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Small but Crucial: The Novel Small Heat Shock Protein
Hsp21 Mediates Stress Adaptation and Virulence in
Candida albicans
François L. Mayer1, Duncan Wilson1, Ilse D. Jacobsen1, Pedro Miramón1, Silvia Slesiona1,2,

Iryna M. Bohovych3, Alistair J. P. Brown3, Bernhard Hube1,4,5*

1 Department of Microbial Pathogenicity Mechanisms, Hans-Knoell-Institute, Jena, Germany, 2 Department of Microbial Biochemistry and Physiology, Hans-Knoell-

Institute, Jena, Germany, 3 Aberdeen Fungal Group, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, United Kingdom, 4 Center for Sepsis

Control and Care, Universitätsklinikum Jena, Jena, Germany, 5 Friedrich Schiller University, Jena, Germany

Abstract

Small heat shock proteins (sHsps) have multiple cellular functions. However, the biological function of sHsps in pathogenic
microorganisms is largely unknown. In the present study we identified and characterized the novel sHsp Hsp21 of the
human fungal pathogen Candida albicans. Using a reverse genetics approach we demonstrate the importance of Hsp21 for
resistance of C. albicans to specific stresses, including thermal and oxidative stress. Furthermore, a hsp21D/D mutant was
defective in invasive growth and formed significantly shorter filaments compared to the wild type under various filament-
inducing conditions. Although adhesion to and invasion into human-derived endothelial and oral epithelial cells was
unaltered, the hsp21D/D mutant exhibited a strongly reduced capacity to damage both cell lines. Furthermore, Hsp21 was
required for resisting killing by human neutrophils. Measurements of intracellular levels of stress protective molecules
demonstrated that Hsp21 is involved in both glycerol and glycogen regulation and plays a major role in trehalose
homeostasis in response to elevated temperatures. Mutants defective in trehalose and, to a lesser extent, glycerol synthesis
phenocopied HSP21 deletion in terms of increased susceptibility to environmental stress, strongly impaired capacity to
damage epithelial cells and increased sensitivity to the killing activities of human primary neutrophils. Via systematic
analysis of the three main C. albicans stress-responsive kinases (Mkc1, Cek1, Hog1) under a range of stressors, we
demonstrate Hsp21-dependent phosphorylation of Cek1 in response to elevated temperatures. Finally, the hsp21D/D
mutant displayed strongly attenuated virulence in two in vivo infection models. Taken together, Hsp21 mediates adaptation
to specific stresses via fine-tuning homeostasis of compatible solutes and activation of the Cek1 pathway, and is crucial for
multiple stages of C. albicans pathogenicity. Hsp21 therefore represents the first reported example of a small heat shock
protein functioning as a virulence factor in a eukaryotic pathogen.
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Introduction

The heat shock response is an ancient and conserved reaction of

living organisms to stressful conditions such as an elevation in

temperature, oxidative stress or starvation [1]. Such stresses can

result in protein unfolding and nonspecific aggregation, ultimately

leading to cell death. In order to counteract this detrimental fate,

cells synthesise so-called heat shock proteins (Hsps) [2]. These

specialized proteins act as chaperones and prevent unfolding and

aggregation of proteins by binding to their clients and stabilizing

them [3]. There are five major families of Hsps [3,4]; four of them

- Hsp100s, Hsp90s, Hsp70s and Hsp60s - consist of ATP-

dependent high-molecular-mass Hsps, while the fifth family - the

small heat shock proteins (sHsps) - consist of ATP-independent

low-molecular-mass Hsps with sizes ranging from 12 to 42 kDa

[5]. The higher molecular mass Hsps are highly conserved

amongst species and most of them are important for protein

quality control procedures under both non-stress and stress

conditions.

In contrast, sHsps display less sequence conservation between

species and have been shown to be mainly expressed under stress

conditions [6]. However, all sHsps share a central a-crystallin

domain, which is named after the human lenticular protein a-

crystallin. In the human eye, a-crystallin prevents protein

aggregation and concomitant cataract formation [7,8]. The sHsp

a-crystallin domain is flanked by variable N- and C-terminal

domains [6,9]. On the transcriptional level, regulation of Hsps
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occurs through heat shock elements (HSEs), defined repeats of

distinct nucleotide triplets [10,11,12].

In the last decades the large Hsps have been subject to more

intensive study than the sHsps. Importantly, several investigations

have demonstrated a connection between Hsps of pathogenic

microorganisms and their virulence potential [13,14,15,16,

17,18,19,20], including Hsp90 [21] and Hsp70 [22] in the human

fungal pathogen Candida albicans. In the non-pathogenic yeast

Saccharomyces cerevisiae the sHSP HSp26 has unexpectedly been

demonstrated not to be required for growth at elevated

temperatures, nor for thermotolerance, spore devolpment, or

germination [23], despite the fact that it accumulates in the cells

during thermal and other forms of stress as a result of

transcriptional derepression [24]. The sHsp Hsp12 is strongly

upregulated (several 100-folds) in response to stress [25]. In

contrast to ScHsp26 however, Hsp12 is required for growth/

survival of a variety of stress conditions, and maintenance of

normal cell morphology [25].

To the best of our knowledge, the role of sHsps in microbial

pathogenicity has only been described for two bacteria so far, the

Gram-positive human pathogenic bacterium Mycobacterium tubercu-

losis [26] and the Gram-negative plant pathogenic bacterium

Agrobacterium tumefaciens [27,28].

As yet only three sHSPs - Hsp10, Hsp12 and Hsp30/Hsp31 -

have been identified in C. albicans (Table 1). Of these only Hsp12

has been characterized on a transcriptional level. RNA hybrid-

ization analyses demonstrated the co-regulation of HSP12 by

environmental pH and CO2 in this fungus [29]. The function of

Hsp10 and Hsp30/Hsp31 remains unknown. On the other hand,

their counterparts in Saccharomyces cerevisiae as well as the additional

sHSPs ScHsp26, ScHsp40 and ScHsp42, have been investigated

[25,30,31,32,33,34,35]. One of the key differences between these

two species is that C. albicans is a major opportunistic fungal

pathogen of humans.

In fact, C. albicans is one of the leading causes of fungal infections

in humans. In healthy persons this fungus occurs as a relatively

harmless cohabitant of the normal microflora where it exhibits a

commensal lifestyle. Within the body, C. albicans is primarily found

in the oral cavity, the gastrointestinal and urogenital tract [36,37].

Certain underlying conditions, however, can result in the

transition of C. albicans to a pathogenic phase, causing infections

which range from superficial infections of the skin or mucosa to

life-threatening systemic infections [38]. Patients suffering from

HIV or AIDS often develop recalcitrant C. albicans infections of the

oral mucosa [39]. Besides oral candidiasis, C. albicans also causes

systemic infections with a crude mortality of approximately 37%

[40]. Furthermore, the fungus poses a major problem as the

causative agent of vulvovaginal infections. It is estimated that

approximately 75% of all women suffer at least once in their

lifetime from such infections with approximately 5% experiencing

recurrent infections [41,42]. C. albicans possesses an armamentar-

ium of pathogenicity determinants which enable it to cause these

infections. Key factors include the yeast-to-hyphal transition [43],

the production of adhesins [44] and invasins [22,45] and the

secretion of aspartic proteases [46].

In addition, fitness attributes [47], including metabolic adapta-

tion and flexibility [48], as well as adaptation to different

environmental stresses, are also vital for C. albicans virulence

[49,50].

In this study we report the identification of a novel sHsp in C.

albicans. Due to its predicted molecular weight we named the

corresponding gene HSP21 (orf19.822; NCBI-ID: 3637364). By

molecular analysis, we demonstrated that this novel sHsp is

involved in C. albicans adaptation to specific environmental stresses,

homeostasis of intracellular stress protectants, immune evasion, as

well as pathogenicity. This work represents the first detailed

description of a small heat shock protein in C. albicans and is the

first demonstration of a small heat shock protein contributing to

the virulence of a eukaryotic pathogen.

Results

C. Albicans orf19.822 Encodes a Predicted Small Heat
Shock Protein

orf19.822 was first identified and chosen for detailed investiga-

tion according to two criteria. Firstly, orf19.822 was found to be

amongst the most strongly upregulated genes in multiple

transcriptional profiles of different C. albicans infection models as

well as in transcriptional profiles for C. albicans subjected to

different stress conditions (Table S1). Upregulation of orf19.822

was detected during ex vivo liver infection (up to 20-fold) [51],

interaction with whole blood (up to 4.8-fold) as well as interaction

with neutrophils (up to 6.2-fold) [52]. Furthermore, the gene was

found to be upregulated under mild oxidative stress (up to 3.2-fold)

[53], during interaction with macrophages (up to 29.6-fold) [54]

and upon weak acid induced stress (up to 88.7-fold) [55]. Finally,

orf19.822 was shown to be highly expressed during heat shock,

induced by a shift from either 23–37uC (up to 10.9-fold) [53], 30–

42uC (up to 19-fold) [56] or 30–45uC (up to 25-fold) [12].

Secondly, to the best of our knowledge, this gene was of completely

Table 1. Small heat shock proteins in Candida albicans and Saccharomyces cerevisiae.

C. albicans S. cerevisiae Function in C. albicans Function in S. cerevisiae Homology (% identity)

Hsp10 Hsp10 unknown inhibits ATPase activity of Hsp60 [30] 57

Hsp12 Hsp12 unknown protects membranes from desiccation [25,31] 44

orf19.822 (21 kDa sHsp) – mediates stress adaptation and
virulence (This work)

– –

– Hsp26 – suppresses unfolded protein aggregation [32] –

Hsp30/Hsp31 Hsp30 unknown regulates plasma membrane H+–ATPase [33] 32/29

– Hsp40 – rescues previously aggregated proteins [34] –

– Hsp42 – reorganizes cytoskeleton after heat shock [35] –

sHsps were identified for C. albicans and S. cerevisiae using the Candida Genome database (CGD, www.candidagenome.org) and the Saccharomyces Genome database
(SGD, www.yeastgenome.org), respectively. The term ‘‘Hsp’’ was used as search criterion. Homologies were determined for amino acid sequences using the ClustalW2
sequence alignment program (www.ebi.ac.uk/Tools/msa/clustalw2/).
doi:10.1371/journal.pone.0038584.t001

C. albicans Hsp21 and Virulence
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unknown function prior to our investigations and a preliminary in

silico analysis of the protein sequence identified interesting

structural features (see below). Using ExPASy PROSITE, we

identified a sHsp-typical a-crystallin domain and N- and C-

terminal regions within the deduced amino acid sequence of

orf19.822 (Figure 1A). A BLASTp search analysis of the amino

acid sequence revealed sequence similarities to proteins of

unknown function in Candida dubliniensis (96% identity), Candida

tropicalis (51%) and Candida parapsilosis (40%). C. albicans orf19.822

also displayed significant sequence similarity to the Pichia stipitis

small heat shock protein Hsp18 (39% identity over the full length

of these proteins) (Figures 1B and S1A). The similarity was higher

within the a-crystallin domains (42%). No orf19.822 orthologues

were identified in the non-pathogenic yeast Saccharomyces cerevisiae

or, indeed, in any other species outside the CUG clade of fungi

[57]. Analysis of the orf19.822 promoter region revealed the

presence of two characteristic Hsp heat shock elements (HSEs)

[11,58] as well as one non-standard HSE (nHSE) motif [59].

