace). This unfortunate case is

discussed in Section 4.4, resorting to multi-level tracing which instruments a subset

of the functions but yet permits the trace to be replayed.

4.1 What to Record

The benefit of reducing runtime logging is two-fold. First, a longer execution

history can be replayed with the same amount of data storage for the trace. The

time to execute the annotated program that is being traced is reduced. Second, the

number of instrumented operations to perform tracing is reduced, which leads to a

smaller code size.

If a function never has any effect on the kind of errors we monitor, i.e., on any

of the variables appearing in the predicates (also called the invariants) which specify

the correctness properties, then such a function does not need to be traced at run-

40

time. To exclude such functions from tracing, we first compute the backward slice [39]

using the given set of invariants as the slicing criteria. The result of this computa-

tion is a set of control/data dependence chains which include all operations (such as

assignments, branching decisions and function calls) having an effect on the set of

invariants. Each function that contains any of these operations will be instrumented

to obtain the runtime execution log. Obviously, the main function of the program is

always instrumented.

This set of functions, however, does not yet include those interrupt handlers which

may have an effect on the invariants. In microcontroller execution, interrupts are

the basic source of non-determinism. For example, as we mentioned in Chapter 2,

TinyOS adopts an event-driven execution model, that the events can occur at any

time and interact with the ongoing computation. Until interrupts occur, the scheduler

sequentially schedules the tasks from a FIFO (i.e. TinyOS standard scheduling policy)

queue for execution. As soon as an interrupt occurs, the current task is preempted

until the interrupt handler is finished and no other pending interrupts exist. If any

variables which have an effect on the invariants are modified by the interrupt handler,

then obviously the interrupt handler may have an effect on the invariants as well.

Since it is infeasible to predict when a particular interrupt may happen, we instrument

all those interrupt handlers whose execution may modify global variables on which

the invariants depend.

After we determine the set of functions to instrument, we insert operations into the

source code of these functions to record the following pieces of information. Figure 4.1

gives an example of a function after instrumentation for recording. We shall prove in

this section that this set of information is sufficient for accurate replay.

LOG type 1 (Function entry/return) A function always has a single entry but

may have multiple return points. We use N RET i, where i is an integer, to

41

567568 9:5; <=>8;?78@ABC5=DE<=>8;?78@E565FGHI
__write_function_entry(8329);J8JC8FG<=>8;?78@ABC5=DEJK68LFM NOOM NPHQ
__start_atomic_control();<=>8;?78@ABC5=DEJK>8B; R NOOPQ
__gv_update();

__stop_atomic_control();

__start_atomic_control();<=>8;?78@ABC5=DEJKFB57 R NOOPQ
__gv_update();

__stop_atomic_control();

__write_function_return(12425);

return;S
Figure 4.1. An example of instrumented code for recording

42

indicate which return statement is executed. If this is a function entry, it marks

whether it is an interrupt handler and, if so, the name of the function. This

type of information is needed for efficiently replaying the correct instance of

execution of the function, which will be explained later.

LOG type 2 (Global variable update count) In order to prepare for replaying

interrupt routines, when an interrupt routine is invoked at run time, a global-

variable reference counter, denoted by #gv reference, is written to the log,

after which the count is reset to zero. For any other functions, #gv reference

is reset to zero both at the entry and at the exit. Every reference (read or

write) to a global variable is followed by an increment of #gv reference. This

count will be used during the replay to help determine where in the program

to replay specific interrupt routines. The reference to the global variable and

the increment of #gv reference are made a single atomic operation by calling a

system library function to disable and re-enable interrupts. Without atomicity,

it would be impossible to exactly determine whether an interrupt happens right

before the global variable reference or between the reference and the increment

of #gv reference.

LOG type 3 (Task scheduling) If task scheduling order is random, then we need

to record the task that is scheduled to next. The standard scheduling policy in

TinyOS is FIFO, in this case, as long as the invocations of the interrupt routines

are recorded and replayed accurately, this type of information does not need to

be recorded.

LOG type 4 (Anchor points) As discussed previously, at each anchor point, we

record all variable values which are needed in order for the program to replay

from here.

43

LOG type 5 (Non-deterministic inputs) It is necessary to record the non-

deterministic input for future replay. In TinyOS, the messages received from

radio communication and the sensor data arriving from the bus belong to this

type. Note that the interrupt handlers export such input by writing it to a

variable. Since the interrupt handlers which take external input are explicitly

marked, we add operations in such handlers to save the variables’ value to the

trace. In addition, some global variables, which are always defined as “volatile”

type, are used to store a hardware register value. The value of reading from a

volatile variable should also be recorded.

After the run-time information is recorded, various existing methods [40] such as

using a different radio on the same node, storing logged information on a nearby node,

and so on, can be used to store and transfer logs. The technique details of retrieving

the logged information from a node is out of scope of this dissertation.

4.2 How to Replay

Preprocessor

Recorded Log

File

Reconstructed

Log File

Compiler

Replay

Program

Used for Replay

Figure 4.2. The replay scheme

Most existing replay schemes either simulate the machine code or interpret an

intermediate code, taking the run-time log as input. Our replay scheme is unique

in that it instruments the source code by adding log-reading operations based on

44

the run-time log, which makes it possible to recompile it for direct execution on any

desk-top machines, instead of interpretation or simulation. This approach makes the

replay tool more portable since it does not depend on the existence of a simulator

for the motes hardware and it is not tied to any intermediate code design. Moreover,

direct execution is well known to be faster than interpretation or simulation by at

least an order of magnitude.

Figure 4.2 shows a diagram for our replay scheme. The Preprocessor reorganizes

Recorded Log File, which contains the raw log information recorded from the motes,

into Reconstructed Log File. The latter file consists of a data section, which is to

be fed to the replay program later, and an interrupt table, which is used for the

creation of the replay program. The data section simply lists all the <variable,

type, value> tuples and the task scheduling log (LOG type 3) recorded by the motes

program, all kept in the same order as they were recorded. The <variable, type,

value> tuples may either be from the anchor points or from the nondeterministic

inputs. The interrupt table is composed by examining the interrupts recorded and

the associated #gv reference values. Based on LOG type 1 and LOG type 3, by

traversing Recorded Log File, we can find for each interrupt (1)in which function it

was triggered and (2) how many times that function was executed before the interrupt

arrived. If an interrupt, say interruptx with #gv reference = y occurs in the m-th

instance of functionn, then a tuple of the form < functionn, m, interruptx, y> is added

to the interrupt table.

The replay program is generated at the source level automatically by the compiler

based on both the interrupt table and the code instrumented for mote execution. In

conventional replaying, after every instruction (or some intermediate-level statement)

is simulated or interpreted, the tool checks to see whether an interrupt handler should

be replayed at this point (based on the logged information such as the PC, iteration

45

count and recursive call depth). For our source-level replay, which is directly executed

on a desktop after compilation, the replay of an interrupt is triggered by the match

between the #gv reference value observed during replay and that recorded by the

interrupt handler. According to each item < functionn, m, interruptx, y> in the

interrupt table, we need to instrument a matching operation only in functionn to

check whether interruptx must be triggered, instead of checking for every interrupt in

every function. Although function calls are deterministic, without LOG type 1, every

update to #gv reference will trigger a matching operation, which is obviously much

more time consuming.

The main program is transformed such that it starts by calling processLOG(type

4), which searches the data section for the earliest anchor point recorded(The original

beginning of the program is an anchor point by default which, however, may have

been pushed off the log at run time). The main program reads all the <variable, type,

value> tuples for the anchor point before executing from the anchor point. After this,

the replay program simply executes the original C program statements until it meets

the next processLOG library calls. If Recorded Log File shows that, for some reason,

the execution returns from the boundary function containing the anchor point, then

the execution goes back to the main function which looks for the next anchor point.

For each operation inserted to the instrumented mote program which writes LOG type

i to the trace, the compiler inserts a corresponding operation, processLOG(type i) in

the replay program. For each log type, the processLOG function executes according

to the following description.

processLOG(type 1) - This is encountered either at the beginning of a function or

right before a return. The routine resets #gv reference to 0. If it is encountered

at the function entry, it also keeps a counter to indicate which instance of the

46

function is being executed. This counter will be used in processLOG(type 2) to

check the conditions that trigger interrupt handlers.

processLOG(type 2) - The replay program updates #gv reference just like in the

mote-executed program except that the atomicity control is no longer necessary

because we have sufficient information about when interrupts occur. The cur-

rent function ID is passed as another parameter to processLOG(type 2) which,

at each time #gv reference is increased during replay, checks to see whether the

current instance and #gv reference value meet the interrupt triggering condi-

tion. If so, the corresponding interrupt handler is called. The interrupt handler

may not be invoked at exactly the same program point as in the original run,

but its effect on the control and data dependence will be exactly the same and

therefore does not alter how the error may be propagated.

processLOG(type 3) - If the tasks are scheduled randomly, then the replay pro-

gram reads LOG type 3 in order to determine which task to execute. Otherwise,

if LOG type 3 is not recorded due to the FIFO scheduling policy, this routine

is skipped as well.

processLOG(type 4) - A flag indicates whether an anchor point is encountered. If

so, according to the pre-determined format, this processLOG routine reads in

all variable values before starting to execute the first statement at the anchor

point.

processLOG(type 5) -This processLOG routine reads in the external input from

the log at the same program point as in the mote-executed code which records

the information.

We have two alternatives for handling hardware-dependent code, the operations

to hardware registers, to be specific. Our first option is to remove all hardware

47

dependent code for replay. The impact of interrupts will be on the values of certain

global variables(Similar handling is performed in certain TinyOS simulators [37,38]).

