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Abstract With the recent advent of Intelligent Transporta-

tion Systems (ITS), and their associated data collection and

archiving capabilities, there is now a rich data source for

transportation professionals to develop capacity values for

their own jurisdictions. Unfortunately, there is no consensus

on the best approach for estimating capacity from ITS data.

Themotivation of this paper is to compare and contrast four of

the most popular capacity estimation techniques in terms of

(1) data requirements, (2) modeling effort required, (3) esti-

mated parameter values, (4) theoretical background, and (5)

statistical differences across time and over geographically

dispersed locations. Specifically, the first method is the

maximum observed value, the second is a standard funda-

mental diagram curve fitting approach using the popular Van

Aerde model, the third method uses the breakdown identifi-

cation approach, and the fourth method is the survival prob-

ability based on product limit method. These four approaches

were tested on two test beds: one is located in San Diego,

California, U.S., and has data from112work days; the other is

located in Shanghai, China, and consists of 81 work days. It

was found that, irrespective of the estimation methodology

and the definition of capacity, the estimated capacity can vary

considerably over time. The second finding was that, as ex-

pected, the different approaches yielded different capacity

results. These estimated capacities varied by asmuch as 26 %

at the SanDiego test site and by 34 % at the Shanghai test site.

It was also found that each of the methodologies has

advantages and disadvantages, and the bestmethodwill be the

function of the available data, the application, and the goals of

the modeler. Consequently, it is critical for users of automatic

capacity estimation techniques, which utilize ITS data, to

understand the underlying assumptions of eachof the different

approaches.

Keywords Capacity estimation method � Van Aerde

model � Breakdown identification � PLM

1 Introduction

The Highway Capacity Manual (HCM) has been updated

regularly (1965, 1985, 2000, and 2010) since it was first pub-

lished in 1950 and its underlying theory has remained consis-

tent [1–5]. While the HCM provides a uniform methodology

for estimating the capacity for any highway in the U.S., many

jurisdictions, both within the U.S. and outside the U.S., would

prefer to use capacity values reflective of their own local

conditions. With the recent advent of Intelligent Transporta-

tion Systems (ITS), and their associated data collection and

archiving capabilities, there is now a rich data source for

transportation professionals to develop capacity values for

their own jurisdictions.Unfortunately, there is no consensus on

the best approach for estimating capacity from ITS data.

While this study is concerned with estimating capacity,

the problem is a subset of a much broader issue—how to

identify the fundamental speed–flow–density relationship

for a given facility. If the form of the underlying speed–

flow–density fundamental diagram for a given facility is

known, the capacity may be readily obtained given the

appropriate empirical data. Needless to say the assumptions

underlying the speed–flow–density function will affect the

resulting capacity estimate.
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This paper first estimates capacity concept using the (1)

maximum method, (2) Van Aerde model, (3) breakdown

identification, and (4) product limit method from ITS data

collected in San Diego, California, U.S. and Shanghai,

China. The values are then compared across time to ex-

amine the variability of capacity estimates as a function of

location and methodology. In addition, the paper compares

these capacity values with those obtained from the HCM.

The paper concludes with a description of the advantages

and disadvantages of each approach.

2 Literature review

2.1 Related work

The HCM 2010 [4] defines the capacity of a facility as ‘‘the

maximum sustainable hourly flow rate at which persons or

vehicles reasonably can be expected to traverse a point or a

uniform section of a lane or roadway during a given time

period under prevailing roadway, environmental, traffic,

and control conditions’’. The HCM capacity is a function of

the free-flow speed. For example, if free-flow speed equals

110 km/h, the capacity is 2,400 pcphpl; if free-flow speed

equals 80 km/h, the capacity is 2,200 pcphpl. This manual

has been adopted in many jurisdictions around the world,

mainly because it provides a single, deterministic value

that represents average conditions. The HCM is based on

speed–flow–density fundamental diagrams that were de-

veloped using empirical flow rate data collected across the

U.S. for similar facilities. The flow rate at the apex of the

speed–flow curve is regarded as the maximum throughput

of the facility and thus is treated as the capacity [6].

While the use of the HCM is straightforward, identifying

capacity from empirical observations is not. Consider the

data shown in Fig. 1 which is from a detector site on the

westbound I405 in San Diego California. Note that this site

will be described in detail later in this paper. Intuitively, a

number of curve fitting algorithms could be used for esti-

mating the speed–flow relationship in Fig. 1. The purple

curve was developed using a standard generic curve fitting

model, and it may be seen that the capacity for this ex-

ample is 2,110 veh/h/ln. However, it may be seen that there

are observed flows that are greater than this estimated ca-

pacity. A number of authors [7–9] have shown that even

under ‘‘constant’’ conditions, both the maximum traffic

flow and the capacity can vary over time and space. Other

authors [10] have argued that the actual maximum ob-

served flow rate of the roadway is the best measure of

capacity because it: (1) is closer to the definition of ca-

pacity listed in the HCM and (2) does not assume a prior

speed–flow–density relationship. Referring to the example

in Fig. 1, the highest observed flow rate is 2,200 veh/h/ln,

and this would represent the capacity according to the

maximum capacity definition. The focus on this paper is to

examine four popular methods of estimating capacity for

ITS data similar to that shown in Fig. 1.