Furthermore, a Hsp-typical stress-responsive element (STRE)

[60,61,62] was detected within the orf19.822 promoter region

(Figure S1B). Together with the presence of the sHsp-family-

defining a-crystallin domain within the amino acid sequence, its

transcriptional upregulation under thermal stress, the occurrence

of HSEs and STRE in the promoter region, the significant

homology to P. stipitis Hsp18 and the predicted molecular mass of

21.487 kDa, we refer to C. albicans orf19.822 as Hsp21 (heat shock

protein 21). Next, we were interested in elucidating whether

HSP21 does indeed play a role in stress adaptation in C. albicans.

For this purpose we constructed a hsp21D/D homozygous deletion

mutant (Figure S2).

Hsp21 Mediates Thermotolerance and Adaptation to
Oxidative Stress in C. albicans

Heat shock is known to provoke protein unfolding, disruption of

the cytoskeleton, loss of correct organelle localization and

intracellular transport breakdown, along with a multitude of other

detrimental effects [3]. To prevent and counteract these processes,

Hsps are expressed, which protect the cell by acting as molecular

chaperones and preventing non-specific protein aggregation. As

part of the heat shock response, cells also express sHsps, which

efficiently counteract protein aggregation by binding proteins in a

sponge-like manner and either directing them to the major Hsps

for refolding or to the degradation machinery for disposal [63].

Deletion of the unrelated HSP12 in S. cerevisiae has been shown to

result in strongly increased sensitivity of the mutant to heat shock

[25]. We therefore first examined the effect of a 15 min heat shock

at 50uC on survival of the C. albicans hsp21D/D null mutant strain.

In contrast to the S. cerevisiae hsp12? mutant [25], deletion of HSP21

in C. albicans only led to a moderately increased sensitivity to heat

shock in comparison to the parental wild type and a hsp21D/

D::HSP21 complemented strain (Figure 1C). This indicates that

Hsp21 plays a minor role in adaptation to acute, short-term

elevations in temperature, but that its function can be largely

compensated for either by other Hsps or as yet unidentified sHsps.

Analogous to heat shock, the unfolded protein response (UPR)

occurs upon endoplasmic reticulum (ER)-stress [64,65]. Human

Hsp90 has been shown to modulate the UPR by stabilizing

transmembrane sensor kinases in the ER [66]. To determine

whether Hsp21 is involved in the UPR in C. albicans, the hsp21D/D
mutant was incubated in the presence of dithiothreitol (DTT), an

agent that unfolds proteins by reducing disulfide bonds and

thereby elicits UPR. Growth of the hsp21D/D mutant was mildly

inhibited under ER-stress in comparison to the wild type and the

hsp21D/D::HSP21 complemented strain (Figure 1C), indicating

that Hsp21 also plays a minor role in the UPR in C. albicans.

Certain HSPs, such as S. cerevisiae HSP70, are dispensable for

surviving short lived exposure to very high temperature, but

required for long-term growth under less severe thermal stress [2].

We therefore next examined the role of CaHSP21 in adaptation to

prolonged thermal stress. Strikingly, under constant elevated

temperature of 39.1uC the hsp21D/D mutant showed a growth

defect, was strongly impaired in growth at a constant temperature

of 40.5uC (Figure 1D), and completely unable to grow at 42uC
(Figure 2A). Growth was restored by complementation of hsp21D/

D with a single copy of HSP21, albeit not to wild type levels. The

phenotypes of the hsp21D/D mutant – surviving short term

exposure to very high temperature, but failing to grow over

prolonged periods of thermal stress – is reminiscent of S. cerevisiae

hsp70? [2]. Hsps and sHsps not only function in adaptation to heat

stress but also to other stresses, such as oxidative, osmotic and cell

wall stresses. We therefore investigated growth of the hsp21D/D
mutant under these environmental stresses. Oxidative stress,

induced by menadione - a naphthoquinone which exerts its toxic

function mainly through the generation of reactive oxygen species

(ROS) [67,68] – led to a severe growth defect of the hsp21D/D
mutant (Figure 2A). This points to a possible role for Hsp21 in

preventing non-specific protein aggregation upon exposure of C.

albicans to ROS. Interestingly, for osmotic stress induced by high

concentrations of NaCl, the hsp21D/D mutant was found to be

slightly more resistant than the wild type and hsp21D/D::HSP21

complemented strain. Cell wall directed stress elicited by Congo

red – a compound which binds nascent chitin chains and thereby

inhibits connection of chitin to b-1,3-glucan and b-1,6-glucan [69]

– did not affect growth of the hsp21D/D mutant.

In summary, Hsp21 contributes to adaptation to thermal and

oxidative stress, but not to osmotic or cell wall stress and plays only

a minor role in the UPR. In addition to these environmental

stresses, it has been proposed that nutrient limitation represents a

significant stress in vivo. We therefore next investigated growth of

the hsp21D/D mutant under nutrient-restricted conditions.

Hsp21 Contributes to Growth Under Conditions of
Nutrient Limitation

In vivo, C. albicans faces a nutrient-limited environment [70].

Moreover, it has been shown that the glyoxylate cycle is required

for normal fungal virulence [71]. We therefore cultivated hsp21D/

D mutant cells on minimal media supplemented with different

carbon (C-) and nitrogen (N-) sources (Figure 2B). The hsp21D/D
mutant had a moderate growth defect on media containing acetate

or citrate as sole C-source in comparison to the wild type and

hsp21D/D::HSP21 complemented strain. On media containing

proline as sole C- and N-source, however, the hsp21D/D mutant

displayed a strong growth defect in comparison to the wild type

and the hsp21D/D::HSP21 complemented strain. Similarly, a

moderate reduction in growth of the hsp21D/D mutant was

observed when pantothenate (vitamin B5) was used as sole C- and

N- source. These findings indicate that HSP21 plays an important

role in adaptation to nutrient limited conditions, which might be of

importance during in vivo infections.

Simultaneous Stresses: Osmotic Stress Bypasses Hsp21-
dependent Thermal Stress Tolerance

During growth within a host, C. albicans must adapt to a variety

of stresses and it is likely that some of these stresses occur

simultaneously. We therefore sought to characterize the role of

HSP21 in adaptation to multiple stresses. The hsp21D/D mutant

C. albicans Hsp21 and Virulence
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grew normally at 37uC on solid SD medium, exhibited wild type

resistance to osmotic stress and did not grow at 42uC as described

above (Figure 3A). Strikingly, the combination of NaCl-induced

osmotic stress and thermal stress fully bypassed Hsp21-depen-

dence for growth under thermal stress (Figure 3A). We observed

the same phenomenon for growth under thermal stress combined

with sorbitol- and potassium chloride-induced osmotic stress

(Figure 3B and data not shown). Osmotic stress is known to elicit

a protective intracellular glycerol accumulation. It has been shown

for Escherichia coli that osmolytes such as glycerol and trehalose not

only stabilize the medium under osmotic stress, but, importantly,

also can act as chemical chaperones by stabilizing native proteins,

preventing protein aggregation and helping in refolding unfolded

polypeptides under thermal stress [72,73]. We therefore also tested

growth of the mutant at 42uC in the presence of exogenously

added glycerol or trehalose, however, this did not restore growth of

the hsp21D/D mutant (Figure 3B).

In liquid SD medium at 37uC, both wild type and hsp21D/D
grew at similar rates. Addition of NaCl to the medium inhibited

growth of the wild type; interestingly, under this osmotic stress

condition, deletion of HSP21 increased the growth rate relative to

the wild type (Figure 3C upper panel). Under thermal stress (42uC)

the hsp21D/D mutant failed to grow. However, under simulta-

neous thermal and osmotic stress, growth of the hsp21D/D mutant

surpassed that of the wild type (Fig. 3C lower panel). We reasoned

that the growth defect of the hsp21D/D at elevated temperature

may be due to heat-induced lysis of the mutant cells, and that the

addition of exogenous osmolytes simply stabilized the cell

Figure 1. C. albicans orf19.822 encodes a predicted sHsp required for adaptation to long-term thermal stress. (A) Structural
organization of orf19.822 with a conserved central a-crystallin domain (red) flanked by variable N- and C-terminal domains (grey), based on results
from http://www.expasy.ch/prosite/database. Numbers below the structural elements represent amino acid position. (B) Alignment of the orf19.822
protein sequence with orthologues from other organisms (generated with ClustalW2). The conserved a-crystallin-domain sequence is shown in red
characters. Identical residues are marked with (*), residues with the same size and hydropathy are marked by (:), residues with the same size or
hydropathy are marked by (.). (C) Short-term heat shock and endoplasmic reticulum (ER)-stress. Cells of YPD-overnight cultures of the wild type (Wt),
hsp21D/D mutant (D/D) and hsp21D/D::HSP21 complemented mutant (D/D+) were serially diluted from 106 to 101 cells (left to right), either exposed
to heat shock (50uC, 15 min) or not (control), plated on YPD and incubated for 2 days at 37uC. ER-stress was induced by growing the cells on YPD
agar plates supplemented with 30 mM dithiothreitol (DTT). (D) Growth of the Wt, hsp21D/D mutant (D/D) and hsp21D/D::HSP21 complemented
mutant (D/D+) on solid SD minimal medium at temperatures ranging from 30uC to 40.5uC.
doi:10.1371/journal.pone.0038584.g001

C. albicans Hsp21 and Virulence
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membrane. We therefore incubated wild type and mutant at 42uC
in SD medium for 5 h and measured cellular viability with methyl

blue staining. Both strains exhibited similar low levels (,10%) of

inviable cells. Therefore the thermal stress growth defect of

hsp21D/D was not due to temperature-induced cellular lysis,

indicating that the observed osmolyte-rescue was unlikely to be

solely the result of membrane stabilization under this experimental

setting.