This however misses the opportunity to trace the error source further when a message

containing wrong contents is received and saved to a hardware register by a low-

level interrupt handler. Only when the second interrupt handler, posted by the first

one, copies the wrong contents from a hardware register to a global variable will

the error be located by backward tracking from a violated invariant. A remedy for

this omission is to write a preprocessor customized for the hardware platform which

converts references to hardware registers to global variables.

Statements which do not affect the invariants are deleted from the replayed pro-

gram as described in the literature [41]. After these treatments, the resulting code

for replay is compiled and executed on an ordinary desktop machine.

Note that the bookkeeping on #gv reference to enable source-level tracing and

replay does not cost much more than the operations to save the loop counts in the

assembly code in order for the replay program to be able to continue correct execution

after an interrupt handler exits. Recording the return address in the trace alone is

insufficient. As a matter of fact, if the function contains irreducible cycles in its

control flow graph, it is not obvious how to count loop iterations so the replay can

continue correctly after returning from an interrupt handler. The correctness of our

replay scheme is formally stated by the following theorem.

Theorem 4.2.1 Suppose an incorrect program statement causes an invariant to be

violated at run time. Under the record-replay scheme described above, the same in-

correct program statement will cause the same invariant to be violated in the replayed

program.

Proof The LOG type 3 ensures that the order in which tasks are scheduled from

the task queue is exactly the same when executed by the replay program as by the

48

mote program. We just need to prove that interrupts do not cause the programmer

to observe incorrect use-def chains during replay.

First, suppose the incorrect statement execution S and the invariant violation

Inv are both outside any interrupt routine. As illustrated by Figure 4.3(a), the

#gv reference value at the time S must be the same in the mote program and the

replay program. If no interrupts occur between these two at run time, then the replay

program will find the last interrupt routine prior to Inv before it replays S.

#gv_referenceTU VWU
bal

variablesXYZ[\]^_`
e abc
Tds

efgnctions

hijkl
rupt mdinoklpqr stuv Record wVcx^YyY^Yb

ce’ TU VWUzZ
l cZ^_ZzWY{

Re
Z[\]

rite abc
|dpefgi}j~�ip hij

errupt mdi
dlers

�u��vRecord wVcx^YyY^Yb
ce

S
Re

�� vS

qrst uv

|dpefgi
ctions

Sabc
hij

errupt mdi
dlers

irpt

RecordwVcx^YyY^Yb
ce

�Z`��wVcx^YyY^Y
nce��[Z`

ewVcx^YyY^Yb
ce

ab
v

�k�od�
abcU�Y _^�`

S

S

abc irpt

wVcx^YyY^Yb
ce XY�U^[wVcx^YyY^Yb�Y

’TU VWUzZ
l cZ^_ZzWY{

Re
Z[\]

rite

v
R

��� �����
e y�d� ��)

hijkl
rupt mdinoklp|dpefgnctions

(c) (d)

Figure 4.3. An illustration for proof of Theorem 4.1

49

Conversely, as illustrated by Figure 4.3(b), if an interrupt, irpt, occurs between

S and Inv, then the programmer must pay attention to irpt only if it is part of the

use-def chains between S and Inv. This, however, is possible only if irpt first reads a

global variable, x, computed outside irpt such that x depends on S and then writes

to a global variable y on which Inv depends(Both dependences are by transitivity,

and x may be the same variable as y). Consider two possibilities:

(1) #gv reference recorded by irpt is greater than the value at the time of S. S

will be replayed before irpt in this case.

(2) #gv reference is reset to zero due to other functions called between S and irpt.

The replay program will replay S before these called functions and therefore

before irpt. Furthermore, the #gv reference match ensures that the replay

program invokes irpt between the correct pairs of consecutive references to any

global variables.

In both cases above, the correct use-def chains will be observed.

Next, consider two other possibilities:

(3) S is outside any interrupt routine but Inv is inside an interrupt routine irpt, as

Figure 4.3(c) shows. There must be a global variable, x, which, by transitivity,

depends on S, is read inside irpt and eventually leads to the violation of Inv.

(4) Illustrated in Figure 4.3(d), S is within an interrupt routine irpt, and Inv is

outside any interrupt routine. There must be a global variable, x, written

between S and the end of irpt such that x depends on S, by transitivity, and x

is read after the exit from irpt which eventually leads to the violation of Inv.

For both (3) and (4), by reasoning about #gv reference and LOG type 1, we can

prove that the order of executing S, writing to x, and invoking Inv will be preserved

50

in replay regardless whether the write to x is inside any interrupt routine or not. The

order will also be preserved no matter whether the write to x happens to yet another

interrupt routine.

Finally, suppose S is in an interrupt routine irpt1 and Inv is in another interrupt

routine irpt2. There must be a global variable, x, written in irpt1 and another, y,

read in irpt2 such that the value of y depends on x by transitivity and x is depends

on S by transitivity. (It is possible for x and y to be the same variable.) Again, by

reasoning about #gv reference and LOG type 1, it can be proven that the order

between S, write to x, read of y, and Inv will be preserved during replay regardless

whether other interrupt routines are invoked.

4.3 Decision on Inlining a Function

To further reduce the code size after tracing instrumentation, we notice that we

can reduce the number of logs of LOG type 1 if we inline function calls(Of course,

interrupt handlers cannot be inlined). However, if a function is called in more than one

place in the program, then inlining may increase the program size due to duplication

of the function body. Fortunately, the inlining decisions for different functions are

independent and the cost model is simple. For each function, let Soriginal be the code

size before instrumentation and SInstr func be the increased code size due to inserted

operations to write LOG types 2, 3 and 4 (Interrupt handlers are never in-lined).

Further, let Scall be the increased code size due to inserted operations to write LOG

type 1. For inlining to be beneficial for the function under consideration, by assuming

this function is invoked n + 1(0 ≤ n) times, we must have

(Soriginal + SInstr func)n < Scall (4.1)

51

4.4 Multi-level Tracing

Theorem 4.2.1 uses the assumption that the trace storage is sufficiently large

enough to include the error source and at least on anchor point before the error source.

If that assumption is not satisfied, when an error is detected, we either cannot find

an anchor point to replay the program or cannot find the error source during replay.

This can happen if the storage for logging is small or the error happens long time

before it is detected (through the violation of a property). To enable replay under

such a circumstance, we propose multi-level tracing. Rather than instrumenting the

whole program, we divide the program functions into different levels based on how

“far away” (as defined bellow) they are from the invariants being checked. For each

iteration, only the code residing in certain level(s) are tracing and replayed. If the

error source can be located in this iteration, the procedure stops. Otherwise, pieces

of error-propagation path can be collected in this iteration, and in the next iteration,

the tracing level is increased. Nonetheless, with multi-level tracing, we no longer have

the guarantee that the error source will be found, but at least we have partial traces

to narrow the search.

4.4.1 An Iterative Tracing and Replay Procedure

For the purpose of defining the levels of tracing, we build a graph based on the

dependence information computed previously. For convenience of implementation, we

wrap each invariant-checking operation in an invariant-checking function and insert

a call to this function wherever the invariant must be checked.

Definition 4 Given a set of invariants, the invariant-based Program Function De-

pendence Graph (PFDG) for a program is a set of nodes, each representing a function

whose execution directly or indirectly affects whether the invariants holds, and a set

52

of edges of two kinds, namely the calling edges and the dependence edges. A calling

edge <f 1,f 2> is drawn if f 1 is directly called by f 2. Dependence edges are drawn

according to the construction rules in Algorithm 3.

Algorithm 3 Dependence edges construction

1: Suppose operation u in function f 1 has a direct control/data dependence on
another operation d in function f 2 and this dependence is a link in a dependence
chain originating from an invariant. We draw a directed dependence edge from
f 1 to f 2, denoted by f 1 → f 2 if one of the following is true:

(1) Function f 1 calls f 2 (u takes place after f 2 returns to f 1)

(2) Function f 2 calls f 1 (d takes place before f 1 is called)

(3) Both f 1 and f 2 are directly called by a third function g.

2: If none of the above is true, then f 1’s dependence on f 2 is passed through a number
of function calls and returns. For the purpose of our tracing algorithm, we draw a
chain of dependences to make it clear how this dependence is propagated through
a call chain. This is described below.

(1) If there is a call chain, C1, from g to f 1 and another, C2, from g to f 2 such
that no other node belongs to both call chains, we say g is a closest common
ancestor of f 1 and f 2. We find all closest common ancestors of f 1 and f 2 in
the call graph.

(2) Next, for each closest common ancestor of f 1 and f 2, say g, we find two of
its immediate callees, g1 and g2, one in the path from g to f 1 the other in
the path from g to f 2. We draw a chain of dependence edges connecting f 1

all the way to g1 following C1. Next we draw another chain of dependence
from g2 to f 2, following C2 in its opposite direction. Finally, we connect
these two chains of dependences by the edge g1 → g2.

By following call edges and dependence edges, all dependences can be found in this

graph by transitivity. Unless specified otherwise, functions mentioned in the rest of

the Chapter refer to those in the invariant-based PFDG, and all variables mentioned

will be those used in the invariants or those affecting the variables in the invariants.

Figure 4.4(a) shows a piece of program and its invariant-based PFDG (Fig-

ure 4.4(b)). Here the function Inv fun() is an invariant-checking function and function

53

f3() and f4() both modify some variables used in the invariants. Solid arcs represent

call edges and dotted arcs represent dependence edges.�� ���
2.

�� ��� ¡¢ �£� ���¢¤
4. ¥ �¦§� �¨� �©�¢¤ª� }«� }

�� ���
2. �£�¢¤£� �¬�¢¤
4.

® °̄�±®
()¨� ¥

�� �©�
2. �£�¢¤£� ¥�� �£�
2.

