## University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln

Patrick Dussault Publications

Published Research - Department of Chemistry

2010

# $B(C_6F_5)_3$ -promoted tandem silulation and intramolecular hydrosilulation: diastereoselective synthesis of oxasilinanes and oxasilepanes

Roman Shchepin University of Nebraska–Lincoln

Chunping Xu University of Nebraska-Lincoln

Patrick Dussault University of Nebraska-Lincoln, pdussault1@unl.edu

Follow this and additional works at: http://digitalcommons.unl.edu/chemistrydussault

Shchepin, Roman; Xu, Chunping; and Dussault, Patrick, "B( $C_6F_5$ )<sub>3</sub>-promoted tandem silvlation and intramolecular hydrosilvlation: diastereoselective synthesis of oxasilinanes and oxasilepanes" (2010). *Patrick Dussault Publications*. 31. http://digitalcommons.unl.edu/chemistrydussault/31

This Article is brought to you for free and open access by the Published Research - Department of Chemistry at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Patrick Dussault Publications by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln.



## NIH Public Access Author Manuscript

Org Lett. Author manuscript; available in PMC 2011 November

Published in final edited form as:

*Org Lett.* 2010 November 5; 12(21): 4772–4775. doi:10.1021/ol1018757. Copyright © 2010 American Chemical Society

# B(C<sub>6</sub>F<sub>5</sub>)<sub>3</sub>-promoted tandem silylation and intramolecular hydrosilylation: diastereoselective synthesis of oxasilinanes and oxasilepanes

**Roman Shchepin<sup>†</sup>**, **Chunping Xu<sup>†</sup>**, and **Patrick Dussault<sup>\*</sup>** Department of Chemistry, University of Nebraska–Lincoln, Lincoln, NE 68588-0304

#### Abstract



 $B(C_6F_5)_3$  promotes regio- and stereoselective cyclizations of unsaturated alkoxysilanes to generate oxasilinanes and oxasilepanes. The same products are available directly from alkenols via tandem silylation and hydrosilylation.

Intramolecular hydrosilylation of alkenes is an important transformation in organic synthesis.1 Initially investigated for unsaturated silanes,2 the methodology is now often applied to unsaturated alkoxy- and aminosilanes,3 where stereospecific oxidative cleavage of the newly formed C-Si bond enables stereodefined synthesis of diols and aminoalcohols. 4,5 The majority of examples involve metal-catalyzed 5-*endo* or 5-*exo* ring closures, although six-membered cyclizations have been reported.1,3,6 We now report regio- and stereoselective formation of oxasilinanes and oxasilepanes via formation and cyclization of unsaturated alkoxysilanes in the presence of a nonmetal catalyst.

In the course of investigations into the influence of Lewis acids on the ozonolysis of unsaturated silanes, we found that addition of  $B(C_6F_5)_3$  to a solution of unsaturated alkoxysilane **1-Pr** resulted in regioselective formation of oxasilinane **2-Pr** with high 3,5-*trans* diastereoselectivity (Table 1).7.8 The cyclization proceeded efficiently at -78 °C or RT and in the presence of either stoichometric or catalytic  $B(C_6F_5)_3$ . Cyclization was also observed for the dimethylsilyl ether (not shown),9 but the hydrolytic instability of this class of reactants led us to abandon this thread following the discovery of the tandem cyclizations discussed later.

pdussault1@unl.edu.

<sup>&</sup>lt;sup>†</sup>These authors contributed equally to this work.

Supporting Information Available. Details regarding preparation and characterization of new compounds. This material is available free of charge via the Internet at http://pubs.acs.org.

The cyclization, apparently the first intramolecular example of a known intermolecular hydrosilylation, 10 was investigated further using alkoxysilanes prepared as illustrated in Scheme 1. 6-*Endo* cyclization onto an  $\alpha$ -substituted styrene (**3-Pr**) proceeded slowly but in high yield and with high *trans* selectivity (Scheme 2). Cyclization onto a cyclobutene (**5-Pr**) proceeded much more slowly through a 6-*endo* pathway to furnish a modest yield of the *cis*-fused adducts (**6-Pr**) as a 5:1 mixture of sidechain epimers. A bishomoallyl substrate, **7-Pr**, reacted very slowly through a 6-*exo* pathway to furnish a *trans*-3,6-disubstituted-2-oxa-1-silinane (**8-Pr**).

 $B(C_6F_5)_3$  also catalyzes the reductive silylation of alcohols,11 and we became intrigued by the possibility of tandem silylation/hydrosilylation (Table 2).  $B(C_6F_5)_3$ -promoted reaction of alkenol **1** with stoichometric  $Et_2SiH_2$  or  $Ph_2SiH_2$  generated oxasilinanes **2-Et** or **2-Ph** with very similar regio- and stereoselection as observed in the stepwise cyclizations. Although alcohols **3** and **5** decomposed under the tandem conditions, cyclohexenol **9** reacted to selectively furnish the 3,5-*trans* diastereomer of *cis*-fused octahydrobenzooxasilinanes **10-Et** and **10-Ph**; the lower yield for the  $Et_2SiH_2$  reaction is likely related to undesired reductive deoxygenations (vida infra). Alkenol **11**, which generates an intermediate siloxane capable of undergoing cyclization through elecronically comparable 5-*exo* or 6-*endo* pathways, reacted only through the latter. Bishomoallyl alcohol **13** underwent selective reaction through a 7-*endo* pathway to furnish oxasilepane **14-Et** as a 62:38 cis/trans mixture.

Reactions employing  $Et_2SiH_2$  often furnished a significant amount of byproducts appearing to result from alcohol deoxygenation.12 For example, reaction of benzylic alcohol **15** produced oxasilane **16-Et** along with a byproduct identified as a disiloxane on the basis of mass spectrometry and oxidative desilylation (Scheme 3).13<sup>,14</sup> Application of the one-pot conditions to allylic alcohol **17** resulted only in rapid formation of the diethyl silyl ether. In general, reactions employing  $Ph_2SiH_2$  proceeded more slowly but generated fewer byproducts; this can be seen, for example in the formation of **10-Et** vs. **10-Ph** (Table 2). The exception was cyclobutene **5**, where decomposition was observed for either silane.

Oxidative desilylation of the hindered siloxanes was initially attempted under Tamao conditions (KF, KHCO<sub>3</sub>, aq. H<sub>2</sub>O<sub>2</sub>, MeOH/THF).5 However, as illustrated in Scheme 4, the oxidations were found to proceed in higher yield using a procedure developed by Woerpel (*t*-BuOOH, CsOH•H<sub>2</sub>O, *n*-Bu<sub>4</sub>NF, DMF).5 The stereochemistry of diols **19**15 and **21**16 was determined by comparison with literature reports, establishing (**14-Et**) or confirming (**16-Et**) the stereochemistry of cyclizations.

The cyclizations, clearly related to intermolecular  $B(C_6F_5)_3$ -mediated hydrosilylations,10 and potentially related to cyclizations of unsaturated silanes in the presence of triphenylmethyl cation,17 almost certainly involve electrophilic attack on an alkene by a silylium-like species derived from interaction of  $B(C_6F_5)_3$  with the Si-H (Scheme 5).18,19 Reduction of the resulting carbocation by the hydridoboron species would furnish the cyclized product and regenerate the Lewis acid catalyst. The selective formation of 3,5*trans*-disubstituted oxasilinanes can be rationalized by hyperconjugation of the newly formed C-Si bond with the carbocation,20 with the resulting conformation dictating approach of the hydride. Analogous stereoselectivity has been observed in formation of siloxanes through hydrogen atom deliver to carbon-centered radicals.21

Although 5-*exo* cyclizations are well-established for Pt-or Rh-catalyzed hydrosilylations,1<sup>,3</sup> we observed selective 6-*endo* vs. 5-*exo* cyclization with a substrate where either mode would proceed via a secondary carbocation (Table 2, substrate **11**). We also observed very different rates for 6-*exo* and 6-*endo* cyclizations involving electronically similar carbocation intermediates (**7-Pr** vs. **1-Pr**). These results point to the importance of interactions between

Org Lett. Author manuscript; available in PMC 2011 November 5.

the alkene and the developing silylium-like species. The *cis* selectivity observed for sixmembered ring annelations, which complements results from metal-catalyzed cyclizations, 1<sup>,</sup>3<sup>,</sup>22 presumably reflects stereoelectronic requirements for trapping of the  $\beta$ -silyl cations. 23 The stereoselectivity of sidechain introduction results from cyclization through the lowenergy conformer of a chair-like transition state (eq 1).



Several lines of evidence indicate that the tandem reactions and stepwise processes involve a common hydrosilylation step. Both processes proceed with nearly identical regio- and diastereoselectivity. Furthermore, dialkylsilyl ethers are observed (TLC) as intermediates in some of the slower reactions, and become the only product when cyclization is disfavored, as for allylic alcohol **17** (Scheme 3). Finally, a diene substrate reacts selectively across the homoallyl alcohol (eq 2).



The formation of deoxygenated byproducts is observed mainly in the tandem reactions. The chemoselective deoxygenation of unhindered alcohols by trialkylsilane and  $B(C_6F_5)_3$  has been postulated to involve attack of a silylium ate complex on intermediate silyl ethers,12 suggesting the deoxygenations observed here result from intermolecular reductions directly competing with cyclization.

Overall, the transformation provides a new method for the regio- and stereoselective synthesis of cyclic siloxanes and derived diols. Given that  $B(C_6F_5)_3$  has been reported to catalyze the hydrosilylation of ketones and aldehydes,23 it is likely the method could be extended to allow the synthesis of oxasilacycles from unsaturated aldehydes and ketones.

#### **Supplementary Material**

Refer to Web version on PubMed Central for supplementary material.

#### Acknowledgments

Research support and funding for NMR instrumentation was provided by NSF (CHE-0749916, MRI 0079750, and CHE 0091975). Research was conducted in facilities remodeled with NIH support (RR016544-01). We are grateful for advice from Prof. V. Gevorgyan (Univ. of Illinois at Chicago) and for advice or technical support from S. DiMagno, J. Dumais, J. Belot, C. Schwartz, and S. Basiaga (Univ. of Nebraska-Lincoln).

Org Lett. Author manuscript; available in PMC 2011 November 5.

(1)

(2)

#### References

- a) Yamamoto, K.; Hayashi, T. Transition Metals for Organic Synthesis. 2. Beller, M.; Bolm, C., editors. Wiley-VCH; Weinheim: 2004. p. 167-191.b) Marciniec, B. Hydrosilylation: A Comprehensive Review on Recent Advances. Marciniec, B., editor. Springer; New York: 2009. p. 3-51.
- 2. Benkeser RA, Mozden EC, Muench WC, Roche RT, Siklosi MP. J Org Chem. 1979; 44:1370.
- 3. Varchi G, Ojima I. Curr Org Chem. 2006; 10:1341.
- See, for example: a) Mak SYF, Curtis NR, Payne AN, Congreve MS, Francis CL, Burton JW, Holmes AB. Synthesis. 2005:3199. b) Li F, Roush WR. Org Lett. 2009; 11:2932. [PubMed: 19507846]
- Oxidative cleavage: a) Jones GR, Landais Y. Tetrahedron. 1996; 52:7599. b) Smitrovich JH, Woerpel KA. J Org Chem. 1996; 61:6044.
- Cyclizations to form six- or seven-membered rings: a) Widenhoefer RA. Acc Chem Res. 2002; 35:905. [PubMed: 12379143] b) Xin S, Harrod JF. J Orgmet Chem. 1995; 499:181. c) DeCamp AE, Mills SG, Kawaguchi AT, Desmond R, Reamer RA, DiMichele L, Volante RP. J Org Chem. 1991; 56:3564.d) Sibi, MP. e-EROS Encyclopedia of Reagents for Organic Synthesis. John Wiley & Sons; 2001. e) Widenhoefer RA, Krzyzanowska B, Webb-Wood G. Organometallics. 1998; 17:5124.
- 7. Reviews of B(C<sub>6</sub>F<sub>5</sub>)<sub>3</sub>: a) Piers WE. Adv Organomet Chem. 2005; 52:1. b) Erker G. Dalton Trans. 2005:1883. [PubMed: 15909033]
- 8. Stereochemical assignments are based upon  ${}^{3}J_{H}$  couplings, nOe correlations, and a literature correlation for diol 21.
- 9. Tamao K, Nakajima T, Sumiya R, Arai H, Higuchi N, Ito Y. J Am Chem Soc. 1986; 108:6090.
- 10. Rubin M, Schwier T, Gevorgyan V. J Org Chem. 2002; 67:1936. [PubMed: 11895414]
- 11. Blackwell JM, Foster KL, Beck VH, Piers WE. J Org Chem. 1999; 64:4887. [PubMed: 11674566]
- 12. Gevorgyan V, Rubin M, Benson S, Liu JX, Yamamoto Y. J Org Chem. 2000; 65:6179. [PubMed: 10987957]
- B(C<sub>6</sub>F<sub>5</sub>)<sub>3</sub>-promoted formation of disiloxanes: Chojnowski J, Rubinsztajn S, Cella JA, Fortuniak W, Cypryk M, Kurjata J, Kazmierski K. Organometallics. 2005; 24:6077.
- 14. Lebel H, Ladjel C. J Organomet Chem. 2005; 690:5198.
- 15. Zhu G, Negishi E-i. Org Lett. 2007; 9:2771. [PubMed: 17583343]
- 16. Nájera C, Yus M, Seebach D. Helv Chim Acta. 1984; 67:289.
- 17. Steinberger H-U, Bauch C, Mueller T, Auner N. Can J Chem. 2003; 81:1223.
- 18. Larson GL, Fry JL. Org React. 2008; 71:1.
- 19. Reed CA. Acc Chem Res. 1998; 31:325.
- 20. Lambert JB. Tetrahedron. 1990; 46:2677.
- 21. Cai Y, Roberts BP. J Chem Soc, Perkin Trans 1. 1998:467. Ibid., 3653. In contrast to the results described in this work, we observed a single predominant conformation of oxasilinanes.
- 22. Formation of cis-oxasilinanes through 6-exo cyclization of  $\alpha$ -silyloxymethyl radicals: Koreeda M, Hamann LG. J Am Chem Soc. 1990; 112:8175.
- 23. Parks DJ, Blackwell JM, Piers WE. J Org Chem. 2000; 65:3090. [PubMed: 10814201] Gevorgyan V, Rubin M, Liu JX, Yamamoto Y. J Org Chem. 2001; 66:1672. [PubMed: 11262111]

Shchepin et al.



<sup>a</sup>Inseparable 3:1 mixture with 1-chloro-1-alkylcyclobutane

#### Scheme 1.

Preparation of alkoxysilanes <sup>a</sup>Inseparable 3:1 mixture with 1-chloro-1-alkylcyclobutane Shchepin et al.



**Scheme 2.** Additional cyclizations



Scheme 3. Byproduct formation <sup>*a*</sup> 0.6 equivalents. <sup>*b*</sup> 0.25 equivalents.



**Scheme 4.** Oxidative desilylation

Org Lett. Author manuscript; available in PMC 2011 November 5.



Scheme 5. Proposed mechanism

#### Table 1

#### Cyclization of **1-Pr**<sup>a</sup>

| iPr, iPr<br>H <sup>Si</sup> O<br>Hex<br>1-Pr | ∬_Me B(C               | <sub>6</sub> F <sub>5</sub> ) <sub>3,</sub><br>ene<br>► | iPr<br>O<br>Hex<br>H | iPr<br>Si<br>5 .H<br>Me<br><b>P-Pr</b> |
|----------------------------------------------|------------------------|---------------------------------------------------------|----------------------|----------------------------------------|
| BAr <sub>3</sub> (equiv)                     | temp (°C) <sup>b</sup> | <i>t</i> (h)                                            | yield (%)            | trans %                                |
| 1.0                                          | -78                    | < 0.1                                                   | 82                   | nd                                     |
| 0.4                                          | rt                     | < 0.1                                                   | 88                   | nd                                     |
|                                              |                        |                                                         |                      |                                        |
| 0.1                                          | -78                    | < 0.1                                                   | 93                   | nd                                     |

<sup>a</sup>Prepared as illustrated in Scheme 1.

