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ABSTRACT 

 

The first generation of precast concrete deck system, NUDECK, developed by the University of 

Nebraska-Lincoln (UNL) for Nebraska Department of Roads (NDOR), was implemented on the 

Skyline Bridge, Omaha, NE in 2004. The project was highly successful and received two PCI 

Awards of Excellence. The second generation of precast concrete deck system NUDECK was 

developed to further simplify precast panel/girder production, speed up bridge superstructure 

construction, and improve deck durability. The second generation of NUDECK consists of full-

width full-depth precast concrete deck panels that are 12 ft long to minimize the number of deck 

panels and transverse joints, and consequently accelerate bridge construction. It also uses covered 

individual pockets and bundled shear connectors at 4 ft spacing to simplify panel and girder 

production and eliminate the need for deck overlay. Precast deck panels are pre-tensioned in 

transverse direction and post-tensioned in the longitudinal to enhance deck durability to achieve 

the same service life of other bridge components. 

 

This report presents the first implementation of the second generation of NUDECK system to the 

Kearney East Bypass project in Kearney, NE. The project consist of twin bridges: the south bound 

bridge constructed using conventional cast-in-place deck; and the north bound bridge constructed 

using the 2nd generation NUDECK system. Each bridge is a two-span continuous bridge that is 41 

ft 8 in. wide and 332 ft long. Each span is 166 ft long and consists of five precast/prestressed 

concrete girders (NU1800) at 8 ft 6 in. spacing. This report presents the analysis, design, and 

detailing of the bridge superstructure. It also summarizes the experimental investigations 

conducted to evaluate the proposed design and construction details.  
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1 INTRODUCTION 

1.1 Background 
Full-depth precast concrete deck systems have several advantages, such as improved construction 

quality, reduced construction time and impact on traveling public, possible weight reduction, and 

reduction of total project life-cycle cost. The quality of precast deck systems is superior to field-

cast concrete bridge decks because production occurs in a controlled plant environment. The 

variability of construction due to environmental conditions is eliminated in the plant that uses 

consistent casting operations and curing techniques. Moreover, there is a major weakness of cast-

in-place (CIP) decks for which a solution has not been found. When concrete is placed over 

relatively stiff girders, it becomes part of the girder/deck composite system as soon as it begins to 

harden—several hours after placement. At that time, its tensile capacity is small. Shrinkage in the 

first few hours after setting and the temperature drop as the heat of cement hydration dissipates 

causes a reduction in concrete volume that cannot be accommodated by the restraint of the 

supporting girders. This often results in cracking, especially in the transverse direction, that 

continues to develop with the concrete shrinkage, most of which occurs in the first 60 days of the 

concrete age. Shrinkage and cracking are eliminated by using precast deck panels1.  

 

The size of precast concrete deck panels is smaller than the full bridge deck, thereby reducing the 

mix, placing, and finishing variability that exists in the field. Also, because the panels are small, 

curing is easily controlled and applied immediately to achieve the best material performance 

characteristics. High performance concrete (HPC) is recommended for all bridge decks, due to 

carrying repeated load cycles in severe environmental conditions. Plant casting provides greater 

assurance that the performance characteristics of HPC will be achieved. For example, plant-

produced 8,000 psi concrete panels are just as easily produced as 4,000 psi concrete panels, while 

a CIP concrete deck is hard to consistently produce at a strength higher than 4,000 or 5,000 psi. 

More important than strength in bridge decks, shrinkage and the associated cracking are greatly 

controlled. A two-way prestressed concrete deck is expected to be crack-free for the service life of 

the bridge, an advantage that is not practical to achieve on CIP decks. The construction method 

becomes more critical as available field labor decreases or labor turnover for contractors persists.  

Precast concrete deck panels can be designed as composite or non-composite with the supporting 

girders. A non-composite panel is less complicated and more cost efficient to fabricate. 

Elimination of the shear connectors simplifies forming the panel and reduces work during post-

tensioning operations. This, however, requires that relatively large girders be used to carry traffic 

loads without aid from the deck as in composite systems. The more common composite system is 

structurally superior and overall is much more cost-effective2. 

 

1.2 Problem Statement 
The first generation of precast concrete deck system, NUDECK, developed jointly by the 

University of Nebraska-Lincoln (UNL) and Nebraska Department of Roads (NDOR), was 

successfully implemented on the Skyline Bridge, Omaha, NE in 2004 as shown in Figure 1.1. The 

project was highly successful and received two PCI Awards of Excellence and as it resulted in 

very reasonable cost per square foot of the deck panels3,4. 



9 
 

 
 

Figure 1.1: Precast Prestressed Concrete Deck Panels in Skyline Bridge (1st generation NUDECK) 

 

The 1st generation of NUDECK system had several innovations such as:  

 

 Panels are made of high performance concrete that is pre-compressed in two directions 

such that the residual stresses in service are compression and cracking is avoided.  

 Most of the creep, shrinkage, and temperature change due to hydration took place before 

the panel is connected with the rigid underlying beams, eliminating most of cracking due 

to the restraining of stiff girders.  

 The continuous gap over beam lines assures simple, high quality post-tensioning and 

eliminates the question about the quality of tendon grouting. 

 Individual post-tensioning of strands allows most contractors, even in areas not familiar 

with post-tensioning, to do the post-tensioning work with local crews. The precasters also 

would have the option to include post-tensioning as part of supplying the panels.  

 The proposed prestressed concrete deck panel system covers the entire width of a bridge, 

which eliminates the necessity of forming the overhangs.  

 All materials used in the production of the deck panels are non-proprietary and readily 

available. This makes the system cost competitive with CIP concrete decks, while it is 

much more rapid to build and durable to maintain.  

 Use of large diameter studs reduces the required number of studs. Thus, economy of 

fabricated steel beams is improved and, more importantly, worker safety is enhanced.  

 Finally, the cast-in-place overlay allows for adjustments in roadway profile. It provides an 

excellent riding surface, and large cover for the reinforcement.  

Open Channel over Girder Lines,  

for Shear Studs and for Post-tensioning 

Shear Key between Panels 

Beam underneath  

 Shear Stud  

Sleeves for Barrier  

Post Attachment 

Top of Curb Matching  

Top of Overlay  
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A number of lessons were learned from the construction of the Skyline Bridge, which were the 

motive for making further improvements that led to the development of the 2nd generation of 

NUDECK system5,6. These lessons include:  

 

 Threading post-tensioning strands through the end panels and between panel 

reinforcement, as shown in Figure 1.2, was a tedious and time-consuming operation. 

Laying down all post-tensioning strands on top of each girder prior to placement of deck 

panels would have significantly simplified this operation. 

 Frequent conflicts occurred between the deck reinforcement (strands and bars) and the 

shear studs welded to the girder at the open channel locations as shown in Figure 1.2. 

Larger spacing between shear connectors as well as bundling them would have eliminated 

this issue. 

 Overlay required seven days to cure, which is a major disadvantage to rapid construction 

and is expensive. In addition to the use of type k-cement, which was not locally available, 

to minimize overlay shrinkage. Eliminating the need for deck overlay would have resulted 

in significant time and cost savings. 

 The use of 8 ft wide panels resulted in large number of panels to fabricate, transport, and 

erect, in addition to the large number of transverse joints. Increasing panel width from 8 ft 

to 12 ft would significantly speed up construction and reduce number of transverse joints. 

 The use of non-reinforced wet transverse joints, bent plates to form the haunch, and 

individual strand post-tensioning were very simple and successful operations to fabricators 

and contractors and should be used. 

 

Figure 1.2: Threading post-tensioning strands (left) and conflicts between deck reinforcement 

and shear connectors (right) 
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1.3 Objective 
To develop and implement the 2nd generation of precast concrete deck system (NUDECK) that has 

the following features: 

 

 Easy to fabricate full-width full-depth precast concrete deck panels that are 12 ft long to 

minimize the number of panels and cast-in-place transverse joints. 

