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ABSTRACT

Wu, Han Ph.D., Purdue University, December 2013. Statistical Models for Gene and
Transcripts Quantification and Identification Using RNA-Seq Technology. Major
Professor: Michael Y. Zhu.

RNA-Seq has emerged as a powerful technique for transcriptome study. As much

as the improved sensitivity and coverage, RNA-Seq also brings challenges for data

analysis. The massive amount of sequence reads data, excessive variability, uncer-

tainties, and bias and noises stemming from multiple sources all make the analysis

of RAN-Seq data difficult. Despite much progress, RNA-Seq data analysis still has

much room for improvement, especially on the quantification of gene and transcript

expression levels. The quantification of gene expression level is a direct inference

problem, whereas the quantification of the transcript expression level is an indirect

problem, because the label of the transcript each short read is generated from is

missing. A number of methods have been proposed in the literature to quantify the

expression levels of genes and transcripts. Although being effective in many cases,

these methods can become ineffective in some other cases, and may even suffer from

the non-identifiability problem. A key drawback of these existing methods is that

they fail to utilize all the formation in the RNA-Seq short read count data. In this

thesis, we propose three model frameworks to address three important questions in

RNA-Seq study. First, we propose to use finite Poisson mixture models (PMI) to

characterize base pair-level RNA-Seq data and further quantify gene expression lev-

els. Finite Poisson mixture models combine the strength of fully parametric models

with the flexibility of fully nonparametric models, and are extremely suitable for mod-

eling heterogeneous count data such as what we observed from RNA-Seq experiments.

A unified quantification method based on the Poisson mixture models is developed to

measure gene expression levels. Second, based on the Poisson mixture model frame-



x

work, we further proposed the convolution of Poisson mixture models (CPM-Seq)

to quantify the expression levels of transcripts. The maximum likelihood estimation

method equipped with the EM algorithm is used to estimate model parameters and

quantify transcript expression levels. Third, a penalized convolution Poisson mixture

model (penCPM-Seq) is proposed to shrink transcripts with small expression levels

to zero and to select transcripts that have high expression levels from the candidate

set. Both simulation studies and real data applications have demonstrated the ef-

fectiveness of PMI, CPM-Seq, and penCPM-Seq. We will show that they produced

more accurate and consistent quantification results than existing methods. Thus,

we believe that finite Poisson mixture models provide a flexible framework to model

RNA-Seq data, and methods developed based on this thesis have the potential to

become powerful tools for RNA-Seq data analysis.
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1. INTRODUCTION

The central dogma of molecular biology explains the process of how DNAs are tran-

scribed to RNAs, which are further translated to proteins. Gene stores genetic in-

formation, and the genetic information is copied to RNA via transcription, which

is the first step of gene expression. During this process, segments of DNA, known

as exons, are copied to make the RNA. Each resulting molecule is referred to as a

transcript. The same gene can encode multiple transcripts or proteins through the

process of alternative splicing. The second step in central dogma of molecular biology

is translation, during which mRNA uses the genetic information to produce protein

via translation. Thus, it is of great importance to understand the process of both

transcription and translation. In particular, the first step to understanding the cen-

tral dogma of molecular biology is to understand transcription because that is where

most of the regulation of gene expression occurs.

1.1 RNA-Seq Technology

Overview of the Technology

The rapid development of next generation sequencing (NGS) technologies has

revolutionized the way genomic research can be conducted. Among all successful

applications of the NGS technologies, RNA-Seq has become an important tool for

transcriptome profiling [1]. The transcriptome is the complete set of transcripts in a

cell under any given developmental stage or physiological condition. Comprehensively

detecting, cataloging and quantifying all of the components in the transcriptome

are grand challenges in molecular biology and functional genomics. For the past 15

years, microarray has been the technology of choice for studying transcriptome [2,3].
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Despite that much insight has been gained from microarray studies, factors such as the

requirement of genomic sequence information when designing probes and substantial

noise caused by cross-hybridization limited the application of microarray in more

in-depth study of the transcriptome.

In RNA-Seq experiments, a population of RNA is converted to a library of cDNA

fragments with adaptors attached to one end. Each molecule, after amplification, is

then sequenced using one of the NGS technologies. Following sequencing, the resulting

reads are aligned to either the reference genome or known transcripts to produce a

genome-scale transcriptional profile. Please see Figure 1.1 for an illustration of the

RNA-Seq experiment. Compared to microarray, RNA-Seq is able to provide more

information about the transcriptome, and possesses a list of advantages discussed

below.

High resolution. The resolution of microarray expression measure is unable to

go beyond the probe level. In contrast, the majority of reads generated from NGS

instruments maps to the reference genome with single base resolution. Therefore,

expression measure can be evaluated at single-base resolution in RNA-Seq. This

makes it possible to locate the transcript’s start and end, discover new transcripts,

and identify alternative splicing and translocation events with RNA-Seq.

High dynamic range. In microarray, gene expression levels are represented by

florescent intensity values that are known to have a limited range of signal detection.

In RNA-Seq, transcript expression levels are typically evaluated using a read census

approach that is known to have a much wider dynamic range.

Knowledge of genome sequences. In RNA-Seq, there is no need to design probes,

hence, the knowledge of the target genome sequences is no longer needed. RNA-Seq

allows the discovery of novel transcripts that have not yet been annotated, and it

can also be applied to study non-model organisms for which no reference genome is

available.

Therefore, RNA-Seq is able to provide a more accurate overall picture of the

transcriptome and leads to a variety of improvements in transcriptome study over
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mRNA Sample

mRNA Fragments

cDNA Fragments

Size Selection
Amplification and

Sequence

Mapping Back to
Reference Genome

Figure 1.1. Flow of RNA-Seq Experiment

microarray. The improvements include better detection in differential expression in

multiple samples, capability to discover novel transcripts, capability to discover and

quantify alternative splicing events, capability to discover variants such as single

nucleotide polymorphism (SNPs), insertions, deletions and translocation.

Despite the advantages and promises of RNA-Seq, RNA-Seq data are subject to

a variety of sources of variation and bias. Similar to raw microarray data, RNA-Seq

short reads data need to be de-noised and normalized before they can be used for

downstream transcriptome analysis. An immediate challenge is how to use RNA-Seq
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short reads to quantify the transcriptome or gene expression levels. The accurate

quantification of transcript or gene expression levels is the basis for almost all fur-

ther analysis of the transcriptome. Mortazavi et al. proposed to use the number of

reads per kilobase of a transcript per million mapped reads (RPKM) to measure the

transcript’s expression level [4]. The RPKM method is intuitive and takes the length

of a transcript and the total number of short reads received by the transcript into

consideration, but it ignores the excessive bias and variability demonstrated in RNA-

Seq short reads. From the perspective of statistical modeling, the RPKM method

essentially assumes that read counts in a transcript are uniformly distributed and

follow a Poisson distribution of constant intensity rate, and further uses the estimate

of the intensity rate as the transcript’s expression measurement. However, it has been

found that the assumptions of uniformity and constant intensity do not hold in real

RNA-Seq data, and the simple Poisson distribution fits real data poorly. The RPKM

measure may not provide the most accurate quantification of transcript expression

level. Therefore, more sophisticated models and methods are needed to better charac-

terize RNA-Seq data, separate signal and noise, and provide consistent and accurate

quantification of transcript expression levels.

1.2 RNA-Seq Data Preprocessing

1.2.1 Quality Control

As discussed before, the short fragments are sequenced to produce millions of

short reads. Each read contains a series of adenine (A), guanine (G), cytosine (C), or

thymine (T), and a Phred quality score, encoded using ASCII codes, is assigned to

each nucleotide base call. The quality score is a direct indication of the accuracy of

the automatic base calling method, and can be used to filter out erroneous sequenced

reads.

The quality score of each base pair is defined as Q = −10 log10(P ), where P is the

base-calling error probability. For example, a quality score of 30 results in a 99.9%
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base-calling accuracy. In other words, average one base pair out of 1000 is incorrectly

called. Usually, the Next Generation sequencing machine produces FASTA/FASTQ

files, and in practice the quality of each read in the FASTA/FASTQ file should be

checked before mapping the reads to the reference genome. To filter out reads that

do not pass the minimum quality requirement or trim the base pairs with low quality

scores, open source command line toolkit such as FASTA-Toolkit can be used.

1.2.2 Mapping

Mapping a large number of reads against the reference genome can be difficult.

Efficient algorithms, such as BWA [5] or Tophat [6], uses either seed based method or

Burrows-Wheeler transformation based method. Maq is one of the methods that uses

spaced seed index. Although the gain is the mapping efficiency, it requires more than

50 gigabytes of memory. On the other hand, Burrows-Wheeler transformation based

method is more popular nowadays because its efficiency and speed. For example,

we can use bowtie to map non-junction reads. Bowtie [7] first indexes the reference

genome and stores a memory-efficient representation of the reference annotation. The

“indexing” allows one to rapidly find shorter sequences embedded within it.

Each read obtained the sequencing experiment is mapped base pair by base pair

from one end to the other against the indexed reference representation. As a result,

a large portion of the reads can be mapped directly and efficiently to the reference

genome. However, one disadvantage of Bowtie and Maq is that they do not align

reads that are generated from exon-exon junctions. As a result, some reads cannot

be mapped to a continuous region on the reference genome because of alternative

splicing. Taking the possibility of such biological process into consideration, Tophat

is designed to map junction reads across exon-exon junctions [6].
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1.2.3 Single-end and Paired-end Reads

The Illumina platform is able to generate both single-end reads and paired-end

reads. Paired-end reads are more popularly used because they contain a lot of infor-

mation about the spliced junctions. For example, a single-end read which contains

100 base pairs would only give relevant information about 100 base pairs. However,

a read pair with 50 base pairs on each end could give more information about the

fragments that are longer then 100 base pairs. The benefit of the paired-end reads

is two-fold. First, paired-end reads are able to measure longer fragments without

actually sequence all the base pairs in the fragments. The sequenced long fragments

can be helpful in de novo assembly of the new species and reduce the number of

ambiguous reads that map to different locations on the reference genome. Second,

paired-end reads can potentially be used to measure the gene boundaries.

1.3 Bias and Variation in RNA-Seq Experiments

Recent studies have demonstrated that various types of variation and bias affect

the outcome of RNA-Seq experiments. The understanding of the sources of varia-

tion and bias in RNA-Seq experiments is crucial for properly normalizing RNA-Seq

data and quantifying transcript expression levels. Sources of variation and bias in

RNA-Seq experiments can be classified into two major categories. The first category

includes variations and biases that come from steps or protocols in a RNA-Seq experi-

ment, which are referred to as experimental sources; and the second category includes

variations and biases from the RNA sample that a RNA-Seq experiment uses, which

are referred to as biological sources. In addition to these two categories, other sources

may also exist.
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1.3.1 Experimental Sources

A number of platforms of NGS technologies are currently available for conduct-

ing RNA-Seq experiments. Although these platforms share the same basic principles,

technological details can differ. For example, the SOLiD/454 platforms amplify cDNA

fragments using emulsion PCR, while the Illumina platform conducts amplification

through a unique bridged amplification reaction, and the Helicos platform does not re-

quire an amplification step. Therefore, different platforms may have different sources

of variation and bias. The discussion below focuses on the Illumina platform only.

Library preparation. The Illumina library preparation procedure first includes a

fragmentation step in which the mRNA molecules are fragmented into small pieces.

The mRNA pieces undergo a transcription step to generate a pool of cDNA fragments,

which then go through size selection, DNA repair, end polishing and platform-specific

adaptor ligation steps, resulting in a library of cDNA fragments that can then be

sequenced by a sequencing machine. There are two potential factors that may produce

variation and bias in the outcome. First, because 5’ bias and mRNA secondary

structures influence the primer binding sites, the synthesized cDNA fragments do

not have a uniform coverage on the entire transcript. Second, DNA purification and

end-polishing typically result in sample losses and limited throughput [8].

PCR amplification. Polymerase Chain Reaction (PCR) is known to produce un-

even amplification of multiple templates in parallel. First, the products after the

library preparation step have reduced complexity compared with the original mRNA

pool, and this unevenness will be amplified. Second, not all transcripts amplify with

the same efficiency; and therefore, some transcripts are excessively amplified while

others remain essentially unchanged. Third, there will be PCR duplicates, which fur-

ther confuse the resulting product [9]. In addition, PCR may suffer from the sample

contamination and troubleshooting problems.

Base calling. The Illumina Genome Analyzer is based on parallel, fluorescence-

based readout of millions of immobilized sequences [10]. Different base calling meth-
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ods were compared in the literature, and it was found that they can lead to differ-

ent numbers of mapped reads [11]. These reads are unevenly distributed across the

genome, indicating that systematic bias can be caused by base calling methods.

Short reads mapping. After sequencing is completed, an important task is to map

the large amount of short reads to the reference genome. This step can introduce

variation to the outcome. First, different mapping software packages usually lead to

different results. Second, polymorphism, reference sequence errors, and sequencing

errors require that mismatches and indels be allowed in the mapping step, which

will lower our confidence in the mapping result. Furthermore, the number of reads

produced is quite large and requires a mapping program to have high efficiency. As

a consequence, the accuracy of the mapping program may be compromised.

1.3.2 Biological Sources

The RNA sample used in a RNA-Seq experiment can also introduce variation and

bias into the results. The variation and bias from the RNA sample can be classified

into two types. The first type is the bias caused by the local sequence composition

of a transcript. For example, GC-content [12] and local secondary structures [13] are

two identified sources for causing bias and variation in RNA-Seq short reads data.

Furthermore, genomic regions differ in terms of their sequence complexity. Regions

with more dense repetitive elements are less likely to receive reads. On the other hand,

regions with higher complexity tend to have higher reads counts. The second type

includes variations that come from the dynamic nature of biological processes as well

as the diversity of biological conditions. The transcriptome is dynamic and transient,

thus much more complicated than the mostly static genome. Due to the biological

variations, transcripts composition of the same cell line from different individuals can

vary, and transcripts of the same cell line but at different stages of cell development

can also vary.
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1.3.3 Other Sources

Some other factors could further confuse the results from RNA-Seq experiments.

The first is the sequencing depth of an experiment. The sequencing depth refers to

the total number of all sequenced reads in an RNA-Seq experiment. On one hand, it

is directly related to the cost of an RNA-Seq experiment. The deeper the sequencing

depth, the higher the cost. On the other hand, it is related to the coverage of an RNA-

Seq experiment. Deeper sequencing depth would result in higher coverage. McIntyre

found that approximately 64% exons can be detected for an experiment with 5-7

million reads per lane, and the percentage increases to 84% for an experiment with

approximately 27 million reads [14]. Data from a lower coverage experiment suffer

from higher background noise. The second is the incompleteness and errors in the

reference genome and transcript annotations. For instance, although a large number

of alternative splicing events have been discovered and cataloged, the collection is

still incomplete [15].

1.4 Features of RNA-Seq Read Counts Data

After the short reads generated from a RNA-Seq experiment are mapped back

to the genome, they need to be further summarized for subsequent analysis. In this

chapter, we focus on the summarization at the base pair level. The count of reads at a

base pair is defined to be the number of reads that start at the base pair. The resulting

data is referred to as the base-level reads count data. Let i be the index for the ith

transcript and j be the index for the jth base pair position in this transcript. Suppose

the length of transcript i is ni. For 1 ≤ j ≤ ni, Yij denotes the reads count at base pair

j of transcript i. In an ideal RNA-Seq experiment free of the sources of variation and

bias discussed in Section 1.3, Yi1, . . . , Yini
are independent and identically distributed

as Poisson or other discrete distributions. This is however hardly the case in real life

RNA-Seq base-level read count data as demonstrated below.
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Figure 1.2. Plot of reads counts variance versus mean. (The x-axis is
for the mean of reads counts of a transcript and the y-axis is for the
variance of reads counts of the transcript. The solid line is for y=x.)

Over-dispersion. If the reads counts in a transcript are Poisson random variables,

we would expect their mean and variance to be the same. However, it is not the

case, and over-dispersion has been observed in real reads count data [16]. Figure 1.2

shows the plot of variance against mean of read counts in 500 transcripts from a real

RNA-Seq data we analyze in Section 2.4.1. (Transcripts with variance larger than

300 are not included in the figure.) Each dot corresponds to a transcript, and the

dotted line represents the ideal case, where the mean and variance are equal to each

other. Clearly, the variances are much larger than the means, therefore models more

sophisticated than the simple Poisson distribution are needed to characterize such

highly dispersed count data.

Non-uniformity. Reads from the same transcript are not uniformly distributed

within a transcript [16, 17]. It has been observed that certain regions in a transcript
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Figure 1.3. Plot of non-uniformity of reads count data of a transcript.
(The x-axis is for the base pair positions of this transcript. The y-axis
is for the counts at the base pairs.)

do not receive any reads or just receive a few reads, whereas other regions receive much

more reads than the average. Therefore, there may exist a local sequence composition

bias. Figure 1.3 demonstrates such a transcript with some base pairs heavily covered

while others barely or uncovered by reads, demonstrating non-uniformity in reads

count coverage.

GC-content bias. GC-content (or Guanine-Cytosine content) refers to the per-

centage of nitrogenous bases on a DNA molecule that are either guanine or cytosine.

The count of reads a genomic region receives is found to be dependent on the GC

content of the region. The association between GC-content and the reads counts of
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a genomic region is complicated and nonlinear [12], as demonstrated in Figure 1.4.

The plot shows a genomic region will, on average, have low reads count when the

GC-content of this region is either too low or too high.

Transcript length bias. In addition to overdispersion, non-uniformity, and GC-

content bias, other types of bias patterns are also reported in the literature, including

transcript length bias [18] [17], sequence preference [16], and sequence positional



13

6.0 6.5 7.0 7.5 8.0 8.5

−
1

.5
−

1
.0

−
0

.5

log(length)

lo
g

(r
p

km
)

Figure 1.5. Plot of log median RPKMmeasure versus log median tran-
script length. (4964 transcripts are divided into 49 groups according
to their transcript lengths. Each group contains 100 transcripts. The
median RPKM measure of each group in log scale is plotted against
the median transcript length in log scale.)



14

bias [19]. Figure 1.5 shows the relationship between the RPKM measures and the

lengths of transcripts, which might be due to length bias.

The variations and biases in RNA-Seq reads count data call for proper normaliza-

tion methods. Some existing model-based methods are briefly reviewed in the next

section.