Hsp21 Contributes to Hyphal Formation and is Required
for Invasive Hyphal Growth of C. albicans

It has recently been shown by Cowen and colleagues that the

molecular chaperone and heat-shock protein Hsp90 acts as

physiological link between fungal morphogenesis and temperature

[74,75]. We therefore postulated that Hsp21 may also play a role

in morphogenesis. Hyphal formation was induced by embedding

fungal cells in yeast peptone saccharose agar, by plating cells on

agar supplemented with 10% fetal bovine serum, on SLAD agar

or on spider medium agar [76] (Figure 4A). The hsp21D/D mutant

cells formed filamentous colonies under embedded conditions and

on serum-containing agar, however, colonies appeared to be

smaller than those of the wild type. The reduced colony size

appeared to be mainly due to shorter radial filaments produced by

the hsp21D/D mutant in comparison to the wild type. An even

more striking phenotype caused by deletion of HSP21 was

observed on SLAD and Spider agar. On SLAD agar the

hsp21D/D mutant formed aberrant colonies which completely

lacked the peripheral filaments observed for the wild type. When

grown on Spider agar the wild type typically forms colonies with a

central wrinkled area consisting of yeast, hyphae and pseudohy-

phae and a peripheral area consisting mainly of agar-invading

filaments [77]. In contrast, the hsp21D/D mutant developed

wrinkled colonies that completely lacked peripheral hyphae. We

conclude that C. albicans HSP21 is required for optimal invasive

growth in agar. In order to further characterize the hyphal

formation defect of the hsp21D/D mutant, we next investigated

filamentation on a single cell level in liquid hyphae inducing media

(Figure 4B). While wild type and revertant cells formed hyphae

with a mean length of around 60 mm, the hsp21D/D mutant

filaments only reached a mean length of around 40 mm upon

exposure to RPMI or 10% serum for 4 h at 37uC and 5% CO2. In

order to more closely mimic an in vivo situation, we also induced

hyphal formation by incubation on oral epithelial cells for 3 h at

37uC and 5% CO2 (Figure 4C and 4D). Here, wild type cells

reached a length of about 40 mm. Again, hsp21D/D hyphae were

significantly shorter, reaching only about 25 mm. Taken together,

these results indicate that Hsp21 contributes to hyphal formation

in C. albicans. Together with the prominent stress phenotypes of the

hsp21D/D mutant (above) we concluded that HSP21 represents a

promising virulence factor candidate and continued by investigat-

ing the role of HSP21 during infection.

A hsp21D/D Mutant is More Susceptible to Killing by
Human Phagocytes

Attack by phagocytic cells of the innate immune system

represents a significant stress to invading microorganisms. Given

the severe stress adaptation defects observed upon HSP21 deletion

(above), and the strong transcriptional upregulation of HSP21

upon exposure to both macrophages and neutrophils (Table S1),

we hypothesized that Hsp21 may play a role in defending fungal

cells from attack by phagocytes. We initially tested the survival of

wild type and hsp21D/D mutant cells following exposure to

macrophages derived from the immortalized monocyte cell line,

THP1. Overall, fungal killing by THP1 cells was low (10–30%),

and although we observed a modest decrease in survival of the

hsp21D/D mutant, this difference was not significant (data not

Figure 2. hsp21D/D has increased susceptibility to thermal and oxidative stress and has a growth defect under nutrient limitation.
Drop test analysis with serial dilutions of C. albicans wild type (Wt), hsp21D/D mutant and hsp21D/D::HSP21 complemented mutant on agar
containing different stressors. (A) Growth of the hsp21D/D mutant on solid SD minimal medium under different environmental stresses, including
thermal stress (42uC), oxidative stress (0.4 mM menadione), osmotic stress (1.5 M NaCl) and cell wall stress (450 mg ml-1 Congo red). Plates subjected
to thermal stress were incubated for 4–5 days, cells grown under non-stress (control), oxidative, osmotic or cell wall stress for 2–3 days at 37uC.
Experiments were repeated at least twice yielding similar results. Representative pictures are shown. (B) Drop test analysis with serial dilutions of the
indicated strains on agar containing different compounds as sole carbon and nitrogen sources. Agar containing 0.67% yeast nitrogen base plus
ammonium sulphate without amino acids was supplemented with 2% glucose, potassium acetate or citrate as sole carbon source. Yeast nitrogen
base agar without ammonium sulphate and amino acids was supplemented with 100 mg ml-1 proline or pantothenate as sole carbon and nitrogen
source. Plates were incubated at 37uC for 3–7 days depending on the carbon and nitrogen source. Experiments were repeated at least twice yielding
similar results. Representative pictures are shown.
doi:10.1371/journal.pone.0038584.g002
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shown). Neutrophils play a crucial role in controlling C. albicans

infections [52,78,79]. We therefore investigated the survival of

C. albicans following a 3 h co-incubation with human neutrophils.

As shown in Figure 5A, deletion of HSP21 significantly reduced

survival from 45% (wild type) to 32%; complementation of the

mutant with a single copy of HSP21 significantly restored survival

to 51%.

Therefore, Hsp21 is not only required for resisting certain in vitro

stresses (above), but also plays a role in surviving attack by

neutrophils.

Hsp21 is Involved in Damage of Human-derived
Endothelial and Oral Epithelial Cells in Vitro

The morphological and stress defects of hsp21D/D (above),

together with the transcriptional upregulation of HSP21 during

various models of infection, suggested that Hsp21 may play a role

in fungal pathogenesis. In order to investigate the role of Hsp21

during host-pathogen interactions, we used a lactate dehydroge-

nase colorimetric assay to determine damage to monolayers of

endothelial and epithelial cells caused by the different C. albicans

strains [80,81]. Interestingly, the hsp21D/D mutant caused

significantly reduced damage of both cell lines after 15 and 24

hours of infection (Figure 5B). The mutant caused 98% less

damage to endothelial cells in comparison to the wild type after 15

hours and 48% less damage after 24 hours post infection. A

similarly strong reduction was observed with epithelial cells. Eighty

eight percent less epithelial destruction was determined for the

mutant after 15 hours and 58% less damage after 24 hours,

compared to the wild type. Complementation of the hsp21D/D
mutant with HSP21 restored C. albicans capacity to damage

monolayers of epithelial cells (Figure S3). C. albicans adherence to

and invasion of host cells is a prerequisite for host cell damage

[82]. We therefore tested the endothelial adhesion and epithelial

invasion capacities of hsp21D/D, however, adhesion and invasion

levels were comparable to the wild type (Figure S4), suggesting that

the strong reduction in damage was not due to decreased adhesion

or invasion.

Hsp21 Promotes Virulence of C. Albicans
The morphological and stress defects, reduced pathogenicity in

in vitro infection models and impaired survival upon co-incubation

with neutrophils of hsp21D/D, suggested that Hsp21 represents a

promising candidate virulence factor.

We therefore next investigated the impact of HSP21 deletion on

C. albicans virulence in vivo. For this purpose we first used an

alternative embryonated hen egg infection model of candidiasis

[83,84].

Within the first day of infection, the percentages of embryos

killed by the wild type (55%) and mutant (40%) were very similar,

but then subsequently diverged during the course of the ongoing

infection: while wild type infected embryos continued to rapidly

succumb to infection, few hsp21D/D-infected embryos died after

two days post-infection (Figure S5). By the end of the experiment

(seven days post-infection), only 10% of embryos infected with the

wild type were still alive, while 35% of embryos infected with the

Figure 3. Osmotic stress bypasses the Hsp21-dependent thermal stress tolerance. Simultaneous osmotic and thermal stress lead to
growth of the heat-sensitive hsp21D/D mutant. (A) Drop test analysis with serial dilutions of C. albicans wild type (Wt), hsp21D/D mutant and hsp21D/
D::HSP21 complemented mutant on SD agar or SD agar containing 1.5 M NaCl. Plates were incubated at 37uC or 42uC. Experiments were repeated at
least twice yielding similar results. Representative pictures are shown. (B) Drop test analysis with serial 10-fold dilutions of the wild type and hsp21D/D
mutant on SD agar containing 1.5 M sorbitol, 2% glycerol, or 30 mM trehalose. Plates were incubated at 37uC or 42uC. Experiments were repeated
twice yielding similar results. Representative pictures are shown. (C) Growth curves for the wild type and hsp21D/D mutant in SD medium and SD
medium supplemented with 1.5 M NaCl at 37uC or 42uC. Experiments were repeated twice yielding similar results. Results are the mean of two
measurements per strain and time point. Representative growth curves are shown.
doi:10.1371/journal.pone.0038584.g003
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mutant survived. Hence, Hsp21 appears to play a major role in the

later stages of in ovo infection.

To characterize the role of Hsp21 during mammalian infection,

we used a murine model of hematogenously disseminated

candidiasis (Figure 5C). Survival of mice infected with the wild

type or the hsp21D/D::HSP21-reconstituted strain showed no

significant difference. All mice infected with these strains had to be

euthanized within seven to ten days post infection. In contrast only

one (of the ten) mice infected with the hsp21D/D mutant had to be

sacrificed seven days post infection. All remaining mice survived

Figure 4. hsp21D/D exhibits reduced invasive growth and hyphal formation. (A) Formation of hyphae was induced by embedding fungal
cells in YPS (2% saccharose) agar or by plating them on solid water agar supplemented with 10% fetal bovine serum, SLAD agar or on solid Spider
medium. Serum agar plates were incubated for 2, SLAD agar plates for 4, and Spider agar plates for 10 days at 37uC. Embedded plates were
incubated at 25uC for 5 days. Experiments were performed twice in duplicate. Representative pictures are shown. Scale bar: 100 mm. (B) Hyphal
elongation in RPMI1640 and 10% serum. Wild type, hsp21D/D mutant or hsp21D/D::HSP21 complemented mutant cells were grown overnight in SD
medium. After washing twice with water, 104 cells were incubated in RPMI1640 or water supplemented with 10% serum in 24-well cell culture plates
at 37uC for 4 hours in the presence of 5% CO2. Hyphal lengths were then determined using an Inverse microscope (Leica). Results are the mean 6 SD
of two independent experiments, each performed in duplicate with the length of at least 100 cells measured per strain and experiment. *P,0.0001
compared with the wild type and hsp21D/D::HSP21 complemented strain. Pictures of representative hyphae were taken using a 40x-magnification.
Scale bar: 10 mm. (C) Hyphal formation on epithelial monolayers. TR146 epithelial cells were cultured to confluency and infected with C. albicans cells
for three hours. Fungal cells were then stained with Calcofluor white (stains invaded and non-invaded fungal elements) and hyphal lengths were
determined by fluorescence microscopy. Results are the mean 6 SD of two independent experiments, each performed in duplicate with the length of
at least 200 cells measured per strain and experiment. *P,0.0001 compared with the wild type strain. (D) Representative pictures of wild type and
hsp21D/D hyphae are shown. Scale bar: 20 mm.
doi:10.1371/journal.pone.0038584.g004
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until the end of the experiment, 21 days post infection. Kidney

fungal burdens of (hsp21D/D-infected) end-point surviving mice

was found to be 16104 CFU per gram, indicating that very few

hsp21D/D cells remained viable in the kidneys of infected mice.

Histological examination of kidneys infected with the hsp21D/D
mutant revealed far fewer fungal cells in comparison to the wild

type and hsp21D/D::HSP21-reconstituted strain (Figure 5D). Also,

extensive neutrophil infiltration at fungal foci (consisting of hyphae

and/or pseudohyphae) was observed for the wild type and

hsp21D/D::HSP21-complemented strain, whilst kidneys infected

with the hsp21D/D mutant displayed a homogenous neutrophil

distribution. This data suggests that hsp21D/D did not elicit

significant inflammation within the kidney.