 Individual shear connectors at 4 ft spacing to simplify girder production and minimize 

conflicts during panel erection. 

 Covered individual shear pockets at 4 ft spacing to eliminate the need for deck overlay 

and simplify panel production. 

 Lifting inserts are located at the shear pockets to minimize panel penetrations. 

 Two-way prestressing (transverse pre-tensioning and longitudinal post-tensioning) to 

control cracking and increase the service life of the deck. 

 Post-tensioning strands located underneath the deck to eliminate threading strands 

through deck reinforcement or embedded ducts, which simplifies the construction. 
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2 PROJECT DESCRIPTION 

 

The 2nd generation precast concrete deck system (NUDECK) will be implemented in the 

construction of the bridge/viaduct shown in Figure 2.1. This bridge is a part of Phase II of a three-

phase project known as Kearney Easy Bypass, which is a relocation of Highway 10 in Buffalo 

County. Figure 2.1 shows the beginning and end of the Phase II project, which is scheduled for 

construction in 2014 and 2015. The bridge connects 11th street to the 56th street over the US-30 

and Union Pacific Rail Road. 

 

Figure 2.1: Map of project location 

 

The project consist of twin bridges as shown in Figure 2.2: the south bound bridge will be 

constructed using conventional cast-in-place deck; and the north bound bridge will be constructed 

using the 2nd generation NUDECK system. Each bridge is a two-span continuous bridge that is 41 

ft 8 in. wide and 332 ft long. Each span is 166 ft long and consists of five precast/prestressed 

concrete girders (NU1800) at 8 ft 6 in. spacing as shown in Figure 2.3. Each bridge has a 14o skew 

and 2% cross slope. 
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Figure 2.2: Twin bridge plan view 

Figure 2.3: Bridge elevation, plan, and cross section 
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In order to describe the differences between the 1st and 2nd generations of NUDECK systems, the 

features of the two implementation projects are presented side by side in Table 2.1. This table 

summarizes the features of Skyline and Kearney East Bypass bridge project that are relevant to 

deck construction. Shaded rows highlights the most significant differences between the two 

generations, which are: 

 Panel width 

 Deck overlay 

 Location of post-tensioning strands 

 Shear connectors 

 Panel-to-girder connection 

 

Table 2.1: Comparison of 1st and 2nd generation of precast concrete deck systems (NUDECK) 

 

For more detailed information about the project, please refer to the project plans available at 

NDOR web site http://www.transportation.nebraska.gov/projects/kearney-east/index.htm  

Item 1st Generation NUDECK 2nd Generation NUDECK

Bridge Project Skyline Bridge, Omaha, NE Kearney East Bypass, Kearney, NE

Year Built 2003 2014

Spans (ft) 89, 125 166, 166

Width (ft) 51.5 41.67

Skew (deg.) 25 14

Girders 55 in. deep Steel Girders NU1800 Concrete Girders

Girder Spacing (ft) 10.83 8.5

Panel Width (ft) 8 12

Panel Thickness (in) 6 7.5" + 0.5"

Overlay 2 in. Type K Cement None

Concrete Strength (psi) f'ci = 4,300; f'c = 6,000 f'ci = 3,500; f'c = 6,000

Transverse Pretension 8 - 0.5" Strands in two layers @24" 6 -0.6"  top layer & 6-0.5" in bottom layer @24"

Longitudinal Post-tension 16 - 0.6 " Strands 12 - 0.6" Strands

Location of PT Strands At panel mid height Below deck panel

Crown and Cross Slope Crown and 2% Cross Slope No Crown, 2% Cross Slope

Transverse Joint Wet Joint Wet Joint

Rail CIP and inserts in the precast panel CIP with reinforcement extended from deck panels

Haunch Forms Continuous Steel Bent Plate Continuous Steel Bent Plate

Longitudinal Reinforcement 2#5 @ 12" 2#5 @ 12"

Transverse Reinforcement 8#7 Continuous bars (bot), 8#7 short bars (top) 2#5 @ 24"

Shear Studs 1-1/4" Diameter Studs @ 6" Two 1-1/4" Diameter Grade 120 TR @ 48"

Panel-Girder Connection
12" Wide Open Continuous Channel filled with 

conventional concrete

8" x 16" x 5-1/2" covered individual pockets filled 

with self-consolidated concrete

http://www.transportation.nebraska.gov/projects/kearney-east/index.htm
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3 CONSTRUCTION SEQUENCE 

 

The construction sequence of the 2nd generation NUDECK precast concrete deck panels for the 

Kearney East Bypass project is presented in details in the following twenty steps. These steps are 

presented using the 3D sketches presented in Figure 3.1, which are numbered to correspond to 

each step. Also, a 3D animation of the construction sequence can be viewed in YouTube using the 

following link: http://www.youtube.com/watch?v=FOqcmkik_4Y 

1- Fabricate 10 precast prestressed concrete NU1800 bridge girders using the approved 

mixture.  

2- Fabricate 28 full-depth full-width precast prestressed concrete deck panels (26 typical 

panels and 2 end panels) using approved mixture.   

3- Erect all the 10 girders (five girders per span) using the provided lifting points. Do not 

use the shear connectors or deviators in handling the girder. It is highly recommended 

that the alignment of shear connectors is checked using a steel template that was used 

earlier in panel and girder fabrication to ensure that shear connectors in all girder lines 

match the shear pockets in all precast deck panels within the allowed tolerance. 

4- Form, reinforce, and pour the two end diaphragms and the pier diaphragm up to the level 

of the girder top flange using the approved mixture and after applying bond breaker to the 

embedded girder faces. 

5- Conduct shim shots every 6 ft on the edges and center of each girder line to determine the 

actual profile of the cambered girders prior to deck placement.   

6- Attach the deck support system, made of bent plates/angles, by welding them to the 

girder metal tabs to achieve the desired deck elevation and a minimum 2.5 in. thick 

haunch. 

7- Attach extruded polystyrene panels to the diaphragm concrete between girders using 

approved adhesive to fill the gap between the deck panels and diaphragm concrete 

between girders. 

8- Adjust the height of shear connectors by cranking them up to get 5 ± 1/8 in. embedment 

in the deck. 

9- Attach compressible material to the top of the deck support system to eliminate any gaps 

between the deck soffit and the deck support system. 

10- Lay down 12-0.6 in. diameter post-tensioning strands on top of each girder for the full 

length of the bridge and thread them through the corresponding openings in the end 

deviators.  

http://www.youtube.com/watch?v=FOqcmkik_4Y
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11- Lay down 10#8 negative reinforcement bars on the top flange of each girder over the 

intermediate support. Bars should be staggered and supported using chairs to avoid 

conflict with strands. 

12- Lift each deck panel using the specified eight lifting points located at pocket type A and 

place it on the deck support system. 

13- Use backer rod to fill the gaps between adjacent deck panels and clean and moist the joint 

surfaces. 

14- Pour flowable concrete/grout in the transverse joints between deck panels using an 

approved mixture. 

15- Raise post-tensioning strands at the ends of each girder line to the mid-height of the deck 

and thread them through the holes of the anchor plates which are supported on the anchor 

block. 

16- Weld bulkhead plates and tension individual post-tensioning strands using mono-strand 

jack starting from the middle and moving symmetrically outward. Repeat this process for 

each girder line starting from the middle one and moving symmetrically outward. 

17- Pour/Pump the specified self-consolidating concrete (SCC) to fill the gap between the 

deck soffit and girder as well as shear pockets using the provided ports from the top of 

the deck. Moist girder top flange prior to pouring the SCC. Pouring should continue until 

the concrete overflow from the provided vents.  

18- Form, reinforce, and pour approach slabs as well as the area around post-tensioning 

blocks in the deck 

19- Form, reinforce and pour the rails. 