® °̄�±®�¢¤£� ¥�� �©�4 �� �£® °̄�±®

�²)

�³¢ ´²¦¦ �µ¶�·� �®µ�®¸�
edge

Figure 4.4. An example of invariant-based PFDG

Definition 5 In an invariant-based PFDG, a sequence of connecting edges is called a

canonical path if the sequence originates from an invariant-checking function inv and

is composed by a prefix 〈inv, f 1〉, 〈f 1, f 2〉, . . . , 〈fm-1, fm〉 , with calling edges only, and

a postfix fm → g1, g1 → g2, . . . , gn-1 → fn, with dependence edges only. The prefix

or the postfix may be empty, but not both.

54

Definition 6 In an invariant-based PFDG, a function f is said to be at the level n(

n ≥ 1), if, among all canonical paths ending with f , the shortest path has the length

n.

With the prefix and postfix clearly separated for each canonical path, we can de-

fine set of functions in which variable values are recorded for replaying. In order to

make replay possible, in addition to the five types of logs discussed in the previous sec-

tion, we need to record additional information for boundary functions as Definition 7

defined.

Definition 7 In an invariant-based PFDG, a function f is said to be a boundary

function for level-n tracing if there exist an n-long canonical path ending with f

which consists of call edges only.

In our iterative debugging procedure, what to be included in level-n tracing de-

pends on the result of tracing and replay at the lower levels. Our iterative procedure

can start with any level m, as long as all functions at levels m or lower are all included

for instrumentation. Without loss of generality, we assume the procedure starts at

level 1. The functions to be instrumented include all level-1 functions and all interrupt

handlers which may modify any global variables used by any level-1 functions.

Obviously, for level-1 tracing, all immediate callers of an invariant-checking func-

tion are boundary functions. At the entry of each boundary function we record

the entire calling context at run time, i.e. all global variable values and the ar-

guments passed to the function. For all non-boundary level-1 functions, i.e. those

non-interrupt functions connected by dependence edges from an invariant-checking

function only, logs of LOG types 1-3 are recorded but not the entire calling context.

For all non-deterministic inputs, logs of LOG type 5 are also recorded.

If an instrumented function calls a higher-level function g (which is not instru-

mented), g′s return value (if any) and the global variables written during g′s execu-

55

tion are recorded right before g returns. This allows the instrumented function to

continue the execution correctly. Nothing else in g is recorded no matter what non-

instrumented routines are called within g. At replay, the program statements in g are

not replayed, but its return value and modified global variables are used to continue

the execution of g′s caller. This way, we limit the size of the instrumented code and

the recorded trace. This multi-level tracing is different from existing partial-replay

schemes which either replay all callees of any replayed function or estimate the call

effect based on certain statistic assumptions.

Note that, during replay, the level-1 functions may be executed multiple times

while the program statements belonging to higher-level functions are skipped in be-

tween.

Since the invariant-checking functions are always replayed, violation of invariants

will always be detected. The programmer, using debugging tools such as GNU’s

gdb, can follow the program execution and produce a replayed execution trace. The

statements along the trace leading to the error can be examined, which will have one

of the two outcomes: the faulty statements (or the unexpected events) which cause

the error are found, or such statements (or events) lie outside the level-1 trace. In the

former case, debugging is done. In the latter case, the execution path extends beyond

the level-1 trace. Mapping this non-ending path back to the invariant-based PDFG,

we obtain a subset of canonical paths which are called error-hiding paths from level-1

tracing.

Next, we inductively assume that level-(n-1) tracing has not led to the discovery

of the source of the error but has marked all parts of error-propagation paths that are

found during all level-m tracing (m < n). We present Algorithm 4 for level-n tracing.

Among all functions in S, we find the boundary functions for level-n tracing ac-

cording to the invariant-based PDFG. We add recording operations in these functions

56

Algorithm 4 Determine which functions to be instrumented for level-n tracing

1: Let S be the set of functions to be instrumented.
2: Add all functions in the error-propagation paths found in level-m tracing (m < n)

to S.
3: Add every level-n function which is immediately reachable from any error-

propagation path (i.e. can be connected by a single edge from a node in the
path) to S.

4: Add all invariant-checking functions to S.

57

to record the entire calling context. The rest of the instrumentation follows the same

discussion in the case of level-1 tracing. In practice, one can be flexible when using

our iterative tracing procedure. If the original program size is too large for even

level-1 tracing described above, one can choose a subset of level-1 functions as long as

the side-effect of their callees are recorded to allow replay to continue. The invariant-

checking functions must always be executed for tracing, so that the error can at least

be detected. If the subset chosen for level-1 tracing does not lead to the discovery of

the error source, another subset is chosen, and so on. On the other hand, if the size

of the original program is small, one can start with level-m tracing for some m > 1.

The relationship between the original code size, the available program memory and

the choice of m is not explored further in this work.

4.4.2 Termination of the Iterative Tracing Procedure

If the replay for the level-n tracing does not lead to the discovery of the error source

and neither does it repeat any of the previous execution paths, then the execution

paths used for the next level tracing will accumulate further. The tracing may also

lead to the violation of a different invariant. The level-1 tracing for the new violation

will then be mixed with tracing for the previous violations. All these may theoretically

cause the instrumented code size to exceed the available program memory.

However, if we assume that the error-hiding path found in level-m tracing always

repeats itself in level m+ 1 tracing, then, obviously, the iterative tracing and replay

will eventually expose the error source by replay, as long as the instrumentation

of all functions in the error-hiding paths always fit in the program memory. Note

that the program memory required in this case will usually be significantly less than

full instrumentation, because we instrument along a single path. Also note that,

even though under nondeterministic external inputs the program may take different

58

execution paths in each deployment or each tracing, the function call/dependence

paths leading to the violation of the invariant, i.e., the error-hiding path, may still be

the same. Our assumption here, therefore, accommodates nondeterministic behavior

to a certain degree, even though it is not ideal.

4.5 Experiments

ne¹º

compiler
»

invariants

handling ¼
ools

½¾¿À
ce

º¾
de

Invariants

assembly

code

ÁÂÃÄÅÆ ÇÂÈÉÅÆÊ
º

source

code with

error

checking

inserted

Dependence

analysis tool

º ¹¾¿À
ce code

with trace

generation code

inserted

ºÀ¾¹¹ º¾
mpiler

Ë
xisting

knowledge for

possible error

source scope

¼
race Ì

eplaÍ ¼
ool

º¾ÎÎÏ
cted ¼ÀÐ
ce ËÀÀ¾

r source

ÑÒÓÒÔÕÖÒ×ØÙ
site

Develo
ÖÒ×ØÙ ÙÚÛ

e

Figure 4.5. Framework of tracing and replay tool for a single WSN node

We have implemented the proposal tool for WSN applications on TinyOS 2.1.2.

Figure 4.5 shows its framework. For each TinyOS application, the nesC compiler

first converts the application into a C program which is then compiled by the cross

compiler into machine code executable on the specific hardware. We use the same

cross compiler to compile the C program instrumented by our GCC-based tool before

loading it on the sensor mote for normal execution with tracing. When an error

59

is detected, we retrieve the trace and feed it to our replaying C program which is

executed on a desktop machine and the GNU gdb is used to to help us isolate the

source of the error. Since all non-deterministic inputs, including received messages,

have been recorded, the replay program can be run independently by feeding each

with its own retrieved logging information.

The tool is implemented on the top of GCC-4.7. Two new passes are added to

the GCC middle-end for tracing/replay code instrumentation and dumping IR to C

source code respectively.

We use TelosB motes on which the WSN applications are installed since this kind

of motes has more restricted hardwire resources according to Table 1.1. A TelosB

mote has 48KB program memory and 1MB external flash memory.

Currently, a trace buffer of the size of 2KB in the RAM is used for LOG recording.

The log is transferred to the external flash memory when the buffer is full. We use

Blink (TC1), EasyCollection(TC3), and TestSerial(TC2) as our testcases. The first

two are the sample programs in TinyOS, and the last one is what we used to collect

CO2 data.

TC1 (BlinkC) This is a published TinyOS 2x application. We insert an invariant

which requires that the frequency of three LED’s blinking must follow a user

specified pattern. We then add a long running task which increases the latency

of Timer.fire(), causing a violation of the invariant.

TC2 (TestSerialCO2) This application monitors indoor CO2 data in multiple lo-

cations inside a building. We require that, from each mote, the base station

must receive new CO2 reading with a period of two seconds or less. This prop-

erty is specified by two invariants. The base station must make sure that it

receives a new piece of CO2 reading from each mote every two seconds or less.

Each mote must make sure that, within a period of two seconds it receives at

60

least one piece of data from its own sensor and sends it to through the radio

channel.

TC3 (EasyCollectionC) This is a published code which collects data using imple-

mented Collection Tree Protocol. We insert invariants require that the data

must be sent in sequence.

Table 4.1 compares the number of the functions traced using the dependence

information against those without such information. The data indicate that, with

a single invariant consisting of fewer than 3 variables, the dependence information

allows between 40% and 85% of the functions (not including interrupts handlers) to

be skipped for tracing. However, the number of functions to be traced remains to be

large for test cases TC2 and TC3.

Figure 4.6 shows the effect of inlining. Over 70% of the functions are called only

once and, based on the simple cost model, can be inlined. Table 4.2 lists the code size

under different instrumentation schemes in comparison with its original size Soriginal.

For the baseline code size Sbaseline, we include the inserted operations to record all

types of log information without taking advantage of dependence information. The

data show that the baseline size is too large for the program memory on TelosB motes.

The column Sno-inlining shows the remaining code size if we do not trace functions

which have no effect on the invariants. It is much smaller than the baseline size, but

still large. Take TC2 for example, the size of its Sno-inliningis 50534, which exceeds

the TelosB memory boundary size 48K. The column S inline shows the code size after

selective inlining. After inlining, the code size is decreased further. Of course, if many

invariants are checked in the same program or some invariants involve many variables,

then the use-def chains may cover more functions and the instrumented program size

may increase. In the worst case, the code size may be too large to fit in the program

memory, in which case multi-level tracing will be needed.