Minderhoud et al. [10] compared several capacity esti-

mation methods including the headway method, bimodal

distribution method, selected maxima method, the funda-

mental diagram method, and the on-line procedure estima-

tion method. The comparison was done based on theoretical

characteristics and no field data was used. The authors

pointed out that there has been no comprehensive study of

the validity and accuracy of these methods and, at the time

the paper was written, this was an open research question.

Similar work was conducted by Geistefeldt and Brilon [11]

who compared stochastic methods for estimating capacity

using empirical data. They found that the estimates varied

over time, and that this should be accounted for in the es-

timation approach. In recent years a number of authors have

developed new methods for estimating highway capacity

using stochastic approaches [12, 13]. In general, these new

approaches are based on existing popular methods such as

model fitting, stochastic distribution, and breakdown-relat-

ed methods that are examined in this paper. The accuracy of

these new methods has not been compared empirically.

This paper compares both deterministic and stochastic

methods using data from the same test beds. Specifically,

four of the most popular methods are first introduced:

Maximum method and Van Aerde method (deterministic)

and breakdown method and PLM method (stochastic).

Capacity values over time were estimated for each test site.

The distribution of estimated capacity values were then

compared statistically. Lastly, the four capacity estimation

techniques were compared in terms of (1) data require-

ments, (2) modeling effort required, (3) estimated pa-

rameter values, (4) theoretical background, and (5)

statistical differences across time and over geographically

dispersed locations.
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Fig. 1 Flow–speed diagram of westbound I405, San Diego, April

3rd, 2013 (5-min aggregation period)
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2.2 Capacity estimation approaches for a single day

This paper will examine four of the most popular capacity

estimation techniques for ITS data. A number of authors

feel that capacity can change as a function of time and

space, all else being equal, and therefore a particular focus

of this paper will be on the techniques that examine the

stochastic nature of capacity. Four of the most widely used

methods (e.g., maximum method, fundamental diagram

curve fitting using the Van Aerde model, breakdown

identification method, and product limit method) were

chosen for capacity estimation. A brief overview of the

calibration and estimation procedures of the first three ca-

pacity methods are provided in this section.

2.2.1 Maximum capacity methodology

Arguably the easiest way to estimate capacity at a given

location is to obtain the maximum flow rate from observed

data measured over a given time period (e.g., a day), as

shown in Eq. (1).

Ci ¼ max fi;d 8 d ¼ 1; 2; . . .;N; ð1Þ

where, Ci denotes the maximum flow rate (e.g., capacity)

over a given time period d for location i; d denotes the time

interval (e.g., 5 min); fi,d denotes the observed flow rate

during time interval d at location i; and N denotes the

number of time periods considered, e.g., N = 288 for

d = 5 min.

When applying this method, the time interval d will, by

definition, affect the resulting capacity value Ci. All else

being equal as the time interval d increases, the capacity

value Ci will decrease. For this reason, it is critical to define

the time interval when presenting capacity values and to

never compare capacity values that were developed from

different time durations. Typical time durations range from

1–60 min. The HCM uses a 15-min time interval when

defining capacity.

2.2.2 Van Aerde capacity methodology

The first and most famous deterministic speed–flow–den-

sity model was developed by Greenshields [14] and is

based on the assumption of a linear speed–density rela-

tionship. Van Aerde [15] proposed a four-parameter model

that provides more degrees of freedom to capture the range

of behavior across different regimes and facility types.

Note that this approach may still be considered a single

regime traffic flow model. The Van Aerde model, which

requires four input parameters, was designed specifically to

be calibrated using empirical ITS data. While the original

applications used field inductance loop data, any detector

data, such as that from radar and video detectors, can be

used. The functional form of Van Aerde model is shown in

Eq. (2).

Ci ¼
ui

c1 þ c2
uf ;i�ui

þ c3ui
; ð2Þ

where, Ci denotes the estimated capacity for location i; ui
denotes the space mean speed (km/h) for location i; uf,i
denotes the free flow speed (km/h) for location i; and, c1,

c2, and c3 denote the headway constant coefficients.

The model parameters are calculated using Eqs. (3–6).

m ¼ 2uc � uf

ðuf � ucÞ2
; ð3Þ

c1 ¼ mc2; ð4Þ

c2 ¼
1

kj mþ 1
uf

� �2
; ð5Þ

c3 ¼
�c1 þ uc

qc
� c2

uf�uc

uc
; ð6Þ

where, uc denotes the speed at capacity (km/h); qc denotes

the flow at capacity (veh/h); and kj denotes the jam density

(veh/km).

