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ABSTRACT 

 

Tayyebi, Amin. Ph.D., Purdue University, May 2013. Simulating land use land cover 

change using data mining and machine learning algorithms. Major Professor: Bryan C. 

Pijanowski. 

 

The objectives of this dissertation are to: (1) review the breadth and depth of land 

use land cover (LUCC) issues that are being addressed by the land change science 

community by discussing how an existing model, Purdue’s Land Transformation Model 

(LTM), has been used to better understand these very important issues; (2) summarize the 

current state-of-the-art in LUCC modeling in an attempt to provide a context for the 

advances in LUCC modeling presented here; (3) use a variety of statistical, data mining 

and machine learning algorithms to model single LUCC transitions in diverse regions of 

the world (e.g. United States and Africa) in order to determine which tools are most 

effective in modeling common LUCC patterns that are nonlinear; (4) develop new 

techniques for modeling multiple class (MC) transitions at the same time using existing 

LUCC models as these models are rare and in great demand; (5) reconfigure the existing 

LTM for urban growth boundary (UGB) simulation because UGB modeling has been 

ignored by the LUCC modeling community, and (6) compare two rule based models for 

urban growth boundary simulation for use in UGB land use planning.  

The review of LTM applications during the last decade indicates that a model like 

the LTM has addressed a majority of land change science issues although it has not 

explicitly been used to study terrestrial biodiversity issues. The review of the existing
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LUCC models indicates that there is no unique typology to differentiate between LUCC 

model structures and no models exist for UGB. Simulations designed to compare 

multiple models show that ANN-based LTM results are similar to Multivariate Adaptive 

Regression Spline (MARS)-based models and both ANN and MARS-based models 

outperform Classification and Regression Tree (CART)-based models for modeling 

single LULC transition; however, for modeling MC, an ANN-based LTM-MC is similar 

in goodness of fit to CART and both models outperform MARS in different regions of 

the world. In simulations across three regions (two in United States and one in Africa), 

the LTM had better goodness of fit measures while the outcome of CART and MARS 

were more interpretable and understandable than the ANN-based LTM. Modeling MC 

LUCC require the examination of several class separation rules and is thus more 

complicated than single LULC transition modeling; more research is clearly needed in 

this area. One of the greatest challenges identified with MC modeling is evaluating error 

distributions and map accuracies for multiple classes. A modified ANN-based LTM and a 

simple rule based UGBM outperformed a null model in all cardinal directions. For 

UGBM model to be useful for planning, other factors need to be considered including a 

separate routine that would determine urban quantity over time. 
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CHAPTER 1: LAND CHANGE SCIENCE: A BRIEF INTRODUCTION 

1.1 Introduction 

Land use land cover change (LUCC) has been recognized as a significant driver 

of environmental change at all important spatial and temporal scales (Turner et al. 1995). 

LUCC is known to influence and disrupt large-scale climate dynamics (Pielke 2001, 

2005; Feddema et al. 2005; Pijanowski et al. 2011), biogeochemical cycles (Verchot et al. 

1999; Tang et al. 2005a), the hydrologic cycle (Foley et al. 2005), and biodiversity 

patterns (Dale et al. 1994). Research that examines these issues across spatial-temporal 

scales using a multi-disciplinary approach is termed land change science (Figure 1-1). 

Land change scientists recognize several facets of the land surface that alter 

ecosystem dynamics; the first is land cover, which refers to the physical cover of the 

earth surface (e.g. water, vegetation and man-made features) and the second, land use, 

defined as all human activities on the land (Turner, 1995). A third is the level of intensity. 

For example, agricultural growth has occurred simultaneously with some degree of 

intensification, making characterization of land use cover a multi-dimensional 

phenomenon (Armesto et al. 2009). Agricultural intensification usually results in more 

chemical inputs and modifications to the hydrologic cycle. 
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At a global scale, extensive conversion of native vegetation (forests and 

grasslands) to agriculture to produce food for society has occurred over the last ten 

millennia although rates of change in the last century have been unprecedented (Armesto 

et al. 2009). Recently, the human species crossed an important threshold as more than 

half of us now live in cities. The urban footprint now doubles every 30 years.  At this 

rate, urban land use should approach 10% of the land surface by 2070. 

Conversions of land use can be multiple if followed over a long time period. For 

example, some recovery of forests from shrublands and abandoned agricultural land to 

natural areas (Brown, 2005; Carmona et al. 2010; Diaz et al. 2011) is a common pattern 

in many developed countries. Local land use changes are often as a result of global 

factors. Shifts of agriculture are often due to the globalization of the food production 

system. Thus, land use cover change can be complex and the need to understand the 

drivers of these changes at multiple spatial-temporal scales are among some of the most 

pressing needs currently in environmental science research. 

One of the most pressing global environmental change issues is climate change 

but its causes are not solely due to the burning of fossil fuels. We now recognize that a 

significant amount of climate change, up to half, is due to land use change (IPCC, 2007; 

Pielke, 2005). LUCC, especially urban and agriculture growth, is known to have a direct 

impact on climate change patterns by increasing surface temperature along with indirect 

effects via the emission of greenhouse gases through burning of vegetation during 

clearing (Cai et al. 2003; Kalnay and Cai, 2003). 

The loss of many natural areas, such as forests, has numerous ramifications to the 

environment and human well-being. Decision makers, natural resource managers, and 
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policy makers are interested in preserving forest ecosystems for the conservation of 

biodiversity (Kirschbaum, 2000), supporting wood products (Wernick et al. 2007), 

reducing emissions (vai a global program called REDD, or reducing emissions from 

deforestation and degradation) and decreasing impacts to the water cycle (Ray et al. 

2010, Peng et al. 2002). People in the world are today more dependent upon forest 

resources for meeting essential needs than ever before (e.g. oxygen and food; FAO, 2009, 

Pijanowski et al. 2010). 

Representing land use digitally is often accomplished using GIS maps. LULC 

data can belong either to a single LULC category (e.g. categorical representation of land 

cover) (Loveland et al. 1999) or consist of continuous biophysical variables (e.g. 

continuous representation of LULC such as leaf area index) (DeFries et al. 1995). LULC 

conversion is a complete replacement of one LULC category by another one (e.g. urban 

gain, deforestation or agricultural loss). The categorical representation of LULC classes 

has the advantages to characterize LULC conversions easily although in many cases, land 

cover modifications are gradual processes that influence the land cover character without 

changing its classification. Agricultural intensification is such an example of land cover 

modification that increases food production (Tilman, 1999). Land cover modification 

detection requires LULC representations, which vary gradually across space and time. 

LULC conversions are known to be associated with the occurrence of land uses in 

the local neighborhood. When modeling LUCC, especially in the context of urban 

change, it is useful to include neighborhood interactions as a driving factor (Verburg et 

al. 2003). Lambin et al. (2003), in a very well cited paper, were able to show that 

urbanization, agriculture intensification, deforestation along with a still unmeasured land 
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cover change are highly autocorrelated at a local scale (Lambin et al. 2003). Thus it is not 

surprising that many LUCC models have local interactions, quantified through the use of 

GIS, in their algorithms.  

Some LULC conversions may be considered essentially irreversible; once 

converted they remain in that land use for extended periods of time or their conversion to 

another use is extremely difficult. Examples include urbanization, wetland destruction 

and desertification from climate change. Many LULC conversions are reversible; for 

example, conversion of a natural area to forest could lead to its abandonment, which 

would then revert back to a natural state if left alone (Kumar et al. 2012).  The amount of 

time between these transitions is thus likely a factor of both human activities (e.g. 

economics of land production) and environmental processes (e.g. successional patterns).  

Thus, in terms of sustainability, some land use cover changes are of more concern than 

are others. 

1.2 Research Objectives and Structure of the Dissertation 

The structure and objectives of this dissertation are as follows (Figure 1-2). 

Chapter 2 discusses the lessons learned in using LTM to address global environmental 

change issues during the last decade of developing LTM. Chapter 3 summarizes the 

existing LUCC models that have been used to simulate and predict LUCC. The 

characteristics of LUCC models have been summarized in more detail. The review of 

LUCC models helps to provide a practical framework as a literature review. 

In chapter 4, one global parametric LUCC model, the ANN-based LTM was 

compared with two local non-parametric models, a CART and MARS, for binary LUCC 
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modeling. The ANN-based LTM, developed to simulate spatial patterns of LUCC over 

time, currently simulates only a single land use transition at a time. In chapter 5, the 

current model structure and coding scheme of the LTM was modified for MC, and 

compared with two statistical models, one based on CART and another MARS, that 

simulate MC. We explored the benefits and challenges of model structure and coding 

scheme for three data mining approaches for MC. Finally, potential rules were proposed 

to solve the confliction problem in MC. 

Urban growth boundaries models (UGBMs) are land use planning tools that limit 

urban expansion. These models are being implemented by planning agencies. Thus, there 

is a need to create models that can simulate changes in urban boundaries. In chapter 6, an 

UGBM which utilizes ANN, GIS and remote sensing was developed to simulate the 

complex geometry of the urban boundary. Raster-based predictive variables are used as 

inputs to the ANNs parameterized using vector routines. ANNs were used to train 

predictor variables of urban boundary geometry. Similarly, in chapter 7, two rule-based 

spatial-temporal models, one which employs a distance dependent modeling (DDM) 

approach and the other a distance independent modeling (DIM) approach, were presented 

to simulate UGBs. These rule-based UGBMs use azimuth and distance values, vector-

based predictive variables, directed from central points within the urban area, to simulate 

UGB change. 

Chapter 8 summaries the conclusions from the previous chapters and future 

research in LUCC modeling is presented particularly for the LTM. This chapter also 

discusses the lessons learned in using the LTM in this dissertation and the use of 

scenarios to explore future and past landscapes.  
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Figure 1-1: Land use science and sustainability 

 

 
Figure 1-2: Dissertation structure 
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CHAPTER 2: LAND CHANGE SCIENCE THROUGH THE LENS OF THE 

LAND TRANSFORMATION MODEL (LTM) 

2.1 Introduction 

In the 1990s, there were few land use cover change models as many researchers in 

the 1970s and 1980s abandoned land use change modeling for a lack of sufficient tools 

and data (cf. Lee’s famous Requiem for Land Use Change Models published in 1973). A 

1996 USGS workshop at the EROS data center brought together nine land change 

modelers in an attempt to revive the field. Modelers present discussed the current state 

and future of LUCC modeling. The Land Transformation Model (LTM) at that time was 

it is infancy, a model incorporated within a GIS, with limited data, and it, among several 

other models, was showcased at the meeting.  In 2002, the first journal article describing 

its current form, which couples an artificial neural network (ANN) and GIS, was 

published in Computers, Environment and Urban Systems (CEUS), the de facto journal 

for publishing new urban change models. To date, it is the fourth highest cited paper in 

the history of the journal (1986  present).  It now is among dozens of land change 

models used to study a variety of global environmental change issues. 
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Over a decade of model development and experiment has gone into the model, 

and the LTM has been now applied to forecast LUCC patterns in a variety of places 

around the world, such as all lower 48 states in the USA, central Europe, East Africa and 

Asia. Forecasts are often linked to climate, hydrologic or biological models where the 

coupled models are used to examine how what-if land use change scenarios impact the 

environment and/or economics. The LTM has been engineered to run “back-wards” in 

order to examine environmental impacts of historical land use changes or the effects of 

land use legacies on slow environmental processes, such as groundwater transport 

through watersheds. 

Here, we discuss the lessons learned in using the model to address global 

environmental change issues. These lessons learned include: (1) how the model should be 

properly coupled to other models; (2) the ways that the model should be interpreted given 

errors that occur in simulations; (3) the use of scenarios to explore futures and pasts; and 

(4) the heuristic value of a model like the LTM. 

2.2 LTM as a case-study LUCC Model 

Most LUCC models determine suitability of change and rates of change (quantity 

of change for a land use class) using separate modules. The LTM, which couples GIS 

with ANNs to forecast LUCC, is able to use a variety of social, political, economical and 

environmental factors (Pijanowski et al. 2002a). ANNs learn LUCC patterns using GIS to 

develop the relationship between dependent and independent drivers, and assess the 

predictive ability of the model. 
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Research on ANNs in other fields proved that ANNs can generalize patterns well 

(Skapura, 1999). To test this concept for LUCC modeling, LTM was executed for two 

places in the US to test whether the network file developed for one area is transferable 

across another region. Four accuracy assessment metrics were used that quantified how 

well the models performed using hard-classed contingency tables, probability 

distributions and spatial patterns (Pijanowski et al. 2005). LTM was trained and tested 

using data from the same area (called the non-swap case) and then compared against 

simulations designed to train for data in one area and then tested on the other data (called 

swap case). For the non-swap simulations, LTM performed well in both regions; 

however, the swap simulations yielded variable results; one swap simulation performed 

as well as the non-swap but transferability was not strong in the other swap case. 

Understanding LUCC in diverse regions contributes toward our understanding of 

LUCC changes across space and time. LTM urban change simulations were compared in 

two diverse regions, one in the USA and the other in Albania, (Pijanowski et al. 2006) 

using eight calibration metrics (four location-based metrics and four spatial metrics) to 

quantify model accuracy. Location-based metrics show that LTM perform better in 

Albania because urbanization occurred in clumped patterns in Albania while urbanization 

occurred in patchy arrangements in the USA. Patch metrics are more useful where 

urbanization is fragmented; especially for application where LULC patches are important 

for planning, policy and management. In addition, results show that more training cycles 

did not necessarily yield a better accuracy for patch metrics (Pijanowski et al. 2006).  

ANNs developed in other fields have been found to outperform similarly 

parameterized statistical models, such as those using logistic regression. LTM was 
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trained for prediction of urban and forest areas at a county level (Thekkudan, 2008). The 

LTM was tested using percent correct match (PCM) and relative operating characteristic 

(ROC). Both accuracy metrics showed that LTM performs better than a logistic 

regression model. Although LTM performed well at predicting fringe development at 

urbanized areas, it performed poorly in tests at forests. Similarly, Tayyebi et al. (2010) 

compared logistic regression with LTM to simulate urban change pattern. Results show 

that LTM performs better than logistic regression for urban change simulation. 

Calibration of both models was performed using area under the ROC curve and the kappa 

statistic (Pijanowski et al. 2009). 

The ANN-based, global parametric LTM has also been compared with two local 

non-parametric models, one CART and the other MARS, parameterized with identical 

data from three different areas of the world, one undergoing extensive agricultural 

expansion (East Africa), another where forests are re-growing (western Michigan, USA), 

and a third where urbanization is prominent (Milwaukee Metropolitan Area, USA). 

Independent training and testing data were used to calibrate and validate each model, 

respectively. Although all approaches obtained similar accuracies, the ANN-LTM 

provided a slightly better goodness-of-fit than MARS and CART across testing data for 

all three study sites (Tayyebi and Pijanowski, in review). Details of these simulations are 

provided in Chapter 4. 

The ANN-based LTM currently simulates a single LULC transition at a time. 

LUCC models that can simulate multiple LULC classes are rare. The current model 

structure and coding scheme of the LTM has been modified to compare it with other two 

local non-parametric models (CART and MARS) for multiple LUCC modeling (Tayyebi 
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and Pijanowski, in review). Potential rules were also suggested to solve the confliction 

prediction in multiple classes simulation. Results show that the new coding scheme and 

model structure of LTM was accurate, stable and straightforward to implement. The 

ANN-based LTM and CART outperformed MARS and LTM was slightly better than 

CART. Details of these simulations are provided in Chapter 5.  

Scaling up a LUCC simulation often requires re-engineering the model so that it 

may handle larger datasets. To address research needs at continental scale, we redesigned 

LTM in the HEMA lab for running at continental scales with fine (30 m) resolution using 

a new architecture that employs a windows-based High Performance Compute (HPC) 

cluster (Pijanowski et al. in revision). This new version of LTM (called LTM-HPC) has a 

new architecture which uses HPC to handle large data sets in terms of size and quantity 

of files and integrate tools that are executed using different scripting languages (e.g. SQL, 

Python and C#). When developing meso-scale modules within LUCC models, it is first 

necessary to determine what spatial units are most appropriate to incorporate into the 

model at the meso-scale. We were able to compared meso-scale LTMs with three null 

models that lack meso-scale drivers. Results show that introducing meso-scale modules 

into large-scale LTM simulations significantly increased model accuracy (Tayyebi et al. 

2012). 

It has been shown that by 2001, 33% of the land covers were anthropogenic in the 

conterminous US (Rittenhouse et al. 2010). Many studies have explored interactions 

between LUCC patterns and species diversity (White et al. 1997). Topography remains a 

significant constraining factor on LUCC patterns, allowing some areas to persist in forest 

cover regardless of development pressures (Wear and Bolstad, 1998). Topography has a 
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strong influence on forest change. Areas at lower elevation are more likely to remain in 

non-forest or to have experienced more recent losses of forest (Turner et al. 1994).  

2.3 LTM Used in Land-Climate Interaction Studies 

LUCC can impact climate in a variety of ways. The replacement of productive 

soil and vegetation with urban materials, such as concrete, asphalt, and buildings, affects 

the albedo and runoff characteristics of the land surface, thus significantly impacting the 

land-atmosphere energy exchange. LUCC reduces carbon sequestration rates to soil and 

aboveground vegetation (Houghton et al. 1985). Local evapotranspiration to the water 

cycle is one direct impact of LUCC on climate (Eltahir and Bras, 1996). A variety of 

LUCC and climate change impacts on ecosystem dynamics have been studied using the 

LTM coupled to other models and spatial databases. In a land-climate study, a multi-

modeling system was developed (Wiley et al. 2010) to evaluate the individual and 

combined impacts of LUCC and climate to the freshwater fish habitat suitability in the 

Midwest USA. Comparisons of two scenarios with and without the climate change 

illustrate the impacts of climate on rivers. Simulations of the multi-models showed that 

water temperature has a significant influence on species distributions and fish diversity 

was more sensitive to climate change than to LUCC. 

Fluxes of energy and water at the land-atmosphere are a function of land surface 

characteristics. In another land-climate set of simulations (Moore et al. 2010), leaf area 

index (LAI) and vegetative fractional cover (VFC), which were derived moderate 

resolution imaging spectroradiometer (MODIS), were coupled to the LTM and the 

Regional Atmospheric Modelling System (RAMS) to assess the effect of land surface 
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characteristics on precipitation and land surface temperature. The remotely sensed data 

products of LAI and VFC were modeled using spline. This research (Moore et al. 2010) 

concluded that MODIS products were superior to generalized routines in RAMS as land 

surface temperature simulations improved fit to observed data. The ability to properly 

characterize precipitation patterns were not improved using these methods. 

Understanding the interaction between LUCC and climate needs more efforts. To 

address this concern, a multi-methodological framework was developed to quantify these 

interactions (Olson et al. 2007). LUCC simulation models (all including the LTM) were 

combined with social science techniques like semi-structured interviews, household 

surveys and spatial analysis of LUCC to enhance our understanding of these complex 

processes. These results have been integrated into climate adaptation stories that have 

been provided to the governments of developing countries in Africa, such as Kenya, 

Uganda and Tanzania (Olson et al. 2007). To assess the urbanization effects on the water 

and energy cycle, U.S. Geological Survey (USGS) stream flow data (such as flow 

distribution, daily variation in stream flow, and frequency of high-flow events) were 

analyzed (Yang et al. 2010). Results showed that urban intensity has a significant effect 

on hydrologic metrics. Temperature in the urban region increased greatly because of the 

reduced albedo, increased volumetric heat capacity, and thermal conductivity of the 

urban land use type (Yang et al. 2010). 

2.4 LTM in Land-Hydrologic Dynamic Studies 

LUCC influences the hydrology of watersheds across a variety of spatial and 

temporal scales (Tang et al. 2005a; Tang et al. 2005b). LTM used to explore the impact 
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of future urban sprawl and non-sprawl trends (Pijanowski et al. 2002b) on the 

hydrological cycle. Population density used to discriminate between sprawl and non-

sprawl patterns. Results show that hydrological change (e.g. nitrogen) resulted in a 

significant loss of agricultural and forest along the streams. Agricultural activities (such 

as pesticide and fertilizer in soil and water, livestock manure; Widory et al. 2004) and 

urbanization trends, are considered the primary anthropogenic source of nitrogen 

contamination in hydrologic ecosystems (Howarth, 2004). Amount of run-off in 

groundwater from chemical substances (e.g. nitrate and phosphates) and sediment has 

consequences for both human diseases and deaths, and ecosystem health such as 

biodiversity loss (Rabalais et al. 2002).  

The biogeochemistry of surface and groundwater are related to LUCC. 

Groundwater age needs to be accurately quantifying the temporally varying impacts of 

LUCC on water quality. Temporal analysis on stream chemistry can be an important 

factor for managing LUCC in regional watersheds (Wayland et al. 2002). Results show 

that the impacts of near surface groundwater flow during storm events represent a 

significant source of anthropogenic solutes to a watershed. Land use management reduce 

solute loading to a watershed might not result in water quality improvements (Wayland et 

al. 2002). Groundwater is sensitive to chemical alteration, the extent of which may vary 

depending on LUCC within recharge areas.  

LUCC can significantly alter hydrologic dynamics. LTM simulation has been 

used to explore the consequence of urbanization on amount of runoff in hydrology cycle 

(Tang et al. 2005a). Results show that urbanization can slightly or considerably increase 

the amount of runoff, depending on the rate of urban change. In addition, urbanization 
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slightly increases nutrient losses in runoff, but significantly increases losses of heavy 

metals in runoff. Results of this research can be used to raise decision makers’ awareness 

of urban sprawl impacts. While concern about disorganized urbanization in cities 

increases, smart growth has been suggested as an alternative to protect water resource and 

minimize the amount of runoff resulting from urbanization (Tang et al. 2005b). One of 

the major direct environmental impacts caused by the conversion of open spaces to urban 

and suburban areas is the degradation of water quality (USEPA, 2001). The impact of 

urbanization on water resources is reflected in terms of increasing the runoff rate, 

decreasing infiltration, altering ground water recharge patterns (Moscrip and 

Montgomery, 1997) and degradation of water quality in streams and ground water 

(USGS, 1999). The future scenario of LTM was used to select best type of LULC 

placements for non-sprawl and sprawl scenarios, which reduce runoff (Tang et al. 

2005b). The magnitude that runoff can be minimized depends on LULC types, soil 

properties, and the urbanization level of a watershed. 

Historical LUCC maps were created using a back-cast LUCC model (Pijanowski 

et al. 2007). Two spatial-temporal models, a back-cast LUCC model and a groundwater 

flow model, were coupled (Pijanowski et al. 2007) to develop “land-use legacy maps.” 

The difference between a land-use legacy map, created from maps of past land use and 

groundwater travel times, and a current land-use map was quantified. These map 

differences can affect watershed planning and management decisions at a variety of 

spatial and temporal scales. Results show that land-use legacy maps provide a more 

accurate representation of the linkage between LULC and current water quality compared 

to the current land-use map (Pijanowski et al. 2007). 
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In another hydrological study, the relative impact of LUCC patterns (e.g. 

simulated by LTM) and projected future climate change on hydrologic processes was 

examined (Mishra et al. 2010). Results suggest that the land surface water and energy 

balance can be affected by LUCC and climate change. The runoff was increased 

annually, while evapotranspiration was reduced due to forest-to-cropland and forest-to-

urban conversion. Radiation was decreased considerably due to forest-to-cropland 

conversion (e.g. albedo). Agricultural and urban areas increase runoff compared to a 

landscape that is in its natural state (NRC, 2007). Future LUCC scenarios for forest 

regrowth and urbanization rates were developed using the LTM (Ray et al. 2010). Results 

show that controlling urbanization rate can reduce runoff; reforestation can abate some of 

the runoff effects from urban growth (Ray et al. 2010).  

2.5 Organismal Responses to LUCC 

Understanding the impacts of LUCC on biodiversity is important in landscape 

ecology (Dale et al. 2000). LUCC alter the spatial pattern of habitats often resulting in 

habitat loss and fragmentation (Turner et al. 1994). Species diversity is defined as species 

richness (the number of species present in an area) and less often as species diversity, the 

number of species weighted by their abundance (Rittenhouse et al. 2010). Biodiversity is 

highly affected by LUCC (e.g. loss of forest species within deforested areas) or when 

undisturbed lands become more intense (e.g. agriculture, livestock grazing). The habitat 

suitability is impacted by existing habitat fragmenting into smaller pieces (e.g. habitat 

fragmentation). Smaller habitat areas generally support fewer species, and fragmentation 

can cause local and even global extinction. Rittenhouse et al. (2012) integrated National 
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Land Cover Data (NLCD) and American Breeding Bird Survey (BBS) data to assess 

LUCC affect on species diversity (e.g. bird diversity) in the conterminous USA. Results 

show that the natural land cover conversion to anthropogenic was significantly associated 

with bird species richness and abundance. In particular, grassland and shrub-land loss has 

the most significant loss bird species richness and abundance.  

2.6 Joint LUCC and Climate Change effect on Biodiversity 

Biodiversity loss results from a variety of factors including hydrology, climate 

change and fragmentation. The risk of heat waves increase with global warming that 

changes mean temperature and precipitation. Heat waves, consecutive days with higher 

than average temperatures, have increased mortality among species (Albright et al. 2011). 

Indicators of heat waves derived from MODIS land surface temperature and interpolated 

air temperature data were compared with each other to identify their associations with 

avian community composition (Albright et al. 2011). Results show that MODIS land 

surface temperature indices were more predictive and abundance and species richness 

declined due to heat waves (Albright et al. 2011). 

Climate changes are expected to produce more heat waves and droughts. Drought 

increases the risk of higher mortality, lower habitat quality, reduced reproductive effort, 

and can decrease abundance and species richness. Heat waves can also stress species by 

increasing water requirements, reducing reproduction and survival, resulting in lower 

species richness (Albright et al. 2010a and 2010b). Results show that large changes 

related to extreme weather events occurring in both breeding and post-fledging periods 

(Albright et al. 2010b). Jointly, rather than individually occurring heat waves and 
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droughts were more predictive of abundance changes (Albright et al. 2010b). These 

results indicate that avian responses to weather extremes change based on the traits, 

timing, and geography. 

Hurricanes, which are the direct consequence of climate change, can alter forests 

and affect avian communities. These changes affect food availability (e.g. fruit, flowers, 

seeds, and insects), and alter local avian species richness and abundance. Detection of 

hurricane-disturbed and non-disturbed areas is possible through using satellite imagery. 

Results show a decrease in community similarity in the first post-hurricane breeding 

season (Rittenhouse et al. 2010). Hurricane has significant effect on abundance for 

species that breed in urban and woodland habitats and greater declines for woodland 

species than grassland or urban species due to forest loss (Rittenhouse et al. 2010). 

2.7 LTM and Planning Decisions 

Spatial and temporal analysis for rates and patterns of change in the Upper Great 

Lake States at five spatial levels (global, regional, zonal, landscape, and patch) and two 

temporal rates (referred to as first and second order) of change showed considerable 

amounts of urban gain, agriculture loss, and either gained or lost forest (Pijanowski and 

Robinson, 2011). The amount of LULC fragmentation varied over time across 5 km 

buffer zones but increased substantially over the study periods. Urbanization and 

fragmentation are characteristics of LUCC across the region (Pijanowski and Robinson, 

2011). 

Urban and sub-urban regions started to experience scattered development near 

cities. Such development patterns heavily burden local governments with high financial 
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costs which they must provide services. The purpose of designating non-urban planned 

districts is the conservation of environmentally sensitive areas and to protect rural 

landscapes. An urban growth boundary model (UGBM) which utilizes ANN and GIS was 

developed to simulate the complex geometry of the urban boundary (Tayyebi et al. 

2011a). ANN-UGBM distinguishes land that is designated urban, to be used for housing, 

industry and commerce, from non-urban land is to be used for activities such as 

conservation, agriculture, resource development and suitable community infrastructure 

like airports, water supply and sewage treatment facilities that require large areas of open 

land.  This study is provided in more detail in Chapter 6. Two rule-based spatial-temporal 

models, one which employs a Distance Dependent Method (DDM) and the other a 

Distance Independent Method (DIM), were proposed to simulate UGBs (Tayyebi et al. 

2011b). Percent Area Match (PAM) quantity and location goodness of fit metrics are 

used to assess the agreement between simulated and observed urban boundaries. Results 

indicate that rule-based UGBMs have a better goodness of fit compared to a null UGBM 

using PAM quantity and location goodness of fit metrics (Tayyebi et al. 2011b).  This 

study is provided in more detail in Chapter 7.  

2.8 Quantifying Error Propagation in Coupled Models containing the LTM 

LUCC (e.g. crop yield) and greenhouse gases impact food production. Regional 

Atmospheric Modeling System (RAMS) is a regional climate model used to compare the 

effects of projected future greenhouse gases and future LUCC on spatial variability of 

crop yields in Africa (Moore et al. 2011). Results suggest that climate change and LUCC 
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have highly heterogeneous influence on yield changes. This study confirms that LUCC is 

the main factor in assessing food production risk.  

Coupling back-cast LUCC (Ray and Pijanowski, 2010) and groundwater models 

(Pijanowski et al. 2007) can be used to create a map (called legacy map) to quantify the 

contribution of land uses to the groundwater signal arriving at streams. The uncertainty in 

groundwater models and back-cast LTM affect the outcome of the coupled model and 

their reliability to natural resource and land use planning (Ray et al. 2012). A multi-

metric score was proposed to evaluate the application uncertainty of the land use legacy 

maps for planning. Results indicate that managers can benefit from using maps as 

planning tools despite a wide range of evaluated uncertainties. 

A joint study between land-climate (Pijanowski et al. 2011) quantified the errors 

generated by the LTM through climate as simulated by RAMS. Results indicate that 

errors in LUCC models do not appear to propagate onto the regional climate simulation 

for the long term simulation. Rainy and dry seasons exhibited greater and less 

precipitation in LTM-RAMS simulations, respectively. Small errors from a LUCC model 

can amplify if LUCC model and RAMS are used to forecast into the future.  

Having knowledge about uncertainty in LUCC maps give more confidence to 

urban planners in their decisions. In an error study in LUCC modeling (Tayyebi et al. in 

review), the framework of Walker et al. (2003) was used to address the importance of 

assessing various dimensions of uncertainty (data uncertainty, model parameter 

uncertainty and model outcome uncertainty) through ANN and LR urban change 

simulation. Results show that the error in output data is more significant than error in 
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input data and data uncertainty is more significant than model parameter uncertainty in 

LUCC models. 

2.9 Conclusion 

This chapter reviews the various applications of LTM as a LUCC model over the 

last decade across the globe. LTM, works independently of user by randomizing variable 

weights, may currently be an appropriate option for management and urban planning. 

There are three weaknesses of LTM. ANNs may not converge to a global optimal 

solution. ANNs have over-fitting problem. ANNs are ‘black-box’ and it is difficult to 

explain their behavior (Roiger and Geatz, 2003). The first two problems have been solved 

by adding hidden layers and numer of nodes; however, it is still mysterious to explain 

how ANNs make decisions through their layers. 
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CHAPTER 3: A SUMMARY OF LAND USE LAND COVER CHANGE MODELS 

3.1 Introduction 

Remarkable advancements in LUCC models have occurred over the last two 

decades. Models have been applied to study just about every kind of land use cover 

transition. These advances are made for four reasons: first, data are plentiful now for 

LULC at different time periods for nearly all areas of the world. Second, computers are 

faster and we can run complex models quickly while using numerous scenarios. Third, 

advances in statistical and data mining tools allow us to examine non-linear patterns in 

data well. Finally, many of these models have been integrated with GIS making 

managing data and model output possible. 

Understanding human behavior is needed and this is currently at a poor level of 

understanding. We also need LUCC models that have adequate couplings and feedback 

loops and describe LULC within a system of components. This chapter summarizes 

LUCC models that are being used to simulate and predict LUCC. Models have been 

summarized with a brief description of their application. The characteristics of LUCC 

models have been explored in some depth what features distinguish them from other 

modeling techniques. 
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3.2 Calibration, Validation and Null Models 

Scientists often do not compare the performance of LUCC models against that of 

a null model (Fielding and Bell, 1997; Pontius et al. 2004). It is important to compare the 

LUCC models to a null model to assess the additional predictive power, if any, that the 

model provides (Pontius et al. 2004). A null model is ‘a pattern-generating model that is 

based on randomization of ecological data or random sampling from a known or 

imagined distribution’ (Gotelli and Graves, 1996). Null models generate random values 

that are in the absence of a hypothesized mechanism or to deliberately exclude a 

mechanism being tested (Caswell, 1988; Gotelli and Graves, 1996). 