1.5 Normalization Method

The normalization of RNA-Seq data is a critical step in the analysis to ensure

accurate inference of gene expression levels and other downstream analyses. The

simplest method is the reads per kilobase per million mapped reads (RPKM), which

normalizes the read counts each gene received by the gene length and library size [4].

The RPKM normalization method worked well in some cases, but is over simplified in

the other cases. In the literature, there have been a relatively large number of models

and methods proposed for gene and transcript expression level quantification based

on RNA-Seq data. These methods primarily follow two ideas. The first is to use more

sophisticated distributions to account for bias and variation in reads count data, and

the second is to directly correct RNA-Seq read count data by identified sources of bias

and variation. Among the methods discussed in this section, the first three methods

GPseq [20], POME [21] and PMI [22] follow the first idea, and the remaining methods

such as mseq, bias-adjusted Cufflinks, and the GC-content correction method mainly

follow the second idea. In Chapter 2, we will review some of these methods and

propose a new to quantify the gene expression levels.
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2. REGION OF INTEREST EXPRESSION LEVEL

QUANTIFICATION

A fundamental question in RNA-Seq is how to quantify expression levels of tran-

scripts, or in general, regions of interest (ROI) on the genome. A number of methods

have been proposed for transcript expression level quantification in the literature. In

this chapter, we will review some of the existing quantification methods, and we will

propose a new framework to quantify gene expression levels based on Poisson mixture

models.

2.1 Existing Normalization Methods

Among all the proposed methods to quantify gene expression levels, the RPKM

measure proposed by Mortazavi et al. [4] is the first one and is the easiest to compute.

The RPKM is defined to be the number of reads per kilobase of exon model per

million mapped reads. The RPKM measure is easy to compute, however, it neglects

the excessive variability demonstrated in RNA-Seq data. For example, the number

of reads covering a base pair (i.e., base-level count) in a ROI can vary dramatically,

ranging from zero to thousands. The substantial variability suggests that uniform

coverage in sequencing depth is unrealistic. Researchers have identified various types

of non-uniformity and their possible causes. Oshlack and Wakefield [18] mentioned

that transcript length can be a source of bias and needs to be corrected, and Hansen

and Dudoit [23] pointed out that when random hexamer priming is used, the resulting

sequence coverage is not uniform. The PCR amplification step in RNA-Seq can also

introduce some bias [24]. These variations or biases in RNA-Seq reads count data are

not accounted for in quantification methods using summary statistics such as RPKM.
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To accommodate these variations and biases, statistical model-based approaches are

preferred.

It is widely accepted that the standard Poisson distribution with constant in-

tensity λ is not an appropriate model for RNA-Seq reads count data because the

property of the distribution that the mean and variance are equal is often invalid.

Marioni et al. [25] suggested to use the quasi-Poisson distribution or the negative

binomial distribution. Bullard et al. [11] considered the quantification problem in

the generalized linear model framework, and took into account of different biological

conditions and technical effects. Srivastava and Chen [20] proposed a Generalized

Poisson (GP) model to account for over- and under-dispersion in reads count data

and subsequently developed a quantification method called GPseq for transcript ex-

pression level measurement. Li et al. [16] proposed a Poisson model for base level

count, which incorporates sequence patterns in the neighborhood of a base pair into

the intensity, and the quantification method based on the model is called mseq. Re-

cently, Hu et al. [21] proposed a Poisson mixed effects model for base level reads count

data, which uses two types of random effects to account for variation specific to each

base pair and possible correlation between adjacent base pairs, and further developed

the quantification method POME based on the proposed model.

Despite reported improvements in accuracy over the RPKM measure, the afore-

mentioned model-based methods all try to use models or distributions with known

shapes to fit the reads count data of all transcripts. They may be either too simple

such as the GP model that does not have enough parameters to fit real data well,

or too complex such as mseq that may suffer from the problem of overfitting. These

existing methods fail to properly characterize the complexity and variability of RNA-

Seq data, which limits their potentials for transcript expression level quantification.

Therefore, a more flexible modeling strategy is needed to portrait observed RNA-Seq

data. In Statistics, a powerful and commonly-used strategy to model distributions

with unknown shapes is to use mixture models.
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A mixture model consists of a parametric component distribution and a nonpara-

metric mixing distribution, therefore, it combines the strength of parametric models

with the flexibility of nonparametric models. When the mixing distribution is as-

sumed to have a finite support, the mixture model is referred to as a finite mixture

model. It is known that finite mixture of normal distributions can approximate any

continuous distributions, and finite mixture of Poisson distributions can be used to

approximate discrete distributions for count data [26]. Furthermore, in RNA-Seq

data, we observed that in many transcripts, base pairs are clustered or grouped in

terms of the reads count intensities they are subject to, and these groups may re-

flect different reads generating mechanisms in RNA-Seq experiments. Finite mixture

models are suitable for modeling data with intrinsic grouping structures.

In this chapter, we propose to use finite Poisson mixture models to analyze RNA-

Seq base-level reads count data and quantify transcript expression levels. The Poisson

mixture models provide a flexible framework for modeling and analyzing RNA-Seq

data. We applied EM algorithms to fit these models; we also used a BIC-based model

selection procedure to adapt the models to individual transcripts. Additionally, we

proposed a unified method for quantifying transcript expression levels based on the

three models. When applying the proposed methods to analyze two RNA-Seq data

sets, we found our methods demonstrated excellent performance in model fitting and

expression quantification in comparison with other existing methods. We believe

that the Poisson mixture models and the proposed methods have great potential for

RNA-Seq data analysis.

2.2 Poisson Mixture Model

2.2.1 PMI Model

Suppose a ROI consists of n base pairs, indexed by 1, 2, . . . , n, from left to right.

Let y = (y1, . . . , yn)
T be the vector of observed reads counts at base pairs 1, 2, . . . , n.
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Assume yi (1 ≤ i ≤ n) are independent and follow the same Poisson mixture distri-

bution

f (yi|λ, π) =
K∑
k=1

πkPoi (yi;λk) , (2.1)

where K is the number of components, π = (π1, π2, . . . , πK)
T is the vector of mixing

proportions satisfying
∑K

k=1 πk = 1, λ = (λ1, . . . , λK)
T is the vector of intensities of

the K Poisson components, and Poi(yi;λk) = λyik exp(−λk)/yi! is the mass function of

the kth component. We refer to (2.1) as the Poisson mixture model with assumption

of independence between the base pairs, or in short the PMI model. The PMI model

provides a flexible way to model count data from distributions with arbitrary shapes,

and the mixture structure may also represent some natural grouping or clustering

structure in the data. Once the parameters λ and π are estimated for a transcript,

they can be used to quantify the expression level of the transcript.

A critical assumption in the PMI model is that reads counts of different base

pairs are independent. We have calculated lag one autocorrelations between base

level reads counts within transcripts in a number of RNA-Seq data sets, and found

that they are not negligible and can become substantial in a large number of tran-

scripts, indicating dependence between reads counts of adjacent base pairs. When

the dependence is strong, more general Poisson mixture models capable of accommo-

dating such dependence need to be considered. Thus we provide two extensions of

PMI model to account for such correlations in Chapter 2.3.

2.2.2 EM Algorithms for PMI Model

We apply the EM algorithm to calculate the maximum likelihood estimates (MLEs)

of the parameters in the PMI model and the maximum partial likelihood estimates

(MPLEs) [27] of the parameters in the PMAI and PMAIP models. The algorithms

are described separately for the models below.
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Under the PMI model, the MLEs of π and λ are defined to be

(π̂, λ̂) = argmax
π,λ

n∏
i=1

K∑
k=1

πkPoi (yi;λk) . (2.2)

In order to develop the EM algorithm, a two-step data generating scheme needs to

be introduced. For each observed count yi, we define a membership vector zi =

(zi1, . . . , ziK)
T indicating from which Poisson component yi is sampled. Suppose yi

is sampled from the kth component, then zik = 1 and zij = 0 for j ̸= k. Let

z = (z1, z2, . . . , zk)
T , which is referred to as the membership matrix of y. With both

y and z, the complete likelihood function for π and λ is

Lc =
n∏
i=1

K∏
k=1

(πkPoi(yi;λk))
zik . (2.3)

Suppose the current parameter estimates are π̂cur and λ̂cur. The E-step is to calculate

the expected log complete likelihood function

Q(π, λ|π̂cur, λ̂cur) = Ez(log(Lc(π, λ))|π̂cur, λ̂cur, y), (2.4)

where the expectation is over the conditional distribution of z, given π̂cur, λ̂cur and

y. Essentially, it is to compute

z̄ik = E
(
zik|yi, π̂curk , λ̂curk

)
=

π̂curk Poi(yi; λ̂
cur
k )∑K

k=1 π̂
cur
k Poi(yi; λ̂curk )

.

The M-step is to maximize Q with respect to π and λ, and the resulting maximizers

are the updates of π̂cur and λ̂cur, which are, respectively,
λ̂newk =

∑n
i=1 z̄ikyi/

∑n
i=1 z̄ik for k = 1, 2, . . . , K

π̂newk =
∑n

i=1 z̄ik/n for k = 1, 2, . . . , K − 1

π̂newK = 1−
∑K−1

k=1 π̂
new
k .

(2.5)

2.2.3 Quantification Rule for PMI Model

Suppose the PMI model with K components is chosen by the BIC criterion as the

best model for a transcript, and the MLEs of the model parameters are calculated to
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be π̂ and λ̂. We need to design a rule to quantify the expression level of the transcript.

Because for the majority of transcripts, the number of components needed to fit the

reads count data well is below 4, we only consider the cases with K = 1, K = 2,

or K = 3. When K = 1, the PMI model reduces to the simple Poisson model, and

the estimated intensity λ̂1 can be used as the expression measure of the transcript.

When K = 2, the estimated mixing propositions are π̂1 and π̂2, and correspondingly,

the estimated intensities are λ̂1 and λ̂2 with λ̂1 < λ̂2, we propose to use the following

weighted average of the intensities as the measure of the transcript expression level,

gs =
(sπ̂1λ̂1 + π̂2λ̂2)

(sπ̂1 + π̂2)

where s is a pre-specified number between 0 and 1. When K = 3, the estimated

mixing proportions are π̂1, π̂2 and π̂3, and the estimated intensities are λ̂1, λ̂2, and λ̂3

with that λ̂1 < λ̂2 < λ̂3, we propose to quantify the expression level of the transcript

as

gs =
(sπ̂1λ1 + π̂2λ2 + π̂3λ3)

(sπ̂1 + π̂2 + π̂3)
. (2.6)

where s again is a pre-specified number between 0 and 1.

Notice that in the proposed measures above, the proportion for the lowest intensity

is down weighted by a factor of s. The major justification for down weighting the

smallest intensity is that base level reads count data are dominated by zero counts and

the Poisson component with the lowest intensity in the PMI model primarily is used

to account for these excessive zero counts. For example, for the first cell line LnCaP0

in the prostate cancer data we analyze in the next section, roughly more than 75% of

all its transcripts have less than 20% of their base pairs receiving at least one read.

Zero counts in general do not contain much information about the expression level of a

transcript, therefore, their weight in the measure should be reduced. The benefit from

down-weighting the lowest intensity is to increase the weight of the higher intensities,

especially the medium intensity, because the proportion for the highest intensity is

often small or close to zero when K = 3. In the literature, some researchers propose
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to discard all the zero counts. This however may lead to some information loss about

the data-generating mechanism in RNA-Seq experiments. The quantification method

we proposed above can be considered as a model-based approach to coping with

zero counts in RNA-Seq data. Furthermore, the proposed quantification measure is

believed to be robust with respect to extremely large counts present in RNA-Seq data,

because the highest intensity instead of the largest counts is used in the measure.

We propose to use the Bootstrap method to determine the value of the tuning

parameter s in practice. The Bootstrap method was originally proposed by Efron [28]

as a general procedure to assess the accuracy of a sample estimate. We use Bootstrap

to compute the mean squared error (MSE) of gs defined above. For each s ∈ (0, 1), we

draw B Bootstrap samples from the original transcript-level reads count data. For the

bth sample (1 ≤ b ≤ B), the PMI model is fitted, and the transcript expression level

is quantified using the proposed method as gbs. Then the variance of gs is estimated

as v̂ar(gs) =
∑B

b=1(g
b
s − ḡBs )/B, where ḡBs =

∑B
b=1 g

b
s/B is the Bootstrap mean. The

bias of gs is estimated as the difference between the Bootstrap mean and the original

sample estimate, that is, ˆbias(gs) = ḡBs − gs. Then the MSE of gs is estimated by the

sum of the estimated variance and the squared estimated bias, that is,

ˆMSE(gs) = v̂ar(gs) + ˆbias
2
(gs). (2.7)

After the estimated MSE of each gs is obtained, we plot it against the tuning param-

eter s and refer to the resulting curve as the quantification performance (QP) curve

of gs. As s increases from 0 to 1, the QP curve is expected to demonstrate an overall

decreasing pattern. When s is close to zero, gs is dominated by the components with

higher intensities and is sensitive to the change in nonzero reads counts; therefore,

the estimated variance and MSE of gs are large, indicating high variability or poor

quantification performance of gs. When s is close to 1, gs is dominated by the com-

ponent with the lowest intensity or the zero counts and becomes insensitive to the

change in nonzero reads counts; therefore, even though the estimated MSE of gs is

small, the quantification performance of gs is still poor due to its insensitivity. The

best quantification performance of gs should be achieved at an s value that balances
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Figure 2.1. An example of the QP curve of gs and the selection of
s∗. Plots (a)–(c) show the QP curves of gs in three transcripts. The
s∗ values for the three transcripts are 0.2, 0.4, and 0.3, respectively,
indicated by red circles in the plots.

the variability and sensitivity of gs. We propose to choose the elbow point of the QP

curve of gs as such a value and denote it by s∗. Figure 2.2.3 demonstrates the QP

curves of gs in three transcripts in the prostate cancer RNA-Seq data we analyze and

discuss in Section 3.1. The elbow points of the three curves were determined to be

0.2, 0.4, and 0.3 in Plots (a)–(c) of Figure 2.2.3, respectively.

In practice, however, it is computationally intensive to determine s∗ for each

individual transcript. Instead, we propose to adopt a sampling scheme to select a

common tuning parameter s to be used by all the transcripts as follows. First, a

subset of 100 to 200 transcripts is randomly sampled; second, the Bootstrap method

is applied to each selected transcript to determine the value of s∗; and third, the

average value of s∗ over the sample is calculated and denoted by s̄∗. We recommend

to use s̄∗ when quantify all the transcripts.
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2.3 Two Extensions of Poisson Mixture Models

2.3.1 PMAI Model

The Poisson mixture model with autoregressive intensities or the PMAI model

was originally proposed for time series count data [29]. For i = 2, . . . , n, conditional

on yi−1, yi is assumed to follow the following Poisson mixture distribution,

g (yi|yi−1; π, α, β) =
K∑
k=1

πkPoi (yi; exp (αk + βk log (yi−1 + 1))) , (2.8)

where α = (α1, α2, . . . , αK)
T and β = (β1, β2, . . . , βK)

T . Note that for k = 1, . . . , K,

the intensity λk,i of the kth Poisson component at base pair i depends on the trans-

formed reads count at base pair i− 1 through a linear function with intercept αk and

slope βk, that is,

log λk,i = αk + βk log (yi−1 + 1) . (2.9)

Through this autoregressive relation, the PMAI model imposes a global correlation

structure for y. The use of log(yi−1+1) in (2.9) ensures that y as a series is stationary

and the correlation between yi and yj depends on their distance |i− j| only [29]. The

stationarity is important because it provides the flexibility to index the base pairs

of an transcript from left to right or the other way around. In the PMAI model,

the mixing proportions πk’s are assumed to be constant throughout the transcript.

Next, we further consider an extension of the PMAI model that allows varying mixing

proportions.

2.3.2 PMAIP Model

For i = 2, . . . , n, conditional on yi−1, the reads count yi at base pair i is assumed

to follow the following Poisson mixture distribution

h (yi|yi−1;u, v, α, β) =
K∑
k=1

πk(yi−1;uk, vk)Poi (yi; exp (αk + βk log(yi−1 + 1))) (2.10)
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where

πk(yi−1;uk, vk) =
exp(uk + vk log(yi−1 + 1))∑K
k=1 exp(uk + vk log(yi−1 + 1))

, (2.11)

for k = 1, 2, . . . , K, where u = (u1, u2, . . . , uK)
T , and v = (v1, v2, . . . , vK)

T . Note

that an autoregressive relation has been postulated between the mixing proportions

at base pair i and the observed reads count yi−1 at base pair i − 1. To be more

specific, we treat the Kth component as the baseline component and set uK and vK

to be zero, and then (2.11) is equivalent to assuming an autoregressive model for the

baseline logit log πk/πK ,

log
πk
πK

= uk + vk log(yi−1 + 1) (2.12)

for k = 1, 2, . . . , K − 1. As discussed in the previous subsection, the autoregressive

structure imposed on the mixing proportions can further help characterize the clus-

tering patterns of reads count demonstrated in some transcripts. Because it assumes

autoregressive relations in both intensities and mixing proportions, we refer to the

extended PMAI model as the Poisson mixture model with autoregressive intensities

and mixing proportions, or in short the PMAIP model.

2.3.3 EM Algorithms for PMAI Model

We let ϕ = (ϕ1, . . . , ϕK)
T , where ϕk = (πk, αk, βk)

T , and xi = log(yi−1+1). Under

the PMAI model, the MPLEs of the model parameters are defined as

ϕ̂ = argmax
ϕ

n∏
i=2

K∑
k=1

πkPoi (yi; exp(αk + βkxi)) . (2.13)

With the membership matrix z, the complete partial likelihood is

Lc =
n∏
i=2

K∏
k=1

[πkPoi(yi; exp(αk + βkxi))]
zik . (2.14)

Suppose the current parameter estimates are ϕ̂cur = (π̂cur, α̂cur, β̂cur)T . The E-step

is to calculate Q(ϕ|ϕ̂cur) = Ez(log(Lc(ϕ))|ϕ̂cur, y), which is essentially to calculate

z̄ik = E(zik|yi, ψ̂curk ) =
π̂curk Poi(yi; exp(α̂

cur
k + β̂curk xi))∑K

k=1 π̂
cur
k Poi(yi; exp(α̂curk + β̂curk xi))

.
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The M-step is to update the parameter estimates by maximizing Q with respect

to ϕ. The updated mixing proportions have explicit expressions, which are π̂newk =∑n
i=2 z̄ik/n for k = 1, 2, . . . , K − 1, and π̂newK = 1−

∑K−1
k=1 π̂

new
k . For each k (1 ≤ k ≤

K), to obtain α̂k
new and β̂k

new
, we need to solve the following system of nonlinear

equations, 
∂Q
∂αk

=
∑n

i=2 z̄ik(− exp(αk + βkxi) + yi) = 0,

∂Q
∂βk

=
∑n

i=2 xiz̄ik(− exp(αk + βkxi) + yi) = 0.