Once the model is calibrated, the capacity is identified as

the maximum flow defined by the calibrated speed–flow

curve. Because of its simplicity, this approach is relatively

easy to program.

2.2.3 Breakdown capacity methodology

While widely used around the world, the general approaches

described above (e.g., HCM, Van Aerde, etc.) have been cri-

ticized because they do not consider the stochastic nature of

congestion and thus may be unsatisfactory for traffic op-

erations applications [16, 17]. It has been argued that the point

of traffic breakdownmight bemore appropriate for estimating

capacity. Elefteriadou et al. [7, 18] showed that the traffic

breakdown does not necessarily occur at the same volume

level over different days and therefore that capacity should not

be treated as a deterministic value. It should be noted that

while the newly updated HCM 2010 acknowledges that ca-

pacity is stochastic, it does not identify a methodology to

estimate the stochastic component of capacity.

In general, a breakdown is defined when the speed de-

crease between two consecutive time intervals exceeds a

pre-specified threshold, and this lower speed is sustained for

a predefined length of time [18]. A review of the literature

indicates that the breakdown speed threshold and the con-

gested time duration are location dependent. For example,

Lorenz and Elefteriadou [19] defined breakdown as occur-

ring when the average speed of all lanes drops below 90 km/

h for a period of at least 5 min. Brilon et al. [17] used 70 km/

h for their studies in Germany. Zhang et al. [15] studied

An analysis of four methodologies for estimating highway capacity from ITS data 109
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several freeway sites in the US and concluded that the ‘‘low

speed’’ condition has to be sustained for at least 15 min to be

recognized as a ‘‘true’’ breakdown instance.

Based on Elefteriadou [18], the underlying logic for

identifying roadway capacity is shown by the flow chart in

Fig. 2. The breakdown time duration in this case is 3

consecutive time intervals or 15 min.

As discussed above, the speed threshold and the break-

down duration time are location dependent, and conse-

quently, it is critical that the user picks appropriate values.

Intuitively, if the thresholds are too ‘‘liberal,’’ many

‘‘breakdowns’’will be identified, and if the thresholds are too

‘‘conservative’’, no breakdown will be identified. Unfortu-

nately, there is no theoretical approach for identifying these

values and engineering judgment is often used. A downside

to this approach is that two researchers using the same data

may choose different threshold values, which could result in

different capacity estimates.

Banks et al. [19] also proposed a multi-regime traffic

flow model based on the concept of breakdown. The au-

thors proposed a two-capacity model consisting of pre-

queue flow (PQF) and queue discharge flow (QDF). They

observed that flow immediately downstream of the bottle-

necks decreased by a small amount at the breakdown point

(i.e., PQF[QDF), which is termed as ‘‘capacity drop’’

[20, 21]. Similarly, Cassidy and Hall et al. [22, 23] claimed

that there was an approximately 10 % reduction in max-

imum flow rates after the onset of congestion. Such a flow

breakdown appeared to be triggered by speed instability.

In summary, the above three capacity estimation methods

(Sects. 2.2.1–2.2.3) are widely used to estimate capacity at a

given location for a single day. In general, the first two

methodologies (e.g., maximum flow and curve fitting) are

used in planning applications, and the breakdown method is

used in traffic operation applications. What is important to

note is that the three methods can lead to different capacity

values. As an example, consider Fig. 3, which shows a speed–

flow diagram for westbound I405 in San Diego, California,

where the green dots represent the observed flow rates over

5 min time durations for 288 periods (e.g., one complete day).

The largest observed flow is 2,289 veh/h/ln and is indicated as

Method 1 on the graph. The purple line shows the line of best

fit using the Van Aerde approach. This results in a capacity

estimate of 1,774 veh/h/ln and is indicated as Van Aerde

Capacity in Fig. 3. Using the definition of breakdown by

Elefteriadou [18], the breakdown flow rate of 2,223 veh/h/ln

can be identified. This is indicated as Breakdown Capacity in

Fig. 3. This breakdown capacity point delimits the congested

and uncongested parts of the observed traffic flows.

In addition, each of these approaches can be repeated

across days. This would then yield a histogram of estimated

capacity values and the user could use some measure of

central tendency (e.g., mean or median) to identify the

capacity. The following sections describe one approach for

identifying capacity based on the assumption that capacity

is intrinsically stochastic.

2.3 Capacity estimation method for multiple days:

product limit method

Based on daily observations of traffic data collected over

several months, Brilon et al. [17] argued that capacity is

Weibull-distributed with a nearly constant shape pa-

rameter. Based on this observation, the authors developed

the product limit method (PLM) for estimating the capacity

distribution function from empirical data.