 $^{b}$ Final temperature; reactants mixed at -78 °C.

<sup>c</sup>5% of the *cis*-diastereomer isolated.

**NIH-PA** Author Manuscript

**NIH-PA** Author Manuscript

Tandem silylation/hydrosilylation

| Hex $h_{n}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Hex $h_{n}$ $H_{1}$ $H_{2}$ $H_{1}$ $H_{2}$ $H_{1}$ $H_{2}$ $H_{1}$ $H_{2}$ $H_{1}$ $H_{2}$ $H_{1}$ $H_{1}$ $H_{1}$ $H_{2}$ $H_{1}$ $H_{2}$ $H_{1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | HexImage for the transmetric of |                               | HO-     | R <sup>-</sup>                  | X <sub>2</sub> SiH<br>B(C <sub>6</sub> F | 2 (1.1 €<br>5)3 (0.1 | equiv)<br>I-0.5 equi | ر<br>م | × ×<br>Si × |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|---------|---------------------------------|------------------------------------------|----------------------|----------------------|--------|-------------|
| subs $\mathbf{R}^1, \mathbf{R}^2$ $\mathbf{X}$ $t(\mathbf{h})$ prod         yield $trans$ $\delta s$ 1         1         Me,H         Et         0.1 $2$ -Et $47$ %         >90           1         1         Me,H         Ph         0.15 $2$ -Ph $80$ %         >90           3         1         Ph,H         Ph $ -$ decomp           5         1         (CH <sub>2</sub> ) <sub>2</sub> Ph $ -$ decomp           9         1         (CH <sub>2</sub> ) <sub>4</sub> Et $0.5$ $10$ -Ph/b $39$ % $90$ $11^{c}$ 1         (CH <sub>2</sub> ) <sub>4</sub> Ph $1$ $10$ -Ph/b $73$ % $84$ $11^{c}$ 1         H,Me         Et $0.1$ $10$ -Ph/b $73$ % $90$ $11^{c}$ 1         H,Me         Ph $1$ $10$ -Ph/b $73$ % $90$ $11^{c}$ 1         H,Me         Ph $1$ $10$ -Ph/b $73$ % $90$ $11^{c}$ 1         H,PEt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | subs $\mathbf{R}^1, \mathbf{R}^2$ $\mathbf{X}$ $\mathbf{f}$ (h)         prod         yield         trans %           1         1         Me,H         Et         0.1 $2$ -Et $47$ $\mathbf{>00}$ 1         1         Me,H         Et         0.1 $2$ -Et $47$ $\mathbf{>00}$ 3         1         Me,H         Ph $0$ $2$ -Ph $80$ $\mathbf{>00}$ 3         1         Ph,H         Ph $0$ $2$ -Ph $80$ $\mathbf{>00}$ $5$ 1 $0$ -15 $2$ -Ph $80$ $\mathbf{>00}$ $9$ 1 $0$ -15 $\mathbf{P}$ $0$ $0$ $9$ 1 $0$ -15 $1$ $0$ -16 $0$ $0$ $1$ $1$ $0$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | subs $\mathbf{R}$ , $\mathbf{R}^2$ , $\mathbf{X}$ $\mathbf{f}$ (h)prodyield $\mathbf{trans}$ $\mathbf{y}_{\rm ed}$ 11Me.HEt0.1 $2$ -Et $47\%$ >9031Me.HPhPh $2$ -Et $47\%$ >9031Ph.HPhPh $2$ -Et $47\%$ >9041Me.HPh $2$ -Et $47\%$ >9031Ph.HPh $2$ $2$ -decomp41(CH <sub>2</sub> ) <sub>2</sub> Ph $2$ $2$ -decomp91(CH <sub>2</sub> ) <sub>4</sub> Ph $10$ -Et/b $39\%$ 90 $11^{c}$ 1H.MePh $10$ -Et/b $73\%$ 84 $11^{c}$ 1H.MePh $10$ -Et/b $73\%$ $50$ $11^{c}$ 1H.MePh $10$ -Et/b $73\%$ $50$ $11^{c}$ 1H.MePh $10$ -Et/b $73\%$ $50$ $13^{c}$ 2H.MePh $91$ $10$ -Et/b $50$ $13^{c}$ 2H.MePh $91$ $10$ -Et/b $\mathbf{73\%}$ $50$ $13^{c}$ 2H.MePh $91$ $10$ $10^{c}$ $\mathbf{73\%}$ $51$ $13^{c}$ 2H.MePh $91$ $10^{c}$ $10^{c}$ $10^{c}$ $50^{c}$ $13^{c}$ 2Ph $91^{c}$ $91^{c}$ $91^{c}$ $50^{c}$ $50^{c}$ $13^{c}$ 2 <th>Hex</th> <th><math>\prec</math></th> <th>n<br/>™1</th> <th>t</th> <th>oluene,</th> <th>, 0 °C</th> <th>Hex</th> <th></th>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Hex                           | $\prec$ | n<br>™1                         | t                                        | oluene,              | , 0 °C               | Hex    |             |
| 1         1         Me,H         Et         0.1 $2$ -Et $47\%$ >90           1         1         Me,H         Ph         0.15 $2$ -Ph $80\%$ >90           3         1         Ph,H         Ph         0.15 $2$ -Ph $80\%$ >90           5         1         Ph,H         Ph         -         -         decomp           6         1         (CH <sub>2</sub> ) <sub>2</sub> Ph         -         -         decomp           9         1         (CH <sub>2</sub> ) <sub>4</sub> Et $0.5$ $10$ -Et         decomp           9         1         (CH <sub>2</sub> ) <sub>4</sub> Ph         1 $10$ -Et $39\%$ $90$ 9         1         (CH <sub>2</sub> ) <sub>4</sub> Ph         1 $10$ -Et $73\%$ $84$ $11c$ 1         H,Me         Pt $11$ $12$ -Et $16\%$ $60$ $11c$ 1         H,Me         Pt $1$ $12$ -Et $24\%$ $\sim1:1$ $11c$ 1         H,Me         Pt $1$ $12$ -Et $\sim1:1$ $\sim1:1$ </th <th>I         Me,H         Et         0.1         2-Et         47 %         &gt;90           I         Me,H         Ph         0.15         2-Ph         80 %         &gt;90           3         I         Ph,H         Ph         0.15         2-Ph         80 %         &gt;90           3         I         Ph,H         Ph         -         -         decomp           5         I         (CH<sub>2</sub>)<sub>2</sub>         Ph         -         -         decomp           9         I         CH<sub>2</sub>         Ph         -         -         decomp           9         I         CH<sub>2</sub>         Ph         -         -         -         decomp           9         I         OD-Et         39 %         80 %         90           9         I         OD-Etb         73 %         84           11c         I         HMe         Pi         I         12-Pi         73 %         <math>\sim</math>           13         2         H.Me         Et         0.1         14-Et         73 %         38</th> <th>1         Me,H         Et         0.1         2-Et         47%         &gt;90           1         Me,H         Ph         0.15         2-Ph         80%         &gt;90           3         1         Ph,H         Ph         0.15         2-Ph         80%         &gt;90           4         1         Ph,H         Ph         2         -         decomp         &gt;90           4         1         Ph,H         Ph         -         -         -         decomp           5         1         (CH<sub>2</sub>)<sub>2</sub>         Ph         -         -         -         decomp           9         1         (CH<sub>2</sub>)<sub>4</sub>         Et         0.5         10-Et/b         33%         90           9         1         (CH<sub>2</sub>)<sub>4</sub>         Ph         1         10-Ph/b         73%         84           11c         1         H,Me         Ph         1         12-Et         16%         <math>\sim</math>1:1           13         2         H,Me         Pt         0.1         14-Et         73%         38           3.5         stereochemistry:         3.5         3.5         3.5         3.5         3.5         3.5</th> <th>sqns</th> <th>u</th> <th>R<sup>1</sup>, R<sup>2</sup></th> <th>X</th> <th><i>t</i> (h)</th> <th>prod</th> <th>yield</th> <th>trans %a</th> | I         Me,H         Et         0.1         2-Et         47 %         >90           I         Me,H         Ph         0.15         2-Ph         80 %         >90           3         I         Ph,H         Ph         0.15         2-Ph         80 %         >90           3         I         Ph,H         Ph         -         -         decomp           5         I         (CH <sub>2</sub> ) <sub>2</sub> Ph         -         -         decomp           9         I         CH <sub>2</sub> Ph         -         -         decomp           9         I         CH <sub>2</sub> Ph         -         -         -         decomp           9         I         OD-Et         39 %         80 %         90           9         I         OD-Etb         73 %         84           11c         I         HMe         Pi         I         12-Pi         73 % $\sim$ 13         2         H.Me         Et         0.1         14-Et         73 %         38                                                                                                                                                                                    | 1         Me,H         Et         0.1         2-Et         47%         >90           1         Me,H         Ph         0.15         2-Ph         80%         >90           3         1         Ph,H         Ph         0.15         2-Ph         80%         >90           4         1         Ph,H         Ph         2         -         decomp         >90           4         1         Ph,H         Ph         -         -         -         decomp           5         1         (CH <sub>2</sub> ) <sub>2</sub> Ph         -         -         -         decomp           9         1         (CH <sub>2</sub> ) <sub>4</sub> Et         0.5         10-Et/b         33%         90           9         1         (CH <sub>2</sub> ) <sub>4</sub> Ph         1         10-Ph/b         73%         84           11c         1         H,Me         Ph         1         12-Et         16% $\sim$ 1:1           13         2         H,Me         Pt         0.1         14-Et         73%         38           3.5         stereochemistry:         3.5         3.5         3.5         3.5         3.5         3.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | sqns                          | u       | R <sup>1</sup> , R <sup>2</sup> | X                                        | <i>t</i> (h)         | prod                 | yield  | trans %a    |
| 1         1         Me,H         Ph         0.15         2-Ph         80%         >90           3         1         Ph,H         Ph         -         -         decomp           5         1         (H2)2         Ph         -         -         decomp           9         1         (CH3)2         Ph         -         -         decomp           9         1         (CH3)4         Et         0.5         10-Etb         39%         90           9         1         (CH3)4         Ph         1         10-Phb         73%         84           11c         1         HMe         Et         0.1         12-Et         16%         60           11c         1         HMe         Ph         1         12-Eth         24%         ~11           13         2         H,Me         Et         0.1         14-Et         73%         35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1         1         Me,H         Ph         0.15         2-Ph         80 %         >90           3         1         Ph,H         Ph         -         -         decomp           5         1 $(CH_2)_2$ Ph         -         -         decomp           9         1 $(CH_2)_4$ Et $0.5$ $10$ -Et $39 %$ 90           9         1 $(CH_2)_4$ Ph         1 $10$ -Et $39 %$ 90           1 $(CH_2)_4$ Ph         1 $10$ -Et $39 %$ $90$ 1 $(CH_2)_4$ Ph         1 $10$ -Et $39 %$ $90$ 1 $(CH_2)_4$ Ph         1 $10$ -Et $16 %$ $73 %$ $84$ 11c         1         H,Me         Ph         1 $12$ -Ph $24 \%$ $-11$ 13         2         H,Me         Pt $0.1$ $14$ -Et $73 \%$ $38$                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1         1         Me,H         Ph         0.15         2-Ph         80 %         >90           3         1         Ph,H         Ph         -         -         decomp           5         1         (CH <sub>2</sub> ) <sub>2</sub> Ph         -         -         decomp           9         1         (CH <sub>2</sub> ) <sub>4</sub> Et         0.5         10-Eh         39 %         90           9         1         (CH <sub>2</sub> ) <sub>4</sub> Ph         1         10-Eh         39 %         90           11c         1         H,Me         Et         0.1         12-Eh         16 %         60           11c         1         H,Me         Ph         1         12-Eh         73 %         33           13         2         H,Me         Et         0.1         12-Eh         73 %         33           3.5 stereochemistry:         3         0.1         14-Et         73 %         33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1                             | -       | Me,H                            | Εt                                       | 0.1                  | 2-Et                 | 47 %   | >90         |
| 3 $1$ $Ph,H$ $Ph$ $                                                                                            -$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $3$ $1$ $Ph,H$ $Ph$ $  decomp$ $5$ $1$ $(CH_2)_2$ $Ph$ $  decomp$ $9$ $1$ $(CH_2)_4$ $Et$ $0.5$ $10-Et^4b$ $39$ <% $90$ $9$ $1$ $(CH_2)_4$ $Ph$ $1$ $10-Ph_b$ $73$ <% $84$ $11c$ $1$ $HMe$ $Et$ $0.1$ $12-Et$ $16$ $60$ $11c$ $1$ $HMe$ $Et$ $0.1$ $12-Et$ $16$ $61$ $11c$ $1$ $HMe$ $Et$ $0.1$ $12-Et$ $16$ $73$ $81$ $13$ $2$ $HMe$ $Et$ $0.1$ $14-Et$ $73$ $83$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $3$ $1$ $Ph,H$ $Ph$ $ decomp$ $5$ $1$ $(CH_2)_2$ $Ph$ $ decomp$ $9$ $1$ $(CH_2)_4$ $Et$ $0.5$ $10$ - $Et$ b $39\%$ $90$ $9$ $1$ $(CH_2)_4$ $Et$ $0.5$ $10$ - $Et$ b $39\%$ $90$ $1$ $1$ $10$ - $Et$ b $73\%$ $84$ $11c$ $1$ $H,Me$ $Et$ $0.1$ $12$ - $Et$ $16\%$ $60$ $11c$ $1$ $H,Me$ $Et$ $0.1$ $12$ - $Et$ $16\%$ $73\%$ $31$ $13$ $2$ $H,Me$ $Et$ $0.1$ $14$ - $Et$ $73\%$ $33$ $3.5$ stereochemistry: $3.5$ stereochemistry: $3.5$ $3.5$ $3.5$ $3.5$ $3.5$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1                             | 1       | Me,H                            | Ρh                                       | 0.15                 | 2-Ph                 | 80 %   | >90         |
| 5         1 $(CH_{2})_2$ $Ph$ -         -         decomp           9         1 $(CH_{2})_4$ $Et$ $0.5$ $10$ - $\mathbf{E}t^b$ $39\%$ $90$ 9         1 $(CH_{2})_4$ $Ph$ 1 $10$ - $\mathbf{E}t^b$ $39\%$ $90$ 9         1 $(CH_{2})_4$ $Ph$ 1 $10$ - $\mathbf{P}t^b$ $73\%$ $84$ $11c$ 1 $14$ - $\mathbf{P}t$ $16\%$ $60$ $61$ $11c$ 1 $14$ - $\mathbf{R}t$ $24\%$ $\sim 1:1$ $13$ 2 $\mathbf{H}, \mathbf{M}e$ $\mathbf{E}t$ $0.1$ $14$ - $\mathbf{E}t$ $73\%$ $38$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 5         1 $(CH_2)_2$ Ph         -         -         decomp           9         1 $(CH_2)_4$ Et $0.5$ $10$ -Et $39\%$ $90$ 9         1 $(CH_2)_4$ Ph         1 $10$ -Et $39\%$ $90$ 9         1 $(CH_2)_4$ Ph         1 $10$ -Ph $73\%$ $84$ $11c$ 1         H.Me         Et $0.1$ $12$ -Et $16\%$ $60$ $11c$ 1         H.Me         Ph         1 $12$ -Ph $24\%$ $\sim11:1$ $13$ 2         H.Me         Et $0.1$ $14$ -Et $73\%$ $38$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 5         1 $(CH_2)_2$ Ph         -         -         decomp           9         1 $(CH_2)_4$ Et $0.5$ $10$ -Et $39\%$ $90$ 9         1 $(CH_2)_4$ Ph         1 $10$ -Et $39\%$ $90$ 9         1 $(CH_2)_4$ Ph         1 $10$ -Et $73\%$ $84$ $11c$ 1         H,Me         Et $0.1$ $12$ -Et $16\%$ $60$ $11c$ 1         H,Me         Ph         1 $12$ -Et $73\%$ $38$ $11c$ 1         H,Me         Ph $0.1$ $12$ -Et $73\%$ $38$ $13$ 2         H,Me         Et $0.1$ $14$ -Et $73\%$ $38$ $3.5$ stereochemistry: $3.5$ stereochemistry: $3.5$ $3.5$ $3.5$ $3.5$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | e                             | 1       | Ph,H                            | Ph                                       | ī                    |                      | Ō      | lecomp      |
| 9         1         (CH <sub>2</sub> ) <sub>4</sub> Et         0.5         10-Et         39 %         90           9         1         (CH <sub>2</sub> ) <sub>4</sub> Ph         1         10-Ph         73 %         84           11         1         H,Me         Et         0.1         12-Et         16 %         60           11         1         H,Me         Ph         1         12-Ph         24 %         ~1:1           13         2         H,Me         Et         0.1         14-Et         73 %         38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 9         1         (CH <sub>2</sub> ) <sub>4</sub> Et         0.5 $10$ - $\mathbf{Et}$ 39 %         90           9         1         (CH <sub>2</sub> ) <sub>4</sub> Ph         1 $10$ - $\mathbf{Ph}$ 73 %         84 $11$ 1         H.Me         Et         0.1 $12$ - $\mathbf{Et}$ 16 %         60 $11$ 1         H.Me         Ph         1 $12$ - $\mathbf{Et}$ 16 %         ~01 $11$ 1         H.Me         Ph         1 $12$ - $\mathbf{Ph}$ 24 %         ~11 $13$ 2         H.Me         Et         0.1 $14$ - $\mathbf{Et}$ 73 %         38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 9         1 $(CH_2)_4$ Et $0.5$ $10$ -Et/b $39\%$ 90           9         1 $(CH_2)_4$ Ph         1 $10$ -Et/b $73\%$ 84 $11c$ 1         H,Me         Et $0.1$ $12$ -Et $16\%$ $60$ $11c$ 1         H,Me         Ph         1 $12$ -Et $16\%$ $61$ $11c$ 1         H,Me         Ph         1 $12$ -Et $73\%$ $38$ $13$ 2         H,Me         Et $0.1$ $14$ -Et $73\%$ $38$ $3.5$ stereochemistry:         S.5 stereochemistry: $36.7$ $38.7$ $38.7$ $38.7$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ŝ                             | -       | (CH <sub>2</sub> ) <sub>2</sub> | Ph                                       | ·                    | ı                    | Ō      | lecomp      |
| 9         1         (CH <sub>2</sub> ) <sub>4</sub> Ph         1 <b>10-Ph</b> b         73 %         84           11c         1         H,Me         Et         0.1 <b>12-Et</b> 16 %         60           11c         1         H,Me         Ph         1 <b>12-Ph</b> 24 %         ~1:1           13         2         H,Me         Et         0.1 <b>14-Et</b> 73 %         38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 9         1         (CH <sub>2</sub> ) <sub>4</sub> Ph         1 <b>10-Ph</b> b         73 %         84           11c         1         H.Me         Et         0.1 <b>12-Et</b> 16 %         60           11c         1         H.Me         Ph         1 <b>12-Ph</b> 24 %         ~1:1           13         2         H.Me         Et         0.1 <b>14-Et</b> 73 %         38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 9         1 $(CH_2)_4$ Ph         1 $10$ - $Phb$ 73 %         84 $11c$ 1         H,Me         Et         0.1 $12$ - $Et$ 16 %         60 $11c$ 1         H,Me         Ph         1 $12$ - $Et$ 16 %         60 $11c$ 1         H,Me         Ph         1 $12$ - $Ph$ $24 \%$ $\sim 1:1$ $13$ 2         H,Me         Et         0.1 $14$ - $Et$ $73 \%$ $38$ $3,5$ stereochemistry:         S. stereochemistry: $13$ $14$ - $Et$ $73 \%$ $38$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 6                             | -       | (CH <sub>2</sub> ) <sub>4</sub> | Εt                                       | 0.5                  | $10-Et^b$            | 39 %   | 06          |
| I1c         1         H.Me         Et         0.1         12-Et         16 %         60           I1c         1         H.Me         Ph         1         12-Ph         24 %         ~1:1           13         2         H.Me         Et         0.1         14-Et         73 %         38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | I1c         1         H.Me         Et         0.1         12-Et         16 %         60           I1c         1         H.Me         Ph         1         12-Ph         24 %         ~1:1           13         2         H.Me         Et         0.1         14-Et         73 %         38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 11c         1         H.Me         Et         0.1         12-Et         16 %         60           11c         1         H.Me         Ph         1         12-Ph         24 %         ~1:1           13         2         H.Me         Et         0.1         14-Et         73 %         38           3.5 stereochemistry;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 6                             | -       | (CH <sub>2</sub> ) <sub>4</sub> | Ph                                       | 1                    | $10-Ph^b$            | 73 %   | 84          |
| I1c         1         H,Me         Ph         1         12-Ph         24 %         ~1:1           13         2         H,Me         Et         0.1         14-Et         73 %         38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | I1 <sup>c</sup> 1         H.Me         Ph         1         12-Ph         24 %         ~1:1           13         2         H.Me         Et         0.1         14-Et         73 %         38           S S spreachemistry         38         38         38         38         38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 11c         1         H.Me         Ph         1         12-Ph         24 %         ~1:1           13         2         H.Me         Et         0.1         14-Et         73 %         38           3.5 stereochemistry;         .5         .5         .5         .5         .5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <b>11</b> <sup><i>c</i></sup> | -       | H,Me                            | Et                                       | 0.1                  | 12-Et                | 16 %   | 60          |
| <b>13</b> 2 H,Me Et 0.1 <b>14-Et</b> 73 % 38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 13         2         H.Me         Et         0.1         14-Et         73 %         38         38         38         38         38         38         38         38         38         38         38         38         38         38         38         38         38         38         38         38         38         38         38         38         38         38         38         38         38         38         38         38         38         38         38         38         38         38         38         38         38         38         38         38         38         38         38         38         38         38         38         38         38         38         38         38         38         38         38         38         38         38         38         38         38         38         38         38         38         38         38         38         38         38         38         38         38         38         38         38         38         38         38         38         38         38         38         38         38         38         38         38         38         38 | <b>13</b> 2 H,Me Et 0.1 <b>14-Et</b> 73 % 38 3,5 stereochemistry;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <b>11</b> <sup>c</sup>        | -       | H,Me                            | Ph                                       | 1                    | 12-Ph                | 24 %   | ~1:1        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | \$ 5 stereorchemistry.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ),5 stereochemistry;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 13                            | 7       | H,Me                            | Et                                       | 0.1                  | 14-Et                | 73 %   | 38          |