Model development also needs to consider both calibration and validation. 

Calibration is the adjustment of input parameters to ensure the best goodness of fit 

between the model output and observed data. Validation, on the other hand, is 

demonstrating that the model is accurate within given the intended use of the model 

(Rykiel, 1996). There are two common ways available to separate calibration and 

validation run (Figure 3-1a and b) from each other (Pontius et al. 2004): 1) Time: 

Separation through time is the most common way has used for LUCC modeling. A subset 

of the entire dataset between time t1 and t2 is randomly selected to train the model 

(training run of calibration run) and then the entire information in time t1 was used to 

simulate the change from t1 to some subsequent point in time t2. Then, the simulated map 

of t2 was compared to an actual map of t2 (testing run of calibration run). Validation is 

accomplished by using the model to assess how well the model can predict a third time 

step (Pontius et al. 2004). The whole information in time t2 use to predict the change from 
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t2 to some subsequent point in time t3. The predicted map of t3 is usually compared to an 

observed map of t3 to assess the level of agreement between the two (validation run) and 

2) Space: Separation through space is another common way. The model uses data from 

the first region to fit the parameters for the calibration run. Thus, a subset of the entire 

dataset from first region was randomly selected to train the model (training run of 

calibration run) and then the entire information from first region was used to simulate 

LUCC. Then, the simulated map is compared to an actual map for the first region (testing 

run of calibration run). The fitted model for the first region is applied to the entire 

information from second region to predict LUCC for validation run. Then, the simulated 

map is compared to an actual map for the second region. Most LUCC models use at least 

two time series maps for calibration (Veldkamp and Fresco, 1996).  

LUCC patterns derived from historical data (Kok et al. 2001) usually do not 

replicate well in the future (Gibson et al. 2000) and are not transferable to other locations 

(Jenerette and Wu, 2001). Most also determine probability of change and rates of change 

(quantity of change for a land use class) using separate modules. From our perspective, 

there are several fundamental forms of LUCC models (Figure 3-2) (1) statistical (e.g. 

logistic regression) models; (2) machine learning (e.g. ANN, GA) models; (3) data 

mining (e.g. CART, MARS) models; (4) agent-based models; (5) process-based/life-

cycle based models and (6) hybrid models. Many models are hybrids that combine viz, 

statistical and some form of process-based. LUCC models can be classified based on the 

sources of data using as input and output to calibrate the model: (1) using only raster data 

as input and output of the model (Pijanowski et al. 2002; Clarke et al. 1997) which is the 

most common case in LUCC models, (2) using combination of raster and vector data as 
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input and output of LUCC models (Tayyebi et al. 2011a) and (3) using only vector data 

as input and output of LUCC models; few such LUCC models are available (Tayyebi et 

al. 2011b; Moreno et al. 2009). Next section represents a brief overview of each LUCC 

model summarizing its structure and well known applications. Next section illusrtates a 

brief overview of each LUCC models and urban growth boundary change models 

summarizing their structure and applications. 

3.3 Cellular Automata Models 

3.3.1 Cellular Automata Overview 

The most common LUCC modeling approach that has been used so far is cellular 

automata (CA). Ulam and Von Neumann (1940) originally developed CA, which is a 

dynamic model, to simulate complex patterns (Von Neumann and Burks, 1966). CA, 

which can capture a wide variety of local behaviors and global patterns (Wolfram, 1984), 

include five basic components (Figure 3-3): (1) grid space which can be represented as a 

regular or irregular cells, (2) each cell has status which can change by the attributes of 

collection of cells in its neighbors, (3) transition rules that are used to classify the data, 

(4) a neighborhood that defines the extent of influence of the cells that are surrounding 

the central cell, (5) time step. The objective of CA calibration is to find the best 

combination of transition rules to model LUCC (Batty and Xie, 1994a and 1994b; Batty 

et al. 1999; Landis and Zhang, 1998). CA can deliberately articulate global patterns 

through local processes (Batty and Xie, 1994a and 1994b). CA has been used for 

simulating various spatial and temporal phenomena including LUCC (Almeida et al. 

2003; Ménard and Marceau, 2007), urban change simulation (Batty et al. 1999; Dietzel 
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and Clarke, 2006; White et al. 2000), fire propagation (Yassemi et al. 2008) and species 

competition (Matsinos and Troumbis, 2002). 

It is difficult to define the best combinations of transitions rules when there are 

many variables because LUCC patterns are complex (Batty and Xie, 1994a; White and 

Engelen, 1993; Li and Yeh 2000; Wu and Webster, 2000). The variations are due to the 

many possible ways of defining the transition rules. There are two common ways to 

perform CA calibration. Using statistical methods (e.g. LR), machine learning algorithms 

(e.g. ANN, SVM) or data mining approaches (e.g. CART, MARS), is the first way 

(which is known as hybrid model) to calibrate CA models (Wu, 2002). The second way, 

which is known as trial and error approaches, does not require using statistical methods; 

the simulation results from different combinations of parameters are compared (Clarke et 

al. 1997). White et al. (1997) propose an intuitive method using a trial and error approach 

to obtain a parameter matrix for urban simulation; however, this approach is very time 

consuming.  

3.3.2 Slope, Land Use, Exclusion, Urban, Transportation, and Hill Shading 

(SLEUTH) 

SLEUTH uses spatial and temporal data in two times or more to simulate urban 

gain in the future or urban loss in the past (Clarke et al. 1997; Clarke and Gaydos, 1998; 

Candau, 2002; Silva and Clarke, 2002; Yang and Lo, 2003; Jantz et al. 2003). SLEUTH, 

which is a dynamic model, was one of the first generation of LUCC models that use CA 

to simulate urbanization and was first applied to the San Francisco Bay area (Clarke et al. 

1997). The original version of SLEUTH has been modified for a variety of applications. 

The lessons learned from applying SLEUTH to the entire world were recently discussed. 
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SLEUTH has been applied to major cities in US including Detroit, Chicago, New York, 

Washington, San Francisco and Albuquerque, and other countries such as Netherlands, 

Portugal and Australia.  

SLEUTH uses four types of growth (Figure 3-4) to control urbanization patterns 

which include (Clarke et al. 1997) spontaneous, spreading center, edge and road-

influenced growth. Four parameters associated with growth can take values ranging from 

1 to 100 and are defined to characterize LUCC patterns. Spontaneous growth urbanizes 

the cells randomly and is used to determine dispersion coefficient. Based on spreading 

center growth, new urban cells occur around the cells that have urbanized through 

spontaneous growth. The breed coefficient is calculated based on spreading center 

growth. Edge growth uses neighborhood characteristic like CA to calculate the spread 

coefficient by taking into account the number of urban cells around the central cell. 

SLEUTH is quite flexible and the user can define the area of influence. Thus, it is 

expected that this rule urbanizes the cells in the vicinity of existing urban cells. 

Transportation systems (e.g. roads) influence urbanization by generating new spreading 

centers in the neighborhood of roads. Lastly, a road gravity coefficient defines the 

distance from roads is determined by road growth. SLEUTH enables the user to specify 

two exclusionary layers: (1) user can define the areas that are excluded from urbanization 

and (2) slope suitability constrains the urbanization according to the percentage slope at 

locations. 

SLEUTH calibration receives the initial values for parameters from the user 

directly, and the model uses Monte Carlo as an iterative approach to check the 

combination of parameter sets. Monte Carlo finds the parameters across three iterative 



      37 

steps (e.g. coarse, medium, and fine) to minimize the difference between the simulated 

and reference map. Several studies have been focused on SLEUTH calibration (Candau, 

2002; Silva and Clarke, 2002; Jantz et al. 2003). Parameters and a suitability map are the 

output of the SLEUTH calibration run (Clarke and Gaydos, 1998). SLEUTH also uses a 

self-modification function for realistic simulation (Clarke et al. 1997), which changes the 

values of the coefficients as the model iterates. When the development rate exceeds/falls 

below a specified threshold, the coefficients are multiplied by a factor greater/less than 

one, simulating a development ‘boom’/’bust’ cycle. Without self-modification, SLEUTH 

simulates a linear growth rate, producing the same number of new urban cells.  

3.3.3 Geo-Simulation 

Geo-simulation (Figure 3-5) is able to show urban systems in a more realistic 

manner than conventional approach (Holland, 1998). Geo-simulation operates with 

human, entities and spatial components to specify the spatial relationships (Fotheringham 

and O’Kelly, 1989). Geo-simulation uses spatial units, which can be partitioned in 

different ways and are modifiable, to represent urban systems (Openshaw, 1983). Geo-

simulation defines the interactions by considering spatial objects’ behavior. The 

interactions of spatial units at higher levels are the results of behavior of urban objects at 

lower-level (bottom-up systems).  

Temporal behavior of objects can occur as either synchronous (all objects change 

at the same time), or asynchronous (objects change in turn; Nagel et al. 1999). The 

possibility of asynchronous behavior is more than synchronous behavior. The sequence 

of objects’ changes can be completely random or logical. Geo-simulation has been 
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designed to control all kind of events. Realistic description of objects’ behaviors makes 

this model unique. Geo-simulation uses CA model to define transition of objects’ 

behavior. The characteristics of objects can change based on the rules that control their 

reaction to CA inputs. CA is potential to provide an efficient tool for representing the 

properties of objects: attributes, behaviors, relationships, environments, and time. 

3.3.4 Vector Based CA (VEC-GCA) 

CA outputs vary according to the cell size and the neighborhood. Jenerette and 

Wu (2001) found that CA is sensitive to detect LUCC patterns across spatial resolutions. 

Jantz and Goetz (2005) compared the SLEUTH model outputs across cell sizes. The 

results indicate that SLEUTH is sensitive to cell size for detecting LUCC patterns. 

Moving from raster to vector space was considered as a solution to overcome CA 

limitation in raster space. Using grid with irregular shape (e.g. Voronoi diagrams) rather 

than the regular grid (e.g. square or rectangular diagrams) was the initial work to 

minimize the scale sensitivity (Shi and Pang, 2000). Voronoi diagrams decompose the 

space to Voronoi polygons to chraterize the neighborhood of spatial object. Similar to the 

raster environment, the state of each spatial object change based on the neighbors 

attributes. Delaunay triangle is another common way of using irregular grid in CA 

(Semboloni, 2000). The neighborhood of each triangle is defined by its adjacent triangles. 

These approaches are limited in three ways: (1) the automatic polygon generation is 

quick in vector space (Tayyebi et al. 2012) but may not match to the real world objects, 

(2) the neighborhood definition is limited since it just depends on topology (White and 
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Engelen, 2000) and (3) irregular change in the shape and size of the objects is not 

permitted.  

A new vector-based CA (Vec-GCA) model developed by Moreno and her 

students (Moreno et al. 2009; Moreno and Marceau, 2006; Moreno et al. 2008), allows 

showing real objects with irregular shape and changing the shape and size of the objects 

across time using variety of functions (Figure 3-6). This new topology is free of defining 

influence zone around each object; it uses the entire region to asses which objects 

influence others to generate a change of shape. Using vector data solves the problem of 

cell size dependency of CA model by using a dynamic neighborhood. Two objects are 

neighbors if their states are interest to the change the state of each other. Binary matrix 

uses to describe the transitions, where the number of rows is the number of states of an 

object and the number of columns is the number of transitions in the model. In the matrix, 

the entry takes 0/1 when state is not/is favorable to transition. This model is not limited to 

the number of objects between two objects. The computation of Vec-GCA model is 

intensive due to variety of operations when an object changes shape. However, Vec-GCA 

eliminates the extensive computation time for sensitivity analysis of scale. Vec-GCA 

makes more realistic results than raster CA model (Marceau and Moreno, 2008; Moreno 

and Marceau, 2007). 

3.4 Weighted-Map Models 

3.4.1 Multi Criteria Evaluation (MCE) 

Multi-criteria evaluation (MCE; Wu, 1998) selects spatial drivers and integrates 

them, Boolean overlay or weighted linear combination, to get at an appropriate evaluation 
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based on the given function (Eastman, 1997; Figure 3-7). MCE is able to reduce driver 

using PCA and then standardize the continuous driver to a proper numeric range. The 

weighted linear combination (WLC) generates suitability value for each grid cell by 

weighting and combining each driver maps. The suitability for LUCC was evaluated 

using series of independent parameters that influence LUCC. MCE can consider drivers 

such as proximity, accessibility and environmental protection. Eastman and Jiang (1996) 

suggested using ordered weighted average (OWA), which employ a wider range of 

decision. In contrast to WLC, OWA has two steps for weighting of drivers. 

3.4.2 Geomod 

Geomod is a raster-based LUCC model (Figure 3-8), which simulates the spatial 

pattern of LUCC backward and forwards in time (Pontius et al. 2001). IDRISI’s Geomod 

has been used to predict LUCC at the continental scale (Africa, Asia and Latin America), 

at the country scale (Costa Rica and India), and at the local scale (India, Egypt, United 

States and several countries in Latin America). Pontius et al. (2001) gave the 

comprehensive description of Geomod that has been used to analyze the impact of 

deforestation (e.g. carbon offset) on climate change. The software needs to have a LULC 

map in initial time and number of changed cells between initial and subsequent time. The 

input files at the beginning time are the necessary files for running Geomod. This model 

determines the location of cells using four decision rules as one of the binary categories 

for the next time. If the number of change/non-change cells between initial and 

subsequent time steps increases, Geomod searches among non-change/change cells to 

select them as those most likely to be converted to change/non-change category in 
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subsequent time. A reference map of the region in subsequent time can be used to 

compare with Geomod simulation as a validation run. Geomod enables the user to define 

an exclusionary zone which shows areas that are excluded from analysis as well. Geomod 

can create its own suitability map using an IDRISI module such as MCE (Eastman et al. 

1997) which combines a variety of spatial or temporal drivers or to use a suitability map 

that has already been created from other LUCC models (e.g. LTM, CLUE, SLEUTH) for 

LUCC simulation. Geomod develops the suitability map using a combination of drivers 

and the LULC map in the initial time that the user gives it. Each driver map must show a 

categorical variable (e.g. bin) before running the model; this is different from most of the 

other LUCC models that can use both categorical and continuous variables. The 

categories within variables are called bins. Geomod’s suitability map has relatively 

high/low values at locations with attributes similar to the developed/non-developed area 

of the initial time. 

Geomod use four decision rules to locate the changes in LULC maps (Figure 3-8). 

The first decision rule is mandatory; while other three decision rules can be either 

included or excluded based on the user experience. The first decision rule concerns 

persistence in the study area. Geomod simulates binary change, either from non-change 

to change or from change to non-change. The second decision rule allows simulating 

LUCC using any type of smaller regions nested in a larger region (e.g. political boundary; 

Tayyebi et al. 2012). For each smaller region, the user is responsible for giving the 

quantity of each category at the subsequent time. The new changes occur pseudo-

randomly. The third decision rule is based on nearest neighbor principle like CA, 

whereby Geomod allows LUCC occur around the edge between change and non-change. 
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This rule simulates LUCC where the new change can grow out of previous change, and 

then the search is only limited to those cells within a small square window around any 

change cells. The user is responsible to define the width of the window which is called 

the neighborhood search. The fourth decision rule uses a suitability map, which shows 

the suitability for LUCC for each cell. Geomod simulates additional change by searching 

the region for the location of the non-changed cells that have the highest suitability. 

Geomod is not dynamic in the sense that the suitability map does not change over time. 

However, Geomod is dynamic in the sense that Geomod re-computes for each year the 

cells as candidates for change by re-computing which cells are on the edge between 

changed and non-changed using neighborhood constraint rule. 

3.5 Regression Based Models 

3.5.1 Logistic Regression Overview 

The inputs of Logistic Regression (LR) are suitability values of predictor 

variables at time t1 while the output is binary change between t1 and t2. If the output of LR 

equals 1/0, it indicates change/non-change. The LR function is bounded between 0 and 1, 

of the form given by He and Lo (2007). LR output gives the LUCC likelihood for each 

cell as a function of the spatial predictor variables. Intercept and the coefficients need to 

be estimated as a fixed parameter and for each spatial predictor, respectively. The LR has 

a non-linear form but can be transformed into a linear form with the simple 

transformation (Tayyebi et al. 2010; Schneider and Pontius, 2001). Then, the coefficients 

of spatial predictor variables are estimated using the transformed function. Instead of 

fitting a LR with the suitability of LUCC in each cell as the outcome, the logarithm of the 
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odds is considered as the outcome. If a particular regression coefficient is zero, then the 

corresponding explanatory variable is not associated with the occurrence of the response.  

3.5.2 Conversion of Land Use and its Effects (CLUE) 

The Conversion of Land Use and its Effects modeling framework (CLUE) 

(Veldkamp and Fresco, 1996; Verburg et al. 1999) was originally developed to simulate 

LUCC and determine suitability of each cell with the dynamic simulation of competition 

between LULC classes. The second version of the model has been developed for regional 

application and has been called CLUE-S (Conversion of Land Use and its Effects at 

Small regional extent; Verburg et al. 2002; Verburg and Veldkamp, 2004). CLUE has 

been applied at the national scale for Ecuador, China and Java, Indonesia. The CLUE 

model includes two distinct modules, called a quantity module and an allocation module 

(Figure 3-9). The quantity module calculates the number of transitions for each LULC 

class; while the allocation module locates the given quantity of LUCC at different 

locations. The quantity module in CLUE is able to run different models ranging from 

simple to complex models. The results from the quantity module are a direct input for the 

allocation module. 

CLUE model incorporates four major components: (1) Policy option highlights 

areas in the map where LULC changes are restricted or can imply stimulation 

arrangements for a certain land use on a location. CLUE uses a LULC conversion matrix 

to show the transitions that are prohibited by a certain policy, (2) Conversion settings and 

LULC transition sequences are two sets of parameters to characterize the LULC 

categories. The conversion settings related to the reversibility of LUCC ranging from 0 
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(easy conversion) to 1 (irreversible change). LULC transition sequences show conversion 

settings and temporal characteristics which can be defined using a conversion matrix, (3) 

LULC requirements control the simulation by defining the required change in LULC 

(LUCC quantity). The extrapolation of patterns in the historical LULC data into the near 

future is a common technique to calculate LULC requirements and (4) LULC 

conversions are expected to take place at locations with the highest suitability (LUCC 

location). A statistical approach (e.g. logistic regression) is usually used to quantify the 

relations between LUCC locations and a set of independent drivers. To run the model, it 

is minimally needed to have spatial data for at least one time; however, to allow model 

calibration and validation, it is necessary to have data of another time. 

3.6 Agent Based Models (ABMs) 

Different studies have shown that Agent-based models (ABMs) are useful for 

exploring LUCC processes (Parker et al. 2003; Verburg, 2006). ABMs have been used 

more particularly for simulating local scale LUCC due to the complex nature of LUCC 

(Acosta-Michlik and Espaldon, 2008) while their applications have been restricted more 

in planning and policy-making. ABMs computions are extenstive; so these models 

usually incorporate empirical models for parameterization (Valbuena et al. 2008) or 

couple with other LUCC models affectively to make the simulation run faster (e.g. CA 

and Markov models; Parker et al. 2008).  

 ABMs simulate LUCC as a result of interaction among individual agents (e.g. 

decisions about policy, planning and management; Parker et al. 2003 and 2008). In a 

LUCC model (Figure 3-10), an agent can be a farmer of a village in a small extent or a 
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president of a country in a bigger scale. Agents are decision-making units in ABMs and 

they are acting autonomous ine the environment. Agents need to share spatial space to 

interact with each other and respond to the environment. Rules are the outome of the 

interaction between agents, and determine future behaviot of actions. Agents’ behavior 

can change from simple rules to complex decisions. Agents usually have unique 

characteristics (e.g. DNA in human body or finger print) that let them to be identified 

from other other (Figure 3-10). Agents change their behaviors to satisfy their desired goal 

by comparing the outcome of their behavior relative to its goals. 

3.7 Machine Learning 

Machine learning (ML) is a core of artificial intelligence. ML studies computer 

algorithms for learning to complete a task. The emphasis of ML is to devise learning 

algorithms that do the learning automatically without human assistance. ML researchers 

are familiar with most of statistical models. 

3.7.1 Artificial Neural Networks (ANNs) 

Many scholars have found that artificial neural networks (ANNs) can solve 

classification problems accurately. Land Transformation Model (LTM) uses the 

combination of spatial drivers (Pijanowski et al. 2002) that have an influence on LUCC. 

The parameters of LTM are determined by a training procedure of ANNs. ANNs consist 

of neurons (e.g. structure of human brains) within layers which simulate LUCC. The 

layers and neurons allow ANNs to learn like the human brain, especially non-linear 

patterns. LTM uses back-propagation learning algorithms and follows four sequential 

steps (Pijanowski et al. 2009; Figure 3-11): (1) creating spatial predictor variables, (2) 
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applying spatial (e.g. distance) and non-spatial (e.g. density) functions in GIS, (3) using 

ANNs to train LTM and (4) using population density to calculate the quantity of LUCC 

for future. LTM is designed to use the difference of mean square error (MSE) between 

two consecutive cycles (with 100 intervals) as the stopping criteria (Pijanowski et al. 

2009). The resulting weights and biases of the ANN are then applied to the rest of input 

data that have not been used in training run to calculate the output values (continuous 

value between 0 and 1) for the testing run. Then, cells are ranked in the suitability map by 

sorting them according to their suitability values. Cells with high ranks are then selected 

and undergo changes to create the simulated map. The simulated map can then be 

compared to a reference map to calculate the accuracy of the model (Pijanowski et al. 

2005 and 2006). 

3.7.2 Support Vector Machines (SVMs) 

Like ANN, Support Vector Machine (SVM) can be used as a machine learning 

algorithm to detect non-linear patterns in data. SVM projects data to a higher dimensional 

(which is called Hilbert space; Figure 3-12) to constrauct an optimal classifying 

hyperplane. In Hilbert space, SVMs can classify LUCC patterns linearly through using 

structural risk minimization and margin maximization (Vapnik, 1998). The function of 

the optimal separating hyperplane is developed using the kernel function and the support 

vectors. In contrast to ANN, SVMs provide a unique and global optimal hyperplane. 

SVM has been used in many applications, such as credit scoring (Baesens et al. 2003), 

financial time series prediction (Gestel et al. 2001), spam categorization (Drucker et al. 

1999) and brain tumor classification (Lu et al. 1999). 
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3.7.3 Genetic Algorithms (GAs) 

Genetic algorithms (GAs), originated from natural selection theory in biology, 

perform a search within the space to find the optimal solution (Holland, 1975; Goldberg, 

1989). GA can estimate global minimum or maximum using the given fitness functions 

(Figure 3-13). GA calibration approach consists of the following steps (Shan et al. 2008): 

firstly, GA randomly generates the initial population of solutions and encoded to binary 

strings (encoding and initial population). Each string in encoded binary style corresponds 

to a solution; secondly, the GA then run for each string in the population until a year with 

reference LUCC map. A reference map is used to rank the initial solutions based on a 

fitness function (rank selection and elitism). This step is responsible to select the strings 

for the next generation. For rank selection, all strings are ordered based on their fitness 

function in ascending order (from minimum to maximum) and finally, the last step is 

(crossover and mutation) producing the next generation of solutions. Crossover operation 

produces next generation in each run that are expected to have same or better quality than 

their parents. Mutation prevents the solution from becoming lock on local minima. The 

training run of GA continues for a number of generations and the generation with the 

minimum fitness functions chooses as the final solution. 

3.8 Data Mining 

Data mining (DM) refers to the patterns or rules extraction from a large data. Data 

mining process involves identifying the problem, retrieving the needed data, and 

analyzing the data for making decisions (Berry and Linoff, 2004; Mitra et al. 2002). To 

avoid under-fitting, DM models run forward to add more complexity to the model by 
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adding nodes in CART or basis functions in MARS; however, in order to over-fitting, 

DM models run backward (e.g. pruning mechanism) to reduce model complexity by 

removing extra nodes in CART or basisi functions in MARS (Tayyebi and Pijanowski, in 

review). 

3.8.1 Classification and Regression Tree (CART) 

Classification and Regression Tree (CART) is one of the common DM models 

that classify the data hierarchically (Figure 3-14). CART produces a model with a 

structure using a series of if-then-else rules (Breiman et al. 1984). CART is responsible 

for identifying the splits at each node to best divide the data (Tayyebi and Pijanowski, in 

review). The nodes in the tree are reprensitive of each variable in CART. The location of 

the nodes at the hierarchical level shows the contribution of each variable. The nodes at 

the top/bottom have higher/lower contribution for modeling. Gini index uses an an 

impurity function to find the best aplit (Breiman et al. 1984) between all unique values 

among predictors to fragment data. Gini makes more homogenous subsets than the before 

node by choosing the better split to minimize the reduction in impurity. 

3.8.2 Multiple Adaptive Regression Splines (MARS) 

Multivariate adaptive regression splines (MARS), which is a regression model, 

could overcome some of the CART limitations. MARS generalizes the recursive 

partitioning approach with more flexibility and captures interactions (Friedman, 1991). 

MARS uses basis functions to find the relationship between the inputs and outputs 

(Figure 3-15). MARS splits the data into sub-regions using different knots, where the 

coefficients can change (Tayyebi and Pijanowski, in review), and fits the data in each 
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sub-region using a set of basis functions automatically (Friedman, 1991). Basis functions 

take two forms, one for the values on the left of the knot and one for the values on the 

right of knot.  

3.9 Hybrid Models of CA 

Many models are hybrids that combine viz, statistical and some form of process-

based. The original CA has been significantly modified. CA calibrations run suppose to 

obtain a set of CA parameters. Extensive search is necessary within the space by 

comparing possible combinations of parameters. Using more variables with wider ranges 

in transition rules make the CA modeling more sophisticated. Computer search 

algorithms such as machine learning (e.g. ANN, SVM or GA) and data mining 

approaches (e.g. CART and MARS) can be coupled with CA to make the calibration run 

faster.  

3.9.1 CA-MCE 

CA transition rules have been defined using MCE method (MCE; Wu and 

Webster, 1998). ANN has been integrated into CA for deriving parameter (Li and Yeh, 

2002); however, it is difficult to comprehend the meanings of these parameter because of 

the black-box nature of ANN. Interpreting the meanings of MCE weights is easy; a 

larger/smaller weight shows that the corresponding driver has a more/less contribution to 

the LUCC. Understanding these parameter values can provide useful information for 

urban planning since they can control urban struture. 
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3.9.2 CA-SVM 

Transition rules define linear boundaries in CA to distinguish LULC classes; 

however, LUCC patterns are not usually linear and they are highly complex (Yang et al. 

2008). Thus, it is essential to use a model which can find the non-linear boundaries for 

the transition rules (Yang et al. 2008). ANN used as a non-linear machine learning 

algorithm (Li and Yeh, 2002) to parametrize CA; however, the ANN training run may 

result in local rather than global optimization (Vapnik, 1998). To address this problem, 

Yang et al. (2008) used SVM to define transition rules in CA and improve the ability of 

CA in dealing with non-linear complexity. The decision function of the optimal 

hyperplane is used to form the transition rule for CA (Martens et al. 2007). The transition 

rule is detected by combining the output from SVM and other constraint information 

(Figure 3-16). The simulation of LUCC is iteratively running until certain conditions are 

satisfied (e.g. the quantity of LUCC simulated equals the amount of reference LUCC). 

The outcome of transition rule is LUCC probability map which is estimated based on the 

decision function (Ana et al. 2004). 

3.9.3 CA-GA 

GA has been coupled with CA to improve the time complexity in calibration run 

(Goldstein, 2003). GA has been suggested (Shan et al. 2008) to enhance the time 

efficiency of CA for LUCC simulation. It has been shown that coupling CA with GA can 

produce similar results to CA in a time effective manner and optimal rule values can be 

reached within the early generations of GA (Shan et al. 2008). The best CA parameters 

can be found using the goal function to produce the minimum error. A CA model has 
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been designed using multi-temporal satellite imagery and population density (Alkheder 

and Shan, 2006). GA was used to optimize the search algorithm for best transition rule. 

CA model is run for each string in the population. The reference map is used to rank the 

initial solutions based on the fitness function. The rank selection and elitism operations 

are first used to select the strings for the next generation. For rank selection, all strings 

are ordered based on their fitness function in ascending order. 

3.9.4 CA-ANN 

With emerging multiple LULC class simulation, CA model structure has become 

more sophisticated (Batty et al. 1999). Multiple LUCC simulation needs to deal with 

numerous complex spatial variables that may correlate with each other. Conventional CA 

has difficulties in handling complex variables and determining parameter values. A new 

method was developed (Li and Yeh, 2002) to simulate multiple LULC classes based on 

the integration of ANN and CA. This model uses ANN with multiple outputs to calculate 

the conversion suitabilities for multiple LULC classes. The neourons in input layer 

correspond to the input variables while the output layer consists of neurons corresponding 

to number of output LUCC classes. A stochastic disturbance is incorporated in ANN-CA 

to generate more realistic results (White and Engelen, 1993). The disturbance produces 

simulation results with fractal properties that are found in historical LUCC patterns. Each 

neuron in the output layer generates conversion suitability from the existing type to 

another type of LULC class. CA simulation involves more cycles to decide whether a cell 

is converted or not. User-defined threshold can be used to control the rate of conversion. 
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If the highest conversion suitability is less than the threshold value, the cell remains 

unchanged. 

3.10 Urban Growth Boundary Models (UGBMs) 

Globally, urban and sub-urban regions have experienced scattered development 

near cities. Such development patterns heavily burden local governments with high 

financial costs. Urban growth boundary models (UGBM) are a class of land change 

models that simulate urban boundary locations and configurations so development 

proceeds only within these designated zones (Tayyebi et al. 2011a and b).  Several cities 

in the United States use urban growth boundaries (UGB), such as Portland and Oregon. 

3.10.1 ANN UGBM 

An UGBM which utilizes ANN and GIS is developed here to simulate the 

complex geometry (Figure 3-17) of the urban boundary (Tayyebi et al. 2011a). UGBM 

examines the relationship between predictor variables as inputs and the radial extent of 

the boundary at specified azimuths as outputs to simulate UGB. Percent area match 

(PAM) is used to evaluate the accuracy of the model for UGB simulation. The input 

drivers are in raster format while the output drivers are in vector format. 

3.11 Rule Based UGBMs 

Two rule-based spatial-temporal models, one which employs a distance dependent 

method (DDM) and the other a distance independent method (DIM), were used to 

simulate UGBs (Tayyebi et al. 2011b). Both models use azimuths and distances, vector-

based predictive variables, directed from central points within the urban area, to simulate 

UGB change.  
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3.11.1 Distance Dependent Model (DDM) 

The DDM approach uses the points on the urban boundary in initial time and a 

suitable prediction method to anticipate the urban boundary in any subsequent time 

(Tayyebi et al. 2011b; Figure 3-18). The suitable prediction method projects a new urban 

boundary by increasing distances by percentage increments across different azimuths. 

Central points in the city are defined visually based on different constraints and the 

distances from the central point to points on the urban boundary are computed for the 

different azimuths. Percent Area Match (PAM) quantity is used as a stop condition to 

simulate urban boundary change because the quantity of simulated are by UGBMs 

provides a better match for the quantity of area that is derived from the urban boundary in 

subsequent time periods, producing a better UGBM. There are different PAM quantities 

and locations for DDM which equal to the number of simulations that are repeated until a 

stop condition is satisfied. 

3.11.2 Distance Independent Model (DIM) 

DIM uses the change in distance between two boundaries, one in the initial time 

step and one in subsequent time step, across different azimuths, to predict the future 

urban boundary (Tayyebi et al. 2011b). DIM simulates the urban boundaries using data 

from two time periods and measure distances from central points to urban boundaries 

(Figure 3-19). DIM uses central points to indicate an azimuth for measuring the rate of 

change in distance between the two urban boundaries using a rate of change in distances 

over time (RCDT). The central points used to compute the distances and azimuths are the 

same across the two time periods. The RCDT is measured across different azimuths, 



      54 

which is repeated for all points along the urban boundary so that each point on urban 

boundary has its own RCDT. RCDTs for all points on the urban boundary map are 

averaged giving an Average RCDT (ARCDT). A new urban boundary can be created 

using predicted distances from the urban boundary to central points calculated with 

ARCDTs from the region. There is one PAM quantity and location for DIM.  