20- Grind the top surface of the finished deck up ½ in. to ensure a leveled ridding surface.  
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Figure 3.1: Construction Steps of Precast Concrete Deck System of Kearney East Bypass Project 
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4 ANALYSIS, DESIGN, AND DETAILING 

The northern bound of the Kearney East Bypass bridge project consists of 26 NUDECK typical 

panels and 2 NUDECK end panels as shown in Figure 4.1. Each typical panel is 41 ft 8 in. wide, 

12 ft long, 8 in. thick and has 15 shear pockets (3 shear pockets per girder line at 4 ft spacing) as 

shown in Figure 4.2. Eight pockets are type A, which have lifting inserts, and seven pockets are 

type B, which are non-lifting pockets. Figure 4.3 shows the plan and sectional views of pockets 

type A and B.   

 

Figure 4.1: NUDECK panel arrangement for Kearney East Bypass project 
 

 

Figure 4.2: Typical panel plan view and reinforcement details 
 



28 
 

 
Figure 4.3: Plan and sectional views of pockets type A and B 

 

To determine the necessary transverse prestressing of each typical panel, the panel was analyzed 

as a continuous beam under both lifting and service conditions using Beam Express software. 

Figure 4.4 shows the bending moment, shear force, and deflection diagrams of a typical panel 

during lifting. These diagrams indicates that the maximum positive moment is 20.1 kip.ft, 

maximum negative moment is 23.3 kip.ft, maximum shear is 10.2 kip, and maximum defection is 

0.04 in. Figure 4.5 shows the bending moment, shear force, and deflection diagrams of a typical 

panel during service condition under its self-weight. These diagrams indicates that the maximum 

positive moment is 1.5 kip.ft, maximum negative moment is 2.4 kip.ft, maximum shear is 3.3 kip, 

and maximum defection is 0.0003 in. Using the AASHTO LRFD7 Table A4.1, maximum positive 

moment of 6 kip.ft/ft and maximum negative moment of 3.3 kip.ft/ft were estimated due to live 

loads. The factored positive and negative moments in a typical panel for Strength I limit state are 

estimated as follows: 

 Mu(+ve) = 1.25 x 1.5 + 1.75 x 6 x 12 x 1.2 =  153 kip.ft 

 Mu(-ve) = 1.25 x 2.4 + 1.75 x 3.3 x 12 x 1.2 = 86.2 kip.ft 

Using strain compatibility analysis of the deck section assuming f’ci = 3.5 kis, f’c = 6 ksi, total 

thickness = 7.5 in. (after ½” grinding), 6-0.5 in. strands + 7#5 bars are located at 6.25 in. from the 

top, and 6-0.6 in. strands + 7#5 bars are located at 2.25 from the top, the following capacities are 

calculated: 

 ΦMn (+ve) = 234 kip.ft > 153 OK 

 ΦMn (-ve) = 180.4 kip.ft > 86.2 OK 

Table 4.1 show top and bottom stress calculations in the transverse direction for both lifting and 

service conditions. These calculations indicated that the panel will not have any tensile stresses 

during lifting and minimal tensile stresses under service loads. It should be noted that a 1.5 impact 

factor was used in stresses calculations during lifting. Also, prestressed losses were calculated to 
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be 3.2 ksi at release and 17.9 ksi at service. Tables 4.2 and 4.3 show the design of pocket anchor 

bars and lifting inserts respectively. 

 

 

Figure 4.4: Bending moment, shear force, and deflection diagrams of a typical panel during 

lifting (kip,ft) 
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Figure 4.5: Bending moment, shear force, and deflection diagrams of a typical panel at service 

condition under self-weight (kip,ft) 
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Table 4.1: Deck stress calculations during lifting and service conditions 

 

Table 4.2: Design of pocket anchor bars and their welds 

 

General Information Stage I (At Lifting)

Deck Width (b) 12 ft P 442.4 kip M-ve -419.4 k.in

Deck Thickness (h) 8.00 in ftop 0.00 ksi -0.098 √f'ci -0.18 ksi OK

f'ci 3,500                 psi fbot 0.77 ksi 0.6 f'ci 2.10 ksi OK

f'c 6,000                 psi

fpu 270 ksi P 442.4 kip M+ve 361.8 k.in

fpy 243 ksi ftop 0.50 ksi -0.098 √f'ci -0.18 ksi OK

fpj 202.5 ksi fbot 0.26 ksi 0.6 f'ci 2.10 ksi OK

fpi 199.3 ksi

fpe 184.6 ksi Stage II (At Service)

nps 12 Each P 409.8 kip M-ve -504.0 k.in.

e 0.40 in ftop -0.08 ksi -0.098 √f'c -0.23 ksi OK

Aps (6-0.5" bot + 6-0.6" top) 2.22 in2 fbot 0.79 ksi 0.6 f'c 3.60 ksi OK

Section Properties

A 1152 in2 P 409.8 kip M+ve 882.0 k.in.

yb 4 in ftop 0.82 ksi 0.6 f'c 3.60 ksi OK

yt 4 in fbot -0.11 ksi -0.098 √f'c -0.23 ksi OK

I 6,144                 in4

Design of Anchor Bars

Area of One Shear Connector 0.97 in2

Design Stength of Connectors 60 ksi

Number of Connectors / Pocket 2 Each

Total Pullout Force 116.4 kip

Cross Section Area of Anchor Bars 0.31 in
2

Yield Strength of Anchor Bars 60 ksi

Number of Shear Planes 8 Each

Resistance Factor in Shear 0.75 N/A

Capacity of Anchor Bars in Shear 111.6 in.

Surface Area of HSS 264 in2

Cohesion Coefficient 0.025 ksi

Cohesion Force 5.9 kip

Total Resistance 117.5 kip OK

Design of Welds

Weld Thickness 0.25 in.

Effective Fillet Weld Thickness 0.10 in.

Strength of Welding Electrode 90 ksi

Angle of Load to Weld Axis 90 deg.

Length of Each Weld Line 4.0 in.

β Factor 1.0 N/A

Number of Weld Lines 6 Each

Factored Weld Capacity 138.3 kip OK
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Table 4.3: Design of pocket lifting inserts and their welds 

 

Each deck panel need to be supported on the five girder lines creating a haunch that has a minimum 

thickness of 3 in. to accommodate the post-tensioning strands and to be filled with concrete after 

post-tensioning. To achieve that, bent plates was chosen to be welded to the metal tabs inserted in 

both edges of the top flange of each precast girder to create a continuous support and side forms 

for the cast-in-place concrete. The welding process will be done on-site after conducting shim 

shoots to determine the required deck elevation. Table 4.4 shows the design calculations of the 

bent plate and its welds assuming that metal tabs are spaced at 18 in. and the NU girder top flange 

has an ultimate capacity of 4 kip/ft acting on the tip of the flange. Also, at least ½” thick 

compressive material is needed to uniformly distribute the panel weight and prevent leakage. 

Based on these calculations, the maximum wheel load allowed during construction is 2,000 lbs. 

 

Design of Lifting Plates

Panel Length 41.67 ft

Panel Width 12 ft

Panel Thickness 8 in

Panel Weight 48.34 kip

Number of Lifting Points 8 EA

Maximum Load Per Lifting Point 8.50 kip

Load Factor for Impact 4

Design Load 34.0 kip

Span of Lifting Plate 7.5 in

Diameter of Coil Rod 0.75 in.

Capacity of Coil Rod 7.2 kip

Diameter of Coil Nut 1.375 in.

Moment in Lifting Plate 26.0 kip.in.

Steel Grade 50 ksi

Plastic Section Modulus 0.52 in3

Total Thickness of Lifting Plates 0.50 in. 2- 1/4" thick plates

Required Depth of Lifting Plates 2.0 in. Use 2 in.

Design of Welds

Weld Thickness 0.25 in.

Effective Fillet Weld Thickness 0.18 in.

Strength of Welding Electrode 90 ksi

Angle of Load to Weld Axis 0 deg.