Org Lett. Author manuscript; available in PMC 2011 November 5.

 $c_{3.3:1}$  mixture of E/Z isomers.

Shchepin et al.

# B(C<sub>6</sub>F<sub>5</sub>)<sub>3</sub>-promoted tandem silylation and intramolecular hydrosilylation: diastereoselective synthesis of oxasilinanes and oxasilepanes

#### OL 2010-018757

### Roman Shchepin, Chunping Xu, and Patrick Dussault\* pdussault1@unl.edu

#### **Supporting Information - Experimental Procedures**

| General Experimental Procedures:                                                                                                                                                                                                                      | 2  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| Alcohol precursors                                                                                                                                                                                                                                    | 2  |
| 2-Methyldec-1-en-4-ol (1):                                                                                                                                                                                                                            | 2  |
| 2-Phenyldec-1-en-4-ol ( <b>3</b> ):                                                                                                                                                                                                                   | 3  |
| 1-Cyclobutenyloctan-2-ol ( <b>5</b> ):                                                                                                                                                                                                                | 3  |
| 2-Methyl-2-dodecen-6-ol (7):                                                                                                                                                                                                                          | 3  |
| 1-Cyclohexenyloctan-2-ol (9):                                                                                                                                                                                                                         | 3  |
| Undec-2-en-5-ol (11):                                                                                                                                                                                                                                 | 3  |
| 2-Methylundec-1-en-5-ol ( <b>13</b> ):                                                                                                                                                                                                                | 4  |
| 3-Methyl-1-phenylbut-3-en-1-ol (15):                                                                                                                                                                                                                  | 4  |
| 2-Methylnon-1-en-3-ol (17):                                                                                                                                                                                                                           | 4  |
| Diisopropylsilyl ethers                                                                                                                                                                                                                               | 4  |
| Diisopropyl-(2-methyldec-1-en-4-oxy)silane ( <b>1-Pr</b> ):                                                                                                                                                                                           | 4  |
| Diisopropyl-(2-phenyldec-1-en-4-oxy) silane ( <b>3-Pr</b> ):                                                                                                                                                                                          | 4  |
| Diisopropyl-(1-cyclobutenyloctyl-2-oxy)silane ( <b>5-Pr</b> ):                                                                                                                                                                                        | 5  |
| Diisopropyl-(2-methyl-2-dodecen-6-oxy)silane (7-Pr):                                                                                                                                                                                                  | 5  |
| $B(C_6F_5)_3$ -catalyzed cyclizations of diisopropylsilyl ethers (illustrated for <b>1-Pr</b> )                                                                                                                                                       | 5  |
| (trans)-1,1-Diisopropyl-3-hexyl-5-methyl-2,1-oxasilinane (trans-2-Pr) and cis-2-Pr                                                                                                                                                                    | 6  |
| (trans)- 1,1-Diisopropyl-3-hexyl-5-phenyl-2,1-oxasilinane (trans-4-Pr):                                                                                                                                                                               | 7  |
| $(3\alpha, 5\alpha, 6\alpha)$ , $(3\beta, 5\alpha, 6\alpha)$ -1.1-Diisopropyl-3-hexyl-2-oxa-1-sila[4.2.0] bicyclooctane (6-Pr):                                                                                                                       | 7  |
| ( <i>trans</i> )-1,1-Diisopropyl-3-hexyl-6-isopropyl-2,1-oxasilinane ( <b>8-Pr</b> ):                                                                                                                                                                 | 8  |
| $B(C_6F_5)_3$ -catalyzed tandem silvlation/hydrosilvlation (general procedure)                                                                                                                                                                        | 8  |
| 1.1-Diethyl-3-hexyl-5-methyl-2.1-oxasilinane ( <b>2-Et</b> ):                                                                                                                                                                                         | 9  |
| 1.1-Diphenyl-3-hexyl-5-methyl-2.1-oxasilinane ( <b>2-Ph</b> ):                                                                                                                                                                                        | 9  |
| $(3\beta 5\alpha 6\alpha)$ and $(3\alpha 5\alpha 6\alpha)$ -2 1-Benzoxasilin octahydro-1 1-diethyl-3-hexyl (10-Et)                                                                                                                                    | 9  |
| $(3\beta,5\alpha,6\alpha) = 21$ Benzovasilin octahydro 1 1-dinhenyl-3 heyyl ((3\beta,5\alpha,6\alpha) = 10. Ph) and                                                                                                                                   | 4  |
| $(3\alpha, 5\alpha, 6\alpha) = 2,1$ Benzovasilin, octanyuro, 1,1-diphenyl 2 hexyl $((3\alpha, 5\alpha, 6\alpha) = 10$ H) and $(3\alpha, 5\alpha, 6\alpha) = 2,1$ Benzovasilin, octahydro, 1,1 diphenyl 2 hexyl $((3\alpha, 5\alpha, 6\alpha) = 10$ H) | 10 |
| (30, 50, 00)-2,1-Delizoxasilili, octaliyulo, 1,1-ulpiteliyi-5-liexyi ((30, 50, 00)-10-Fii)                                                                                                                                                            | 10 |
| (5,0-trans) and $(5,0-trs)-1,1-Dietry 1-3-nexy 1-0-metry 1-2,1-0x as minimize (trans 12  Et and  (sis) 12  Et)$                                                                                                                                       | 11 |
| ( <i>Hulls</i> -12-EL allu ( <i>Cls</i> )-12-EL<br>(2.6. turns) and (2.6. sis) 1.1 Dimbonyl 2 howel 6 mathed 2.1 sussiling as                                                                                                                         | 11 |
| (5,0-irans) and $(5,0-cis)-1,1-D$ phenyi-5-nexyi-0-methyi-2,1-oxasiiinane<br>(trans 12 Db and (ais) 12 Db):                                                                                                                                           | 10 |
| (ITAHS-12-TH and (Cls)-12-TH):                                                                                                                                                                                                                        | 12 |
| (5,0- <i>irans)</i> and (5,0- <i>cis)</i> -1,1-Diethyi-5-nexyi-6-methyi-2-oxa-1-silepane                                                                                                                                                              |    |

| ( <i>trans</i> - and <i>cis</i> -14-Et).                                              | 12 |
|---------------------------------------------------------------------------------------|----|
| (3,5- <i>trans</i> )- 1,1-Diethyl-5-methyl-3-phenyl-2,1-oxasilinane ( <b>16-Et</b> ): | 13 |
| Diethyl (2-methylnon-1-en-3-oxy)silane (18-Et):                                       |    |
| Oxidative Desilylation:                                                               | 13 |
| (Tamao oxidation) 2-Methylundecane-1,5-diol (19):                                     | 14 |
| (Woerpel oxidation) 2-(2-Hydroxyoctyl)-cyclohexanol (20):                             | 14 |
| 3-Methyl-1-phenyl-1,4-butanediol (21)                                                 | 15 |
| References                                                                            | 15 |

#### General Experimental Procedures:

Tetrahydrofuran (THF) was distilled from Na/Ph<sub>2</sub>CO under N<sub>2</sub>. Dichloromethane (CH<sub>2</sub>Cl<sub>2</sub>) was distilled from CaH<sub>2</sub>. Stock solutions of  $B(C_6H_5)_3$  were prepared either by: A) Transferring a freshly opened commercial sample (typically 1.0 g) into a oven-dried flask under N<sub>2</sub> followed by dissolution (0.2 M) in freshly distilled (Na/Ph<sub>2</sub>CO) toluene; or B) Working inside a glove box under inert atmosphere, dividing a 1.0 g commercial sample of  $B(C_6F_5)_3$  into individual vials (ca. 200 mg/vial). The vials were removed from the glove box to prepare stock solutions in toluene (0.2 M) that were used immediately and then discarded. <sup>i</sup>  $B(C_6H_5)_3$  dissolves completely in toluene at 0.2M; the solubility of the hydrate is significantly lower. All other reagents and solvents were used as purchased unless otherwise noted. Thin layer chromatography (TLC) was performed on 0.25 mm hard-layer silica G plates; developed plates were visualized with a handheld UV lamp and/or by staining with one of the following: 1% ceric sulfate and 10% ammonium molybdate in 10% H<sub>2</sub>SO<sub>4</sub> (general stain, after charring) or 1% aq. KMnO<sub>4</sub> (for alkenes). Analytical and preparative HPLC werer performed on a 4.6 mm x 25 cm Si column (5 μm) or 21.4 mm x 25 cm Si column (8 μm); both employed RI detection. NMR spectra were recorded at 400 MHz (<sup>1</sup>H) or 100 MHz (<sup>13</sup>C) in CDCl<sub>3</sub> unless otherwise indicated. <sup>1</sup>H NMR signals are reported as: [chemical shift (multiplicity, integration, J couplings in Hz, other information). Infrared spectra were recorded as neat films (ZnSe crystal or NaCl plates) with selected absorbances reported in wave numbers (cm<sup>-1</sup>). High resolution mass spectrometry was conducted at the Nebraska Center for Mass Spectrometry.