Note that the updating of α̂k and β̂k can be done separately for each k. Software

packages such as the R package nleqslv can be used to solve these equations.

2.3.4 EM Algorithms for PMAIP Model

Let ψ = (ψ1, ψ2, . . . , ψK)
T , where ψk = (uk, vk, αk, βk)

T for k = 1, 2, . . . , K. Again

let xi = log(yi−1+1). Under the PMAIP model, the MPLEs of the model parameters

are defined as

ψ̂ = argmax
ψ

n∏
i=2

K∑
k=1

πk(xi, uk, vk)Poi(yi; exp(αk + βkxi)). (2.15)

With the membership matrix z, the complete partial likelihood function is

Lc =
n∏
i=2

K∏
k=1

[πk(xi, uk, vk)Poi(yi; exp(αk + βkxi))]
zik . (2.16)

Suppose the current parameter estimates are ψ̂cur = (ûcur, v̂cur, α̂cur, β̂cur)T . The

E-step is to calculate Q(ψ|ψ̂cur) = Ez(log(LC(ψ))|ψ̂cur, y), which is essentially to

calculate

z̄ik = E(zik|yi, ψ̂curk ) =
π̂k(xi, û

cur
k , v̂curk )Poi(yi; exp(α̂

cur
k + β̂curk xi))∑K

k=1 π̂k(xi, û
cur
k , v̂curk )Poi(yi; exp(α̂curk + β̂curk xi))

.
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The M-step is to update ûcur, v̂cur, α̂cur, and β̂cur by maximizing Q. To obtain α̂newk

and β̂newk for 1 ≤ k ≤ K, we need to solve the following system of two nonlinear

equations, 
∂Q
∂αk

=
∑n

i=2 z̄ik [− exp(αk + βkxi) + yi] = 0,

∂Q
∂βk

=
∑n

i=2 xiz̄ik [− exp(αk + βkxi) + yi] = 0.

To obtain ûnew1 , . . . , ûnewK−1 and v̂new1 , . . . , v̂newK−1, we need to solve the following system

of 2(K − 1) nonlinear equations simultaneously,
∂Q
∂uk

=
∑n

i=2

[
−
∑K

m=1 z̄im
exp(uk+vkxi)∑K
l=1 exp(ul+vlxi)

+ z̄ik

]
= 0

∂Q
∂vk

=
∑n

i=2

{
xi

[
−
∑K

m=1 z̄im
exp(uk+vkxi)∑K
l=1 exp(ul+vlxi)

+ z̄ik

]}
= 0.

Software packages such as the R package nleqslv can be used to solve the systems of

nonlinear equations above.

2.3.5 Quantification Rules for PMAI Model

The quantification rule based on the PMI model can be extended to the PMAI

model with some modification. For the ith base pair in a transcript, the conditional

component intensities exp(α̂k + β̂kxi) (1 ≤ k ≤ K) are functions of the true signals

exp(α̂k) and the noise from the previous count exp(β̂kxi). We propose to only use

the true signals for the purpose of quantifying transcript expression level. Let λ̂k =

exp(α̂k) for 1 ≤ k ≤ K. Then, the formula for calculating gs defined above can be

directly applied. Furthermore, the Bootstrap procedure for determining the value of

s under the PMI model needs to be replaced by a Bootstrap procedure that can draw

samples from dependent data, because reads counts are assumed to be dependent

under the PMAI model. One of the possible choices is the block Bootstrap method

[30].
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2.3.6 Quantification Rules for PMAIP Model

Under the PMAIP model, the intensity of the kth component can be modified and

calculated in the same way as under the PMAI model, i.e. λ̂k = exp(α̂k). However,

under the PMAIP model, the mixing proportions vary from base pair to base pair.

At the ith base pair of a transcript, the mixing proportions are π̂k(xi, ûk, v̂k) for

1 ≤ k ≤ K. We propose to apply the rule proposed under the PMI model to each

base pair to generate a base pair-level expression measure, and then the expression

measure of the transcript is defined to be the average of the expression measures of

all its base pairs. Similar as under the PMAI model, the block Bootstrap method can

be used to draw samples from the dependent base level reads count data to determine

the s value for gs.

2.4 Comparison Studies

2.4.1 Data Description

Prostate Cancer Data. We applied the Poisson mixture models to analyze a

RNA-Seq data set of 12 prostate cancer related cell and tissue samples generated by

Chinnaiyan’s lab [31]. The 12 samples are LnCaP0, LnCaP24, LnCaP48, VCaP0,

VCaP24, VCaP48, DU145F, aT34, DU145F2, aT34N, VCaP, and RWPE. Each sam-

ple was sequenced using two RNA-Seq platforms, an Illumina platform and a Helicos

platform. The Illumina platform uses an amplification-based sequencing technology,

whereas the Helicos platform uses a single-molecule sequencing technology. The He-

licos platform does not use any PCR-based amplification, and it directly measures

transcripts instead of their amplified copies. As a result, the data generated by the

Helicos platform or the Helicos data are not subject to biases caused by PCR. There-

fore, transcript expression measurements based on the Helicos data are believed to be

more accurate than those based on the data generated by the Illumina platform or

the Illumina data. When comparing our methods with other existing quantification
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methods, we treated transcript expression measurements based on the Helicos data

as the gold standard.

Human Brain and UHR Data. We analyzed another RNA-Seq data set from

the MicroArray Quality Control (MAQC) project [32], which were generated for two

RNA samples, namely, the Universal Human Reference (UHR) RNA sample from

Stratagene and the Human Brain Reference (Brain) RNA sample from Ambion, by

the Illumina platform. A total of seven lanes of sequencing data for each sample

were available. The data set can be downloaded from NCBI Read Archive (SRA)

at http://www.ncbi.nlm.nih.gov/sra under the accession numbers SRA010153 and

SRA008403. As part of the MAQC project, the expression levels of 1044 genes in each

sample were also measured by TaqMan Gene Expression Assay based on quantitative

real time polymerase chain reaction (qRT-PCR) technology. The qRT-PCR measures

are treated as the gold standard in the analysis.

2.4.2 Quantification Accuracy Comparison

Model Fitting and Selection. The Poisson mixture models can better fit and

characterize RNA-Seq data than the simple Poisson model. We use Pearson’s Chi-

square test to show that simple Poisson model cannot fit the data well. A small

p-value from the test indicates lack of fit, whereas a large p-value indicates good fit.

We use 5% as the significance level. The simple Poisson model and the PMI model

were applied to all the transcripts in the prostate cancer data. The percentage of

transcripts for which each model provides good fit is used as an overall goodness of

fit measure of the model. On average, in each cell sample, the simple Poisson model

only managed to fit about 15.7% of the transcripts well, whereas the MPI model

fit about 85.7% of the transcripts well; and the remaining 14.3% transcripts require

more sophisticated models such as the PMAI and PMAIP models to characterize

them well.
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In order to demonstrate the diversity of transcript reads count data as well as

the adaptivity of the proposed Poisson mixture models, we applied the BIC model

selection procedure to the top 5000 highly expressed transcripts of each cell sample

in the prostate cancer data. For convenience, the PMI, PMAI, and PMAIP models

with K up to three were considered, which are denoted by, respectively, PMI1, PMI2,

PMI3, PMAI2, PMAI3, PMAIP1, PMAIP2, and PMAIP3, where the subscript number

indicates the number of components. The relative frequencies of the models selected

by BIC or equivalently, the proportions of transcripts for which the models were

selected are given below.

PMI1 PMI2 PMI3 PMAI2 PMAI3 PMAIP1 PMAIP2 PMAIP3 Not Fit

1.98% 29.61% 7.76% 17.34% 13.83% 0.84% 5.75% 10.85% 12.03%

It is clear that a large proportion of transcripts require more sophisticated models to

fit them well.

In Figure 2.4.2, we demonstrate the reads count data of a transcript and the results

from fitting the PMAIP mode with three components to the data. The upper-left

plot shows that the original reads count data of the transcript are clustered into three

groups, which include the large counts (illustrated by red circles), medium counts

(blue squares), and small counts (green diamonds), respectively. The upper-right plot

shows the estimated three Poisson component distributions with de-noised intensities

λ̂1 = .105 (green solid curve), λ̂2 = 2.79 (blue dashed curve), and λ̂3 = 20.544 (red

dotted curve), respectively. The estimated mixing proportions π̂1, π̂2, and π̂3 vary

from base pair to base pair. The plot of π̂2 versus base pair index is given in the

lower-left panel of the figure, and the plot of π̂3 versus base pair index is given in

the lower-right panel. Because π̂1 = 1 − π̂2 − π̂3, the plot of π̂1 is not presented. In

essence, the estimated intensities together with the mixing proportions have captured

most information in the reads count data.

Expression Level Quantification. We applied the PMI, PMAI, and PMAIP

models with up to three components to analyze the prostate cancer data, and then

used the quantification rules proposed in Section 2.2.3, 2.3.5, and 2.3.6 to obtain
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Figure 2.2. Read Counts, Estimated Intensities, and Mixing Pro-
portions of a Transcript. Plot (a) shows the clustering of the reads
counts into three groups labeled by 1 to 3 and indicated by red cir-
cles, blue squares, and green diamonds, respectively. Plot (b) gives
the estimated distribution functions of the Poisson components of the
PMAIP3 model, indicated by green solid line, blue long dash line, and
red dotted line, respectively. Plot (c) shows the estimated proportion
of the second component with medium intensity at each base pair,
according to the PMAIP3 model. Plot (c) shows the estimated pro-
portion of the third component with highest intensity at each base
pair, according to the PMAIP3 model.
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expression measurements of the transcripts. Corresponding to the models used in

transcript expression quantification, the resulting measurements are referred to as the

PMI, PMAI, and PMAIP measurements. We further compared the proposed methods

with other existing gene expression quantification methods including the effective

length based RPKM (eRPKM) method, GPseq, mseq, and POME. The difference

between eRPKM and the original RPKM (oRPKM) measure is that eRPKM uses

the number of base pairs receiving at least one read as the length of a transcript,

whereas oRPKM uses the total number of base pairs as the length. To demonstrate

and compare the quantification results, we focused on the highly expressed genes. For

each cell sample, we first selected the top 5000 highly expressed transcripts according

to their oRPKM measurements based on the Helicos data; and then a filter was used

to remove those transcripts with low read coverage [31] or extremely high read counts

in the Illumina data. The number of remaining transcripts in each cell sample is

listed in Table 2.1.

As discussed in Chapter 2.4.1, the oRKPM measurement of the expression level of

a transcript based on the Helicos data is treated as the gold standard. The Spearman

rank correlation coefficients between the gold standard and the eRPKM, GPseq, mseq,

POME, PMI, PMAI, and PMAIP measurements were calculated and reported in

Table 2.1. Among all the methods, PMI performed best in 8 out of 12 cell samples,

POME performed best in 4 out of 12 cell samples, and eRPKM performed best in one

cell sample (The best correlation coefficients are highlighted). The performances of

PMAI and PMAIP are slightly worse than the best but still comparable. We observed

that the improvement of PMI over eRPKM is substantial.

To further compare the performances of the methods, we focused on transcripts

for which the BIC procedure selected the PMI model with three components as the

most appropriate model. The Spearman correlation coefficients between the expres-

sion measurements of these transcripts and the gold standard were calculated and

reported in Table 2.2. For this subgroup of transcripts, the performances of PMI,

PMAI, PMAIP, and POME have improved, but the performances of eRKPM, GPseq,
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Table 2.1
Comparison of Quantification Methods in Highly Expressed Tran-
scripts. Each row is for one cell line. The quantification methods
are listed from column 3 to column 10. The highest spearman rank
correlation coefficients with the gold standard are highlighted in bold.

Cell line Transcripts eRPKM GP mseq POME PMI PMAI PMAIP

LnCaP0 4607 0.631 0.539 0.621 0.694 0.720 0.697 0.694

LnCaP24 4578 0.633 0.562 0.617 0.692 0.723 0.694 0.694

LnCaP48 4405 0.622 0.510 0.617 0.667 0.671 0.643 0.648

VCaP0 3780 0.581 0.610 0.557 0.620 0.690 0.681 0.681

VCaP24 4312 0.594 0.613 0.543 0.632 0.690 0.679 0.678

VCaP48 4175 0.637 0.637 0.498 0.677 0.743 0.725 0.726

DU145F 4605 0.620 0.482 0.603 0.653 0.642 0.621 0.628

aT34 3913 0.649 0.470 0.632 0.662 0.622 0.587 0.599

DU145F2 4615 0.620 0.481 0.602 0.653 0.642 0.617 0.620

aT34N 2924 0.534 0.521 0.526 0.544 0.593 0.577 0.579

VCaP 3357 0.545 0.410 0.477 0.552 0.535 0.513 0.517

RWPE 4505 0.536 0.463 0.526 0.581 0.593 0.577 0.565
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Table 2.2
Comparison of Quantification Methods in Highly Expressed and
Highly Variable Transcripts. Each row is for one cell line. The quan-
tification methods are listed from column 3 to column 10. The highest
spearman rank correlation coefficients are highlighted in bold

Cell line Transcripts eRPKM GPseq mseq POME PMI PMAI PMAIP

LnCaP0 2824 0.594 0.537 0.585 0.682 0.751 0.721 0.711

LnCaP24 2468 0.614 0.563 0.598 0.696 0.767 0.735 0.729

LnCaP48 2220 0.598 0.459 0.594 0.663 0.698 0.661 0.656

VCaP0 1282 0.594 0.604 0.588 0.670 0.754 0.751 0.745

VCaP24 1699 0.536 0.625 0.517 0.613 0.716 0.697 0.687

VCaP48 1298 0.602 0.630 0.545 0.672 0.780 0.756 0.746

DU145F 2262 0.594 0.462 0.573 0.647 0.679 0.657 0.652

aT34 1455 0.674 0.461 0.651 0.689 0.712 0.666 0.661

DU145F2 2318 0.600 0.466 0.584 0.650 0.683 0.655 0.647

aT34N 976 0.623 0.613 0.610 0.643 0.747 0.715 0.717

VCaP 1174 0.645 0.397 0.615 0.642 0.645 0.598 0.606

RWPE 2631 0.525 0.440 0.515 0.588 0.632 0.611 0.587

and mseq have deteriorated. The PMI measurements have achieved the highest cor-

relation with the gold standard in all the 12 cell samples. The relative sub-optimal

performances of PMAI and PMAIP may be due to the quantification rule currently

used, which is mainly motivated by the PMI model. Different quantification rules

need to be further developed to unleash the potential of the PMAI and PMAIP

models.

We also applied eRPKM, GPseq, and PMI to quantify the expression levels of

the genes in the Human Brain and UHR data set, in particular, the 1044 genes with

qRT-PCR measurements. We filtered out those genes that do not receive any reads

or have multiple matched names in the University of California, Santa Cruz (UCSC)

genome browser [33]. The numbers of remaining genes in the Human Brain and
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Table 2.3
Comparison of Quantification Methods In Human Brain and UHR
data. The results for the UHR sample and Brain sample are separated
into the left panel and right panel, respectively. Each row represents
a lane in the data. The highest spearman rank correlation coefficients
for each lane are highlighted in bold.

UHR Brain

Lane Genes eRPKM GPseq PMI Lane Genes eRPKM GPseq PMI

1 894 0.836 0.825 0.843 1 856 0.761 0.770 0.788

2 889 0.830 0.826 0.839 2 865 0.759 0.781 0.796

3 893 0.811 0.821 0.837 3 864 0.758 0.782 0.800

4 881 0.820 0.820 0.835 4 860 0.767 0.776 0.793

6 890 0.824 0.822 0.838 6 867 0.757 0.781 0.794

7 880 0.810 0.821 0.835 7 872 0.766 0.784 0.797

8 883 0.815 0.819 0.829 8 862 0.745 0.784 0.796

UHR samples are listed in Table 2.3. The qRT-PCR measurements were considered

of high quality and commonly used as the gold standard, so we will use them here

to compare the other quantification methods. As before, the Spearman correlation

coefficients between the measurements by eRPKM, GPseq and PMI and the qRT-PCR

measurements were calculated and reported in Table 2.3. The PMI measurements

have achieved the highest correlation coefficients with the gold standard in both the

Brain and UHR samples and across all the lanes. Because qRT-PCR measurements

are a more reliable and objective gold standard, the good performance of PMI in this

data set corroborates its good performance in the prostate cancer data.
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3. TRANSCRIPT EXPRESSION LEVEL QUANTIFICATION

Transcription is the first step of gene expression, and all transcription products, which

are called RNA molecules or transcripts, form the transcriptome of a cell under a given

developmental stage or physiological condition. The largest family of transcripts are

mRNAs. The number of transcripts is much larger than the number of genes due to

gene alternative splicing.

Transcriptome profiling, which is to comprehensively detect, catalog and quantify

all transcripts in the transcriptome, is a grand challenge in molecular biology and

functional genomics. In the past two decades, microarray has been used as the major

technology for interrogating the transcriptome. Recently, the development of next

generation sequencing (NGS) technology has revolutionized the way genomic research

is conducted. In particular, NGS technology provides a new venue for mapping and

quantifying the transcriptome. As one of such new technologies, RNA-Seq directly

measures the abundance of transcripts and has become an attractive alternative for

profiling the transcriptome [4].

3.1 Background and Existing Transcript Quantification Methods

In a typical RNA-Seq experiment, RNA molecules are fragmented into small pieces

and converted to a library of cDNA fragments with adapters attached to one end or

both ends. Each fragment, after amplification, is then sequenced using one of the

NGS technologies, generating hundreds of millions of short nucleotide sequences or

short reads. After sequencing, the resulting reads are either assembled de novo or

aligned to the reference genome to produce a genome-scale transcriptional profile.