Length of Each Weld Line 1.5 in.

β Factor 1.0 N/A

Number of Weld Lines 4 Each

Factored Weld Capacity 43.0 kip OK
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Table 4.4: Design of deck support system 

 

 

 

Design of Bent Plates

Panel Length 41.67 ft

Panel Width 12 ft

Panel Thickness 8 in

Panel Weight 48.34 kip

Number of Support Lines 5 EA Assume one angle per girder line

Length of Each Support Line 12 ft

Load Per Linear Foot 0.81 kip/ft

Load Factor for Impact 4

Design Load 3.22 kip/ft

Girder Capacity per Linear Foot 4 kip/ft OK

Spacing Between Welds 1.5 ft

Load per Weld 4.83 kip

Applied Moment 43.50 kip.in. Assume one weld is broken

Bent Plate Thickness 0.125 in.

Bent Plate Width 3 in.

Bent Plate Depth 6 in.

Steel Grade 50 ksi

Section Modulus 2.12 in3

Moment Capacity 106 kip.in. OK

Design of Welds

Weld Thickness 0.125 in.

Effective Fillet Weld Thickness 0.09 in.

Strength of Welding Electrode 90 ksi

Angle of Load to Weld Axis 0 deg.

Length of Each Weld Line 1.50 in.

β Factor 1.00 N/A

Number of Weld Lines 1.00 Each

Factored Weld Capacity 5.4 kip OK

Maximum Wheel Load

Dead Load Per Tab 1.21 kip

Dead Load Factor 1.25 N/A

Wheel Load 2 kip

Live Load Factor 1.35 N/A

Impact Factor 1.33 N/A

TOTAL Load 5.1 kip OK
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To design the panel-to-girder connection and the deck post-tensioning, the entire bridge 

superstructure was modeled and analyzed using ConSpan V8i software. Appendix A lists the 

analysis results for an interior girder, which includes service and ultimate shear and moment 

envelopes as well as the interface shear at different section. Based on analysis results, maximum 

positive and negative ultimate moments were 15,189 kip.ft and 6,870 kip.ft respectively. These 

values compared very well with the flexural capacity of the composite girder calculated using 

strain compatibility (Mn(+ve) = 21,347 kip.ft and Mn(-ve) = 7,080 kip.ft). The vertical shear at 

the critical section was found to be 254 kip, which resulted in an interface shear of 3.24 kip/in 

(excluding the girder and deck weight effects). This value was used in Table 4.5 to design the shear 

connectors according to AASHTO LRFD7 section 5.8.4, which found to be two 1.25 in. diameter 

threaded rods at 4 ft spacing. It should be noted that the cohesion between the haunch concrete and 

the precast deck soffit was assumed to be zero as the deck soffit is not roughened. 

 

Table 4.5: Design of shear connectors 

 

Also, the maximum positive and negative service III bending moments were 9,682 kip.ft, 3,014 

kip.ft respectively. These values were used to determine the required pre-tensioning force at the 

positive moment region and post-tensioning force at the negative moment region to keep the tensile 

stresses less than 0.098 √f’c.  This resulted in using 60-0.6 in. pre-tensioned strands at the bottom 

flange and 12-0.6 in. post-tensioned strands at the haunch for each girder. Table 4.6 shows the 

design calculations for deck post-tensioning. Figures 4.6, and 4.7 show detailing of deck-to-girder 

connection for a typical panel and end panel respectively. Figures 4.8 and 4.9 show, respectively, 

Vertical Shear at Critical Section (Vu) 254 kip

Effective Depth (de) 78.3 in.

Max. Interface Shear (Vui max.) 3.24 kip/in.

Design Interface Shear 3.24 kip/in.

Spacing Between Shear Connectors (s) 48 in.

Ultimate interface Shear per pocket (Vui) 155.7 kip

Area of One Shear Connectors (As) 0.97 in2

Yield Strength of Shear Connectors 105 ksi

Design Yield Strength of Shear Connectors (fy) 60 ksi

Number of Shear Connectors per pocket 2

Compressive Strength of Grout (fc') 6 ksi

Resistance Factor (φ) 0.9

Failure Plane
Length

(in.)

Width

(in.)

Acv

(in.2)

c

(ksi)
µ K1

K2

(ksi)

c Acv

(kip)

µ As fy

(kip)

K1f'cAcv

(kip)

K2 Acv

(kip)

φVn

(kip)

A (at the girder top flange) 48 32 1,536    0.24 1 0.25 1.5 368.6 116.4 2,304   2,304   436.5

B (at the deck bottom surface) 156.9

B1 (At the pocket) 15.5 7.5 116.3 0.4 1.4 0.25 1.5 46.5 163.0 174       174       156.9

B2 (between pockets) 48 32 1419.8 0 0 0.2 0.8 0.0 0.0 1,704   1,136   0.0

According to AASHTO LRFD Section 5.8.4
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the proposed design and alternate design of post-tensioning hardware. Also, NDOR project sheets 

that are relevant to these connections are shown in Appendix B 

 

Table 4.6: Design of deck post-tensioning 

 

 

BRIDGE INFORMATION

Location Kearney East Bypass

County Buffalo

Number of Spans 2

Span Length 166 ft

Total Width 41.67 ft

Roadway Width 39 ft

Skew Angle 14 deg.

GIRDER INFORMATION

Girder Size NU1800

Girder Height 70.9 in

Girder Area 857.3 in2

Girder Inertia 611,328                         in4

Girder Yb 32 in

Girder fc' 8 ksi

Number of Girders 5

Girder Spacing 8.5 ft

DECK INFORMATION

Deck Thickness 7.5 in

Haunch Thickness 6.5 in

Haunch Width 48 in

Deck and Haunch fc' 6 ksi

Rail Type Closed 42"

Rail Weight 0.524 klf

Wearing Surface 0.02 ksf

COMPOSITE SECTION

Modular Ratio 0.866

Area of Composite 2,066.9                          in2

Composite Yb 52.53                              in

Composite Inertia 1,900,275.10               in4

FORCES AND STRESSES

Critical Section Face of Diaphragm

M-ve (Total) -3014 kip.ft

Post-tensioning Force 421.8 kip

P/A 0.551 ksi

My/I -0.616 ksi

Total Stress -0.065 ksi

Stress Limit 0.098√f'c -0.240 ksi
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Figure 4.6: Typical panel-to-girder connection views (cont.) 

Shear Connector Assembly 
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Figure 4.6: Typical panel-to-girder connection views (cont.) 
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Figure 4.6: Typical panel-to-girder connection views 
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Figure 4.7: End panel-to-girder connection views (cont.) 
 



40 
 

 

Figure 4.7: End panel-to-girder connection views 
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Figure 4.8: Detailing of post-tensioning anchor block and plate 
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Figure 4.9: Alternate design of post-tensioning anchor block and plate 
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5 PULLOUT EXPERIMENTAL INVESTIGATION 

 

5.1 Girder Pullout Testing 
The purpose of this testing was to determine the required embedment length of the threaded rods 

(TRs) used as shear connectors into the girder, so that the TR can be fully developed. Another 

purpose was to determine the most efficient way to grease the TR so it can be cranked up when 

needed to adjust the TR height to match the deck profile. Testing was conducted on three stages:  

1) Pullout from concrete cubes (05-24-2012); 

2) Pullout from shallow T-girders (07-13-2012); and 

3) Pullout from deep T-girders (07-27-2012 and 02-13-2013).  

 

In the first stage, three concrete cube specimen 1 ft x 1 ft x 1 ft were made with 1.25 in. diameter 

TR embedded in the center of each cube as shown in Figure 5.1 Two of the specimens had TR 

with fine threads (7 threads per inch), while the third specimen had TR with coarse threads (4 

threads per inch) to determine the effect of number of threads on the bond and the ease of cranking. 