#### Preparation of Alcohols:

**2-Methyldec-1-en-4-ol** (1): Into a 0 °C solution of heptanal (3.5 mL, 25 mmol) in THF (10 mL) was added dropwise a solution of 2-methylallyl magnesium chloride in THF (50 mL, nominally 0.5 *M*). After 20 min, the reaction was quenched with water (20 mL), acidified with conc. HCl (~

3 mL) and extracted with 10% EA/Hex (250 mL x 2). The combined extracts were sequentially washed with 10% aq. HCl and water. A standard workup and purification (5% EA/Hex) furnished 3.53 g (82%) of a compound with spectral properties matching literature reports.<sup>ii</sup>

**2-Phenyldec-1-en-4-ol** (**3**)<sup>iii</sup> was prepared by ene reaction of heptanal with  $\alpha$ -methylstryrene by the procedure of Snider: <sup>iv</sup> <sup>1</sup>H  $\delta$  7.44-7.41 (2H); 7.38-7.33 (2H); 7.32-7.27 (2H); 5.43 (d, 1H, 1.6); 5.18 (bs, 1H); 3.66 (m, 1H), 2.84 (ddd, 1H, 14, 4, 1; AB with 2.67), 2.67 (dd, 1H, 14, 9); 1.69 (d, 1H, 3); 1.4-1.5 (3H), 1.2-1.3 (6 H), 0.88 (t, 3H, 6.5); 13C  $\delta$  145.5, 140.5, 128.4, 127.7, 126.2, 115.2, 69.4, 43.8, 37.0, 31.8, 29.3, 25.6, 22.6, 14.1; IR 3368 (s, b); 2927, 2856, 1626, 1444, 898, 705 cm<sup>-1</sup>; HRFAB MS calc. For C<sub>16</sub>H<sub>24</sub>OLi (M+Li)<sup>+</sup>: 239.1984; found 239.1984.

**1-Cyclobutenyloctan-2-ol** (**5**) was prepared from methylenecyclobutane (1.0 g, 15 mmol) and heptanal (2.7 mL, 1.3 equiv) by a similar procedure as for **3** to afford 0.99 g of alcohol **5** as an inseparable 3:1 mixture with 1-chlorocyclobutyl-2-octanol. The spectra of the product ( $R_f = 0.3$ , 10% EA) matched a literature report.<sup>v</sup>

**2-Methyl-2-dodecen-6-ol** (7) was prepared (1.39 g, 71%) by reaction of the Grignard reagent derived from 5-bromo-2-methyl-2-pentene (2.0 mL, 15 mmmol) with a slight exces of heptanal:  $R_f$ =0.4 (5% EA/hex); <sup>1</sup>H  $\delta$  5.14 (bt, 1H, 6); 3.60 (m, 1H); 2.09 (m, 2H); 1.69 (bs, 3H); 1.63 (bs, 3H); 1.55-1.38 (6H); 1.35-1.23 (6H); 0.89 (t, 3H, 7); <sup>13</sup>C  $\delta$  132.0; 124.2; 71.8; 37.5, 37.3, 31.8, 29.4, 25.7, 25.6, 24.4, 22.6, 17.6, 14.1; IR: 3377 (b, s, OH); 3328, 2924, 2855, 1454, 1377 cm-1; 2928, 2864, 2092, 1463, 1379, 1056, 1001, 837 cm<sup>-1</sup>; HRFAB calculated for C<sub>13</sub>H<sub>25</sub>O (M-H)<sup>+</sup>: 197.1905; found 197.1912 (-5.4 ppm); M<sup>+</sup> also observed at 196.1813.

**1-Cyclohexenyloctan-2-ol** (9) was prepared from the reaction of heptanal (1.12 mL, 8.0 mmol), methylenecyclohexane (1.12 mL, 10 mol) and Me<sub>2</sub>AlCl (12 mL, nominally 1 M solution in hexanes) by a similar procedure as for **3**. The product (1.23 g, 73%) displayed spectra consistent with literature reports. <sup>vi</sup>  $R_f = 0.4$  (10% EA/Hex

(*E*,*Z*)-**Undec-2-en-5-ol** (**11**) was prepared (1.17 g, 86%) from prop-1-enylmagnesium bromide (24 mL, nominally 0.5M in THF), epoxyoctane (1.2 mL, 8 mmol) and CuI(0.152g, 0.8 mmol).

The product was a 3.3:1 mixture of *E*- and *Z*-isomers based upon integration of the <sup>1</sup>H signals at  $\delta$  1.64 and 1.69 ppm. Spectral properties matched literature reports.<sup>vii</sup> R<sub>f</sub> =0.4 (10% EA/Hex).

**2-Methylundec-1-en-5-ol** (13) <sup>viii</sup> was prepared (1.45 g, 98%) from 2-methylallyl magnesium chloride (24 mL, nominally 0.5M in THF), 2-hexyloxirane (1.2 mL, 8 mmol) and CuI(0.152g, 0.8 mmol) by a similar manner as 15.  $R_f = 0.3$  (10% EA/Hex).

**3-Methyl-1-phenylbut-3-en-1-ol** (15) was prepared (1.30 g, quant.) from reaction of benzaldehyde (0.85 mL, 8.0 mmol) and 2-methylallyl magnesium chloride (20.8 mL, nominally 0.5M in THF) by a procedure similar to that applied for **1**. Spectral properties matched a literature report.<sup>ix</sup>  $R_f = 0.3$  (10% EA/Hex)

**2-Methylnon-1-en-3-ol**  $(17)^{x}$  was prepared (1.05 g, 84%) from heptanal (1.12 mL, 8.00 mmol) and allylmagnesium chloride (20.8 mL, nominally 0.5M solution in THF) by a similar procedure as used for **1**. R<sub>f</sub> =0.2 (10% EA/Hex). Spectral properties matched a literature report.

#### Alkoxysilanes:

#### Diisopropyl(2-methyldec-1-en-4-oxy)silane (1-Pr)

Into a THF (15 mL) solution of 2-methyldec-1-en-4-ol (0.724 g, 4.30 mmol) was added sodium bis(trimethylsilyl)amide (4.3 mL, nominally 2*M*) followed by SiClH(*i*-Pr)<sub>2</sub> (1.1 mL) . After 4 h the reaction was quenched with brine and extracted with hexane (2 x 200 mL). The combined organic extracts were concentrated *in vacuo* and the residue was purified by flash chromatography in hexane to afford 1.09 g (89%) of the silyl ether:  $R_f = 0.4$  (hexane); <sup>1</sup>H (600 MHz)  $\delta$  4.78 (app. s, 1H), 4.78(app. s, 1H), 4.21(s, 1H), 3.85(p, 1H, 5.7), 2.27(dd, 6 and 13.2), 2.17(dd, 1H, 7.2 and 13.2), 1.75(s, 3H), 1.43 (m, 10H), 1.05(m, 12H), 0.95(m, 2H), 0.90(t, 3H, 6.0); <sup>13</sup>C (150 MHz)  $\delta$  142.9, 112.8, 73.0, 45.7, 36.7, 31.9, 29.4, 25.2, 22.9, 22.6, 17.60, 17.57, 17.46, 14.1, 12.73, 12.71; IR 2927, 2862, 2097, 1642, 1463, 1377 cm-1. HRMS (CI) calc. for C<sub>17</sub>H<sub>35</sub>OSi (M-H)<sup>+</sup>: 283.2457; found 283.2469 (4.2 ppm); M<sup>+</sup> (284.2543) observed in lower abundance.

**Diisopropyl-(2-phenyldec-1-en-4-oxy)silane** (**3-Pr**) was prepared (0.435 g, 70%) from alcohol **3** (0.428 g, 1.8 mmol) by a procedure similar to that applied to the synthesis of **1-Pr**:  $R_f = 0.9$  (5% EA/hex); <sup>1</sup>H  $\delta$  7.42 (bd, 2H, 8), 7.34 (bt, 2H, 8), 7.72 (app tt, 1H, 8, 1); 5.32 (d, 1H, 1.6), 5.13 (bs, 1H); 4.18 (bt, 1H, 1.6), 3.76 (m, 1H), 2.81 (ddd, 1H, 14, 5.8, 1); 2.64 (ddd, 1H, 14, 6.4, 1); 1.55-1.36 (3H), 1.33-1.18 (7H); 1.04-0.98 (12H, overlapping Me doublets); 0.98 -0.91 (m, 2H); 0.88 (t, 3H, 6.4); <sup>13</sup>C  $\delta$  145.7, 141.2, 128.2, 127.3, 126.3, 114.9, 72.9, 43.2, 36.5, 31.8, 29.4, 24.9, 22.6, 17.54, 17.48, 14.41, 14.07, 12.64, 12.61; IR: 3031, 2954, 2865, 3095, 1462, 1254 cm<sup>-1</sup>; HRFAB Calc. For C<sub>22</sub>H<sub>37</sub>OSi (M-H)<sup>+</sup>: 345.2613; found 345.2605 (2.5 ppm).

**Diisopropyl(1-cyclobutenyloctyl-2-oxy)silane (5-Pr)** was prepared in 55% yield (485 mg) from **5** (546 mg, estimated 2.25 mmol based upon purity) by a similar porocedure as for **1-Pr**:  $R_f = 0.3$  (hexane); <sup>1</sup>H  $\delta$  5.72 (s, 1H); 4.20 (s, 1H); 3.81 (apparent pentet, 1H, 5-6); 2.45 (m, 2H), 2.35 (bs, 2H); 2.22 (m, 2H); 1.5-1.23 (10H); 1.07-1.02 (12H, isopropyl groups); 1.02-0.95 (2H); 0.895 (t, 3H, 6.5); <sup>13</sup>C  $\delta$  147.3, 129,3, 73.1, 38.8, 36.9, 32.0, 31.9, 29.4, 27.0, 25.3, 22.6, 17.6, 17.5, 17.4, 14.1, 12.7; IR 2926, 2864, 2089, 1462, 1055, 837 cm<sup>-1</sup>; HRFAB Calc. For C<sub>18</sub>H<sub>35</sub>OSi (M-H)<sup>+</sup>: 295.2457; found 295.2452 (1.7 ppm).

**Diisopropyl-(2-methyl-2-dodecen-6-oxy)silane** (7-Pr) was prepared (0.707g, 73%) from alcohol 7 (617 mg, 3.1 mmol) by a similar procedure as for 1-Pr:  $R_f = 0.3$  (hexane); <sup>1</sup>H  $\delta$  5.12 (bt, 1H, 6-7), 4.21 (s, 1H), 3.69 (pentet, 1H, 6.4); 2.08 & 1.98 (ABXY, 2H), 1.69 (s, 3H); 1.62 (s, 3H); 1.53-1.45 (4H), 1.35-1.25 (8H), 1.08-1.02 (12H, isopropyl), 1.02-0.95 (2H); 0.90 (t, 3H, 6); <sup>13</sup>C  $\delta$  131.4, 124.5, 74.3, 36.9, 36.8, 31,9, 29.5, 25.7, 25.3, 24.0, 22.6, 17.64, 17.59, 17.5, 14.1, 12.7; IR 2929, 2864, 2088, 1463, 1377, 1063, 1002, 841, 800 cm<sup>-1</sup>; HRFAB Calc. For C<sub>19</sub>H<sub>39</sub>OSi (M-H)<sup>+</sup>: 311.2770; found 311.2773 (1.0 ppm).

<u>General Procedure for intramolecular hydrosilylation</u> (illustrated for **1-Pr**). To an anhydrous toluene solution (6 mL) of **1-Pr** (0.285g, 1.00 mmol), either at -78, 0 °C, or rt, was added  $B(C_6F_5)_3$ . The amount of catalyst ranged from 0.1 to 1.0 eq, as a 0.2M solution in toluene. After the reaction was complete (TLC), the reaction was quenched with sat. aq. NaHCO<sub>3</sub> (5 mL) and the resulting mixture extracted with hexane (2 X 100 mL). The combined organic layers were concentrated *in vacuo* and the residue was purified by flash chromatography (hexane) to afford

*trans*-**2-Pr** (236 mg, 83%) followed by a small amount of *cis*-**2-Pr** (18 mg, 6%). Analysis of the crude reaction mixtures by GC/MS generally found 91-95% of the *trans* isomer; the minor (syn) byproduct eluted first on GC. Both diasteromers displayed a predominant fragment at m/z 241, [M-iPr]<sup>-</sup>. The stereochemistry was assigned based upon the relative strength of nOe transfer in the *trans* and *cis* isomers (see Scheme below), and by the magnitude of the axial/axial and axial/equatorial couplings for  ${}^{3}J_{5-6}$  couplings. The stereochemical assignment was supported by a correlation of the  ${}^{3}J_{H}$  of the minor (*cis*) byproduct with a literature report for similar molecules .<sup>xi</sup>

#### (3,5-trans)- 1,1-Diisopropyl-3-hexyl-5-methyl-2,1-oxasilinane (trans-2-Pr)

 $R_f = 0.2$  (hexane); <sup>1</sup>H δ 3.99(m, 1H), 1.96(m, 1H), 1.57(m, 1H), 1.38(m 11H), 0.99(m, 12H), 0.95(m, 4H), 0.88[m, 4H, includes 0.89(t, 3H, 6.8), and peak at 0.90], 0.80(ddd, 1H, J<sub>1</sub>=1.6, J<sub>2</sub>=4.8, J<sub>3</sub>=14.8), 0.28(dd, 1H, 10.4 and 14.8); <sup>13</sup>C δ 72.0, 41.3, 37.5, 31.9, 29.4, 26.3, 26.1, 23.8, 22.6, 17.28, 17.27; 17.19, 17.16, 15.1, 14.1, 13.7, 13.1; IR (2942,



2931, 2864, 1464 cm<sup>-1</sup>; HRFABMS (3-NBA) calc. for  $C_{14}H_{29}OSi [M-(i-Pr)^+]$ : 241.1988; found 241.1992 (1.7 ppm). Diaxial couplings and nOe excitations are summarized in the accompanying graphic.

### (3,5-cis)- **1,1-Diisopropyl-3-hexyl-5**methyl-2,1-oxasilinane (cis-2-Pr):

 $R_f = 0.4$  (hexane); <sup>1</sup>H  $\delta$  3.76(m, 1H), 1.77(m, 1H), 1.51(d of q., 1H, 2 and 13.6), 1.38(m 11H), 1.04-0.94 [m, 15H, peak at 1.00 (d, 6.5) visible nOe upon irradiation at 0.21], 0.89[m, 5H,



includes 0.89(t, 3H, 6.8), and other peaks], 0.72(ddd, 1H,  $J_1=2.4$ ,  $J_2=4.0$ ,  $J_3=14.4$ ), 0.21(dd, 1H, 12.8 and 14.4); <sup>13</sup>C  $\delta$  74.6, 44.3, 39.1, 31.9, 29.7, 29.4, 27.5, 25.3, 22.7, 17.71, 17.68, 17.14, 17.10, 15.7, 14.1, 13.1, 12.3; IR identical to *anti-2-Pr*. Diaxial couplings and nOe excitations are summarized in the accompanying graphic.

The <sup>1</sup>H NMR spectra of *cis*-3,5-disubstituted 2,1-oxasilacyclohexanes display  $H_3$  (axial) as a ddd between 3.45 and 3.7 ppm and with individual coupling contants of up to 11 Hz.<sup>11</sup> The same work found the <sup>2</sup>J coupling for  $H_6/H_6$ ' to be 14 Hz, and the axial/axial and equatorial/axial <sup>3</sup>J <sub>5-6</sub> couplings to be 13.3 and 3.5 Hz, respectively. These values agree closely with our observations for *cis*-**2-Pr**.