Hsp21 Regulates Homeostasis of Intracellular Stress-
protective Molecules

Having demonstrated that HSP21 is involved in both adaptation

to stress and virulence, we next sought to determine the cellular

mechanisms by which Hsp21 protects C. albicans from stressful

environments. Stressful conditions not only induce the heat shock

response with the expression of Hsps and sHsps, but also the

synthesis of stress-protective molecules. These compounds play

crucial roles in cellular protection, ranging from stabilizing

osmotic and ionic misbalances, nutrient storage to stabilizing

stress-labile proteins in a chaperone-like manner. The major stress-

protectant molecules are glycerol, glycogen and trehalose, all three

of which are synthesized from intermediates of glycolysis [85,86].

Figure 5. Hsp21 is a virulence factor. (A) The deletion of HSP21 leads to increased susceptibility of C. albicans to killing by human neutrophils.
Wild type (Wt), hsp21D/D mutant and hsp21D/D::HSP21 complemented mutant cells were exposed to human neutrophils for three hours and viability
was then determined by plating on YPD agar. Experiments were performed three times. The bar represents the mean of these single values. *P,0.01
compared with the wild type and hsp21D/D::HSP21 complemented strain. (B) Hsp21 is required for C. albicans to cause full damage to endothelial and
oral epithelial cells in vitro. Monolayers of human-derived endothelial and oral epithelial cells were infected with C. albicans wild type (Wt) and
hsp21D/D mutant strains for 15 or 24 h. Host cell damage was then determined by measuring lactate dehydrogenase (LDH) levels. Results are the
mean 6 SD of at least three independent experiments, each performed in triplicate. **P,0.01 and ***P,0.001 compared with the wild type strain.
(C) The hsp21D/D mutant is avirulent in a mouse model of hematogenously disseminated candidiasis. Female Balb/C mice (n = 10 mice per C. albicans
strain) were challenged intravenously with either the wild type (Wt), the hsp21D/D mutant or the hsp21D/D::HSP21 complemented strain via the
lateral tail vein. *P,0.0001 compared with mice either infected with the wild type or hsp21D/D::HSP21 complemented strain. (D) Periodic acid Schiff
staining of kidney sections from mice infected with the wild type and hsp21D/D::HSP21 complemented strain six days, and with the hsp21D/D mutant
strain 21 days post infection. Pictures were taken at 63x (upper panel) and 100x magnification (lower panel). The lower panel of images show
magnifications of the white boxed areas from the above images. Arrows point to C. albicans filaments within the tissue.
doi:10.1371/journal.pone.0038584.g005
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Given the severe growth defects of hsp21D/D under thermal and

oxidative stress, we hypothesized that Hsp21 may regulate the

homeostasis of stress protective molecules. We therefore system-

atically analyzed the intracellular levels of all three stress protective

molecules during growth under a range of stresses.

Only very low levels of intracellular glycerol could be measured

under non-stress conditions in the wild type (1.6 nM/g wet

weight), the hsp21D/D mutant (0.4 nM/g wet weight) and the

hsp21D/D::HSP21-reconstituted strain (0.2 nM/g wet weight)

(Figure 6A). Oxidative stress (0.4 mM menadione) resulted in

moderate accumulation of glycerol for the different strains.

Osmotic stress, induced by 0.5 M NaCl however, led to a strong

accumulation of glycerol in the wild type (36.4 nM/g wet weight).

Interestingly, the hsp21D/D mutant (10.3 nM/g wet weight)

produced 72% less glycerol than the wild type upon osmotic

stress. Complementation of the mutant with HSP21 restored wild

type glycerol production (27.5 nM/g wet weight).

Thermal stress also resulted in glycerol accumulation in wild

type cells (10.0 nM/g). Interestingly, the glycerol content of

hsp21D/D cells upon thermal stress was over twice that of the wild

type (23.3 nM/g wet weight) (Figure 6A). Again, complementation

of the mutant with HSP21 restored wild type glycerol levels

(9.8 nM/g wet weight). These results demonstrate that HSP21 is

required for normal glycerol homeostasis under both osmotic and

thermal stress conditions in C. albicans. Surprisingly, osmotic stress

under elevated temperatures did not induce glycerol accumulation

by C. albicans.

We next investigated cellular glycogen levels under oxidative,

osmotic and thermal stress by iodine vapour staining (Figure 6B).

Cells that contain high concentrations of glycogen are stained

darker upon exposure to iodine vapour [86,87]. Interestingly, even

under control conditions, the hsp21D/D mutant exhibited slightly

reduced glycogen content as indicated by lighter iodine staining.

Oxidative stress induced the most prominent glycogen accumu-

lation in the wild type. Under this condition, hsp21D/D stained

lighter than the wild type. Complementation with HSP21 restored

wild type levels of oxidative stress-induced glycogen. For osmotic

stress induced by NaCl, iodine staining was notably lighter than

under control conditions and no differences in colour was

observed amongst strains. Upon thermal stress, hsp21D/D colonies

appeared slightly darker than the wild type, however this was not

restored in the hsp21D/D::HSP21 complemented strain. Finally,

the combination of osmotic and thermal stress resulted in darker

staining than under osmotic stress alone, and this was independent

of HPS21. Together these data suggest that HSP21 is required for

the maintenance of normal glycogen levels, primarily under non-

stress and oxidative stress conditions.

Finally, we investigated the effects of oxidative, osmotic and

thermal stress on intracellular trehalose content (Figure 6C). We

observed no increase in trehalose levels for cells exposed to

oxidative stress. However, osmotic stress significantly down-

regulated trehalose levels in comparison to control cultures.

Thermal stress, on the other hand, induced strong trehalose

production in the wild type. Strikingly, although hsp21D/D cells

responded to thermal stress by accumulating trehalose, levels were

more than 4-fold reduced compared to the wild type. Interestingly,

the combination of thermal and osmotic stress resulted in a very

low trehalose production by the wild type, very similar to that

observed under control conditions at 30uC. The hsp21D/D
mutant, however, showed an even greater reduction in trehalose

levels under the combined stresses in comparison to the control

condition. Together our data demonstrate that C. albicans responds

specifically to different stresses by synthesizing different intracel-

lular stress-protective molecules: osmotic stress induced glycerol

synthesis; oxidative stress, glycogen; and thermal stress results in

trehalose production. Remarkably, all three stress protectants were

mis-regulated in the hsp21D/D mutant under their respective

induction conditions. In summary, Hsp21 fine-tunes the cellular

balance of the three major stress protectant molecules, depending

on the specific nature of the environmental insult.

Mutations in the Trehalose Pathway Phenocopy HSP21
Deletion

In order to confirm the role of Hsp21 in the homeostasis of

glycerol and trehalose levels, we next used C. albicans mutant

strains with deletions in GPP1 (encoding a putative glycerol 3-

phosphatase) [82], GPD2 (encoding a predicted glycerol 3-

phosphate dehydrogenase) [82], TPS1 (encoding a trehalose-6-

phosphate synthase) [88] or TPS2 (encoding a trehalose-6-

phosphate phosphatase) [89]. First, the gpp1D/D, gpd2D/D,

tps1D/D and tps2D/D mutants were investigated using drop

dilution assays on solid SD minimal medium under osmotic,

thermal or oxidative stress (Figure 7A). As previously described,

gpp1D/D exhibited a severe growth defect under osmotic stress

[90]. gpd2D/D also displayed a strong defect in growth under

this condition. The tps1D/D mutant had a severe growth defect

at 42uC while tps2D/D and gpp1D/D had a moderate growth

defect under elevated temperature. Oxidative stress, elicited by

treatment with menadione resulted in impaired growth for all

strains.

Second, the capacity of each mutant to damage oral epithelial

cells was investigated in vitro (Figure 7B). All mutants were

significantly attenuated in their damage capacity, with tps1D/D
displaying the strongest reduction.

Third, we investigated the interaction of each mutant with

human primary neutrophils. Again, all mutants tested showed a

similar phenotype as hsp21D/D and were more susceptible to

killing activities by these phagocytes (Figure 7C, see also

Figure 5A). The gpp1D/D, gpd2D/D and tps2D/D mutants were

significantly reduced in their survival by approximately 50%. The

tps1D/D mutant had a similarly strong reduction in survival,

although not significant. Collectively, these results indicate that

mutants defective in trehalose synthesis phenocopy hsp21D/D,

and that Hsp21 therefore is likely to operate in or affect this

pathway.

Hsp21 Regulates Cek1-activation under Thermal Stress
Given the role of Hsp21 in governing glycerol, glycogen and

trehalose homeostasis and adaptation to both thermal and

oxidative stress, we hypothesised that Hsp21 may directly function

in one or more of the stress responsive signalling pathways.

We therefore undertook a systematic analysis of the three main

mitogen-activated protein (MAP) kinase signaling pathways

(Mkc1, Cek1 and Hog1) [91,92] using western blotting in C.

albicans wild type, hsp21D/D and hsp21D/D+HSP21 strains. We

investigated phosphorylation of Mkc1, Cek1 and Hog1 under five

different environmental stress conditions, including cell wall,

osmotic, oxidative, thermal, and combined thermal and osmotic

stress (Figure 8).

Mkc1 was strongly phosphorylated under cell wall stress (Congo

red) but not in response to NaCl, menadione or elevated

temperatures; the combination of thermal and osmotic stress,

however, resulted in Mkc1 phosphorylation. Interestingly, deletion

of HSP21 rendered Mkc1 phosphorylation responsive to osmotic

and oxidative stress.

Cek1 was modestly induced by Congo red and robustly

phosphorylated under elevated temperature in C. albicans. Impor-

tantly, deletion of HSP21 precluded Cek1 phosphorylation in
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response to thermal stress. Moreover, the combination of thermal

and osmotic stress rescued Cek1 phosphorylation in hsp21D/D
(Fig. 8).

Although osmotic stress initially activates the Hog1 pathway

[93], at the time point investigated in the current study (4 h),

osmotic stress resulted in Hog1 dephosphorylation; whilst oxidative

and thermal stress induced robust Hog1 activation. Strikingly, the

addition of NaCl to cells grown under thermal stress strongly

dephosphorylated Hog1 in comparison to heat stress alone,

suggesting that, by 4 h, osmotic stress downregulation of Hog1

bypasses thermal induction.