Also, one of the TR with fine threads was not greased to determine the effect of greasing on the 

bond with concrete. Figure 5.2 shows a photo of one of the specimen before casting the concrete. 

Two TR were greased using thick grease commonly used as a lubricant for heavy equipment, 

which makes it stay on the rods surface and not drip inside the form. A 6,000 psi self-consolidating 

concrete (SCC) was used to cast the specimens. When the concrete strength reached 3,500 psi, the 

TR were cracked up using a manual wrench as shown in Figure 5.2. The two greased rods were 

easily cranked up and down, while the bond between the non-greased rod and concrete could not 

be broken. All the three specimens were tested in pullout as shown in the test setup in Figure 5.3. 

 

 

Figure 5.1: Elevations of the three specimen tested in the first stage 
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Figure 5.2: Cube specimen with TR before casting (left) and after casting (right) 

Figure 5.3: Pullout test setup 
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Figure 5.4 plots the pullout testing results of the three specimens. This plot indicate that both 

greasing and coarseness of threads had a significant effect on the bond with concrete. The non-

greased TR had better bond with concrete than the greased TR with the same coarseness of threads, 

which can lead to splitting of the concrete rather than pullout of the rod.  On the other hand, the 

coarser the threads, the higher the bond with concrete as the concrete can better fill the space 

between threads especially when grease is being applied. Figure 5.5 show the failure mode of each 

specimen.  Despite these results, it was decided to use a greased TR to allow easy cranking of the 

rods in the site. Also, TR with fine threads were used to allow using a thinner nut (i.e. half nut) to 

form the head of the rod, which will be embedded inside the deck shear pockets. However, a large 

washer and nut will be used on the other end embedded in the girder to improve the TR bond with 

concrete, which was tested in the second and third stages. 

 

 

 
Figure 5.4: Pullout test results 
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a)                                                                                  b) 

c) 

Figure 5.5: Failure mode of: a) greased fine TR; b) greased coarse TR; and c) non-greased fine 

TR 
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In the second stage, two shallow T-girder specimens were made as shown in Figure 5.6 to simulate 

the top portion of a bridge I-girder. In each specimen, a 1.25 in. diameter TR with greased fine 

threads (7 threads per inch) and a structural washer and nut was embedded in the center of the 

specimen. Figure 5.7 shows a photo of the specimen prior to casting the concrete. A 10,000 psi 

SCC was used to make the two specimen to match the concrete strength recently used in bridge 

girders. Figure 5.8 shows the pullout test setup for the two specimen.  

  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.6: Plan and elevation views of the shallow T-girder specimen 
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Figure 5.7: Forming and reinforcement of shallow T-girder specimens  

Figure 5.8: Pullout test setup of shallow T-girder specimens  
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Figure 5.9 plots the pullout test results of the two specimens (A and B). Although these results are 

significantly higher than those obtained from the previous stage of testing, none of the two TRs 

was ruptured. The TR in specimen B was fully developed as it reached the yield strength (at a load 

of 102,000 lbs), while the TR in specimen A was very close to the yield strength but did not reach 

it. Both specimens experienced severe cracking starting at the bottom of the web and propagating 

upward and spalling the concrete around the washer and nut as shown in Figure 5.10. This is 

primarily due to the lack of reinforcement of the shallow web. This problem was addressed in the 

third stage of testing as a deeper reinforced web is used. 

 

 

 
 

Figure 5.9: Pullout test results of the two shallow T-girder specimens  

 

 

 

 
 

0

7,500

15,000

22,500

30,000

37,500

45,000

52,500

60,000

67,500

75,000

82,500

90,000

97,500

105,000

112,500

120,000

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190

Lo
ad

 (
lb

)

Time (sec)

Specimen B

Specimen A

Pullout of 
Rod

Pullout of 
Rod

Splitting of 
Concrete



50 
 

 

Figure 5.10: Failure modes of shallow T-girder specimens A (top) and B (bottom)  
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In the third stage, two deep T-girder specimens were made as shown in Figure 5.11 to simulate the 

upper half a bridge I-girder. In each specimen, a 1.25 in. diameter TR with greased fine threads (7 

threads per inch) and a structural washer and nut was embedded in the center of the specimen. 

Figure 5.11 also shows the web reinforcement used in the specimens, which simulates typical shear 

reinforcement of bridge girders in addition to U bars around the TR to control cracking. Figure 

5.12 shows a photo of the specimen prior to casting the concrete. A 7,000 psi SCC was used to 

make the two specimen to match the concrete strength of the Kearney East Bypass bridge girders. 

Figure 5.13 shows the pullout test setup for the two specimens A and B.  

  

Figure 5.11: Plan and elevation views of the deep T-girder specimen 
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Figure 5.12: Forming and reinforcement of deep T-girder specimens  

 

Figure 5.13: Pullout test setup of deep T-girder specimens 
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Figure 5.14 plots the pullout test results of the two specimens (A and B). These results are higher 

than those obtained from the previous stage of testing as the two TRs exceeded their yield strength. 

The TR in specimen B was ruptured with no visible cracking in the web, while the TR in specimen 

A cracked and crushed the web concrete after yielding as shown in Figure 5.15. The performance 

of the two specimens was considered satisfactory as the TR were fully developed under ultimate 

load (102,000 lbs) and the specimens did not crack under service loads (58,000 lb). However, to 

eliminate the crushing of the concrete occurred in specimen A, it was proposed to use anchor bars 

welded to the washer. These anchor bars will transfer the pullout force by bond along their length, 

which significantly reduce the bearing on the concrete that might cause cracking and crushing. To 

evaluate the performance of the proposed detail, one additional deep T-girder specimen was 

fabricated similar to the two specimens presented earlier with one exception, which is the use of 2 

#6  bars welded to ½” plate washer as shown in Figure 5.16. This specimen was tested similar to 

specimen A and B as shown in Figure 5.13. The TR reached the yield strength and was completely 

ruptured as shown in Figure 5.17 with no visible cracking or damage to the surrounding concrete. 

Figure 5.18 plots the pullout test results, while Figure 5.19 plots the stress-strain diagram for the 

1.25 in. diameter threaded rods used in these experiments. These rods have UNC thread diameter 

of 1 ¼” - 7 and they are ASTM A193 Grade B7 (fy = 105 ksi, fu = 125 ksi) with net area of 0.97 

in.2

 

Figure 5.14: Pullout test results of the two deep T-girder specimens  
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Figure 5.15: Failure modes of deep T-girder specimens A (top) and B (bottom)  
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Figure 5.16: Deep T-girder specimen with anchor bars welded to the washer plate  

 

 
Figure 5.17: Rupture of the TR 
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Figure 5.18: Pullout test results of a TR with anchor bars welded to the washer plate 

 
Figure 5.19: Stress-strain diagram of 1.25 in. diameter Grade B7 TR 
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5.2 Deck Pullout Testing 
The purpose of this testing was to design the precast deck shear pockets and determine the type of 

grout/concrete required to achieve the required pullout capacity for the TR while considering the 

economy and ease of fabrication and construction. Testing was conducted on three stages:  

1) Pullout from foam formed pockets filled with concrete and grout (10-24-2012); 

2) Pullout from HSS and wood formed pockets filled with grout (11-29-2012); and 

3) Pullout from HSS and metal sheet formed pockets filled with concrete (02-14-2013).  

 

In the first stage of testing, two specimens that simulate precast deck panels were made. Each 

specimen was 3 ft x 3 ft x 8 in. as shown in Figure 5.20.  A 5.5 in. deep pocket was formed in the 

middle of each specimen using a foam blockout as shown in Figure 5.21. The pocket is 8 in. long 

and has a wedged width that is 8 in. at the top and 10 in. at the bottom. The pocket was reinforced 

using 1#4 on each side at the top and 1#4 on each side at the bottom in additional to conventional 

deck reinforcement. 