#### (3,5-trans)- 1,1-Diisopropyl-3-hexyl-5-phenyl-2,1-oxasilinane (trans-4-Pr):

By a procedure similar to that described for **1-Pr**, cyclization of silane **3-Pr** (0.299 g, 0.862 mmol) furnished 0.257 g (86% yield) of **4-Pr**:  $R_f = 0.3$  (5% EA/hex); <sup>1</sup>H  $\delta$  7.34 (t, 2H, 7.5); 7.27 (bd, 2H, 7.5); 7.22 (bd, 1H, 7.5); 4.16 (m, 1H); 3.05 (bt, 1H, 12.5), 1.96 (near dt, 12, 6; on same CH<sub>2</sub> as 1.75; 1.77 (m, 1H, on same CH<sub>2</sub> as 1.55); 1.75 (m, 1H, on same CH<sub>2</sub> as 1.96); 1.55 (m, 1H, on same CH<sub>2</sub> as 1.78), 1.5 (m, 1H, on same CH<sub>2</sub> as peak buried at 1.32), 1.4-1.26 (7H, includes portion of CH<sub>2</sub> shared with 1.5 as well as three CH<sub>2</sub>-related spin systems), 1.12 (d, 3H, 7), 1.10 (3H, obscured), 1.09 (d, 3H, 7), 1.02 (6H, broad s), 0.98 (m, 1H, part of CH<sub>2</sub> with 0.90); 0.92 (t, 3H, 7), 0. 90 (partially obscured dd, 20, 14). Through-space (nOe) correlations: Excitation of 4.16: collapses 1.96 to dt (6,14) as H<sub>4</sub> equatorial); enhances 1.77, 1.75, 1.5, 1.32; Excitation of 3.05 enhances 7.27, 1.77, 1.5, (shows evidence of direct coupling to 1.96); enhances d at 1.11, 1.09, and m/bs at 1.00 and 0.08; enhances methyl at 0.89? <sup>13</sup>C 149.8, 128.5, 126.4, 125.9, 73.0, 40.7, 37.0, 34.4, 31.9, 29.4, 26.5, 22.7, 17.34, 17.27, 17.21, 17.16, 15.7, 14.1, 13.9, 13.0; HR-FAB calcd. C<sub>22</sub>H<sub>38</sub>OSi (M-H)<sup>+</sup>: 345.2613; found: 345.2605 (2.5 ppm)

**1,1-Diisopropyl-3-hexyl-2-oxa-1-sila**[**4.2.0**] **bicyclooctane** (**6-Pr**) was prepared (65 mg, 32%) as a separable mixture of diasteromers by cyclization of **5-Pr** (200 mg, 0.67 mmol).

Diastereomer 1 ( $3\alpha$ ,  $5\alpha$ ,  $6\alpha$ ); 54 mg; R<sub>f</sub> = 0.3 (hexane); <sup>1</sup>H  $\delta$  3.58 (m, 1H, methine, cross speaks to spin system centered on 1.5 ppm); 2.51 (m, 1H, methine, coupled to 2.38, 1.95, 1.57); 2.38 (apparent pentet, 1H, part of methylene, coupled to 2.51, 1.99, 1.95, 1.68, 1.57); 1.99 (m, 1H, methine); 1.95 (m, 1H, part of methylene); 1.68 (dd, 1H, 13, 6); 1.57 (m, 1H); 1.55-1.25 (11H);

1.04-9.97 (12H, 4 Me in isopropyl); 0.898 (t, 3H, 6.4), 0.88 (m, 1H), noE from 3.58 reveals as apparent pentet); <sup>13</sup>C δ 73.18, 29.17, 38.61, 36.28, 21.97, 30.92, 29.41, 25.32, 26.69, 21.96, 18.57, 17.64, 17.53, 17.47, 17.07, 14.12, 13.44, 12.99; IR 2926, 2802, 1463, 1131, 1040, 882 cm<sup>-1</sup>.

*Diastereomer 2 (3β,5α,6α)*: 11.6 mg;  $R_f = 0.2$  (hexane); <sup>1</sup>H δ 4.11 (m or apparent heptet, 1H); 2.825 (m, 1H; coupled into 2.2, 1.92, 1.47; correlates with methine C at 32.6 ppm); 2.24 (m, 1H; correlates with methylene C at 26 ppm), 2.13 (m, 1H, correlates with methylene at 26 ppm) ), 2.06 (m, 1H, correlates wth methylene at 20 ppm), 1.92 (m, 2H correlates with methylene at 26 and methine at 17); 1.47 (m, 4H), 1.4-1.25 (9H), 1.15-1.05 (1H); 1.07 (m, 3H0, 1.03 (app d, 3H, 6.4), 0.997 (d, 3H, 6.7); 0.94 (d, 3H, 6.7); 0.83 (m, 1H); <sup>13</sup>C δ 69.55, 38.79, 37.78, 32.64, 31.97, 29.44, 26.28, 25.71, 22.68, 20.07, 17.53, 17.43, 17.33, 17.13, 16.24, 14.10, 13.18, 13.12; IR 2927, 2803, 1464, 1092, 993, 882 cm-1; HRMS calcd. for C<sub>18</sub>H<sub>35</sub>OSi (M-H)<sup>+</sup>: 295.2457; found: 295.2456 (6.4 ppm).

(*trans*) **1,1-Diisopropyl-3-hexyl-6-isopropyl-2,1-oxasilinane (8-Pr)** was prepared (87 mg, 20% yield) from from **7-Pr** (419 mg, 1.34 mmol) by a similar procedure (0.2 equiv B(C<sub>6</sub>F<sub>5</sub>)<sub>3</sub>) as for **2-Pr**, except that the reaction was warmed to 0° C and held at that temperature for 16 h. Following a careful flash chromatography to remove a large amount of byproduct, the product was isolated as a single product by NMR and GC/MS:  $R_f = 0.5$  (hexane); <sup>1</sup>H  $\delta$  3.68 (m, 1H; C3-axial), 2.05 (dtd, 1H, 12.8, 5, 2.4; H<sub>5</sub>-*eq*, HMQC shows relationships to 1.35; COSY shows couplings to H<sub>5</sub>-axial, H<sub>4</sub>-axial, H<sub>6</sub>); 1.69 (m, 2H; 1H includes H<sub>4</sub>-axial; linked by COSY to H<sub>4</sub>-*eq* at 1.15); 1H is CH of C<sub>6</sub> sidechain, with correlations to C<sub>6</sub> and sidechain methylenes); 1.5-1.25 (9H, includes: 1.35 m for H<sub>5</sub>-axial; multiple spin systems from sidechain CH<sub>2</sub> groups); 1.15 (m, 1H, C<sub>4</sub>-eq); 1.11 (d, 3H, 6-7, iPrSi); 1.09 (d, 3H, 6-7, iPrSi); 1.10 (m, 1H, CH), 1.05 (d, 3H, -7, iPrSi); 1.00 (d, 3H, ~7, iPrSi); 0.96 and 0.93 (each d, 3H, J ~6.5, Me<sub>2</sub>CHC<sub>6</sub>); 0.89 (t, 3H, 4-5, Me); 0.63 (ddd, 13, 9, 5, H<sub>6</sub>, COSY to iPrCH at 1.7); GC-MS: single major peak at 28.17 min ( 269, [M-iPr]); <sup>13</sup>C  $\delta$  74.6, 39.2, 36.4, 32.2, 31.6, 29.6, 28.8, 27.6, 25.7, 24.8, 22.9, 22.0. 19.8, 18.6, 18.1, 17.8, 14.4, 13.8, 13.1; IR 2927, 2865 (s); 1464, 1382, 1068 cm<sup>-1</sup>; HRFAB calc for C<sub>19</sub>H<sub>39</sub>OSi (M-H)<sup>+</sup>: 311.2770; found 311.2783 (3.9 ppm); (M+H)<sup>+</sup> at 312.2818 also observed. <u>General procedure for tandem silylation/hydrosilylation:</u> Into a solution of unsaturated alcohol (typically 1 mmol) in 6 mL anhydrous toluene was added diethylsilane or diphenylsilane (1.2 mmol). The solution was cooled to 0 °C and  $B(C_6F_5)_3$  was added (typically 0.1-0.5 equiv) from a 0.2-0.3 M stock solution in anhydrous toluene, resulting in vigorous bubbling. Once the alkene had largely disappeared (TLC), the reaction was quenched with 10% aq. NaHCO<sub>3</sub> (30 mL). The resulting mixture was extracted with hexane (2 x 50 mL) and the crude products were purifed by flash or column chromatography.

#### (3,5-trans)-1,1-Diethyl-3-hexyl-5-methyl-1-oxa-2-silinane (2-Et)

Using the tandem procedure described above, alcohol **1** (0.34 g, 2.0 mmol) was reacted with diethylsilane(0.33 mL, 2.6 mmol). TLC indicated that the reaction was completed within 5 minutes. Column chromatography using 0-5% EA/hex as the eluting solvent afforded 0.24g (47%) of the silacyclohexane. A small portion of the product was purified by semi-preparative HPLC (21 x 250mm, 5 mL/minute of 1% EA/hex):  $R_f = 0.58$  (5% EA/hex ); <sup>1</sup>H  $\delta$  3.93-3.99(1H), 1.98-2.06(1H), 1.55-1.59(1H), 1.36-1.50(4H), 1.27(7H, m), 1.01(3H, d, 6.7), 0.94(3H, t, 6.4), 0.94(3H, t, 7.9), 0.88(3H, t, 6.8), 0.72(1H, ddd, 1.4, 4.6, 14.5), 0.57(4H, q, 7.5), 0.33(1H, dd, 10, 14.5); <sup>13</sup>C  $\delta$  72.0, 41.4, 37.3, 31.9, 29.4, 26.3, 25.7, 24.1, 22.6, 17.7, 14.1, 7.6, 6.9, 6.7, 6.5; IR: 2953, 2925, 2874, 1458, 1413, 1156, 1047, 1003, 762 cm<sup>-1</sup>. HR-FABMS calcd. for  $C_{15}H_{32}O[M+H]^+$ : 257.2301; Found: 257.2300

(*3*,*5*-*trans*)-**1**,**1**-**Diphenyl-3**-**hexyl-5**-**methyl-1**-**oxa-2**-**silinane** (**2**-**Ph**) was prepared (0.59 g, 84%) from alcohol **1** (0.34 g, 2.0 mmol) and diphenylsilane (0.41 mL, 2.2 mmol) using the tandem procedure described above. The reaction was conducted for 10 min and the crude product wa purified by gradient flash chromatography (0-5% EA/hex). A small portion of the product was purified by semi-preparative HPLC (21x250 mm, 5 mL/min of 1% EA/hex). The major product was assigned by comparison with **1**-**Pr**:  $R_f = 0.23$  (2% EA/hex ); <sup>1</sup>H δ 7.51-7.61(5H), 7.30-7.42(5H), 4.16-4.21(1H), 2.24-2.28(1H), 1.27-1.63(15H), 1.03(3H, d, 6.8), 0.87(3H, t, 6.8), 0.79-0.95(2H); <sup>13</sup>C δ 137.26, 137.24, 134.2, 134.1, 129.63, 129.57, 127.78, 127.73, 72.2, 41.6, 37.5, 31.8, 29.2, 26.1, 25.0, 24.8, 22.6, 19.0, 14.1; IR: 3068, 3049, 3000, 2954, 2925, 2856, 1454, 1428, 1151, 1116, 1041, 997, 821, 756, 731, 699 cm<sup>-1</sup>; HR FABMS calcd. for C<sub>23</sub>H<sub>33</sub>OSi [MH]+: 353.2307; found: 353.2300 (1.7 ppm).

(3 $\beta$ ,5 $\alpha$ ,6 $\alpha$ ) and (3 $\alpha$ ,5 $\alpha$ ,6 $\alpha$ ) **2,1-Benzoxasilin, octahydro-1,1-diethyl-3-hexyl (10-Et)**: Using the tandem procedure described above, alcohol **9** (0.21g, 1.00 mmol) was reacted with diethylsilane (0.17 mL, 1.3 mmol) for 30 min, to furnish, after standard workup and chromatography, 0.11 g (39%) of the oxasilane. A small portion of the product was purified by semi-preparative HPLC (21x250 mm, 5 mL/min of 1% EA/hex) to furnish a 5:1 mixture of C<sub>3</sub> epimers. Traces of several minor components were visible (RI detection) just befor elution of the major product: R<sub>f</sub> =0.34 (2% EA/hex); <sup>1</sup>H  $\delta$  3.87(1H, m), 1.95-1.99(1H), 1.61-1.78(3H), 1.27-1.52(17H), 1.13(1H, q, 5.2), 0.97(3H, t, 8.0), 0.95(3H, t, 8.0), 0.88(3H, t, 6.8), 0.69-0.78(1H), 0.55-0.66(3H). <sup>13</sup>C  $\delta$  70.0, 38.6, 38.1, 33.5, 31.9, 31.5, 29.4, 26.0, 25.4, 25.0, 24.7, 24.5, 22.7, 14.1, 6.8, 6.7, 6.2; IR: 2852, 1459, 1413, 1377, 1237, 1187, 1127, 1097, 1059, 1004, 972, 934, 802, 724 cm<sup>-1</sup>; MS: HR-FAB: calcd. for C<sub>18</sub>H<sub>36</sub>O<sub>2</sub>[M-H]<sup>+</sup>: 295.2456; found: 295.2448. The stereochemistry of the major product was assigned in analogy with **10-Ph** (below) and by the chemical shifts for the axial H<sub>3</sub>-axial (3.7 ppm) in the trans/cis isomer (major) vs. the equatorial H<sub>3</sub> (3.9 ppm) in the cis/cis isomer (minor).

#### $(3\beta,5\alpha,6\alpha)$ and $(3\alpha, 5\alpha,6\alpha)$ -2,1-Benzoxasilin, octahydro, 1,1-diphenyl-3-hexyl (10-Ph)

Using the tandem procedure described above, alkenol **9** (0.22g, 1.1 mmol) was reacted with in diphenylsilane(0.21 mL, 1.1 mmol) for 1 h, to furnish, after standard workup and a gradient flash chromatography (0-5% EA/hex), 0.30 g (73%) of the cyclic oxasilane as a 1:5 mixture (NMR) of the *cis/cis* and *trans/cis* isomers, differing in the stereochemistry at C<sub>3</sub>.  $R_f = 0.50$  ( 2% EA/hex ); HR FABMS calc. for C<sub>26</sub>H<sub>37</sub>OSi [MH]<sup>+</sup>: 393.2613; found: 393.2629 (3.8 ppm). A small portion of the product was further purified by semi-preparative HPLC (21 x 250mm, 5 mL/min of 1% EA/hex); the minor product eluted first.

*cis/cis*  $(3\alpha, 5\alpha, 6\alpha)$ - (minor) <sup>1</sup>H  $\delta$  7.65-7.69(2H), 7.49-7.51(2H), 7.28-7.45(6H), 3.84-3.89(1H; COSY correlation with spin systems at  $\delta$  2.1, 1.96; weak correlation with  $\delta$  1.5; nOe observed to 2.1 and 1.2); 2.05-2.10(1H, correlates only with  $\delta$  1.96), 1.93-1.99(1H, correlates with  $\delta$  3.9, 2.05, 1.2), 1.42-1.71(12H), 1.19-1.39(10H), 1.2 (1H, obscured t or dd, correlates with 1.97, 1.7); 0.90(3H, t, 6.8); <sup>13</sup>C  $\delta$  135.6, 134.5, 134.3, 129.6, 129.5, 127.9, 127.5, 74.7, 38.8, 35.3, 34.5, 33.5, 32.0, 29.4, 27.9, 25.4, 22.9, 22.7, 22.3, 21.2, 14.2; IR 3068, 3048, 3000, 2925, 2855, 1447, 1428, 1142, 1116, 1092, 1055, 1009, 970, 924, 801, 736, 710, 699 cm<sup>-1</sup>. HRFAB calc. for C<sub>26</sub>H<sub>37</sub>OSi (MH)<sup>+</sup>: 393.2613; found: 393.2629 (3.8 ppm).

*trans,cis* (3 $\beta$ ,5 $\alpha$ ,6 $\alpha$ ) (major) <sup>1</sup>H  $\delta$  7.65 (m, 2H; nOe to 1.7), 7.55 (2H; modest nOe to 4.3), 7.31-7.41(6H), 4.31(1H, m, H<sub>3</sub>; correlates with 1.6, 1.5; significant noE to d 7.7, 2.1; this proton appears to be significantly <u>de</u>shielded by the edge of the neighboring arene; this assumption is supported by the observation of mutual nOes involving the arene as well as by MM2 calculations; 2.20 (m, 1H; COSY crosspeaks wth 2.1, 1.5-1.6; nOE to 1.73, 1.5, 1.4), 2.07 (ddd, 1H, J values estimated as 13-14, 8, 3-4;COSY with 2.2, 1.5; nOE to peaks at d 4.3, 1.4), 1.83(m, 1H; correlates to 1.45; nOe with d 1.5, 1.3), 1.73(dt, 1H; weak COSY with 1.83; nOE to 2.2, 1.5), 1.17-1.48(20H), 0.87(3H, t, 6.8); <sup>13</sup>C  $\delta$  137.8, 136.7,134.6, 134.3, 134.2, 129.5, 129.3, 127.8, 127.7, 127.6, 72.4, 37.7, 37.6, 32.6, 31.8, 29.5, 29.3, 26.1, 25.3, 24.8, 24.5, 24.0, 22.6, 14.1; IR 3068, 3048, 3022, 2999, 2920, 2851, 1590, 1486, 1447, 1428, 1376, 1187, 1114, 1057, 997, 938, 916, 821, 801, 772, 699 cm<sup>-1</sup>.