Figure 6. Hsp21 regulates intracellular glycerol, glycogen and trehalose homeostasis. (A) Measurement of intracellular glycerol levels in
the wild type (Wt), the hsp21D/D mutant or the hsp21D/D::HSP21 complemented strain after growth for 24 h in SD medium (control) at 30uC, SD
medium supplemented with 0.4 mM menadione (+menadione) at 30uC, SD medium supplemented with 1.5 M NaCl (+NaCl) at 30uC, SD medium at
42uC (42uC), or SD medium supplemented with 1.5 M NaCl at 42uC (+NaCl, 42uC). Glycerol levels are plotted in nM normalized against wet weight (g).
Results are the mean 6 SD of three independent experiments. **P,0.01 and *P,0.05 compared with the wild type and hsp21D/D::HSP21
complemented strain. (B) Estimation of glycogen content with iodine vapour for the wild type (Wt), the hsp21D/D mutant or the hsp21D/D::HSP21
complemented strain after cultivation on SD agar (control) at 37uC, SD agar supplemented with 0.4 mM menadione at 37uC (+menadione), SD agar
supplemented with 1.5 M NaCl (+NaCl) at 37uC, SD agar at 42uC (42uC), or SD agar supplemented with 1.5 M NaCl at 42uC (+NaCl, 42uC). The darker
the colour of a colony, the more intracellular glycogen is present. Experiments were performed twice in duplicate yielding similar results.
Representative pictures are shown. (C) Measurement of intracellular trehalose levels in the wild type (Wt) and the hsp21D/D mutant strain. Growth
conditions were the same as described for panel (A). Trehalose levels (nmol trehalose per mg total cell protein) are indicated relative to the Wt grown
under control conditions. Results are the mean 6 SD of five (control; +NaCl; 42uC) or two (+menadione; +NaCl, 42uC) independent experiments.
*P,0.05 compared with the wild type strain under the same condition.
doi:10.1371/journal.pone.0038584.g006
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Discussion

In this paper, we present the first characterization of a small

heat shock protein in C. albicans and demonstrate its requirement

for intracellular stress protectant homeostasis, environmental stress

adaptation, Cek1 phosphorylation, host-pathogen interactions and

virulence of this major human fungal pathogen.

As yet, few investigations have focused on the role of small Hsps

(sHsps) in microbial pathogenicity. However, it is known that

expression levels of sHsps generally increase in response to

environmental stresses [3]. Therefore, sHsps may play an

important role during microbial infection. Indeed, the novel sHsp

encoding C. albicans gene orf19.822 (HSP21) has been shown to be

strongly upregulated under such environmental stress conditions,

including thermal, oxidative and acetic acid stress as well as in

several models of infection (Table S1). sHsps are defined by a

central a-crystallin domain, flanked by a variable C-terminal

extension and a non-conserved N-terminal arm and are phyloge-

netically, structurally and functionally distinct from classical HSPs.

In silico analysis of the Hsp21 amino acid sequence revealed the

presence of such an sHsp-typical core a-crystallin domain, flanked

by C- and N-terminal regions. Strengthening this finding,

promoter analysis led to the detection of two heat shock elements

(HSEs), one non-standard HSE (nHSE) as well as one stress

responsive element (STRE). It has recently been shown that

transcription of Hsp-encoding genes, such as HSP70, HSP90 and

HSP104, is regulated by binding of the heat shock transcription

factor Hsf1 to HSEs in C. albicans, specifically in response to

thermal stress. The nHSE, on the other hand, was shown to be

non-functional [12]. It is therefore likely that expression of HSP21

may also be regulated by Hsf1 or other heat shock transcription

factors via the HSEs in its promoter. The role of the nHSE

Figure 7. Mutants defective in trehalose synthesis phenocopy HSP21 deletion. (A) Drop test analysis with serial dilutions of the wild type
(Wt) and the indicated mutant strains on SD minimal medium under different environmental stresses, including osmotic stress (1.5 M NaCl), thermal
stress (42uC) and oxidative stress (0.4 mM menadione). Plates subjected to thermal stress were incubated for 4–5 days, cells grown under non-stress
(control), osmotic or oxidative stress for 2–3 days at 37uC. Experiments were repeated at least twice yielding similar results. Representative pictures
are shown. (B) Capacity of the indicated strains to damage oral epithelial cells. Monolayers of epithelial cells were infected with the different strains
for 15 h and host cell damage was then quantified by measuring LDH levels. Results are the mean 6 SD of two independent experiments, each
performed in septuplicate. ***P,0.0001 compared with the wild type strain. (C) Neutrophil killing assay. Cells of the indicated strains were exposed to
human neutrophils for three hours and viability was then determined by plating on YPD agar. Wild type survival was set to 100%. BWP17+CIp30 was
used as wild type control for gpp1D/D and gpd2D/D, and CAI4+CIp10 was used as wild type control for tps1D/D and tps2D/D. Experiments were
performed at least three times. The bar represents the mean of the single values. *P,0.01 compared with the wild type.
doi:10.1371/journal.pone.0038584.g007
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remains unclear, although it might be important for HSP21

expression under stress conditions other than heat shock. During

exposure of C. albicans wild type cells to weak acid stress HSP21 is

amongst the most strongly induced genes and it has been proposed

that HSP21 expression is regulated by Mnl1 [55]. However, in

contrast to Mnl1, Hsp21 was not required for resistance to acetic

acid stress (data not shown).

HSP21 has no orthologue in the non-pathogenic yeast S.

cerevisiae. Indeed, sequence similarities to Hsp21 on the protein

level were detected exclusively for four uncharacterized proteins in

fungal species belonging to the CUG clade, which translate this

codon to serine instead of leucine. Interestingly, the first three best

hits were found in C. dubliniensis, C. tropicalis and C. parapsilosis

(Figure 1), which are pathogenic fungi, indicating that Hsp21

orthologues may play a role in the virulence of these non-albicans

species. The remaining protein, with the lowest homology (Hsp18)

belonged to the non-pathogenic yeast Pichia stipitis. The relatively

low identity of 39% might point to a divergent function in this

yeast.

Interestingly, despite robust transcriptional induction of HSP21

upon heat shock [12], a hsp21D/D mutant displayed only

moderate sensitivity to short-term heat shock. This phenomenon

is reminiscent of the S. cerevisiae HSP70 mutant, which has a similar

phenotype, i.e. a growth defect at higher temperatures but wild

type tolerance to short-termed heat shocks [2,94,95]. C. albicans

Hsp21 might therefore have comparable functions to Hsp70 or

cooperate with C. albicans Hsp70, for example by transferring

partially unfolded client proteins to the Hsp70/Hsp100 disassem-

bling machinery. Such a cooperation has been shown to exist

between the S. cerevisiae sHsp Hsp26 and the major Hsps Ssa1

(Hsp70) and Hsp104 [96]. As there is no S. cerevisiae Hsp26

orthologue in C. albicans, it is tempting to speculate that CaHsp21

may have taken over a similar function.

Although relatively tolerant to surviving short term heat shock,

hsp21D/D was unable to grow at elevated temperatures. More-

over, HSP21 contributes to growth under oxidative and nutrient

stress, but not osmotic or cell wall stress. Therefore, Hsp21 is

specifically required for growth under particular environmental

conditions. Heat shock proteins (including sHsps) function by

binding to and stabilizing their clients, preventing their unfolding

and aggregation [2,63]. Although further studies are required to

reveal the full repertoire of Hsp21 clients, we have identified the

mechanistic outcome of HSP21 deletion: disrupted homeostasis of

the three major cellular stress protectant molecules: glycerol,

glycogen and trehalose. Osmotic stress induced strong glycerol

accumulation, with simultaneous downregulation of glycogen and

trehalose levels. Conversely, thermal stress did not effect glycogen

levels but stimulated glycerol production and high levels of

trehalose accumulation. Only oxidative stress elicited a detectable

increase in glycogen levels. Cellular homeostasis of all three

molecules was mis-regulated in the hsp21D/D mutant. Osmotic

stress resulted in lower glycerol induction than in the wild type,

however this defect did not manifest as a higher level phenotype –

hsp21D/D grew well under osmotic stress. On the other hand,

reduced glycogen levels in hsp21D/D cells under oxidative stress

correlates well with heightened sensitivity to this stress.

The dominant cellular function of Hsp21 appears to be thermal

stress adaptation (Figure 9). The hsp21D/D mutant produced

significantly less trehalose than the wild type under long-term

elevated temperature. Trehalose is an important stress-protective

molecule with chaperone-like functions and is specifically

produced during heat and oxidative stress [85,97,98]. Therefore,

Hsp21 is involved in thermal-induced trehalose synthesis, possibly

via stabilizing metabolic enzymes such as Tps1–3. Interestingly,

glycerol was over-produced by hsp21D/D cells in response to

thermal stress. This directly demonstrates that, although incapable

of growth, hsp21D/D cells were metabolically active under thermal

stress and indicates that Hps21 rather fine-tunes the cellular

balance of stress protectant molecules in response to environmen-

tal conditions.

In agreement with these conclusions, mutants defective in genes

encoding key metabolic enzymes for the synthesis of trehalose

(Tps1, Tps2) phenocopied HSP21-deletion. The trehalose 6-

phosphate synthase Tps1 and the trehalose 6-phosphate phospha-

tase Tps2 form a complex together with the stabilizing proteins

Tps3 and Tsl1 [99]. A tps1D/D mutant has previously been shown

to be defective in trehalose production, hyphal formation,

resistance to oxidative stress and virulence in vivo [89,98,100].

Interestingly, tps1D/D did not grow at 42uC on glucose but grew

normally on glycerol [89]. Disruption of TPS2 in C. albicans leads

to defective trehalose accumulation, thermosensitivity, sensitivity

to oxidative stress, and attenuated virulence in mice [88,101,102].

However, the capacity for hyphal formation was unaffected in this

Figure 8. Cek1 phosphorylation in response to thermal stress is Hsp21-dependent. Western blot analysis of phosphorylated Cek1, Mkc1 or
Hog1. The wild type (Wt), hsp21D/D mutant and hsp21D/D::HSP21 complemented strain were incubated under non-stress conditions (control),
conditions of cell wall stress (Congo red), osmotic stress (NaCl), oxidative stress (menadione), thermal stress (42uC) or a combination of thermal and
osmotic stress (42uC+NaCl) for 4 hours at 30uC or 42uC. Equal amounts of protein extracts were blotted and probed for phosphorylated Cek1 (Cek1-P)
and Mkc1 (Mkc1-P). Blots were then stripped and re-probed for a-tubulin (loading control). Hog1 phosphorylation (Hog1-P) was investigated in
separate blots and, after stripping, blots were probed for total Hog1 (phosphorylated plus un-phosphorylated) as loading control. Note that thermal
stress induces Cek1 phosphorylation in a Hsp21-dependent manner and that simultaneous osmotic stress bypasses Hsp21-dependence.
doi:10.1371/journal.pone.0038584.g008

C. albicans Hsp21 and Virulence

PLoS ONE | www.plosone.org 12 June 2012 | Volume 7 | Issue 6 | e38584



mutant [88]. Therefore, the thermal sensitivity of the hsp21D/D
mutant is most likely due to impaired trehalose synthesis.