 

Figure 5.20: Plan and section views of deck specimens with foam-formed pockets 

3'

3'

3'

8"

10"

4
1
2
"

8"

8"

2
1
2
"

1"

10"

2 4#4

4#4

3
1
2
"

3
1
2
"

1'

10"



59 
 

 

 

 

Figure 5.21: Foam blockout used to form the pocket in deck specimens 
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The pocket of one specimen was filled using a highly flowable non-shrink cementitious grout 

(Master flow 928) as shown in Figure 5.22, while the pocket of the other specimen was filled using 

a self-consolidating concrete (SCC) after installing the 1.25 in. diameter TR with a washer and 

nut. Pullout testing was conducted as shown in Figure 5.23 when the grout strength reached 8.9 

ksi and the SCC strength reached 9.8 ksi. The two specimens had the same failure mode, which is 

pulling out a concrete cone as shown in Figure 5.24. Pullout test results shown in Figure 5.25 

indicate that the SCC-filled pocket (24,897 lb) had slightly better performance than the grout-filled 

pocket (23,458 lb). However, both pockets did not have adequate performance as their pullout 

capacity was way lower than the required capacity, which is 60 ksi x 0.969 (TR net cross section 

area) = 58,000 lb. 

 

 

Figure 5.22: Filling the pockets using commercial grouts 
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Figure 5.23: Pullout test setup 

 

 

Figure 5.24: Pullout failure mode 
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Figure 5.25: Pullout test results 

 

In the second stage of testing, two specimens that simulate precast deck panels were made. Each 

specimen was 6 ft x 3 ft x 8 in. and had two 5.5 in. deep pockets that centered in the specimen. 

The pockets in one specimen were formed using steel HSS 8” x 8” x 1/4” sections with welded 

end plates as shown in Figure 5.26. The pockets in the other specimen were formed using wooden 

boxes with shear keys as shown in Figure 5.27. Each HSS-formed pocket was anchored using 2#5 

bent bars welded to two sides of the HSS section to anchor it to the surrounding concrete. Each 

wood-formed pocket was anchored using 2#4 bars placed on each side of the shear key at the top. 

Additional #4 bars were used to represent the conventional deck reinforcement. Figure 5.28 shows 

one of each pocket type prior to grouting. The two HSS-formed pockets were filled using a highly 

flowable non-shrink cementitious grout (Masterflow 928), while the two wood-formed pockets 

with shear keys were filled using a flowable non-shrink non-cementitious grout (Masterflow Set 

45). Pullout test was conducted using the same setup used in the previous stage (Figure 5.23). 

Testing was conducted when the cube compressive strength of the Set 45 grout was 5.02 ksi, and 

of the 928 grout was 9.88 ksi. Figure 5.29 plots the results of the four pullout tests and Figure 5.30 

shows the failure mode of each type of pockets. These results indicated that confinement effects 

of the HSS significantly improved the pullout capacity of the pocket as they achieved an average 

pullout capacity of 40,600 lbs versus 26,700 lbs for the pockets with shear key. The failure mode 

of the HSS-formed pockets was the shearing of the 2#5 anchor bars, which indicated that the 

pullout capacity could have been even higher if the steel tube was better anchored to the concrete. 

One the other hand, adding a shear key to the pockets did not significantly improve the pullout 

capacity over those achieved in the previous stage while being more complicated in fabrication. It 

should be noted that the higher compressive strength of the 928 grout had also contributed to the 

higher pullout capacity of the HSS-formed pockets.  
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Figure 5.26: Steel HSS-formed pocket with welded end plates 
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Figure 5.27: Wood-formed pocket with shear key 
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Figure 5.28: The two pockets prior to grouting 
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Figure 5.29: Pullout test setup 
 

 

Figure 5.30: Pullout failure mode of HSS-formed pocket (left) and shear-keyed pocket (right) 
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In the third stage of testing, two specimens that simulate precast deck panels were made. Each 

specimen was 6 ft x 3 ft x 8 in. and had two 5.5 in. deep pockets that centered in the specimen. 

The pockets in one specimen were formed using steel HSS 8” x 8” x 1/4” sections with four 6 in. 

long #5 bars welded end plates as shown in Figure 5.31. The pockets in the other specimen were 

formed using metal sheets that are cut and stapled to form a wedged pocket as shown in Figure 

5.32. Each HSS-formed pocket was anchored using 4#5 straight bars welded to the four sides of 

the HSS section to anchor it to the surrounding concrete. One of metal sheet formed pocket was 

reinforced using 4#6 hat bars placed parallel to the four sides, while the other metal sheet formed 

pocket was reinforced using three ¾” studs welded to ½” thick plate placed on each side of the 

pocket as shown in Figure 5.33. Additional #4 bars were used to represent the conventional deck 

reinforcement. Figure 5.33 shows the four pockets in the form and the surrounding reinforcement 

prior to pouring the deck concrete. Pullout test was conducted using the same setup used in the 

first stage (Figure 5.23). Testing was conducted when the compressive strength of the SCC was 

7.1 ksi, while the compressive strength of the deck concrete reached 10.6 ksi. Figure 5.34 plots the 

results of the four pullout tests and Figure 5.35 shows the failure mode of each pockets. These 

results indicated that confinement effects of the HSS significantly improved the pullout capacity 

of the pocket as they achieved an average pullout capacity of 53,755 lbs versus 41,306 lbs for the 

metal sheet formed pockets. The failure mode of the HSS-formed pockets was the spalling of the 

deck concrete above the anchor bars, which indicated that the pullout capacity will be even higher 

when this is used in an actual deck (upside down). One the other hand, adding hat bars or shear 

studs to the pockets did slightly improve the pullout capacity over those achieved in the previous 

stages due to their confinement effects. However, the fabrication and reinforcement of this type of 

pockets was found to be costly and time-consuming and, thus, was not recommended for this 

application.  
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Figure 5.31: Plan and section views of HSS-formed pocket 
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Figure 5.32: Plan and section views of metal sheet-formed pocket 
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Figure 5.33: Forming and reinforcement of the two specimens 

 

Figure 5.34: Pullout test results of the four pockets 
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Figure 5.35: Pullout failure modes of the four pockets 
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6 FULL-SCALE EXPERIMENTAL INVESTIGATION 

6.1 Panel Lifting Testing  
A full-scale bridge deck panel was fabricated by Concrete Industries, Inc. (CI) on April 25, 2013 

to demonstrate panel lifting and evaluate the performance of the proposed lifting inserts attached 

to type A pockets. Figure 6.1 shows the dimensions and detailing of the fabricated panel. The 

proportions of the concrete mixture used in panel fabrication are shown in Table 6.1.The panel has 

an average 4-day release strength of 6,765 psi and an average 28-day strength of 9,293 psi as 

shown in Figure 6.2. It should be noted that the NUDECK panels of the Kearney East Bypass 

should be fabricated using the approved 47BD concrete mixture and should have a release strength 

and 28-day strength are 3,500 psi and 6,000 psi, respectively. 

 

 

Figure 6.1: Dimensions and detailing of the fabricated demonstration panel 
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Table 6.1: Mixture proportions used in the demonstration deck panel 

 

 
Figure 6.2: Compression strength of the concrete used in the deck demonstration panel 
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The full-scale demonstration panel has 8 lifting points (one lifting point at each pocket type A). 

The panel was analyzed as a continuous beam on four supports (every two lifting points represent 

one support) under its self-weight only. Based on the elastic analysis results, the maximum load 

per lifting insert was 8.5 kip. Design calculations for the lifting insert to carry a load of 8.5 kips 

and using a load factor of 4.0 is shown in Table 4.3. Also bending moment, shear force, and 

deflection diagrams of the panel during lifting is shown in Figure 4.4. Top and bottom fiber stresses 

at critical positive and negative moments sections were checked to ensure that the panel does not 

crack during handling and erection. The use of 0.6 in. diameter strands at the top and 0.5 in. 

diameter strands at the bottom resulted in no tension stresses at all in the panel during handling.  