(3,6-*trans and* 3,6-*cis*- **1,1-Diethyl-3-hexyl-6-methyl-2-oxa-1-silinane** (*trans*- and *cis*-**12-Et**): Using the tandem procedure describe above, alkenol **11** (0.34 g, 2.0 mmol) was reacted with Et<sub>2</sub>SiH<sub>2</sub> (0.33 mL, 2.6 mmol) for 5 minutes to furnish, following standard workup and chromatography (0-5% EA/hex), a 2.7: 1 mixture of *trans*- and cis-**12-Et** (81.9 mg, 16%):  $R_f = 0.41$  (2% EA/hex); HREIMS calc. for  $C_{15}H_{31}OSi$  (M-H)<sup>+</sup>: 255.2244; found 255.2142 (0.9 ppm). A small portion of the product was purified by semi-preparative HPLC (21 x 250 mm, 5 mL/min 1% EA/hex); the major (trans) and minor (cis) isomers elute at 16 and 17 min, respectively. The assignment of *cis*- and *trans* oxasilanes was based upon the upfield <sup>1</sup>H chemical shift for the axial H<sub>3</sub>.

*trans*-12: <sup>1</sup>H  $\delta$  3.60-3.65(1H), 1.83-1.89(1H), 1.61-1.66(1H), 1.20-1.47(12H), 0.99(3H, t, 7.9), 0.98(3H, t, 7.9), 0.91(3H, t, 6.8), 0.88(3H, t, J-6.8), 0.49-0.84(4H); <sup>13</sup>C  $\delta$  74.5, 38.7, 35.8, 32.7, 31.9, 29.4, 25.5, 22.7, 17.5, 15.7, 14.1, 6.7, 5.0, 1.7; IR 2954, 2927, 2876, 2858, 1461, 1377, 1236, 1087, 1042, 1014, 836, 724 cm<sup>-1</sup>.

*cis*-**12**: <sup>1</sup>H  $\delta$  3.70-3.76(1H), 1.82-1.90(1H), 1.62-1.69(1H), 1.24-1.56(14H), 1.02(3H, d, 7.6), 0.97(3H, t, 7.9), 0.96(3H, t, 7.9), 0.88(3H, t, 6.8), 0.51-0.74(4H); <sup>13</sup>C  $\delta$  74.2, 38.1, 31.9, 30.8, 29.8, 29.3, 25.8, 22.7, 15.0, 14.4, 14.1, 6.8, 6.3, 4.2, 4.1; IR 2953, 2927, 2874, 1460, 1413, 1377, 1235, 1161, 1138, 1088, 1044, 1005 cm<sup>-1</sup>.

(*trans*) and (*cis*)- **1,1-Diphenyl-3-hexyl-6-methyl-1-oxa-2-silacyclohexane** (*trans*- and *cis*-**12-Ph**). Using the tandem procedure described above, alcohol **11** (0.34g, 2.0 mmol) was reacted with Ph<sub>2</sub>SiH<sub>2</sub> (0.41 mL, 2.2 mmol) for 1 h. The crude products were subjected to column chromatography using 0-5% EA/hex as the eluting solvent to afford 0.17g (24%) of the oxasilacyclohexane. A small portion of the product was further purified by semi-preparative HPLC (21x250mm, 1% EA/hexane, 5 mL/min), which partially resolved the major and minor isomers. The predominant isomer was assigned as trans on the basis of the 3.85 ppm chemical shift for the axial H<sub>3</sub>:  $R_f$  =0.32 (2% EA/hex); <sup>1</sup>H (mixture of diastereomers) δ 7.65-7.68(m), 7.53-7.55(m), 7.30-7.44(m) 4.02-4.07(m), 3.85-3.90(m), 1.94-2.04(m), 1.78-1.86(m), 1.39-1.74(m), 1.13(d, 3H, 7.2), 1.07(d, 3H, 8), 0.87-0.92(m); <sup>13</sup>C (mixture of two diastereomers) δ 136.0, 135.1, 134.5, 134.4, 134.3, 129.8, 129.6, 129.5, 127.9, 127.8, 127.7, 127.6, 75.8, 74.8, 38.8, 38.6, 35.9, 32.3, 31.9, 30.2, 30.1, 29.39, 29.36, 25.5, 25.4, 22.7, 19.4, 16.3, 15.3, 14.1, 13.9; IR: 3069, 3048, 2927, 2857, 1457, 1428, 1117, 1042, 987, 933, 736, 700 cm<sup>-1</sup>; HRFAB calc. for C<sub>23</sub>H<sub>23</sub>OSi (M+H)<sup>+</sup>: 353.2300; found: 353.2293 (2.1 ppm).

(3,6-*trans*) and (3,6-*cis*)-**1,1-Diethyl-3-hexyl-6-methyl-2-oxa-1-silepane** (*trans-* and *cis-***14-Et**). Using the tandem procedure described above, alcohol **13** (0.360 g, 1.95 mmol) was reacted with diethylsilane (0.28 mL, 2.2 mmol) for 5 min, to furnish, following standard workup and chromatography, 0.29 g (55%) of a 38:62 mixture of 3,6-*trans-* and 3,6-*cis*-oxasilacycloheptanes accompanied by 0.16 g of an unknown side product. A small portion of the product was further purified by semi-preparative HPLC (21 x 250mm, 5 mL/min 1% EA/hex); the major and minor diastereomers eluting at 17.0 and 18.0 min, respectively:  $R_f = 0.2$  (hexane); IR: 2982, 2953, 2925, 2874, 1461, 1377, 1237, 1090, 1007, 850, 757 cm<sup>-1</sup>; HREIMS calcd. for C<sub>16</sub>H<sub>34</sub>OSi<sub>:</sub>[M-C<sub>2</sub>H<sub>5</sub>]<sup>+</sup>: 241.1764; found: 241.1986.

*Diastereomer 1*((*trans*, minor): <sup>1</sup>H δ 3.59 (td, 1H, 8.6, 4), 1.73(m, 3H), 1.26-1.48(11H), 1.08 (m, 1H), 0.99(3H, d, 6.6), 0.95(3H, t, 7.9), 0.94(3H, t, 7.9), 0.88(3H, t, 6.8), 0.69 (dt, 1H, 15, 2) 1H), 0.48-0.63(5H). <sup>13</sup>C δ 75.0, 39.9, 39.3, 38.4, 32.0, 31.0, 29.3, 28.8, 26.1, 23.3, 22.7, 14.1, 7.00, 6.8, 6.1, 5.9

*Diasteromer* 2 ((*cis*, major): <sup>1</sup>H δ 3.76 (m, 1H), 1.96 (m, 1H), 1.34-1.73(17H), 1.01(3H, d, 6.7), 0.94(6H, t, 7.9), 0.88(3H, t, 6.8), 0.73 (m,1H), 0.51-0.63(5H). <sup>13</sup>C δ 73.8, 38.4, 35.2, 34.6, 31.9, 29.44, 29.37, 26.2, 25.6, 22.7, 22.1, 14.1, 7.3, 6.9, 6.8, 6.3

(*trans-*)-**1,1-Diethyl-5-methyl-3-phenyl-2-oxa-1-silinane** (*trans-***16-Et**) was prepared as a single diastereomer from **15** (0.32g, 2.0 mmol) and  $Et_2SiH_2$  (0.33 mL, 2.6 mmol) using procedure "B" described above except that the reaction temperature was held between 5 and 10 °C. The product was assigned as the *trans*-isomer in analogy with **2-Pr**; this was confirmed by a correlation via diol **21** (vida infra). The crude product was purified by column chromatography (0-5% EA/Hex) to furnish 0.25 g of a diethylsiloxysiloxane byproduct followed by 0.25 g (51%) **16-Et**, predominantly as the trans diastereomer. A small portion of the product was further purified by semi-preparative HPLC (21 x 250mm, 5 mL/min of 1% EA/hex).

**16-Et**:  $R_f = 0.2$  (hexane) or 0.4 in 5% EA/hex); <sup>1</sup>H  $\delta$  7.24-7.28(1H), 7.34-7.40(4H), 5.19(1H, dd, 3.9, 7.5), 2.19 (m, 1H), 1.85(1H, ddd, 14.1, 7.5, 3), 1.73(1H, ddd, 14.1, 7.1, 4), 1.17(3H, d, 6.9), 1.05(3H, t, 7.9), 1.05(3H, t, 7.9), 0.94(1H, dd, 5.7, 12.2), 0.74(2H, q, 7.9), 0.69(2H, q, 7.9), 0.55(1H, dd, 7.0, 14.7); <sup>13</sup>C  $\delta$  145.7, 128.1, 126.6, 125.4, 71.9, 43.7, 25.0, 23.5, 16..5, 8.0, 7.3, 6.7, 6.6; IR: 3087, 3063, 3028, 2953, 2874, 1494, 1453, 1412, 1377, 1354, 1236, 1207, 1137, 1088, 1066, 1005, 907, 853, 809, 737, 699 cm<sup>-1</sup>; HR-FABMS calcd. for C<sub>15</sub>H<sub>24</sub>OSi<sub>2</sub>[M-H]<sup>+</sup>: 247.1517; found: 247.1527.

*Byproduct:*  $R_f = 0.8$  in 5% EA/hex. The byproduct displayed major ions at 343 (M-H)<sup>+</sup> and 189 (M- Si(Et)<sub>2</sub>OSi(Et)<sub>2</sub>H)<sup>+</sup> in the GC/MS spectra, and was tentatively assigned as 1,1-diethyl-1-(diethylsiloxy)-2-methyl-4-phenylbutyl silane. This assignment was supported by the lack of a carbinol HC and the presence of silane (4.5 ppm, narrow pentet) and multiple Et<sub>2</sub>Si spin systems (1.1-0.87 for methyl groups; 0.7-0.45 for ethyl) in a complicated <sup>1</sup>H NMR spectrum. <sup>13</sup>C: 143.1, 128.4, 128.3, 125.5, 42.7, 33.7, 28.6, 22.9, 22.8, 7.4, 7.3, 7.1, 6.8, 6.6. Oxidative cleavage (Tamao oxidation, below) furnished 2-methyl-4-phenyl-1-butanol:<sup>xii</sup>  $R_f = 0.3$  (20% EA/hex); <sup>1</sup>H  $\delta$  7.30 (app t, 2H, 7); 7.22-7.18 (3H); 3.54 (dd, 1H, ABX, 10.8, 6); 3.48 (dd, 1H, ABX, 10.8, 6.4); 2.73 (ddd, ABXY, 1H, 13.6, 10, 5.6); 2.62 (ddd, ABXY, 13.6, 10, 6); 1.79 (m, 1H); 1.68 (apparent hextet, 1H, 6-7); 1.58 (1H, bs, OH); 1.46 (m, 1H); 1.008 (d, 3H, 7.2). IR (ATR crystal) 3346 (s, broad), 2926, 2873, 1454, 1037 cm-1; HREI: calcd. for C<sub>11</sub>H<sub>16</sub>O: [M]<sup>+</sup>164.1204; Found: 164.1204 (1.6 ppm).

**Diethyl (2-methylnon-1-en-3-oxy) silane (18-Et)**: Attempted one-pot reaction of 2-methyl non-1-en-3-ol (**17**, 0.22 g, 1.4 mmol) with diethylsilane (0.20 mL, 1.1 equiv) and  $B(C_6F_5)_3$  (0.2 g, n toluene, ~0.4 mmol) as described for the synthesis of **2-Et** furnished the corresponding diethylsilyl ether, **18-Et** as an inseparable mixture with small amounts of one or more siloxanes:  $R_f = 0.8$  (hexane); <sup>1</sup>H:  $\delta$  4.85 (bs, 1H); 4.75 (bs, 1H); 4.51 (app pentet, 2.4, residual diethylsilane); 4.16 (t, 1H, 6.4); 1.68 (s, 3H); 1.45 (s, 0.7H, residual Si-H); 1.5 (m, 2H), 1.33-1.18 (8H); 1.0 - 0.92 (19 H, including some silane); 0.88 (t, 3H); 0.62 (dq, 4H, 7, 2); 0.53 (m, 8H, residual silane and siloxane); <sup>13</sup>C:  $\delta$  147.4; 110.49; 76.71, 36.02, 31.9, 29.4, 25.5, 22.7, 17.1, 14.1, 7.47, 7.24, 6.97, 6.64, 6.61, 6.55; IR 2954, 2116, 1450 cm-1. HRMS was attempted but gave no recognizable fragments.

#### Oxidation to diols

**Tamao oxidation**<sup>xiii</sup> (**illustrated for** (2R\*,5S\*)-**2-methylundecane-1,5-diol** (**19**): 135 mg (0.50 mmol) of **14-Et** wa reacted with KF (0.058 g, 2 eq), KHCO<sub>3</sub> (0.100 g, 2 eq), 30% H<sub>2</sub>O<sub>2</sub> (1 mL, 20 eq, ca. 9M in H<sub>2</sub>O) in MeOH/THF for 48 h to afford 0.030 g (30%) of diol **19** as an inseparable mixture of diasteromers.  $R_f = 0.2$  (30% EA/hex); <sup>1</sup>H  $\delta$  3.58 (m, 1H); 3.47 (t, 2H, 6; or bd, 1H, ~6, depending upon sample concentration), 2.3 (broad, 2H, varies with concentration); 0.89 (app t, 3H, 8); 0.857 (appt t, 3H, 8);1.8-1.2 (15H); 0.85-0.92 (6H); <sup>13</sup>C  $\delta$  72.4, 72.0, 67.8, 67.6, 37.53, 37.49, 35.8, 35.3, 34.3, 34.0, 31.8, 29.3, 28.9, 28.6, 25.7, 25.6, 22.6. 20.8, 16.8, 16.4, 14.1; The major diasteromer was assigned as 2R\*,5S\* based upon comparision with <sup>13</sup>C data reported for a similar diol (major: 71.8, 67.8 ppm; minor 72.3, 67.6 ppm.<sup>xiv</sup> IR 3330 (b, OH), 2926, 2856, 1458, 1030 cm<sup>-1</sup>; HRFAB calc. For C<sub>12</sub>H<sub>27</sub>O<sub>2</sub> [MH]<sup>+</sup>: 203.2011; found: 203.2014 (1.3 ppm).

Oxidation of 88 mg (0.33 mmol) of the major  $(2^{nd}$  eluting isomer) of **14-Et** using the Woerpel procedure described below afforded 36.8 mg (56%) of **19**. Spectral details were identical to those reported above.

Woerpel oxidation: <sup>xv</sup> 2-(2-Hydroxyoctyl)-cyclohexanol (20): To a solution of *tert*-butyl hydroperoxide (0.73 mL, 5-6M in decane) in 3 mL DMF at 0  $^{\circ}$ C was added cesium hydroxide

(0.52g, 3.1 mmol). The reaction mixture was allowed to warm to 25 °C, whereupon a solution of oxasilinane **10-Ph** (0.10g, 0.26 mmol) in 2 mL DMF was added dropwise. After 10 minutes, tetrabutylammonium fluoride (1.3 mL, 1M in THF) was added. The reaction solution was stirred at RT for 2 h and then quenched with 10 mL of 10% aq. sodium bisulfite. The mixture was extracted with ether (2 x 20 mL) and the combined organic layers were dried and concentrated. The residue was subject to column chromatography using 40% EA/hex as eluting solvent to afford 22.8 mg (38%) of diol **20**:  $R_f = 0.50$  (50% EA/hex ); IR (same except where noted): 3329-31, 2927-8, 2856, 1450, 1071 (diast 2), 1039 (diast 1), 976 cm<sup>-1</sup>; HRMS calc. for  $C_{14}H_{29}O_2$  (MH)<sup>+</sup>: 229.2168; found: 229.2159 (3.5 ppm).