Interestingly, the defect of the hsp21D/D mutant to grow at

42uC could be completely bypassed by simultaneously applying

osmotic stress. In a recent publication it has been shown for the

filamentous fungus Aspergillus fumigatus, that deletion of the UPR-

regulating transcription factor HacA results in a similar pheno-

type, i.e. inability of a DhacA mutant to grow at elevated

temperatures (45uC) which is reversed by supplementation of the

medium with sorbitol or KCl [65]. The authors conclude that

osmotic stabilization of the medium compensates for reduced cell

wall integrity of the DhacA mutant. However, C. albicans hsp21D/D
did not exhibit defects in cell wall integrity (Figure 2A and data not

shown) and mutant cells did not lyse upon thermal stress, but

rather remained viable and metabolically active. Osmotic stabi-

lization of cellular integrity, in this case appears improbable. An

alternative explanation is that osmotic stress of hsp21D/D resulted

or the induction of other heat shock protein(s) (such as HSP12

[49]), or stress responsive pathways (such as Cek1, see below)

thereby compensating for the lack of Hsp21.

HSP21 has been shown to be upregulated in the absence of the

adenylyl cyclase Cyr1 [103]. Therefore, HSP21 lies downstream of

the cyclic AMP pathway.

To determine which pathway(s) Hsp21 functions in, we

performed a systematic Western blot analysis of the three main

stress responsive MAP kinase pathways (Mkc1-, Cek1- and Hog1-

mediated pathways) in C. albicans wild type and hsp21D/D strains

under a range of stress conditions. Of the three MAP kinases,

Cek1 phosphorylation in response to thermal stress was found to

be Hsp21-dependent. Significantly, dual challenge of cells with

osmotic and thermal stress bypassed Hsp21-dependent Cek1

phosphorylation. Therefore, the Cek1 phosphorylation state of

C. albicans directly correlates with the ability to grow under

elevated temperatures. In line with this, C. albicans CEK1 has

previously been shown to be induced by high temperatures [104].

These data suggest that Hsp21 functions upstream of Cek1 in a

temperature-responsive pathway. It remains to be investigated

whether Cek1 is responsible for activation of trehalose synthesis in

response to elevated temperatures.

Furthermore, Cek1 has been shown to be required for hyphal

formation on solid Spider, SLAD and serum agar, and for full

virulence in a mouse model of systemic candidiasis [105]. These

phenotypes correlate well with those observed for hsp21D/D. In

contrast to deletion of HSP21, however, cek1D/D was found to be

unattenuated in resisting killing by neutrophils and macrophages

[92,106], indicating that Hsp21 has further cellular functions,

possibly by stabilizing additional client proteins.

Deletion of Hsp21 also affected hyphal growth and hypha-

associated processes. The hsp21D/D mutant formed shorter

hyphae, smaller hyphal colonies than the wild type and exhibited

reduced capacity to invade semi-solid agar. These morphological

defects are likely to have contributed at least partially to the

reduced damage capacity of hsp21D/D during infection of

endothelial and oral epithelial cell monolayers. Although the

epithelial/endothelial adhesion and initial invasion properties of

the mutant were unaffected, the reduced damage capacity of the

hsp21D/D mutant may be due to a compromized capacity to

undergo subsequent inter-cellular invasion [82].

Importantly, the hsp21D/D mutant strain was avirulent in a

mouse model of hematogenously disseminated candidiasis and

displayed attenuated virulence in an alternative embryonated egg

infection model. Based on our detailed functional analysis of

HSP21, a number of mechanisms are likely to account for the

reduced virulence of hsp21D/D.

Mutants with morphological defects generally exhibit reduced

virulence in both murine and in ovo infection models [84,107].

Therefore, it is possible that reduced hyphal formation in vivo may

at least partially account for the mutant’s virulence attenuation.

Several studies have demonstrated a correlation between

reduced capacity to damage host cells and attenuated virulence

[22,108,109,110]. Infection of embryonated eggs was performed

via the chorio-allantoic membrane (CAM). The CAM is a thin,

highly vascularized membrane composed of two epithelial cell

layers, held together by connective tissue [111]. Therefore, the

reduced capacity of hsp21D/D to damage epithelial and endothe-

lial cells is likely to have contributed to attenuated virulence in ovo.

Similarly, following murine intravenous infection, C. albicans must

traverse the endothelial lining of blood vessels in order to infect

deeper organs. It is therefore possible that the reduced endothelial

Figure 9. Model of Hsp21-dependent adaptation to elevated
temperature. Heat stress induces Hsp21-dependent activation of
Cek1, trehalose accumulation and thermal adaptation of C. albicans.
doi:10.1371/journal.pone.0038584.g009
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damage potential of hsp21D/D may account for decreased

virulence during disseminated candidiasis.

Finally, the role of Hsp21 in adaptation to environmental

stresses likely plays a crucial role in C. albicans virulence. hsp21D/D
was unable to grow at elevated temperature, exhibited greatly

increased sensitivity to oxidative stress and was killed more

efficiently by human neutrophils. As neutrophils play a key role in

killing C. albicans [52], it seems likely that the increased sensitivity

of hsp21D/D to these phagocytes contributed to the strongly

reduced virulence of the mutant. Moreover, host cells and tissues

are known to induce stress-defensive mechanisms, such as the

generation of reactive oxygen (ROS) and/or nitrogen species

(RNS). Although a febrile response is unlikely to reach the high

temperatures used for in vitro thermal stress experiments, it is likely

that in vivo, a combination of stresses act simultaneously on

invading microbes. Indeed, histopathologic examinations, together

with CFU counts of end-point surviving kidney homogenates

demonstrated that very few fungal cells remained in the kidneys of

mice infected with hsp21D/D. We therefore conclude that, unlike

wild type and hsp21D/D::HSP21 strains, hsp21D/D survived poorly

in the hostile milieu of the mammalian host.

In summary, this study represents the first characterization of a

small heat shock protein (Hsp21) in the human fungal pathogen C.

albicans and establishes its role in adaptation to distinct environ-

mental stresses via cellular trehalose homeostasis and Cek1

activation, immune evasion and virulence.

Materials and Methods

Ethics Statement
All animal experiments were in compliance with the German

animal protection law and were approved (permit no. 03–007/07)

by the responsible Federal State authority (Thüringer Landesamt

für Lebensmittelsicherheit und Verbraucherschutz) and ethics

committee (beratende Komission nach 1 15 Abs. 1 Tierschutzge-

setz). The use of human primary cells in this study was conducted

according to the principles expressed in the Declaration of

Helsinki. All protocols used in this study were approved by the

local ethics committee of the University of Jena under the permit

no. 2207-01/08. Written informed consent was provided by all

study participants.

Strains and Growth Conditions
C. albicans strains used and constructed in the present study are

listed in Table 2. The triple-auxotrophic strain BWP17 comple-

mented with plasmid CIp30 [112] was used as wild type control in

all experiments. Strains were routinely grown on YPD agar [1%

yeast extract, 2% bacto-peptone, 2% D-glucose, 2% agar] or SD

minimal medium agar [2% dextrose, 0.17% yeast nitrogen base,

0.5% ammonium sulfate, 2% agar]. Overnight liquid cultures

were grown in YPD or SD medium in a shaking incubator at 30uC
and 180 rpm. Transformants were selected on SD agar supple-

mented with 20 mg ml-1 arginine, histidine and/or uridine as

required. E. coli was cultivated on LB agar [1% bacto-tryptone,

0.5% yeast extract, 1% NaCl, 2% agar]. Overnight cultures of E.

coli were grown in a shaking incubator at 37uC and 210 rpm. For

selection purposes 50 mg/ml Ampicillin were added to the solid or

liquid LB medium. For growth curves overnight YPD cultures

grown at 30uC were diluted to an OD600 of 0.2 in 200 ml final

volume of the desired medium. Growth of the strains was then

recorded by measuring the OD600 in a 30 min interval for up to

60 hours in a ELISA reader (Infinite M200, Tecan) [113].

Experiments were performed at least twice in duplicate. Similar

results were obtained and representative curves are shown.

Strain Construction
The hsp21D/D homozygous null mutant was generated using a

PCR-based gene disruption technique [114]. Starting with the

Arg-, His- and Ura-auxotrophic parental strain BWP17 [115], the

complete open reading frames (ORFs) of both HSP21 alleles were

replaced with polymerase chain reaction (PCR)-amplified ARG4

and HIS1 disruption cassettes flanked by 104 base pairs of target

homology region. Two sequential transformations using the

improved lithium-acetate method [116] were applied for both

disruption cassettes. Primers HSP21-FG and HSP21-RG (Table

S2) were used for generation of the ARG4 and HIS1 deletion

cassettes with the pFA-ARG4 and pFA-HIS1 plasmids as templates

[114]. Resultant deletion cassettes were used to sequentially delete

both copies of HSP21 (orf19.822). The resultant Ura-auxotrophic

mutant was rendered prototrophic for uridine by transformation

with the NcoI-linearized plasmid CIp10, which harbors the URA3

gene and stably integrates at the RPS10 locus [117]. The correct

deletion of both alleles and integration of CIp10 was verified by

colony PCR using target gene and disruption/integration cassette

flanking and internal primers: HSP21-F1, HSP21-R1, ARG4-F1,

ARG4-R1, HIS1-F1, HIS1-R1, URA3-F2 and RPF-F1 (Table

S2), respectively.

Additionally, Southern blot analysis (Figure S2) using a 269

base-pair PCR product, generated with the primers HSP21-F2

and HSP21-R2 (Table S2) from C. albicans SC5314 genomic DNA,

as a probe on HindII-digested genomic DNA was used to confirm

deletion of HSP21/orf19.822.

For the generation of a hsp21D/D::HSP21-reconstituted strain,

the open reading frame of HSP21 as well as 406 base pairs of

upstream and 190 base pairs of downstream sequence were

amplified from SC5314 genomic DNA with the Phusion High-

Fidelity DNA Polymerase Kit (Finnzymes) using the HindIII

restriction site containing primers HSP21rec-F1 and HSP21rec-

R1 (Table S2). The resulting PCR product was first digested with

HindIII and then further purified with the QIAquick PCR

Purification Kit (Qiagen). In parallel 0.3 mg ml-1 of plasmid

CIp10 was digested with HindIII and the restriction enzyme then

heat inactivated by an incubation at 65uC for 20 min. The

linearized plasmid was dephosphorylated with calf intestinal

alkaline phosphatase (New England BioLabs) and gel extracted

using the QIAquick Gel Extraction Kit (Qiagen). The HSP21

insert and CIp10 vector were then ligated for 30 min at 22uC
using the Rapid DNA Ligation Kit (Fermentas). Five ml of ligation

product was used for the transformation of E. coli DH5a and

positive clones were selected on LB agar plates supplemented with

50 mg ml-1 Ampicillin. Plasmid CIp10 carrying HSP21 was re-

isolated using plasmid miniprep (peqlab) and midiprep (Qiagen)

kits and confirmed by control digestions with HindIII, SacI and SpeI

and sequencing. The final plasmid was then digested with NcoI

prior to transformation into the uridine auxotrophic C. albicans

strain hsp21D/Dura- (Table 2). Positive clones were selected on SD

agar plates without amino acids. Correct integration was verified

by PCR on whole yeast colonies using primers RPF-F1 and

URA3-F2 (Table S2).