Using the mapped short reads (single-end reads or paired-end reads), the number of
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reads that each base pair of the reference genome receives can be calculated, and the

resulting counts are collectively referred to as the base level read counts data.

The read counts data can be used to quantify either the expression level of a

ROI on the reference genome, such as an exon or a gene, or the expression levels

of transcripts. On the one hand, the expression level of a ROI is relatively easier

to quantify because the total number of reads received by the ROI directly reflects

its abundance and thus can be used to measure its expression level after proper

normalization. Various statistical model based quantification methods for ROI’s have

been proposed in the literature, which include GPseq [20], PMI [22] and POME [21].

On the other hand, the expression levels of transcripts are more difficult to quantify

because one may not be able to allocate the short reads uniquely to transcripts. Due

to alternative splicing, multiple transcripts can give rise to identical reads. In other

words, the labels of the transcripts that identical reads are generated from are missing.

Therefore, the quantification of transcript expression levels is an indirect problem as

in comparison with the quantification of ROI expression levels.

A number of methods have been proposed for transcript expression level quan-

tification in the literature. Jiang et al. proposed to use a Poisson distribution to

model the total number of reads in each exon or exon-exon junction [34]. The in-

tensity of the Poisson distribution is further assumed to be a linear combination of

the expression levels of the transcripts that contain the exon or exon-exon junction.

Trapnell et al. proposed a method called Cufflinks [35]. Cufflinks uses a probabilistic

model to represent the generating scheme for each read. The probabilistic model

involves the expression levels of the transcripts that can produce this read. Li et al.

proposed a Lasso regression approach (called IsoLasso) to quantifying the expression

levels of transcripts [36]. IsoLasso first divides a gene into a set of segments based on

exon-intron boundaries and then applies Lasso to regress read counts in the segments

against the transcripts’ expression indexes. Li et al. proposed to use a sparse linear

model for isoform discovery and abundance estimation (SLIDE) [37]. SLIDE is simi-

lar to IsoLasso except that SLIDE uses read counts in bins instead of segments and
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the mapped reads are considered in the same bin if their starting and ending positions

belong to the same exons, respectively. All these four methods discussed above use

the typical approach for solving indirect problems, which is to use a probabilistic or

statistical model to relate observations (i.e. observed reads) to unobserved quantities

(i.e. transcript abundances). They differ from each other in terms of the units of

observations and the type of models they used. In particular, Jiang et al. used exon

or exon-exon junction as the unit, Cufflinks treats each observed read as the unit,

IsoLasso used each segment as the unit, and SLIDE uses each bin as the unit.

The types of units used by the four methods discussed in the previous paragraph

may not be statistically adequate, and may lead to some drawbacks. One direct

consequence of using the bin, exon, or segment as the observation unit is the loss

of information. A well-known advantage of NGS technologies is that they provide

single base resolution. In a typical RNA-Seq experiment, due to fragmentation and

sampling, some base pairs of a gene receive reads, while others do not receive reads.

We all agree that base pairs with positive read counts can reflect the abundance level

of transcripts. However, base pairs without reads also contain information about the

abundance of transcripts and reflect various uncertainties in a RNA-Seq experiment.

Thus, using only base pairs with read counts but not those with zero read counts

again results in information lose. The aggregation of positive read counts would

lead to further information loss. Both the methods proposed by Jiang et al. and

IsoLasso model the aggregated read counts in exon, segment, or junction counts

rather than base pair level counts. Cufflinks models only observed reads, but fail to

model zero read counts. SLIDE only models aggregated bin counts, whereas base pairs

with zero read counts and bins without observed reads are ignored. Therefore, these

methods fail to utilize all information contained in RNA-Seq read counts data, and

as a consequence may fail to provide accurate quantification of transcript expression

levels. In some cases, they suffer from the non-identifiability problem, and fail to

distinguish transcripts that are distinguishable.
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To improve upon these existing methods, in this paper, we treat each base pair

as the unit and propose a novel approach that models both zero and non-zero read

counts for quantifying transcript expression levels. The generating scheme for read

count at each base pair can be considered involving two steps. In the first step, short

reads are generated from each transcript that contains this base pair according to

a certain distribution; and in the second step, all these shorts reads are mapped to

the same base pair on the reference genome, which give rise to the observed read

count. In the first step, the label of the transcript each short read is generated from

is conceptually available, whereas after the second step, this label becomes missing.

Therefore, the second step can be regarded as a convolution step, in which short reads

from different transcripts are mixed and the information about their origins is lost.

Instead of directly proposing models for the observed read counts on the genome

as the four existing methods discussed above do, we propose to model the short

read counts of transcripts, and refer to the resulting model as the transcript level

model. After the transcript level models are available, the models for the base level

read counts on the reference genome can then be derived as the convolution of the

transcript level models, which is referred to the genome level models. In particular,

we propose to use the mixture of Poisson models at the transcript level, which lead

to the convolution of mixture of Poisson models at the genome level.

In this article, we do not consider the transcripts assembly problem. Instead

we focus on the quantification of a given set of candidate transcripts. The candidate

transcripts set can include annotated transcripts, novel transcripts of current research

interest, or those assembled by other methods.

3.2 Convolution of Poisson Mixture Model

3.2.1 Unique Exon Annotations

The exons of a gene form a partition of the gene’s exonic region. In general, these

exons represent the smallest units that can be entirely transcribed or skipped during
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the transcription of the gene. However, it can also happen that only a part of an exon

is transcribed. When this happens, the involved exon needs to be further divided into

sub-exons so that each exon or sub-exon is either completely retained or excluded in

a transcript. Suppose gene g contains kg exons or sub-exons, which are labeled as

e1, . . . , ekg from the left end to the right end of the gene, respectively. Suppose the

number of base pairs in ei is ni for 1 ≤ i ≤ kg. Let n0 = 0 and n = n1 + . . . + nkg .

We index the exonic base pairs of gene g from left to right as 1, . . . , n. It is clear that

exon ei consists of the base pairs {
∑i−1

j=0 nj + 1, . . . ,
∑i

j=0 nj} for 1 ≤ i ≤ kg.

3.2.2 Isoforms Notations and Read Types

As discussed in the Introduction, the transcription of gene g can produce different

transcripts, which are referred to as alternatively spliced isoforms. For example, if

only e1 and e5 are kept during the transcription while all the other exons are skipped,

the resulting transcript consists of e1 and e5, which can be denoted as T1 = e1e5; and

if only e1, e2, and e6 are kept and the others are skipped, the resulting transcript is

T2 = e1e2e6. Let Tg = {T1, . . . , TN}, where N = |Tg|, be a set of candidate transcripts.

This article will focus on the quantification of the expression levels of T1, . . ., and TN ,

using RNA-Seq base level counts data.

For every short read mapped to the annotated region of gene g, its starting and

ending positions can be obtained. The starting position and ending position of a

single end read are denoted as start and end, respectively. Each paired-end read

contains two mate pairs, and we denote the starting positions and ending positions of

the two mate pairs as start1, end1, start2, and end2, respectively. For any two single-

end reads, if their starting positions and ending positions belong to exons el1 and el2 ,

respectively, they are said to be of the same type, which is denoted as rl1l2 . Similarly

for a paired-end read, if its starting and ending positions start1, end1, start2, and

end2 are in exons el1 , el2 , el3 , and el4 , it is said to be of type rl1l2l3l4 . Let R denote the

collection of all possible read types. The mapped reads can also be classified into non-
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junction reads and junction reads. Non-junction reads are those reads whose starting

and ending positions are in the same exon, whereas junction reads are those whose

starting and ending positions are not in the same exon. Correspondingly, all of the

possible read types can be classified into non-junction read types and junction read

types. For example, r1111 is non-junction read type because reads of type r1111 have

their starting and ending positions in the same exon e1, whereas r1122 is a junction

read type because reads of type r1122 have the starting and ending positions of the

first mate pair in exon e1 but the starting and ending positions of the second mate

pair in exon e2. Let N denote the collection of non-junction read types and J the

collection of junction read types. Then we haveR = N∪J . At base pairm of gene g,

the number of reads or the total read count starting at this base pair can be obtained,

which is denoted as Sm. Furthermore, this total read count can be partitioned into

read counts of different types as Sm =
∑

r∈R Y
r
m, where Y

r
m denote the total count of

type r (r ∈ R) reads starting at base pair m.

As discussed in the Introduction, mapped reads and their corresponding counts

can be used to quantify the overall expression level of a gene, but they may not be

directly used to quantify the expression levels of transcripts because the information

of which transcript each read is generated from may not always be available. The

counts of different types of reads Y r
m’s contain more information than the total read

counts Sm, but they may not be directly used for quantifying transcript expression

levels due to the same reason. To properly model the distribution of Y r
m, a convolution

model is needed. In essence, the quantification of transcripts’ expression levels is an

indirect statistical inference problem, which is to infer the transcripts’ expression

levels from the genome level read counts data.

To facilitate the inference, we first propose statistical models to represent the

reads-generating mechanism for each individual transcript, which are refer to as the

transcript level models, then, use a convolution model to characterize the read counts

of different types at the gene level.
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3.2.3 CPM-Seq Model

The majority of current NGS technologies sequence fragments of length around

200 base pairs or less and the average length of exon on human genome is 170 base

pairs long [38]. Therefore, counts of junction reads that involve more than two exons

are usually low. In this paper, we only consider reads that involve no more than two

exons. As a result, the notation of different types of paired-end reads can be much

simplified.

Consider a paired-end read of type rl1l2l3l4 . If the read is a non-junction read,

then l1 = l2 = l3 = l4 = l, and rl1l2l3l4 can be simplified to be rll; if the read is a

junction read, there can be three possible scenarios, which are l1 = l2 = l3 < l4,

l1 = l2 < l3 = l4, and l1 < l2 = l3 = l4. Since in all three scenarios, the read involves

the same exon junction between el1 and el4 , we do not distinguish them and instead

collapse them into one type and denote it as rl1l4 . Therefore, only two indices are

needed to indicate the type involving no more than two exons.

For gene g with kg exons, there are in total kg(kg+1)/2 all possible types of reads

among which kg types are non-junction types and kg(kg − 1)/2 types are junction

types. We still use N and J to denote the collection of all non-junction types and

the collection of all junction types under consideration, respectively. It is clear that

R = N
∪
J is the collection of all possible types. We use Eg to denote the exonic

region of gene g, that is, Eg = e1 ∪ e2 ∪ · · · ∪ ekg . For any type r ∈ R and base pair

m ∈ Eg, recall Y r
m denotes the count of type r reads starting at base pair m. We use

Y r = {Y r
m;m ∈ Er} to represent the collection of type r read counts, where Er is the

collection of all possible base pairs that can become the starting positions of type r

reads. We use Y = {Y r; r ∈ R} = {Y r
m; r ∈ R,m ∈ Er} to represent the counts for

all types of reads defined on all possible base pairs.

Recall Tg = {T1, T2, . . . , TN} be a collection of N candidate transcripts of gene g

under consideration. Consider transcript Tt ∈ Tg for 1 ≤ t ≤ N . For base pair m of

transcript Tt, i.e. m ∈ Tt, and read type r ∈ R, we define Xr
tm to be the count of



42

type r reads generated from Tt in a RNA-Seq experiment, and assume Xr
tm follows a

two-component mixture of Poisson distribution with the probability mass function

f (Xr
tm = x|λt, pt) =

2∑
i=1

ptiPoi (x;λti) , (3.1)

where pt = (pt1, pt2)
′ is the vector of mixing proportions satisfying

∑2
i=1 pti = 1, λt =

(λt1, λt2)
′ is the vector of intensity rates of the two Poisson components, Poi(x;λti) =

(λti)
x exp(−λti)/x!, and x is any non-negative integer.

The first Poisson component with intensity rate λt1 is used to model the base pairs

that either are not covered in RNA-Seq experiment or covered with an abnormally

smaller number of reads due to various sequencing uncertainties, whereas the second

Poisson component with intensity rate λt2 is used to model the base pairs that are

normally covered by RNA-Seq experiment and λt2 represents the abundance of the

transcript. As we discussed in the Introduction, using a background intensity to

model zero or small counts is crucial because zero counts contain information, and

the modeling of zero counts will further help us separate transcripts. The proposed

mixture of Poisson distribution can also be considered as a zero-inflated Poisson

distribution with the first component accounting for zero or low counts in RNA-Seq

data.

Note that Xr
tm for m ∈ Tt, Tt ∈ Tg, and r ∈ R may not be always directly observ-

able. After the reads are mapped to the annotated region of gene g, the transcript

label t is missing as discussed previously. Instead of observing Xr
tm, we may only

observe Y r
m, which is the total count of type r reads for m ∈ Er. There however

exists a relationship between Y r
m and Xr

tm, which can be obtained explicitly when

the collection of transcript Tg is given. Consider a base pair m ∈ Er for r ∈ R.

Suppose a total of Nr transcripts {Ti1 . . . TiNr
} ⊂ Tg can give rise to type r reads.

Let Xr
i1m
, . . . , Xr

iNrm
be the counts of type r reads at base pair m from the candidate

transcripts Ti1 , . . . , TiNr
, respectively. Then Y r

m is the sum of Xr
km for k = i1, . . . , iNr ,

i.e.

Y r
m = Xr

i1m
+ . . .+Xr

iNrm
. (3.2)
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Therefore, the distribution Y r
m is the convolution of the distributions ofXr

i1m
, . . . , Xr

iNrm
.

Because Xr
km follows the two-component mixture of Poisson distribution as defined

previously in model (3.1) with f(Xr
km = x) =

∑2
i=1

pkiPoi(x;λki) for k ∈ {i1, i2, . . . , iNr},

the distribution of Y r
m can be derived explicitly, which is a 2Nr -component mixture of

Poisson distribution with the following probability mass function

p(Y r
m = y) ≡ f(y|{Ti1 . . . TiNr

}) =
iNr∏
k=i1

[
2∑

jk=1

pkjkPoi(y;λkjk)] (3.3)

=
∑
ji1

. . .
∑
jiNr

[
pi1ji1 . . . piNr jiNr

Poi(y;λi1ji1 + . . .+ λiNr jiNr
)

]
,

where y is a non-negative integer. There are in total 4Nr unknown parameters in

the model above, which include 2Nr proportion parameters pk1 and pk2 satisfying

pk1 + pk2 = 1 for k = i1, i2, . . . , iNr and 2Nr intensity rates λk1 and λk2 for k =

i1, i2, . . . , iNr . Although the intensity rates λt1 may vary from transcript to transcript,

because they mainly depend on the coverage uncertainty in RNA-Seq experiment as

discussed before, we further assume that they are equal, that is, λi11 = . . . = λiNr1
.

The two-component mixture of Poisson distribution of Xr
km, for k ∈ {i1, . . . , iNr},

plays a key role in making the inference of transcripts’ expression levels from Y r
m

possible. Suppose Xr
km follows a simple Poisson distribution Poi(λk) with intensity

rate λk. Then, Y r
m = Xr

i1m
+ · · · + Xr

iNrm
follows a simple Poisson distribution with

intensity rate λi1 + · · ·+λiNr
. Given yrm, λi1 + · · ·+λiNr

can usually be estimated but

the individual intensity rates λi1 , . . . , λiNr
usually cannot be uniquely identified or

estimated. The two-component mixture of Poisson model for Xr
km not only character-

izes the reads-generating mechanism at transcript level but also makes the inference

of transcript expression levels from the gene level read counts data possible. As will

be shown later, given the realization yrm for m ∈ Er and r ∈ R, the parameters in

model (3.3) can be estimated using the maximum likelihood methods, and the result-

ing estimates can then be further used to quantify the transcript expression levels.

We will also show that it is not necessary to allocate reads to different transcripts

anymore, as is commonly done in the literature. In theory, Xr
km can be assumed to
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follow a mixture of Poisson distributions with more than two components, and all

methods developed in this article can be extended accordingly.

In the discussion above, we do not distinguish junction reads from non-junction

reads. In real RNA-Seq data, non-junction reads and junction reads demonstrate

different characteristics. First of all, junction reads contain more information about

which transcripts they are generated from than non-junction reads. Consider junction

reads of type rl1l2 ∈ J with l1 < l2 and non-junction reads of type rl1l1 ∈ N . Let

T rl1l1 be the collection of candidate transcripts that can generate reads of non-junction

type rl1l1 , and T rl1l2 the collection of candidate transcripts that can generate reads

of junction type rl1l2 . It is clear that T rl1l2 is a subset of T rl1l1 , and hence reads of

type rl1l2 are less convoluted and therefore contain more direct information about the

transcripts than reads of type rl1l1 . Due to the same reason, junction reads are often

used for assembling novel transcripts. Secondly, because the exon-exon junctions are

on average much longer than the fragments sequenced in RNA-Seq experiment, the

number of junction reads is much smaller than the number of non-junction reads. In

other words, given a junction read type r ∈ J , for m ∈ Er, the number of positive

yrm’s is small. We postulate that the excessive large number of base pairs with yrm = 0,

for r ∈ J , maybe caused by other unknown missing mechanisms, which cannot be

properly modeled. Therefore, when estimating the model parameters, it may not

be appropriate to use the original distribution of Y r
m, for r ∈ J . One approach to

solving this difficulty is to consider only positive counts yrm > 0 and the conditional

distribution of yrm given yrm > 0. Another advantage of using the positive counts and

their conditional distributions is to avoid the ambiguity in the definition of Er for
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r ∈ J . We define yr+ = {yrm : m ∈ Er
+}, where Er

+ = {m : yrm > 0}. For r ∈ J , the

conditional distribution of Y r
m given Y r

m > 0 for m ∈ Er is given as follows.

p(Y r
m = y|Y r

m > 0) =

∏iNr
k=i1

[
2∑

jk=1

pkjkPoi(y;λkjk)]

1− p(Y r
m = 0)

(3.4)

=

∑
ji1

. . .
∑
jiNr

[
pi1ji1 . . . piNr jiNr

Poi(y;λi1ji1 + . . .+ λiNr jiNr
)

]
1−

∑
ji1

. . .
∑
jiNr

pi1ji1 . . . piNr jiNr
e
−λi1ji1−...−λiNr

jiNr

.