3.12 Conclusion 

The current LUCC modeling research moves toward the use of hybrid models, 

researchers should compare the integration of LUCC models for LUCC simulations. It is 

necessary to have more studies to compare LUCC models with each other where they 

may help researchers to select the best method for solving classification problems. Each 

of the available models shows unique characteristics, which may be interesting in the 

context of LUCC. For example, CART is a simple model for interpretation while ANNs 

can help to structure the understanding of prediction. ANNs can provide a framework to 

inform the optimal design for urban planner and decision maker (Li and Yeh, 2002; 

Tayyebi et al. 2011a).  
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Figure 3-1: Calibration and validation across time and space 

 

 

 
Figure 3-2: Classification of LUCC models 
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Figure 3-3: Cellular automata models 

 

 
Figure 3-4: Struture of SLEUTH model 
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Figure 3-5: Components of Geo-Simulation model 

 

 

 

 
Figure 3-6: Structure of Vector CA model 

 

 

 

 
Figure 3-7: The process of MCE 

  



      58 

 
Figure 3-8: Structure of the Geomod model 

 

Figure 3-9: Conceptual view of CLUE model adopted from Veldkamp and Fresco, (1996) 
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Figure 3-10: Structure of agent based models 

 

 

 
Figure 3-11: Structure of land transformation model 
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Figure 3-12: Structure of support vector machine model 

 

 

 
Figure 3-13: Structure of genetic algorithm model 
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Figure 3-14: Structure of CART model 

 

 

 

 
Figure 3-15: Structure of MARS model 
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Figure 3-16: Structure of SVM-CA model adopted from Yang et al. (2008) 

 

 

 
Figure 3-17: Structure of ANN-UGBM 
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Figure 3-18: Structure of DDM 

 

 

 
Figure 3-19: Structure of DIM 
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CHAPTER 4: USING CART, MARS AND ANNS TO MODEL LAND USE LAND 

COVER CHANGE:  APPLICATION OF DATA MINING TOOLS TO THREE 

DIVERSE AREAS IN THE USA AND AFRICA UNDERGOING LAND 

TRANSFORMATION
1
 

4.1 Introduction 

Different disciplines (e.g. economics, medicine, engineering, psychology, and 

environmental science) have applied a variety of data mining approaches to extract 

underlying patterns in data (Imran et al. 2008). Data mining methods generally include 

two main groups of modelsglobal parametric models (GPM) and local non-parametric 

models (LNPM)that have been used to quantify the relationship between dependent 

and multiple independent variables. GPMs are the most common in the literature (Landis 

and Zhang 1998, Theobald and Hobbs 1998, Aspinall 2004); these approaches present all 

data to the model. In other words, one model is created that represents the entire dataset. 

GPMs can be statistical or belong to a class of tools referred to as machine learning. A 

variety of GPMs have been applied by modelers, particularly in land use science. Logistic 

regression is one of the most common statistical GPM applied to model land use cover 
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change (e.g. He and Lo, 2007, Tayyebi et al. 2010, Mertens and Lambin 2000, Serneels 

and Lambin, 2001, Lambin et al. 1999, Lambin et al. 2001). Machine learning GPM tools 

for land use cover change modeling have focused on the use of artificial neural networks 

(ANNs), (Pijanowski et al. 2002a, Li and Yeh 2002, Shellito and Pijanowski 2003, Mas 

et al. 2004, Almeida et al. 2008), cellular automata (White and Engelen 1993, Batty and 

Xie 1994, Clarke et al. 1997, Dietzel and Clarke 2006, Stevens and Dragićević 2007) and 

genetic algorithms (Jenerette and Wu 2004, Seppelt and Voinov 2002), to name a few. 

LNPMs, on the other hand, subset all data and build separate (i.e. local) models of these 

subsets. Thus, multiple models are generated from partitioned data. To date, no studies in 

land use science have examined the potential of LNPM to model land use cover change. 

It is quite conclusive to the land use science community (Veldkamp and Lambin 

2001, Lambin et al. 2001, Irwin and Geoghegan 2001, Verburg et al. 2004, Lambin and 

Geist 2006; Pontius et al. 2008) that LUCC is a very complex process, with multiple 

drivers of LUCC operating at a variety of spatial and temporal scales from diverse 

sources: policy, behavior, economics, soils, and other natural features (e.g. streams, 

lakes). Thus, it is unlikely that statistical GPMs can appropriately characterize these 

systems as earlier studies have shown (cf. Lambin and Geist 2006). Statistical GPMs are 

likely to be insufficient when most of the statistical GPMs assume that the spatial 

predictors (especially in LUCC field) have to follow a normal distribution for proper 

modeling; however, data from the real world rarely have such distributions (Lumley, et 

al. 2002). Due to the complexity between social and economic factors and LUCC 

(Pijanowski et al. 2002b; Clarke et al. 1997), statistical GPMs may not detect the non-

linear patterns in LUCC data. Furthermore, most of the functions that statistical GPMs 
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use require prior knowledge about the relationship between input and output (e.g. non-

linear and linear functions). There are commonly auto-correlations between spatial 

predictors that affect the goodness of fit of LUCC models (Munroe et al. 2001; Read and 

Lam, 2002; Pontius et al. 2001; Gobim, et al. 2002); however, most of the statistical 

GPMs assume that input variables are independent from one other. Further problems 

arise with statistical GPMs when more spatial predictors are included in the modeling 

process of LUCC (Millington et al. 2007). More spatial predictors are usually added to 

help the model to find more complex patterns in data (Millington et al. 2007); however, 

more drivers increase the risk of multi-colinearity. 

When using statistical GPMs, most of the assumptions are unwarranted in the 

cases of predictive LUCC modeling (Austin et al. 1994). In contrast, LNPMs are free 

from most of the limitations that exist in the statistical GPMs and may offer solutions to 

these challenges. To use LNPMs, one does not need to have prior knowledge about the 

distribution (i.e. normal distribution) of data, the form and parameters of the functions 

(i.e. linear or non-linear, means and standard deviations; Zhao, 2008). Moreover, the 

model structures of the LNPMs are not fixed and the model typically grows to fulfill the 

complexity in the data (Hardle et al. 2004). LNPMs are able to detect non-linear 

relationships in data, variable selection, data transformation and variable reduction 

(Stanton, 1997). Classification And Regression Tree (CART; Breiman et al. 1984) and 

Multivariate Adaptive Regression Splines (MARS; Friedman, 1991; De Andrés et al. 

2011; Abdel-Aty and Haleem, 2011) are LNPMs that have been used widely in data 

mining, including predicting business failure (Li et al. 2009) and hypertension in people 
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(Ture et al. 2005). Most research suggests that CART and MARS generally provide very 

satisfactory results.  

4.1.1 Literature review on LTM, CART and MARS 

Comparative methodological data mining studies are becoming frequent in the 

literature. Many scientists have compared CART, ANN and MARS with one other and 

these comparative studies have shed light on important factors to consider in such studies. 

In an oral health study, CART, ANN and logistic regression were used for the study of 

factors contributing toward tooth decay; the performances of the three models were 

compared using the receiver operating characteristic curve or ROC (Gansky, 2003). ANN 

performed better than logistic regression and CART; Gansky concluded, however, that 

any comparative study of data mining tools such as ANN, MARS and CART need 

multiple model assessment tools and an iterative analysis approach (e.g. explore data, 

examine goodness of fit, re-evaluate predictors) to be useful.  

In another application, CART and ANN were compared in a psychological study 

on short-term and long-term memory of people (Fong et al. 2010). In this study, 

researchers found that one tool performed better for data on long-term memory and but 

another tool did better for short-term memory suggesting that there is no one best 

technique even with very similar data. Yet in another study, canals in Bangkok were 

classified into 5 water quality class uses (Class 1 = extra clean, requires minimal 

processing for human use to Class 5 = use only for navigation) based on biophysical 

attributes such as pH value, dissolved oxygen, nitrate nitrogen, ammonia nitrogen and 

total coliform using CART and ANNs (Areerachakul and Sanguansintukul, 2010). Both 
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techniques yielded exceptional results generating greater than 98% fit suggesting that 

either approach can be used to automate the classification of canals in terms of water 

quality and potential use.  

In a health care study, the prediction accuracy of ANN, CART and regression 

models were compared with each other using a set of data on smokers (Razi and 

Athappilly, 2005). ANN and CART models provide better compared to non-linear 

regression models when the inputs are categorical and the outputs are continuous; the 

authors concluded that either ANN or CART could be used. Finally, in a speech and 

learning study, separate and hybrid version of CART and MARS models were tested 

against each other to estimate speech and perception quality (Zha and Chan, 2005) of 

human voices. Classification of speech patterns were very reliable and fast using both 

methods, making these tools ideal for objectively classifying speech problems in a 

medical office. ANNs performed better than CART and MARS for predicting the risk of 

hypertension disease according to sensitivity, specificity and predictive rate (Ture et al. 

2005) using 694 subjects (452 patients and 242 controls). ANNs and MARS were 

compared in terms of accuracy to recover different types of polynomial function 

(Psichogios and Ungar, 1992). MARS is often found to be more accurate and much faster 

than ANNs, and produced easy-so-interpret low order models; however, CART and 

MARS, in contrast to ANNs, were found to be more sensitive to the outliers in data 

(Psichogios and Ungar, 1992). 

Comparison of different methods can be challenging. MARS was capable of 

outperforming other ANN models when judged based on speed and goodness of fit 

(Abraham et al. 2001), standard ways to compare these tools. However, predefined 
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thresholds (e.g. 0.5) used for assessment can vary for different applications of ANNs 

(Pijanowski et al. 2002a and 2005) making comparisons difficult as some methods have 

predefined rules for transforming data from continuous to binary. Additionally, there is 

very little research that shows that that if mean squared error (MSE) values on test data 

are comparatively less, the models predictions are reliable.  

Some researchers that have conducted comparative studies have found that 

characteristics of the study area such as sample size, quality of data, how models are built 

(i.e. training) and validated (i.e. testing), and patterns in data can influence which model 

performs best. For example, CART, MARS and ANN were explored for modeling 

different forest classes using satellite imagery and comparing this with in situ field data 

within five ecologically different regions in the Western US (Moisen and Frescino, 

2002). MARS and ANNs showed tremendous advantages over CART for prediction; 

however, the differences between models were less distinct for the in situ data which had 

less noise.  Thus, “noisy” data may be modeled best using ANN and MARS. ROC was 

used to compare CART and MARS for predicting the likelihood of emerging markets 

using financial data (Büyükbebec, 2009). The CART approach could give more accurate 

results in the training run; however, in testing runs, MARS gave more accurate results.  

Thus, some tools may over fit the data hindering its ability to generalize from one dataset 

to another.  

4.1.2 Objectives and structure of chapter 

It is surprising that, although the global parametric approach in modeling LUCC 

has received considerable attention during the last two decades (Clarke et al. 1997; 
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Pontius and Schneider, 2001; Pijanowski et al. 2002a and 2002b; Tang et al. 2005a and 

2005b; He and Lo, 2007; Tayyebi et al. 2011a and 2010), we are aware of no studies that 

have compared global parametric models with local non-parametric models. Here, we 

apply the ANN-based LTM as a ML GPM model with two LNPMsCART and 

MARSto simulate agriculture, forest and urban growth patterns using land use maps 

from the Climate-Land Interaction Project (CLIP) study area in East Africa (Olson et al. 

2008), the Muskegon River Watershed (MRW) study area in Michigan, USA (cf. Ray 

and Pijanowski 2010), and from a Southeast Wisconsin (SEWI) study area, respectively 

(cf. Pijanowski and Robinson 2011). This chapter has two main objectives. The first 

objective is to compare the power of the ANN-based LTM, CART and MARS to reveal 

the pattern of agriculture, forest and urban (spatial modeling). The second objective is to 

contrast the goodness of fit of three models in short (5 years intervals), intermediate (10 

years intervals) and long (20 years intervals) periods (temporal modeling) to simulate 

single transition patterns in three study areas using the Percent Correct Match (PCM) and 

Relative Operating Characteristic (ROC) curve metrics. We selected three different 

regions because these three study areasCLIP, MRW and SEWIare agriculture-

dominated, forest-dominated and urban-dominated, respectively.  

The chapter is organized as follows. Section 4.2 provides comprehensive section 

about the ANN-based LTM, CART, MARS and accuracy assessment metrics (PCM and 

ROC) used to validate the models in three study areas. In Section 4.3, three study areas 

are briefly described. We showed how we used LTM and Salford Systems to build CART 

and MARS models. Section 4.4 describes the simulation results of agriculture, forest and 

urban growth in CLIP, MRW and SEWI and compares the PCM and ROC to evaluate the 
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results of experiments. Section 4.5 summarizes our conclusions about the use of each 

data mining method. 

4.2 Methods 

4.2.1 Global Parametric Model (Land Transformation Model) 

Land Transformation Model (LTM) uses a Multi-Layer Perceptron (MLP) 

Artificial Neural Network (ANN) which has advantages to other types of ANNs (e.g. 

better approximation, simpler structures and faster algorithms). Models from ANNs class 

can be trained using supervised and unsupervised learning algorithms (Zurada, 1992). In 

supervised learning, ANNs fit a model to data based on the relationship between the input 

and the output. Conversely, in unsupervised learning, data are classified to different 

classes based on the similarity between input data (refer to cluster analysis; Zurada, 

1992). The numbers of output classes (binary or multiple classes) are determined during 

the training run in a supervised classification by checking the unique values in output; 

however, in unsupervised classifications the user can decide before a training run or leave 

it to ANNs to select during training run based on correlation between input layers 

(Zurada, 1992).  

MLP uses a supervised learning algorithm which can estimate a function between 

input-output pairs without knowledge of the form of the function (Pijanowski et al. 

2009). LTM (Pijanowski et al. 2005 and 2006) uses data in at least two periods of time to 

train the networks. Mean Square Error (MSE) computes the difference between reference 

and calculated output of ANNs (See Eq. 4-1; Y  is the calculated and O  is the reference 

values of output node; n is number of observations) and LTM saves the MSE in a CSV 
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file for each 100 cycles (Pijanowski et al. 2002a and Tayyebi et al. 2012). The LTM 

couples ANNs and GIS using socio-economic and bio-physical factors in a raster 

environment (Pijanowski et al. 2002a) to simulate LUCC (Pijanowski et al. 2002b) and 

environmental impacts (Tang et al. 2005a and 2005b, Wiley et al. 2010, Ray et al. 2010, 

Yang et al. 2010, Pijanowski et al. 2011). LTM follows four sequential steps (Pijanowski 

et al. 2002a): (1) developing binary and continuous maps from spatial predictor variables; 

(2) applying predefined rules to relate spatial predictor variables to output; (3) using 

ANN to train the LTM and save training values of weight, bias and activation values; and 

(4) using ANN training values and GIS to create future prediction of LUCC. The weights 

and biases of LTM are saved in a network file for each 100 cycles automatically and 

analyzed. The best network is applied to testing data to estimate the output and construct 

a binary map.  

 

2

1

2








n

i

ii YO

MSE                                      (Eq. 4-1) 

4.2.2 Local Non-Parametric Models (CART and MARS) 

Both CART and MARS fragment the data recursively and involve two sequential 

phases in model construction: (1) the forward step which increases the complexity of the 

model by adding nodes in CART or basis functions in MARS until it reaches the 

predefined level of complexity by the user and model prevented from over-fit of the data 

through a series of rules; (2) subsequently a backward phase called model selection 

which removes the less significant node in CART or basis functions in MARS from the 

model in terms of the goodness-of-fit in order to generalize the final model for new data.  
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4.2.2.1 Classification And Regression Tree (CART) 

The CART is one of the popular data mining approaches that employs repetitive 

splitting techniques and decision trees to predict continuous (e.g. regression tree models) 

or categorical (e.g. classification tree models) variables using continuous or categorical 

predictors (Breiman, et al. 1984). The node of the tree associates the alternatives between 

predictors and a threshold while the leaves of the tree show the labeled output class (e.g. 

change or no-change in LUCC). Data can be divided on the same or different predictors 

across the hierarchical levels of CART sequentially if the prediction accuracy of CART 

improves significantly (Aertsen et al. 2011). The surrogate splitter is one of the unique 

characters in CART compared to other conventional models which is identified as a 

back-up for missing values or variables in data (Steinberg and Golovnya, 2006). The 

number of nodes required to classify the data in CART depends on the number of 

samples and type of patterns (e.g. linear or non-linear) in the data; however, large trees 

with a lot of terminal nodes have often over-fit the data and cannot be used for new data 

efficiently (Steinberg and Colla, 1997).  

CART is characterized as a reliable approach and is known as an effective tree-

growing model which uses new methods such as the Gini index to control the tree-

growing and purity of each node (Steinberg and Golovnya, 2006). The node in the tree is 

called a terminal node if a node is a child of an upper node and parent of a lower node 

simultaneously (except the root node). It is called a non-terminal node if a node does not 

have a child (Breiman, et al. 1984). If-then else rules (Timofeev, 2004) or non-linear 

functions can be used to select the threshold on one predictor or linear combination of 
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predictors (Gelfand and Delp, 1991). CART follows a similar process to classify the data 

and calculate the accuracy for nodes in the tree (  tNC  and  tN NC  are numbers of 

change and non-Change in LUCC while  tNT ,  tN L  and  tNR  are total samples of the 

parent node (node t ), left and right child node t , respectively). Eq. 4-2 shows the 

proportion of samples in the node t  of a tree with respect to the total sample ( n  total 

samples in data):  

 
 

n

tN
tP T                                             (Eq. 4-2) 

Eq. 4-3a and Eq. 4-3b calculate the conditional probability that CART classifies 

the change and non-change LUCC samples accurately in the node t  of a tree: 

 
 
 tN

tN
tCP

T

C|        (Eq. 4-3a)       and          tCPtNCP |1|        (Eq. 4-3b) 

Similarly, Eq. 4-4a and Eq. 4-4b calculate the probability that CART classifies the 

change and non-change LUCC samples accurately in the subsequent (left and right child 

of node t ):  

 
 tN

tN
P

T

L
L         (Eq. 4-4a)       and       LR PP 1                (Eq. 4-4b) 

Thus, CART can calculate the accuracy of a binary classification in the parent and 

child node t  of a tree using Eq. 4-3a, 4-3b, 4-4a and 4-4b. The Gini is usually 

implemented as a default approach which measures the splitting impurity for binary 

classifications for each node in a tree (Eq. 4-5; Breiman et al. 1984). The resultant tree 

from the Gini calculation usually performs better than other methods (e.g. Twoing, 
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Entropy and Least Squares). Gini commonly generates a smaller tree which is highly 

concentrated with the desired output class (Sut and Simsek, 2011):  

   22
||1)( tNCPtCPtGini                                   (Eq. 4-5) 

A gain function (Eq. 4-6 below) is introduced to compare Gini before and after 

splitting to assess the change in the degree of impurity of the parent node with respect to 

the child node. A split that can maximize the gain function is selected to fragment data ( t  

is parent node, Lt  and Rt  are left and right child of the parent node).   

    RRLL PtGiniPtGinitGiniGain  )(                                  (Eq. 4-6) 

4.2.2.2 Multivariate Adaptive Regression Splines (MARS) 

MARS is a regression approach that divides data into different regions to establish 

the relationship between independent and dependent spatial variables using piecewise 

polynomial functions called basis functions where the basis function can change from 

each region to another (Friedman, 1991). In contrast to other non-linear models (e.g. 

ANNs or logistic regression) where the model fits only one set of coefficients to the data, 

MARS detects the non-linear pattern in data by fitting separate piecewise polynomial 

functions (a separate set of coefficients for each region) to each region (Kayri, 2010; Eq. 

4-7):  
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In the above equation, M , p ,  ,  , BF , X  and Y are the number of sub 

regions, number of predictors, error terms, basis function coefficients, type of polynomial 

functions, independent and dependent variables, respectively. The difference between 
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calculated and observed values within each region indicates the lack of fit of the model. 

The objective of MARS is to minimize the sum of the square errors in order to determine 

the basis function coefficients for each region separately (Friedman, 1991). The 

interaction between basis function (e.g. linear or non-linear) can be allowed or prohibited 

by a user before model construction according to prior knowledge of the modeler about 

the application (Friedman, 1991).  

MARS fits one basis function for the values on the right side of the threshold (Eq. 

4-8a) and another basis function (called the mirror) for the values on the left side of 

threshold (Eq. 4-8b). The terms 12 mBF and mBF2 ( m  refers to the number of splits or sub 

regions) refer to the basis functions for the right and left side of the knot where C is the 

threshold value for a predictor, X denotes a predictor variable ( k can change from one to

p ) and Y is response variable. Because we consider two basis functions, one for the left 

and another for the right side of the threshold, the total number of basis function is equal 

to two times of number of sub regions. The basis functions across different regions are 

generally combined to generate the final model as such: 
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The total number of basis functions depends on the pattern in the data (linear or 

non-linear pattern), unique values across the data (related to the number of splits), and 

number and type (categorical or continues) of predictors. Adding basis functions 

sequentially makes MARS more flexible to model data with more variability and 
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complexity; however, MARS may over-fit data in the training run by adding unnecessary 

basis functions to the model or it may learn about useless patterns in data. Thus, a 

Generalized Cross Validation (GCV) procedure has been developed for use in MARS 

(Friedman and Silverman, 1989; Craven and Wahba, 1979) to calculate the lack of fit by 

MARS as the difference between reference and calculated response using basis functions 

in order to avoid over-fitting the data. GCV operates by removing the least important 

basis functions simultaneously (Eq. 4-9; where n  is number of total observations in 

model) as such:  
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In other words, the numerator in the GCV equation measures how good MARS is 

in simulating the output while at the same time the denominator penalizes the model for 

the added basis functions. This is an iterative process in MARS to ensure a balance 

between lack of fit and complexity in the model. The objective of MARS is to minimize 

the GCV across different sub regions and the best model is the one with the lowest GCV. 

LeBlanc (1993) developed a method to calculate )(MC  using Eq. 4-10 where d is the 

cost for each basis function and M is total number of basis functions in MARS. 

MdMC )(                                           (Eq. 4-10) 

4.2.3 Validation Metrics 

Two approaches were employed here to assess the goodness of fit of the ANN-

based LTM, CART and MARS models. Data saved randomly into two mutually 
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exclusive sets, training (approximately 5% of the data) and testing (the other 95% of 

data), were used to compare the three types of models with each other. The training data 

sets were used to generate the LTM, CART and MARS best fit models which were then 

evaluated with the testing data sets. The K-fold cross validation procedure is one of the 

procedures that can prevent an over-fitting problem in the training run and gives useful 

information regarding the sensitivity of outputs to small changes in the data (Lawrence et 

al. 1997). Training data set is fragmented into K mutually exclusive folds with equal size 

using a random selection of data points (Muñoz and Felicísimo, 2004). At each time, one 

fold is generally excluded and the other included K – 1 fold is used to develop the model 

(Refaeilzadeh, et al. 2008). The output of the excluded fold is calculated at each time 

using the generated model from the other K – 1 fold. Thus, we need to train the model 

(CART and MARS) K times for each fold separately and the total error of the model is 

calculated by taking the average of the estimated error from the K training runs. We used 

a 10-fold cross validation method, which is the most common one, to train MARS and 

CART (Muñoz and Felicísimo, 2004); however, we followed Pijanowski et al. (2002a 

and 2009) to train the LTM because LTM does not have this option (K-fold cross 

validation) for the training run. Models are usually built up to capture general underlying 

trends in the data to use for forecasting applications (Pijanowski et al. 2002a). Over-

fitting (poor generalization abilities) is a major problem in the training run of the 

modeling process which occurs when the number of parameters (weight and bias) 

increase (Lawrence et al. 1997), the model converges to the local minimum instead of 

global minimum in ANNs (Jordanov and Rafik, 2004) or the model is generated from 

noisy data rather than the underlying patterns within the data (Last and Maimon, 2004; 
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Witten and Frank, 2000). Thus, evaluation via testing data is needed to avoid over-fitting 

in data and ensure that underlying patterns can apply to new data (Manel et al. 1999; 

Pontius and Millones, 2011). 

The performance of the ANN-based LTM, CART and MARS models for 

simulating agriculture, forest and urban was compared using the Relative Operating 

Characteristic (ROC) curve and Percent Correct Match (PCM) in the CLIP, MRW and 

SEWI study areas, respectively. PCM (Eq. 4-11a shows PCM_P and Eq. 4-11b shows 

PCM_N; See Table 4-1) is one of the popular metrics that usually is used to compare the 

predicted and a reference map. PCM_P and PCM_N show the proportion of the reference 

change and non-change cells in the testing data that have been correctly predicted by the 

model, respectively (Pijanowski et al. 2002a and 2005).  

Changef
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The ROC is another popular metric that has been used in the LUCC field to 

compare a simulated and reference binary map (Pontius and Batchu, 2003; Pijanowski et 

al. 2006; Tayyebi et al. 2009a and 2009b; Pontius et al. 2004). In contrast to the PCM_P 

and PCM_N that only uses one threshold to assess the accuracy of the model, ROC is 

capable of calculating the accuracy across a range of threshold. TP rates (Eq. 4-12a; 

sensitivities) and FP rates (Eq. 4-12b; 1 - specificities) are calculated using contingency 

table (Table 4-1) for different thresholds (Pontius and Batchu, 2003). ROC curves plot 

the FP rate along the X axis and TP rate along the Y axis for different thresholds (He and 
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Lo, 2007). The area under the ROC curve shows the ability of the model to discriminate 

between change and no-change (Pontius and Batchu, 2003; 1 indicate perfect model and 

0.5 indicate random model). The sensitivity is the probabilities that the model will 

correctly classify change cells while the specificity is the probability that the model will 

correctly classify non-change cells (Fielding and Bell, 1997). 
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4.3 Study Areas and Model Building 

The CLIP study area (Olson et al. 2008, Pijanowski et al. 2011) is located in East 

Africa encompassing 5 countries wholly (Kenya, Uganda, Rwanda, Burundi and 

Tanzania; Figure 4-1a).  Approximately 15% of the study area is agricultural. Excessive 

population growth and the need to feed over 100 million people of this region are leading 

to rapid expansion of rainfed agriculture in this part of the world. The Southeastern 

Wisconsin (SEWI) region includes seven counties: Kenosha, Milwaukee, Ozaukee, 

Racine, Walworth, Washington and Waukesha Counties (Figure 4-1b; See Pijanowski et 

al. 2006). SEWI is currently dominated by urban in the east, agriculture in the north and 

south. The Muskegon River Watershed (MRW) located in the west-central Lower 

Peninsula of Michigan, USA (Figure 4-1c; See Pijanowski et al. 2007; Ray et al. 2012). 

This watershed is currently dominated by forest in the northeast, agriculture in the center, 

and urban in the southwest.  



      87 

We downloaded Salford Systems Software which contained a trial version of 

CART and MARS (www.salford-systems.com); however, LTM is open source software 

which is available online (www.ltm.agriculture.purdue.edu). Three models were 

developed using 12, 16 and 17 spatial predictor variables to reveal agriculture, urban and 

forest growth pattern in CLIP, MRW and SEWI, respectively (Table 4-2). Cells of 

agriculture, forest and urban in 1995, 1978 and 1990 were aggregated into exclusionary 

zones and were not candidates as new agriculture, forest and urban growth in 2000, 1998 

and 2000 in CLIP, MRW and SEWI, respectively. The output layers in CLIP, MRW and 

SEWI were reclassified into agriculture versus non-agriculture, forest versus non-forest 

and urban and non-urban cells, respectively. Because of the large sizes of the study areas 

in SEWI (near 7,733,720 samples; 30m) and in MRW (near 11,991,901 samples; 30m) 

that make model computation intensive for the entire region, we used random sampling to 

take 1,020,472 samples for SEWI and 1,867,150 samples for MRW. However, we could 

be able to use whole samples in CLIP because of coarser resolution of data (1 km 

resolution). The size of each simulation and the resolution of data are given in Table 4-3. 

4.4 Results  

4.4.1 CART 

The CART for all three locations generated informative results. The tree in Figure 

4-2 shows red and blue nodes indicating more changes and no-changes, respectively, 

while the intermediate colors show the nodes that contain more mixed cases. Figure 4-2 

also shows (lower plot) a relative cost of the training run which measures the 

misclassification error against the tree size. This plot starts around 0.6, 0.7 and 0.5575 in 

http://www.salford-systems.com/
http://www.ltm.agriculture.purdue.edu/
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node 2 and then decreases significantly until node 10, 7 and 10 in CLIP, SEWI and MRW 

(0 means perfect fit and 1 represents the performance of random), respectively. SPM 

software halted the training run of CART at 17, 13 and 17 number of nodes (forward run 

of CART) where the relative cost reached their minimum value in CLIP, SEWI and 

MRW, respectively. The most accurate classifier (backward run of CART) is indicated by 

the green bar marking the low point on the error profile (Figure 4-2). The best tree 

displayed has 16, 10 and 13 terminal nodes which reached a relative cost of 0.475, 0.403 

and 0.461 in CLIP, SEWI and MRW, respectively (Figure 4-2). The relative cost can be 

used to compare same-sized trees based on different variables. Comparing the relative 

cost and size of a tree in three study areas suggests that agriculture and forest expansion 

patterns in CLIP and MRW (with higher relative cost) are more complicated than 

urbanization in SEWI.  

Figure 4-3 gives detailed node information, including the splitting criteria of each 

node, and surrogate variables to be used if the primary splitter is missing at each node 

(Table 4-4). The top competitors are displayed in decreasing order of importance for 

CLIP, SEWI and MRW in table 4-4. The improvement scores are a measure of the 

quality of the split (higher scores are better), this is where the variance reduction occurs 

due to the split. The improvement within a node has to be weighted by the fraction of 

cases reaching that node.  

The best competitor, distance to big city, split at the value 46232.50 m and 

yielded an improvement of 0.09532, quite similar to the main splitter (distance to town) 

where we observed an improvement of 0.09539 in CLIP study area. CART starts with the 

cells that are located within red nodes (e.g. node 4, 7 and 15) that have the highest 
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suitability for agriculture change and CART identifies those cells as agriculture first 

(Figure 4-2 and 4-3). Then, CART converts the cells with lower suitability for agriculture 

change that is located within light red nodes (e.g. node 5 and 11). This procedure 

continues until CART satisfies the total number of reference agriculture transitions in 

CLIP (Table 4-3). Similarly, distance to road as the best competitor, split at the value 

157.20 m and yielded an improvement of 0.04514, about half of the main splitter 

(distance to urban) improvement of 0.08669 in SEWI. Similarly, the cells within node 3, 

8 and 9 are more probable for urbanization in SEWI. Following these nodes, cells within 

node 6 have the highest suitability for urbanization. It is not surprising that the distance to 

urban variable contains unique information not reflected in the other variables (Figure 4-

3). Finally, distance to forest as the best competitor, split at the value of 377.68 m and 

yielded an improvement of 0.08790, similar to the main splitter (distance to shrub) 

improvement of 0.09776 in MRW. Finally, the cells within node 3, 5, 6, 7 and 9 are first 

candidates for transition to forest in MRW. Following these nodes, cells within node 4, 

11 and 12 have the highest suitability for forest transition. Similarly, CART continues 

this procedure until it satisfies the total number of reference urban and forest transitions 

in SEWI and MRW, respectively (Table 4-3). 

4.4.2 MARS 

Figure 4-4 shows the point where GCV most minimizes the error. The best 

MARS model is expressed using 38 basis functions for 12 variables in CLIP, 34 basis 

functions for 17 variables in SEWI and 40 basis functions for 16 variables in MRW 

(Table 4-5). Backward step runs to select the best model with the lowest GCV. Figure 4-4 
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also shows that the lowest GCV (i.e. optimal MARS model) is 0.1495, 0.1363 and 0.1567 

for the MARS model in CLIP, SEWI and MRW (0 means perfect fit and 1 represents the 

performance close to random), respectively. R-squared values improved as a result from 

using additional basis functions and a different functional form for the regression 

equations (Figure 4-5). The largest R-squared value was 0.3850 in CLIP, 0.45386 in 

SEWI and 0.3697 in MRW. GCV, R-squared values and the number of basis functions in 

three study areas also indicate that (like relative cost in CART) agriculture and forest 

regrowth patterns in CLIP and MRW (higher GCV; lower R-square; more basis function) 

are more complicated than the urbanization pattern in SEWI.  