Susceptibility to Stressors
Aliquots of overnight YPD cultures were washed twice in

phosphate buffered saline (PBS) and 10-fold serial dilutions in 5 ml

(covering a range of 106–101 cells) were spotted onto YPD agar

containing 30 mM DTT (Roth) or SD agar containing 0.4 mM

menadione (Sigma), 1.5 M NaCl or 450 mg ml-1 Congo red

(Sigma) and incubated at 37uC for 3–4 days. Plates incubated at

42uC were photographed after 4–6 days. Heat shock was

performed by incubating serial 10-fold dilutions (range 106–101)

C. albicans Hsp21 and Virulence

PLoS ONE | www.plosone.org 14 June 2012 | Volume 7 | Issue 6 | e38584



at 50uC for 15 min, followed by an incubation on YPD agar for

2 days at 37uC. Each experiment was repeated at least twice.

Representative pictures are shown.

Growth under Nutrient Limitation
For growth assays under nutrient limitation, agar containing

0.67% yeast nitrogen base plus ammonium sulphate without

amino acids (Difco) was supplemented with 2% glucose, potassium

acetate or citrate as sole carbon source. Solid yeast nitrogen base

agar without ammonium sulphate and amino acids (Difco) was

supplemented with 100 mg ml-1 proline or pantothenate as sole

carbon and nitrogen source. Spot dilution assays (range 106–101)

were prepared and plates were incubated at 37uC for 3–7 days

depending on the carbon and nitrogen source.

Measurement of Intracellular Glycerol, Glycogen and
Trehalose Levels

Determination of intracellular glycerol content was performed

with the EnzyChrom Glycerol Assay Kit (Bio Assay Systems) as

previously described [118]. Briefly, cells were grown to stationary

phase at 30uC or 42uC, washed twice with water, and resuspended

in water. Cells were then lysed by incubating at 95uC for 10 min

and the supernatant was used for colorimetric analysis. Intracel-

lular glycerol levels were normalized to the wet weight of each cell

pellet. The experiment was performed twice in duplicate and a

third time as a single reaction.

Estimation of intracellular glycogen levels was performed using

the iodine vapour technique [86,87]. Briefly, 20 ml of stationary

phase cells grown in YPD were spotted on appropriate agar plates,

and incubated for 24 hours at 37uC or 42uC. Colonies were then

exposed to iodine vapour for 5 minutes and immediately

photographed. The experiment was repeated twice in duplicate.

Measurement of intracellular trehalose levels was performed

based on previous studies [86,119]. Briefly, cells were grown to

stationary phase at 30uC or 42uC, washed twice with chilled water,

and resuspended in water. Lysis of the cells was achieved by

incubating at 95uC for 30 minutes and the supernatant was used

for enzymatic analysis. Trehalose was converted to glucose by

addition of 0.15 U trehalase (Sigma) to the reactions (50 ml of

sample, 100 ml 270 mM citric acid buffer ph 5.7) and incubating

at 37uC for five hours. Glucose concentrations were then

determined using the hexokinase glucose kit (Sigma) and adjusted

based on reactions without trehalase. Total protein content was

determined using the BCA protein assay (Pierce) and relative

trehalose levels were based on nmol trehalose per mg cell protein.

At least two biological replicates were performed per strain and

condition.

Hyphal Elongation
Hyphal elongation was investigated on solid water agar

supplemented with 10% fetal bovine serum, on solid synthetic

low-ammonium-dextrose (SLAD) medium, on solid Spider medi-

um [76] or by embedding in YPS (2% saccharose) agar. Serum

agar plates were incubated for 2, SLAD agar plates for 4 and

Spider agar plates for 10 days at 37uC. Embedded plates were

incubated at 25uC for 5 days. Experiments were performed twice

in duplicate. Representative pictures are shown.

Hyphal lengths were measured based on previous studies [120].

Briefly, cells were grown overnight to stationary phase in SD

medium, washed twice with water, and resuspended in water. Cell

numbers were adjusted to 104 cells per well in a 24-well cell culture

plate in RPMI1640 or water supplemented with 10% serum, and

incubated at 37uC for 4 hours in presence of 5% CO2. Hyphal

lengths were then determined using an Inverse microscope (Leica).

Experiments were performed in duplicate and repeated twice. The

lengths of at least 50 hyphae was determined per replicon, strain

and condition. Representative pictures are shown.

Induction of hyphal elongation using host cells was performed

by preparation of a monolayer of oral epthelial cells (TR146) and

infecting it with 105 C. albicans cells. Monolayers were incubated at

37uC for 3 hours in a 5% CO2 atmosphere and hyphal cells were

then differentially stained according to the invasion assay

described below. Hyphal lengths were determined by fluorescence

microscopy (Leica DM5500B, Leica DFC360 FX) with the Leica

Application Suite (LAS) software. At least 100 C. albicans cells were

examined for each strain and all experiments were performed in

duplicate at least twice. Representative pictures are shown.

Western Blot Analysis
Western blot analysis for detection of phosphorylated Cek1 and

Mkc1 was performed as previously described [121], with some

modifications. Briefly, overnight YPD cultures of the

BWP17+CIp30 wild type, hsp21D/D and hsp21D/D::HSP21

mutant strains were adjusted to OD 0.5 in 10 ml final volume

and grown under the following conditions for 4 hours with shaking

(180 rpm): (i) SD minimal medium at 30uC and 42uC, (ii) SD

minimal medium with 450 mg/ml Congo red at 30uC, (iii) SD

minimal medium with 0.5 M NaCl at 30uC, (iv) SD minimal

medium with 50 mM menadione at 30uC, and (v) SD minimal

medium with 0.5 M NaCl at 42uC. Cells were collected by

centrifugation at 4uC and washed twice with cold lysis buffer

containing 16PBS, 3 mM KCl, 2.5 mM MgCl2, 0.1% Triton X-

100, 50 mM NaF, 2 mM Na3VO4. Cell pellets were resuspended

in cold lysis buffer (see above) containing a protease inhibitor

cocktail (Roche). Cells were then mechanically disrupted by

adding acid-washed glass beads and bead beating in a Precellys 24

Table 2. C. albicans strains used in this study.

Strain Genotype Reference

SC5314 Candida albicans wild type [125]

BWP17 ura3 ::limm434/ura3 ::limm434 arg4::hisG/arg4::hisG his1::hisG/his1::hisG [115]

BWP17+ CIp30 ura3 ::limm434/ura3 ::limm434 arg4::hisG/arg4::hisG his1::hisG/his1::hisG + CIp30 [112]

hsp21D orf19.822D::ARG4/ORF19.822 This study

hsp21D/Dura orf19.822D::ARG4/orf19.822D::HIS1 This study

hsp21D/D orf19.822D::ARG4/orf19.822D::HIS1+ CIp10 (URA3) This study

hsp21D/D::HSP21 orf19.822D::ARG4/orf19.822D::HIS1+ CIp10 (ORF19.822, URA3) This study

doi:10.1371/journal.pone.0038584.t002
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homogenizer (peqlab). Protein concentrations were determined by

BCA Protein Assay (Pierce). Protein samples (80 mg) were mixed

with one-fourth volume of 4x sample buffer containing 125 mM

Tris-HCl (pH 6.8), 50% glycerol, 4% SDS, 2.5% b-mercaptoeth-

anol, and 0.02% bromophenol blue for SDS-PAGE. Samples were

heated at 95uC for 5 min and then separated by SDS-PAGE using

12% acrylamide gels. Proteins were electro-transferred to Protran

B85 nitrocellulose membranes (Whatman) and blocked with 5%

BSA (Serva) in PBS with 0.05% tween. Blots were then probed

with primary anti-phospho-p44/42 MAP kinase antibody (1:1000,

Cell Signaling Technology) and secondary goat anti-rabbit-

horseradish peroxidase (HRP)-conjugated antibody (1:2500, Santa

Cruz), and developed using the Enhanced Chemiluminescent

(ECL) SuperSignal West Dura kit (Thermo Scientific) according to

the manufacturers’ instructions. Membranes were then stripped

for 30 min at 50uC using a buffer containing 2% SDS, 125 mM

Tris-HCl (pH 6.8) and 0.7% b-mercaptoethanol. Stripped mem-

branes were then blocked with 5% BSA (Serva) in PBS with 0.05%

tween and re-probed for a-tubulin (loading control) by using a

primary rat anti-a-tubulin antibody (1:1000, AbD Serotec) and a

secondary goat anti-rat HRP-conjugated antibody (1:2000, Santa

Cruz), and developed as described above. Experiments were

performed twice.

Western blot analysis for detection of phosphorylated Hog1

levels was performed as described above, but here, blots were

probed with primary rabbit anti-Phospho-p38 MAP Kinase

(Thr180/Tyr182) antibody (1:1000 Cell Signaling Technology)

and secondary anti-rabbit IgG horseradish peroxidase (HRP)-

conjugated antibody (1:2000, Cell Signaling Technology).

Stripped membranes were re-probed for total Hog1 (loading

control) by using a primary rabbit anti-Hog1 (y-215) antibody

(1:1000, Santa Cruz Biotechnology) and a secondary anti-rabbit

IgG horseradish peroxidase (HRP)-conjugated antibody (1:2000,

Cell Signaling Technology), and developed as described above.

Experiments were performed twice.

Endothelial and Oral Epithelial Cells
The human buccal carcinoma derived epithelial cell line TR-

146 (Cancer Research Technology, London) [122] and the human

umbilical vein derived endothelial cell line HUVEC (ATCC CRL-

1730, LGC Standards, Promocell) were routinely cultured and

passaged in Dulbecco Modified Eagles Medium (DMEM) with

2 mM L-glutamine (PAA) supplemented with 10% heat inactivat-

ed (56uC for 10 min) fetal bovine serum (FBS, PAA). For

experiments, TR146 cells were used during passage 10–20 and

HUVEC cells during passage 10–40. Both cell lines were cultured

in a humidified incubator at 37uC with 5% CO2 atmosphere.

Cultivation medium was replaced by fresh medium every second

day and accutase (PAA) was used for detaching cells after

confluency had reached about 80–100%.

Adherence Assay
Adherence assays were performed using ibidi m-Slides VI 0.4

with six channels per slide. For adherence studies of C. albicans

strains to human host cells 1.86104 endothelial or epithelial cells,

respectively, were seeded per m-slide channel and incubated for

3 days at 37uC and 5% CO2. Confluent monolayers were then

infected with 1.56104 C. albicans cells per channel for 45 min.