61

Table 4.1 Functions instrumented using dependence information as a fraction of the
total functions

Test case # of traced functions # of total functions Percentage
TC1 46 299 15.38
TC2 605 1499 40.36
TC3 604 1385 43.61

Figure 4.6. Inlined functions as a fraction of the total

Table 4.2 Code size (bytes)

Test case Soriginal Sbaseline Sno-inling S inline

TC1 2650 18760 13760 13296
TC2 24302 80058 50534 42878
TC3 18670 73214 45090 37778

Table 4.3 Instrumentation overhead

Execution Time Energy
Test
Case

Log Size
(bytes)

Overhead
(10-6s)

Percentage
(%)

Overhead
(10-3Joule)

Percentage
(%)

TC1 56 70 1.01 0.039 2.21
TC2 1496 negligible negligible 2.11 20.2
TC3 838 1970 13.32 0.129 15.5
TC3 838 15050 101.76 0.364 36.7

62

Table 4.3 shows the overhead due to instrumentation (with slicing and inlining

optimization) . For each call to a task function which does not contain an anchor

point, the storage used for log trace is 4 bytes (2 bytes for function entry and 2 bytes

for function return). At each anchor, each saved variable requires a record of 5 bytes,

including 2 bytes for the variable name, 1 byte for the variable type, and 2 bytes for

the variable value. To save a nondeterministic input or the current #gv reference

value, each variable also takes 5 bytes. For TC1 overhead is measured from the

beginning of the program to the first time when the error is caught. For TC2, we

measured the overhead during each sampling period. For TC3, overhead is measured

between the start to send a message till the message is sent, and we call the measured

time interval “ sending period” for short. For TC3, we compares the overhead with

and without counting the cost to write the log to the external flash, listed in two

rows respectively. Since the buffer size we set is 2KB, writing external flash is called

about every 2.5 sending periods. Therefore, in the second row of TC3, the added

overhead of writing external flash is the average overhead for each sending period. It

is quite common that there is an idle period between two message sends long enough

to be used for writing logs to the flash, as in TC2. Hence we marked the execution

time overhead as negligible. When an error occurs, if the log buffer in RAM is large

enough to store the entire log, the mote can directly send the log to the base station,

rather than reading it from the external flash first.

63

5 DEPENDENCE-BASED TRACING AND REPLAY METHODOLOGY FOR

THE ENTIRE WSN SYSTEM

In Chapter 4, we have discussed how to trace and replay if the error source is located

on the same node where an error is detected. Illustrated in Figure 5.1(a), after

replaying the node’s execution and generating the replayed trace, the error source

can be researched by programmers tracing back along with the use/def chain from

where the error is detected.

Execution Trace on One

Node

Detected

Error

Error

Source

Execution Trace

on Node_1

Detected

Error

Execution Trace

on Node_2

Execution Trace

on Node_n

Error

Source

msg

M
gs(s)

(a) (b)

Msg

receive

Msg

send/forward

Msg

receive

Msg send

Figure 5.1. Error propagation

However, illustrated in Figure 5.1(b), an error could propagate along with the

message transmission. As a consequence, an error may be caused by incorrect execu-

tion on node i but later detected on node j. Generally speaking, there are five ways

in which an error can be propagated between different nodes:

C1 A node generates an incorrect message and sends it over the network.

64

C2 A node receives an incorrect message and forwards it.

C3 A node receives a message and modifies it in an incorrect way before forwarding

it.

C4 A node receives an incorrect message which does not need to be forwarded.

C5 A node does not forward a message as required.

The following chapter discusses how to extend record-replay methodology to the

entire system and deal with situations listed above by tracing messages passing.

5.1 How to Log

It is necessary to trace the messages with which the error propagate along to

make sure the error source is included in the trace used for off-line replay. However,

as stated in C3, since an error may be generated when a program uses the content

from a received message to generate a new one, it is insufficient to just record the

routing information of the messages. The information on the modification history or

the def/use chains of the payload should also be acquired. To solve this problem, we

record SEND/RECEIVE operations and their dependence relationship. As a result,

besides LOG type 1-5 in Chapter 4, one more log type is added to record error

propagation.

LOG type 6 (SEND/RECEIVE dependence) - SEND/RECEIVE operations

are recorded to preserve how a message is transmitted and modified. First, dur-

ing the compile time, each statement which indicates a message is successfully

received is given a unique identifier, R ID. Second, right after the statement

indicating a message is successfully sent, we insert a SEND record < ′S′, MID,

R OP >, where ′S ′ means “sending”, and MID is the unique ID of the sent

65

message. R OP is a set of tuples <R ID, x>. Each tuple means that the con-

tent of the sent message may be affected by at most of x (x >= 1) consecutive

messages received at statement R ID. If none of the receive operation exists,

R OP is NULL. Figure 5.2 shows two pseudo code examples. For each x in

< R ID, x >, its value can be calculated by identifying the boundary and the

corresponding induction variables of each loop.

Similarly, a record<′I′,NULL,R OP> is inserted right after the assertion, where

′I ′ means invariants. R OP={ < R ID,x > } means that the variables used in

the invariant may be affected by at most of x (x >= 1) consecutive messages

received at statement R ID.

Right after the statement indicating a message is successfully received, a RE-

CEIVE record < ′R′, MID, R ID, SENDER > is inserted, where ′R′ means

“receiving”, MID is the unique ID of the received message, R ID is the receive

statement identifier, and SENDER is where this message is sent from. By ad-

ditional inserting those records, if an error is caused by the incorrect message,

we can trace it back during the replay.

1.(R_ID=1) msg = Receive();

2. Send(msg);

(insert (,2,<1,1>);

1. for (i = 1; i < k ; i++) {

2. (R_ID=1) msg = Receive();

3. total = total + msg;

}

4. Send(total);

(insert (,3,<1,i-1>);

(a) R_OP = {<1,1>}. For R_ID = 1, x =1.

Because R_ID is only executed once before

SEND operation(line 2)

(b) R_OP = {<1,i-1>}. For R_ID = 1, x =i -1.

Because R_ID is executed i -1 times before

SEND operation(line 4). Each time, the received

msg has effect on the SEND operation(line 4)

Figure 5.2. Example of setting < R ID, x >

66

5.2 How to Replay

Since all the non-deterministic events including the received messages are recorded

for each node, it is doable to replay each node independently by applying the method-

ology discussed in Chapter 4. It is possible to ask programmers manually finding out

the message transmission path by checking each pair of sent/received messages in

the replay trace, but it is a really daunting work. In addition, in some cases, not

all recorded traces for each node are useful for replay errors. Therefore, the Replay

Preprocessor discussed in Section 4.2 is extended to firstly identify the sub-traces

which may have effect on the detected errors.

5.2.1 Replay Preprocessor

The extended function of Preprocessor is to recognize which parts of Recorded Log

Files are effective for replay and discard the rest parts. For example, in Figure 5.3,

the entire trace retrieved from node 10, the sub-trace from AP (anchor point) to (S,

7 1, <1,1>) on node 1, and the sub-trace from AP to (S, 7 1, <0, 1>) on node 7 are

used for replay. The detail is described in Algorithm 5, which identifies the useful

traces by tracing back message transmission paths in WSNs. If an error is caused

by a received message, the algorithm will search where the message comes from, and

trace back all possible ways until the node where the message is initialized is reached.

Therefore, all possible error propagation paths can be abstracted, and programmers

are able to replay the program on each node in the order of message transmission.

Steps 1-3 in Algorithm 5 refer to trace. This is the original trace on node e

that includes the detected error and therefore is first analyzed. All messages that

are received on node e and that may affect the invariants are included in trace′e.

Such messages are identified by looking up the records < ‘R’, MID, R ID, SENDER

67

Algorithm 5 Identify Traces for Replay

Require: INPUT: trace1, . . . , tracen, where tracei means the retrieved trace file of
node i. We let e denote the node on which the error is detected.

1: Let set T be empty. Let trace1, . . . , tracen be empty.
2: In tracee, consider the trace segment from earliest Anchor Point recorded to the

recode where error is detected. Based on the inserted record 〈′I ′, NULL,R OP 〉
right after the assertion, mark all RECEIVE records which may affect the invari-
ant. Save this part to trace′e .

3: T = T + trace′e.
4: while T 6= φ do
5: Let t be the first element in T , and k be the corresponding node.
6: for any marked RECEIVED record in t do
7: Analyze where message comes from (SENDER) and what the message id

is (MID).
8: In traceSENDER, find the SEND record which indicates MID is send to node

k.
9: Let trace′′SENDER be the trace segment from the earliest Anchor Point

recorded to the SEND record in traceSENDER.
10: if R OP 6= NULL then
11: For any 〈R ID, x〉 in R OP , mark x RECEIVE record whose ID is

R ID backward from the SEND record.
12: T = T + { trace′′SENDER }
13: end if
14: trace′SENDER = trace′SENDER ∪ trace′′SENDER

15: end for
16: remove t from T .
17: end while
18: trace′1, . . . , trace

′
n are what we want, where trace′i means the set of trace seg-

ments reelected from tracei for replay on node i.

68

>. From parameter SENDER, we can determine the previous node the message

comes from, and then the algorithm checks the trace of node SENDER to find the

SEND record < ‘S’ , MID, R OP > with the same MID (step 4-17). If the message is

initialized by node SENDER, the path is completed. Otherwise, we continue searching

where the message sent by node SENDER comes from. Based on the dependence

relationship analyzed in Section 5.1, the algorithm checks all R OP in records from

the first Anchor point to the SEND record, and finds all RECEIVE Records which

may have influence on the sent message. By repeating this process, the entire path

is generated. Since a node may be included more than once on the possible messages

transmission paths, sub-traces found out each time have to be taken into consideration

together to guarantee that there are no missing messages which are possibly related

to the error.