The ANOVA summarizes the MARS model and the output by aggregating the 

basis functions involving one variable which are grouped together (Figure 4-6). The 

variable with the larger standard deviation has the greater contribution to the overall 

explanatory power of the MARS model (Figure 4-6). Distance to big city, with a standard 

deviation of 0.11483 and 2 basis functions (Table 4-5), distance to urban with a standard 

deviation of 0.28264 and 1 basis function, and distance to forest with a standard deviation 

of 0.180589 and 2 basis functions, show greater contributions to the simulation of 

agriculture, urban and forest growth in CLIP, SEWI and MRW, respectively (Table 4-5; 

Figure 4-6). Following the most significant variables, distance to town, distance to road 

and distance to shrub with a standard deviation of 0.09445, 0.12943 and 0.125071, and 3, 

2 and 2 basis functions, indicate greater contributions to the simulation of agriculture, 

urban and forest growth in CLIP, SEWI and MRW, respectively (Table 4-5; Figure 4-6). 

Precipitation in CLIP with 8 basis functions, density of urban in SEWI with 5 basis 

functions and elevation in MRW with 10 basis functions include the highest number of 
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basis functions in MARS because these three variables show the most changes across 

their ranges of values (Table 4-5).  

Table 4-5 shows the optimal model of MARS models for agriculture, urban and 

forest growth in CLIP, SEWI and MRW. MARS found two knots (around 10.816 km and 

52.086 km) or three sub-regions (Figure 4-7) for distance to big city driver in CLIP 

(Table 4-5). The slope is zero for the distance less than 10.816 km and negative for the 

other two following intervals (Figure 4-7). The cells are located less than 11 km to the 

town (i.e. buffer 11 km around the town) have the similar and constant suitability, 0.48, 

for agriculture change. Thereafter, the suitability of agriculture change drop sharply for 

the distance between 10.816 km and 52.086 km. Lastly, the probability of agriculture 

drops slowly (smaller coefficient) for the distance between 52.086 km and 200 km.  

For the urban growth simulation in SEWI, MARS found only one knot (around 67 

m) or two sub-regions for distance to urban driver (Table 4-5). The slope is negative for 

the distance less than 67 m and zero for distance over 67 m (Figure 4-7). The suitability 

of urban change drop from 0.9 to 0.7 for sites nearer to existing urban areas (less than 67 

m); however, the probability is constant for the distance between 67 m to 1500 m (Figure 

4-7). For forest growth simulation in MRW, MARS also found one knot (around 67.082 

m) or two sub-regions for distance to forest driver (Figure 4-7). The slopes are negative 

for the both sub-regions. The suitability of forest growth drops from 0.6 to 0.5 for the 

sites nearer to existing forest areas (less than 67 m); however, it changes from 0.5 to 0.3 

for the distance between 67 m and 1800 m (Figure 4-7). 

We also compared the calculated split in CART with the obtained knot in MARS, 

which create sub-regions, for significant drivers in three study areas (Table 4-4 and 4-5). 
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For CLIP, the calculated splits in CART, and the obtained knots in MARS, are 11.112 

km and 18.384 km for distance to town and 46.232 km and 52.086 km for distance to big 

city (Table 4-4 and 4-5). Similarly in SEWI, for CART and MARS distance to urban split 

in 142 m and 67 m and distance to road split in 157 m and 218 m (Table 4-4 and 4-5). 

Finally in MRW, for CART and MARS, distance to shrubland split in 150 m and 140 m 

while distance to forest split in 377 m and 67 m (Table 4-4 and 4-6). Figure 4-7 also 

shows that the distance to road indicates an opposite behavior for urban and forest growth 

in SEWI and MRW, respectively. The coefficients are negative for the both sub-regions 

in SEWI; however, the coefficients are positive for both sub-regions in MRW (Figure 4-

7). Thus, the suitability of urban growth is more likely when we are closer to the roads; 

however, the probability of forest growth is more likely when we are further from the 

roads (Figure 4-7).  

4.4.3 LTM 

Figure 4-8 plots the MSE across training cycles of the LTM for each of the three 

study areas. MSE starts around 0.123, 0.17 and 0.145 (0 means perfect fit and 1 

represents the performance of random), drops through 5000 cycles in CLIP, MRW and 

SEWI, respectively. We halted the training after 50,000 cycles in three study areas where 

the MSE reached a stable minimum; at 0.114, 0.14 and 0.125 in CLIP, MRW and SEWI, 

respectively. The network files from the training results were saved and used to create the 

probability and prediction map in three study areas (Tayyebi et al. 2012). In contrast to 

the CART that all cells within a node have similar and exact suitability value, each cell in 

LTM and MARS usually has a unique suitability value for change. 
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4.4.4 Ranking variables in CART and MARS 

The model variables were ranked from most to least important and displayed for 

MARS and CART in Table 4-6. To calculate variable importance scores, MARS refits 

the model after dropping all terms involving the variable and calculating the reduction in 

goodness-of-fit. Similarly, the variable importance is given a rank in the CART model as 

a variable’s contribution to the overall tree when all nodes are examined. The column 

“relative priority” lists the relative importance (in percentage) of each variable. CART 

and MARS agree with most of the significant drivers to simulate agriculture in CLIP and 

urban in SEWI. But these models determined different significant drivers for forest 

growth simulation in MRW. Distance to town, distance to big city and precipitation were 

found to have a maximum influence on agriculture growth simulation in CLIP. Distance 

to urban, distance to road and distance to wetland are significant variables to simulate 

urban growth in SEWI. Distance to shrub, distance to road and distance to forest are 

significant factors according to the CART model while distance to forest, distance to 

shrub land and wetland are the most significant variables to simulate forest growth in 

MRW according to the MARS. 

4.4.5 Terminal node in CART 

Figure 4-9 provides a representation of the ability of the tree to capture the 

agriculture, urban and forest expansion across the terminal nodes. We sorted the nodes 

according to the growth so that the nodes with the highest concentrations of agriculture, 

urban and forest growth in CLIP, SEWI and MRW are located to the right in the tree 

(Figure 4-9). Nodes 12, 1 and 8 (follow figure 4-3 to find the node numbers) have the 
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lowest concentration of agriculture, urban and forest growth while nodes 2, 9 and 2 have 

the highest concentration of agriculture, urban and forest growth in CLIP, SEWI and 

MRW, respectively (Figure 4-9). 

4.4.6 Calibration of three models using cross tabulation matrices and ROC values 

Figure 4-10 shows the reference agriculture change and error maps that are 

derived from three models by comparing the simulated agriculture growth with reference 

change for CLIP. We could not show the error maps for SEWI and MRW because we 

took random samples from the entire study area as stated before. For the CART models, 

most of the FP occurs around the TP because CART simulates the new growth in buffers 

and is not dependent upon the probability of cell for growth such as MARS and LTM. 

However, the error map of MARS and LTM are more similar to each other. 

The cross tabulation matrix (Figure 4-11) shows how many samples were 

correctly classified in LTM, CART and MARS for the testing run. Results show that 

CART, MARS and LTM simulate agriculture growth 61.72%, 65.13% and 68.63% 

correctly and non-agriculture 86.01%, 87.26% and 88.54% correctly in CLIP for testing 

data, respectively. Similarly, CART, MARS and LTM simulate urban growth 76.45%, 

80.15% and 80.70% correctly and non-urban 78.15%, 81.59% and 82.10% correctly in 

SEWI for testing data, respectively. Finally, CART, MARS and LTM simulate forest 

growth 64.42%, 68.89% and 70.16% correctly and non-forest 81.38%, 83.73% and 

84.39% correctly in MRW for testing data, respectively (Figure 4-11). 

Table 4-7 summarizes the comparison of ROC for the three study areas. Although 

the three model’s results were similar to each other, improvement of LTM and MARS 
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over CART was evident for three data sets across testing data. Furthermore, ROC for 

LTM and MARS for three study areas were similar to each other. However, the LTM 

performed slightly better than MARS. In the three data sets, the best results were 

obtained with LTM to simulate urban growth in SEWI across the testing data (ROC = 

0.8958). A good model needs to deliver substantially larger values than an ROC of 0.50. 

Thus, CART, MARS and LTM models show excellent performance as all produced 

values of ROC over 0.80 across cross validation and testing data (Table 4-7). 

4.4.7 Comparison of LTM, CART and MARS simulations using cross tabulation 

matrix 

We employed a cross tabulation matrix used to compare the projections of LTM, 

CART and MARS, for the three study areas with each other. The rows show the 

predicted class from the first model and the columns of the table represent the predicted 

class from the second model. Diagonal entries indicate agreement and off-diagonal 

entries indicate disagreement of predicted maps between two models. We compared two 

models at each time in three study areas (CART vs LTM; CART vs MARS and LTM vs 

MARS). CART and MARS were more similar to each other having 92.61% and 79.77% 

agreement in non-agriculture and agriculture projection in CLIP (Figure 4-12). Similarly, 

LTM and MARS were more similar to each other having 92.57% and 91.98% agreement 

in non-urban and urban projection in SEWI (Figure 4-12). Lastly, LTM and MARS again 

were more similar to each other having 94.35% and 89.20% agreement in non-forest and 

forest projection in MRW (Figure 4-12). 
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4.5 Discussion 

Each of models shows some characteristics which may be interesting in the 

context of LUCC. CART and MARS models are easier to interpret, especially for 

identifying the relative importance of predictor variables (Table 4-6) as well as their 

critical values (Table 4-4 and 4-5). Calibrations of CARTs (terminal and non-terminal 

nodes) and MARS (basis function) are much easier to understand than ANNs (weights 

and biases). When predictive accuracy is a key concern, the LUCC modelers need to 

choose ANNs rather than MARS and CART (Table 4-7 and Figure 4-11). Information 

about importance of predictor variables and their ranges will be helpful both for better 

calibrating of LUCC models, urban planners, policy makers and natural resource 

management. Therefore CART and MARS may be preferred to ANNs when ease of 

explanation rather than predictive accuracy is required. The effectiveness of any model is 

largely dependent upon the characteristics of the data structure used to fit the model 

(Goss and Vozikis, 2002). ANN and non-linear regression models provided comparably 

satisfactory predictions in reverse engineering applications (Pijanowski et al. 2007; Ray 

and Pijanowski, 2010) using all non-categorical variables (Feng and Wang, 2002); 

however, the regression model produced a slightly better performance in model 

verification. ANNs do better than CART models on multimodal classification problems 

for large data sets with few attributes (Brown et al. 1993); however, the CART model did 

better than the ANNs with smaller data sets and with large numbers of irrelevant 

attributes.  
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We explored different scenarios across space and time to dissect the performance 

of CART, MARS and ANNs models in LUCC. MARS is as good as ANN for analyzing 

complex structures which are commonly found in LUCC data (e.g. non-linearity and 

interactions; Table 4-7). CART models are scalable to large problems and can handle 

smaller data sets than ANN models (Marcham et al. 2000). The small decision trees 

(CART) or small number of basis functions without interaction (MARS) are easier 

(simple models) to explain to urban planners, decision makers and natural resource 

managers for LUCC modelers (Domingos, 1999). CART with more than 7-10 branches 

are not needed for capturing most human multi-attribute decision-making problems (Ben-

David and Sterling, 2009). We found that CART, with 15-20 nodes, is enough to simulate 

LUCC. ANNs and MARS have been compared in a time series forecasting task using the 

noisy and clean data (Calvo et al. 1998). ANN outperformed MARS on the clean data set. 

In an application of identifying important factors in fraud, the ANN outperformed 

MARS, though the results were not statistically significant. However, the results were 

obtained on a relatively small database and may not generalize to other databases. In 

addressing nominal level variables, MARS is able to cluster together the categories of the 

variables that have similar effects on the dependent variable (Francis, 2001) ANN is not 

able to do that. CART and MARS can create surrogates for the missing variables and can 

be used on applications using data with missing values on many variables. In the future, 

each of the three models (MARS, ANNs and CART) can be combined into a hybrid 

model to improve predictive accuracy of LUCC models.  

CART and MARS models are normally quite fast but were slower in our case 

(SPM software) because of the forward and backward procedures used to calculate the 
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best tree size in CART and best number of basis functions calculated for the MARS 

models. Of the three methods, ANNs were the slowest for simulating LUCC. Outliers in 

data (Ray et al. 2012) can significantly change the position of splits, number of levels 

(i.e. nodes) and basic function values in CART and MARS; in other words, outliers can 

change the local nature of the model. To train ANNs (in our case approximately 30,000 

samples), it typically takes approximately 15 minutes on a Quad-core Windows 7 based 

workstation class computer while CART and MARS requires approximately 5 minutes 

(e.g. maximum 60 nodes or basis function). The Salford version of MARS and CART is 

able to automatically prune the model. This is a very attractive feature, together with the 

significant speed up that MARS and CART provide a clear advantage over standard 

ANNs, which can be redundant and are in general slow to train. The concept of pruning 

can be applied to ANNs as well but is much more computationally demanding. However, 

when using ANNs, one must be much more careful to avoid over-fitting the data (Bishop, 

1995), a problem which is particularly apparent on smaller data sets as the number of 

adjustable parameters may exceed the number of available data points. From our 

perspective, the predictive ability of ANN models was in general better than MARS and 

CART models in LUCC (Table 4-7). However, as the number of available data points 

increases, ANNs, MARS and CART reach approximately the same level of accuracy 

(Table 4-7). 

It was not surprising that CART performed worse than ANN and MARS in the 

three study areas for LUCC modeling. When we explored all three LUCC simulation 

areas, more advantages were seen in the use of MARS and ANN for agriculture and 

urban prediction in CLIP and SEWI, but smaller differences were observed for forest 
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simulation in MRW because of the lack of non-linear relationships between the response 

and predictor variables. While little appreciable difference was detected between the 

models, better fit may be obtained using more flexible statistical techniques. CART 

produced the greatest accuracy when interactions were present in the data. It was also 

among the most accurate methods in the case of strictly linear population models (Holden 

et al. 2011).  

4.6 Conclusion 

This chapter attempts to compare one global parametric model (e.g. LTM) with 

two local non-parametric models (e.g. MARS and CART) to simulate LUCC patterns. 

This study aimed to investigate the performance of LTM, CART and MARS methods in 

predictions of the agriculture, forest and urban growth in three different regions. A 

comparison is carried out that indicates the LTM can simulate slightly better than MARS 

and CART. Unlike other well-known conventional global parametric models, MARS and 

CART do not obtain a regression equation for the population in the data. Instead, they 

split the whole model into linear regions and produce separate functions for each 

generated linear area. CART is much simpler to interpret than the MARS and LTM, 

making it more likely to be practical in a LUCC model. 
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Figure 4-1: Three study areas 

  

CLIP in 2000 SEWI in 2000 

 

 

MRW in 1998  
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CLIP – Agriculture Change 

 
SEWI – Urban Change 
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MRW – Forest Change 

Figure 4-2: Tree Navigator in CART   
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CLIP – Agriculture Change 

 
SEWI – Urban Change 
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MRW – Forest Change 

Figure 4-3: CART models for each study area 
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Figure 4-4: GCV across adding radial basis functions to MARS 

 

 
Figure 4-5: R-square across adding radial Basis functions in MARS 
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CLIP – Agriculture Change 

 
SEWI – Urban Change 
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MRW – Forest Change 

Figure 4-6: ANOVA in MARS 

  



      116 

  
CLIP- Distance to Big City CLIP - Distance to Town 

  

SEWI - Distance to Urban SEWI - Distance to Road 
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MRW - Distance to Forest MRW - Distance to Road 

Figure 4-7: BFs for significant drivers in CLIP, SEWI and MRW 

 

 
Figure 4-8: Training run of LTM 
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CLIP – Agriculture Change 

 
SEWI – Urban Change 
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MRW – Forest Change 

Figure 4-9: Terminal node in CART 
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Reference Change Error Map from CART 

  
Error Map from MARS Error Map from LTM 

Figure 4-10: Reference agriculture change and error maps of three models in CLIP 
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Figure 4-11: PCM_N and PCM_P values for CART, MARS and LTM 

 

 
Figure 4-12: Similarity values for LTM, CART and MARS simulations 
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Table 4-1. Coding system employed here for the contingency table calculations used to 

compare simulated and reference LUCC map 

 Reference map 

Non-Change Change 

Simulated map Non-Change True Negative (TN) False Negative (FN) 

Change False Positive (FP) True Positive (TP) 

 

 

 

Table 4-2: Spatial predictor variables in CLIP, SEWI and MRW 

Predictor CLIP (Agriculture Change) SEWI (Urban Change) MRW (Forest Change) 

1 Distance to major city Elevation Elevation 

2 Distance to town Aspect Aspect 

3 Distance to big city Distance to Urban Distance to Urban 

4 Distance to park Density of Urban Density of Urban 

5 Distance to water Distance to Forest Distance to Forest 

6 Distance to stream Density of Forest Density of Forest 

7 Precipitation Distance to Agriculture Distance to Agriculture 

8 Slope Density of Agriculture Density of Agriculture 

9 Topo-Position Distance to Shrub Distance to Shrub 

10 Distance to road-A Density of Shrub Density of Shrub 

11 Distance to road-B Distance to Wetland Distance to Wetland 

12 Distance to road-C Density of Wetland Density of Wetland 

13 ---- Distance to Park Distance to Park 

14 ---- Distance to Stream Distance to Water 

15 ---- Distance to Road Distance to Stream 

16 ---- Slope Distance to Road 

17 ---- ---- Slope 

 

 

Table 4-3: Size of samples and resolution of data in CLIP, SEWI and MRW 

Study Area Change Non-Change Total Resolution 

CLIP 339,845 930,244 1,270,089 1km×1km 

SEWI 491,031 529,441 1,020,472 30m×30m 

MRW 641,237 1,225,913 1,867,150 30m×30m 
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Table 4-4: Competitor, split and improvement in CART 

 Competitor Split Improvement 

Main Town 11112.50 0.09539 

1 Big-City 46232.50 0.09532 

2 Precipitation 534.50 0.08024 

3 RoadA 33263.50 0.05939 

4 Major-City 350957 0.03956 

5 Water 49223.50 0.03464 

6 RoadB 42005.90 0.03319 

7 RoadC 13527.50 0.01944 

8 Park 171412.50 0.01342 

9 Slope 9.50 0.00199 

10 Stream 15082.50 0.00155 

11 Topo-Position 2.50 0.00097 

CLIP – Agriculture Change 

 

 Competitor Split Improvement 

Main Urban 142.50 0.08669 

1 Road 157.20 0.04514 

2 Wetland 2475.47 0.04450 

3 Agriculture 1156.20 0.04196 

4 DUrban 0.15 0.02024 

5 DWetlan 0.10 0.01330 

6 Forest 1736.20 0.01315 

7 Shrub 2488.65 0.01276 

8 Stream 2248.04 0.00993 

9 Water 1140.08 0.00806 

10 Park 2057.02 0.00564 

11 DShrub 0.07 0.00402 

12 DForest 0.15 0.00390 

13 DAgriculture 0.01 0.00130 

14 Elevation 274.50 0.00109 

15 Aspect 0.50 0.00096 

16 Slope 0.17 0.00096 

SEWI – Urban Change 

 

 Competitor Split Improvement 

Main Shrub 150.13 0.09776 

1 Forest 377.68 0.08790 

2 Road 196.66 0.02411 

3 Agriculture 296.22 0.01363 

4 Wetland 5794.66 0.01351 

5 DShrub 0.12 0.01142 

6 DAgriculture 0.40 0.00658 
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7 DForest 0.25 0.00596 

8 Elevation 356.50 0.00562 

9 Urban 211.06 0.00372 

10 Durban 0.04 0.00301 

11 Stream 938.43 0.00202 

12 Park 1898.07 0.00143 

13 Slope 1.28 0.00053 

14 DWetlan 0.58 0.00046 

15 Aspect 164.37 0.00026 

MRW – Forest Change 
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Table 4-5: Coefficients, variables and knots in MARS 

 

BFs Coefficient Variable Sign Knot 

0 2.42441368    

1 0.00000347 Big-City + 52,086 

2 -0.00001659 Town - 18,384 

3 0.00003251 Town + 18,384 

4 0.00475980 Precipitation - 700 

5 -0.00319349 Precipitation + 700 

6 -0.00000039 RoadA - 34,132 

7 0.00000371 RoadA + 34,132 

8 0.00000245 RoadB - 64,536 

9 -0.00000267 RoadC + 15,264 

10 0.00000575 RoadC - 15,264 

11 0.00001954 Water + 94,111 

12 -0.00001774 Water - 94,111 

13 -0.00001823 RoadA + 166,928 

14 -0.00000952 Stream - 7,615 

15 0.00002031 Town + 5,999 

16 -0.00000249 Major-City - 267,134 

17 0.00000100 Major-City + 267,134 

18 0.00140561 Precipitation - 988 

19 -0.00277690 Precipitation + 769 

20 -0.00078533 Precipitation - 1,228 

21 0.00000180 Major-City + 387,865 

22 -0.00000646 Park - 99,126 

23 0.00000333 Park + 99,126 

24 0.00000165 Major-City - 102,078 

25 0.00000176 Major-City + 509,574 

26 0.00000312 RoadA - 120,739 

27 0.00244000 Topo-Position + 5 

28 0.00690933 Topo-Position - 5 

29 0.00001333 RoadA + 173,954 

30 0.00000378 Park - 14,559 

31 0.00235258 Precipitation + 459 

32 -0.00358714 Precipitation - 268 

33 -0.00162222 Precipitation + 557 

34 -0.03954992 Slope - 8 

35 -0.00000621 Park + 278,352 

36 0.00000375 Park - 212,397 

37 -0.00000520 Big-City + 10,816 

38 -0.00001910 Water - 4,471 

CLIP – Agriculture Change 
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BFs Coefficient Variable Sign Knot 

0 1.45167184    

1 -0.02966011 Urban - 67 

2 0.00397150 Wetland + 94 

3 -0.00401613 Wetland - 94 

4 -0.00006609 Road + 218 

5 0.00121700 Road - 218 

6 1.25214827 DUrban - 0.53 

7 -1.69810307 DUrban + 0.53 

8 0.00119909 Forest - 108 

9 -0.00125138 Forest + 108 

10 -0.00452334 Water - 60 

11 0.00186062 Agriculture + 150 

12 -0.00211285 Agriculture - 150 

13 0.00106522 Shrub + 123 

14 -0.00176804 Shrub - 123 

15 0.48514801 DShrub + 0.02 

16 1.44921708 DShrub - 0.02 

17 0.00000770 Park + 6,363 

18 0.30609438 DAgriculture - 0.07 

19 -0.54288918 DAgriculture + 0.07 

20 0.51860422 DWetlan - 0.21 

21 -0.11628491 DWetlan + 0.21 

22 0.00020825 Aspect + 127 

23 0.00024565 Aspect - 127 

24 0.54309684 DForest - 0.36 

25 -0.11845764 DForest + 0.36 

26 -0.90340024 DUrban - 0.06 

27 0.00030453 Elevation + 198 

28 0.00304598 Elevation - 198 

29 -0.00327487 Slope + 0.33 

30 -0.09363096 Slope - 0.33 

31 -1.95366967 DUrban + 0.91 

32 -0.23361279 DUrban - 0.25 

33 -0.00021901 Stream + 216 

34 0.00005888 Stream - 1,276 

SEWI – Urban Change 
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BFs Coefficient Variable Sign Knot 

0 1.50715065    

1 -0.00091195 Forest + 67 

2 -0.01736367 Forest - 67 

3 0.00001416 Road + 212 

4 -0.00074109 Road - 212 

5 0.01144137 Elevation + 302 

6 -0.01030203 Elevation - 302 

7 0.23848380 DForest + 0.44 

8 -0.81003433 DForest - 0.44 

9 0.53589106 DAgriculture + 0.29 

10 -0.22906694 DAgriculture - 0.29 

11 0.00177329 Wetland + 90 

12 0.01014404 Wetland - 90 

13 0.97863191 DShrub + 0.48 

14 -0.24052025 DShrub - 0.48 

15 1.30380857 DUrban + 0.47 

16 -0.43899977 DUrban - 0.47 

17 0.00000175 Park - 3,604 

18 0.00000936 Park + 3,604 

19 -0.00023166 Agriculture - 256 

20 0.88562632 DWetlan + 0.46 

21 -0.08965859 DWetlan - 0.46 

22 -0.00516677 Elevation + 390 

23 -0.00001095 Stream + 752 

24 -0.00003991 Stream - 752 

25 -0.35395181 DForest + 0.74 

26 -0.00128250 Urban - 408 

27 0.00104839 Urban + 408 

28 0.00369674 Slope + 0 

29 -0.42668161 DUrban - 0.21 

30 0.02683787 Elevation + 228 

31 -0.01943569 Elevation - 193 

32 -0.00818860 Elevation + 241 

33 -0.02244085 Elevation - 220 

34 0.01282837 Elevation + 204 

35 0.00002618 Park + 18,434 

36 0.00447845 Elevation - 417 

37 0.00171197 Elevation + 356 

38 0.00001693 Aspect - 0 

39 -0.00000279 Shrub + 140 

40 0.00855425 Shrub - 140 

MRW – Forest Change 
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Table 4-6: Ranking variables in CART and MARS 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CLIP – Agriculture Change Simulation 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

SEWI – Urban Change Simulation 

 

 

CART 

Variable Relative Priority 

Town 0.24976 

Big-City 0.23843 

Precipitation 0.20375 

Major-City 0.08524 

Water 0.07465 

RoadA 0.05332 

RoadB 0.04858 

RoadC 0.03584 

Park 0.00992 

Stream 0.00046 

Slope 0.00006 

Topo-Position 0.00000 

MARS 

Variable Relative Priority 

Big-City 0.1647 

Town 0.1495 

Precipitation 0.1425 

RoadA 0.1016 

RoadB 0.0846 

Park 0.0744 

RoadC 0.0669 

Major-City 0.0662 

Water 0.0640 

Stream 0.0443 

Topo-Position 0.0235 

Slope 0.0179 

MARS 

Variable Relative Priority 

Urban 0.2847 

Road 0.1321 

Wetland 0.1197 

Forest 0.0871 

DUrban 0.0552 

Agriculture 0.0526 

Water 0.0509 

Shrub 0.0486 

DShrub 0.0304 

DWetlan 0.0262 

DAgriculture 0.0249 

Stream 0.0240 

Park 0.0172 

Aspect 0.0149 

DForest 0.0126 

Elevation 0.0095 

Slope 0.0085 

CART 

Variable Relative Priority 

Urban 0.34791 

Road 0.25453 

Wetland 0.16571 

DUrban 0.08083 

DWetlan 0.03940 

Stream 0.03867 

Forest 0.02398 

Agriculture 0.02228 

DForest 0.00647 

DAgriculture 0.00600 

Water 0.00535 

Shrub 0.00347 

Slope 0.00246 

Elevation 0.00163 

Park 0.00124 

DShrub 0.00000 

Aspect 0.00000 
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MRW – Forest Change Simulation 

 

 

 

 

 

 

Table 4-7: ROC of CART, MARS and LTM obtained from the cross validation with the 

testing data 

  CLIP - Agriculture SEWI – Urban MRW - Forest 

CART Cross validation 0.8415 0.8698 0.8468 

  Testing run 0.8398 0.8429 0.8421 

MARS Cross validation 0.8688 0.8927 0.8640 

  Testing run 0.8680 0.8904 0.8631 

LTM Testing run 0.8927 0.8958 0.8623 

  
 

MARS 

Variable Relative Priority 

Forest 0.1532 

Shrub 0.1321 

Wetland 0.1063 

DForest 0.1046 

Elevation 0.1032 

Road 0.0761 

DAgriculture 0.0688 

Agriculture 0.0493 

DShrub 0.0453 

DUrban 0.0362 

Urban 0.0356 

Park 0.0306 

DWetlan 0.0229 

Stream 0.0170 

Slope 0.0166 

CART 

Variable Relative Priority 

Shrub 0.33051 

Forest 0.17097 

Road 0.15222 

Wetland 0.08137 

DAgriculture 0.06735 

DForest 0.04819 

DShrub 0.04475 

Agriculture 0.02748 

Elevation 0.02446 

DWetlan 0.01564 

Urban 0.01556 

Stream 0.01048 

DUrban 0.00548 

Park 0.00501 

Slope 0.00048 
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CHAPTER 5: SIMULATING MULTIPLE LAND USE CLASSES USING THE 

ARTIFICIAL NEURAL NETWORK-BASED LAND TRANSFORMATION 

MODEL AND TWO NONLINEAR DATA MINING TOOLS
2
 

5.1 Introduction 

Land use change (LUC) drivers operate across a variety of spatial-temporal scales 

in a very nonlinear way (Veldkamp and Lambin, 2001) and thus nonlinear tools are 

needed to simulate these dynamics.  Many LUC models use nonlinear techniques (e.g. 

Clarke et al. 1997; Pijanowski et al. 2002a) but a comparison of several tools in different 

locations has been lacking, which limits our understanding of how nonlinear approaches 

can aptly simulate the scale of drivers and the complexity of LUC patterns. Furthermore, 

within a given region, multiple land use changes occur. For example, it is quite common 

for some areas to be converted from agriculture to urban while nearby forests are 

converted to agriculture (Alexandridis et al. 2007; Washington-Ottombre et al. 2010; 

Pijanowski and Robinson, 2011). However, few researchers have considered multiple 

land use transitions in the same model and thus oversimplifying the land use change 

process.  In modeling, simulating more than one outcome often creates what is known as 

the multiple classification (MC) problem (Ho, 2000). 

                                                 

2 Current version has been submitted to International Journal of GIS. 
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Many rules have been proposed to handle MC problems but determining which rule is 

best requires careful parameterization of the model and the quantification of model 

goodness of fit.   

5.1.1 Nonlinear Modeling Tools 

Statistically-based machine learning tools are data intensive and are of two types: 

global parametric models (GPMs) and local non-parametric models (LNPM). A variety 

of GPM-based approaches, such as artificial neural networks (ANNs) (e.g. Pijanowski et 

al. 2002b), cellular automata (e.g. Batty and Xie, 1994; Dietzel and Clarke, 2006), 

genetic algorithms (e.g. Shan et al. 2008; Jenerette and Wu, 2001) and logistic regression 

(e.g. Tayyebi et al. 2010; Pontius and Schneider, 2001; He and Lo, 2007), have been used 

extensively by LUC modelers over the last two decades. Statistical GPMs find the 

relationship between input and output (e.g. numerical, categorical or mixed variables) and 

often fit better to data than traditional linear models like multiple regression.  However, 

GPMs suffer from several assumptions, such as the need for data to be normally 

distributed (Lumley, et al. 2002) and forcing variables to act globally over the entire 

dataset (Siegel and Castellan, 1988).  

Local non-parametric models (LNPM), on the other hand, split the data into 

subsets and have fewer model assumptions than GPMs. The variables are added 

sequentially to the LNPMs as necessary to fit the data (Hardle et al. 2004) and functions 

(e.g. linear or non-linear) can be different for each subset. Users can also limit the 

LNPMs to quantify interaction between subsets (Steinberg and Colla, 1997). LNPMs are 

able to detect non-linear patterns that may not be easily found using statistical GPMs. 

http://en.wikipedia.org/wiki/Latent_variables
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Thus, LUC modelers may be able to adapt LNPMs to simulate LUC. Recently developed 

LNPMs include multivariate adaptive regression splines (MARS) and classification and 

regression trees (CART) (Breiman et al. 1984; Friedman, 1991). CART calculates the 

likelihood of the outcomes using multiple spatial predictors to develop monotone 

outcomes. MARS, on the other hand, overcomes the restriction of the piecewise constant 

functions in CART by generating piecewise linear models using basis functions between 

the subsets (Friedman, 1991).  

5.1.2 Multiple Classification (MC) Problem 

Data mining tools have been applied to the problem of multiple classifications 

(MC) frequently. The central objective of MC is to integrate data from all classes 

simultaneously. However, learning each class separately in a binary mode usually yields 

better results than integrating information as an independent task. A central question of 

MC is “how can one combine a variety of classes together (referred to model structure 

and coding scheme) to model more than one outcome?” There are two ways available for 

employing MC using data mining tools. One method is for an MC to be converted into 

numerous binary classifications that are solved using binary classifiers. Alternatively, 

binary classifications can be extended to the MC which need special formulations to 

perform the separation; this is accomplished using tools such as fuzzy sets (Zadeh, 1965), 

voting (Lam and Suen, 1995), k-nearest neighbor rules (Bay, 1998) or support vector 

machines (Cortes and Vapnik, 1995). To our knowledge, few studies have applied and 

addressed MC problems in LUC modeling (e.g. Li and Yeh, 2002).  In this chapter, we 

limited our study on the MC modeling using one model to simulate multiple land use 
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classes. This has the advantage that it minimizes the total number of models that need to 

be executed and takes into account the correlation between different output classes 

simultaneously. 