Monolayers were then thoroughly washed with PBS to remove un-

adhered fungal cells and fixed with 4% paraformaldehyde. C.

albicans cells were subsequently stained with calcofluor white and

quantified by fluorescence microscopy (Leica DM5500B, Leica

DFC360 FX). The number of adhered cells was determined by

counting at least 50 high power fields of 200 mm6200 mm size.

Experiments were performed in triplicate on three separate

occasions.

Invasion Assay
Invasion rates of the different C. albicans strains were determined

as previously described [81]. Briefly, epithelial TR146 cells were

grown to confluency on 15 mm diameter glass coverslips for 2–

3 days. Monolayers were washed with PBS prior to infection.

Infection was then performed by adding 105 C. albicans yeast cells

to the monolayers and incubating the plates for 3 hours at 37uC
and 5% CO2. Next, epithelial cells were washed twice with PBS

and fixed with 4% paraformaldehyde (Roth). Fungal cells were

then stained for 45 min with fluorescein-conjugated concanavalin

A (Con A) (Invitrogen). After washing with PBS, epithelial cells

were permeabilized in 1% Triton X-100 in PBS for 15 min. Next,

fungal cells were stained with calcofluor white. The coverslips were

then rinsed three times with water and mounted with the cells

upside down on microscope slides with ProLong Gold Antifade

Reagent. Fluorescence microscopy was performed (Leica

DM5500B, Leica DFC360 FX) using appropriate filter sets for

detection of fluorescein-conjugated Con A (stains only the

extracellular, non-invaded fungal elements) and calcofluor white

(stains both invaded and non-invaded fungal elements). At least

100 C. albicans cells were examined for each strain and the invasion

rate was expressed as percentage of invaded cells divided by the

number of invaded plus non-invaded cells. Representative pictures

were taken for each strain. All experiments were performed on

three separate occasions.

Damage Assay
Damage assays were performed by measuring the activity of

lactate dehydrogenase (LDH) released from the cytosol of

damaged cells into the surrounding supernatant using the

Cytotoxicity Detection Kit (Roche Applied Science). TR146 or

HUVEC cells were adjusted to 105 cells ml-1 in DMEM with 10%

FBS and 200 ml were seeded per well in 96 well plates (TPP).

Plates were incubated at 37uC and 5% CO2 for 2 days until

confluency had been reached. Cells were then washed twice with

PBS and 100 ml DMEM with 2% FBS were added per well. For

the C. albicans strains, aliquots of overnight YPD cultures were

washed twice in PBS and 100 ml of 56105 cells ml-1 DMEM

without FBS were added to the host cells. Controls included a

medium only control, a low control with uninfected host cells and

medium only and a high control with infected host cells and

medium supplemented with 1% Triton X-100. Incubation was

carried out at 37uC and 5% CO2 for 15 or 24 h. Measurement of

LDH activity with the Cytotoxicity Detection Kit was performed

according to the manufacturer’s manual. Absorbance of the

samples was measured at 490 nm. Medium only and low control

values were subtracted from all sample values. Damage was

expressed as percentage of the high control, which was set to

100%. Each experiment was performed at least three times in

triplicate.

Neutrophil Assay
Neutrophils were isolated from blood of healthy human donors

by a density gradient centrifugation using Histopaque 1077 and

1119 (Sigma, MO, USA) following the manufacturer’s instruc-

tions. Polymorphonuclear cells (PMNs) were obtained after a

centrifugation step at 700 g for 30 min at room temperature and

then transferred to PBS. The remaining erythrocytes were lysed in

a lysis buffer (0,83% NH4Cl, 10 mM HEPES, pH 7.0), the PMNs

were washed once in PBS and resuspended in 1 ml

RPMI1640+5% FBS. For investigating killing of C. albicans by
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neutrophils, 100 ml of fungal overnight cultures were collected and

washed twice with PBS. C. albicans cells were then opsonized with

50% human serum for 30 min at 37uC. Following centrifugation

and resuspension in PBS, 105 cells ml-1 were inoculated into

RPMI1640+5% FBS. Neutrophils and fungal cells were then

mixed in a ratio of 10:1 (final volume: 400 ml) and incubated for 3

hours at 37uC in presence of 5% CO2. Neutrophils were lysed by

addition of 100 ml 0.25% SDS at 30uC in order to release

phagocytosed C. albicans cells. After addition of 900 ml pre-chilled

water and 20 U of DNase-1, cells were incubated for 15 min at

30uC. Following preparation of appropriate dilutions, aliquots

were spread in duplicate on YPD and incubated for 24 hours at

37uC. At least three independent experiments were performed.

Embryonated Chicken Egg Infection Model
Egg infection experiments were performed as described

previously [83,123]. Briefly, fertilized chicken eggs were retrieved

from a local producer and stored at 8uC not longer than 7 days

before starting with the incubation. The eggs were incubated in a

specialized incubator (BSS 300, Grumbach, Germany) at 37.6uC
and 50–60% relative humidity before infection and turned four

times a day starting on the fourth day of incubation. After

confirming vitality of the embryos by candling, eggs were infected

on top of the chorio-allantoic membrane (CAM) following 10 days

of initial incubation, as previously described [83]. Survival of eggs

was then monitored for up to seven days by candling the eggs at

least twice a day. 20 eggs were infected per C. albicans strain and

each experiment was performed at least twice. Survival data were

visualized as Kaplan-Meyer curves.

Mouse Model of Hematogenously Disseminated
Candidiasis

Five to six weeks old female Balb/C mice (Mus musculus) (18–

20 g; Charles River, Germany) were used for the experiments.

The animals were housed in groups of five in individually

ventilated cages and cared for in accordance with the principles

outlined in the European Convention for the Protection of Vertebrate

Animals Used for Experimental and Other Scientific Purposes (http://

conventions.coe.int/Treaty/en/Treaties/Html/123.htm). Mice

were challenged intravenously on day 0 with 56105 cfu in

200 ml PBS via the lateral tail vein. The health status of the mice

was examined at least twice a day by a veterinarian. Body surface

temperature and body weight were recorded once a day. Mice

showing severe signs of illness like isolation from the group,

apathy, hypothermia and drastic weight loss, were anaesthetized

by application of 200 ml ketamine hydrochloride (50 mg ml-1)

prior to blood collection by heart puncture. Gross pathological

alterations were recorded during necropsy. For histology, left

kidneys were collected and fixed with buffered formalin and

paraffin-embedded sections were stained with Periodic acid-Schiff

(PAS) according to standard protocols.

Statistics
Differences in damage of endothelial and oral epithelial cells by

the different C. albicans strains were compared by two-tailed, type

three Student’s t-test. The statistical analysis for the susceptibility

of C. albicans strains to killing by neutrophils was performed using

Turkey’s Multiple Comparison test. Differences in survival of eggs

or mice infected with the different C. albicans strains were evaluated

by Log-rank (Mantel-Cox) and Gehan-Breslow-Wilcoxon tests. P-

values #0.05 were considered to be statistically significant. All

statistical tests were performed using GraphPad Prism version

5.00.

Supporting Information

Figure S1 In silico analysis of orf19.822. (A) Phylogram for

C. albicans orf19.822. The phylogram was generated according to

[124]. Percentages represent identity of the respective orthologues

to C. albicans orf19.822. (B) orf19.822 promoter region. Predicted

heat shock elements and non-standard HSE are shown in bold

underlined. Within these, the characteristic repetitive GAA and

TTC triplets are shown in green, the variable base pairs are

depicted in black. The stress-responsive element is represented in

bold black characters. The putative TATA-Box is marked with

black characters and is surrounded by a box.

(TIF)

Figure S2 Deletion of both HSP21 alleles. The correct

deletion of HSP21 was confirmed by Southern blot analysis.

Strains BWP17 (Wt), hsp21D, hsp21D/Dura- and hsp21D/D were

analyzed. A 269 base-pair (bp) PCR product, with C. albicans

SC5314 genomic DNA as template, was used as a probe on

HindII-digested genomic DNA. (A) Expected band sizes are:

727 bp (wild type HSP21), 1617 bp (ARG4-deletion-cassette) and

2098 bp (HIS1-deletion-cassette). (B) Southern blot.

(TIF)

Figure S3 Complementation of the hsp21D/D mutant
with HSP21 restores C. albicans capacity to damage oral
epithelial cells in vitro. Monolayers of human-derived oral

epithelial cells were infected with C. albicans wild type (Wt),

hsp21D/D mutant and hsp21D/D::HSP21 complemented mutant

cells for 15 hours. Host cell damage was then determined by

measuring lactate dehydrogenase (LDH) levels. Results are the

mean 6 SD of at least three independent experiments, each

performed in triplicate. *P,0.0001 compared with the wild type

and hsp21D/D::HSP21 complemented strain.

(TIF)

Figure S4 hsp21D/D has normal adherence and inva-
sion properties upon contact with host cells. (A) A hsp21D/

D mutant has similar adherence properties to human-derived

endothelial cells as the wild type. Adherence assays were

performed using ibidi m-Slides VI 0.4. Confluent endothelial cell

monolayers were infected with 1.56104 C. albicans cells for 45 min.

Monolayers were then thoroughly washed with PBS to remove

unattached fungal cells and fixed with 4% paraformaldehyde. C.

albicans cells were subsequently stained with calcofluor white and

quantified by fluorescence microscopy. The number of adhered

cells was determined by counting at least 50 high power fields of

2006200 mm. Results are the mean 6 SEM of three independent

experiments, each performed in triplicate. (B) Invasion of hsp21D/

D mutant cells into human-derived epithelial cells is comparable to

that of the wild type. Monolayers of confluent epithelial cells were

infected with 105 C. albicans yeast cells and incubated for 3 hours at

37uC and 5% CO2. After washing with PBS, cells were fixed with

4% paraformaldehyde. Fungal cells were stained for 45 min with

fluorescein-conjugated concanavalin A. Epithelial cells were then

permeabilized with 1% Triton X-100. Next, fungal cells were

stained with calcofluor white. Fluorescence microscopy was

performed using appropriate filter sets for detection of fluoresce-

in-conjugated Con A (stains only the extracellular, non-invaded

fungal elements) and calcofluor white (stains invaded and non-

invaded fungal elements). At least 100 C. albicans cells were

examined for each strain and the percentage invasion calculated.

Results are the mean 6 SEM of three independent experiments,

with two of them performed in duplicate and one as a single

quantification.

(TIF)
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Figure S5 The hsp21D/D mutant has attenuated viru-
lence in an embryonated egg infection model. 10-day old

embryonated hen eggs were infected with either the wild type (Wt),

the hsp21D/D mutant or the hsp21D/D::HSP21 complemented

strain (n = 20 eggs per C. albicans strain). Survival of the eggs was

then monitored daily by candling for a total of 7 days. Results are

the mean of at least two independent experiments per strain.

*P,0.0001 compared with eggs either infected with the wild type

or hsp21D/D::HSP21 complemented strain.

(TIF)

Table S1 Transcriptional regulation of C. albicans orf19.822

(HSP21).

(DOC)

Table S2 Primers used in this study.

(DOC)
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