 

Prior to fabricating the full-scale demonstration deck panel at the precast plant, a small scale panel 

that is 4 ft x 3 ft x 8 in. with one pocket type A was fabricated at the UNL structural laboratory in 

Omaha to evaluate the lifting capacity of the proposed detail. Figure 6.3 show the specimen 

drawing and a photo of the specimen before casting concrete. It should be noted that the pocket 

used in this specimen has 1.5 in. deep plates instead of 2 in. deep plates required by the calculations 

shown in Table 4.3. The specimen was tested on March, 21, 2013 by pulling out a 3/4” diameter 

coil rod using a hydraulic jack as shown in Figure 6.4.  Figure 6.5 shows the test results and the 

failure mode, which is the rupture of the lifting plates at a maximum load of 30 kips, which is 50% 

more than the calculated value for a 1.5 in. deep plates. Using 2 in. deep plates would result in 

significantly higher pullout capacity (approximately 50 kips) than the demand (34 kips). 

 

 

Figure 6.3: Pullout specimen dimensions and reinforcing details 
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Figure 6.4: Pullout test setup 

 

Figure 6.5: Test results and failure mode 
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The experimental investigation of the full-scale demonstrating panel was conducted by lifting the 

panel at the eight lifting inserts located in the shear pockets type A and visually inspecting the 

panel for cracking. This investigation was conducted at the precast yard of concrete Industries, 

Inc., Lincoln, NE on May 8, 2013 by precast staff under the supervision of NDOR bridge engineers 

and UNL researchers. Figure 6.6 shows the panel before lifting, spreader beam, and crane used in 

lifting the panel. Figure 6.7 shows tightening the coil nuts after placing the coil rod and swivel 

plate. For watching the video of the panel lifting, please use the following link:  

http://www.youtube.com/watch?v=Bx2p2_78fJs 

 

 

Figure 6.6: Demonstration panel before lifting and the spreader beam 

http://www.youtube.com/watch?v=Bx2p2_78fJs
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Figure 6.7: The coil rod with nuts and swivel plates used for panel lifting 

Figure 6.8 shows the soffit of the demonstration panel while being lifted for inspection. The 

thorough visual inspection has indicated that no cracking or any type of damage has been observed 

at the top or bottom surface of the panel during or after lifting, which confirms the adequacy of 

the lifting insert design and the excellent performance and stiffness of the deck panel during 

handling  

 

 

Figure 6.8: Photos of the soffit of the demonstration panel during lifting 
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6.2 Composite Girder Flexure Testing 
 

In order to evaluate the constructability and structural performance of the 2nd generation NUDECK 

system, a full-scale specimen that consists of 58 ft 10 in. long NU900 precast/prestressed concrete 

girder and 5 precast concrete deck panels (3 typical panels + 2 end panels) was fabricated, erected, 

and tested. The specimen was designed and detailed using the same procedures proposed for the 

Kearney East Bypass Bridge and presented in Chapter 4. Also, the construction sequence presented 

in Chapter 3 was followed to evaluate its practicality and efficiency.   

 

Figure 6.9 shows an elevation view and cross sections of the NU900 girder specimen. The girder 

was designed, detailed, and fabricated similar to any typical NU girder with the exception of the 

following features: 

1- The structural welded-wire reinforcement (WWR) used as shear reinforcement was not 

extended beyond the top flange of the girder but was terminated below the top flange 

and two cross wires were added to anchor the shear reinforcement. 

2- Fifteen shear connector assemblies were embedded in the girder at 4 ft spacing for 

typical panels and at 3 ft spacing for end panels.  

3- Two strand deviators were added at girder ends and were anchored to the girder flange 

using 4#5 bars in addition to the 2-0.5” diameter strands. 

 

 

 

Figure 6.9: Elevation view and cross sections of NU900 girder specimen 

The NU900 girder specimen was fabricated by Concrete Industries, Inc. Lincoln, NE on June, 20, 

2013. Photos of specimen fabrication are shown in Appendix B. Self-consolidating concrete (SCC) 

mixture similar to the one used in fabricating the deck demonstration panel is used (Table 6.1). 

Figure 6.10 plots the girder concrete compressive strength with time.  
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Figure 6.10: Girder concrete compressive strength vs. time. 

 

 

A total of five precast concrete deck panels were needed to build the full-scale specimen: three 

typical panels and two end panels. The three typical panels were obtained by saw cutting the full-

scale demonstration deck panel presented earlier as shown in Figure 6.11. The cutting resulted in 

three skewed panels that are 12 ft long and 7 ft 8.25 in. wide. Each panel has three pockets (two 

type A and one type B) at 4 ft spacing. Figure 6.12 show plan and sectional views of one of these 

panels as well as its reinforcement details. The two end panels were fabricated by Concrete 

Industries, Inc. using the same SCC mixture used for the demonstration panel (Table 6.1). Figure 

6.13 show plan and sectional views of a typical panel as well as is reinforcement details. It should 

be noted that end panel specimens were not prestressed. Photos of panel cutting and post-

tensioning anchor blocks and plates are shown in Appendix C. 
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Figure 6.11: Layout of panel cutting 

 

 
Figure 6.12: Dimensions and reinforcement of a typical panel specimen 
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 Figure 6.13: Dimensions and reinforcement of an end panel specimen 

 

The NU900 girder specimen and the five deck panel specimens were shipped to UNL Structural 

Laboratory in Omaha for erection. Below are the steps followed in specimen erection for testing. 

Photos of these steps are shown in Appendix D.    

1. Place the girder on roller supports located at the girder ends to create a simple span of 57 

ft 10 in. 

2. Lay down 12-0.6 in. diameter post-tensioning strands on the top flange and thread the ends 

through the deviators at girder ends. Strands were 4 ft longer than the girder. 

3. Install steel bent plates (or angles) used as deck support system by welding them to the 

metal tab inserts on the girder top flange. The height of the bent plates was adjusted to 

achieve at least 3 in. thick haunch and provide the required deck profile after considering 

deck deflection. 

4. Adjust the height of shear connectors to have an embedment in the deck of at least 5 in. 

5. Attach compressive material (backer rod) to the top of the bent plates to prevent leakage. 

6. Place precast concrete deck panels on the deck support system staring from the middle and 

moving outward.  

7. Form the sides and bottom of transverse joints between adjacent deck panels using backer 

rod and wood forms. 

8. Place the specified SCC mixture into transverse joints after cleaning and moistening them. 

9. Place anchor plates, post-tensioning chucks, and bearing/bulkhead plates at the two end 

panels. 
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10. Post-tension the strands using mono-strand jack starting from the middle strands and 

moving outward in a symmetrical manner to minimize the eccentricity.  

11. Pump the specified SCC from the pump sleeves welded to the bulkhead plate provided at 

girder ends until concrete overflow from the inspection vents. Pumping started by using a 

slurry to lubricate the haunch, then SCC was pumped from one end until the accumulated 

pressure caused uplifting of the specimen panels. Pumping stopped and proceeded from 

the other end until the haunch and pockets were completely filled and vents were plugged. 

Based on this experience, it’s highly recommended to pour the SCC from the top of the 

deck through 4 in. diameter holes located at 12 ft spacing. 