5.1.2.1 Decomposing MC into binary classification 

Several methods have been suggested to decompose the multiple classifications 

(MC) into numerous binary classifications. The following, which are also illustrated in 

Figure 5-1:  

One-Verses-All (OVA): OVA is a popular approach has been proposed 

by several researchers in recent years (Rifkin and Klautau, 2004; Dubchak et al. 

1999; Figure 5-1A). The OVA is the simplest approach of those employed, where 

each modeling run discriminates a one class from the other 1n  classes (Rifkin 

and Klautau, 2004). This procedure is repeated for each of the n  classes, leading 

to n  binary classifiers. OVA has several shortcomings in the training run of 

machine learning because one class usually have few cells compared to the large 

number of other classes at each time. Thus, machine learning may classify land 

use cells as other classes due to the overabundance of cells (coded as 0), or may 

over fit the one class (code 1) due to the presence of very few cells. Rifkin and 

Klautau, (2004) defended the OVA approach for MC and Tsoumakas et al. (2010) 

summarized several ways to improve the OVA method;  

All-Verses-All (AVA): AVA is another popular approach for treating 

MC, which considers all possible mutual binary classifiers between n  classes 

while ignoring the rest of the classes (Hastie and Tibshirani, 1998; Figure 5-1B). 
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This method requires building   2/1
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 binary classifiers (   2/1n  more 

models than OVA). For the testing run, each cell receives a vote from all possible 

binary classifiers and the land use class with the dominate votes is assigned to the 

cell. AVA is very difficult to analyze due to the large number of binary classifiers. 

Moreover, both methods, OVA and AVA, also ignore the correlations between 

the outputs (Tsoumakas et al. 2010);  

5.1.2.2 Extensible data mining coding scheme for multiple classifications (MC) 

The data mining coding scheme for binary applications can be extended for MC 

as well. ANN provides a natural extension to the MC problem. The idea is to use 

numerous binary classifiers to solve multiple binary classification problems 

simultaneously. The model structure and output code scheme corresponding to each class 

can be chosen as follows (after Dietterich and Bakiri, 1995):  

(1) One-per-class coding: Instead of just having one neuron in the output 

layer, with binary output, we could have n  binary neurons. Each output neuron is 

designated the task of identifying a given class. The output code for that class 

should be 1 at this neuron and 0 for the others. Therefore, we will need n  neurons 

in the output layer, where n  is the number of classes or  

(2) Distributed output coding: Each class receives a unique binary code 

that can change from 0 to 2
n
 − 1, where n  is the number of output neurons. 

During the testing run, the calculated code is compared to the code for the 

reference n  classes. The closer the value is to the observed class, according to 
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distance measure (e.g. Hamming or Euclidean distance), that class becomes the 

winning class. 

5.1.3 Land Use Land Cover Change Models and Multiple Classifications (MC) 

The main objective of LUC models is to assign the cells in a maps into future 

classes (Pontius and Connors, 2006) so that land use forecasts can be assessed for 

environmental impacts (cf. Pijanowski et al. 2002b and 2007; Ray et al. 2010). Several 

approaches have been developed during the last three decades to simulate land use using 

numerous environmental variables. However, most of them limited their application to 

only a single land use transition (e.g. see models of Clarke et al. 1997; Verburg et al. 

1999; Pontius et al. 2001; Pijanowski et al. 2002a).  

Land Transformation Model (LTM) uses ANN to learn about the patterns 

between input (i.e. drivers) and output (e.g. historical LUC) data but it has been used in a 

variety of places around the world to simulate only a single land use transition 

(Pijanowski et al. 2005, 2006, 2009 and 2011). The LTM has also been successfully 

applied in many areas of research such as LUC impacts on hydrology (Pijanowski et al. 

2007, Ray et al. 2012), developing historical LUC maps (Ray and Pijanowski, 2010), 

urban boundary simulation (Tayyebi et al. 2011a and 2011b), LUC simulation at national 

or continental scale (Tayyebi et al. 2012), the nature of different errors within LTM 

(Tayyebi et al. 2011a, b and c), land-climate-people multi-model simulations (Moore et 

al. 2010, Pijanowski et al. 2011), LUC impacts on fish community structure (Wiley, 

2010), and land-climate feedback simulation (Pijanowski et al. 2011). Although the 

statistical GPMs have received a lot of attention during the last three decades in LUC 



      136 

fields, there are no studies that compare GPMs with LNPMs for a multiple classification 

(MC) problem. 

This chapter attempts to extend the current LTM (Pijanowski et al. 2005 and 

2006) and reconfigure the model as a MC problem; we refer to this version of the LTM 

as LTM-MC. Moving from binary to MC in LUC modeling presents several challenges. 

First, we need to determine how well an MC version of a model performs. To accomplish 

this, we modified the LTM’s model structure for MC using a one-per-class coding 

strategy (see 5.1.2.1 for more details) where the number of nodes in an output layer is 

equal to the number of desired outputs (Figure 5-2). In order to determine how well the 

LTM-MC performs, we compared this version of the LTM to two other data mining tools 

that are easy to configure for MC; Classification and Regression Trees or CART (Loh, 

2010) and Multiple Adaptive Regression Splines or MARS (Gooijer and Ray, 2003). A 

second challenge is to determine how to structurally treat the land use classes. Should 

they be treated individually for MC (Figure 5-3) or should they be treated as a group in a 

single record?  Here, we treated the LTM-MC as multiple land use classes individually 

(Figure 5-3); however, we decided that MARS and CART had to treat multiple land use 

classes as a group in a single record (scale from 0 to n).  In such a case, 0 represents the 

persistence of land use classes and other numbers ( n  ,2, 1,  ) were used to code land use 

transitions between two times. The third challenge is to determine the coding scheme for 

the nodes for output layer had to be changed from the original LTM model (see 5.1.2.2 

for more details). Code 1 and 0 still represents change and no-change of land use classes 

as with the original model (see Pijanowski 2002a) and the nodes in the output layer are 

labeled as discriminate output classes (Figure 5-2 and 5-3). Finally, a comparison of 
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models is challenging as the LTM-MC and CART develops unique probability maps for 

each output; however, MARS develops one suitability map that scale from 0 to n 

(number of output class; Figure 5-4a). There are some cells that may change to more than 

one class in CART and LTM-MC (Figure 5-4b; we call these ambiguous predictions); 

however, each cell can belong only to one land use class in the future. Here, we create 

simple rules to eliminate ambiguous predictions between mutual land use simulations. 

The specific aims of this chapter are to (1) reconfigure three data mining tools for 

multiple land use transition that have already been developed for single LUC (LTM, 

CART and MARS); (2) develop effective rules to overcome the ambiguous predictions in 

MC; (3) compare the multiple land use transitions of three data mining techniques with 

one other in terms of their potential for agriculture, forest and urban change simulation in 

MRW and SEWI using relative operating characteristic (ROC) and percent correct match 

(PCM) and (4) to explore the advantages and disadvantages of the model structure and 

coding scheme (treating dependent variables as individual or in a group) for MC. We 

argue that the results of this work provide an effective and appropriate methodology for 

assessing how well multiple land use transition models perform. 

The chapter is organized as follows. Section 5-2 gives an overview of MC using 

three data mining approaches (LTM-MC, CART and MARS) and summarizes the 

accuracy assessment metrics used to validate the three models. In section 5-3, two study 

areas are briefly described and we explain how we implemented the SNNS software to 

run LTM-MC, and SPM software to run CART and MARS. Section 5-4 describes the 

simulation results of agriculture, forest and urban transitions of three models in MRW 
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and SEWI and compares the results of MC simulations with one another. Section 5-5, we 

conclude with a summary of our findings. 

5.2 Methods 

5.2.1 LTM-MC as a GPM 

LTM is a feed-forward ANN, which uses the supervised learning algorithm (back-

propagation algorithm) to forecast LUC (Pijanowski et al. 2002a). The number of layers, 

nodes per layer and connections between nodes in consecutive layers usually define the 

model structure of the LTM. The original version of the LTM followed two main changes 

including: first, we modified the original structure of the LTM for binary classification, 

where the number of nodes in output layer is equal to the number of the desired output 

(Figure 5-2) and second, we used one-per-class coding strategy for the output layer, 

which use a combination of k -binary numbers to represent k -category attributes, each 

associated with one of the transition. A k-class pattern classification problem can be 

implemented into a single ANN architecture with k outputs (Figure 5-2). In order to show 

the state of transition for each land use class, only one of the k numbers in the output 

layer need to be coded as one while the others stay zero (Figure 5-2 and 5-3). All the 

nodes in output layer are coded zero if land use persists between two times. Our LTM-

MC enables a user to define I inputs, H hidden units and O output units (Figure 5-2). The 

output of the thj  hidden unit is obtained by first forming a weighted linear ( ijw ) 

combination of the I input values, and adding a bias (Eq. 5-1a):   





I

i

jijij bXwa
1

0                                            (Eq. 5-1a) 
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Here, jiw denotes a weight in the first layer, going from input i to hidden unit j , 

iX  shows the spatial predictor (unit i ) as inputs of LTM-MC and 0jb denotes the bias for 

hidden unit j . The activation of hidden unit j  is then obtained using the activation 

function of LTM-MC (logistic function) for hidden layers (Eq. 5-1b): 

)( jj afZ                                            (Eq. 5-1b) 

The output of unit k  is obtained by transforming the activations of the hidden 

units using a second layer of processing elements. Thus, for each unit k , we construct a 

linear combination of the outputs of the hidden units of the form (Eq. 5-2a): 

  



H

j

kjkjk bZwp
1

0                                   (Eq. 5-2a) 

Similarly, kjw denotes a weight in the hidden layer, going from hidden j to output 

unit k , jZ shows the output of the unit j  hidden unit and 0kb denotes the bias for output 

unit k . The activation of output unit k  is then obtained using the activation function 

(identity function) of LTM-MC for output layers (Eq. 5-2b): 

)( kk pgY                                          (Eq. 5-2b) 

By combining the Eqs 5-1a, 5-1b, 5-2a and 5-2b, we obtain an explicit expression 

for the complete function represented by the LTM-MC in the form of Eq. (5-3): 

))((
1

0

1

0 
 


H
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Where I  is the number of input nodes, H  is the number of hidden nodes, O  is 

the number of output nodes. Thus, i , j  and k can change from 1 to I , H  and O , 

respectively. The objective of the training run is to adjust the weights and biases 
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iteratively in order to minimize the error function (Bishop, 1995). Training run can be 

stopped when the change in weights between two consecutive epochs become smaller 

than the specific threshold, the percentage of misclassified values become smaller than 

some threshold, or a predefined the number of epochs has expired. In this article, we use 

the maximum number of epochs (50,000 cycles) to stop the training run (Pijanowski et al. 

2005 and Tayyebi et al. 2012). 

5.2.2 CART and MARS as multiple classification LNPMs 

CART and MARS within the SPM software over-grow first to make sure that 

stopping rules do not avoid the model to extract the underlying patterns in data (this 

prevents under-fitting in training run) and consequently pruning back by penalizing the 

complexity of the model and removing the unnecessary growth of the model that does not 

improve the accuracy significantly (i.e. prevents over-fitting in training run) to obtain the 

best and optimum model (Steinberg and Colla, 1997).  

5.2.2.1 Classification And Regression Tree (CART) 

CART is a recursive partitioning procedure that classifies the categorical 

(classification tree) or continuous (regression tree) data at each node (e.g. parent) using a 

set of if-then-else rules (Sut and Simsek, 2011). The process begins with the root node at 

the top of the tree, which contains the entire data for the training run (Yap et al. 2011). A 

node in the CART model is either a terminal node (a node without children), or non-

terminal node (a node with children; Chen, 2011). The tree structure represents spatial 

drivers of LUC organized hierarchically (levels in the tree are representative of the level 

of significance of variables) and series of splits for each predictor (Ture et al. 2005). 
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CART seeks the split using search algorithms to classify the data into binary or multiple 

classes by checking all unique values across the range of data values of different 

predictors. Binary decision trees fragment the data into the clusters slower than MC and 

find patterns that are more complex across data values (Ayoubloo et al. 2011). 

CART calculates the probability ( jp ) of the land use classes in the root node of 

the tree using relative frequencies in the entire learning data ( Jj
N

N
p

j

j ,,2,1;  ; 

where jN is the number of cells belong to land use class j  from the entire data N ; Loh, 

2010). Afterward,  tjp ,  denotes the probability of land use class j  (Eq. 5-4a) which is 

estimated from the data within node t  (where  tN j is the number of cells in node t  

belonging to class j ).  tjp |  denotes the conditional probability that CART classifies 

the land use classes accurately (Eq. 5-4b; where    
j

tjptp , ):  

 
 

j

j

j
N

tN
ptjp ,                                    (Eq. 5-4a) 

 
 
 tp

tjp
tjp

,
|                                         (Eq. 5-4b) 

Gini is usually used as a node impurity function to define a splitting rule 

(Camdeviren et al. 2007) for each unique value in model predictors to find the best split 

to fragment data (uniform cost; Eq. 5-5a and non-uniform cost; Eq. 5-5b).  jiC |  

represents the cost of misclassifying a cell that belongs to land use class j  into land use 

class i  as follows:  
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The best split in node t  is the one that maximizes the node impurity function (

 td ) in the children of node t  (Loh, 2010). The gain function (Eq. 5-6) can be used to 

determine the goodness of a split (Kurt et al. 2008; split s for node t). The gain function 

uses a distribution of data before and after splitting to make a more homogenous subset 

than the previous node (Chang and Chen, 2009). A splitting value is adopted at node t 

that maximizes the reduction in diversity obtained by the split. Where Lp  and Rp  are the 

proportions of cells going to nodes Lt  (left) and Rt  (right) respectively:  

   RRLL tdptdptdtsd  )(),(                                    (Eq. 5-6) 

5.2.2.2 Multivariate Adaptive Regression Splines (MARS) 

MARS is capable of finding optimal variable transformations and interactions 

between inputs (Friedman, 1991; Friedman, 1996). Knots are responsible in MARS to 

break the independent variables into subsets (Chang et al. 2011). Any arbitrary function 

with an irregular shape can be approximated using a large number of knots (Andrés et al. 

2011). The coefficients of MARS can change for different intervals as well as different 

predictors (Lee and Chen, 2005). MARS have been generalized for incorporation into the 

MC. We assume that   kT

k Ryyyy  ,,, 21  contains a k-dimensional output which 

depends on p-dimensional variables   pT

p Rxxxx  ,,, 21   (Gooijer and Ray, 2003; N

observations; 0 represent no-change while the other integer numbers show LUC; Eq. 5-
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7). Specifically, each regression function is modeled as a linear combination of 0S

basis function  js xb , so that for a function f (where i  and j  can change from 0 to k  

and p , respectively), using an ordinary least squares estimation: 

   
 


p

j

js

S

s

jji xbxfy
j

1 1

ˆ                                       (Eq. 5-7) 

Here, jS denotes the number of the knots for the corresponding predictors ( jx ) 

and j  are regression parameters. In order to have a fast and easy interpretable MARS 

model, we limit the basis functions to linear terms (only  


 jsj tx  and  


 jjs xt  where 

jst  is the knot for driver j ). The best MARS model is chosen using generalized cross-

validation (GCV).  For GVC, those pairs of basis functions that contribute less to the 

goodness-of-fit are eliminated in a backward phase. GCV takes into account not only the 

estimation errors, but also the complexity of the model (Eq. 5-8; Li et al. 2010). GVC is 

calculated as such, where   is the effective number of degrees of freedom whereby the 

GCV adds a penalty for adding more input variables to the model (Gooijer and Ray, 

2003):  
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                                     (Eq. 5-8) 

The ability of MARS to simulate LUC can be also evaluated using an R
2
 value 

(Samui and Kothari, 2011; Eq. 5-9), where iy and  ixf  are the reference and predicted 

response values, respectively, y and  ixf , are mean of reference and predicted response 

values:  
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5.2.3 Adapted Rules to Remove Conflictions in MC 

Multiple classifications (MC) should assign each cell to a unique land use class; 

however, there are often cells that may be assigned to more than one land use class. 

These ambiguous predictions occur due to the complexity of the LUC patterns, where 

data mining approaches cannot draw distinct boundaries between land use classes. A 

simple method is suggested here to solve the conflictions problems. We added a new step 

after the land use predictions by applying a two-way comparison between all the classes 

with ambiguous prediction results. CART and LTM-MC develops unique suitability 

maps for each output; however MARS creates one suitability maps scale from 0 to n (n is 

integer and equal to the number of outputs). MARS uses one suitability map to simulate 

MC without any conflicts (Figure 5-4a); however, CART and LTM-MC experience 

ambiguous predictions, there are often cells that may change to more than one land use 

class (Figure 5-4b). The number of cells in this condition depends on the ability of data 

mining procedures to discriminate between land use classes, strength of drivers, quantity 

of reference changes for land use classes and number of output land use classes.  

A new sub-component was written in C# to eliminate cells that undergoes 

ambiguous predictions. First, this sub-component, hereafter we call conflict removal, 

employs a contingency table to count the number of reference land use transitions 

between the initial and subsequent land use maps. The land use classes receive a rank 
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value from high to low based on the number of reference transitions; a higher rank is 

assigned for the output with more reference land use transitions. Thereafter, suitability 

maps of each land use classes derive from MC are produced; employed to predict LUC 

(Step 1 in Figure 5-4b). Second, this sub-component counts and saves the number and 

location of conflicted cells between the simulated land use maps with the highest rank 

and the other lower rank land use maps mutually ( 1k  comparison; Step 2 in Figure 5-

4b). At each run ( 1k  times), those ambiguous cells are removed from the lower rank 

cells in the suitability map (those cells assign to zero in the final map; Step 3 in Figure 5-

4b) and the lower rank suitability map uses to predict land use class again. The highest 

rank prediction map in a first run is a prediction map that does not change because the 

changes occur in the land use prediction map with the lower rank. Finally, the whole 

process is repeated for the other 1k  classes again. We follow this procedure 

sequentially to remove the conflicted cells. For MC problems with k  outputs, )!1( k  

comparison is necessary (Step 4 in Figure 5-4b). 

5.2.4 Calibration and validation runs 

Modelers usually split data into two mutually exclusive sets: (1) calibration data 

(e.g. 05% of data) used to build and test the goodness of fit of the models and (2) 

validation data, used to (e.g. other 95% of data) assess the accuracy of the models 

(Tayyebi et al. 2012). For the calibration run, SPM software use a foldk   cross 

validation procedure to examine the model performance (Figure 5-5; Refaeilzadeh et al. 

2008). Calibration data (5% of data) are randomly segmented into the k equal sized fold 

data partitions. One of the k folds is used for the testing run and the remaining k - 1 fold 
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data are used to build the model for the learning run at each time. At each iteration (k 

possible iterations), the k – 1 fold is used to find the pattern in data and following that the 

learned pattern is applied to the testing fold. The SPM software (Steinberg and Golovnya, 

2006) takes the average of k iterations to give the accuracy of the model. We used the 

most common cross validation procedure ( fold10 ). Because this option is not 

available in SNNS software, all calibration data (5% of data) were used for training run. 

Following the training run, the best LTM-MC, CART and MARS models derived from 

the calibration run is applied to the validation data (other 95% of data) that were not used 

in calibration run (Tayyebi et al. 2012).  

A cross tabulation matrix used to compute the proportion of cells that contained 

the similar (on-diagonals) and different (off-diagonals) land use classes compared to the 

reference land use map (Table 5-1).  The percent correct match (PCM) indicates the 

percentage of the cells for the land use class that were classified correctly by the spatial 

explicit models (Pijanowski et al. 2009). PCM can be used to calculate the proportion of 

cases that undergo change and no-change. The relative operating characteristic (ROC) 

curve can be used to evaluate the performance of binary (Pontius and Batchu, 2003; 

Pijanowski et al. 2006; Tayyebi et al. 2010) and MC (Hand and Till, 2001) problems. For 

the binary classification problem, a series of cutoffs is applied to predict the land use 

class. Sensitivity and specificity are computed for each cutoff and the ROC is computed; 

however, for MC, we followed Hand and Till (2001) that extended the ROC for MC by 

averaging pair-wise comparisons. The MC problem is decomposed into all possible 

binary problems and the area under the curve is calculated for each class pair. For a 

specific class, the maximum area under the curve is used as the ROC measure. Because 

http://www.clarku.edu/~rpontius/pontius_batchu_2003_tgis.pdf
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CART and LTM-MC develop unique suitability maps for each of land use classes, the 

application of CART and LTM-MC for MC can be treated as a binary classification using 

the conventional ROC (Pontius and Batchu, 2003; Pijanowski et al. 2006). In contrast, 

due to one suitability map for all land use classes ranging from 0 to n  (the maximum 

number of land use classes) resulting from the MARS model, we followed the adapted 

ROC for MC given by Hand and Till (2001). 

5.3. Study Areas, Data Preparation and Model Building 

5.3.1 Study Areas 

We built three models for two areas (Figrue 5-6). The Southeastern Wisconsin 

(SEWI) region includes seven counties: Kenosha, Milwaukee, Ozaukee, Racine, 

Walworth, Washington and Waukesha Counties (Pijanowski and Robinson, 2011). SEWI 

is currently dominated by urban in the east, agriculture in the north and south. Most of the 

growth has historically occurred close to the city of Milwaukee. Development, especially 

along highway and road corridors, accounts for most of the suburban growth. Between 

1990 and 2000, the amount of urban increased from 24.1% to 28.4%; however, the 

amount of agriculture and forest decreased from 51.8% to 46.8% and from 6.9% to 6.7%, 

respectively. The Muskegon River Watershed (MRW) is located in the Lower Peninsula 

of Michigan, USA (Pijanowski et al. 2007). MRW watershed is currently dominated by 

forests in the north, agriculture in the central portion, and urban in the south. The 

southern portion of the watershed was used to grow very high-value crops (Alexander et 

al. 2007). Between 1978 and 1998, the amount of urban and forest in the watershed 

http://www.clarku.edu/~rpontius/pontius_batchu_2003_tgis.pdf


      148 

increased from 4.2% to 7.3% and from 55.3% to 57.6%, respectively; however, the 

amount of agriculture decreased from 22.2% to 17%.  

5.3.2 Data Preparation 

The land use maps were developed and digitized from aerial photographs at 

Anderson Level 1 (7 land use classes) and were converted to raster maps in ArcGIS10. 

Elevation and slope for both regions were obtained from the USGS’s Shuttle Radar 

Topography Mission (SRTM). All spatial layers were resampled to a spatial resolution of 

30m×30m. Euclidean distances were calculated to urban, forest, wetland, shrub and 

agriculture in 1978 for MRW and in 1990 for SEWI. For density calculation, 

neighborhood function (focal function) used to compute the value at each location based 

on the input cells in a neighborhood of the central cell. We used circle to define the 

neighborhoods of the central cell and mean as neighborhood statistic to computes the 

mean of the values in the neighborhood (Figure 5-6). Three models were developed using 

16 and 17 spatial predictors to simulate agriculture, urban and forest change pattern 

(Table 5-2) using identical data in MRW and SEWI, respectively. Due to the large size of 

data in both study areas, random sampling was implemented (Table 5-3). 

5.3.3 Model Building 

CART and MARS models were developed in a commercial product (SPM 

software, http://www.salford-systems.com); however, LTM-MC (based on Stuttgart 

Neural Network Simulator (SNNS) software), which is open source software 

(http://ltm.agriculture.purdue.edu), was implemented in this study. For LTM-MC, inputs 

drivers were scaled to a range of [0, 1] by dividing by the maximum value and LTM-MC 

http://www.salford-systems.com/
http://ltm.agriculture.purdue.edu/
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was trained for 50,000 epochs and saved for in step 100 increments. As a rule of thumb, 

the maximum number of nodes in CART and basis functions in MARS should be at least 

two to four times the number of inputs (Steinberg and Golovnya, 2006). We allowed a 

maximum of 45 nodes in CART and 45 basis functions in MARS (average three times of 

inputs; 17 and 16 spatial drivers in SEWI and MRW). An effective way to make MARS 

less locally adaptive is to specify a minimum number of observations between knots. The 

minimum node sample size specifies the minimum number of cases required in a node for 

splits to be considered. We set the minimum to 200 in large samples for the smallest node 

(Steinberg and Golovnya, 2006). The parent node limit must be at least twice the terminal 

node limit to allow CART to consider a reasonable number of alternative splitters. 

5.4 Results and Discussion 

5.4.1 CART 

The color-coding in CART helps to locate interesting terminal nodes. Red and 

blue nodes (Figure 5-7) contain more cells that encounter land use changes and no-

changes, respectively. The lower plots indicate a relative cost of the training run that 

traces the relationship between classification errors and tree size. The SPM software 

halted the training run at 21 nodes (forward run of CART in SEWI) and 25 nodes 

(forward run of CART in MRW) where the relative cost reached their minimum value. 

The best tree size or the most accurate classifier (pruned back in CART) is indicated by 

the green bar (Figure 5-7). The best tree size has 21 and 20 terminal nodes where a 

relative cost reached 0.33 and 0.55 in SEWI and MRW, respectively (Figure 5-7). 

Comparing the relative cost and size of a tree in two study areas suggests that LUC 
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patterns in MRW (higher relative cost and more terminal nodes) are more complicated 

than LUC pattern in SEWI. The structure of best trees were saved and used for validation 

data. 

Figure 5-8 gives a simple overview of the main drivers we used for the models. 

Distance to forest and agriculture, distance to agriculture, road and forest are the most 

significant drivers to simulate urban, forest and agriculture change simultaneously in 

SEWI and MRW, respectively (Figure 5-8). The top competitor splits in decreasing order 

of importance are displayed for SEWI and MRW in Table 5-4. The improvement scores 

are a measure of the quality of the split (larger scores are better); this is where the 

variance reduction occurs due to the split. Distance to agriculture split at the value 75m 

yield an improvement of 0.06582 much lower than the main splitter (distance to forest 

with 0.09451 improvement) in SEWI. Similarly, distance to shrub is the best competitor, 

split at the value 51m, which yield an improvement of 0.06486, quite similar to the main 

splitter, distance to shrub with 0.06570 improvements and distance to agriculture with 

0.06587 improvements in MRW (Table 5-4).  

The cells located within the red nodes with larger suitability values have the 

greatest chance for LUC (Figure 5-7 and 5-8). In SEWI, the cells within the node 8 

(distance to forest less than 65m), the node 20 (distance to wetland over 55m) and the 

node 18 (distance to agriculture less than 65m) has the greatest suitability for forest, 

urban and agriculture change, respectively (Figure 5-7 and 5-8). Similarly in MRW, the 

cells within node 17 (distance to shrub over 45m), node 14 (density of urban greater than 

0.03544) and node 18 (distance to wetland over 45m) has the greatest suitability for 

forest, urban and agriculture change, respectively (Figure 5-7 and 5-8). This procedure 
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continues from red node with greater suitability values to blue nodes with lower 

suitability value until CART satisfies the total number of reference LUC (the quantity of 

LUC between two times were fixed; Table 5-3). 

5.4.2 MARS Training 

The best MARS model is the one with the smallest GCV, which is selected in the 

backward run. GCV displays the contribution of the basis functions were added to the 

model. Figure 5-9 shows the point where GCV most minimizes error where the MARS is 

expressed using 39 and 40 basis functions in SEWI and MRW, respectively (Table 5-5 

and 5-6). Figure 5-9 also shows that the lowest GCV values are 0.35 and 0.54 in SEWI 

and MRW, respectively (Figure 5-9). GCV for SEWI is lower than MRW (Figure 5-9). 

R
2
 improved because of additional basis functions (Figure 5-9) and reaches to its 

maximum at 0.43 and 0.25 in SEWI and MRW, respectively. GCV, R
2
 values and the 

number of basis functions also indicate that LUC patterns in MRW (higher GCV; lower 

R
2
 more basis function) are more complicated than LUC pattern in SEWI. The basis 

function of the best MARS models were saved and used for validation data in two study 

areas.  

The variable with the larger standard deviation (in an ANOVA table) has the 

more explanatory power to describe the relationship between the inputs and outputs. 

Distance to agriculture with standard deviation 0.74321 and 0.29275 in SEWI and MRW 

show greater contributions to simulate land use transitions, respectively (Figure 5-10). 

Following those variables, distance to urban with standard deviation of 0.31399 in SEWI, 

distance to shrub with standard deviation 0.25686 in MRW indicate greater contribution 
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to simulate land use transitions, respectively (Figure 5-10). Distance to shrub with 4 basis 

functions in SEWI and elevation with 8 basis functions in MRW include the highest 

number of basis functions in the MARS (Table 5-5). Table 5-5 shows the pruned model 

of MARS models developed in SEWI and MRW. 

5.4.3 LTM-MC Training 

Figure 5-11 plots the mean squared error (MSE) across training cycles in SEWI 

and MRW using LTM-MC. MSE starts around 0.32 in SEWI and 0.37 in MRW. The 

MSE of two scenarios drop through 10,000 cycles in SEWI and MRW. We halted the 

training at 50,000 cycles where the MSE reached a stable minimum of 0.23 in SEWI and 

0.33 in MRW. The best network files from the training run were saved and used to create 

the suitability map in two study areas. 

5.4.4 Variable rankings in CART and MARS 

The model variables were ranked from most to least important for MARS and 

CART (Table 5-6). The least important variable is the one with the smallest impact on the 

model’s goodness-of-fit and the most important variable is the one that, when omitted, 

degrades the model fit the most. It is essential to pay attention to the level of significance 

of the predictors because they show the character of LUC in the study area. In SEWI, 

CART identified distance to agriculture, forest and urban as the main variables; however, 

MARS selected distance to agriculture, wetland and urban as the best drivers to model 

forest, urban and agriculture (Table 5-6). In MRW, CART and MARS agree about the 

most significant spatial drivers (distance to agriculture, road, forest and shrub); however, 

these drivers do not have same order (Table 5-6).  
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5.4.5 Terminal node in CART 

Figure 5-12 provides a representation of the ability of the nodes in CART to 

capture the LUC pattern. We sorted the nodes according to the highest concentrations of 

change (see Figure 5-8 to find the node number). Nodes 3, 5, 7 and 14 have the highest 

concentration of agriculture, urban, forest change and no-change in SEWI, respectively 

(Figure 5-12 and 5-8). Similarly, nodes 11, 10, 19 and 13 have the highest concentration 

of agriculture, urban, forest change and no-change in MRW, respectively (Figure 5-12 

and 5-8). 

5.4.6 Validation of three models using PCM and ROC 

Figure 5-13 summarizes the comparison of the three models for MC using PCM 

and ROC. According to the PCM, LTM-MC and CART had similar accuracy and were 

more accurate than MARS to simulate urban, agriculture and forest change in both 

regions. There is an exceptional case for forest change modeling in SEWI where the 

difference between LTM-MC and CART with MARS is huge because there are few cells 

that experienced forest change during 10 years (around 7.7%). According to ROC, LTM-

MC and CART outperformed MARS using validation data significantly and LTM-MC 

performed slightly better than CART (Figure 5-13). ROC for three models was similar to 

each other in SEWI; however, ROC for LTM-MC and CART were greater than the ROC 

for MARS in MRW. CART and LTM-MC models showed adequate performance as they 

produced ROC values over 0.80 (Figure 5-13). 
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5.5 Discussion 

Most of the LUCC models have been designed for single classification 

predictions (Clarke et al. 1997; Pijanowski et al. 2002; Pontius et al. 2001; Veldkamp and 

Fresco, 1996), it is called hard classification (Pontius and Connors, 2006). Data analysis 

with hard classification is straightforward where scientists usually use contingency table 

to compare maps with series of categories (Pijanowski et al. 2006). For binary 

classification, a model classifies the data into binary classes. However, very few studies 

have focused on building a LUCC model for MC (Li and Yeh, 2002) which has received 

attention recently, there are two types of models that can use to classify the cells into 

distinct and mutual LULC classes: (1) using series of binary models to simulate multiple 

LULC classes (e.g. using OVA or AVA): This process is time consuming and depend on 

the number of LULC classes and (2) developing a model which can classify the cells in 

LULC maps to distinct LULC classes simultaneously which is the focus of this paper. 

This process only needs one model to assign cells in the map to mutual LULC classes. 

This paper has explored issues related to the MC problem in LUCC modeling. To 

accomplish this, we extended the original version of the single class transition LTM, to 

include MC transitions.  