The PLM is related to (1) the breakdown flow rate, and

(2) those flow rates that do not result in a breakdown oc-

currence. There might be certain intervals that exceed the

threshold, and these are regarded as censored data (i.e., data

in intervals that do not provide breakdown information). In a

similar manner, traffic breakdown is regarded as a failure

Fig. 2 Flow chart of breakdown capacity estimation

110 Z. Li, R. Laurence

123 J. Mod. Transport. (2015) 23(2):107–118



event and it is analogous for estimating the capacity as the

lifetime in a lifetime data analysis [24]. The statistics of this

lifetime analysis can be then used to estimate the parameters

of the distribution function, which includes the censored

data. The survival function, described by the non-parametric

PLM [25], is shown in Eq. (7).

FcðqÞ ¼ 1�
Y

i:q1 � q

ki � di

ki
; ð7Þ

where Fc(q) denotes the distribution function of capacity c;

q denotes the traffic flow rate; qi denotes the traffic flow

rate in interval i; ki denotes the number of intervals with a

traffic volume of q C qi; and i denotes the 5 min intervals

belonging to the lifetime T (i.e., a day).

The following five steps are used to define the capacity:

(1) Identify breakdowns using flow chart in Fig. 2. Then,

delete all the data in the interval that a breakdown

happens. Order the 5-min interval flow and speed

censored data over time.

(2) Group the data in 15 veh/h incremental of flow levels.

Count the total number of intervals yi and the

breakdown intervals di that fall into each group i;

(3) Calculate the survival probability pci ¼ 1� di
yi

for

each 15 veh/h increment of flow levels.

(4) Calculate the overall bottleneck capacity by con-

tinuously production: SðqjÞ ¼
Q j

i¼1 pci.

(5) Plot the survival probability curve. Choose a survival

probability (e.g., 95 %), and estimate the capacity

from the curve.

3 Sites and data

3.1 The study sites

The two study sites used in this paper were chosen because

they contained known ‘‘bottlenecks’’ where breakdown

phenomena would more readily be observed [17]. The first

is the westbound section of Interstate 405 (I405) in San

Diego, California, as shown in Fig. 4a. It may be seen that

there are four lanes and an off-ramp upstream at the detector

location. The posted speed limit is 70 mi/h (110 km/h). The

area is primarily urban and is often congested. Ap-

proximately 6 months of dual inductive loop data, lasting

from March 3, 2013 through Sep. 27, 2013, were collected

from the Caltrans Performance Measurement System

(PeMS) website [26] at loop detector ID = 1217573. The

30-second flow and speed by-lane data were aggregated into

5-min intervals over the entire 24 h period (e.g., 288 5 min

periods per day). A total of 112 weekdays were observed.

The second site is an eastbound section of the Inner-

Ring Expressway located at the Wuning crossroad in

Shanghai, China, as shown in Fig. 4b. There are two main

lanes, and the posted speed limit is 80 km/h. The loop

detector (ID = NHWN_40) is located approximately

102 m downstream from the Merge End, shown in Fig. 4b.

The area is primarily urban, and the site experiences sig-

nificant congestion. Approximately 5 months of dual in-

ductive loop data, from June 1, 2010 through October 29,

2010, were collected. The 20-second flow and speed by-

lane data were aggregated into 5-min intervals over the

entire 24 h period (i.e., 288 5-min periods per day). A total

of 81 weekdays were observed.

Note the two test beds were chosen because both sys-

tems have been studied extensively and have been

calibrated on a regular basis [27–30]. In addition, prior to

the analysis, the data were analyzed to identify detector

malfunctions (e.g., missing data or abnormal data) or ex-

traordinary events (e.g., congestion time and occupancy

were order-of-magnitude larger than average). No outlier

events were identified.

3.2 Preliminary data analysis

Figure 5a shows the speed and flow, aggregated to a 5 min

average, as a function of time of day for the San Diego test

site on April 17, 2013. It may be seen that the traffic flows

fairly smoothly as evidenced by the relatively high speed

experienced for the majority of the day. The exception is

during the period from 14:45 to 19:05 where there is a

considerable decrease in both flow rate and speed, which is

an indication of congested conditions. After this period, the

speed recovers to pre-congested conditions. At ap-

proximately 14:45, there is a 22 % speed drop, and this is

the breakdown time identified using the logic in Fig. 2. It

should be noted that this pattern is typical for the weekdays

in the test dataset.

Figure 5b shows the flow and speed as a function of

time at the Shanghai site on July 1, 2010. This day may be

considered typical of weekdays for the data set. It may be
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seen that congestion lasts for approximately 16 h from 7:00

AM until approximately 11:00 PM. It can be seen in

Fig. 5b that the speed gradually decreases over time

starting at approximately 7:00 AM. This can be contrasted

with Fig. 5a where the speed decrease is much more

abrupt. However, the breakdown identification approach

shown in Fig. 2 can be used for both situations.