 

The cast-in-place SCC used for pouring the transverse joints and haunch has a specified minimum 

loading strength of 3.5 ksi, and a 28-day strength of 6 ksi. Figure 6.14 presents the compressive 

strength of the cast-in place SCC used in pouring the transverse joints and haunch. Mixture 

proportions are shown in Table 6.2 

 

Figure 6.14: Concrete compressive strength for cast-in-place transverse joints and haunch 

Table 6.2: Mixture proportions of SCC used for transverse joints and haunch 

Component Quantity US Units 

IPF Cement 866 lb/yd3 

Water 285 lb/yd3 

w/c 0.33 N/A 

4110 Sand 1615 lb/yd3 

3/8 in. Limestone 1077 lb/yd3 

TOTAL AGG. 2692 lb/yd3 

HRWR (Glenium 3030) 4 oz/cwt 

Retarder (Delvo) 4 oz/cwt 

VMA (Rheomac 362) 4 oz/cwt 

AEA (MB-AE 90) 0.2 oz/cwt 

WRA (RheoTEC Z-60) 4 oz/cwt 
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To measure the amount of pre-compression that the deck panels have after post-tensioning, 

detached mechanical (DEMEC) gauges were glued to the top surface of the deck at the location of 

the two intermediate transverse joints as shown in Figure 6.15. Six gauges were used at each joint 

to provide three readings. Readings were taken directly before post-tensioning and directly after 

post-tensioning to estimate the strain. Average strain was found to be 0.00024, which is slightly 

higher than the calculated strain of 0.00021 due to the applied post-tensioning force. This 

difference might be due to variations in the concrete strength and eccentricity of the applied force. 

 

 
Figure 6.15: DEMEC gauges used to measure the deck strain due to post-tensioning 

 

Figure 6.16 shows plan, elevation, and section views of the composite specimen with a typical and 

end panels. To evaluate the structural performance of the proposed shear connectors and their 

interface shear capacity, the full-scale specimen was tested in flexure using a concentrated load at 

the mid-span section as shown in Figure 6.17.  This testing setup generates a uniform interface 

shear force on all the shear connectors. Based on the interface shear demand for the Kearney East 

Bypass project, which is 3.24 kip/in, it was estimated that a test load of 280 kips is needed. Also, 

based on strain compatibility analysis, a fully composite section would have a nominal moment 

capacity of 5550 kip.ft, which corresponds to a test load of 338 kip after excluding self-weight 

effects. Therefore, a 400 kip loading jack was used in testing. Also, several linear variable 

differential transformers (LVDTs) were used to monitor the horizontal and vertical displacements 

of the precast deck relative to the cast-in-place haunch as shown in Figure 6.18.  It should be noted 

that the bent plates used as deck support system were removed only to provide a space to attach 

the LVDTs and visually evaluate the quality of the haunch concrete. Concrete and steel stain 

gauges were also used, as shown in Figure 6.18, to measure the concrete stresses in the deck, 

haunch, top and bottom girder flanges at 2 ft from the mid-span section and steel stresses at two 

shear connectors located approximately 7 ft from the end of the specimen. Also, string 

potentiometer was used to measure the specimen deflection at the mid-span section.  
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Figure 6.16: Composite specimen views and reinforcement details  
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Figure 6.17: Test setup  
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Figure 6.18: Specimen instrumentation 

 

Testing was conducted by loading the specimen at 50 kip increments. After each loading 

increment, the specimen was visually inspected for cracking and cracks were marked to evaluate 

their propagation. This process was repeated until the load reached 200 kip. Then, the specimen 
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was loaded continuously to failure, which occurred at a load of 380 kip with a maximum deflection 

of 8.4 in. The load was released and the specimen maintained a permanent deflection of 3.6 in. 

Figure 6.19 plots the load-deflection relationship of the specimen, which represents its behavior 

while testing. This straight line relationship at the beginning indicates that the specimen remained 

un-cracked up to a load of 200 kips, which is higher than the calculated cracking load of 161 kip 

for a fully composite section. Table 6.3 lists the demand, theoretical capacity and measured 

capacity for both cracking and ultimate loads. This table indicates that the tested specimen 

outperformed the predicted capacities for a fully composite section.  The failure mode of the 

specimen was the crushing of the deck concrete as shown in Figure 6.20. More photos of specimen 

cracking, crushing, and demolition are shown in Appendix D.   

 

 

Figure 6.19: Load-deflection relationship of the specimen  

 

Table 6.3 Comparing demand, design, and measured capacities 

Load Type Cracking Load (kip) 
Ultimate Load 

(kip) 

Demand  N/A 280 

Theoretical Capacity 161 338 

Measured Capacity 200 380 

Ratio of Measured-to-
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Figure 6.20: Failure mode of the specimen 

 

Figures 6.21 and 6.22 plot the measured horizontal and vertical displacements between the precast 

deck panels and cast-in-place haunch respectively. These plots indicates that there is no relative 

slippage between the components of the composite section even under ultimate loads as the 

measured displacements are significantly lower than 0.01 in., which is the limit for initial slippage 

as defined by several pushoff and pullout tests in the literature. Figure 6.23 plots the applied load 

versus the measured strain in two shear connectors. The maximum strain in the connectors is about 

100 μ in./in. which is very low strain. Although this value does not represent the actual strain in 

the connectors at the interface plane as the strain gauges are attached above the interface plane, in 

indicates that the contribution of concrete cohesion at the pocket locations and adhesion with the 

deck soffit are higher than predicted.  Figure 6.24 presents the applied load versus the strain in 

concrete across the critical section. This figure confirmed that precast deck panel, haunch and 

girder top flange were in compression, while the girder bottom flange is in tension. The 

compressive stresses are the highest in the deck and increases as the load increases up to a load of 

350 kips where compression failure of the deck began. The compressive stresses in the haunch and 

girder top flange decreases as the neutral axis moves up during loading. Also, the ensile stresses 

in the girder bottom flange are linear up to cracking, which occurred at 200 kips. Measured tensile 

stresses after cracking are not reliable.   
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Figure 6.21: Horizontal displacement between precast deck panels and haunch 

 

 

Figure 6.22: Vertical displacements between precast deck panels and haunch 
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Figure 6.23: Measured strains in shear connectors  

 

 

 
Figure 6.24: Measured strains in concrete 
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7 CONCLUSIONS 

 

This report presented the analysis, design, detailing, and experimental investigation required to 

implement the second generation of the precast concrete deck system (NUDECK) to the Kearney 

East Bypass project in Kearney, NE. The project consists of a two-span continuous bridge that is 

41 ft 8 in. wide and 332 ft long. Each span is 166 ft long and consists of five precast/prestressed 

concrete girders (NU1800) at 8 ft 6 in. spacing. The bridge deck consists of 28 full-width full-

depth (8 in. thick) precast concrete panels that have the following innovative features:  

 

 Panels are 12 ft long and weigh 50,000 lb each to minimize the number of panels to be 

fabricated, transported, and erected as well as the number of transverse joints to be cast in 

place. 

 Panels have individual covered shear pockets at 4 ft spacing to simplify panel production 

eliminate the need for deck overlay, which accelerates bridge construction. 

 Shear connectors are bundles of two 1.25 in. diameter threaded rods that are embedded in 

the girder at 48 in. spacing. The height of these connectors can be easily adjusted on site 

to accommodate camber variability.  

 Panels can be lifted using inserts at shear pockets locations to minimize panel 

penetrations and simplify panel forming. 

 Panels are prestressing in two directions (transverse pre-tensioning and longitudinal post-

tensioning) to control cracking and increase the service life of the deck. 

 Panel post-tensioning strands are located underneath the deck to eliminate threading 

strands through deck reinforcement or embedded ducts, which simplifies construction. 

 

Several experimental investigations were conducted to evaluate the practicality, economic 

feasibility and structural performance of the innovative features presented above. The results of 

these investigations indicated that the 2nd generation of NUDECK is an efficient deck system for 

implementation in the Kearney East Bypass project. 
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9 APPENDICES 

APPENDIX A: Analysis Results 
 

Service III shear and bending envelope for an interior beam 

 

Strength I shear and bending envelope for an interior beam 

 

Strength I vertical and horizontal shear for an interior beam 
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APPENDIX B: NDOR PROJECT PLANS 

 



100 
 

 



101 
 

 



102 
 

 



103 
 

 



104 
 

 



105 
 

 



106 
 

APPENDIX C: Specimen Fabrication 
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APPENDIX D: Specimen Testing 
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