LULC classes may be poorly defined or understood, classification of LULC cells 

within those categories may be correspondingly uncertain. Thus, each cell can belong to 

multiple LULC classes (e.g. partial membership), it is called soft classification or partial 

membership (Pontius and Connors, 2006). The idea here is to develop a model which can 

classify the cells in LULC maps into more than one LULC class (or multiple 
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memberships). Pontius and Connors (2006) developed new approaches which compare 

two maps with cells that belong simultaneously to several LULC classes or have partial 

membership to multiple LULC classes. Results show that proper interpretation of these 

methods can reveal patterns in the maps. Fuzzy set theory is another way (Woodcock and 

Gopal, 2000) to compare maps which a given cell can have multiple membership.  

Models with MC are unstable when there are small changes in training data or in 

model structure; these often lead to large changes in the output values (Breiman, 1998). 

These MC challenges are apparent in many pattern recognition applications. For instance, 

in word speech recognition, a major cause of errors is the inaccurate detection of the 

beginning and ending patterns of speech (Shin et al. 2000). A robust speech/non-speech 

classification method, which uses CART to combine the multiple features (e.g. linear 

prediction error energy, pitch, and band energy), was proposed in noisy environments for 

speech recognition of voice dialing cellular phone (Shin et al. 2000). The results showed 

that the proposed method using multiple features performed better than using a single 

feature by 4 to 10%.  

Scientists usually use exact data for training run to compare models, and choose 

the best models (Wen et al. 2009). LUCC models for MC generate both false positive 

(i.e. assigning a cell to an incorrect LULC class) and false negative (i.e. not assigning a 

cell to a correct LULC class) errors. Models with different algorithms have not only 

different classification performance, but also their misclassification rates (false positive 

and false negative) are variable in spatial and temporal scale (Wen et al. 2009). Using 

only the best model is critical since we may ignore information from other models. 

Models may complement each other; misclassified by one model may detect by another 
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model. Using hybrid models as an alternative, which are at least combination of more 

than one model (e.g. CA-GA, CA-ANN, CA-SVM), have received more attention during 

last 10 years to fill this gap. A manager, natural resource, decision maker and planner 

require the ranking of various models, based on both types of errors. However, additional 

complexity is no guarantee for improvement in practical usefulness. There are possibly 

other ways to simulate MC simultaneously compared to that we employed in this paper. 

There is also substantial need for improvement in overall performance of the models such 

as using hybrid models.  

5.6 Conclusion 

Classification algorithms help to understand the existing pattern in data and can 

be used to predict the land use class of the new cell while comparisons of suitable 

techniques remain a meticulous task. This chapter presented a comprehensive study on 

multiple land use classifications with focuses on issues, (1) architecture and encoding 

schemes for multiple LUC models and (2) suggesting a solution for confliction problems 

in multiple land use classification, including three data mining procedure (LTM-MC, 

CART and MARS). Our study compares three data mining approaches for MC pattern 

recognition using ROC and PCM. A systematic comparison is important to understand 

the performance of the different algorithms. Result support that LTM-MC, CART and 

MARS are potential in dealing with high dimensional LULC data, mixed data (e.g. 

categorical, continuous or ordinal) and complex relationships between dependent and 

independent drivers (e.g. linear or non-linear). CART and MARS gives the lowest and 

highest rate of false positive and false negatives predictions for MC, respectively while 
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LTM-MC gives better accuracy than CART and MARS overall. POLYMARS, which is 

an extension of MARS that allows for multiple responses (Kooperberg et al. 1997), can 

be used for MC in future effort. 
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Figure 5-1: The idea of One-Versus-All (OVA) and All-Versus-All (AVA) procedures 

for MC 
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Figure 5-2: Model structure and coding scheme of LTM-MC 
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Figure 5-3: Coding scheme of LTM-MC, CART and MARS to model MC 
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Figure 5-4a: Simulated land use maps for three outputs (suitability map scale from 0 to 3) 

using MARS. Where in N(i) = j, i and j show the code and number of transition for each 

land use class, respectively  
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Figure 5-4b: Blue circle show the conflict cell between two land use simulated maps (0 

and 1 represent no-change and change, respectively). Class 1 and 2 with 4 and 3 

reference land use transition receive rank 1 and 2, respectively. Red Cross shows the 

conflict cell that removed from the suitability map with the lower rank (rank 2) 
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Figure 5-5: foldk   cross validation procedure in SPM software 

  

 

Figure 5-6: Study area in MRW and SEWI 
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Figure 5-7: Tree navigator in CART 
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Figure 5-8: Viewing the main splitter in CART 
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R-Squared 

Figure 5-9: GCV and R-squared across number of radial basis functions in MARS 
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Figure 5-10: ANOVA in MARS 
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Figure 5-11: Training run of LTM-MC 
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SEWI 

 
MRW 

Figure 5-12: Terminal node in CART (gray, red, yellow and green represent no-change, 

urban change, agriculture change and forest change, respectively) 
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PCM 

 
ROC 

Figure 5-13: PCM and ROC for CART, MARS and LTM-MC 
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Table 5-1. A contingency table to compare simulated and reference land use maps 

  Reference Map 

  1 2 3  J Sum of row 

 

 

 

 

Simulated 

Map 

1 n11 n12 n13  n1J S1= jn1  

2 n21 n22 n23  n2J S2= jn2  

3 n31 n32 n33  n3J S3= jn3  

         
J nJ1 nJ2 nJ3  nJJ SJ= Jjn  

Sum of 

column 

A1=

 1jn  

A2=

 2jn  

A3=

 3jn  
 AJ=

 jJn  
Total = 




J

j

j

J

j

j SA
11

 

 

 

Table 5-2: Spatial predictor variables for SEWI and MRW 

 SEWI MRW 

1 Elevation Elevation 

2 Aspect Aspect 

3 Distance to Urban Distance to Urban 

4 Density of Urban Density of Urban 

5 Distance to Forest Distance to Forest 

6 Density of Forest Density of Forest 

7 Distance to Agriculture Distance to Agriculture 

8 Density of Agriculture Density of Agriculture 

9 Distance to Shrub Distance to Shrub 

10 Density of Shrub Density of Shrub 

11 Distance to Wetland Distance to Wetland 

12 Density of Wetland Density of Wetland 

13 Distance to Park Distance to Park 

14 Distance to Stream Distance to Water 

15 Distance to Road Distance to Stream 

16 Slope Distance to Road 

17 ---- Slope 

 

 

Table 5-3: Size of samples and resolution of data for SEWI and MRW 

Study 

Area 

Agriculture 

Change 

Forest 

Change 

Urban 

Change 

Non-

Change 

Total Resolution 

SEWI 135,709 79,467 491,031 314,265 1,020,472 30m×30m 

MRW 120,013 641,237 412,302 693,598 1,867,150 30m×30m 
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Table 5-4: Competitor, split and improvement for CART 

A - SEWI Competitor Split Improvement 

Main Forest 63 0.09451 

1 Agriculture 75 0.06582 

2 Urban 51 0.03752 

3 DForest 0.11346 0.02820 

4 Road 121 0.01776 

5 Durban 0.16735 0.01632 

6 Wetland 51 0.01451 

7 DAgriculture 0.43037 0.01371 

8 Slope 3.14572 0.01317 

9 Shrub 142 0.00712 

10 Park 1499 0.00648 

11 DShrub 0.05948 0.00610 

12 DWetland 0.09972 0.00473 

13 Elevation 265 0.00458 

14 Water 101 0.00456 

15 Stream 121 0.00418 

16 Aspect 0.50 0.00349 

 

 

B - MRW Competitor Split Improvement 

Main Agriculture 345 0.06587 

1 Shrub 51 0.06486 

2 Road 114 0.03823 

3 Forest 190 0.03040 

4 Durban 0.03543 0.01517 

5 Urban 270 0.01333 

6 DAgriculture 0.14085 0.00980 

7 Elevation 266 0.00939 

8 Wetland 875 0.00910 

9 DShrub 0.13359 0.00829 

10 DWetland 0.04490 0.00374 

11 DForest 0.37794 0.00346 

12 Stream 915 0.00227 

13 Park 2772 0.00110 

14 Slope 1.14232 0.00089 

15 Aspect 5.58117 0.00056 
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Table 5-5: Coefficients, variables and knots in MARS 

BFs in SEWI Coefficient Variable Sign Knot 

0 -0.984680    

1 -0.061248 Agriculture - 67 

2 0.035816 Agriculture + 67 

3 -0.031057 Urban + 42 

4 -0.015252 Wetland - 161 

5 0.014962 Wetland + 161 

6 -0.001308 Road - 161 

7 0.003081 Road + 161 

8 -0.022361 Wetland + 60 

9 -0.000101 Water - 90 

10 -0.006427 Water + 90 

11 -0.004736 Shrub - 366 

12 0.004286 Shrub + 366 

13 0.000015 Forest - 67 

14 -0.004473 Forest + 67 

15 0.012819 Urban - 42 

16 -3.674577 DUrban + 0.7726 

17 -1.079093 DUrban - 0.7726 

18 -3.326859 DAgriculture + 0.0790 

19 -2.891896 DAgriculture - 0.0790 

20 -0.007839 Shrub + 134 

21 0.000535 Aspect + 145 

22 0.000145 Aspect - 145 

23 -0.722788 DShrub + 0.3728 

24 -1.050544 DShrub - 0.3728 

25 0.999261 DWetland + 0.1020 

26 0.056512 DWetland - 0.1020 

27 0.792730 DForest + -0.0000 

28 -0.006119 Slope - 2.8624 

29 -0.027395 Slope + 2.8624 

30 0.003083 Shrub - 174 

31 -0.000693 Elevation + 267 

32 -0.001118 Elevation - 267 

33 -1.464719 DWetland + 0.5492 

34 0.002106 Urban + 84 

35 -0.000475 Stream + 240 

36 0.000135 Stream - 1,218 

37 0.000110 Water + 684 

38 4.434641 DAgriculture - 0.1045 

39 0.000002 Park + 0.0001 

 



      180 

BFs in MRW Coefficient Variable Sign Knot 

0 1.916899    

1 -0.023503 Agriculture - 1,214 

2 -0.000051 Road + 189 

3 0.002369 Road - 189 

4 0.000130 Wetland + 84 

5 -1.712863 DAgriculture - 0.0122 

6 4.617346 DAgriculture + 0.0122 

7 0.000037 Stream - 108 

8 -0.002620 Stream + 108 

9 -0.005666 Elevation - 339 

10 -0.004297 Elevation + 339 

11 0.019570 Shrub + 984 

12 0.016237 Forest + 445 

13 -0.498543 DWetland - 0.0602 

14 0.611026 DWetland + 0.0602 

15 0.000564 Agriculture - 1,214 

16 -0.000770 Shrub + 984 

17 8.710874 DForest - 0.9444 

18 -1.011644 DUrban + 0.5038 

19 -0.500216 DUrban - 0.5038 

20 -0.000134 Park + 12,554 

21 -0.000334 Aspect - 64 

22 -0.001198 Aspect + 64 

23 -0.000096 Urban - 2,323 

24 0.000019 Urban + 2,323 

25 0.222987 DShrub - 0.2228 

26 0.452830 DShrub + 0.2228 

27 0.000119 Park - 17,017 

28 0.000030 Park + 5,964 

29 -0.000777 Forest - 445 

30 1.990626 DAgriculture + 0.0755 

31 -0.014505 Slope - 2.6350 

32 -0.023725 Slope + 2.6350 

33 0.011041 Elevation - 216 

34 0.083747 Elevation + 239 

35 -0.037933 Elevation - 254 

36 -0.066528 Elevation + 228 

37 0.007891 Elevation - 298 

38 0.005506 Elevation + 356 

39 -0.000250 Wetland - 1,130 

40 0.000162 Wetland + 2,165 
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Table 5-6: Ranking variables in CART and MARS 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CART - SEWI 

Variable Relative Priority 

Agriculture 0.2581 

Forest 0.2306 

Urban 0.1238 

DAgriculture 0.0680 

Wetland 0.0641 

Shrub 0.0616 

Durban 0.0469 

DForest 0.0407 

DShrub 0.0314 

Park 0.0213 

Road 0.0192 

Slope 0.0185 

DWetland 0.0063 

Elevation 0.0056 

Stream 0.0022 

Water 0.0011 

Aspect 0.0001 

MARS - SEWI 

Variable Variable Priority 

Agriculture 0.3123 

Wetland 0.1273 

Urban 0.1117 

Shrub 0.0734 

Road 0.0678 

Water 0.0494 

DUrban 0.0491 

DAgriculture 0.0376 

Forest 0.0362 

Stream 0.0291 

DWetland 0.0253 

DShrub 0.0246 

DForest 0.0212 

Aspect 0.0176 

Slope 0.0101 

Elevation 0.0073 

CART - MRW 

Variable Relative Priority 

Agriculture 0.2282 

Shrub 0.1994 

Forest 0.1215 

Road 0.0924 

DAgriculture 0.0875 

DUrban 0.0658 

Urban 0.0549 

DForest 0.0534 

Elevation 0.0288 

DShrub 0.0200 

Wetland 0.0183 

Park 0.0154 

DWetland 0.0077 

Stream 0.0062 

Slope 0.0003 

Aspect 0.0001 

MARS - MRW 

Variable Relative Priority 

Road 0.1568 

Agriculture 0.1560 

Shrub 0.1280 

Forest 0.1090 

Elevation 0.0833 

Stream 0.0737 

Park 0.0483 

DAgriculture 0.0409 

DForest 0.0387 

DUrban 0.0318 

Urban 0.0288 

DWetland 0.0253 

Wetland 0.0226 

Aspect 0.0217 

DShrub 0.0197 

Slope 0.0155 
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CHAPTER 6: AN URBAN GROWTH BOUNDARY MODEL USING 

NEURAL NETWORKS, GIS AND RADIAL PARAMETERIZATION: AN 

APPLICATION TO TEHRAN, IRAN
3
 

6.1 Introduction 

Urban growth boundaries, or UGBs, are planning tools used by local governments 

to constrain urban development to a fixed area (Calthorpe and Fulton, 2001).  The overall 

objectives are to promote higher urban densities, protect non-urban lands such as 

agriculture that are outside the boundary, and to reduce urban infrastructure costs, such as 

transportation, sewer, etc. (APA, 2002). Thus, this planning approach creates urban areas 

that are clearly separated from rural uses.  

UGBs are implemented using various approaches, but most involve the 

development of a boundary within which development over the next 10 to 25 years is 

allowed to occur (Calthorpe and Fulton, 2001).  Local governments that implement 

UGBs need to estimate the amount of urban land required in the future given anticipated 

growth of housing, business, recreation and other urban uses required within the 

boundary. The boundary most frequently occurs across several local government units, 

and as such, is considered to be a regional planning tool (APA, 2002). 

                                                 

3 Current version has been published in Landscape and Urban Planning. 
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UGBs have been promoted most often in high growth areas, such as metropolitan areas 

along the west coast of the United States, and are argued by some as an effective means 

to preserve open space surrounding large cities and as tool that ensures efficient use of 

land (APA, 2002).  UGBs have been implemented in various countries around the world, 

including the United States (Phillips and Goodstein, 2000; Wassmer, 2002), Great Britain 

(Gunn, 2007), China (Han et al. 2009), Saudi Arabia (Mubarak, 2004), Canada (Gordon 

and Vipond, 2005), Albania (Turner et al. 1992), Australia (Coiacetto, 2007), and Korea 

(Bengston and Youn, 2006), to name a few.  In the United States, several states, including 

Washington, Oregon, Maine and Tennessee, have required all local governments to 

develop comprehensive plans that include urban growth boundaries. Given the 

considerable attention to the problems occurring as a result of urban sprawl (Batty, 2005; 

Van and Mahler, 2005; Verburg, 2006; Acevedo et al. 2007; He and Lo, 2007; Alkheder, 

2008a and b), and the increasing attention given to UGBs as a regional planning tool, it is 

thus surprising that very little research has focused on developing models that assist 

planners in delineating the urban boundary (cf. Knaap and Hopkins, 2001). Models are 

needed as the many factors that drive urban change operate across different spatial and 

temporal scales in a very complex way (Brown et al. 2007; Entwisle et al. 2007; Evans 

and Kelley, 2007) and thus a simple delineation of boundaries is not feasible. To assist 

planners and others in identifying future urban growth boundaries, we develop and apply 

a model to project the future extent of rapidly growing urban areas. 



      184 

6.1.1 Literature Review on UGBs 

UGBs are used throughout the world although they are known by other names.  

Establishing urban boundaries can be traced back to the 1930s where they were used as 

an urban planning tool in Great Britain (Elson, 1993). Referred to there as “green belts”, 

it was enacted as a planning tool to protect rural areas outside London from development 

by containing urban growth within a carefully defined area. Large urban areas in Japan in 

the 1950s (Eaton and Eckstein, 1994) and 1960s also experiencing rapid development 

have employed urban growth boundaries. In Albania, the yellow line system (Turner et 

al. 1992) has been used for decades as a means to define “inhabitation centers” that 

demarcate urban and rural areas. In South Africa, an Integrated Development Plan 

requires a the development of a Spatial Development Framework which includes the 

demarcation of a city’s urban edge, sometimes called an “urban fence” (Metropolitan 

Durban, 1974). UGBs have been proposed as one of the first urban growth management 

tools in countries such as Saudi Arabia (Al-Hathloul and Mughal, 2004) where explosive 

urban growth, as much as 6% per annum, is straining urban infrastructure in its major 

cities (Mubarak, 2004). 

In the United States, UGBs are used in various ways, generally guided by state 

policy. In some places, they are referred to as Urban Growth Areas or UGAs. In 

California, state law requires each county to have a Local Agency Formation 

Commission, which sets UGBs for each city and town in a county.  In Tennessee, urban 

boundaries are used solely to define long-term city boundaries rather than control urban 

sprawl. In Texas the UGB delineations, called Extra Territorial Jurisdictional boundaries, 

http://en.wikipedia.org/w/index.php?title=Integrated_Development_Plan&action=edit&redlink=1
http://en.wikipedia.org/w/index.php?title=Spatial_Development_Framework&action=edit&redlink=1
http://en.wikipedia.org/w/index.php?title=Urban_Edge&action=edit&redlink=1
http://en.wikipedia.org/wiki/Local_Agency_Formation_Commission
http://en.wikipedia.org/wiki/Local_Agency_Formation_Commission
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are used to map out future city growth with the goal of minimizing competitive 

annexations.   

UGBs are also common regional planning tools in Canada (Smith and Haid, 

2004).  For example, the metropolitan areas of Vancouver, Toronto, Ottawa and 

Waterloo, Ontario, have established urban growth boundaries to restrict urban growth to 

certain areas and to preserve green space.  In British Columbia, UGBs are part of a larger 

regional planning initiative called the Agricultural Land Reserve Program that was 

established in the 1970s to protect valuable farmland from being converted to urban. 

Not surprisingly, UGBs have come under considerable scrutiny in the past 10 

years especially on the West Coast of the United States (Jaeger and Plantinga, 2007). For 

example, it has been argued that UGBs inflate housing prices (Staley and Mildner, 1999; 

although see Wassmer and Baass, 2006) and that UGBs have been ineffective in reducing 

urban growth rates (Pendall, 1999). Others have argued that it suffocates economic 

development (Jaeger and Plantinga, 2007) because it sets stringent growth limits 

especially during times of heightened economic growth.  However, many UGBs require 

frequent updating thus in general, planning can respond to short-term growth spurts in 

areas. In Portland, Oregon, for example, the housing boom of the late 1990s drove the 

planning authority to substantially increase the UGB in 2004, which was required by 

Oregon State law (Jaeger and Plantinga, 2007; Walsh et al. 2008).  

Within the context of Iran’s planning system, UGB has tremendous potential as a 

regional planning tool.  The country is divided into two planning domains, one simply 

referred to as urban planned districts and the other as non-urban planned districts and thus 

UGBs compliment the broader planning structure in this country. UGB planning could be 

http://en.wikipedia.org/wiki/Vancouver
http://en.wikipedia.org/wiki/Toronto
http://en.wikipedia.org/wiki/Ottawa
http://en.wikipedia.org/wiki/Waterloo,_Ontario
http://en.wikipedia.org/wiki/Portland,_Oregon
http://en.wikipedia.org/wiki/Metro_%28Oregon_regional_government%29
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beneficial to those urban regions which are experiencing rapid growth and are interested 

in preserving natural areas outside the city boundaries.  One such illustrious place is the 

Tehran Metropolitan Area (TMA), located in the Islamic Republic of Iran, where city 

planners are interested in introducing a range of policy directions to provide for a more 

compact city, minimize speculation on the city’s fringe, and retain open spaces in the 

surrounding rural areas. Tehran is the fastest growing city in Iran. Currently, there is no 

consistent approach for deciding where urban growth can occur and where non-urban 

land should persist. To date, the boundary separating urban and non-urban areas in TMA 

has been determined by referencing regional or local policy documents, zoning decisions 

and legislation, all prepared at different times by different authorities and for different 

purposes. This has led to uncertainty in the decision-making process. This uncertainty has 

had undue effects by negatively impacting investment choices of landowners and 

developers, while raising concerns in the wider community about the long-term direction 

of urban growth and the erosion of TMA’s green spaces. An urban growth boundary was 

proposed recently as a planning tool to accomplish two major objectives: (1) to promote 

efficiency in urban management with an emphasis on focusing residential development in 

established and planned suburbs, and in areas where there is already significant 

investment in infrastructure, and (2) to protect high value land adjacent to the urban 

boundary in recognition that this land makes significant contributions to the nation’s 

economy. 

The current shape of the city of Tehran is obviously driven by a variety of factors, 

including configuration of transportation networks, topography, and natural resources 

such as rivers and lakes which help support industry and recreation.  These factors 
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interact in complex ways to form the current urban boundary.  Thus, the first requirement 

of an urban growth boundary model is to quantify how these factors interact to create its 

current geometry. The second requirement is to allow these factors to persist through time 

so that a future urban growth boundary can be created that takes into account those urban 

growth variables that contribute to the evolution of the boundary’s form and that 

accommodate the need for new urban area.  

6.1.2 Research questions and chapter structure 

We have selected the Tehran Metropolitan Area (TMA) for our study because (1) 

considerable remote sensing and geospatial data exist to help delineate urban boundaries 

and (2) an urban growth boundary model (UGBM) could be a useful tool for regional 

planning by combining a variety of spatial attributes within a GIS. Our research questions 

are (1) How can remote sensing maps of urban and various spatial predictor variables be 

used to parameterize an UGBM? and (2) How can an urban growth boundary map 

derived from an UGBM can be used by regional planners to develop future UGBs?  We 

describe here the structure of an UGBM that uses Artificial Neural Networks, vector and 

raster GIS routines and inputs from remote sensing imagery. The model is calibrated and 

then used to develop future UGBs around TMA. 

We organize the remainder of this chapter as follows. Section 6.2 summarizes the 

basic principles of ANNs as it has been applied to land change modeling, provides a 

broad conceptual overview of UGBM and describes the study area and data sources used. 

Section 6.3 illustrates how we parameterize UGBM using a set of spatial interaction rules 

derived from GIS routines. The results of the spatial-temporal patterns of UGB for our 
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TMA application, developing a forecast UGB map for TMA and the implications of 

forecasting map for spatial planning are discussed in section 6.4. The chapter concludes 

with section 6.5 that discusses the UGB and its potential for managing growth in Tehran, 

Iran. 

6.2 Materials and Methods 

6.2.1 Background on Artificial Neural Networks 

Our UGBM uses many of the same parameterization methods of the ANN-based 

Land Transformation Model (LTM) of Pijanowski et al. (2000, 2002, 2005, 2006, and 

2009). The use of ANN has increased substantially over the last several years in many 

fields because of the advances in computing performance (Aisa et al. 2008) and the 

increased availability of powerful and flexible ANN software.  ANNs are machine 

learning tools that recognize complex patterns in data (Skapura, 1996).  These tools are 

fashioned after the way that a network of neurons in the mammalian brain processes 

multiple input signals (Fisher, 2001).  ANNs have traditionally been composed of several 

layers of nodes; an input layer, one or more hidden layers and an output layer (Figure 6-

1), forming what is called a multilayer perceptron. The training of such a network 

involves three phases including the feed forward of the input training pattern with 

weights associated with each node, the back propagation of the associated error and the 

adjustment of the weights using a standard delta rule. Each input unit receives a signal 

and broadcasts this signal to each of the hidden units while hidden unit sums the signal 

with different weights, then applies what is called an activation function to compute its 

output signal and sends this signal to the unit in the output layer. The output unit receives 
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a signal from each hidden layer and sums the signals with corresponding weights and 

computes the output value which is typically between 0 and 1. 

Weights in an ANN are determined by using a training algorithm, the most 

popular is the Back Propagation (BP) algorithm. The BP algorithm randomly selects the 

initial weights, and compares the calculated output for a given observation with the 

expected output for the observations.  The mean square error (MSE) -- the difference 

between the expected and calculated output values across all observation -- is computed 

with each pass, called a cycle. Once the training is stopped, biases and weights are 

obtained and saved; and these biases and weights are then used with other data to 

estimate output values; this is called testing. The output values are then used to assess 

model goodness of fit (i.e. calibration) against known values. 

6.2.2 Urban Growth Boundary Model 

Our Urban Growth Boundary Model (UGBM) differs from the LTM in several 

ways.  First, the UGBM uses only the values of pixels located on the urban boundary as 

input from the first satellite image and as output from the first and second one to simulate 

UGB pattern. Second, raster data are used as a source of inputs of ANN while outputs of 

ANN vector data. Our UGBM requires six sequential steps (Figure 6-2) including: (1) 

base map development; (2) boundary delineation along azimuths; (3) coding of data and 

applying spatial functions; (4) ANN training and testing; (5) estimation of goodness of fit 

for UGBM and (6) applying training weights to create a forecast of the UGB.  A 

collection of routines written in Java was used to process and analyze the data. 
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6.2.2.1 Base Map Development. All GIS data need to be converted to the same 

projection and raster maps standardized to the same cell size and grid dimensions 

(number of rows and columns).  Creation of predictor maps can be accomplished using 

most GIS software packages, here, we use ArcGIS Spatial Analyst to calculate predictor 

variables such as distance to roads, slope, etc. Two land use maps, separated in time with 

enough urban growth occurring (viz. 10 or more years) are also needed as inputs to the 

ANN training. 

6.2.2.2 Urban Boundary Delineation.  The urban boundary for each of the two 

years was developed using the following procedure in ArcGIS.  First, all urban cells in 

each map were set to a value of 1 and all other cells to 0.  The region group procedure in 

ArcGIS was used to group all contiguous urban cells in the raster map to create urban 

patches.  The largest contiguous urban patch was then selected and saved and the edge 

pixels were used to define the urban boundary.  

A central point inside the urban boundary was selected and used as a reference 

point. Euclidean distances between this reference point and the urban boundary was 

calculated. Azimuths and distance of these lines based on coordinates of point 

coordinates were computed following Eqs. (6-1) and (6-2). This process is repeated for 

the first and the second satellite image. 
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where tX  is the easting coordinate of a central point in the urban area,  tY  is the 

northing coordinate of a central point in the urban area, iX  is the easting coordinate of 

point i on urban boundary, iY  is the northing coordinate of point i on urban boundary, 

itS  represents the distance between a central point t in the region and point i on urban 

boundary; and itAzimuth is the azimuth between a central point t in the region and point 

i on the urban boundary. 

Distances from the reference point depend on azimuth interval. A scale factor 

(SF) for each azimuth was used to normalize distances from 0.0 to 1.0 by dividing the 

distances between the two consecutive times along the same azimuth by the distance at 

the first time using Eq. (6-3): 
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where iSF is the scale factor of distance between a central point in the region and 

point i on the urban boundary. The scale factor across different azimuths was used as 

output targets to train the ANNs.  

6.2.2.3 Coding of Data. To investigate the input data required for the UGBM, 

urban boundary derived from the second satellite image in vector format is overlaid on 

the first satellite image. Coding of the predictive variables and spatial functions are 

performed and applied on the first satellite image. Following Pijanowski et al. (2002), 

each value in an entire predictor variable map (e.g. distance to roads) was normalized 

from 0.0 to 1.0 by dividing each value by the maximum value contained in predictor 

variable map. Eventually, pixels in the first satellite image located under the urban 
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boundary directly are selected and values at these predictor variable grids are used as 

inputs to the ANN routine in the UGBM. In fact, each point in the vector file (the former 

time) that made the urban boundary is matched with a pixel at a later time).  

6.2.2.4 Simulation. We follow Pijanowski et al. (2002) in our use of ANNs.  A 

back-propagation, feed-forward neural network with one hidden layer is created suing 

predictor variables as inputs.  Training is followed over a set of cycles (e.g. every 100 

cycles) and the MSE is plotted and trends inspected in order to identify a minimum MSE 

to halt training. Once the training is stopped, activation function weights, bias and node 

weights are saved to a network file. All values from the network file are then presented to 

the neural network as a testing run where all inputs are kept but the outputs (SF values) 

are removed so that they can be estimated. 

6.2.2.5 Model Calibration.  There are several features of the UGBM that require 

an assessment of how well the model performs.  These include: (1) the fit of the 

simulated distance versus real distance during each training cycle; (2) the sensitivity of 

each predictor variable on model output; (3) the goodness of fit for each simulated 

distance along each azimuth to the true distance and (4) the goodness of fit of the total 

area created by the model versus the size of the observed area in the second urban map.  

6.2.2.6 Forecasting UGB geometry. In the forecasting process, after the ANN is 

trained and tested successfully, biases and weights are obtained, the feed-forward 

algorithm is used to estimate a new distance from the reference point along each azimuth. 

The forecasting process uses normalized predictor variable values as input from cells on 

the urban boundary in the study area; however, the output values are removed. After 

getting scale factor as output of ANN, scale factor is multiplied to real distances in each 
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azimuth in subsequent time to get distances across different azimuths in future (Eq. (6-

4)). With the azimuths and distances, the forecasted urban boundary is determined. In 

fact, the azimuths are constant in different time periods and they are employed only for 

normalization of the rate of distances using: 

)()()( 223 tStSSFtS ititiit                                   (Eq. 6-4) 

6.2.3 Study Area and Data Sources 

Iran’s rapid economic growth from 1985 to 2005 transformed the country to an 

industrialized nation. Tehran Metropolitan Area (TMA) is located (Latitude 35° 45' N 

and Longitude 51° 30' E) in the northern portion of Iran.  TMA has exhibited an 

accelerated rate of urban growth especially over the last three decades. TMA has 

supported a great deal of economic and social development in terms of urban change and 

the rapid growth of infrastructure. TMA with a daytime population of over 10 million and 

with a metropolitan area of over 2000 km
2
 is the center of commercial, financial, cultural 

and educational activities in Iran. Rapid urban growth has resulted from a high population 

growth rate and increased rural-urban migration combined with a strong tradition of 

centralization of government activities focussed in the capital. 

National topographic data base (NTDB) of the National Cartographic Centre 

(NCC), at a scale of 1:25000, was used as the main source of UGBM data for TMA. Two 

Landsat TM images of TMA with a 28.5m resolution for 1988 and 2000 were acquired. 

NTDB and its extracted digital elevation model (DEM) at 30m resolution were used. 

NCC topographic data were integrated with our database to provide the appropriate 

inputs to the GIS-based model. Locations of service centres were obtained from country 
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road maps at a scale of 1:25000 and stored as point coverage. Data on land use, 

transportation, natural features, public lands, digital elevation model and political 

boundaries were incorporated into the GIS database for subsequent modeling. 

6.3 Parameterization of our UGBM for TMA  

This section presents a complete description for our UGBM implemented for 

TMA. From previous work (Tayyebi et al. 2008a, b; Pijanowski et al. 2009), we found 

that seven independent variables affect urban growth boundary in TMA: elevation, slope, 

aspect, and distance from built area, service centre locations, green spaces and roads. 

6.3.1 Base map development 

Satellite images have been used extensively to document spatio-temporal changes 

associated with increased urbanization in TMA (Syphard et al. 2005; Tan et al. 2005; 

Salami and Akinyede, 2006). Two Landsat images were geometrically registered to the 

Universal Transverse Mercator (UTM) WGS 1984 Zone 39N. Registration errors were 

about 0.50 pixels. Supervised classification was utilized to classify the images to different 

LUCC categories. All land use/land cover classes for TMA were also reclassified from 

their original classification to Anderson Level I classification scheme (Anderson et al. 