As discussed in Sect. 2.2.3, in order to find the break-

down point, both a threshold speed and breakdown dura-

tion need to be identified. In this study, the threshold values

were based on a study of the 5-min average speed–flow

data at the study sites. It was decided that 95 and 50 km/h

were appropriate threshold values for the San Diego site

[28] and Shanghai site [29], respectively. This paper

identified a breakdown when (1) the speed decreased below

the corresponding threshold, and (2) the lower speed was

sustained for three consecutive 5-min intervals.

4 Capacity estimation analyses

This section first applies the maximum method, Van Aerde

method, and breakdown method to estimate capacity for

each day in both data sets. The resulting six capacity dis-

tributions (e.g., for both sites and all three methods) are

plotted. Subsequently, the capacity over all the study days

is estimated using the PLM approach for both test sites and

compared with the measures of central tendency for the

capacity distributions obtained by the three methods.

4.1 Capacity estimation and comparison

A preliminary analysis of the San Diego indicated the

speed–flow relationships could be federated into two dis-

tinct categories. Representative days for these two cate-

gories are April 17, 2013 and June 4, 2013, and the speed–

flow diagrams for these days are shown Fig. 6a and b, re-

spectively. Note that in these figures the data is aggregated at

5 min and (1) the ‘‘Max Capacity’’ is the largest five minute

Fig. 4 The layout of the study sites. a Fairview Rd off-ramp, I405, San Diego site. b Wuning Rd on-ramp, inner-ring expressway, Shanghai site

(b)

(a)

-60
-50
-40
-30
-20
-10
0
10
20
30
40
50
60
70
80
90
100
110
120
130
140

0

500

1000

1500

2000

2500

3000

3500

4000

4500

0:00 2:24 4:48 7:12 9:36 12:00 14:24 16:48 19:12 21:36 0:00

Sp
ee

d 
(k

m
/h

) 

Fl
ow

 ra
te

 (v
eh

/h
/ln

) 

Time 

Flow

Speed

Congestion 

24:00 

Breakdown 

-60
-50
-40
-30
-20
-10
0
10
20
30
40
50
60
70
80
90
100
110
120
130
140

0

500

1000

1500

2000

2500

3000

3500

4000

4500

0:00 2:24 4:48 7:12 9:36 12:00 14:24 16:48 19:12 21:36

Sp
ee

d 
(k

m
/h

) 

Fl
ow

 ra
te

 (v
eh

/h
/ln

) 

Time 

Flow

Speed

24:00 

Congestion 

Breakdown 

Fig. 5 Typical traffic flow and speed profiles at the two sites. a San

Diego site, April 17th, 2013. b Shanghai site, July, 1st, 2010

112 Z. Li, R. Laurence

123 J. Mod. Transport. (2015) 23(2):107–118



flow rate observed for that particular day, (2) the ‘‘Van

Aerde Capacity’’ is fitted by Van Aerde model from the

empirical speed-flow relationship, and (3) the ‘‘Breakdown

Capacity’’ is identified by the breakdown occurrence that is

immediately prior to the start of speed drop, as shown in

Fig. 2. In Fig. 6a, the capacities estimated using the max-

imum capacity, Van Aerde capacity, and Breakdown ca-

pacity methods are 2,109, 2,111 and 2,019 veh/h/ln,

respectively. It should be noted that the differences among

the three values are within 5 % of each value.

In contrast, consider the empirical data plotted in Fig. 6b

which shows capacities estimated on June 4, 2013 for the San

Diego site. In this case, there is a discontinuity between the

uncongested and congested traffic regimes.This is alsoknown

as a capacity drop as discussed in Sect. 2.2.3. From the data in

Fig. 6b, the capacities estimatedusing themaximumcapacity,

Van Aerde capacity, and Breakdown capacity methods are

2,360, 1,756 and 2,240 veh/h/ln, respectively. It should be

noted that the differences among these three values are within

26 % of each estimated capacity.

Note that the speed–flow pattern shown in Fig. 6a is

typical for the San Diego site in that for 82 % of the days

the differences of the three capacities are within 5 % of

each other. Specifically, the capacity drop phenomena,

identified in Fig. 6b, were observed only on nine out of the

112 days. During these 9 days the smallest and largest

differences in capacity among the three techniques were

9.7 % and 26 %, respectively.

In addition, for all 112 days at the San Diego test site the

average difference between the breakdown point and the

maximum capacity is 5 %. Consequently, on a typical day

there is little change in average speed as the flow rate

approaches its maximum value. Based on this fact, it could

be argued that for this location breakdown capacity is a

good approximation for maximum capacity. However, this

is not always the case as will be demonstrated in the

Shanghai test site analyses.