ÜÝÞÞÞßà á7âãá ãá ãäÞÞÞ
Errår

ÜÝÞÞÞßà áæâãá ãá æäÞÞÞßçá æâãáèãáãéäêÞßçá ãâãáëìííä
ÜÝÞÞÞßçá æâãáëìííäêßçá æâî áëìííäÞÞÞïðñò óô ïðñò ó ïðñò õ

Figure 5.3. Decide which part of trace used by replay based on message matching

Based on the correctness of replay in a single node discussed in Chapter 4, we now

prove the correctness of Algorithm 5.

Theorem 5.2.1 After Algorithm 5 is applied, the rest of the trace segments are still

enough for replaying errors.

Proof Based on Algorithm 5, each output trace’i contains the earliest anchor point.

Based on the correctness of the single node replay, each trace can be independently

69

replayed. Therefore, if the location where the error is detected is on the same node

where the error source is, the proof is accomplished.

Next we prove this situation: an error is detected on node i, and the error source is

on node j, where i 6= j. Without loss of generality, we assume the error is propagated

along with a path P = j → i1 → i2 → . . . → in → i. For node i, it must have at least

one RECEIVE record before the error detection. For each RECEIVE record, there

is one corresponding SENDER, and in must be one of them. Then the algorithm can

find node in. If in does not modify the message received by node i, then the algorithm

can find a SEND Record by matching MID, and continue the process. Otherwise,

R OP is checked and all related RECEIVE records will be processed, which must

contain the messages from node in-1 to in. By repeating this procedure, all possible

paths are built in the reverse order, and P is included. Therefore the result is enough

for replay. Furthermore, by reversing the searching path generated by Algorithm 5,

a replay order can be found.

5.2.2 Independent Replay

Once the trace segments of each node are decided, we can replay each node in-

dependently, by feeding each with its own retrieved trace segments. The Replay

procedure is similar to Chapter 4, and only the log process functions for LOG type 6

is added.

processLOG(type 6) - The LOG type 6 is only responsible for maintaining the

message transmission. It is used in replay Preprocessor and this is not added

into Reconstructed Log Files. Consequently this is not processed in single node

replay.

Algorithm 5 can find all traces segments under the conditions C1-C4 listed at

the beginning of this section. For condition C5, however, we need to reverse the

70

search order among the trace segments. Take “n RECEIVE data FROM m cond”

in Table 3.2 for example. If no WSN domain knowledge is available, the property

will be decomposed and checked only on the sender and the receiver. If a sender

successfully sends a message but the message is lost by a relay node, an error will

be reported on the receiver. However, since there is no message received, the replay

will stop at the receiver. When this happens, we reverse the search order by starting

from the beginning trace segment so we can find out exactly how the specific message

is originated and forwarded before it finally gets lost. We can then replay the trace

from the sending end. ERROR#3 in Table 3.3 shows such an example.

There may be redundant traces that escape the removal by Algorithm 5. The

reason is that the dependence information is collected statically and, therefore, con-

servatively. Spurious dependence may cause certain traces to be mistaken as having

an effect on the detected error. For future work, dynamic dependence analysis may

be considered, such that more redundant traces can be removed.

5.3 Experiments

The tool discussed in Chapter 4 is extended by adding the code handling LOG

type 6 and processLOG(type 6). We still use the two test cases: (a) TC1 (AODV)

and (b) TC2 (Multihoposcilloscope) and the same deployed wireless sensor networks

(details are described in Section 3.4), as our experiment environment. Similarly, the

global properties checked in our experiments and the errors found using our approach

are listed in Table 3.3, in Section 3.4.

Table 5.1 lists the number of nodes involved in our tracing and replay approach

during the diagnosis after the error is detected. The fifth column shows the maximum

number of nodes that may need to be replayed until the faulty program location is

located, based on the worst-case scenario. In contrast, the sixth column shows the

71

actual number of nodes replayed to find the faulty location in our experiment. The

result shows that although execution trace is recorded on every node, only a few

nodes need to be replayed. The details of each detected error will be discussed in

next section.

Table 5.1 Global properties under detection

Error # of
Nodes
Recorded

Node
Error
De-
tected
on

Hops to
Trace

Max #
Nodes
Re-
played

Actual
of
Nodes
Re-
played

#1 30 node 1 1 4 2

#2 30 node 0 0 1 1

#3 150 node 0 5 69 7

5.3.1 Test Case Study

In this section, we analyze the error source by replaying the recorded trace.

bool ö÷÷øùúûüýøüöþÿý� û ��ü�øü �ý�� ö�øöddr_t ÷ý�ü � ö�øö÷÷ùøü �ý�ü	ú
�û ��ü�øü 	ú
) ������� ������������� id != AO
��øR���

E_TA
���ø���E) �

 ��� ùúûüýøüöþÿýø �÷!"�ý�ü ## �ý�ü	ú
) �
//BUG – if source node is only one hop from dest node��� ùúûüýøüöþÿýø �÷!"�ý�$

seq %% ùúûüýøüöþÿýø �÷!"	ú
 & 	ú
) ������� ����������
return T

'��(
 }

 }

 } ������ ����������
return

)*���(
 }

Figure 5.4. Source code of Error#1

72

The TC1-Link Creation property requires that a message transmission path must

be established between Node 1 and Node 0 (i.e. the basestation). ERROR#1 (shown

in Figure 5.4) was detected on Node 1 during the experiment. However, the error

source was located on Node 0 (the destination node). The replay on Node 1 showed

that the RREQ message had been sent over and over. By following the message

propagation path, four nodes that are one hop away from Node 1 (including Node 0)

were replayed. The replay of Node 0 showed that, although the RREQ message had

been received, it did not properly update the routing table and send a reply message.

Moreover, the replays show that this error occurred when there was only one hop

between Node 1 (the node that is responsible for sending a message) and Node 0 (the

node that is supposed to receive a message). Under this circumstance, the condition

route table [id].hop > hop (c.f. Figure 5.4) could not hold. Due to this error, the

Node 0 would not send a RREP message and would fail to establish the path, which

is a violation of the TC1-Link Creation property).+,,,,,,,,,,,,,,,,, -./0121341 Events
,,,,,,,,,,,,,,,,+

 event mess5ge_t
,

S./Receive.receive(61775819:, p_msg,

voi;, <5yl=5d, uint>9t len) ?@@@ABCD BEFGGDC@@@3HI 5=;49J;KLM;17: == call AMPacket.address()) {@@@ABCD BEFGGDCN
//BUG -- incorrectly changing memory address of received message

p_msg = signal Receive.receive[aodv_hdr->app](p_app_msg_,

p_app_msg_->data, len - AODV_MSG_HEADER_LEN);

 } @@@ABCD BEFGGDCN
}

Figure 5.5. Source code of Error#2

ERROR#2 (shown in Figure 5.5) was detected on Node 0. The replay for Node 0

alone showed that the error source was also located on Node 0: the memory address

of the received message was incorrectly changed and the message type was read in

an incorrect position. After successfully receiving and delivering the first message

73

from the source node, the base-station failed to deliver the received message to the

application layer, which is a violation of the TC1-Message Transmission property.

event messageOPQ ReceiveR
RSTU

receive(messVWXOPQ YOZ[W\]^_`Q YVab^V`\
uint8_t len) cdddefgh fijkkhgddd_lm !rreq_pending_ nn V^]̀Oodrpq[rs tu ZX nn cached) c
 // l^rward RR

STdddefgh fijkkhgddd
//BUG – duplicated increased the number of hop

rreq_aodv_hdr->hop = aodv_hdr->hop
v wxdddefgh fijkkhgddd

}

Figure 5.6. Source code of Error#3

ERROR#3 was detected on Node 0 when we increased the size of WSN to 150 Z1

motes. On the one hand, replaying of Node 0, however, found no error in the program.

On the other hand, there was no message to back trace to other nodes. Hence we

have C5 discussed in Section 5.2, and message tracing must start from Node 1, where

a RREQ message is sent. The error source was found when we replayed a node

that was 5 hops away from Node 1. In this AODV implementation, the maximum

hops for a broadcasted RREQ message is set to 10. Based on our deployed WSN

size, the number of hops between Node 1 and Node 0 (i.e. the base-station) is less

than 10. If the hop number is increased correctly (i.e., one for each hop), then

the RREQ message that is to search for a routing path, can be received by Node

0 and the path can be established successfully. However, as Figure 5.6 shows, the

number of hops was mistakenly increased one more time when the RREQ message

was forwarded. As a result, the RREQ message expired at the fifth hop, which caused

the link establishment to fail. Note that ERROR#3 is successfully diagnosed with

7 nodes replayed, which is a much smaller number than the maximum replays that

may be needed in the worst replay order. In the worst possible order of the replay

74

sequence, all 67 nodes that are less than 5 hops away from the source node might be

replayed. Adding Node 0 and the node on which the error source is located, a total

of 69 nodes would be replayed in such a worst case.

75

6 RELATED WORK

6.1 Wireless Sensor Networks Software Debugging

Next are discussed the methods for error diagnosis and debugging for wireless

sensor networks.

Program analysis [37, 42–44] is widely used for wireless sensor network error de-

tection. Model checking [45–47] is one of the main approaches for error detection in

distributed systems. The essential idea is that given a system design/implementation

and a property which should be satisfied by that system, by systematically checking

all possible execution paths, a model checker either outputs YES if the property can

be maintained by the system or generates a counterexample otherwise. Theoreti-

cally, model checking should explore the entire state-spaces in a controlled environ-

ment. However, for large programs the state-explosion problem becomes a fundamen-

tal problem in applying model checking. To combat this problem, researchers have

investigated reducing techniques to control the state explosion, such as symmetry re-

duction [48] and partial-order reduction [49]. Moreover, to explore fully the behavior

of large programs using practical resources, e.g., time and memory, heuristics are also

introduced in model checking, particularly depth-bounding and context-bounding.