3.2.4 EM Algorithm for CPM-Seq

Directly optimizing the original composite likelihood function L(θ|ỹ) is difficult

and time consuming. Instead we apply the EM algorithm to calculate the MCLE θ̂. In

order to develop the EM-algorithm, we introduce a two-step data generating scheme

as follows. For type r ∈ R and m ∈ Er, recall that Y r
m follows a 2Nr -component

mixture of Poisson distribution, and we index the components by i1ji1 . . . iNrjiNr
,

for jik ∈ {1, 2} and k ∈ {1, . . . , Nr}. We define membership indicator variables

Zr
m,(i1ji1 ...iNr jiNr

) such thatZ
r
m,(i1ji1 ...iNr jiNr

) = 1 if Y r
m ∼ Poi

(
λi1ji1 + . . .+ λiNr jiNr

)
Zr
m,(i1ji1 ...iNr jiNr

) = 0 if Y r
m ̸∼ Poi

(
λi1ji1 + . . .+ λiNr jiNr

)
.

(3.5)

Let zr = {zrm,(i1ji1 ...iNr jiNr
),m ∈ Er}, for r ∈ N and zr+ = {zrm,(i1ji1 ...iNr jiNr

),m ∈ Er
+}

for r ∈ J . Let z̃ = {zr : r ∈ N} ∪ {zr+ : r ∈ J }, which is the membership indicator

of ỹ. With both ỹ and z̃, the complete composite log-likelihood for θ can be written

as

l(θ|ỹ, z̃) = log(L(θr|y, z)) (3.6)

=
∑
r∈N

lr(θr|yr, zr) +
∑
r∈J

lrc(θ
r|yr, zr, yr > 0),
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where for non-junction type r ∈ N , the complete log-likelihood is

lr(θr|yr, zr) = p(yr, zr|θr) (3.7)

=
∑
m∈Er

{∑
ji1

. . .
∑
jiNr

(zrm,i1ji1 ...iNr jiNr
) ·

[
log(pi1ji1

. . . piNr jiNr
) + log(Poi(λi1ji1 + . . .+ λiNr jiNr

))

]}
,

and for junction read type r ∈ J , the complete conditional log-likelihood is

lrc(θ
r|yr, zr+, yr > 0) = p(yr, zr+|θr, yr > 0) =

∑
m∈Er

+{∑
ji1

. . .
∑
jiNr

(zrm,i1,ji1 ...iNr jiNr
) ·

[
log(pi1ji1 . . . piNr jiNr

)+

log(Poi(λi1ji1 + . . .+ λiNr jiNr
))

]
−
∑
ji1

. . .
∑
jiNr

(zrm,i1ji1 ...iNr jiNr
)·

log
(
1− pi1ji1 . . . piNr jiNr

· e−λi1ji1 ...−λiNr
jiNr

)}
.

Suppose the current parameter estimate is θ̂cur = (λ̂cur, p̂cur)′. The E-step is to

calculate the expected complete log-likelihood function

Q(θ|θ̂cur, ỹ) = Ez̃

[
log

(
l(θ|θ̂cur, ỹ, z̃)

)]
, (3.8)

where the expectation is over the conditional distribution of z̃ given λ̂cur, p̂cur, and

ỹ. Notice that Q(θ|θ̂cur, ỹ) can also be written as

E[
∑
r∈N

lr(θr|yr, θ̂cur, zr) +
∑
r∈J

lrc(θ
r|yr, θ̂cur, zr+, yr > 0))]. (3.9)
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The function Q consists of two parts, one of which involves the non-junction types,

and the other involves the junction types. The expectation of zr for r ∈ N and zr+

for r ∈ J can be calculated separately. For r ∈ N , it is to compute

E(zrm,i1ki1 ...iNrkiNr
|λ̂cur, p̂cur, yrm) (3.10)

=
p̂curi1ki1

. . . p̂curiNrkiNr
Poi(λ̂curi1ki1

+ . . .+ λ̂curiNrkiNr
)∑

ji1

. . .
∑
jiNr

[
p̂curi1ji1

. . . p̂curiNr jiNr
Poi(λ̂curi1ji1

+ . . .+ λ̂curiNr jiNr
)

] ,
and for r ∈ J , it is to compute

E(zrm,i1ki1 ...iNrkiNr
|λ̂cur, p̂cur, yrm, yrm > 0) (3.11)

=
p̂curi1ki1

. . . p̂curiNrkiNr
Poi(λ̂curi1ki1

+ . . .+ λ̂curiNrkiNr
)∑

ji1

. . .
∑
jiNr

[
p̂curi1ji1

. . . p̂curiNr jiNr
Poi(λ̂curi1ji1

+ . . .+ λ̂curiNr jiNr
)

] .

The M-step is to maximizeQ with respect to λ and p, and the resulting maximizers

can be used to update θ̂cur = (λ̂cur, p̂cur)′. We use a block coordinate descent algorithm

to optimize Q. First, we fix the value of p at p̂cur and maximize Q with respect to λ.

Specifically, we can either solve the following system of N + 1 gradient equations,

∂Q

∂(λ11, λ12, . . . , λN2)′
= 0,

or directly maximize the Q function with respect to λ. The resulting maximizer is

(λ̂11, λ̂12, . . . , λ̂N2) = argmaxλ11,λ12...,λN2
Q, and the current estimate of λ̂cur is up-

dated to be (λ̂11, λ̂12, . . . , λ̂N2). Although, for each gene with multiple transcripts, we

can write down the gradient function and provided it in the optimization package, it

is generally not practical to write down the gradient function for each gene model.

Instead, we either numerically evaluate the gradient or use the Automatic Differen-

tiation Model Builder (ADMB), which will be described in more details in Section

4.5.2. Second, we fix the the value of λ at λ̂cur, and optimize Q with respect to pt2

for 1 ≤ t ≤ N by solving the following gradient function,

∂Q

∂pt2
= 0 for 1 ≤ t ≤ N. (3.12)
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Alternatively, we can also directly maximize the Q function with respect to the p.

Let the resulting solution be p̂t2 = argmaxpt2 Q and then p̂t1 = 1− p̂t2 for 1 ≤ t ≤ N .

Then current estimate p̂cur is updated to be (p̂12, . . . , p̂N2).

The EM algorithm iterates between the E-step and M-step until some convergence

criterion is satisfied. It is worth pointing out that as the number of candidate tran-

scripts increases, the computational complexity also increases. The EM algorithm

for the CPM model suffers from the curse of dimensionality and the problem of local

optima. To deal with the first problem, more sophisticated optimization algorithms

or parallel computing techniques could be implemented. To deal with the second

problem, we adopt the strategy of using multiple initializations.

We repeat the EM algorithm with different initial values of the parameters and

choose the estimates that achieve the largest likelihood value.

3.2.5 Quantification rule

Suppose the MCLEs of the model parameters for transcript Tt are calculated to be

λ̂t1, λ̂t2, p̂t1, and p̂t2. Following the quantification procedure proposed in section 2.2.3,

the expression level of transcript Tt is quantified to be gst = (sλ̂t1p̂t1 + λ̂t2p̂t2)/(sp̂t1 +

p̂t2), where s is a pre-specified number between 0 and 1. When s is close to 0, gst is

dominated by the component that mainly represents transcript’s abundance, and gst

is sensitive but suffers from high variability. When s is close to 1, gst is dominated

by the component that mainly represents background noise or zero counts, and gst

is stable but insensitive to the transcript’s expression level. A proper value of s can

avoid the two extremes and lead to a sensitive as well as robust quantification result

of the transcript. As proposed in section 2.2.3, using single isoform genes, a bootstrap

procedure can be used to find the proper value of s. In practice, we found that a s

value between 0.2 and 0.3 will in general be a good choice.
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3.2.6 Identifiability

In this section, we provide a simple simulation example to show why the CPM-

Seq model is able to correctly estimate the transcript expression levels. Consider a

hypothetical gene with two exons e1 and e2 and three transcripts T1, T2, and T3.

The first transcript T1 contains only the first exon, and the second transcript T2

only includes the second exon. The third transcript T3 contains both e1 and e2. We

used transcript level mixture of Poisson model to simulate counts. We set λ12 = 5,

λ22 = 10, and λ32 = 15. For each transcript, the background noise is set to be 0.04,

and the proportions for the background noises are set to be 0.7, 0.8, and 0.9. If

no junction reads are generated in the simulation, and only non-junction reads are

generated, most of the existing methods would not be able to uniquely estimate the

transcript expression levels. Once the transcript level counts are generated, they are

convolution as Y r11
m = Xr11

1m + Xr11
3m =

∑2
i=1

∑2
j=1 p1ip3jPoi (y;λ1i + λ3i) and Y r22

m =

Xr22
2m+Xr22

3m =
∑2

i=1

∑2
j=1 p2ip3jPoi (y;λ2i + λ3i). CPM-Seq model is fitted to estimate

the expression levels of three transcripts, and it is able to identify the expression

levels correctly in 98 out of 100 simulation runs. The reason that the CPM-Seq

model is identifiable is because the Poisson mixture model is identifiable [39], and as

a result, the convolution of Poisson mixture model is again a Poisson mixture model

with more components. Thus, the convolution of Poisson mixture model is also

identifiable. Additionally, the identifiability can be explained by the unique solution

of linear system of equations. As is demonstrated above that both Y r11
m and Y r22

m

follow Poisson mixture distribution with four components. We can first fit a Poisson

model with four components to the r11 and r22 types of data. Let the estimated

Poisson intensities be b11, b12, b13, b14, b21, b22, b23, and b24. Then the expression level
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of each transcript can be obtained by solving the following system of linear equations

Ax = b, where

A =



2 0 0 0

1 0 0 1

1 1 0 0

0 1 0 1

2 0 0 0

1 0 1 0

1 0 1 0

0 0 1 1



, (3.13)

x = (λ11, λ12, λ22, λ32)
T and b = (b11, b12, b13, b14, b21, b22, b23, b24)

T . Since rank(A) = 4,

which is the number of unknown parameters of x, the linear system will have unique

solutions. In general, when we have multiple exons and multiple transcripts, we

can show that the rank of the A matrix will be equal to the number of unknown

parameters of x. Thus the convolution Poisson mixture model is always identifiable.

3.2.7 Simulation Study and Real Application

In order to further compare CPM-Seq with Cufflinks, we need to have a gold

standard as the benchmark. In simulation study, we can simulate expression levels and

treat them as the gold standard. In real data application, however, the true expression

levels of transcripts are in general not available; and the qRT-PCR measurements are

instead popularly used as the gold standard. In this section, we first use simulation

study to compare our proposed method with Cufflinks and discuss their concordance

and discrepancies. The simulation study is conducted at two different scales, which are

the small and large scales, respectively. Examples 1 and 2 present the small and large

scale studies, respectively. We further use two real datasets to compare our proposed

method with Cufflinks. The first dataset contains the single-end sequencing data and

qRT-PCR measurements of eight transcripts. We use the qRT-PCR measurements
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as the gold standard. The second dataset contains the paired-end sequencing data of

a brain sample. The comparison results based on these two datasets are presented in

Example 3 and Example 4, respectively.

Simulation Study

There are two possible ways to generate RNA-Seq read counts data. One way

is to simulate the data from a pre-specified parametric model, and the other way is

to use a RNA-Seq simulator. To make our simulation study more convincing, we

follow the latter approach. We choose the Flux simulator to generate RNA-Seq short

reads. The Flux simulator was developed by Gabriel et al. [40] to simulate RNA-Seq

experiments in silico and is among the most sophisticated simulators. Given a set of

transcripts and their expression levels, the Flux simulator simulates the protocols of

RNA-Seq experiment step-by-step to generate the short reads.

Example 1 We conducted a small scale simulation study to compare the perfor-

mances of CPM-Seq and Cufflinks. Five genes were selected from chromosome 1 of

human genome. Each gene contains three annotated isoforms. Using the Flux simu-

lator, 75 bp paired-end reads are generated for these 15 isoforms as follows. Firstly,

the simulator randomly assigned expression levels to all 15 isoforms in the annota-

tion. Secondly, the simulator randomly fragmented these isoform molecules into small

pieces, which were then amplified in silico. Thirdly, the simulator sequenced these

fragments and generated three thousand 75 bp paired-end reads. Once the reads

were obtained, we mapped them back to the reference genome using Tophat [6]. We

converted the mapped reads to counts data of different types. Based on the counts

data of different types, we applied CPM-Seq and Cufflinks separately to quantify the

expression levels of the 15 transcripts. We refer to the resulting measurements as the

CPM-Seq measurements and Cufflinks measurements, respectively. The expression
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levels of the transcripts assigned by the simulator in the first step were treated as the

gold standard.

The Pearson correlation coefficient between the CPM-Seq measurements and the

gold standard is 0.715, and the Pearson correlation coefficient between the Cufflinks

measurements and the gold standard is 0.665. The scatter plots of the CPM-Seq and

Cufflinks measurements against those of the gold standard are given in Figure 3.1. We

also calculated the Spearman rank correlation coefficient between CPM-Seq and the

gold standard (0.871) and the Spearman rank correlation coefficient between Cufflinks

and the gold standard (0.275). The scatter plots of the ranks of the CPM-Seq and

Cufflinks measurements against those of the gold standard are given in Figure 3.2.

We can see that in terms of Pearson correlation coefficient, CPM-Seq slightly

outperforms Cufflinks. However, in terms of Spearman rank correlation coefficient,

CPM-Seq outperforms Cufflinks dramatically. We believe that Spearman rank cor-

relation coefficient characterizes the performances of the two different methods much

better than the Pearson correlation coefficient. The relatively high Pearson correlation

coefficient between the Cufflinks measurements and the gold standard is attributed

to one influential case, which is plotted as a red diamond in the upper right corner of

Figure 3.1. After this influential point is removed, the Pearson correlation coefficient

between Cufflinks and the gold standard is reduced significantly from 0.665 to -0.059,

whereas the Pearson correlation coefficient between CPM-Seq and the gold standard

only decreases slightly from 0.871 to 0.809. We also calculated the Spearman corre-

lation coefficients between the CPM-Seq and Cufflinks measurements and the gold

standard after the influential point is removed. The resulting Spearman correlation

coefficients are 0.842 for CPM-Seq and 0.108 for Cufflinks. The overall superior per-

formance of CPM-Seq over Cufflinks is further demonstrated by the strong linear

pattern in plot (b) of Figure 3.2 for CPM-Seq, and the lack of linear pattern in plot

(a) for Cufflinks. When comparing the 15 transcripts pairwise (105 pairs in total),

CPM-Seq ranked 90 pairs correctly, whereas Cufflinks only ranks 63 pairs correctly.

This example suggests that Spearman rank correlation coefficient provides a more



53

0 2000 4000

0
10

00
0

30
00

0
50

00
0

(a)

Gold Standard

C
uf

fli
nk

s

0 2000 4000

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

(b)

Gold Standard
C

P
M

se
q

Figure 3.1. Expression level quantification of 15 transcripts using
simulated paired-end data. Plot (a) and (b) show Cufflinks mea-
surements and CPM-Seq measurements against the gold standard,
respectively.

reliable measure of the performance of a quantification method, and thus we will use

it in the other examples in the rest of the paper.

Example 2 We also conducted a large scale simulation study with ten replicated

runs. In each run, the Flux simulator randomly assigns expression levels to all isoforms

of human chromosome 1 in refseq hg 18, and generates three million 75 bp paired-

end reads. Once the reads are obtained, they are mapped back to the reference

genome using Tophat [6]. We filtered out genes that have received in total less than

20 reads, and genes that received more than 60 reads at least at one base pair. In

the first run, there were 987 genes left after filtering. Among these genes, 710 genes

have single isoform, 156 genes have two isoforms, 74 genes have three isoforms, 27

genes have four isoforms, and 27 genes have five isoforms. We applied CPM-Seq and
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Figure 3.2. Rank of expression level quantification of 15 transcripts
using simulated paired-end data. Plot (a) and (b) show rank of Cuf-
flinks measurements and rank of CPM-Seq measurements against the
rank of the gold standard, respectively (The Spearman rank correla-
tion coefficients are 0.275 vs. 0.871)
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Table 3.1
Spearman rank correlation coefficients for CPM-Seq and Cufflinks of
ten simulation replicates

CPM-Seq with Gold Cufflinks with Gold CPM-Seq with Cufflinks

run 1 0.616 0.538 0.498

run 2 0.551 0.540 0.436

run 3 0.606 0.550 0.471

run 4 0.612 0.555 0.464

run 5 0.589 0.548 0.511

run 6 0.547 0.527 0.464

run 7 0.603 0.562 0.490

run 8 0.610 0.532 0.449

run 9 0.602 0.569 0.498

run 10 0.594 0.585 0.536

Cufflinks separately to quantify the expression levels of these isoforms and calculated

their Spearman rank correlation coefficients with the gold standard. The Spearman

rank correlation coefficient for CPM-Seq is 0.616 and the Spearman rank correlation

coefficient for Cufflinks is 0.538. Therefore, CPM-Seq outperformed Cufflinks in this

run. The simulation results of the other 9 runs are reported in Table 3.1. To compare

the performances of CPM-Seq and Cufflinks in all ten runs, we applied the paired

t-test, and the resulting p-value is ≤ 0.0001, suggesting a significant improvement of

CPM-Seq over Cufflinks.

Real Data Application

As discussed previously, two real datasets are further used to compare CPM-Seq

and Cufflinks, and the corresponding results are presented as Example 3 and Example

4 below. Example 3 is based on a small scale study with qRT-PCR measurements,
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which are used as the gold standard. Example 4 is based on the large scale study that

does not have qRT-PCR measurements. Therefore, we do not have a gold standard

in Example 4. Instead, we use the characteristics of the read counts data themselves

to facilitate the comparison of the two methods.

Example 3 Two human cell lines named MCF7 and HME were studied by Wang

et al. using RNA-Seq [41]. The resulting data can be downloaded from the NCBI

Short Read Archive at http://www.ncbi.nlm.nih.gov/sra under accession number

GSE12946. There are 21.6 million 32 bp reads for the MCF7 cell line and the 17.8

million 32 bp sequenced reads for the HME cell line. Using bowtie, we mapped the

reads to the ucsc hg18 reference genome and obtained the base level read counts data

for both cell lines [7]. We applied CPM-Seq and Cufflinks to quantify the transcripts’

expression levels.

The original study of Wang et al. did not provide the qRT-PCR measurements of

the transcripts. Fortunately, Kim et al. [42] used the qRT-PCR technology to mea-

sure eight transcripts of four genes of these two cell lines in a separate study. We used

these qRT-PCR measurements as the gold standard to compare the performances of

CPM-Seq and Cufflinks. The eight transcripts and their qRT-PCR, CPM-Seq and

Cufflinks measurements are reported in Table 3.2 and the Spearman rank correlation

coefficients between the gold standard and the two quantification methods are calcu-

lated and reported in Table 3.3. We can see that CPM-Seq achieves higher correlation

with the gold standard than Cufflinks in both cell lines.