Figure 7 illustrates the relationship between speed and

flow rate at the Shanghai test site on July 3, 2010. It may be

seen that the speed gradually decreases as flow rate increases,

which is in marked contrast to what was observed at the San

Diego site. The pattern shown in Fig. 7 was typical for all

81 days studied. The breakdown point, identified using the

logic in Fig. 2, occurs at a considerably lower flow rate than

the maximum flow rate. This is referred to ‘‘early onset

breakdown’’ by Sun et al. [29, 30]. The estimated capacities

for maximum method, Van Aerde method, and breakdown

method are 2,086, 2,076, and 1,866 veh/h/ln, respectively.

The differences of the three values are within 11 % of each

value, which is much higher than observed at the San Diego

site (Fig. 6a). In addition, for all 81 days, the smallest and

largest differences in capacity among the three techniques

were 14 % and 34 %, respectively.

4.2 Overall capacity at each site

Histograms and boxplots of the estimated capacities at the

San Diego test site for the Maximum Capacity, the Van

Aerde Capacity, and the Breakdown Capacity methods are

given in Fig. 8a, b, and c, respectively. It may be seen in

Fig. 8a that the capacities for the maximum capacity

method range from 1,760 to 2,504 veh/h/ln with a mean of

2,188 veh/h/ln. There is considerable spread in the data as

evidenced by the standard deviation of 180 veh/h/ln. It can

be seen in the boxplots that the distribution is skewed left
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with a kurtosis value of -1.1, which indicates that more

than half of the observed daily maximum capacities are

higher than the mean value.

The histogram and boxplot of the capacities from the

Van Aerde method are shown in Fig. 8b. It may be seen

that the daily capacity has a range of 1,732–2,580 veh/h/ln,

a mean of 2,082 veh/h/ln, and a standard deviation of 213

veh/h/ln. The Van Aerde capacity also has a bi-modal

distribution and is also skewed left with a kurtosis value of

-1.2. It was hypothesized that this occurred because of the

9 days in which a capacity drop was observed.

The histogram and boxplot of the daily capacities from

the breakdown method are shown in Fig. 8c. In contrast to

the first two graphs, this distribution is unimodal and

approximately uniform, though the Kolmogorov–Smirnov

test did not show significant under uniform distribution (see

Table 1). The mean value is 2,126 veh/h/ln, with a median

of 2,096 veh/h/ln, and both of these metrics are good

indicators of the central tendency.

Histograms and boxplots of the estimated capacities at

the Shanghai test site for the maximum capacity, the Van

Aerde capacity, and the breakdown capacity methods are

given in Fig. 9a, b, and c, respectively. It may be seen in

Fig. 9a that the capacities for the maximum capacity method

range from 1,923 to 2,178 veh/h/ln with a mean of 2,049

veh/h/ln. There is considerably less spread in the estimated

capacities, as compared to the San Diego test site, as evi-

denced by the standard deviation of 56 veh/h/ln. The Van

Aerde capacity has a similar distribution as seen in Fig. 9b.

The daily capacity values estimated using this method range

from 1,986 to 2,178 veh/h/ln with a similar mean of 2,066

veh/h/ln and a standard deviation of 47 veh/h/ln.

It may be seen in Fig. 9c that the capacities for the

Breakdown Capacity method range from 1,434 to 2,128

veh/h/ln. The mean of this distribution was 1,789 veh/h/ln,

which is 14 % and 13 % lower than that of the maximum

method and Van Aerde method, respectively. In addition,

there is considerably more spread in the estimated ca-

pacities, as compared to the maximum capacity and Van

Aerde capacity method, as evidenced by the standard de-

viation of 146 veh/h/ln. It may be seen that the distribution

is unimodal and is approximately Gaussian shaped.

The stochastic nature of the estimated capacities for

each methodology is captured in Figs. 8 and 9. While a

visual inspection can indicate the general form (e.g., uni-

form, Gaussian, etc.) for each method, it is unclear which

distribution, if any, best fits the estimated values. Four test

distributions, the Normal/Gaussian, Lognomal, Weibull,

and Uniform, were tested using a one-sample Kolmogorov-

Simirnov test. The testing was conducted at the 5 % level

of significance, and the results are shown in Table 1.

The last column in Table 1 shows the ‘‘best’’ distribu-

tion based on the p value. It can be seen at the San Diego

site none of the generic distributions was found to provide

a statistically significant fit for the maximum and Van

Aerde methods. This is not unexpected given the bi-modal

nature of these latter distributions and the fact that the

tested distributions are unimodal.

It can be seen from Figs. 8 and 9, and Table 1 that the

capacities vary widely depending on test site and capacity

estimation technique. For example, the capacity estimated

by maximum method at San Diego is similar to a bimodal

distribution. In contrast, the capacities estimated at

Shanghai test site (Fig. 9) were normally distributed with a

comparatively tight range.