Depth-bounding [37,50] limits the state search within a pre-defined number of steps,

while context-bounding [51] distinguishes between preempting and non-preempting

context switches and bounds the number of preempting context switches. However,

model checking has two main limitations. On the one hand, a networked embedded

system reacts to events whose timing is difficult to predict or specify at the time of the

program development. Furthermore, the errors that have been detected in the labora-

76

tory may significantly differ from the errors emerging in the real deployment because

of the different conditions. Due to the dynamic and complicated WSN application, it

is difficult and sometimes infeasible to let the controlled environment precisely reflect

the real running situation, and errors often exist in the network after deployment. On

the other hand, even by applying the reducing or heuristic techniques, the scalability

of model checking still becomes an issue. In general, model checking handles the

WSN with small number of sensor nodes. However, in the real application, tens of

hundreds of sensor nodes are used and some errors can not manifest themselves when

the WSN is trivial. For example, one of our experiments shows that an error related

to calculate the number of hops incorrectly was detected in a WSN with 150 sensor

nodes while was hidden in a WSN with only 30 sensor nodes.

Simulation/emulation [38,52–55] offers considerable flexibility but often takes sig-

nificantly more time than the direct execution. Another factor to consider is that the

simulated cases may not be sufficiently extensive to catch errors that may happen

during the real operation. The simulated operation environment may also be quite

different from the operational environment.

Interactive debugging [40,56,57] allows programmers to interact with sensor nodes

by sending commands. The set of commands usually includes those which set break

points, watch points, and initiate step-by-step tracing. This methodology works par-

ticularly well if the programmer already knows what kind of errors will happen and

where the places to look are. Otherwise, the step-by-step execution can be quite

slow and tedious, with no guarantee that the anticipated error will surface in the

debugging mode. In other circumstances, especially when the number of motes to be

debugged simultaneously is large, it seems much more convenient to have execution

traces ready when an error is detected.

77

Run-time logging [2,3,58–62] has gained increased importance recently. The crit-

ical questions encountered when adopting this approach include what kind of errors

should be monitored, where and how to log information for later debugging, and

how to analyze the logged information necessary to find out the error cause. Among

recent efforts, Sympathy [60] focuses on data-collection applications. The metrics

generated by each node are sent to a data sink, and a decision tree is applied to the

collected data to find the failures. TinyTrace [61] implements an efficient approach to

trace intraprocedural and interprocedural control-flow of all interleaving concurrent

events. Dustminer [3] is a tool for uncovering bugs in networked sensing applications

due to nondeterministic and incorrect interactions between different nodes. This tool

collects a sequence of events and uses data mining techniques to recognize abnormal

behaviors. PAD [2] is a light-weight packet marking scheme for collecting necessary

hints, and it uses a probabilistic inference model residing at the sink to capture unique

features of the sensor networks. Passive Distributed Assertions [59] allows the pro-

grammer to define certain properties of a distributed system. The state information

of each affected node is collected and analyzed through a separately-deployed sniffer

network. PD2 [58] focuses on the data flows generated by an application. It relates

the poor application performance to significant data losses or latencies of certain data

flows (called problematic data flows) as they go through the software modules on indi-

vidual nodes and through the network. However, these methods either focus on only

a single node or the logging information is too coarse to reproduce errors. Besides

software-only approaches, hardware-supported approach [63–65] is also used for run-

time logging. AVEKSHA [64] provides a hardware-software approach to trace events

at runtime in a sensor node without slowing down the application. The hardware-

supported approach can provide a low-overhead logging. However, it is generally

designed for a particular platform and for monitoring limited type of events. Com-

78

pared to our source-level tracing, the collected trace is hard to read and re-matched

to the source code.

6.2 Record and Replay

The methods for record and replay can be loosely classified into three categories:

software-only, hardware-only, and a hybrid approach. Given that our work is software-

only, we briefly survey the current software-only record-and-replay techniques in dis-

tributed and parallel systems.

One typical methodology is to record all possible factors (i.e., non-determinism)

that affect the program’s execution and then re-execute the program. Although this

approach is capable to replay the original execution perfectly , the overhead is huge.

For example, iDNA [66], developed by Microsoft, logs the memory instruction input

values and maintains a copy of user-level memory to identify system-call side-effects.

PinPlay [7], developed by Intel, is a framework for deterministic capture and repro-

ducible analysis of parallel programs. In addition, numerous works have made an

effort on to reduce the overhead of space and execution time [67, 68]. To lower the

production-run recording overhead further, another replay method, only recording

partial replay information, has been provided in recent year. PRES [8] records only

partial execution information called sketching. Based on the recorded sketching, it

navigates a non-deterministic execution space several times trying to reproduce er-

rors. After several replay attempts, PRES can then reproduce the error with 100%

probability on every subsequent replay for diagnostic purpose. ODR [6] addresses

the output-failure replay problem by using output-determinism rather than value-

determinism. That is, it generates a run that exhibits the same outputs as the

original rather than an identical replica in order to achieve a low-overhead recording

of multiprocessor runs.

79

However, the literature discussed above focuses on multiprocessors/multi-cores,

and their nature of non-determinism is quite different from that arising from dis-

tributed systems. The latter are due to factors such as interrupts, network delays,

and unreliable communication. Moreover, the replay techniques mentioned above

have mainly been used on resource-rich platforms, and cannot be used practically on

networked embedded systems which generally have severe resource limitations. For

networked embedded systems, Sundmark and Thane [45] took a snapshot of the of the

execution context checksums when an interrupt occurs during the recording phase.

Gracioli and Fischmeister [46] have adopted hierarchy approaches to record interrupt

behavior. Moreover, they have used the observed principle of return address cluster-

ing and a formal model for quantitative reasoning about the tracing mechanism to

tune their tracing mechanism. However, the above works only consider errors caused

by interrupts, and the result is not always accurate.

Additionally, with respect to instrumentation, the record-and-replay techniques

can also be separated into the source-level and the binary-level instrumentation. On

the one hand, most of the works discussed above used binary level instrumentation

due to the lack of source code for system or commercial packets. On the other

hand, source-level instrumentation offers a high portability across different devices

and an easy correlation to the original program, which provides an easier way to help

programmers locate error source. Wu et.al [47] have used an execution flow chat

to decide the non-deterministic information for distributed systems, and generated a

record program and a replay program at the same time. However, their work assumes

that the side effects of an unreachable function can be pre-acknowledged, which is

not always true in most distributed embedded systems.

80

6.3 System Behavior Synthesis

Our GPD algorithm utilizes WSN domain knowledge to obtain a message-efficient

decomposition. To our best knowledge, there are no prior studies or tools which

employ a similar approach. Our property definition benefits from prior work on au-

tomatic synthesis and macro programming. With automatic synthesis [69–72], the

behavior of the overall system is specified in a global manner, and then it is automat-

ically synthesized to obtain a distributed implementation from the specification. The

previous study focuses on the design of distributed systems, whose main difficulty

resides in the extremely high number of possible interactions between the concurrent

components of the system. In a macro-programming [73, 74] system, the user writes

a single program that specifies the global operations for the entire system, and the

framework automatically decomposes this into a set of micro-programs for each node.

Unfortunately, the results from these cited prior work cannot be directly utilized for

our purpose due to the several reasons presented next.

First, the automatic synthesis is applied in the system design phase. The decom-

position result describes local behaviors which can be implemented in different ways

(including different algorithms, data structures, variables, and so on) by different pro-

grammers. Our approach must deal with an existing application program and must

take domain-specific information in order for error detection to be feasible.

Second, in our work, the global property is defined at a high level by using abstrac-

tions, a method which is similar to macro programming. But instead of generating

a program running on individual nodes (which is the purpose of macro programming

system), our decomposition tool produces a piece of code to represent properties to

be checked.

In summary, our decomposition framework and its supporting tools represent a

new approach shown to be effective for error detection in wireless sensor networks.

81

7 CONCLUSION AND FUTURE WORK

Error detection and diagnosis for network embedded systems remain challenging tasks

due to their large number of computing entities, hardware resource constrains, and

inherited nondeterminism. In this dissertation, we take wireless sensor networks, a

special but representative type of network embedded systems, as a concrete example,

to investigate error detection and dignosis.

We have presented a domain specific language SensorC to specify properties and

a Global Property Decomposition (GDP) algorithm intergraded with our developed

SensorC compiler, which is responsible for decomposing the given properties and for

finding nodes to detect those properties locally. As our experiments have illustrated,

the approach can (a) reduce the error detection time; (b) reduce the communication

traffic for state information exchanges used in centralized error detection; and (c)

narrow down the range of collected trace used for off-line replay. In addition, the

global specification can also be intergraded with other verification approaches such

as model checking.

To help programmers reproduce and diagnosis errors, we have presented a

dependence-based source-level method for memory-efficient tracing and replay. The

tool developed based on our method is independent of the hardware platforms and

the cross compiler (except for a system library call to make certain memory accesses

atomic) and has been applied on WSNs consisting of TelosB motes and Z1 motes sepa-

rately. The experiments results show that our work has advanced a way to instrument

several test programs on WSN under the stringent program memory constraints by

using this proposed method, and we found and diagnosed realistic errors.

82

Our current experiments are performed on TinyOS-based WSN applications; how-

ever, the proposed methodology and tool can be applied to other networked embedded

systems if (a) the system domain information is acquired; and (b) the applications

satisfy the assumptions made in Chapter 2.