Example 4 In this example, we will see that overall, CPM-Seq is concordant with

Cufflinks, but their quantification results can be quite different from each other for

some genes. We analyzed a RNA-Seq data of the Human Brain Reference RNA

(Brain) sample, which was originally generated by Wong’s lab using the Illumina

Genome Analyzer platform [43]. We processed one lane of eight millions 50 bp

paired-end reads. The data set can be downloaded from NCBI Short Read Archive
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Table 3.2
Expression level of 8 transcripts of HME and MCF7 cell lines

HME MCF7

transcript ID qRT-PCR CPM-Seq Cufflinks qRT-PCR CPM-Seq Cufflinks

uc002cvs.1 423.5 0.9771 1.3396 595.4 1.7365 2.7964

uc002cvt.2 234.7 1.4227 33.6959 302.3 1.5082 51.6319

uc002qlp.1 277.9 1.1251 7.8938 381.3 2.0921 17.1806

uc002qlq.1 621.8 1.3131 18.9976 755.9 2.7526 44.7393

uc002xmo.1 8.1 0.0019 0.1141 189.6 1.6722 7.7976

uc002xmn.1 10.7 0.0039 0.2860 530.0 3.8728 18.7706

uc003ngr.1 12.4 0.8350 14.3832 317.8 3.9782 125.3420

uc003ngs.1 538.2 0.0472 1.6722 19207.9 4.4089 45.9333

Table 3.3
Spearman rank correlation for 8 transcripts of HME and MCF7 cell lines

CPM-Seq Cufflinks

HME 0.571 0.476

MCF7 0.619 -0.024

(SRA) at http://www.ncbi.nlm.nih.gov/sra under the accession numbers GS475204

and GSM475205 [43]. Tophat was used to map the reads to refseq hg18 [6]. We fil-

tered out genes that have received in total less than 20 reads, genes that have received

more than 60 reads at least at one base pairs, and genes with more than 5 exons. Af-

ter filtering, 433 genes on chromosome 1 are left and these genes contain 743 isoforms.

Among the 433 genes, there are 277 single isoform genes, 87 two-isoform genes, 51

three-isoform genes, and 18 four-isoform genes. Because these multi-isoform genes

contain many sub-exons, it is not possible to observe every type of junction reads

even if all of the junctions are expressed. Therefore, we used the composite like-
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lihood, which includes all non-junction reads, and the positive junction reads. We

applied CPM-Seq and Cufflinks to quantify the expression level of each transcript.

The Spearman rank correlation coefficient between CPM-Seq and Cufflinks in this

example was calculated to be 0.589, which shows that overall CPM-Seq has a good

concordance with Cufflinks in this example. Despite their general concordance, the

quantification results of CPM-Seq and Cufflinks are different for a large number of

genes. A more careful comparison between the CPM-Seq and Cufflinks measurements

of these genes indicates that the CPM-Seq measurements are more reasonable. We

give such an example below.

According to human refseq hg18, gene ZNF238 contains two exons, which we

denote as e′1 and e′2, and it has two annotated transcripts labeled as NM205768 and

NM006352. Transcript NM205768 consists of e′1 and a part of e′2, and transcript

NM006352 consists of the entire e′2. In order to make the transcripts either contain or

skip an exon entirely, we split exon e′2 into two sub-exons denoted as e2 and e3. We

re-denote exon e′1 as e1. Therefore, exons e1, e2 and e3 form a partition of the exonic

region of gene ZNF238. The total length of gene ZNF238’s exonic region is 4387, and

the exonic base pairs are indexed as 1, . . . , 4387. Exons e1, e2, and e3 contain base

pairs {1, . . . , 187}, {188, . . . , 695}, {696, . . . , 4387}, respectively. NM205768 consists

of e1 and e3, and NM006352 consists of e2 and e3. We re-label the two transcripts

NM205768 and NM006352 as T1 and T2, respectively, and assume that they form the

collection of candidate transcripts, that is, T = {T1, T2}.

As discussed previously, not all junction reads will be observed due to insufficient

coverage or technological limitations of RNA-Seq experiment. In the 50 bp paired-end

reads data generated by Wong’s lab, we only observed five types of reads for gene

ZNF238. The frequency of each type of reads is summarized in Table 3.4, and the

base level counts are plotted in Figure 3.3.

We applied CPM-Seq to quantify the expression levels of T1 and T2, and the

MCLEs of the model parameters and quantification results are reported in Table

3.5. The parameter estimates indicate that both T1 and T2 are expressed and the
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Table 3.4
Frequency table for each type of reads for gene ZNF238

type r11 r13 r22 r23 r33

counts 2 8 4 2 1313
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Figure 3.3. Base pair level counts for each type of reads in ZNF238
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expression level of T1 (0.741) is higher than that of T2 (0.296). We also applied

Cufflinks to quantify these two transcripts and the quantification results are also

presented in Table 3.5. Cufflinks quantified the expression level of T1 to be 11.653,

whereas it quantified the expression level of T2 to be 4.128e-05, which is almost zero.

It appears that Cufflinks suggests that T1 was expressed but not T2. Therefore, for

gene ZNF238, CPM-Seq and Cufflinks gave different quantification results.

Recall that T1 = e1e3, T2 = e2e3, and e1, e2, and e3 are 187 bp, 507 bp, and 3691

bp long in lengths, respectively. It is clear e3 is the longest among the three exons,

followed by e2 and then e1, and e3 is actually much longer than e2 and e1. From

Table 3.4, e3 received the majority of the reads mapped to gene ZNF238 (1313 out

of 1329 reads). These reads are of type r33. Because both T1 and T2 contain e3, both

transcripts can give rise to reads of type r33, and they cannot be directly allocated to

the transcripts. Reads of types r11 and r13 (10 in total) suggest the expression of T1,

whereas reads of type r22 and r23 (6 in total) suggest the expression of T2. However,

the counts of these types of reads are relatively small compared to the count of reads

of type r33, due to the short lengths of e1 and e2. We believe that this was the reason

that Cufflinks was not able to separate the two transcripts and instead allocated all

reads of type r33 to T1. On the other hand, CPM-Seq was able to infer the expression

levels of T1 and T2 using the convolution model that models the read count at each

base pair. In other words, CPM-Seq successfully identified the two transcripts in this

example.

Table 3.5
Fitting a real example

Transcript λ̂ p̂ CPM-Seq Cufflinks

T1 λ̂11 = 0.040 p̂21 = 0.898 0.741 11.653

λ̂12 = 1.978 p̂12 = 0.102

T2 λ̂21 = 0.040 p̂21 = 0.993 0.296 ≈ 0 (4.128e-05)

λ̂22 = 7.998 p̂22 = 0.007
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4. TRANSCRIPTS IDENTIFICATION

One of the advantages of the RNA-Seq technology is its ability to identify alternatively

spliced events, because RNA-Seq technology offers single base pair resolution rather

than intensities, compared to the traditional microarray technology. In some cases,

if the sequenced fragments only cover an exon-exon junction that is unique in a

particular transcript, direct inference about this transcript can be made, and existing

statistical models, as discussed in previous chapters, can be used to normalize the

transcript expression levels. However, a large number of fragments cannot be uniquely

mapped to transcripts because of alternative splicing, an event that preserves and

skips exons in different transcripts. As a result, when the transcripts are fragmented,

multiple transcripts can give rise to identical reads. In other words, the labels of

the transcripts that identical reads are generated from are missing. Therefore, the

identification of transcripts is an indirect problem that requires the use of proper

statistical models.

4.1 Introduction

A number of methods have been proposed for solving the transcript identifica-

tion problem in the literature. These methods usually fall into one of the following

two categories, which are graph-based assembly methods and model-based assembly

methods, respectively. One typical graph-based assembly method is Cufflinks. First,

Cufflinks defines compatibility between reads. Two reads are incompatible if they can-

not be originated from the same transcript. Second, based on the starting position of

the reads, Cufflinks defined a partial order P for all the reads. Third, Cufflinks finds a

partition of P into chains, such that each chain represents a transcript and compatible

reads are generated from the same chain. Then Cufflinks assembles a set of candidate
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transcripts based on graph theory. According to the Dilworth’s theorem, Trapnell et

al. showed that the number of transcripts that Cufflinks assembles is always equal

to the number of incompatible reads. Transcripts for different genes are assembled

independently, and then Cufflinks uses a probabilistic statement to model the gener-

ating scheme of each read. The probabilistic model involves the expression levels of

the transcripts that can produce this read. The graph-based assembly method, such

as Cufflinks, only uses the compatibility to assemble transcripts. They fail to use

the information contained in the read counts data. On the other hand, model-based

assembly methods use statistical models to quantify the expression levels of all possi-

ble candidate transcripts, and declare those highly expressed as identified transcripts.

SLIDE is a typical example of model-based assembly methods [37]. SLIDE considers

all possible candidate transcripts and fits a linear model to the bin counts. However,

for some genes, the number of bins is less than the number of candidate transcripts.

Thus, the linear regression framework may be non-identifiable. To address this issue,

SLIDE proposed to impose a penalty on the transcript abundance parameters so that

transcripts with low abundance will be shrunken to zero. After fitting the penalized

regression, SLIDE declares those transcripts whose abundances are greater than zero

as expressed transcripts.

Besides the two methods mentioned above, there are other models proposed in the

literature to address the transcript identification problem. For example, IsoLasso [36]

uses graph theory to assemble candidate transcripts and applies Lasso to regress

read counts in segments against the transcript expression levels. However, most of

these methods use improper observational units. As a result, the model itself is non-

identifiable. To overcome these issues, we propose to use penalized convolution of

Poisson mixture models to identify highly expressed transcripts.
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4.2 Lasso

In practice, linear regression is one of the most popularly used statistical methods.

In regression models, the response variable is assumed to be a linear function of the

predictors. Let n and p denote the number of observations and the number of pre-

dictor variables, respectively. Traditionally, the linear model can only deal with the

case where p is small and n is large. However, this is not in general the case in high

dimensional problems. When the number of variables p is large, it is often desirable

to assume that there exists a sparsity representation of the model. The identification

of the sparse representation is usually done by variable selection procedures such as

forward, backward, or best subset selection procedures.

Forward and Backward Selection

Forward selection method starts will the null model that includes none of the pre-

dictor variables. Based on the variables that have been selected in the current model,

the variable that can most improve the model fitting is added to the model. The

procedure stops if there is no significant improvement to the model fitting. Backward

selection procedure works in a reverse order, by eliminating variables one at a time

until all kept variables are significant. Forward and backward selection procedures

are easy to understand, but are known to have inconsistent results. It is difficult to

characterize the statistical properties of these procedures as well, such as their consis-

tency in variable selection. These procedures are also known to have instability issues,

that is a tiny change in the data can have a big impact on the variable selection results.

Best Subset Method

Best subset methods fit the linear regression model to all possible subsets of predic-

tors and use information based criterion such as Akaike Information Criterion (AIC)

to select the one that best fits the model. AIC score is defined as

−2l(β̂|y) + 2 · p, (4.1)
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where l(β̂|y) is the log-likelihood function and p is the number of parameters in the

model. The term 2p can be viewed as a penalty on the number of parameters that are

needed to fit the data. More parameters would fit the data better and would result

in a bigger penalty. Thus the AIC achieves a balance between the likelihood and

the size of the model. To compare different models, their AIC scores are compared

and the model with the smallest AIC score is chosen. Bayesian information criterion

(BIC) can be also used in this case.

Best subset methods also have their own weaknesses. When the number of vari-

ables becomes large, the number of possible subsets grows exponentially. Thus these

methods usually do not work well when p is large. Nowadays, as is often the case that

the number of the parameters of interest can be much larger than the number of ob-

servations, variable selection becomes extremely important. One such example is gene

expression study, in which thousands of genes are simultaneously measured in only a

few samples. The purpose is to identify a subset of significant genes that contribute

to the sample differences. The large p small n problem can also come from single

nucleotide polymorphism (SNP) study, in which millions of SNPs are included in the

study and their associations with the only a few phenotypes are studied to deter-

mine a small number of SNPs that affect the phenotype. Based on the parsimonious

assumption, Tibshirani proposed Least Absolute Shrinkage and Selection Operator

(Lasso) that minimizes the residual sum of squares subject to a L1 penalty on all

the coefficients [44]. Lasso estimators can be solved computationally using convex

optimization methods, or the entire regularization path can be computed efficiently

using Least Angle Regression (Lars) algorithm [45]. These computational methods

provide a feasible way to select a small number of variables that best explain the

data.
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4.2.1 Lasso Solution

Consider the usual linear regression setup. Each observation is related to p pre-

dictors through a linear relationship as

y = Xβ + ϵ, ϵ ∼ N(0, σ2I), (4.2)

where y ∈ Rn denotes the vector of observed responses, X ∈ Rn×p, ϵ = (ϵ1, . . . , ϵn)
T

is a vector of i.i.d. random errors with mean 0 and variance σ2, and β ∈ RP is the

vector of unknown coefficients. When p ≤ n and X is full column rank, the ordinary

least squares solution exists, which can be written as

β̂ols = (X ′X)−1X ′Y. (4.3)

In this particular case, the ordinary least squares solution also corresponds to the

maximum likelihood estimates of β under the normality assumption of ϵ. However,

the ordinary least squares estimate cannot perform variable selection because the

estimate of all coefficients will be nonzero. Additionally, when p ≥ n, the ordinary

least squares estimate of β does not exist. To address these problems, Tibshirani [44]

proposed the Lasso estimator as follows:

β̂ = arg min
β∈RP

1

2
||y −Xβ||22 + γ||β||1, (4.4)

where γ is a non-negative tuning parameter, || · ||2 represents the L2 norm, and ||β||1
stands for the L1 norm of the coefficients vector β, which is the sum of the absolute

values of the components in β. The scale of γ controls the penalty on each individual

parameter of β. The model is assumed to be sparse, that is, only a small number of

coefficients of β are nonzero, while the other variables are not related to the response.

If γ is set to 0, the Lasso reduces to the ordinary least squares problem. On the

other hand, a very large value of γ will completely shrink β̂ to 0. In practice, a

moderate level of γ needs to be determined so that variables with zero coefficients

are shrunken to zero, while variables with large coefficients are kept. The shrinkage

approach trades off bias for variance, and a parsimonious model can be obtained for
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easier interpretations. It can be shown that the Lasso framework is equivalent to the

solution of the following optimization problem:

β̂ = arg min
β∈RP

1

2
||y −Xβ||2, (4.5)

subject to
p∑
i=1

|βi| ≤ t. In equation (4.5), Lasso is framed into a constrained convex

optimization problem. The two problems are equivalent in the sense that for any

given value of γ, there exists a t, such that the two problems have identical solutions.

4.2.2 Variable Selection Consistency of Lasso

In this section, we review the variable selection consistency result of the Lasso.

Zhao and Yu studied the necessary and sufficient conditions for Lasso to select the

true model [46]. Based on their findings, a single condition, called the irrepresentable

condition is proved to be sufficient and almost necessary for Lasso to achieve model

selection consistency.

They first defined the sign consistency of β̂ as follows. If there exists γ, such that,

lim
n→∞

P (β̂(γ) =s β) = 1, where β̂ =s β means sign(β̂) = sign(β) for each component,

then β̂ is said to be sign consistent.

Let T0 be the set of variables with nonzero coefficients, and T c0 be the set of

variables with zero coefficients. Without loss of generality, we can write the vector

of all coefficients in β as two parts, that is, β = (βT0 , βT c
0
)T , where βT0 denotes the

coefficients of variables that are in T0, and βT c
0
denotes the coefficients of variables

that are in T c0 . Suppose |T0| = q. Now let X(1) and X(2) represent the first q and

last p− q columns of the design matrix X, and let C = 1
n
XTX. Furthermore, we can

express C in a block-wise form as follows

C =

C11 C12

C21 C22

 . (4.6)
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Assume C11 is invertible, the irrepresentable condition holds if there exists a positive

constant vector η such that

|C21(C11)
−1sign(βT0)| ≤ 1− η, (4.7)

where 1 is a vector of p− q 1’s and the equation holds element-wise. In other words,

the variables that are not in the true model cannot be represented by variables that

are in the true model.

Zhao and Yu further showed that under certain regularity conditions and strong

irrepresentable condition, the Lasso solution is strongly sign consistent, that is P (β̂ =s

β) = 1 − o(e−n
c
), where 0 ≤ c < 1. This implies that if strong irrepresentable

condition holds, then the probability that Lasso selects the true model approaches 1

at an exponential rate.

4.2.3 Estimation Consistency of Lasso

In this section, we consider the estimation consistency of Lasso estimate, when

the irrepresentable condition is violated. In practice, it might be difficult to verify if

the irrepresentable condition holds. Meinschausen and Yu have shown that when the

irrepresentable condition does not hold, the Lasso solution will not be sign consistent

[47].

To study the convergence property of the Lasso estimate when the irrepresentable

condition does not hold, Meinschausen and Yu [47] demonstrated that the Lasso

estimate can achieve L2 consistency. Additionally, if a two-step hard thresholding

procedure is used, the Lasso estimate can also achieve the sign consistency.

An estimate of β, denoted by β̂, is L2 consistent if

||β̂ − β||2 → 0 as n→∞. (4.8)

The L2 consistency is an attractive property, because it shows that when the irrepre-

sentable condition is violated, the Lasso estimate will not be identical in sign to the

true variables, but Lasso will still manage to select the true variables together with
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a limited number of untrue variables and the estimated coefficients of these untrue

variables will be small. In other words, it will at least do a good job and choose

important variables with high probability and unimportant ones with only small co-

efficients. Meinschausen and Yu further showed that in order to achieve the sign

consistency, hard-thresholding rule can be applied to the estimated coefficients.

4.2.4 Uniqueness of Lasso solution

For any y, X, and γ ≥ 0, the Lasso estimate has the following properties:

(i). There is either a unique Lasso solution or an infinite number of solutions.

(ii). Every Lasso solution β̂ gives the same fitted value Xβ̂.

(iii). If the regularization parameter γ > 0, then every lasso solutions β̂(γ) has

the same L1 norm ||β̂(γ)||1.