Based on the PLM described in Sect. 2.3, the capacity

value in this paper is taken to be the 5th percentile value of

Fig. 8 Histogram and box plots of estimated capacity by maximum

(a), Van Aerde (b), and breakdown (c) Methods at San Diego Test

Site
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the cumulative distribution function breakdown [12]. This

means there is 95 % probability that a bottleneck will have

dispersed when the flow rate is greater than the PLM ca-

pacity as shown in Fig. 10. The PLM-based capacity is

identified as 2,217 and 1,733 veh/h/ln at San Diego site and

Shanghai site, respectively, as shown in Fig. 10.

The PLM capacity is compared with the capacity esti-

mated from the maximum method, Van Aerde method, and

breakdown method as shown in Table 2. At the San Diego

site, the 25th and 75th percentile of capacity range esti-

mated by all the three methods includes the PLM capacity.

In contrast, at the Shanghai site, only the breakdown

method is within the 25th and 75th of capacity range, while

the PLM capacity does not fit in the ranges for either the

maximum flow method or Van Aerde method.

The Wilcoxon signed-rank test (nonparametric test) is

used to test the hypothesis that there are no significant

differences between the PLM capacity and capacities es-

timated by the three methods. The tests were conducted

with a-value equal to 0.05. In other words, a p value larger

than 0.05 will mean the alternative hypothesis is rejected.

As seen in Table 2, it can conclude that at the San Diego

site, the capacity estimated by the PLM method is statis-

tically the same as the capacity values obtained by the

maximum method and the Van Aerde method. In contrast,

it is concluded that the capacity estimated by the PLM

method is statistically different than the capacity estimated

by the breakdown method.

At the Shanghai site, the PLM capacity is statistically

the same as the breakdown capacity as evidenced by the

fact that the p value of 0.09 is greater than 0.05. The 25th–

75th percentile ranges for the maximum and Van Aerde

methods, however, do not include the PLM capacity. This

would be expected because of the nature of the PLM ap-

proach which first identifies a breakdown and then uses

only censored data to estimate capacity.

As a point of reference, HCM capacities for San Diego

and Shanghai, in terms of units, are also shown in Table 2.

Table 1 One-sample Kolmogorov–Smirnov Test (at 5 % level of significance)

Normal Lognormal Weibull Uniform Distribution type

San Diego

Maximum method 0.014 \0.001 0.018 0.034 None

Van Aerde method 0.003 \0.001 \0.001 \0.001 None

Breakdown method 0.016 0.010 0.076 0.029 Weibull

Shanghai

Maximum method 0.200 0.150 \0.001 0.005 Normal/lognormal

Van Aerde method 0.007 \0.001 0.155 0.006 Weibull

Breakdown method 0.028 0.059 0.036 \0.001 Lognormal

H0 the data is from the to-be-tested distribution. Small p values reject H0

Italics values signifies at 5% sigificant level

Fig. 9 Histogram and box plots of estimated capacity at Shanghai by

maximum, Van Aerde and breakdown method, respectively
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These were based on their free-flow speeds, and it should

be noted that heavy vehicle factor was not accounted.

Comparing the capacities obtained by the PLM method-

ology and the HCM methodology, it may be seen that the

values are much closer at the San Diego site. In contrast,

the capacity values estimated by the PLM and HCM ap-

proaches are considerably different at the Shanghai site.

However, as seen in Table 2, in comparison to the HCM

capacity, the maximum method and Van Aerde model

provide capacity estimates that are 7 % closer.

5 Concluding remarks

A wide variety of authors have developed methodologies

for estimating capacity from empirical data sets that are

collected automatically as part of an ITS. These include (1)

simply observing the maximum flow rate, (2) using basic

curve fitting techniques based on simple assumptions re-

lated to the fundamental diagram, (3) calculating capacity

estimates based on breakdown phenomena, and (4) ap-

proaches for estimating average daily capacity based on the

stochastic nature of capacity and multiple days of data.

Note that a comprehensive literature review is beyond the

scope of this paper. Instead, the goal was to compare and

contrast four of the most popular capacity estimation

techniques in terms of (1) data requirements, (2) modeling

effort required, (3) estimated parameter values, (4) theo-

retical background, and (5) statistical differences across

time and over geographically dispersed locations.