Despite the above efforts, there are still several problems to be solved in the

future research. First, in our current work, the routing information is useful for

property decomposition only if the WSN is stationary, and we have yet to define the

decomposition rules in a fine-gained for dynamic WSN. In addition, although we have

detected and located some realistic errors, we need to conduct more experiments so as

to apply the algorithm to additional WSN applications and other types of networked

embedded systems.

LIST OF REFERENCES

83

LIST OF REFERENCES

[1] Nicola Bombieri, Franco Fummi, and Davide Quaglia. System/Network design-
space exploration based on TLM for networked embedded systems. ACM Trans-
actions on Embedded Computing Systems, 9(4):37:1–37:32, April 2010.

[2] Kay Romer and Junyan Ma. PDA: Passive distributed assertions for sensor
networks. In Proceedings of the 2009 International Conference on Information
Processing in Sensor Networks, IPSN ’09, pages 337–348, Washington, DC, USA,
2009. IEEE Computer Society.

[3] Mohammad Maifi Hasan Khan, Hieu Khac Le, Hossein Ahmadi, Tarek F. Ab-
delzaher, and Jiawei Han. Dustminer: Troubleshooting interactive complexity
bugs in sensor networks. In Proceedings of the 6th ACM Conference on Embedded
Network Sensor Systems, SenSys ’08, pages 99–112, New York, NY, USA, 2008.
ACM.

[4] Xuezheng Liu, Zhenyu Guo, Xi Wang, Feibo Chen, Xiaochen Lian, Jian Tang,
Ming Wu, M. Frans Kaashoek, and Zheng Zhang. D3S: Debugging deployed
distributed systems. In Proceedings of the 5th USENIX Symposium on Networked
Systems Design and Implementation, NSDI ’08, pages 423–437, Berkeley, CA,
USA, 2008. USENIX Association.

[5] Alvin Cheung, Armando Solar-Lezama, and Samuel Madden. Partial replay of
long-running applications. In Proceedings of the 19th ACM SIGSOFT Sympo-
sium and the 13th European Conference on Foundations of Software Engineering,
ESEC/FSE ’11, pages 135–145, New York, NY, USA, 2011. ACM.

[6] Gautam Altekar and Ion Stoica. ODR: Output-deterministic replay for multicore
debugging. In Proceedings of the ACM SIGOPS 22nd Symposium on Operating
Systems Principles, SOSP ’09, pages 193–206, New York, NY, USA, 2009. ACM.

[7] Harish Patil, Cristiano Pereira, Mack Stallcup, Gregory Lueck, and James
Cownie. Pinplay: A framework for deterministic replay and reproducible analysis
of parallel programs. In Proceedings of the 8th Annual IEEE/ACM International
Symposium on Code Generation and Optimization, CGO ’10, pages 2–11, New
York, NY, USA, 2010. ACM.

[8] Soyeon Park, Yuanyuan Zhou, Weiwei Xiong, Zuoning Yin, Rini Kaushik, Kyu H.
Lee, and Shan Lu. PRES: Probabilistic replay with execution sketching on mul-
tiprocessors. In Proceedings of the ACM SIGOPS 22nd Symposium on Operating
Systems Principles, SOSP ’09, pages 177–192, New York, NY, USA, 2009. ACM.

[9] H. Thane, Daniel Sundmark, J. Huselius, and A. Pettersson. Replay debugging
of real-time systems using time machines. In Parallel and Distributed Processing
Symposium, 2003. Proceedings. International, page 8, 2003.

84

[10] Darren Dao, Jeannie Albrecht, Charles Killian, and Amin Vahdat. Live debug-
ging of distributed systems. In Proceedings of the 18th International Conference
on Compiler Construction: Held as Part of the Joint European Conferences on
Theory and Practice of Software, ETAPS 2009, CC ’09, pages 94–108, Berlin,
Heidelberg, 2009. Springer-Verlag.

[11] Cristian Zamfir, Gautam Altekar, George Candea, and Ion Stoica. Debug de-
terminism: The sweet spot for replay-based debugging. In Proceedings of the
13th USENIX Conference on Hot Topics in Operating Systems, HotOS’13, pages
18–18, Berkeley, CA, USA, 2011. USENIX Association.

[12] K. Romer and F. Mattern. The design space of wireless sensor networks. Wireless
Communications, IEEE, 11(6):54–61, 2004.

[13] Ning Xu, Sumit Rangwala, Krishna Kant Chintalapudi, Deepak Ganesan, Alan
Broad, Ramesh Govindan, and Deborah Estrin. A wireless sensor network for
structural monitoring. In Proceedings of the 2nd International Conference on
Embedded Networked Sensor Systems, SenSys ’04, pages 13–24, New York, NY,
USA, 2004. ACM.

[14] Makoto Suzuki, Shunsuke Saruwatari, Narito Kurata, and Hiroyuki Morikawa.
A high-density earthquake monitoring system using wireless sensor networks. In
Proceedings of the 5th International Conference on Embedded Networked Sensor
Systems, SenSys ’07, pages 373–374, New York, NY, USA, 2007. ACM.

[15] Andreas Hasler, Igor Talzi, Christian Tschudin, and Stephan Gruber. Wireless
sensor networks in permafrost research - concept, requirements, implementation
and challenges. In 9th International Conference on Permafrost, NICOP 2008,
2008.

[16] Kenan Casey, Alvin Lim, and Gerry Dozier. A sensor network architecture for
tsunami detection and response. International Journal of Distributed Sensor
Networks, 4(1):28–43, January 2008.

[17] K. K. Tan, S. N. Huang, Y. Zhang, and T. H. Lee. Distributed fault detection
in industrial system based on sensor wireless network. Computer Standards &
Interfaces, 31(3):573–578, March 2009.

[18] Arunanshu Mahapatro and Pabitra Mohan Khilar. Fault diagnosis in wire-
less sensor networks: A survey. Communications Surveys Tutorials, IEEE,
15(4):2000–2026, 2013.

[19] http://www.eol.ucar.edu/isf/facilities/isa/internal/CrossBow/DataSheets/mica2.pdf.

[20] http://www.openautomation.net/uploadsproductos/micaz datasheet.pdf.

[21] http://www.willow.co.uk/TelosB Datasheet.pdf.

[22] http://www.zolertia.com/products/z1.

[23] http://www.tinynode.com/.

[24] Leslie Lamport. The temporal logic of actions. ACM Transactions on Program-
ming Languages and Systems, 16(3):872–923, May 1994.

85

[25] G.S. Tseitin. On the complexity of derivation in propositional calculus. In JrgH.
Siekmann and Graham Wrightson, editors, Automation of Reasoning, Symbolic
Computation, pages 466–483. Springer Berlin Heidelberg, 1983.

[26] Seth Koehler, John Curreri, and Alan D. George. Performance analysis chal-
lenges and framework for high-performance reconfigurable computing. Parallel
Computing, 34(4-5):217–230, May 2008.

[27] Michael Barr and Anthony Massa. Programming Embedded Systems. O’Reilly
Media, Inc, second edition, 2006.

[28] http://www.tinyos.net/community.html.

[29] David Gay, Philip Levis, Robert von Behren, Matt Welsh, Eric Brewer, and
David Culler. The nesC language: A holistic approach to networked embedded
systems. ACM SIGPLAN Notices, 38(5):1–11, May 2003.

[30] Philip Levis, Sam Madden, Joseph Polastre, Robert Szewczyk, Alec Woo, David
Gay, Jason Hill, Matt Welsh, Eric Brewer, and David Culler. TinyOS: An operat-
ing system for sensor networks. In Ambient Intelligence, pages 115–148. Springer
Berlin Heidelberg, 2005.

[31] C.E. Perkins and E.M. Royer. Ad-hoc on-demand distance vector routing. In
Mobile Computing Systems and Applications, 1999. Proceedings. WMCSA ’99,
pages 90–100, February 1999.

[32] Madanlal Musuvathi. CMC: A Model Checker for Network Protocol Implemen-
tations. PhD thesis, Stanford University, 2004.

[33] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein.
Introduction to Algorithms, Third Edition. The MIT Press, 3rd edition, 2009.

[34] GCC, the GNU compiler collection. http://gcc.gnu.org.

[35] http://www2.engr.arizona.edu/˜junseok/AODV.html.

[36] The collection tree protocol.
http://www.tinyos.net/tinyos-2.x/doc/html/tep123.html.

[37] Peng Li and John Regehr. T-check: Bug finding for sensor networks. In Proceed-
ings of the 9th ACM/IEEE International Conference on Information Processing
in Sensor Networks, IPSN ’10, pages 174–185, New York, NY, USA, 2010. ACM.

[38] Philip Levis, Nelson Lee, Matt Welsh, and David Culler. TOSSIM: Accurate
and scalable simulation of entire tinyos applications. In Proceedings of the 1st
International Conference on Embedded Networked Sensor Systems, SenSys ’03,
pages 126–137, New York, NY, USA, 2003. ACM.

[39] Mark Weiser. Program slicing. In Proceedings of the 5th International Conference
on Software Engineering, ICSE ’81, pages 439–449, Piscataway, NJ, USA, 1981.
IEEE Press.

[40] G. Tolle and D. Culler. Design of an application-cooperative management system
for wireless sensor networks. In Proceeedings of the Second European Workshop
on Wireless Sensor Networks, pages 121–132, 2005.

86

[41] David Binkley. Precise executable interprocedural slices. ACM Letters on Pro-
gramming Languages and Systems, 2(1-4):31–45, March 1993.

[42] Nguyet T. M. Nguyen and Mary Lou Soffa. Program representations for test-
ing wireless sensor network applications. In Workshop on Domain Specific Ap-
proaches to Software Test Automation, DOSTA ’07, pages 20–26, New York, NY,
USA, 2007. ACM.