*Diastereomer 1*: <sup>1</sup>H  $\delta$  3.95(1H, m), 3.73-3.78(1H), 2.19(2H, s), 1.65-1.72(4H), 1,48-1.61(3H), 1.29-1.47(14H), 0.88(3H, t, 6.6) <sup>13</sup>C  $\delta$  69.2, 69.1, 40.0, 38.1, 38.0, 33.1, 31.8, 29.3, 27.1, 25.8, 25.4, 22.6, 20.5, 14.1

*Diastereomer* 2: <sup>1</sup>H δ 3.90-3.93(1H), 3.65-3.70(1H), 1.72-1.75(1H), 1.25-1.61(18H), 0.88(3H, t, 6.6); <sup>13</sup>C δ 70.9, 70.0, 39.4, 39.1, 38.7, 32.4, 31.8, 29.3, 28.2, 25.6, 24.3, 22.6, 21.4, 14.1 MS:

(1R\*,3S\*) 3-Methyl-1-phenyl-1,4-butanediol (21) was prepared in 69% by oxidation of oxasilane 16-Et using the Woerpel procedure described above:  $R_f$ =0.2 (40% EA/hex); The product was assigned by comparison with literature reports.<sup>xvi</sup>  $R_f$  = 0.2 (40% EA/hex); 1H  $\delta$  4.89 (dd, 1H, 7.6, 4.7); 3.57 (dd, ABX, 1H, 10.4, 4.4); 3.52 (dd, ABX, 1H, 10.4, 6.4); 1.9-1.7 (3-4H, includes both ABX and a multiplet); 0.97 (d, 3H, 6.8); 13C  $\delta$  144.7, 128.4, 127.4, 125.8, 71.8, 67.9, 43.5, 32.2, 17.2.

#### References:

- <sup>i</sup> Charoenchaidet, S.; Chavadej, S.; Gulari, E. J. Mol. Catal. A: Chem. 2002, 185, 1-2, 167-177.
- <sup>ii</sup> Wilson, S. R.; Guazzaroni, M. E. J. Org. Chem. 1989, 54, 3087-91; Cai, M., Huang, Y., Zhao,
   H., Zhang, R., J. Orgmet. Chem. 2004, 689, 2436-2440
- <sup>iii</sup> Anwar, U.; Grigg, R.; Rasparini, M.; Savic, V.; Sridharan, V. Chem. Comm. 2000, 645.

<sup>v</sup> Wilson, S. R.; Phillips, L. R.; Natale, K. J. Jr. J. Am. Chem. Soc. 1979, 101, 3340-3344.

<sup>&</sup>lt;sup>iv</sup> Snider, B. B.; Rodini, D. J.; Kirk, T.C.; Cordova, R. J. Am. Chem. Soc. 1982, 104, 555-563.

- <sup>vi</sup> Arnold, R.T.; Smolinsky, G. J. Am. Chem. Soc. 1959, 81, 6443-5; Eddy, C. R., Showell, J. S.;
   Zell, T. E. J. Am. Oil Chem. Soc. 1963, 40, 92-6.
- <sup>vii</sup> Tirado, R.; Prieto, J. A.; *J. Org. Chem.* **1993**, *58*, 5666-73; Hojo, M.; Sakuragi, R.; Okabe S.;
  Hosomi A. *Chem. Commun.* **2001**, 357-358.
- viii Tang, S.; Kennedy, R. M. Tetrahedron Lett. 1992, 33, 5303-6.
- <sup>ix</sup> Denmark, S. E.; Yang, S. Tetrahedron, 2004, 60, 9695-9708.
- <sup>x</sup> Katzennellenbogen, J. A.; Christy, K. J. J. Org. Chem. **1974**, 39, 3315. Fernández-Mateos, A., Burón, L. M., Clemente, R., Silvo, A. I. R., González, R. R. Synlett, **2004**, 1011-1014.
- <sup>xi</sup> For a report on the formation of *cis*-3,5-disubstituted 1,2-oxasilinanes through 6-*exo* cyclizations of α-silyloxymethyl radicals, see: Koreeda, M.; Hamann, L. G. *J. Am. Chem. Soc.* **1990**, *112*, 8175-8177.
- xii Lebel, H; Ladjel, C. J. Organomet. Chem. 2005, 690, 5198.
- <sup>xiii</sup> Tamao, K.; Ishida, N.; Tanaka, T.; Kumada, M. Organometallics **1983**, 2, 1694–1696. For a review of this area, see: Jones, G. R.; Landais, Y. *Tetrahedron* **1996**, *52*, 7599–7662
- xiv Zhu, G.; Negishi, E-i.; Org. Lett. 2007, 9, 2771.
- <sup>xv</sup> Smitrovich, J. H.; Woerpel, K. A. J. Org. Chem. **1996**, 61, 6044.
- <sup>xvi</sup> Najera, C.; Yus, M.; Seebach, D. *Helv. Chim. Acta.* 1984, 67, 289-300; Matsumoto, K.; Aoki,
   Y.; Oshima, K.; Utimoto, K.; Rahman, N. A. *Tetrahedron*, 1993, 49, 8487.

# B(C<sub>6</sub>F<sub>5</sub>)<sub>3</sub>-promoted tandem silylation and intramolecular hydrosilylation: diastereoselective synthesis of oxasilinanes and oxasilepanes

Roman Shchepin, Chunping Xu, and Patrick Dussault\* pdussault1@unl.edu

### Supporting Information: <sup>1</sup>H and <sup>13</sup>C NMR spectra

| Alcohols                                                                                                                                                                                                             | pages          |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|
| 2-Methyldec-1-en-4-ol (1): ${}^{1}H {}^{13}C$                                                                                                                                                                        | 3-4            |
| 2-Phenyldec-1-en-4-ol (3): ${}^{1}H$ ${}^{13}C$                                                                                                                                                                      | 5-6            |
| 1-Cyclobutenyloctan-2-ol (5): ${}^{1}\text{H}^{-13}\text{C}$                                                                                                                                                         | 7-8            |
| 2-Methyl-2-dodecen-6-ol (7): ${}^{1}H$ , ${}^{13}C$                                                                                                                                                                  | 9-10           |
| 1-Cyclohexenvloctan-2-ol (9): $^{1}$ H. $^{13}$ C                                                                                                                                                                    | 11-12          |
| (E,Z)-Undec-2-en-5-ol (11): <sup>1</sup> H, <sup>13</sup> C                                                                                                                                                          | 13-14          |
| 2-Methylundec-1-en-5-ol (13): ${}^{1}H$ , ${}^{13}C$                                                                                                                                                                 | 15-16          |
| 3-Methyl-1-phenylbut-3-en-1-ol (15): ${}^{1}H$ , ${}^{13}C$                                                                                                                                                          | 17-18          |
| 2-Methylnon-1-en-3-ol ( <b>17</b> ): <sup>1</sup> H, <sup>13</sup> C                                                                                                                                                 | 19-20          |
| Alkoxysilanes                                                                                                                                                                                                        | pages          |
|                                                                                                                                                                                                                      |                |
| Diisopropyl-(2-methyldec-1-en-4-oxy)silane ( <b>1Pr</b> ): <sup>1</sup> H, <sup>13</sup> C                                                                                                                           | 21-22          |
| Diisopropyl-(2-phenyldec-1-en-4-oxy) silane ( <b>3-Pr</b> ): <sup>1</sup> H, <sup>13</sup> C                                                                                                                         | 23-24          |
| Disopropyl-(1-cyclobutenyloctyl-3-oxy)silane ( <b>5-Pr</b> ): <sup>1</sup> H, <sup>13</sup> C                                                                                                                        | 25-26          |
| Diethyl-(2-methylnon-1-en-3-oxy) silane ( <b>18-Et</b> ): <sup>1</sup> H, <sup>13</sup> C                                                                                                                            | 27-28          |
| Cyclic Siloxanes                                                                                                                                                                                                     | pages          |
|                                                                                                                                                                                                                      | 20.00          |
| (trans)-1,1-Diethyl-3-hexyl-5-methyl-2,1-oxasilinane $(trans-2-Et)$ : <sup>1</sup> H, <sup>13</sup> C                                                                                                                | 29-30          |
| (trans)-1,1-Diphenyl-3-hexyl-5-methyl-2,1-oxasilinane $(trans-2-Ph)$ : <sup>H</sup> , <sup>S</sup> C                                                                                                                 | 31-32          |
| (trans)-1,1-Diisopropyl-3-hexyl-5-methyl-2,1-oxasilinane $(trans-2-Pr)$ <sup>1</sup> H, <sup>13</sup> C                                                                                                              | 33-34          |
| ( <i>trans</i> )- 1,1-Diisopropyl-3-nexyl-5-pnenyl-2,1-oxasilinane ( <i>trans</i> -4-Pr): <sup>1</sup> H, <sup>2</sup> C                                                                                             | 35-30          |
| $(3\alpha 5\alpha 6\alpha) \in \mathbf{D}_{\mathbf{n}}^{-1} \mathbf{U}^{-13}C$                                                                                                                                       | 27 28          |
| (3a, 5a, 6a) <b>6 D</b> : <sup>1</sup> <b>H</b> <sup>13</sup> <b>C</b>                                                                                                                                               | 30.40          |
| $(3\rho, 3\alpha, 0\alpha)$ - <b>U-FT</b> . <b>H</b> , <b>C</b><br>( <i>trans</i> ) 1.1 Diigeopropyl 2 heyyl 6 igeopropyl 2.1 eyesilinene ( <i>trans</i> <b>8 Dr</b> ); <sup>1</sup> <b>H</b> <sup>13</sup> <b>C</b> | 39-40<br>41 42 |
| (I'ans)-1,1-Diisopiopyi-3-nexyi-0-isopiopyi-2,1-oxasimiane ( <i>I'ans</i> - <b>o-FT</b> ). If, C<br>2.1 Benzovasilin, octabudro 1.1 dietbyl 3 beyyl ( <b>10 Ft</b> )                                                 | 41-42          |
| $(38.5\alpha, 6\alpha)$ and $(3\alpha, 5\alpha, 6\alpha)$ <b>10Ft</b> : <sup>1</sup> H <sup>-13</sup> C                                                                                                              | 13 11          |
| $(3\beta,5\alpha,6\alpha) = 2$ 1 Benzovagilin, actabudro 1 1 diphenyl 3 hevyl (10 Ph)                                                                                                                                | 43-44          |
| $(38.5\alpha.6\alpha) - (10-Ph) \cdot {}^{1}H {}^{13}C$                                                                                                                                                              | <u>45</u> 16   |
| (3p, 5a, 6a) (10 Ph): <sup>1</sup> H <sup>13</sup> C                                                                                                                                                                 | 45-40          |
| (30, 30, 00)- $(10$ -FH). II, $C(trans) 1.1 Disthyl 3 havyl 6 methyl 2.1 avasilinana (12 Et). 1U 13C$                                                                                                                | 4/-40          |
| $(\mu \alpha \mu \omega)^{-1}$ , $1^{-1}$ $D(\alpha \mu \gamma)^{-3}$ - $\Pi c \lambda \gamma ^{-0}$ - $\Pi c (\mu \gamma)^{-2}$ , $1^{-0}$ $\lambda a \beta \Pi \Pi a \Pi c (\mu 2^{-1} \Delta \mu)$ . $\Pi$ , $C$  | 42-20          |

| (trans)-1,1-Diphenyl-3-hexyl-6-methyl-2,1-oxasilinane ( <b>12-Ph</b> ): <sup>1</sup> H, <sup>13</sup> C                                                                                                                        | 51-52                   |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|
| 1,1-Diethyl-3-hexyl-6-methyl-2-oxa-1-silepane ( <b>14-Et</b> ):                                                                                                                                                                | 53                      |
| ( <i>trans</i> )- <b>14-Et</b> : <sup>1</sup> H                                                                                                                                                                                |                         |
| ( <i>cis</i> )- <b>14-Et</b> : ${}^{1}$ H, ${}^{13}$ C (mixture)                                                                                                                                                               | 54-55                   |
| (3,5- <i>trans</i> )-1,1-Diethyl-5-methyl-3-phenyl-2,1-oxasilinane ( <b>16-Et</b> ): <sup>1</sup> H, <sup>13</sup> C                                                                                                           | 56-57                   |
|                                                                                                                                                                                                                                |                         |
| Diols                                                                                                                                                                                                                          | pages                   |
|                                                                                                                                                                                                                                | pages                   |
| 2-Methylundecane-1,5-diol ( <b>19</b> ): <sup>1</sup> H, <sup>13</sup> C                                                                                                                                                       | <u>58-59</u>            |
| 2-Methylundecane-1,5-diol ( <b>19</b> ): <sup>1</sup> H, <sup>13</sup> C<br>2-(2-Hydroxyoctyl)-cyclohexanol ( <b>20</b> ):                                                                                                     | 58-59                   |
| 2-Methylundecane-1,5-diol ( <b>19</b> ): <sup>1</sup> H, <sup>13</sup> C<br>2-(2-Hydroxyoctyl)-cyclohexanol ( <b>20</b> ):<br>diasteromer 1: <sup>1</sup> H, <sup>13</sup> C                                                   | 58-59<br>60-61          |
| 2-Methylundecane-1,5-diol ( <b>19</b> ): <sup>1</sup> H, <sup>13</sup> C<br>2-(2-Hydroxyoctyl)-cyclohexanol ( <b>20</b> ):<br>diasteromer 1: <sup>1</sup> H, <sup>13</sup> C<br>diasteromer 2: <sup>1</sup> H, <sup>13</sup> C | 58-59<br>60-61<br>62-63 |