Besides these properties, Tibshirani [48] further showed that if each column of the

design matrix X ∈ Rn×p is drawn from a continuous distribution, then for any y, and

γ, the lasso solution is unique. In order to show the uniqueness of the Lasso solution,

Ryan first defined the equicorrelation set ε by

ε = {i ∈ (1, . . . , p) : XT
i (y −Xβ̂)| = γ}, (4.9)

and the equicorrelation sign s by

s = sign(XT
ε (y −Xβ̂)). (4.10)

For any y, X, and γ, if null(Xε) = 0, or equivalently, if rank(Xε) = |ε| then the

Lasso solution is unique, and is given byβ̂−ε = 0

β̂ε = (XT
ε Xε)

−1(XT
ε y − γs),

(4.11)

where the ε and s are the equicorrelation set and sign defined previously.
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4.2.5 KKT Condition

As discussed before, Lasso regression is equivalent to an optimization problem

with inequality constraints. Typically, when dealing with optimizations with equality

and inequality constraints, Karush-Kuhn-Tucker (KKT) condition is used as the first

order necessary condition for a solution to be optimal. In general, if the objective is

to

minimize f0 (4.12)

subject to fi(x) ≤ 0, i = 1, . . . ,m, (4.13)

hi(x) = 0, i = 1, . . . , p, (4.14)

then according to the KKT condition, if x∗, λ∗, and ν∗ are optimal, they must satisfy

the following conditions, which are

fi(x
∗) ≤ 0, (4.15)

hi(x
∗) = 0, (4.16)

λ∗i ≥ 0, (4.17)

λ∗i fi(x
∗) = 0, (4.18)

∇f0(x∗) +
∑
i

λ∗i∇fi(x∗) +
∑
i

ν∗i∇hi(x∗) = 0. (4.19)

For the Lasso problem, our objective function is

obj =
1

2
||y −Xβ||22 + γ||β||1. (4.20)

Applying the KKT condition to the Lasso problem, we know that a minimizer β̂(γ)

of the objective function in equation (4.20) has to satisfy either one of the following

two conditions. In the first case, if the coefficient of ith variable β̂i(γ) ̸= 0, then the

ordinary first partial derivative of the objective function with respect to βi at β̂(γ)

has to be zero, that is,

∂obj

∂βi(γ)
|β=β̂(γ) = −X

T
i (y −Xβ) + γ · sign(βi)|β=β̂(γ) = 0. (4.21)
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In the second case, if β̂i(γ) = 0, the subdifferential at βi(γ) has to include the zero

element, i.e.,

−XT
i (y −Xβ) + γ · e for some e ∈ [−1, 1] = 0, (4.22)

which is equivalent to |XT
i (y −Xβ)| ≤ γ.

4.2.6 Algorithm to Obtain Lasso Solution

Convex Optimizer

As is mentioned before, in regression settings, the Lasso problem is equivalent to

a convex optimization problem, thus the usual convex optimizer can be used to solve

the Lasso problem.

Coordinate Descent

Coordinate descent algorithm is a type of optimization algorithm that uses differ-

ent coordinate direction cyclically to obtain the optimal solution. Tseng [49] estab-

lished the converge of the coordinate descent algorithm for a general case where the

objective function has the following special form,

f(β1, . . . , βN) = f0(β1, . . . , βN) +
N∑
k=1

fk(βk), (4.23)

where f0 is differentiable and convex function. A key to the convergence result of

using coordinate descent algorithm to solve f(β1, . . . , βN) in equation (4.23) is the

separability of the penalty function
N∑
k=1

fk(βk), which is a sum function of each indi-

vidual parameter. Tseng further showed that each parameter estimate generated by

the coordinate descent method is a stationary point of the f .
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For the Lasso problem, in order to derive the coordinate descent algorithm to

obtain the coefficient estimates, we can write the objective function as

f(β) =
1

2

n∑
i=1

(yi −
p∑
j=1

xijβj)
2 + γ

p∑
j=1

|βj|. (4.24)

Then we can re-write it as

f(β) =
1

2

n∑
i=1

(yi −
∑
k ̸=j

xikβk − xijβj)2 + γ
∑
k=j

|βk|+ γ|βj|. (4.25)

We minimize f(β) with respect to βj, while keeping all the other βk’s fixed, for k ̸= j.

The updating rule for βj can be written as

β̂j(γ)← S

( n∑
i=1

xij(yi − y(j)i ), γ

)
, (4.26)

where y
(j)
i =

∑
k ̸=j

xikβk(λ) and S(t, γ) = sign(t)(|t − γ|+). The algorithm cycled

through j = 1, 2, . . . , p until convergence criterion is met.

Lars Algorithm

Lars algorithm starts with γ =∞ and with β̂ = 0 and then decrease the value of

γ. At the kth iteration, under γk, Lars algorithm performs the following four steps:

(i). Compute the Lars solution by least squares, given γk.

(ii). Compute γjoink+1 , when a variable outside the active set joins the active set.

(iii). Compute γcrossk+1 , when a variable in the active set crosses zero.

(iv). Set γk+1 = max(γjoink+1 , γ
cross
k+1 ). If γk+1 = γjoink+1 , the Lars algorithm adds a

variable to the active set. However, if γk+1 = γcrossk+1 , Lars remove the crossing variable

from the active set.

General Path-Following Algorithm

As is shown in the above section, Lars algorithm takes the advantage of the piece-

wise linear coefficient path property, and used it to obtain the entire solution path.
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Rosset and Zhu [50] studied the general path solution for optimization problem. Bor-

rowing the idea of Lars algorithm, they applied the path following algorithm to the

general penalized likelihood function to obtain the solutions along the entire regu-

larization path. In order to demonstrate how path-following algorithm works, we

assume that a general setting for the penalized likelihood approach is to minimize the

following objective function

obj(β) = −L(y,Xβ) + γJ(β). (4.27)

Equivalently, it can be written as

β̂(γ) = argmin
RP

{
− L(β(γ)) + γJ(β(γ))

}
(4.28)

where γ ≥ 0 is the penalty parameter on the coefficients. If γ = 0, there is no

regularization and obj(β) reduces to the negative of the original likelihood L(y,Xβ).

We can also see that in equation (4.27), if γ →∞, β̂ → 0.

Taking the first order partial derivative of the objective function obj(β) with

respect to β, we get

f(β) = H(β(γ), γ) ≡ ∂obj(β)

∂β
= −∂L(β(γ))

∂β
+ γ

∂J(β)

∂β
. (4.29)

For any β̂ to be optimal, f(β̂) has to be 0. Then we have

f ′(β) =
∂H

∂β

∂β

∂γ
+
∂H

∂γ
= 0. (4.30)

We can solve ∂β
∂γ

from equation (4.30) as

∂β

∂γ
= −(∂H

∂β
)−1∂H

∂γ
. (4.31)

From equation (4.29), we know that ∂H
∂β

= −∂2L(β(γ))
∂β2 + γ ∂

2J(β)
∂β2 . Thus plugging it into

equation (4.31), we can get

∂β

∂γ
= −

(
− ∂2L

∂β2
+ γ

∂2J

∂β2

)−1∂H

∂γ
. (4.32)

We can see that a necessary and sufficient condition for the solution path to

be linear in γ, when both L and J are twice differentiable, is that equation (4.31)
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needs to be proportional to a constant vector in Rp. Generally speaking, when ∂β
∂γ

is not proportional to a constant vector, the solution path will not be piecewise

linear. Thus, given the current regularization γk, it is difficult to determine the exact

step length in the path algorithm to reach the next regularization γk+1, under which

the active set changes. To obtain the coefficient estimate β̂(γk+1) from β̂(γk), the

predictor-corrector method will be used. The predictor-corrector method is used to

approximate the corresponding change in β with the decrease in γ. The predictor-

step estimates β̂k⋆, which is the predicted value of β̂k+1. The corrector-step finds the

exact solution of β̂k+1 that corresponds to γk+1 using β̂k⋆ as the initial values. At

k + 1th iteration, the path algorithm works as follows:

1. Determine step length: given current regularization γk, determine the next

regularization as γk+1.

2. Predictor step: approximate corresponding change in β with the decrease in γ

and denote the predicted value of β as β̂k⋆.

3. Corrector step: calculate the exact β̂k+1 using β̂k⋆ as the initial value.

4. Modify the active set according to KKT conditions given below, which either

add or drop a variable from the active set.

|
∂L(β̂(γ))

∂β
| ≤ γ if β̂j = 0,

∂L(β̂(γ))
∂β

= −sign(β̂j)γ if β̂j ̸= 0.

(4.33)

Adding a variable: for any variable in the non-active set Ac, this variable should

join the active set A, if |∂L(β̂(γ))
∂β
| ≤ γ stops to hold.

Deleting a variable: for any variable in the active set, if ∂L(β̂(γ))
∂β

= −sign(β̂j)γ

stops to hold.
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4.3 Other Penalty Functions and the Oracle Property

4.3.1 SCAD Penalty and Oracle Property

Fan and Li [51] introduced the concept of the model selection oracle property. Let

Q(β) be the penalized likelihood function −L(β) +
∑

j pγn(|βj|). An estimator β̂ is

said to have the oracle property if:

(1). P (β̂T c
0
= 0) → 1 as n → ∞, where T c0 is the set of indices of the true zero

variables;

(2). β̂T0 achieves an information bound mimicking the oracle estimator. In other

words, the penalized method performs as well as the oracle estimator, which knows

in advance that βT c
0
= 0. Besides, if the regularization parameter is properly chosen,

the estimator β̂T0 is asymptotically normally distributed with covariance matrix I−1
1 ,

where I1 is the fisher information knowing βT c
0
= 0.

They further established the conditions that an estimator can enjoy oracle prop-

erty. Assume

lim
n→∞

inf lim
β→0+

inf p′γn(β)/γn > 0. (4.34)

Under certain regularity conditions, a local root-n consistent estimator β̂ will have

the oracle property if γ → 0,

√
nγ →∞ as n→∞.

(4.35)

For the Lasso estimator, it is shown that root-n consistency requires that γn →

Op(n
− 1

2 ). On the other hand, the oracle property requires that
√
nγn → ∞. Thus,

Lasso type of penalty is not able to satisfy both of these requirements. Therefore,

Lasso does not have oracle property.

They proposed three good properties that any good estimator should have.

1. Unbiasedness: The resulting estimator should be nearly unbiased when the

true unknown parameter is large to avoid unnecessary modeling biases.
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2. Sparsity: The estimator should automatically set small coefficients to zero to

reduce the model complexity.

3. Continuity: The estimator should be continuous in data to avoid instability in

model predictions.

Fan and Li further proposed some conditions that a penalty needs to satisfy in

order to have the above proposed properties. Let pγ(θ) = γρ(θ) denote the penalty

term, where θ ∈ [0,∞). In order for a penalty to satisfy the first conditions, p′γ(θ)

needs to be close to zero when θ is large. The second property requires that p′γ(0+) >

0. The third property requires that the function θ + p′γ(θ) achieves its minimum at

θ = 0.

Based on these criteria, Fan et al. proposed the Smoothly Clipped Absolute

Deviation ( SCAD) Penalty [51]. The penalty function is defined as

p′γ(θ) = γ
{
I(θ ≤ γ) +

(aγ − θ)+
(a− 1)γ

I(θ > γ)
}
, (4.36)

where a > 2 and θ > 0. It can be verified that the SCAD penalty enjoy the above

three properties.

4.3.2 Smooth Homotopy between L0 and L1 Penalty

Since the oracle property is a desirable property for model selection approaches,

many penalties are designed to satisfy the oracle property. The L0 penalty can recover

the sparse variables, however, it is computationally infeasible when the dimension

grows large. On the other hand, the L1 penalty does not satisfy the conditions of

oracle property, therefore, the using the L1 penalty would not always recover the true

model. Lv et al. proposed a smooth homotopy between L0 and L1 penalties as a

unified approach as

ρa(θ) =
(a+ 1)θ

a+ θ
for a ∈ (0,∞) and t ∈ [0,∞). (4.37)
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We can see that 
ρ0(θ) = lim

a→0+
ρa(θ) = I(θ ̸= 0),

ρ∞(θ) = lim
a→∞

ρa(θ) = t.

(4.38)

Thus, the family of penalty in equation (4.37) can be interpreted as a smooth homo-

topy between L0 and L1 penalties.

4.4 L1 Penalized Convolution of Poisson Mixture Model

As is explained is the previous chapter that the transcript identification problem

is challenging because of the following three reasons. First, the number of candidate

transcripts grows exponentially with the increase of the number of exons. Second,

because of the limitations of the current technology, fragment distribution is limited to

certain ranges. The lack of the long reads makes the identification of long transcripts

difficult. For example, the mean of the length of fragments from current Illumina’s

sequencing technology, such as Genome Analyzer or Hiseq 2000, is typically around

200 base pairs, and the standard deviation is usually around 25 base pairs. The

relatively short reads would only span over a few exon-exon junctions, thus it is still

not possible to map the reads directly to the transcripts. Third, even though junction

reads are available, the label that each read is from is missing. Therefore, each read

cannot be directly assigned to a particular transcript.

To address the transcripts identification problem, we proposed the penalized con-

volution of Poisson mixture models (penCPM-Seq) that incorporates a lasso penalty

to the original composite likelihood. The objective function can be written as

Obj(θ|y) =−
∏
r∈R

Lr(θ|yr) + γ ·
N∑
i=1

|λi2|

=−
∏
r∈R

∏
m

iNr∏
k=i1

[ 2∑
jk=1

pk,jkPoi(λk,jk)

]
+ γ ·

N∑
i=1

|λi2|,
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and our goal is to

min
θ
Obj(θ|y),

subject to


λij > 0, for 1 ≤ i ≤ N and 1 ≤ j ≤ 2,

λ11 = . . . = λN1,

pi1 + pi2 = 1 for 1 ≤ i ≤ N,

where λi1 for 1 ≤ i ≤ N is the intensity, which is used to model the background noises.

The intensity λi2 for 1 ≤ i ≤ N indicates the expression level of ith transcript. The

value of γ controls the amount of regularization. Under different regularization values,

different transcripts will be selected in the active set.

4.5 Penalized Convolution of Poisson Mixture Model

4.5.1 Low Dimensions

As discussed above, adding a Lasso penalty to the linear model makes it possible

to obtain a sparse representation of the model. When the L1 penalty is imposed

on the intensity parameters in the convolution of Poisson mixture models, both the

coordinate descent algorithm and the path following algorithm can be used to obtain

the parameter estimates. Once the model parameters are estimated, KKT condition

can be used to check if any variables should be added to or deleted from the active

set.

We developed an EM-algorithm for the penalized convolution of Poisson mixture

models. We kept on using the two-step data generating scheme that is introduced in

the previous chapter. For a read of type r ∈ R and m ∈ Er, suppose Nr transcripts

can generate this type of read. We further assume that, for each transcript, Xr
tm
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follows a two-component mixture of Poisson distribution with the probability mass

function

f (Xr
tm = x|λt, pt) =

2∑
i=1

ptiPoi (x;λti) , (4.39)

where pt = (pt1, pt2)
′ is the vector of mixing proportions satisfying

∑2
i=1 pti = 1, λt =

(λt1, λt2)
′ is the vector of intensity rates of the two Poisson components, Poi(x;λti) =

(λti)
x exp(−λti)/x!, and x is any non-negative integer. Then

Y r
m = Xr

i1m
+ . . .+Xr

iNrm
(4.40)

follows a 2Nr -component mixture of Poisson distribution, and we index the compo-

nents by i1ji1 . . . iNrjiNr
, for jik ∈ {1, 2} and k ∈ {1, . . . , Nr}. We define membership

indicator variables Zr
m,(i1ji1 ...iNr jiNr

) such thatZ
r
m,(i1ji1 ...iNr jiNr

) = 1 if Y r
m ∼ Poi

(
λi1ji1 + . . .+ λiNr jiNr

)
Zr
m,(i1ji1 ...iNr jiNr

) = 0 if Y r
m ̸∼ Poi

(
λi1ji1 + . . .+ λiNr jiNr

)
.

(4.41)

Different from chapter 3, where we used conditional distribution to model the junction

reads, in this chapter, for simplicity, we do not distinguish different types of reads.

Instead, we treat the junction read types and non-junction read types in the same

way. Let zr = {zrm,(i1ji1 ...iNr jiNr
),m ∈ Er}, for r ∈ R. Let z = {zr : r ∈ R}, which is

the membership indicator of y. With both y and z, the penalized likelihood function

for θ can be written as

l(θ|y, z) = − log(L(θr|y, z)) + γ

N∑
t=1

λt2 (4.42)

= −
∑
r∈R

lr(θr|yr, zr) + γ

N∑
t=1

λt2,
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where for r ∈ R,

lr(θr|yr, zr) = p(yr, zr|θr) (4.43)

=
∑
m∈Er

{∑
ji1

. . .
∑
jiNr

(zrm,i1ji1 ...iNr jiNr
) ·

[
log(pi1ji1

. . . piNr jiNr
) + log(Poi(λi1ji1 + . . .+ λiNr jiNr

))

]}
,

subject to


λij > 0, for 1 ≤ i ≤ N and 1 ≤ j ≤ 2,

λ11 = . . . = λN1,

pi1 + pi2 = 1 for 1 ≤ i ≤ N.

Suppose the current parameter estimate is θ̂cur = (λ̂cur, p̂cur)′. The E-step is to

calculate the expected complete log-likelihood function

Q(θ|θ̂cur,y) = Ez

[
− log(l(θ|θ̂cur,y, z))

]
, (4.44)

where the expectation is over the conditional distribution of z given λ̂cur, p̂cur, and

y. Notice that Q(θ|θ̂cur,y) can also be written as E[
∑
r∈R

lr(θr|yr, θ̂cur, zr))].