[43] Zhifeng Lai, S. C. Cheung, and W. K. Chan. Inter-context control-flow and data-
flow test adequacy criteria for nesc applications. In Proceedings of the 16th ACM
SIGSOFT International Symposium on Foundations of Software Engineering,
SIGSOFT ’08/FSE-16, pages 94–104, New York, NY, USA, 2008. ACM.

[44] Nupur Kothari, Todd Millstein, and Ramesh Govindan. Deriving state machines
from tinyos programs using symbolic execution. In Proceedings of the 7th Inter-
national Conference on Information Processing in Sensor Networks, IPSN ’08,
pages 271–282, Washington, DC, USA, 2008. IEEE Computer Society.

[45] D. Sundmark and H. Thane. Pinpointing interrupts in embedded real-time sys-
tems using context checksums. In IEEE International Conference on Emerging
Technologies and Factory Automation, ETFA 2008, pages 774–781, September
2008.

[46] Giovani Gracioli and Sebastian Fischmeister. Tracing interrupts in embedded
software. ACM SIGPLAN Notices, 44(7):137–146, June 2009.

[47] Ming Wu, Fan Long, Xi Wang, Zhilei Xu, Haoxiang Lin, Xuezheng Liu, Zhenyu
Guo, Huayang Guo, Lidong Zhou, and Zheng Zhang. Language-based replay
via data flow cut. In Proceedings of the 18th ACM SIGSOFT International
Symposium on Foundations of Software Engineering, FSE ’10, pages 197–206,
New York, NY, USA, 2010. ACM.

[48] Alice Miller, Alastair Donaldson, and Muffy Calder. Symmetry in temporal logic
model checking. ACM Computing Surveys, 38(3), 2006.

[49] Patrice Godefroid. Partial-Order Methods for the Verification of Concurrent
Systems: An Approach to the State-Explosion Problem. Springer-Verlag New
York, Inc., Secaucus, NJ, USA, 1996.

[50] Stuart J. Russell and Peter Norvig. Artificial intelligence: A modern approach.
Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 1995.

[51] Madanlal Musuvathi and Shaz Qadeer. Iterative context bounding for systematic
testing of multithreaded programs. In Proceedings of the 2007 ACM SIGPLAN
Conference on Programming Language Design and Implementation, PLDI ’07,
pages 446–455, New York, NY, USA, 2007. ACM.

[52] Lewis Girod, Nithya Ramanathan, Jeremy Elson, Thanos Stathopoulos, Martin
Lukac, and Deborah Estrin. Emstar: A software environment for developing
and deploying heterogeneous sensor-actuator networks. ACM Transactions on
Sensor Networks, 3(3), August 2007.

[53] Ye Wen, Rich Wolski, and Selim Gurun. S2DB: A novel simulation-based debug-
ger for sensor network applications. In Proceedings of the 6th ACM and IEEE
International Conference on Embedded Software, EMSOFT ’06, pages 102–111,
New York, NY, USA, 2006. ACM.

87

[54] J. Polley, D. Blazakis, J. McGee, D. Rusk, and J.S. Baras. Atemu: A fine-grained
sensor network simulator. In First Annual IEEE Communications Society Con-
ference on Sensor and Ad Hoc Communications and Networks, IEEE SECON
2004, pages 145–152, 2004.

[55] B.L. Titzer, D.K. Lee, and J. Palsberg. Avrora: Scalable sensor network simu-
lation with precise timing. In Fourth International Symposium on Information
Processing in Sensor Networks, IPSN 2005, pages 477–482, 2005.

[56] Jing Yang, Mary Lou Soffa, Leo Selavo, and Kamin Whitehouse. Clairvoyant: A
comprehensive source-level debugger for wireless sensor networks. In Proceedings
of the 5th International Conference on Embedded Networked Sensor Systems,
SenSys ’07, pages 189–203, New York, NY, USA, 2007. ACM.

[57] Kamin Whitehouse, Gilman Tolle, Jay Taneja, Cory Sharp, Sukun Kim, Jaein
Jeong, Jonathan Hui, Prabal Dutta, and David Culler. Marionette: Using RPC
for interactive development and debugging of wireless embedded networks. In
Proceedings of the 5th International Conference on Information Processing in
Sensor Networks, IPSN ’06, pages 416–423, New York, NY, USA, 2006. ACM.

[58] Zhigang Chen and K.G. Shin. Post-Deployment performance debugging in wire-
less sensor networks. In Real-Time Systems Symposium, RTSS 2009, 30th IEEE,
pages 313–322, 2009.

[59] Kebin Liu, Mo Li, Xiaohui Yang, and Mingxing Jiang. Passive diagnosis for
wireless sensor networks. In Proceedings of the 6th ACM Conference on Embedded
Network Sensor Systems, SenSys ’08, pages 371–372, New York, NY, USA, 2008.
ACM.

[60] Nithya Ramanathan, Kevin Chang, Rahul Kapur, Lewis Girod, Eddie Kohler,
and Deborah Estrin. Sympathy for the sensor network debugger. In Proceedings
of the 3rd International Conference on Embedded Networked Sensor Systems,
SenSys ’05, pages 255–267, New York, NY, USA, 2005. ACM.

[61] Vinaitheerthan Sundaram, Patrick Eugster, Xiangyu Zhang, and Vamsidhar Ad-
danki. Diagnostic tracing for wireless sensor networks. ACM Transactions on
Sensor Networks, 9(4):38:1–38:41, July 2013.

[62] Veljko Krunic, Eric Trumpler, and Richard Han. NodeMD: Diagnosing node-level
faults in remote wireless sensor systems. In Proceedings of the 5th International
Conference on Mobile Systems, Applications and Services, MobiSys ’07, pages
43–56, New York, NY, USA, 2007. ACM.

[63] K. Shankar and R. Lysecky. Control focused soft error detection for embedded
applications. Embedded Systems Letters, IEEE, 2(4):127–130, 2010.

[64] Matthew Tancreti, Mohammad Sajjad Hossain, Saurabh Bagchi, and Vijay
Raghunathan. Aveksha: A hardware-software approach for non-intrusive trac-
ing and profiling of wireless embedded systems. In Proceedings of the 9th ACM
Conference on Embedded Networked Sensor Systems, SenSys ’11, pages 288–301,
New York, NY, USA, 2011. ACM.

[65] Travis Goodspeed. Goodfet. http://goodfet.sourceforge.net, August 2011.

88

[66] Sanjay Bhansali, Wen-Ke Chen, Stuart de Jong, Andrew Edwards, Ron Murray,
Milenko Drinić, Darek Mihočka, and Joe Chau. Framework for instruction-
level tracing and analysis of program executions. In Proceedings of the 2nd
International Conference on Virtual Execution Environments, VEE ’06, pages
154–163, New York, NY, USA, 2006. ACM.

[67] Joseph Tucek, Shan Lu, Chengdu Huang, Spiros Xanthos, and Yuanyuan Zhou.
Triage: Diagnosing production run failures at the user’s site. ACM SIGOPS
Operating Systems Review, 41(6):131–144, October 2007.

[68] Marek Olszewski, Jason Ansel, and Saman Amarasinghe. Kendo: Efficient de-
terministic multithreading in software. ACM SIGPLAN Notices, 44(3):97–108,
March 2009.

[69] Alin Stefanescu. Automatic synthesis of distributed systems.
http://www.fmi.uni-stuttgart.de/szs/publications/stefanan/thesis-online.pdf,
2006.

[70] Sebastian Uchitel, Greg Brunet, and Marsha Chechik. Behaviour model syn-
thesis from properties and scenarios. In Proceedings of the 29th International
Conference on Software Engineering, ICSE ’07, pages 34–43, Washington, DC,
USA, 2007. IEEE Computer Society.

[71] Ilaria Castellani, Madhavan Mukund, and P.S. Thiagarajan. Synthesizing dis-
tributed transition systems from global specifications. In Foundations of Software
Technology and Theoretical Computer Science, volume 1738 of Lecture Notes in
Computer Science, pages 219–231. Springer Berlin Heidelberg, 1999.

[72] M. Kloetzer and C. Belta. Distributed implementations of global temporal logic
motion specifications. In IEEE International Conference on Robotics and Au-
tomation, pages 393–398, May 2008.

[73] Timothy W. Hnat, Tamim I. Sookoor, Pieter Hooimeijer, Westley Weimer, and
Kamin Whitehouse. Macrolab: A vector-based macroprogramming framework
for cyber-physical systems. In Proceedings of the 6th ACM Conference on Em-
bedded Network Sensor Systems, SenSys’08, pages 225–238, New York, NY, USA,
2008. ACM.

[74] Tamim Sookoor, Timothy Hnat, Pieter Hooimeijer, Westley Weimer, and Kamin
Whitehouse. Macrodebugging: Global views of distributed program execution. In
Proceedings of the 7th ACM Conference on Embedded Networked Sensor Systems,
SenSys ’09, pages 141–154, New York, NY, USA, 2009. ACM.

VITA

89

VITA

Man Wang was born in Xinxiang, Henan Province, China, in 1983. She gradu-

ated from the High School attached to Henan Normal University and entered Fudan

University in 2001. In 2005, she received her B.S degree from the Computer Sci-

ence Department in Fudan University and entered Tsinghua University. After she

received her M.S. degree from the Computer Science and Engineering Department in

Tsinghua University in 2008, she then joined Professor Zhiyuan Li’s research group

in Purdue University to pursue her Ph.D. degree. During her Ph.D. program her

research focused mainly on compiler techniques, and error detection and diagnosis for

distributed networked systems.

	Purdue University
	Purdue e-Pubs
	Fall 2013

	Dependence-Based Source Level Tracing and Replay for Networked Embedded Systems
	Man Wang
	Recommended Citation

	thesis.dvi