1976). Three classes of different LUCC categories were selected in the images; namely 

road, build-up area and green space. Locations of service centres were produced and 

stored as point coverage. The Kappa quantity for the Landsat TM image of 1988 was 

81.72% and 84.61% for that of 2000 (Pontius and Marco, 2008). Figure 6-3 illustrates the 

image registration and classification results for TMA. 
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The boundary of TMA was identified on the first and second satellite images. 

Boundary extraction process was performed with digitization of urban boundary in the 

two satellite images and both of them were exported as vector format. The two maps 

were overlaid and a composite map was produced which represents urban boundary of 

TMA in 1988 and 2000 (Figure 6-4). Therefore, after considering a central point in each 

boundary and measuring azimuths and distances (Eq. (6-1, 6-2)) in both of the times, 

scale factors were computed following Eqs. (6-3). In fact, each azimuth has different 

value of scale factors between two consecutive time of urban boundary and the same 

azimuth have different scale factors at a different two consecutive time. 

6.3.2 Urban Boundary Delineation 

When the boundary of TMA from the first and second satellite images was 

identified, the circle centred at a central point was plotted over the boundary image to 

prepare datasets for centre configuration following Alkheder and Shan (2005). Therefore, 

at every azimuth starting from zero to 360 degrees at an interval of 1 degree, two 

measurements were recorded representing the azimuths and distances from urban 

boundary at 1988 and 2000. Distances were normalized from 0.0 to 1.0 (Scale Factor) by 

dividing rate of distances between two consecutive times (1988-2000) in the same 

azimuth by distance in the first image (Eq. (6-3)). Numbers of points that make the urban 

boundary map depend on the spatial interval. Vectors of 360 by 1 measurements were 

assigned as output for training and testing run of ANN. Figure 6-5 shows the distance 

variables as output compiled in Arc/Info Grid format at the year 2000. A program in Java 

was written with user interface which gets central point in the region, azimuth interval 
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and urban boundary map at the two time interval as input to calculate scale factor at the 

specified azimuths.  

6.3.2.1 Absorbing Excursion Spaces: Each cell contains distance from service 

centre, green space and build-up areas. The distance of each cell from its nearest 

absorbing cell was calculated and stored as a separate variable grids. These variable grids 

represented the potential effect of a location for growth of the urban boundary. 

6.3.2.2 Transportation: Another influencing factor is the distance of each cell 

from the nearest road cell calculated and stored. The hypothesis is that humans need 

roads to access areas where resources are used resulting in urban boundary change. 

Therefore, areas closest to roads have a greater likelihood of being developed.  

6.3.2.3 Landscape Features: Landscape topography is an effective factor 

contributing towards build-up areas utilization. Elevation is important in the flood 

landscape prone areas. Slope and aspect are important to minimize landscape costs. 

6.3.2.4 Constraints: A constraint is a physical or legal characteristic of a cell that 

prevents the cell from being extended. There are two constraints that we considered for 

simulation of urban boundary. First, are cells that have limitations for urban boundary 

change because exterior situations such as physical condition. For example, in this paper, 

elevation and location of mountains are two factors that prevent growth of urban 

boundary. Second, cells that are protected legally from urban growth by the government. 

These lands are considered inappropriate for urban boundary changes around TMA 

which are forests, wetlands and barren lands. 

Coding of the predictive variables and spatial functions are performed and applied 

on the first and second satellite images. Pixels from the first satellite image which were 
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located directly within the urban boundary map of TMA derived from the second satellite 

image were selected. In fact, each point in urban boundary map from the second satellite 

image was matched only with a pixel from the first satellite image. Therefore, there are 

different values for each pixel based on the predictor variables that we have considered as 

input that can influence on the UGB. The map layers have been stored in grid format then 

each location contained its spatial configuration value from each driving variable grid. 

For each cell in the study area, there are seven measurements as input of ANN. Vectors 

of 360 by 7 measurements located on urban boundary were assigned as input for training 

and testing of ANN. Figure 6-6 shows seven variables compiled in Arc/Info Grid format 

as inputs at 1988. 

6.3.3 Simulation 

The ANN toolbox of Matlab software was used for the design, training and 

prediction of the ANN. All input grids were stored an Arc/Info Grid (ESRI, 2009) format, 

were then normalized to a range from 0.0 to 1.0 and converted into ASCII representations 

(called a pattern file). The pattern file contained information from the 7 final input grids 

and an output file so that each line in the pattern file corresponded to one location. The 

output of the ANN represents the growth of urban boundary. Tan-sigmoid transfer 

activation function was used for the activation of hidden and output neurons (Tsoukalas 

and Uhrig, 1997). 

To avoid over-training of the network (cf. Skapura, 1996; Bishop 1999), the ANN 

was trained with a partial set of input data. To further reduce over-fitting, data were 

presented to the ANN in random order for each cycle. The ANN was trained with the 
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training data and the MSE generated by Matlab and each cycle was stored in a file for the 

analysis. The ANN was tested as follows.  First, the network files generated from the 

training run were applied to a pattern file that contained all of the cells on the urban 

boundary. Matlab used the pattern and the ANN files to generate an output file of the 

activation values. The resultant file contained values ranged from 0.0 to 1.0. Testing run 

was completed by comparing the simulated urban boundary with the observed urban 

boundary, based on the radial distances at the specified azimuths. The MSE was used to 

assess the performance of the UGBM. Therefore, MSE values generated for each 

iteration with Matlab software and each cycle was stored in a file for the analysis. Then, 

the MSE values are plotted against the number of training cycles to identify the best 

fitting model. 

6.3.4 Calibration Metrics 

We calculated the average and standard deviation of the difference between 

predicted distance and observed distance across all azimuths, MSE of the training run for 

each drop one out simulation and the seven predictor variable model, and the difference 

in size of the predicted year 2000 urban area and the observed urban area in 2000.  We 

also used a Percent Area Match (PAM) metric to evaluate our UGBM. PAM compares 

(Eq. 6-5) areas that are predicted correctly to change according to our UGBM with areas 

that are converted to new areas in our observed map as follows:  

                    
                        

                       
                          (Eq. 6-5) 
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PAM is expressed as a percentage. Values less than 100 indicate that the model 

underestimates the size of the urban area; values greater than 100 reflect that the model 

overestimates urban area.  

6.4 Results 

6.4.1 Training of UGBM  

The simulation points in our study area included 360 cells of which 54 cells 

(15%) were removed due to limitations of undergoing expansion. Figure 6-7 illustrates 

training run of UGBM in which MSE was plotted across training cycles. The MSE of the 

UGBM starts around 0.4 and drops linearly through 4,000 cycles, and then decreases its 

decline between 4,000 and 8,000 cycles; it then levels off below 0.02 after 8,000 cycles.  

We halted the training at 10,000 cycles where the MSE was 0.0138.   

6.4.2 Testing Run and Model Validation 

We used several goodness of fit statistics to compare the UGBM predicted and 

observed maps of the UGBs. We calculated the differences between predicted and 

reference distances across all azimuths; mean and standard deviation of these differences 

were 4 km and 1 km, respectively. The average distances were 20 km, so the model 

underestimated distances by 20%. We also followed MSEs across training cycles for a 

“drop one out” experiment (Figure 6-8) following Pijanowski (2002) and Washington et 

al. (2010). The MSE plots show that all six predictor variable models follow a similar 

trend during training; MSEs are larger (> 0.4) than the seven variable model at the start 

but fall to less than 0.1 after 5,000 cycles. All reach a minimum MSE around 7,000 

cycles.  Table 6-1 lists the MSEs after training was stopped at 10,000 cycles.  Most MSEs 
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are close to the seven variable MSEs. Removing the predictor variable aspect produced 

the best (i.e. least MSE) six variable model; removing distance to road yielded a model 

with the greatest MSE (least fit to the data) suggesting this was the most important 

predictor variable in the UGBM. 

PAM for the best fit simulation was 80%.  We also measured PAM in each of the 

cardinal directions (North, South, East and West as north = 315 through 45, east = 45 

through 135; south= 135 through 225 and west= 225 through 315) to determine if the 

model performed better in any one direction. Results show (Table 6-2) that values of 

PAM are 80% or greater in all cardinal directions, indicating that there are no significant 

biases in any of the cardinal directions although it is clear that the model more frequently 

underestimates, rather than overestimates, the distances.  

6.4.3 Prediction 

After the ANN was successfully trained and calibrated, biases and weights were 

saved and used to forecast the boundary into the future.  Predictor maps were developed 

for areas outside the urban growth boundary of 2000 and these values along with biases 

and weights from the training runs were then applied to another testing run to estimate 

distances from the reference point.  Boundary location points for the future (2012) were 

derived using Eq. (6-6):  

)()()( 200022000220123   tStSSFtS ititiit                  (Eq. 6-6) 

Values for each point around all azimuths were then assembled into a vector 

polygon to create the future UGB.   
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Figure 6-9 shows the spatial configuration of the UGBs for 2012; this boundary is 

overlaid on TMA in 1988 and 2000 for comparison.  Note that a great deal of boundary 

growth is anticipated in the south, southeast, east and northeast portions of TMA. 

However, less boundary growth may also occur into the west and north, but no boundary 

growth is predicted into the southwest and northwest of the TMA. This is because in the 

northwest, urban growth is constrained by a mountain and there are legal restrictions on 

growth by government in the southwest.  

6.5 Conclusion and Discussion 

The purpose of delineating urban planned districts is to guide and regulate the 

location and intensity of land development controlled under Iran’s UGB plan. The 

purpose of designating non-urban planned districts is the conservation of environmentally 

sensitive areas and to protect rural landscapes. In Iran, citizens, policy makers, and 

natural resource managers have begun to propose the use of UGBs, both locally and 

nationally. In Iran, policies related to land use intends to support efficient use of natural 

resources and to improve socio-economic development. Social cohesion should be 

considered and economic growth should not favor environmental degradation. Thus, a 

tool like our UGBM is necessary to support the planning process in a complex urbanizing 

region like Tehran. 

UGBM provides information which can be used as input in urban planning: (1) 

UGBM can be used to determine which predictor variable has the most important role on 

UGB simulation. Therefore, urban planners can focus on this factor more and consider 

essential requirements to prepare the city for better urban expansion. In addition, 
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environmentalist can also provide better conditions to prevent pollution in these areas. (2) 

UGBM determines to which direction urban boundary will extend. 

This model differs in form and function from other urban growth models.  First, 

the UGBM integrates raster and vector GIS routines in ways that attempt to delineate 

boundaries of large cities.  Many land change models, such as the SLEUTH cellular-

automaton model of Clark et al. (1997 and 1998), use a raster based environment to 

growth and transition cells on the basis of complex rules and learning algorithms.  Input 

and output are all raster maps.  Our UGBM uses raster as input and creates a vector map 

as output. The CLUE model of Verburg et al. (2002) uses a series of hierarchical rules 

coupled to logit models to transition cells, also entirely in a raster environment.  

Pijanowski’s Land Transformation Model (LTM) is very similar to our UGBM, as it uses 

ANNs to assign rank order probabilities of transition and a simple rule to adjust the 

quantity of transitions into the future.  Model calibration is generally performed on the 

probability distribution of cells (Verburg et al. 2004) or on the spatial shape of groups of 

cells (e.g. Pijanowski et al. 2006). The SLEUTH, CLUE and LTM has, to our knowledge, 

not been configured for urban growth boundary and used to predict the size and shape of 

a large urban area. This reconfiguration of Pijanowski’s LTM represents one of several 

(Yin and Xu, 1991; Li and Yeh, 2002; Shellito and Pijanowski, 2003; Müller and Mburu, 

2009; Pijanowski et al. 2007; Ray and Pijanowski, 2010) configurations for modeling 

land use patterns using ANNs.  Our UGBM reconfiguration has also produced new ways 

to measure model goodness of fit. Comparing SFs along various axes emanating from a 

central reference point can potentially assist modelers with assessing how well their 



      203 

models grow in different directions. Comparing the size of the predicted and observed 

urban area is simple but rarely done in modeling studies. 

There are a variety of ways that urban growth boundaries are developed. In 

Tennessee, USA for example, state policy mandates that a County Growth Plan, 

developed by a County Coordinating Committee, establish UGBs.  These are often 

included as part of the comprehensive plan as a map developed using GIS layers of 

zoning, natural resources, transportation, etc.  Our method of delineating the UGB used 

Landsat TM imagery.  These images were used to classify urban cells and then urban 

edges of the largest urban patch assigned to the urban boundary. This method was 

employed because no official UGB map for Tehran exists.  This method could be 

employed in some areas of the world however where land use maps are not readily 

available. 

In this chapter, our UGBM has been developed which takes advantage of GIS, 

ANN and RS based on the utilization of a variety of social and environmental factors. 

UGBM examines the relationship between seven predictor variables as inputs and radial 

extent of the boundary at specified azimuths as outputs to simulate UGB. GIS and RS 

have the potential to support such models by providing data and analytical tools for the 

study of urban planning while ANNs learn about complex spatial relationships of factors 

that correlate with UGB. Applying the proposed UGBM to the TMA resulted from 

variables has been successfully examined. The delineation of the UGB for TMA provides 

a new and easily understood way of defining where urban growth will be encouraged or 

not permitted.  It clearly distinguishes land that is designated urban, to be used for 

housing, industry and commerce, from that which is non-urban. Non-urban land is to be 
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used for activities such as conservation, agriculture, resource development and suitable 

community infrastructure like airports, water supply and sewage treatment facilities that 

require large areas of open land. 
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Figure 6-1: A typical architecture of feed-forward back propagation ANN 
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Figure 6-2: Conceptual model of UGBM 
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Figure 6-3: Image classification results for TMA in 1988 and 2000 
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Figure 6-4: Urban boundary of TMA for the years 1988 and 2000 
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Figure 6-5: Maps of the seven variables in 1988 used as input for ANN 
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Figure 6-6: Centre configuration used as output for training data collection in 2000, TMA 

centre location: (x, y) = (534694.929, 3953534.460) meters 

 

 

 
Figure 6-7: MSE value across training cycles 
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Figure 6-8: MSEs across training cycles for the drop one out predictor variable sensitivity 

analysis. Each curve is labelled with the predictor variable that is left out of the training 

 

 

  

 

 

 

 

 

 

 

 

 

Figure 6-9: Illustration of the result of UGB predictions of TMA in 2012 
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Table 6-1: MSE of UGBMs with reduced-variable for the statistical analysis 

Reduced-variable MSE value 

Distance to road 0.0182 

Distance to build up area 0.0178 

Elevation 0.0162 

Distance to service centre 0.0145 

Slope 0.0136 

Distance to green space 0.0124 

Aspect 0.0107 

 

 

Table 6-2: PAM values for different cardinal directions 

Direction Domain (Degree) Area actually 

transitioning (km
2
) 

Area predicted to 

change (km
2
) 

PAM 

North 315° to 45° 25 21 84 

East 45° to 135° 22 17.60 80 

South 135° to 225° 34 27.54 81 

West 225° to 315° 19 15.58 82 

Total 0° to 360° 100 81.72 82 
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CHAPTER 7: TWO RULE-BASED URBAN GROWTH BOUNDARY MODELS 

APPLIED TO THE TEHRAN METROPOLITAN AREA, IRAN
4
 

7.1 Introduction 

7.1.1 Urban Growth Boundaries (UGBs) 

Urban growth modeling has attracted considerable attention over the last two 

decades (Veldkamp et al. 1997; Verburg et al. 2002; Clarke and Gaydos 1998; 

Pijanowski et al. 2002; Batisani and Yarnal, 2009; Dewan and Yamaguchi, 2009; He et 

al. 2006; Tayyebi et al. 2008a, 2010; Serra et al. 2009; Shalaby and Tateishi, 2007). The 

focus of much of this research has been exclusively on modeling change in individual 

urban pixels. Surprisingly, urban growth modeling has failed to directly address the 

delineation of Urban Growth Boundaries (UGBs) which are common planning tools used 

to demarcate limits for urban growth over a particular period of time, generally 20 years 

(Calthorpe and Fulton, 2001). UGBs have been used by state, regional, or local planning 

agencies in various countries around the world (Phillips and Goodstein, 2000; Wassmer 

and Baass, 2006; Gordon and Vipond, 2005; Coiacetto, 2007; Bengston and Youn, 2006; 

Tayyebi et al. 2008b). 

                                                 

4 Current version has been published in Applied Geography. 
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Most land change simulations treat urban areas as groups of similarly classified 

pixels and are not specifically designed to simulate the edges of the urban area. 

Furthermore, the few UGB models that exist do not specifically address the location of 

the urban boundary per se, but rather supply users with a means to calculate the total area 

needed within the urban area. UGBs have been extensively adopted in the United States, 

particularly in Oregon, Washington, Minnesota, Maryland, Montana, Florida, and 

California (Anderson, 1999; Jaeker and Plantinga, 2007; Staley and Mildner, 1999). For 

example, Baltimore County in the state of Maryland has had an urban/rural demarcation 

line in place since the 1970s which defines the areas where sewer and water can be 

provided (Anderson, 1999). The primary objectives of restricting urban development 

within a defined boundary are to: (1) control urban sprawl by encouraging in-fill 

development where services and utilities were generally available, (2) reduce the cost of 

infrastructure provision for new development by having better coordination between its 

provisions and economic development plans, and (3) preserve resources in the 

surrounding landscape (APA 2002; Gunn, 2007; Han et al. 2009; Acevedo et al. 2007; 

Bengston and Youn, 2006). Hence, land inside the UGB is available for urban 

development while the land outside the UGB is set aside for farming, forestry, and low-

density residential development where conditions for farming are particularly poor 

(Nelson and Moore, 1993). UGBs have also been proposed as one of the first urban 

growth management tools in countries such as Saudi Arabia (Al-Hathloul and Mughal, 

2004) where explosive urban growth is straining urban infrastructure in its major cities 

(Mubarak, 2004). Despite the preponderance of UGBs around the world, it is surprising 

that very little research has focused on developing models that can be used to determine 
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how UGBs should be implemented (Knaap and Hopkins, 2001, Alkheder and Shan 

2005). 

A vital component of the research on land use/cover change is the development of 

land use/cover change models for decision making (GLP, 2005; Houet et al. 2009; 

Lambin and Geist, 2006; Rindfuss et al. 2004; Turner et al. 2007). The impact of urban 

planning policies in large cities is often a major concern for those involved in modeling, 

forecasting, and policy making related to planning sustainable urban development 

(Barredo et al. 2004; Evans and Kelley, 2007). Therefore, the spatial and temporal 

boundaries of UGBs deserve serious study by urban planners, urban geographers and 

policy makers. In Iran, the growing necessity for infrastructure provision due to the 

accelerating rate of urban growth encouraged the government to introduce UGBs, and 

decision makers have recently started to use spatial analytical and planning tools to 

simulate and evaluate the consequences of urban planning prior to implementing them. 

However, urban development inevitably reaches the UGB, creating the need to define 

UGBs that can realistically accommodate future urban expansion (Nelson and Moore, 

1993).  

Urban dynamics are often simulated with rule-based Urban Growth Models 

(UGMs), e.g. Cellular Automata (CA) and Agent Based Models (ABMs). CA has been 

employed to study different types of urban forms and development densities (Yeh and Li, 

2002), evolution of urban spatial structure over time (White and Engelen, 2000), patterns 

of pedestrian movement (Batty 2003), and to explore urban growth and sprawl (Clarke et 

al. 1997). In Rule-Based UGMs, universal transition rules specify how a cell will evolve 

under certain conditions through time. They have also incorporated real data through GIS 
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and relax many of the assumptions, such as homogeneity of space, uniformity of 

neighborhood interactions, and universal transition functions (White and Engelen 2000). 

ABM also allows for the modeling of interactions between human and natural systems by 

defining different agents (Matthews et al. 2007; Parker et al. 2008; Robinson et al. 2007; 

Berger and Schreinemachers, 2006; Le et al. 2008). Agents can have different internal 

characteristics which allow them to interact with other agents and their environment 

(Bonabeau, 2002; Sawyer, 2003). However, ruled-based models have not been used to 

specifically model urban boundary change. In the following sections, we present two 

Urban Growth Boundary Models (UGBMs) and describe how they represent the spatial 

location and quantity of area within urban boundary more accurately than traditional 

Urban Growth Models; hence provide more useful information for developing and 

implementing UGBs. 

7.1.2 Urban Growth Boundary Models (UGBMs) versus Urban Growth Models 

(UGMs) 

UGMBs differ from other UGMs in that they predict the change in the spatial 

location and quantity of area within urban boundary whereas UGMs simulate the change 

in individual pixels in a study area from non-urban to urban. UGBMs utilize solely vector 

GIS routines in ways that attempt to delineate urban boundaries. Many land change 

models, like the current SLEUTH model, grow by pixels and complex spatial rules to 

govern the growth patterns of these pixels (Jantz and Goetz, 2005; Clarke and Gaydos, 

1998). Similarly, the CLUE model of Verburg et al. (2002) uses a series of hierarchical 

rules coupled to logit models to transition cells in a raster environment. The Land 

Transformation Model (LTM) also uses pixels to simulate the relationship between inputs 
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and output (Pijanowski et al. 2002; Pijanowski et al. 2005; Pijanowski et al. 2006; 

Pijanowski et al. 2010). Calibration for the CLUE model is performed on the probability 

distribution of cells (Verburg, 2006) and on the spatial shape of groups of cells for the 

LTM (Pijanowski et al. 2006; Tayyebi et al. 2009). None of the UGMs have attempted to 

predict the size and shape of urban boundaries directly. Further, UGMs use accuracy 

assessment parameters like Percent Correct Match (PCM), Kappa Statistic (KS), and 

Relative Operating Characteristic (ROC) that are only applicable to comparing pixels 

classified either as binary maps (PCM and KS) or probabilities of change (ROC). In 

contrast, to assess a boundary, one needs to use shape and size to measure model 

goodness of fit and determine the distance of urban growth from a central reference point 

across different azimuths, which can potentially inform planners on how the urban 

boundary grows in particular directions. Furthermore, comparing the size of the predicted 

and observed urban area is rarely done in modeling studies. Thus, modeling urban 

boundary and urban growth are different and we have not been able to find (in the 

geography, urban planning, land change or economic literature) any model that focuses 

specifically on simulating an UGB.  

7.1.3 Research question and chapter structure 

In this chapter, we demonstrate two approaches for simulating urban boundary 

growth using rule-based simulation UGBMs, one which we call the Distance Dependent 

Method (DDM) and the other referred to as the Distance Independent Method (DIM). We 

compare these UGBMs with a null UGBM to assess their accuracy in predicting the 

location and quantity of urban boundary change. Both DDM and DIM use azimuths and 
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distances from a central point in the region to simulate urban boundary change. Distances 

across different azimuths from points on the urban boundary to a central point are 

measured in the interior of the urban area and then used to simulate urban boundary. The 

relative accuracy of the urban boundary predictions are assessed by comparing the 

Percent Area Match (PAM) in quantity and location goodness of fit metric of the 

projection from each UGBMs with the reference urban boundary for the same year. The 

current chapter is unique in that it is the first to develop rule-based simulation UGBMs to 

predict urban boundary change. The research questions are: (1) How can spatial predictor 

variables (azimuth and distances) be used to parameterize UGBs with rule-based 

modelling approaches (i.e. DDM and DIM)? (2) Do these rule-based UGBMs more 

accurately predict urban boundaries than a null UGBM? and (3) How can UGB maps 

derived from rule-based simulation UGBMs be used by regional planners to develop 

future UGBs?  

We organize the remainder of this chapter as follows. Section 7.2 summarizes the 

basic principles of rule-based simulation UGBMs and the concept of a Null model 

relevant to urban boundary change modelling. Section 7.3 describes the study area, 

Tehran Metropolitan Area (TMA), and the data source used in the models and illustrates 

how we parameterize rule-based simulation UGBMs and Null UGBM using a set of 

spatial interaction rules derived from GIS routines. The projections for the TMA and 

comparison between the rule-based simulation UGBMs and Null UGBM are discussed in 

section 7.4. The chapter concludes with a discussion on simulation of UGB in TMA and 

its application in urban planning. 
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7.2 Urban Growth Boundary Models (UGBMs) 

7.2.1 Application of Null model to UGBMs 

Null models are pattern generating models that allow for randomization of data or 

random sampling from a known or imagined distribution (Gotelli and Graves, 1996).  

Null models are widely used in ecology and biogeography, particularly when 

conventional statistical analyses fall short (Nitecki and Hoffman, 1987; Manly, 1991; 

Gotelli and Graves, 1996; Colwell and Lees, 2000). In contrast to other modelling 

approaches, the null model deliberately excludes a mechanism being tested (Caswell, 

1988). We compare output from our ruled-based UGBMs with output from null UGBMs 

to assess how well our model predicts the patterns in the real data compared to a simple 

model that does not incorporate any predictor variables. 

We can generate a null UGBM using an algorithm or set of rules based on 

procedures that are created using random values. A polygon of the urban boundary of the 

study area in initial time can be expanded using GIS software to produce new urban 

boundaries, each corresponding to a separate expansion increment. Therefore, each run of 

the null UGBM generates a different simulated map that has a different spatial location 

and quantity of area within urban boundary, depending on the particular run’s parameters 

and the random selection.  This can be done until an under-estimated and over-estimated 

of the reference urban boundary in subsequent time is achieved.  
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7.2.2 Rule-based simulation UGBMs 

7.2.2.1 Distance Dependent Method (DDM) 

The DDM approach uses the points on the urban boundary in initial time and 

takes advantage of a suitable prediction method to anticipate the urban boundary in any 

subsequent time. The suitable prediction method projects a new urban boundary by 

increasing distances by percentage increments across different azimuths. Central points in 

the city are defined visually based on different constraints (discussed in section 7.2.2.4) 

and the distance from the central point to points on the urban boundary are computed for 

the different azimuths (Figure 7-1) using Eq. 7-1 and 7-2.  
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In Eq. 7-1 and 7-2: tX is the Easting coordinate of a central point in the city; tY  is 

the Northing coordinate of a central point in the city; iX  is the Easting coordinate of 

point i on urban boundary; iY  is the Northing coordinate of point i on urban boundary; 

itS  is the distance between an central point in the city and point i on the urban boundary; 

and itAzimuth  is the azimuth between a central point in the city and point i on the urban 

boundary.  

Eq. 7-3 is used to ensure that the reference change in distance across different 

azimuths and for different increments is consistent in percentage. In Eq. 7-3,
 tiS   and itS  
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are the new predicted distance and initial distance from central point to urban boundary 

for the different azimuths respectively, and )(GFFactorGrowth  is the percent of 

increment change in distances where
 

niiGF 1;0.1  . 

itti SGFS                                                   (Eq. 7-3) 

tiS   is then used to calculate coordinates of new urban boundaries for different 

percent distance increments.  

7.2.2.2 Distance Independent Method (DIM) 

In contrast to DDM, DIM simulates the urban boundaries using data from two 

time periods and measure distances from central points to urban boundaries. DIM uses 

central points to indicate an azimuth for measuring the rate of change in distance between 

the two urban boundaries using a Rate of Change in Distances over Time (RCDT). The 

central points used to compute the distances and azimuths are the same across the two 

time periods. The RCDT is measured across different azimuths using Eq. 7-4, which is 

repeated for all points along the urban boundary so that each point on urban boundary has 

its own RCDT. 
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In Eq. 7-4, iRCDT  is the Rate of Change in Distances over Time between a 

central point in the city and point i on the urban boundary across different azimuths;

)( 1tSit is the distance between a central point and point i on urban boundary in initial 
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time; and )( 2tSit  is the distance between a central point and point i on urban boundary 

in subsequent time. 

Each central point is assigned to a region on the urban boundary based on which 

central point is used to measure the RCDT for points on that region (see section 7.2.4 for 

details). The RCDTs for all points within the region on the urban boundary map 

coinciding with each central point are averaged using Eq. 7-5, giving an Average RCDT 

(ARCDT) for each central point. Final Average RCDT (FARCDT) is computed as the 

average of all ARCDTs (Eq. 7-6). The ARCDT of different central points and the 

FARCDT can be applied to predict new urban boundaries for the different regions on the 

urban boundary map. 
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In Eq. 7-5; n  is the number of points in each region of the urban boundary map; 

m is the number of central points (Eq. 7-6); ijRCDT  is the RCDT that is derived from 

point i on the urban boundary corresponding to central point j; jARCDT  is the Average 

of RCDTs for points corresponding to central point j; and ARCDTF  is the Final Average 

of jARCDT
 
for all central points. 

A new urban boundary can then be created using predicted distances from the 

urban boundary to central points calculated with ARCDTs from each region and the 
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FARCDT. This research defines two scenarios: (1) FARCDT is applied for all distances 

across different azimuths for all central points; (2) the ARCDT of each region is applied 

for the corresponding central point as well as other central points. Thus, only one urban 

boundary is determined using FARCDT, while the number of urban boundaries 

determined using ARCDTs are equal to the number of central points. The new predicted 

urban boundaries created using FARCDT and ARCDTs are then compared with the 

reference urban boundary map to determine the best match, which can then be used to 

predict future urban boundaries (Figure 7-2). 

7.2.2.3 Calibrating UGBMs using Percent Area Match (PAM) quantity and location 

After the end points of predicted distances across different azimuths by DDM and 

DIM are connected to create a new urban boundary polygon, the agreement between the 

simulated and the reference urban boundary can be determined using Percent Area Match 

(PAM) quantity and location metrics (Eq. 7-7 and 7-8). PAM quantity gives the match 

between the total area under the predicted boundary and the reference boundary (Eq. 7-

7). PAM location gives the relative match for the urban area between the reference and 

predicted maps without considering the overestimate (Figure 7-3); which, in contrast to 

PAM quantity, also indicates the match in the location of the predicted and reference 

urban boundaries. PAM location is used to determine how much of the predicted area is 

located in the right place relative to the reference urban boundary (Eq. 7-8). PAM 

quantity and location are important for urban planners because it is vital for them to know 

the spatial location and quantity of area within the urban boundary around the urban area.  
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If the UGBMs simulates the overall quantity accurately (PAM quantity), then 

there is a large range for the UGBMs to allocate the location accurately or inaccurately in 

space (PAM location). Therefore, readers must know the accuracy of the simulation of 

quantity in order to interpret the other aspects of the assessment. PAM quantity is used as 

a stop condition to simulate urban boundary change because the quantity of simulated are 

by UGBMs provides a better match for the quantity of area that is derived from the urban 

boundary in subsequent time periods, producing a better UGBM. The stop condition for 

the Null UGBM and the DDM is defined when the total area under the predicted urban 

boundary becomes greater than the area under the reference urban boundary, or when 

PAM quantity > 1. Therefore, there is one PAM quantity and location for DIM (ruled-

based simulation UGBM). On the other hand, there are different PAM quantities and 

locations for Null UGBM and DDM (rule-based simulation UGBMs) which equal to the 

number of simulations that are repeated until a stop condition is satisfied.  

A PAM ratio for quantity equal to one indicates that the UGBM prediction of the 

urban area is equal to the reference urban area, a PAM ratio for quantity greater than one 

means that the UGBM overestimates new urban area and a PAM ratio for quantity less 

than one indicates that UGBM underestimates the new urban area. Similarly, a PAM ratio 

for location closer to 1 also indicates a more accurate model.  
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Where AAt1 = Area within reference urban boundary in time 1; AAt2 = Area 

within reference urban boundary in time 2; APt2 = Area within predicted urban boundary 

in time 2;  = Area over-estimated by APt2 relative to AAt2; 

Two PAM quantity values, one closest to and greater than 1.0, and one closest to 

and less than 1.0, are used to determine the corresponding (1) linear distances from urban 

boundary for Null UGBM (2) percent level of distance increment for DDM and (3) 

ARCDT or FARCDT for DIM for predicting one future urban boundary that is an 

overestimate and another future urban boundary that is an underestimate. 

7.2.2.4 Constraints 

There are two constraints that we use for the urban growth boundary simulation. 

First, most of urban boundaries are not fully convex in shape and contain some 

concavities, so it is not possible to determine a single central point from which one can 

draw a straight line to the boundary (Figure 7-4a). Thus, several central points may be 

required to determine the distance from some central location to the urban boundary 

across all azimuths (Figure 7-4b). Second, there are often different physical or legal 

obstructions to growth of urban boundaries in cities. Thus, it is necessary to identify 

obstructed regions and remove them from analysis.  

7.3 Implementation of UGBMs 

The boundaries of TMA in 1988 and 2000 were obtained from satellite images 

with a 28.5m resolution, and were overlaid to create one composite map (Figure 7-5). 