In the above EM algorithm, the E-step is to compute

E(zrm,i1ki1 ...iNrkiNr
|λ̂cur, p̂cur, yrm) (4.45)

=
p̂curi1ki1

. . . p̂curiNrkiNr
Poi(λ̂curi1ki1

+ . . .+ λ̂curiNrkiNr
)∑

ji1

. . .
∑
jiNr

[
p̂curi1ji1

. . . p̂curiNr jiNr
Poi(λ̂curi1ji1

+ . . .+ λ̂curiNr jiNr
)

] ,

The M-step is to maximizeQ with respect to λ and p, and the resulting maximizers

can be used to update θ̂cur = (λ̂cur, p̂cur)′. Notice that, in the EM algorithm, the

parameters λ and p in l(θ|y, z) can be maximized separately. First, we optimize Q

with respect to λ. First, let

f0 =
∑
r∈R

−lr(θr|yr, zr) + γ

N∑
t=1

λt2 (4.46)
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Our goal is to minimize f0, subject to the following constraints

f1 = −λ12 < 0

f2 = −λ22 < 0

· · ·

fN = −λN2 < 0

fN+1 = −λ11 < 0

h1 = λ11 − λ21 = 0

h2 = λ21 − λ31 = 0

. . .

hN−1 = λ(N−1)1 − λN1 = 0.

(4.47)

Using the KKT condition, necessary condition for λ⋆ of the penalized likelihood

function has to satisfy the following conditions. to be optimal



∇f0(λ⋆) +
∑N+1

i=1 ai∇fi +
∑N−1

i=1 bi∇h = 0

ai ≥ 0

aifi(λ
⋆) = 0 for 1 ≤ i ≤ N + 1

fi = −λi2 < 0 for 1 ≤ i ≤ N

fN+1 = −λ11 < 0

hi = λi1 − λ(i+1)1 for 1 ≤ i ≤ N − 1

(4.48)

Thus we can see the gradient equation of the objective function becomes

∂f0
∂λ11
− aN+1 + b1 = 0,

∂f0
∂λi1
− ai − bi−1 + bi = 0 for 2 ≤ i ≤ N − 1,

∂f0
∂λN1

− ai − bi−1 = 0,

∂f0
∂λi2
− ai = 0 for 1 ≤ i ≤ N.

(4.49)



81

The optimization of Q with respect to p is straight forward, and the Lagrange mul-

tiplier can be used to solve the optimization problem with equality constraints.

Theoretically, it is possible to write out the gradient function ∂f0
∂λ

for each gene.

However, it is impractical to write out gradient function and hessian matrix for each

gene model. Thus, in the current EM algorithm for low dimensional case, numeric

methods, such as finite differencing, are used to approximate the gradient function.

We applied coordinate descent algorithm and path-following algorithm to the pe-

nalized likelihood function to obtain the parameter estimates. It is worth pointing out

that the likelihood function has multiple local optimum values. Thus we fed multiple

starting values to mitigate this problem.

For the path solution, we can see from equation (4.30) that the path is no longer

piecewise linear, because ∂λ
∂γ

is no longer proportional to a constant vector. Thus we

need to solve equation ∂λ
∂γ

= 0 to get the updates of λ. Runge Kutta method is used

to solve the solutions of system of differential equations. However, the approximation

becomes less precise when the step size becomes large.

4.5.2 High Dimensions

When the dimension becomes large, the number of candidate transcripts grows

exponentially. The previously mentioned methods become less efficient to obtain

the parameter estimates. Because of the complexity of the likelihood function, the

coordinate descent algorithm requires a very long iteration to converge and it is

easily trapped in local optimal mode. Another difficulty comes from evaluating the

gradient function and hessian matrix. As mentioned before, although for a particular

gene, exact gradient function and hessian matrix can be provided, it is generally not

practical to do this for all the genes. Therefore, we resort to automatic differentiation

model builder (ADMB), which is designed to solve complex likelihood functions with

large number of parameters.
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In general, for extremely complex likelihood function, if one cannot write down

the gradient function explicitly, it could be very time consuming to evaluate the

gradient function and hessian matrix. However, unlike the usual symbolic differentia-

tion, automatic differentiation can work on extremely complex problems. Automatic

differentiation utilizes the fact that every complex functions executes a sequence of el-

ementary arithmetic operation, such as addition, subtraction, division, logarithm, etc.

Thus by applying the chain rule recursively to these operations, the gradient function

of the original function can be evaluated automatically and efficiently. The gradient

evaluation is also more precise compared to numerical differentiation method because

such approximation methods can introduce rounding errors. Another advantage of

automatic differentiation is the speed it evaluates the gradient function, because no

finite differencing are used when evaluating derivative.

With all these advantages, currently, ADMB is a standalone software that is based

on the autodiff library in C++. For maximizing extremely complex likelihood func-

tion with large number of parameters, there are three ways that one can utilize the

ADMB package. First, one can directly write code, compile code, and run program in

ADMB user interface. Second, the ADMB compiler is able to produce a dynamic link

library, which further can be called in R programs. Thirdly, the R2ADMB package in

R contains a series of functions to call ADMB and run ADMB within R. Therefore,

in the following simulation and real examples, we called the ADMB package within

R, and collected the results so that they can be better summarized and plotted.

Using the ADMB software, the user needs to specify at least the following three

core parts. First, users need to specify the data section, which describes the data

structure used by the model. Any variables that do not require the evaluation of the

derivative will be defined in the data section. Similar as the C++ languages, variables

can be used only after they are defined. Once the program is compiled and run, the

data that is stored in a separate .dat file will be read in and used in later steps. Second,

parameter section describes the structure of the model parameters. The parameters

that we want to infer about can be integer type or floating type, and they all need
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to be defined correspondingly. Additionally, the objective function value will also

need to be declared. By default, the program performs minimization. Different from

other optimization packages, such as “optim” in R, where the bounded parameters

are more difficult to optimize, ADMB automatically handles the parameter bounds

in the parameter section. One byproduct of using ADMB is that the standard error

or likelihood profile for designated parameters is automatically generated. Initial

values can be given in a separate .pin file. If there is no .pin file, the ADMB will

either assign 0 or midpoint of the bounded interval. Third, the model procedure or

the objective function is given in the procedure section. The lines in this section

need to be written in C++ language and need to by coherent to C++ syntax. No

gradient function needs to be provided because when the compiler compiles the code

in procedure section, the gradient function will also be generated based the chain rule

of derivative we described above.

4.5.3 Determine the Level of γ

In simple linear regression, one can use the AIC or BIC values to select the best

model. The degrees of freedom in AIC or BIC is the number of predictors that need

to be estimated. The degrees of freedom relates to the model complexities, and by

choosing the model with the smallest AIC values, one can achieve a balance between

the likelihood and the size of the model. However, in general, the degrees of freedom

could be difficult to estimate.

Given a model, let µ̂ represent its fit. Assume that y is generated according to

y ∼ (µ, σ2I), where µ is the true mean vector and σ2 is the common variance. It is

shown by Efron [52] that the degrees of freedom of the model fitting is

df(µ̂) =
n∑
i=1

cov(µ̂i, yi)/σ
2. (4.50)

Zou et el. [53] showed that the for the Lasso fit, the degree of freedom of µ̂γ(y)

equal to the expectation of the effective set Aγ, that is df(γ) = E|Bγ|. The Aγ is

the active set corresponding to γ, which is easily obtained in the Lars algorithm [45].
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Once the degrees of freedom of the model fitting is estimated, it can be plugged into

BIC to select the tuning parameters that minimizes BIC.

4.6 Simulation Example and Real Example

In order to show that the penCPM-Seq can identify transcripts with high expres-

sion levels, we need to know the true expression levels of transcripts. In simulation

study, we can assign expression levels to transcripts, and treat them as the true expres-

sion levels. In real data application, however, the true expression levels of transcripts

are usually not available. Instead, we use the annotated transcripts and their base

level read counts as the evidence of the expression levels.

Both simulation study and real example is presented in this section to demonstrate

how transcript selection can be performed. We carried out one simulation study and

one real data application. The simulation study is done in R. In the first step, different

expression levels are assigned to transcripts. In the second step, base level read counts

are generated from each transcript. In the third step, the read counts are convoluted

and this gives rise to the observed read counts data. In the fourth step, all candidate

transcripts are considered, and the penalized CPM-Seq model is applied to identify

the true transcripts. In the real data example, we first processed the exon annotation

so that each exon is either uniquely included or skipped in a transcript. Then, all

possible transcripts are considered, and penCPM-Seq model is applied to identify

the true expression levels. Although we do not exactly know which transcripts are

biologically meaningful and expressed, in some cases, we can reply on the annotation

and the mapped reads, especially the junction reads to determine the expression levels

of each transcripts.

Example 1

In this example, we created a hypothetical gene that contains three exons. Theo-

retically, there are 23 − 1 = 7 possible transcripts. Each transcript is given a unique

ID, and the transcript annotation is given in Figure 4.6 and Table 4.6. For example,
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transcripts T1, T2, and T3 include exon e1, e2, and e3, correspondingly. We set four

transcripts (T1, T2, T4, and T7) to be highly expressed and the other three transcripts

(T3, T5, and T6) to be lowly expressed. Their true expression levels are summarized in

Table 4.6. The Poisson intensities in Table 4.6 are treated as the true expression levels

that the base pair read counts are subject to. For type r reads, we generated counts

Xr
tm at each base pair from each expressed transcript that can give rise to type r reads.

Then the read counts are convoluted as Y r
m = Xr

1m + . . . + Xr
Nrm

, where Nr is the

number of transcripts {Ti1 . . . TiNr
} ⊂ Tg that can give rise to type r reads. For exam-

ple, for type r11 reads, the convolution formula is given as Y r11
m = Xr11

1m +Xr11
4m +Xr11

7m ,

whereas for type r33 reads, Y r33
m = Xr33

7m . In this simulation study, we only generated

type r11, r22, r33, r12, and r13 reads.

Table 4.1
Transcript ID and exon inclusion table

Transcript ID e1 e2 e3

T1 1 0 0

T2 0 1 0

T3 0 0 1

T4 1 1 0

T5 1 0 1

T6 0 1 1

T7 1 1 1

In general, when we construct the candidate transcripts set, robust filtering rules

need to be used. We should not only intend to construct a small number of transcripts

that explain the observed read counts data. Rather, we should rule out impossible

transcripts so that when we apply the penCPM-Seq model to the candidate tran-

scripts, we do not miss any true ones.
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Figure 4.1. Base pair level counts for each type of reads of hypothetical
gene. In each plot, the x-axis indicates base pair positions, and the
y-axis represents the counts.
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Table 4.2
True intensity and mixing proportions of 4 expressed transcripts

Tt λt1 λt2 pt2

T1 = e1 0.3 70 0.1

T2 = e2 0.3 50 0.2

T4 = e1e2 0.3 7 0.2

T7 = e1e2e3 0.3 20 0.3

We applied the penCPM-Seq method to all 7 candidate transcripts, and computed

the solution path of the parameters of interest using ADMB. The solution path is

depicted in Figure 4.6. We can see from Figure 4.6 that when the penalty is large,

none of the transcripts are selected. As the penalty term decreases, transcript T7 join

the active set first. Transcript T7 is selected because it contains three exons and best

explains counts observed on each exon. As the penalty further decreases, transcript

T4, T2 and T1 joins the active set sequentially. Eventually, as the penalty approaches

0, the penCPM-Seq model correctly selects the true transcripts and their estimated

intensities are also very close to the true values.

A real example of gene According to human refseq hg18, gene MARCKSL1

contains two exons, which we denote as e′1 and e
′
2, and it has two annotated transcripts

labeled as NM023009 and NR052852. Transcript NM023009 consists of exon e′1 and

entire of exon e′2, and transcript NR052852 consists of exon e′1 and part of exon e′2.

In order to make the transcripts either contain or skip an exon entirely, we split exon

e′2 into two sub-exons denoted as e2 and e3. We re-denote exon e′1 as e1. Therefore,

exons e1, e2 and e3 form a partition of the exonic region of gene MARCKSL1. The

total length of gene MARCKSL1’s exonic region is 1564, and the exonic base pairs

are indexed as 1, . . . , 1564. Exons e1, e2, and e3 contain base pairs {1, . . . , 1270},

{1271, . . . , 1495}, {1496, . . . , 1564}, respectively. NM023009 consists of e1, e1, and

e3, and NR052852 consists of e1 and e3. We re-label the two transcripts NM023009
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and NR052852 as T1 and T2, respectively, and assume that they form the collection

of candidate transcripts, that is, T = {T1, T2}. The annotation of this gene is plotted

in Figure 4.6.

For this particular gene, because the number of exons or the number of candidate

transcripts is small, we did not filter out any transcripts based on the observed reads.

Instead, we considered all 7 transcripts as our candidates, whose annotation are given

in Figure 4.6 and Table 4.6.

We used the RNA-Seq data of the Human Brain Reference RNA (Brain) sam-

ple, which was originally generated by Wong’s lab using the Illumina Genome Ana-

lyzer platform [43]. The data consists of one lane of eight millions 50 bp paired-end

reads. The data set can be downloaded from NCBI Short Read Archive (SRA) at

http://www.ncbi.nlm.nih.gov/sra under the accession numbers GS475204 and GSM475205

[43]. Tophat was used to map the reads to refseq hg18 [6].

For this particular gene, which consists of three exons, it is able to generate six

types of reads, which are r11, r12, r13, r22, r23, and r33. The total numbers of each type

of reads are summarized in Table 4.3. The base pair level read counts data for each

type is depicted in Figure 4.6. We can see that exon e1 receives a lot of reads because

of its relative length. However, exon e2 and e3 receive little and no read counts data

because of their relatively short length. Similarly, there are no type r13 or r33 read

counts data, which will make the transcript identification problem difficult.

We applied penCPM-Seq to all seven candidate transcripts to select the true ones

and the solution path is plotted in Figure 4.6. We can see that as the regularization

decreases, variables join the active sets. Eventually, as the penalty gets smaller,

penCPM-Seq model selects transcripts t5 and t7 as highly expressed transcripts, and

transcripts t1 and t3 as lowly expressed.

Although we do not now truely expressed transcripts in this case, we do know

that transcripts t5 and t7 are in the annotation. The reads of type r12 indicates the

existence of the e1e2 exon-exon junction.
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Table 4.3
Frequency table for all read types for MARCKSL1

type r11 r12 r13 r22 r23 r33

counts 1374 187 0 1 1 0
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Figure 4.7. Base pair level counts for each type of reads of hypothetical
gene. In each plot, the x-axis indicates base pair positions, and the
y-axis represents the counts.
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5. CONCLUSION

RNA-Seq is poised to replace microarray as the main workhorse for transcriptome

studies in the near future. Despite all the advantages RNA-Seq has over microarray,

some doubts remain about whether RNA-Seq is able to deliver its promises. One ma-

jor concern is that RNA-Seq data demonstrates excessive variability, which is more

difficult to decipher than that of microarray data, and the sources that contribute

biases and variations to RNA-Seq data are more elusive than those of microarray.

To make things worse, it is not immediately clear how to use statistical models to

characterize and further normalize RNA-Seq data in a ROI [54]. For the transcript

expression level quantification, it is an indirect inference problem to identify tran-

scripts and quantify their expression levels using RNA-Seq data, and various types of

observation units used in the literature such as exons, segments, and bins can make

the problem non-identifiable. The lack of proper statistical tools for RNA-Seq data

analysis will greatly hinder the potential of this promising new technology in practice.

In this thesis, we first reviewed the current RNA-Seq technology, and examined

various sources of biases and variations that technology has.

Second, we proposed to use Poisson mixture models to characterize RNA-Seq data

and quantify the expression levels. As discussed in the introduction, finite Poisson

mixture models form a type of semi-parametric models that combines the strength

of fully parametric models with the flexibility of fully nonparametric model, and are

extremely suitable for modeling data with distributions of unknown shapes and high

heterogeneity such as RNA-Seq data. Because the components of a mixture model

are parametrically specified, it is straightforward to incorporate other information or

structures into the model. For example, in this article, an autoregressive structure is

incorporated into the component intensities to account for correlations between adja-

cent base pair reads counts. Different components in a finite Poisson mixture model
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correspond naturally to clusters in RNA-Seq reads count data, which may shed light

on the data generating mechanism in RNA-Seq experiments. The application of the

proposed methods to real RNA-Seq data analysis demonstrated that finite Poisson

mixture models can adapt to individual transcripts via model selection and subse-

quently lead to more accurate and consistent measurements of transcript expression

levels.

Third, following the framework of Poisson mixture model, we further proposed to

use individual exonic base pairs as observation units and further proposed the convo-

lution of mixture Poisson model to model the base level zero as well as non-zero read

counts. The base pair units coupled with the CPM model, to a large degree, resolve

the non-identifiability issue. Furthermore, we considered different types of reads and

developed the EM algorithm for computing the parameter estimates. Both simula-

tion study and real data application have demonstrated the effectiveness of CPM-Seq.

CPM-Seq was shown to produce more accurate and consistent quantification results

than Cufflinks.

Fourth, the quantification of a ROI or all transcripts that belong to the same gene

is relatively easier because the genes and transcripts are well annotated. However, the

identification of new transcripts requires proper statistical models that are not only

identifiable but also computationally efficient. We proposed to add a lasso penalty

on the intensities parameters in the convolution of Poisson mixture models to shrink

transcripts with small effects to zero. The proposed method worked well in simulation

and real examples.

There are several immediate directions to further enhance the Poisson mixture

models framework for the sequencing data. An immediate direction is to incorporate

various types of biases in RNA-Seq data that have been reported in the literature to

better correct biases discussed in the first chapter. It is also of immediate interest to

use finite Poisson mixture models for detecting differentially expressed genes.

The second direction is to incorporate the fragment length distribution into the

CPM model. In the literature, the fragment length distribution is typically modeled
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by N(µ, σ2), where µ and σ2 are either known or can be estimated from reads mapped

to genes with single exon. When considering reads of different types, we also need

to include the possible lengths of the reads. For example, for read type r, instead

of simply counting the reads of type r, we need to count the reads of type r and

length l. Let Xrl
tm denote the number of reads of type r and length l at base pair

m of transcript t. We assume that Xrl
tm follows the following mixture of Poisson

distribution f
(
Xrl
tm = x|λt, pt

)
=

∑2
i=1 ptiPoi (x; al, λti), where al is the probability

of obtaining a read of length l according to the fragment length distribution N(µ, σ2).

Subsequently, the convolution distribution for Y rl
m needs to be updated.

The third direction is to use the fused Lasso penalty [55], so that the λi2’s, for

1 ≤ i ≤ N , are shrunken toward the background noises. The fused Lasso penalty is

given as
∑N

i=1 |λi2 − λ11|.

We believe that the Poisson mixture models, convolution of Poisson mixture mod-

els, the penalized convolution of Poisson mixture models, and their further develop-

ments have the potential to become indispensable statistical tools for RNA-Seq data

analysis.
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