| Norman and Adding to the second s | ran Bangka, Badda Jasa Ju                  | (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)                       | , Lida ala La di J. La dan Ma<br>Ing kata Patra panganan panganan pa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | , militar ( and a stand or first start of a | ด้ ไปสู่ปล่างไป ได้ ได้ 1995 การส่างไป เป็นสืบคราม เป็นไปสาวารัณ<br>เพราะการการการการใจ 1997 ให้ ๆ ปลาย เราะการการการการการการการการการการการการการก | Alderstadelige og en at den som det som som det som | 611 ghtines fallefiller, all seally<br>1977 - 9 spail age migger 1997 175           | Maka an ka ka ka wa sa                 | F2 - P<br>F2 - P<br>F2 - P<br>F2 - P<br>SI<br>SF<br>WDW<br>SSB<br>LB<br>GB<br>PC             | 70.00 usec<br>-3.35 dB<br>13.34 dB<br>13.34 dB<br>400.1316005 MHz<br>rocessing parameters<br>32768<br>100.6127525 MHz<br>EM<br>0<br>1.00 Hz<br>0<br>1.40 |
|----------------------------------------------------------------------------------------------------------------|--------------------------------------------|---------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|----------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|
| Nacional a stillar con a<br>versional a traverse service                                                       | nan Bergina di sila jara se<br>Nan persida | նենուլ է ծ. ստղ է լթեմին էն է<br>վինթորն ու սկրություն թունու | Alden Males Brody Marson Mar<br>Propriet The Propriet Street Propriet Street                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | n. besteletetetetetetetetetetetetetetetetete                                                                                                         | didentaderaa jalomad dina si<br>Najamayongo aya mohara oo ka a                          | को को कि कि को की कि अन्य की रहती का<br>सुरे रहन के स्वताय स्वतन का सुर प्रभाव से क | 18.64.(1.41).10.24.0.000.04.04<br>9.9.9.19.10.10.20.000.000.00000000000000 | PCPD2<br>PL2<br>PL12<br>PL13<br>SFO2<br>F2 - P<br>SI<br>SF<br>SF<br>THE MERICAN<br>SF<br>SSB | 70.00 usec<br>-3.35 dB<br>13.34 dB<br>13.34 dB<br>400.1316005 MHz<br>rocessing parameters<br>32768<br>100.6127525 MHz<br>EM<br>0                         |
|                                                                                                                |                                            |                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                      |                                                                                         |                                                                                     |                                                                            | PCPD2<br>PL2<br>PL12<br>PL13<br>SFO2<br>F2 - P                                               | 70.00 usec<br>-3.35 dB<br>13.34 dB<br>13.34 dB<br>400.1316005 MHz<br>rocessing parameters                                                                |
|                                                                                                                |                                            |                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                      |                                                                                         |                                                                                     |                                                                            | PCPD2<br>PL2<br>PL12<br>PL13                                                                 | 70.00 usec<br>-3.35 dB<br>13.34 dB<br>13.34 dB                                                                                                           |
|                                                                                                                |                                            |                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                      |                                                                                         |                                                                                     |                                                                            | PCPD2<br>PL2                                                                                 | 70.00 usec<br>-3.35 dB                                                                                                                                   |
|                                                                                                                |                                            |                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                      |                                                                                         |                                                                                     |                                                                            | NUC2                                                                                         | 1H                                                                                                                                                       |
|                                                                                                                |                                            |                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                      |                                                                                         |                                                                                     |                                                                            | =====<br>CPDPRG                                                                              | == CHANNEL f2 =======<br>2 waltz16                                                                                                                       |
|                                                                                                                |                                            |                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                      |                                                                                         |                                                                                     |                                                                            | P1<br>PL1<br>SF01                                                                            | 0.50 dB<br>100.6228298 MHz                                                                                                                               |
|                                                                                                                |                                            |                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                      |                                                                                         |                                                                                     |                                                                            | ======<br>NUC1                                                                               | == CHANNEL f1 =======<br>13C                                                                                                                             |
|                                                                                                                |                                            |                                                               | I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                      |                                                                                         |                                                                                     |                                                                            | D11<br>TD0                                                                                   | 0.03000000 sec<br>1                                                                                                                                      |
|                                                                                                                |                                            |                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                      |                                                                                         |                                                                                     |                                                                            | DE<br>TE<br>D1                                                                               | 6.50 usec<br>295.2 K<br>2.00000000 sec                                                                                                                   |
|                                                                                                                |                                            |                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                      |                                                                                         |                                                                                     |                                                                            | AQ<br>RG<br>DW                                                                               | 1.3664756 sec<br>812.7<br>20.850 usec                                                                                                                    |
|                                                                                                                |                                            |                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                      |                                                                                         |                                                                                     | I                                                                          | SWH<br>FIDRES                                                                                | 23980.814 Hz<br>0.365918 Hz                                                                                                                              |
|                                                                                                                |                                            |                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                      | 1                                                                                       |                                                                                     |                                                                            | SOLVEN<br>NS<br>DS                                                                           | T CDCl3<br>33<br>4                                                                                                                                       |
|                                                                                                                |                                            |                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                      | 1                                                                                       |                                                                                     |                                                                            | PROBHD<br>PULPRO<br>TD                                                                       | 5 mm QNP 1H/13<br>G zgpg30<br>65536                                                                                                                      |
|                                                                                                                |                                            |                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                      |                                                                                         | I                                                                                   |                                                                            | Date_<br>Time<br>INSTRU                                                                      | 20100805<br>16.44<br>M spect                                                                                                                             |
| 1                                                                                                              |                                            |                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1                                                                                                                                                    |                                                                                         |                                                                                     |                                                                            | F2 - A                                                                                       | cquisition Parameters                                                                                                                                    |
|                                                                                                                | όн                                         |                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                      |                                                                                         |                                                                                     |                                                                            | NAME<br>EXPNO                                                                                | cx-6-24                                                                                                                                                  |
| $\sim$                                                                                                         | $\sim$                                     | $\checkmark$                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $\mathbb{V}$                                                                                                                                         |                                                                                         |                                                                                     |                                                                            | Curron                                                                                       |                                                                                                                                                          |
|                                                                                                                |                                            |                                                               | 143                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | - 113                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                      | - βα.<br>- 46.                                                                          | 225.<br>225.                                                                        | 14.                                                                        | BF                                                                                           | RUKER                                                                                                                                                    |
|                                                                                                                |                                            |                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                      |                                                                                         |                                                                                     |                                                                            |                                                                                              |                                                                                                                                                          |
|                                                                                                                | 1                                          | OH<br>1                                                       | Control of the second s | T<br>T<br>T<br>T<br>T<br>T<br>T<br>T<br>T<br>T<br>T<br>T<br>T<br>T<br>T<br>T<br>T<br>T<br>T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                      |                                                                                         |                                                                                     |                                                                            |                                                                                              | $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                   |














file: ...S\_paper\More spectra\cx-6-23\1\fid expt: <zg30> transmitter freq.: 400.132471 MHz time domain size: 65536 points width: 8278.15 Hz = 20.6885 ppm = 0.126314 Hz/pt number of scans: 16

freq. of 0 ppm: 400.130000 MHz processed size: 32768 complex points LB: 0.300 GF: 0.0000 Hz/cm: 128.818 ppm/cm: 0.32194





|                                                                                                                                                                                                                                                                                                                   | SpinWorks 2.5: 13C NM                                                                                                                                               | IR                                       |                                                                                                                |                                                                                                                           |              |    |       |    |                        |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|----------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|--------------|----|-------|----|------------------------|
|                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                     | OH                                       |                                                                                                                |                                                                                                                           |              |    |       |    |                        |
|                                                                                                                                                                                                                                                                                                                   | 1                                                                                                                                                                   | 11                                       |                                                                                                                |                                                                                                                           |              |    |       |    |                        |
|                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                     |                                          |                                                                                                                |                                                                                                                           |              | l  |       |    |                        |
|                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                     |                                          |                                                                                                                |                                                                                                                           |              |    |       |    |                        |
|                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                     |                                          |                                                                                                                |                                                                                                                           |              |    |       |    |                        |
|                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                     |                                          |                                                                                                                |                                                                                                                           |              |    |       |    |                        |
|                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                     |                                          |                                                                                                                |                                                                                                                           |              |    |       |    |                        |
|                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                     | na an a | an and the second s |                                                                                                                           |              |    | ,<br> |    | avisorus (ditteration) |
|                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                     |                                          |                                                                                                                |                                                                                                                           |              |    |       |    |                        |
| PPM 120 110 100 90 80 70 60 50 40 30 20 10 0                                                                                                                                                                                                                                                                      | PPM 120 11                                                                                                                                                          | 0 100 90                                 | 80 70                                                                                                          | 60 50                                                                                                                     | 40           | 30 | 20    | 10 | Ó                      |
| file: D:\Roman's\rvs-4-31\2\fid expt: <zgpg3< td=""> freq. of 0 ppm: 100.612769 MHz   transmitter freq.: 100.622830 MHz processed size: 65536 complex points   time domain size: 65536 points LB: 1.000 GB: 0.0000   width: 22075.06 Hz = 219.384162 ppm = 0.336839 Hz/pt Hz/cm: 562.193 ppm/cm: 5.58714</zgpg3<> | file: D:\Roman's\rvs-4-31\2\fid expt: <zg<br>transmitter freq.: 100.622830 MHz<br/>time domain size: 65536 points<br/>width: 22075.06 Hz = 219.384162 ppm =</zg<br> | gpg3<br>= 0.336839 Hz/pt                 |                                                                                                                | freq. of 0 ppm: 100.612769 MHz<br>processed size: 65536 complex pr<br>LB: 1.000 GB: 0.0000<br>Hz/cm: 562.193 ppm/cm: 5.58 | pints<br>714 |    |       |    |                        |



| SpinWork                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | s 2.5: 13C                                                                                                   | NMR                                                 |                                                                 |                                                                                                                 |                                                                                                                 |                                                                       |                                                                                                                 |                                                       |                                              |                                |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|-----------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|----------------------------------------------|--------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\sim$                                                                                                       | ОН                                                  |                                                                 |                                                                                                                 |                                                                                                                 |                                                                       |                                                                                                                 |                                                       |                                              |                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                              |                                                     |                                                                 |                                                                                                                 |                                                                                                                 |                                                                       |                                                                                                                 |                                                       |                                              |                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                              |                                                     |                                                                 |                                                                                                                 |                                                                                                                 |                                                                       |                                                                                                                 |                                                       |                                              |                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                              |                                                     |                                                                 |                                                                                                                 |                                                                                                                 |                                                                       |                                                                                                                 |                                                       |                                              |                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                              |                                                     |                                                                 |                                                                                                                 |                                                                                                                 |                                                                       |                                                                                                                 |                                                       |                                              |                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                              |                                                     |                                                                 |                                                                                                                 |                                                                                                                 |                                                                       |                                                                                                                 |                                                       |                                              |                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                              |                                                     |                                                                 |                                                                                                                 |                                                                                                                 |                                                                       |                                                                                                                 |                                                       |                                              |                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                              |                                                     |                                                                 |                                                                                                                 |                                                                                                                 |                                                                       |                                                                                                                 |                                                       |                                              |                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                              |                                                     |                                                                 |                                                                                                                 |                                                                                                                 |                                                                       |                                                                                                                 |                                                       |                                              |                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                              |                                                     |                                                                 |                                                                                                                 |                                                                                                                 |                                                                       |                                                                                                                 |                                                       |                                              |                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                              |                                                     |                                                                 |                                                                                                                 |                                                                                                                 |                                                                       |                                                                                                                 |                                                       |                                              |                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                              |                                                     |                                                                 |                                                                                                                 |                                                                                                                 |                                                                       |                                                                                                                 |                                                       |                                              |                                |
| çərli əsələtin ittərəfəri dəri ittəriyi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | المعلومية والمراجع | antike . Jan dil kukulata suration bi na onos shaka | n den diet beson en site dieten die state die see site ( seite  | ge de Martin Martin de Las les es an actives andre solle a martin a des les les sous andres solle anna de las l | tede at well the to a fine to a television of the second state                                                  | L bow. At fire out we about the distribution                          | neral metabolis (h. 1. a. sele la constance non la seconda de selección de selección de seconda de seconda de s | a distance in the set. As a set of the set of the set | to the Royan de Terre Lorenzi attres Lorenzi | والمرافع والمتعادين والمتعارين |
| and the state of the set of the s | ક્રમ્પ્રે   Medice All કે તેમ તો કરકી કરી ને પિઝેટિંગ (જ્યાલ કે જાવી કે ક્રમ્પ્રે પ્રાપ્ત                    | a ta ann an an an an ann an an an an an an          | na ferda a faile a faile an | an fi fi gu d fad galangi na gang kan                                       | n ta ta a sing na ann ga taon tan tan ta ka t | an palland to set and flat to 1995. It is a professional data and the | and here is a second | led i v dd. a boulond "ski fadi i donen oddi. A shi i | and an   | a fa anti-change at a statut   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -1                                                                                                           |                                                     | 1 1 1                                                           |                                                                                                                 | · · · · ·                                                                                                       |                                                                       |                                                                                                                 |                                                       |                                              | 1 1                            |
| PM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 180                                                                                                          | 160                                                 | 140                                                             | 120                                                                                                             | 100                                                                                                             | 80                                                                    | 60                                                                                                              | 40                                                    | 20                                           | 0                              |
| le: D:\CX_RVS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | _paper\More spectr                                                                                           | a\cx-6-19-sm\2\fid                                  | expt: <zgpg30></zgpg30>                                         |                                                                                                                 | freq. of 0                                                                                                      | opm: 100.612774 MH                                                    | Ηz                                                                                                              |                                                       |                                              |                                |
| ansmitter freq.:<br>me domain size                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | : 100.622830 MHz<br>e: 65536 points                                                                          |                                                     |                                                                 |                                                                                                                 | processe<br>LB: 0.30                                                                                            | 1 size: 65536 comple<br>00 GB: 0.0000                                 | x points                                                                                                        |                                                       |                                              |                                |
| /idth: 22075.06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Hz = 219.384162 p                                                                                            | pm = 0.336839 Hz/j                                  | ot                                                              |                                                                                                                 | Hz/cm: 8                                                                                                        | 82.914 ppm/cm: 8                                                      | 8.77449                                                                                                         |                                                       |                                              |                                |



| S                                                                       |                                                                                                     | 0H<br>15                                         |                                |              |     |                                        |    |                                                                         |                                                               |                                        |    |                                        |                                                         |                            |  |
|-------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|--------------------------------------------------|--------------------------------|--------------|-----|----------------------------------------|----|-------------------------------------------------------------------------|---------------------------------------------------------------|----------------------------------------|----|----------------------------------------|---------------------------------------------------------|----------------------------|--|
|                                                                         |                                                                                                     | Ι.                                               |                                |              |     |                                        |    |                                                                         |                                                               |                                        |    |                                        |                                                         |                            |  |
|                                                                         |                                                                                                     |                                                  |                                |              |     |                                        |    |                                                                         |                                                               |                                        |    |                                        |                                                         |                            |  |
|                                                                         |                                                                                                     |                                                  |                                |              |     |                                        |    |                                                                         |                                                               |                                        |    |                                        |                                                         |                            |  |
|                                                                         |                                                                                                     |                                                  |                                |              |     |                                        |    |                                                                         |                                                               |                                        |    |                                        |                                                         |                            |  |
|                                                                         |                                                                                                     |                                                  | <u>homituda an aigidan</u><br> |              |     | -************************************* |    |                                                                         | **************************************                        | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, |    | ////////////////////////////////////// | ар ж <sup>а</sup> (ал а <sub>ай</sub> а а адаа ал а<br> | <del>m,main,dawims(M</del> |  |
| PPM<br>file: D:\Ro<br>transmitte<br>time doma<br>width: 220<br>number o | 140<br>man's\rvs-4-30\\<br>r freq.: 100.6228<br>ain size: 65536 p<br>075.06 Hz = 219<br>f scans: 77 | 130<br>21fid<br>330 MHz<br>points<br>.384162 ppm | 120<br>= 0.336839              | 110<br>Hz/pt | 100 | 90                                     | 80 | 70<br>freq. of 0 ppm:<br>processed size<br>LB: 1.000 C<br>Hz/cm: 621.86 | 60<br>100.612769 M<br>: 65536 comp<br>GB: 0.0000<br>2 ppm/cm: | 50<br>/Hz<br>lex points<br>6.18013     | 40 | 30                                     | 20                                                      | 10                         |  |




































































































| SpinWorks                                                                                                        | $\bigcirc$                                                                       | он<br>21                                  | он                                         |              |         |    |                                                       |                                                                                        |                                                    |               |    |    |    |                                        |
|------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|-------------------------------------------|--------------------------------------------|--------------|---------|----|-------------------------------------------------------|----------------------------------------------------------------------------------------|----------------------------------------------------|---------------|----|----|----|----------------------------------------|
|                                                                                                                  |                                                                                  |                                           |                                            |              |         |    |                                                       |                                                                                        |                                                    |               |    |    |    |                                        |
|                                                                                                                  |                                                                                  |                                           |                                            |              |         | 1  |                                                       |                                                                                        |                                                    |               |    |    |    |                                        |
|                                                                                                                  |                                                                                  |                                           |                                            |              |         |    |                                                       |                                                                                        |                                                    |               |    |    |    |                                        |
|                                                                                                                  |                                                                                  |                                           |                                            |              | <b></b> | ,, |                                                       | <del></del>                                                                            | <b>1)-1</b>                                        |               |    |    |    | ************************************** |
| PPM 1<br>file: D:\CX_RVS_p<br>transmitter freq.: 1<br>time domain size:<br>width: 22075.06 H<br>number of scans: | 35 12<br>aper/More spec<br>00.622830 MHz<br>65536 points<br>z = 219.384162<br>75 | 25 11<br>stra\cx-6-25\2\f<br>ppm = 0.3368 | 5 10<br>id expt: <zgp<br>39 Hz/pt</zgp<br> | 5 95<br>g30> | 85      | 75 | freq. of 0 pp<br>processed<br>LB: 0.300<br>Hz/cm: 608 | 55<br>50<br>51<br>51<br>51<br>51<br>51<br>51<br>51<br>51<br>51<br>51<br>51<br>51<br>51 | 55<br>774 MHz<br>complex poin<br>00<br>/cm: 6.0492 | 45<br>ts<br>4 | 35 | 25 | 15 | 5                                      |