Urban pixels in the image were defined according to Anderson classification level 1 

using ArcGIS10 from which urban cells on the edge of the urban area were visually used 
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to define the urban boundary. Urban boundaries were exported in vector format. Three 

central points were visually identified as the minimum number of points needed to cover 

the boundary of the TMA (Figure 7-4b) and a corresponding region was assigned to each 

central point (Figure 7-5). Eight hundred and seventy one and 783 points were used to 

create the point vector outlines of the urban boundary in 1988 and 2000 respectively. 

7.3.1 Study Area 

Tehran is the capital of Iran and is located (Latitude 35° 45' N and Longitude 51° 

30' E) in the northern portion of the country. The Tehran Metropolitan Area (TMA) was 

chosen as our study area (1) because considerable remote sensing and geospatial data 

needed for delineating urban boundaries exists for the region; and (2) because of the need 

for an UGBM that can be used for regional planning by the local government. Iran’s 

rapid economic growth from 1980 to 2010 transformed the country to an industrialized 

nation. TMA has supported a great deal of economic and social development in terms of 

urban change and the rapid growth of infrastructure. TMA, with a population of over 15 

million and a metropolitan area of over 2000 km
2
, is the centre of commercial, financial, 

cultural and educational activities in Iran. Rapid urban growth has resulted from high 

population growth and increased rural-urban migration combined with a strong tradition 

of centralization of government activities focussed in the capital. Consequently, the 

development and application of UGBMs has particular importance for this region. 

7.3.2 Data preparation for Null, DDM and DIM UGBM 

For the null UGBM, we used urban boundary of TMA in 1988 as a base map for 

simulations. The buffer option in ArcGIS10 was used to simulate new urban boundaries 
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in 2000 based on different increments in linear distance with 50m interval around the 

urban boundary in 1988. Corresponding urban boundaries with respect to the linear 

distances are simulated and area of simulated urban boundaries were saved in a excel file 

and compared with reference urban boundary in 2000 with respect to PAM quantity. The 

simulations of urban boundaries continue until the PAM quantity greater than 1.0 

condition is satisfied as a stop condition. 

Using DDM, urban boundary in 2000 was predicted by calculating the distance 

between the three central points and the 871 points on the 1988 urban boundary across 

different azimuths (Eq. 7-1 and 7-2). The boundary of each of the three regions was 

projected by using only the azimuths and distances between points on the boundary 

corresponding to the central point of the region with distance increments in percent level 

(Figure 7-5).  The corresponding urban boundary with respect to the distance increments 

is created at each stage and area of produced urban boundary saved in a MS Excel file. 

We also saved to MS Excel the PAM quantity values which were derived from 

comparison between our predictions and reference urban boundary in 2000 for different 

runs until the best over-estimated PAM quantity is satisfied as stop condition.  

In order to acquire the best PAM quantity value for our three regions and whole 

region individually, we defined two scenarios: (1) we determined a single best percent 

increment in distance for the whole TMA by comparing PAM quantity values between all 

percent increments from the three central points of our 2000 projection with the reference 

2000 urban boundary. (2) We also determined three separate percent increments, one for 

each of the regions also by comparing PAM quantity values of projection to reference 

urban boundary in 2000.  
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For DIM, points on both the 1988 and 2000 urban boundaries and the three 

central points were used to predict the urban boundary (Eq. 7-1 and 7-2). The same 

central points were used to calculate the distance between the urban boundaries in 1988 

and 2000 in order to maintain the same azimuth between the RCDT and the 

corresponding distance from central point to boundary.  

There are three steps in data preparation for the DIM approach included: (1) The 

distances between a central point and points on the boundary for each region for both 

map years are sorted according to azimuth, i.e. from 1 to 360. (2) Because of 

considering three independent central points, total numbers of azimuth distances were 

greater than 360. The distances were averaged to obtain one mean distance per 1 

interval, leaving at total of 537 and 486 samples total from the three central points on the 

1988 and 2000 urban boundaries respectively. (3) Finally, because the samples were not 

distributed evenly across the urban boundary, some azimuth degree intervals were left 

without a distance value. The distance for these azimuth degree intervals was obtained as 

the average of the two nearest azimuth distances, resulting in a total of 655 and 735 

samples on the urban boundary in 1988 and 2000 respectively. 

7.4 Result and discussion 

7.4.1 Null UGBM 

7.4.1.1 Calibration with PAM quantity: 

Fifteen urban boundaries were simulated by varying the distances from 50m to 

750m with 50m intervals around the TMA boundary in 1988 using buffer option in 

ArcGIS10. The area of new predicted urban boundary in 2000 is calculated and compared 
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with area of urban boundary in 2000 using PAM quantity. The best under-estimated and 

over-estimated PAM quantity was obtained from boundary projection using the null 

UGBM with 700m and 750m distances around the urban boundary in 1988, respectively 

(Table 7-1 and 7-2). Figure 7-6 illustrates projected under-estimated and over-estimated 

urban boundaries in 2000 for the TMA and the reference TMA urban boundary in 1988 

and 2000. 

7.4.1.2 Forecasting Urban Boundary 

For forecasting, 700m and 750m distances around the urban boundary in 2000 are 

used in the buffer option of ArcGIS10 to produce under-estimated and over-estimated 

urban boundary in 2012, respectively. Table 7-3 shows the total area of TMA calculated 

using the corresponding projected urban boundaries in 2012. The over-estimated and 

under-estimated projected urban boundaries for 2012 with using the best PAM quantity 

are illustrated in Figure 7-7. 

7.4.2 Distance Dependent Method (DDM) 

7.4.2.1 Calibration with PAM quantity: Region 1 (western TMA) experienced 

the least, while Region 2 (northern TMA) experienced the greatest urban growth from 

1988 to 2000 (Table 7-1; Figure 7-5). The best fit percent increment in distance for the 

under-estimated and the over-estimated respectively were: 13% and 14% for the whole 

region (Figure 7-8a, b and c), 11% and 12% for region 1 (Figure 7-8c), 17% and 18 % for 

region 2 (Figure 7-8a), and 8% and 9% for region 3 (Figure 7-8b). The best under-

estimated and over-estimated PAM quantity between our 2000 projection and the 

reference 2000 urban boundary are summarized in Table 7-4. The PAM  quantity for 
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regions 1, 2, and 3 obtained from 1) projections using two best match percent increments 

for each of the corresponding regions (multi-region model), are closer to 1 than those 

obtained from 2) projections using the two best percent increments for the whole region 

(whole-region model; Table 7-4). The best match percent increment also varied across 

the three regions as predicted by the multi-region model (Table 7-4), whereas percent 

increment growth is assumed to be the same across the three regions in the whole-region 

model. Further, while the two best match percent increments for each of the regions from 

the multi-region model provided one underestimate and one overestimate, the two best 

match percent increments from the whole-region model provided two overestimates for 

region 1 and 3, and two underestimates for region 2 (Table 7-4). These results suggest 

that projecting urban boundary from multiple regions is more accurate than projecting 

urban boundary from a single whole region.  

  The variation in PAM quantity across different percent increments was lowest in 

region 2 and greatest in region 3 (Table 7-5). As the variation in PAM quantity increases, 

the difference between the over-estimated and under-estimated also increases, suggesting 

that a greater variation in PAM quantity indicates a model that is more sensitive to 

percent increment and hence is likely to provide a less accurate prediction of urban 

boundary. Thus, the urban boundary projection for region 2 is more sensitive to percent 

increment and less accurate than region 3 (Table 7-5). This variation in the relative 

sensitivity of different regions further demonstrates the importance of predicting changes 

in urban boundary separately for each region, rather than the region as a whole. 

7.4.2.2 Forecasting Urban Boundary: The over-estimated and under-estimated 

urban boundaries projected for 2012 using the best PAM quantity (13% and 14%) 
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increment in distances with the whole-region model are illustrated in Figure 7-9a, b and 

c. For the multiple-region model, the over-estimated and under-estimated urban 

boundaries projected for 2012 (using 11%, 17% and 8% increments in distances for the 

under-estimated and 12%, 18% and 9% increment in distances for the over-estimated) for 

region 1, 2 and 3 (Figure 7-9a, b and c). Table 7-6 shows the total area within each region 

calculated using the corresponding projected urban boundaries in 2012. 

7.4.3 Distance Independent Method (DIM) 

We also used the DIM approach to obtain predictions for the whole TMA and 

each of the individual TMA regions. The urban boundary of the whole TMA was 

projected using ARCDTs from the three regions as well as the FARCDT (final average of 

the three ARCDTs). The urban boundaries of the three TMA regions were projected 

using ARCDTs from all of the regions and the FARCDT. The three regional areas 

obtained using their corresponding ARCDTs (ARCDT1,2,3) were also added together to 

produce another whole region estimate for the TMA. Table 7-9 shows the different 

ARCDTs obtained from each of the three regions as well as the FARCDT (average of the 

three ARCDTs). 

7.4.3.1 Calibration with PAM: For the whole TMA, the PAM quantity between 

the reference urban boundary in 2000 and the predicted urban boundary using ARCDT3 

(ARCDT from region 3) provided the under-estimated value closest to 1, while urban 

boundaries using ARCDT1, ARCDT2, FARCDT and ARCDT1,2,3 all provided over-

estimated values (Table 7-8). The best over-estimated PAM quantity was obtained from 

boundary projection using ARCDT1,2,3 (Table 7-8). Figure 7-10 illustrates relative 
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position of projected urban boundaries in 2000 for the whole TMA (obtained using 

ARCDT1, ARCDT2, ARCDT3, FARCDT and ARCDT1,2,3) and the reference TMA 

urban boundary in 2000 and 1988. It is clear from Table 7-8 and Figure 7-10 that the 

most accurate urban boundary projection is obtained by using ARCDT1,2,3 when 

modeling the whole TMA. 

For individual TMA regions; ARCDT3 gave the only under-estimated PAM 

quantity value, while FARCDT gave the best over-estimated for region 1 (Table 7-9); 

while ARCDT1, ARCDT2, ARCDT3 and FARCDT all gave under-estimates for region 

2, ARCDT2 gave the PAM quantity value closest to 1 (Table 7-9); and all ARCDTs and 

FARCDT gave over-estimates for region 3 with ARCDT3 providing the best PAM 

quantity value (Table 7-9). These results suggest when projecting urban boundary for 

individual regions, using the corresponding ARCDT for each region is more accurate 

than using ARCDTs from other regions or the FARCDT. 

7.4.2.2 Forecasting Urban Boundary: Figure 7-11 illustrates relative position of 

projected urban boundaries in 2012 obtained using the best match ARCDTs and 

FARCDT (ARCDT3, ARCDT1,2,3 and FARCDT) and the reference TMA urban 

boundary in 1988 and 2000. Table 7-10 shows the total predicted area of the whole TMA 

in 2012, and table 7-11 shows the predicted area within each region in 2012 calculated 

using the corresponding projected urban boundaries. 

7.4.4 Comparison of DDM UBGM, DIM UBGM and Null UGBM 

We compared DDM and DIM (rule-based simulation UGBMs) with each other as 

well as with the null UGBM. There are differences in the way that the data are used to 
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parameterize null UGBM and rule-based simulation UGBMs. The rule-based simulation 

UGBMs employ vector predictor variables (radial distances at the specified azimuths) as 

only input for DDM, and as input and output for DIM, to simulate urban boundary while 

the null UGBM employs only urban boundaries in initial and subsequent time as input for 

simulation and assessment in vector format, respectively. The rule-based simulation 

UGBMs use mathematical models to simulate and predict urban boundary while null 

UGBMs use buffer option as a tool for urban boundary simulation and prediction. Both 

rule-based and null UGBMs indicate smooth shape in prediction of urban boundary.  

The PAM quantity and location assessment articulates components of agreement 

and disagreement based on a philosophy of urban boundary change map comparison that 

separates explicitly the information concerning the quantity of urban boundary change 

from the information concerning the location of urban boundary. We obtained total PAM 

quantity values for DDM and DIM by averaging under-estimated PAM quantity values 

for the multiple-region model and region 1, 2 and 3, respectively (Table 7-4 and 7-9). The 

PAM quantity of under-estimated null UGBM is also considered as total PAM quantity 

for the null UGBM (Table 7-12). Comparing the PAM quantity value for the urban 

projection in 2000 from the rule-based simulation UGBM and Null UGBM obtained in 

this study (Tables 7-12) allows us to assess the accuracy of UGBMs in projecting the 

change in quantity of area between urban boundaries and location of urban boundary. 

Although DDM and Null UGBM provide the best prediction for quantity, they give the 

least accurate prediction for location (Tables 7-12). In contrast, DIM UGBM provides the 

most accurate prediction for location, and the least accurate prediction in quantity. The 

lower accuracy of Null UGBM in predicting location may be due to the simple fact that 
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Null UGBM consider to project new urban boundary using the same increment of 

distances around urban boundary in the initial time. For DDM, the reference distances 

between central points and points on urban boundary in initial time across different 

azimuths increase based on different increments in percentage while DIM uses different 

RCDTs across different azimuths to project a new urban boundary.  

7.5 Conclusion 

The output from the two rule-based simulation UGBMs (DDM and DIM) are 

described and compared with a null UGBM in this chapter. Both UGBMs employ a radial 

growth of the boundary at specified azimuths as inputs, measured using multiple central 

points within a given urban area, to simulate change in urban boundary location. While 

the DDM projects using a single urban boundary for projection, the DIM uses urban 

boundary in both initial and subsequent time periods to make this projection. Our 

objective was to determine which of these models were the most appropriate for 

informing urban planners regarding: (1) the feasibility of setting UGBs in a particular 

location for a specific period of time, as well as (2) where and how future infrastructure 

efforts need to be focused. We used each model to predict the urban boundary of the 

TMA, and compared the outputs using PAM quantity and location. It is necessary to 

understand the agreement between the urban boundary maps in terms of both the total 

quantity of area simulated as well as the location of the area being simulated. If the 

correspondence in terms of location is high, then the agreement in terms of pattern must 

also be high. However, it is possible to have substantial disagreement in location but high 

agreement in quantity.  
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UGBs limit land development beyond a politically-designated area. The purpose 

of delineating the urban boundary is to guide and regulate the location and intensity of 

land development for given period of time. Thus, it is necessary to determine how fast the 

boundary of a particular city will expand. While the total amount or area of expansion 

can be predicted with traditional UGMs, the location of growth simulated by these 

models may not correspond to an easily identifiable boundary. UGBMs provide a vector 

map displaying the particular location of an urban boundary at a specific time in the 

future. Thus, projections from UGBMs, particularly a DIM UGBM, can be used to 

identify the feasibility of drawing an UGB at a particular distance from the current urban 

boundary for a given period of time. The parameters that UGBMs consider have large 

influence on the quantity of simulated urban boundary change and on the accuracy of the 

simulation. The largest potential for improvement in UGBMs accuracy is improvement in 

the way the UGBMs simulates the quantity and location of urban boundary change. 

Identifying and delineating boundaries around areas of rapid urban growth, 

particularly in large cities with complex urban boundaries like the TMA, are especially 

important because of the high risk to social-cohesion and environmental quality in these 

areas. It is particularly important to consider the demand for the total amount and the 

location of social, economic and physical infrastructure resources when setting UGBs for 

large cities. In other words, it is necessary to plan UGBs in such a way as to match the 

total demand at particular locations for employment opportunities, housing, public 

facilities such as schools and hospitals, parks, shopping malls, energy (electricity, gas), 

with the spatial availability of these resources. It is also necessary to determine the 

location on an UGB where future growth pressure will be greatest in order to determine 
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where to concentrate local environmental risk reduction measures, i.e. where to build 

more waste treatment plants, create more green infrastructure etc.). Because the DIM 

UGBM provided the most accurate prediction for the location of future urban boundary, 

it can be used to pinpoint specific locations where such social, economic and 

environmental infrastructure needs to be placed. Further, due to its greater precision in 

predicting quantity, output from a rule-based UGBM using DDM or null UGBM could be 

combined with output from a DIM UGBM in order to determine the total amount of 

infrastructure that will need to be allocated to particular areas near the UGB. 
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Figure 7-1: Conceptual scheme of DDM 
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Figure 7-2: Conceptual scheme of DIM 
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Figure 7-3: Simulated under-estimate and over-estimated areas by UGBMs 
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a) Problem of simulating urban boundary with a single central point 

 
b) Importance of using three central points for urban boundary simulation 

Figure 7-4: Restrictions for urban boundary simulation 
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Figure 7-5: Location of three central points and corresponding regions of TMA in 1988 

and 2000 
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Figure 7-6: Comparing predicted UB from Null UGBM in TMA with reference UB in 

2000: (1) Reference UB of TMA in 1988; (2) Reference UB of TMA in 2000; (3) Under-

estimate predicted UB of TMA using Null UGBM in 2000 including 700m buffer (Black 

color); (4) Over-estimate of predicted UB of TMA using Null UGBM in 2000 including 

750m buffer (Green color) 
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Figure 7-7: The predicted change in UB of TMA from Null UGBM in 2012: (1) 

Reference UB of TMA in 1988; (2) Reference UB of TMA in 2000; (3) Under-estimate 

predicted UB of TMA using Null UGBM in 2012 including 700m buffer (Black Color); 

(4) Over-estimate of predicted UB of TMA using Null UGBM in 2012 including 750m 

buffer (Green Color) 
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a) North region of TMA 

 

 

 
b) South region of TMA 

1 

2 

3 

4 

5 

6 

1 

2 

3 

4 

5 

6 

North Region 

2 

South Region 

3 



      252 

 
c) West region of TMA 

 

Figure 7-8: Comparing predicted UB from DDM in TMA with reference UB in 2000: (1) 

Reference UB of TMA in 1988; (2) Reference UB of TMA in 2000; (3 and 4) Under-

estimate and over-estimate of predicted UB of TMA using Multiple-region Model in 

2000; (5 and 6) Under-estimate and over-estimate of predicted UB of TMA using Whole-

region Model in 2000 
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West region of TMA 

 

Figure 7-9: The predicted change in UB of TMA from DDM in 2012: (1) Reference UB 

of TMA in 1988; (2) Reference UB of TMA in 2000; (3 and 4) Under-estimate and over-

estimate of predicted UB of TMA using Multiple-region Model in 2012; (5 and 6) Under-

estimate and over-estimate of predicted UB of TMA using Whole-region Model in 2012 
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a) Application of ARCDT3 and FARCDT for urban boundary prediction of TMA 

 
b) Application of ARCDT1 and ARCDT2 for urban boundary prediction of TMA  
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c) Application of ARCDT1, ARCDT2 and ARCDT3 for urban boundary prediction of 

TMA  

 

Figure 7-10: Comparing predicted UB of TMA (from DIM) with reference UB in 2000: 

(1) UB of TMA in 1988; (2) UB of TMA in 2000; (3) Predicted UB of TMA with 

ARCDT1; (4) Predicted UB of TMA with ARCDT2; (5) Predicted UB of TMA with 

ARCDT3; (6) Predicted UB of TMA with FARCDT and (7) Predicted UB of TMA with 

best ARCDT for each region 
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a) Application of ARCDT3 and FARCDT for urban boundary prediction of TMA  

 
b) Application of ARCDT1,2,3 for urban boundary prediction of TMA 

 

Figure 7-11: UGB prediction of TMA with DIM in 2012: (1) UB of TMA in 1988; (2) 

UB of TMA in 2000; (3) Predicted UB of TMA with ARCDT1; (4) Predicted UB of 

TMA with ARCDT2; (5) Predicted UB of TMA with ARCDT3; (6) Predicted UB of 

TMA with FARCDT and (7) Predicted UB of TMA with best ARCDT for each region. 
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Table 7-1: Reference area in 1988 and 2000 for the whole TMA and three regions of 

TMA 

Region Reference Area of TMA 

in 1988 (km
2
) 

Reference Area of 

TMA in 2000 (km
2
) 

Change in area from 1988 

to 2000 (km
2
) 

Whole region 539.597150517 636.309856.774 96.712706260 

1 80.622465362 99.947659553 19.325194191 

2 114.039414876 156.570058350 42.530643474 

3 157.085164418 184.632064579 27.546900161 

 

Table 7-2: Comparing the PAM quantity values of predicted urban boundaries using null 

UGBMs across the distances 

Distance for 

creating buffer 

Predicted change in area 

(km
2
) 1988 - 2000 

Reference change in area 

(km
2
) 1988 - 2000 

PAM 

Quantity 

Status 

700 94.7010819672 96.7127062574 0.9792 Under-estimate 

750 101.3259023458 96.7127062574 1.0477 Over-estimate 

 

 

Table 7-3: Predicted area of TMA using null UGBMs in 2012 

Distance for 

creating buffer 

Area of TMA 

in 2012 (km
2
) 

Predicted change in area (km
2
) 

from 2000 to 2012 

Status 

700 703.068962044 113.0208141924 Under-estimate 

750 710.669804970 120.6216571184 Over-estimate 

 

Table 7-4: Best PAM quantity value for under and over estimate of DDM 

 Region Level of increment PAM 

quantity 

Status 

 

 

Multiple-region 

Model 

1 11 0.9683 Under-estimate 

12 1.0613 Over-estimate 

2 17 0.9891 Under-estimate 

18 1.0522 Over-estimate 

3 8 0.9489 Under-estimate 

9 1.0726 Over-estimate 

 

 

Whole-region 

Model 

1 

 

13 1.1543 Over-estimate 

14 1.2473 Over-estimate 

2 13 0.7367 Under-estimate 

14 0.7998 Under-estimate 

3 13 1.5674 Over-estimate 

14 1.6911 Over-estimate 
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Table 7-5: Range of change in PAM quantity values in multiple and whole region model 

 Region Range of change 

Whole-region 

Model 

Whole region 1.56 

Multiple-region 

Model 

1 1.84 

2 1.18 

3 2.51 

 

Table 7-6: Area of TMA for under and over DDM estimates in 2012 from the Whole and 

Multiple region Models 

 Region Level of 

increment 

Status Area of TMA in 

2012 (km
2
) 

Predicted change 

in area (km
2
) from 

2000 to 2012 

Whole-

region 

Model 

Whole 

region 

13 Under-

estimate 

756.835838936 120.525982161 

14 Over-

estimate 

766.555161891 130.245305116 

 

 

 

Multiple-

region 

Model 

1 11 Under-

estimate 

123.1455113361 23.1978517833 

12 Over-

estimate 

125.3743441439 25.4266845912 

2 17 Under-

estimate 

214.3287528728 57.7586945229 

18 Over-

estimate 

218.0081492449 61.4380908950 

3 8 Under-

estimate 

215.3548401261 30.7227755471 

9 Over-

estimate 

219.3613559268 34.7292913478 

Whole 

region 

Total of 

regions 1, 

2 and 3 

Under-

estimate 

746.6356484199 110.3257916450 

Over-

estimate 

756.2756861595 119.9658293846 

 

 

Table 7-7: ARCDT of regions 1, 2 and 3, and FARCDT for the whole TMA. 

Region Samples Summation ARCDT or FARCDT 

1 255 39.0898 ARCDT1 = 0.1532 

2 205 40.6388 ARCDT2 = 0.1982 

3 179 17.4652 ARCDT3 = 0.0975 

Whole region 639 97.2086 FARCDT = 0.1521 

  



      260 

Table 7-8: PAM quantity between the 2000 projection (using ARCDTs from each region 

and FARCDT) and the reference 2000 boundary for the whole TMA using DIM 

ARCDT Predicted area 

(km
2
) in 2000 

Predicted change in 

area (km
2
) 1988 - 2000 

Reference change in 

area (km
2
) 1988 - 2000 

PAM 

quantity 

ARCDT1 652.994738866 113.3975883485 96.7127062574 1.1725 

ARCDT2 688.483222180 148.8860716625 96.7127062574 1.5394 

ARCDT3 610.329876797 70.7327262795 96.7127062574 0.7313 

FARCDT 652.085990393 112.4888398755 96.7127062574 1.1631 

ARCDT1,2,3 645.0042546737 105.4071041563 96.7127062574 1.0899 

 

 

Table 7-9: PAM quantity between the 2000 projection (using regional ARCDT values 

and FARCDT) to the reference area in 2000 for regions 1, 2 and 3 using DIM 

Region ARCDT Predicted area 

(m
2
) in 2000 

Predicted change in 

area (m
2
) 1988 - 2000 

Reference change in 

area (m
2
) 1988 - 2000 

PAM 

quantity 

 

1 

ARCDT1 104723103.6837 24100638.3221 19325194.1912 1.2471 

ARCDT2 113044443.3660 32421978.0044 19325194.1912 1.6777 

ARCDT3 94848026.5267 14225561.1652 19325194.1912 0.7361 

FARCDT 104511257.7869 23888792.4253 19325194.1912 1.2361 

 

2 

ARCDT1 144637625.9464 30598211.0704 42530643.4739 0.7194 

ARCDT2 156130589.5222 42091174.6462 42530643.4739 0.9897 

ARCDT3 130998728.0724 16959313.1964 42530643.4739 0.3988 

FARCDT 144345036.3784 30305621.5024 42530643.4739 0.7126 

 

3 

ARCDT1 206910908.9127 49825744.4945 27546900.1608 1.8088 

ARCDT2 223352132.4448 66266968.0266 27546900.1608 2.4056 

ARCDT3 187399825.6996 30314661.2814 27546900.1608 1.1005 

FARCDT 206492345.8094 49407181.3912 27546900.1608 1.7936 

 

Table 7-10: Predicted area of whole TMA using DIM 

ARCDT Predicted area (m
2
) in 2012 Change in area (m

2
) from 2000 to 2012 

ARCDT1 776552458.7535 140242601.9786 

ARCDT2 821177895.0795 184868038.3046 

ARCDT3 723009829.5600 86699972.7851 

FARCDT 775410766.6220 139100909.8471 

ARCDT1,2,3 770107817.3148 133797960.5399 
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Table 7-11: Predicted area of individual TMA regions using DIM 

Region ARCDT Predicted area (km
2
) in 2012 Change in area (km

2
) from 2000 to 2012 

 

1 

ARCDT1 132.7660943217 32.8184347689 

ARCDT2 143.3157412494 43.3680816967 

ARCDT3 120.2466465660 20.2989870133 

FARCDT 132.4975198478 32.5498602950 

 

2 

ARCDT1 205.3805625839 48.8105042340 

ARCDT2 221.7001841873 65.1301258374 

ARCDT3 186.0137864774 29.4437281276 

FARCDT 204.9650952419 48.3950368921 

 

3 

ARCDT1 243.0397479352 58.4076833562 

ARCDT2 262.3517834608 77.7197188818 

ARCDT3 220.1218226741 35.4897580951 

FARCDT 242.5480992754 57.9160346964 

 

 

 

Table 7-12: Comparing the PAM quantity and location values of rule-based simulation 

UGBMs versus Null UGBM 

UGBMs Total PAM Quantity PAM Location 

DIM 0.94 0.82 

DDM 0.98 0.77 

Null 0.97 0.62 
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CHAPTER 8: CONCLUSIONS AND FUTURE RESEARCH 

Humans have altered the land for variety of reasons (e.g. to provide food, fiber, 

housing, energy, etc. for humans). The rates and extent of land use land cover (LULC) 

change (LUCC) are significant which can cause changes in ecosystem structure and 

function across a variety of spatial and temporal scales. Uncontrolled LUCC by humans 

can have negative impacts on biodiversity (e.g. habitat loss), climate change (e.g. global 

warming) and the hydrology (e.g. water quality). Sustainability is a major goal of society 

as it is important to maintain ecosystem services now and for the future. To achieve a 

sustainable land use system, we need to minimize the negative environmental impacts of 

LUCC; this will require a deep understanding of the interaction of all components of the 

land use system. Agricultural expansion typically resulting in deforestation and 

urbanization resulting from people moving to cities from rural areas are examples of 

global LUCC that need to be understood and require policies implemented that minimize 

negative impacts to the environment and to human well-being. 

8.1 Major conclusions of dissertation 

In chapter 4, ANN, CART and MARS were parameterized with identical data 

from different areas of the world, one undergoing extensive agricultural expansion (East 

Africa), another where forests are re-growing (western Michigan, USA), and a third 

where urbanization is prominent (the Milwaukee Metropolitan Area, USA) to model

http://www.eoearth.org/article/Biodiversity
http://www.eoearth.org/article/Climate_change
http://www.eoearth.org/article/Deforestation
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binary LUCC. Independent training data and testing data were used to calibrate and 

validate each model, respectively. Comparisons of simulated maps from LTM, MARS 

and CART were made using ROC and PCM goodness-of-fit metrics. The three models 

obtained over 80% and 60% goodness-of-fit for ROC and PCM in the three study areas, 

respectively. Although all approaches obtained similar accuracies, the ANN-based LTM 

provided a slightly better goodness-of-fit than MARS and CART across testing data for 

all three study sites. 

LUCC models that can simulate multiple LUCC are rare. In chapter 5, LTM-MC, 

CART and MARS performance were compared for MC for two diverse regions in the 

US: southeastern Wisconsin (SEWI; for 10 years) and west-central Michigan (MRW; for 

20 years). Three models were developed to simulate three land use changes (agriculture, 

urban and forest change in SEWI and MRW) using 16 and 17 independent variables in 

SEWI and MRW, respectively. Comparisons of three models were made using ROC and 

PCM. The new coding scheme and model structure of the MC-based LTM was accurate, 

stable and straightforward to implement. MARS, which consider dependent variables in a 

single group, perform relatively poorly for LUCC simulation; however, LTM-MC and 

CART perform better than MARS which consider dependent variables in a series of 

binary classes and LTM was slightly better than CART in both study areas. 

POLYMARS, which is an extension of MARS that allows for multiple responses 

(Kooperberg et al. 1997), can be used for MC in future efforts.  

Planners could use models that estimate future UGBs based on those factors that 

drive urban growth. Unfortunately, few models have been developed that simulate the 

UGBs. In chapter 6, we developed a model to simulate UGBs by integrating ANN and 
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GIS. PAM quantity and location goodness of fit metrics were used to assess the 

agreement between simulated and observed urban boundaries. Results show that ANN-

UGBM can predict UGBs with urban area with 80  84% accuracy. The model predicts 

urban boundaries in all cardinal directions equally well. The use of UGBs in planning 

around the world and describing how this model can be used to assist planners in 

developing future UGBs given the need to understand those factors that contribute toward 

urban boundary change.  

Uncoordinated and scattered development near cities and towns heavily burden 

local governments with high financial costs due to the lower densities at which they must 

provide services. In chapter 7, we used the two rule-based models, DDM and DIM, to 

project the urban boundary of the Tehran Metropolitan Area in 2012 using data from 

1988 to 2000. DDM employs a single urban boundary in the initial time step to predict 

the urban boundary in any subsequent time according to the increment of distances across 

different azimuths. Similarly, the DIM uses the change in distance between two 

boundaries, one in the initial time step and one in subsequent time step, across different 

azimuths, to predict the future urban boundary. We compare these rule-based simulation 

UGBMs to a null UGBM developed from the same data but lacking in specificity of 

predictive variables. Results indicate that rule-based UGBMs have a better goodness of 

fit compared to a null UGBM using PAM quantity and location goodness of fit metrics. 

UGBMs can be used to assist planners in developing future UGBs. 
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8.2 Future directions  

Current research using LTM is dual-faceted. While some researchers are using 

LTM to couple with other models for application (e.g. climate and hydrology; Pijanowski 

et al. 2007), others are still investigating simple properties of LTM and making major 

refinements (e.g. Tayyebi et al. 2012). There are still some ideas about the LTM that need 

to be explored. One challenge is the understanding of LTM forecasting and back-casting 

projections since ANNs hides the details of interpretations. Furthermore, the current 

structure of the LTM only allows us to evaluate LUCC for one time interval rather than 

evaluating change in a time-step manner such as is permitted by Markov-chain 

techniques. A computational issue of LTM in calibration runs is another concept that 

should be examined in the near future. This would include calibration, and the many 

parameters (e.g. weight and bias) inside the model, such the control parameters of LTM. 

Additional research is needed to assess the LTM’s ability to predict change at various 

spatial and temporal scales and with the use of different drivers. With LTM's first decade 

behind us, many of the restrictions faced in the beginning use of LTM have now been 

overcome. One of the original goals of the LTM work was to scale the model upward to 

global scales (Tayyebi et al. 2012). With a new generation of technology, we could 

generate high-resolution LULC maps for future (100 years later) and past (100 years 

before) using LTM-HPC at a global scale with the release of data on our own website. 
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