In summary, there were three major conclusions arising

from these analyses. The first is that irrespective of the

estimation methodology and the definition of capacity, the

estimated capacity varies over time. For this case study,

three methods (e.g., maximum method, Van Aerde model,

and breakdown method) were used to estimate the capacity

at the San Diego test site and the Shanghai test site over

multiple days. It was found that at the San Diego site, the

differences of the estimated capacity were within 5 %

among 103 of the 112 days (e.g., 82 % of the time). For

nine of the 112 days a ‘‘capacity drop’’ was identified, and

on these days, the smallest and largest differences in esti-

mated capacity were 9.7 % and 26 %, respectively. In

contrast, at the Shanghai site the capacity estimates for the

three methodologies were between 14 % and 34 % for all

81 days. There was not capacity drop observed at the

Shanghai site. While the two test sites were located on

major thoroughfares in two large metropolitan areas, the

estimated daily capacity values were markedly different. It

is hypothesized that this occurred because of differences in:

(1) vehicle types/capabilities, (2) vehicle distributions, and

(3) driving behavior.

It was also found that the estimated capacity at the

Shanghai site was markedly different than the equivalent
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Fig. 10 Capacity estimate by PLM at each site

Table 2 Estimated capacity distribution statistics (unit: veh/h/ln)

Site Method Mean Median [25th, 75th] percentile PLM capacity Nonparametric

test (a = 0.05)

HCM capacity

San Diego Maximum 2,188 2,264 [1,976, 2,360] 2,217 0.7925 2,400

Van Aerde 2,188 2,260 [1,968, 2,364] 0.1641

Breakdown 2,078 2,092 [1,892, 2,231] 0.0162

Shanghai Maximum 2,049 2,035 [2,006, 2,097] 1,733 \0.0001 2,200

Van Aerde 2,066 2,058 [2,028, 2,100] \0.0001

Breakdown 1,789 1,782 [1,686, 1,860] 0.0910

Unit in HCM: passenger car per hour per lane

Italic values signifies at 5% sigificant level
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HCM values. Using the HCM methodology the estimated

capacity would be 2,400 and 2,200 pcphpl for free flow

speeds of 110 and 80 km/h, respectively. In contrast, the

estimated capacity at the Shanghai test side ranged from

1,686 to 2,100 veh/h/ln. It is hypothesized that the differ-

ence in capacity may come from the heavy vehicle factor

which was ignored in this study and the fact that the HCM

is based on 15 min aggregate flows, while this study uti-

lized 5 min aggregate flows.

Regardless, it is advantageous to understand the distri-

bution of capacities over time when selecting the ‘‘true’’

capacity at a site. Simply picking a day at random will, in

all likelihood, lead to an erroneous result unless the traffic

flow rates are homogeneous over time.

The second finding was that, not surprisingly, the esti-

mated capacities were different for each of the techniques.

In general, the maximum method focused on the maximum

value of the traffic flow rates over a day, and therefore it

tends to define the upper bound of the estimated capacity

range. The Van Aerde method estimated the theoretical

capacity value by regressing all the flow rate data over a

single day. It was found that the differences of the esti-

mated capacity values are within 5 % over all days. Ca-

pacities obtained by the breakdown method vary largely

depending on the traffic situation at a particular site.

Usually, this approach identifies a lower capacity than the

other techniques, and this may serve as a lower bound of

the estimated capacity range. The PLM estimation values

typically are within the ranges identified by the first three

methods. This is not surprising because the PLM estima-

tion explicitly accounts for day by day variability.

The third finding was that each of the methodologies has

advantages and disadvantages, and the best method will be

function of the available data, the application, and the goals of

the modeler. It was found that the maximum method is the

easiest method, from a computational perspective, for esti-

mating capacity fromempirical data.However, therewas very

little variation in capacity estimates over time using this

method, and the method cannot be used to identify major

changes in flow rate over short periods of time. It was found

that the Van Aerde model is not tied directly to breakdown

events and thus can be used to obtain deterministic capacity

over the study period. Thismethodology is based on the traffic

flow theory and does not require the user to identify the status

of traffic flow on freeway a priori. It is also easy to automate

and is particularly useful for uniform traffic flow such as the

San Diego site. The breakdown identification method ac-

counted for the stochastic nature of capacity, which many

authors believe that it leads to more credible results. The au-

thors argued that it is necessary to identify the breakdown

conditions, otherwise the modeler is unsure of whether a

higherflow rate could beobserved. Similar to the previous two

models, the breakdown method is easily adapted to different

types of freeways. Although the determination of an appro-

priate breakdown capacity is not straightforward for many

applications, it is critical to identify breakdown points, and in

these situations, such as at the Shanghai site, breakdown-re-

lated approaches are very useful.

In future work, several aspects that would increase the

accuracy of capacity estimation could be addressed in-

cluding (1) a larger sample size with more days and mul-

tiple locations, (2) an analysis of the effect of vehicle type

including percentage of heavy vehicles, (3) an analysis of

the traffic flow distribution across lanes, and (4) an analysis

of the traffic flow distribution in terms of the effect of

weather. Lastly, it would be interesting to relate individual

driver behavior characteristics under distinctive traffic si-

tuations to the capacity estimation.
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