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      Effects of Renewable Energy Production 
and Infrastructure on Wildlife                     

       José     Antonio     Sánchez-Zapata     ,     Miguel     Clavero    ,     Martina     Carrete    , 
    Travis     L.     DeVault    ,     Virgilio     Hermoso    ,     Miguel Angel     Losada    , 
    María     José     Polo    ,     Sonia     Sánchez-Navarro    ,     Juan     Manuel     Pérez-García    , 
    Francisco     Botella    ,     Carlos     Ibáñez    , and     José     Antonio     Donázar   

         Introduction 

 The high levels of human demands of resources—from food to space and energy—are 
one of the main drivers of global change and are causing large negative impacts on eco-
systems functioning worldwide (Vitousek et al.  1997 ). Global change components range 
from climate change to habitat destruction, species invasions, pollution and eutrophica-
tion. Although these factors can produce ecosystem changes independently, the fi nal 
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descent is often driven by synergistic processes. The resulting amplifying feedbacks can 
be disconnected from the original driver of change, leading to a state shift in the biosphere 
with unexpected consequences (Barnosky et al.  2012 ). Climate change seems to have 
taken prominence over other drivers of global change, leading to larger funding and atten-
tion with respect to other major components of global change (Veríssimo et al.  2014 ). 

 Human population growth and growing per capita consumption are causing an 
increasing energy demand to support industrial and domestic activities. Reducing 
the emissions of greenhouse gases responsible for current climate change is the 
main goal of renewable energy production. Major efforts have been devoted to the 
development of this kind of energy, including longstanding sources such as hydro-
electric infrastructure along with more recent technologies such as wind farms and 
solar plants (Johansson et al.  1993 ). Renewable energy aims to provide humans with 
sustainable resources (Dincer  2000 ), although the development of infrastructure 
aimed to produce and distribute it may also have detrimental effects on ecosystems. 
Paradoxically, the development of renewable energy might also jeopardize biodiver-
sity by increasing extinction rates of endangered species (Hooper et al.  2012 ). Thus, 
it is important to reconcile the production of renewable energy with the conserva-
tion of biodiversity to meet the primary objective of sustainable development. 

 No energy source is entirely ‘biodiversity-neutral’: nuclear power has obvious 
waste-disposal problems, the manufacture of solar cells can create hazardous waste, 
hydropower alters freshwater ecosystems, and wastewater from geothermal plants 
affects aquatic ecology. The transmission lines, roads, and other infrastructure asso-
ciated with all ‘clean’ power projects can also have extensive impacts on ecosys-
tems. Given that energy consumption is set to double by 2030, the environmental 
and business communities must fi nd ways to assess and manage the tradeoffs 
between energy generation and use and biodiversity conservation. Conservationists 
are racing to gather the necessary information about the impacts and make sure it 
feeds into the decision-making process. In this chapter, we review previously 
described as well as less explored effects of renewable energy production and infra-
structure on biodiversity, from species to populations and communities, and discuss 
the main guidelines to mitigate their impacts.  

    Hydroelectric Production Infrastructures: Overview 

 Hydroelectricity refers to the electric energy generated by the movement of water 
though turbines. Hydroelectric production most often requires damming a river to 
simultaneously ensure the availability of water and provide the water jump neces-
sary to move the turbines. Worldwide, there are almost 10,000 large dams (height 
>15 m) devoted to hydroelectric production, constituting almost 20 % of all built 
dams (ICOLD  2014 ). The number of smaller dams (<15 m) is not precisely known, 
but they are thought to outnumber larger ones by some tenfold (Carpenter et al. 
 2011 ). China alone has almost 50,000 hydroelectric facilities (Kosnik  2008 ). 
Hydropower is used to produce over 16 % of total electricity globally, constituting 
over 75 % of the overall renewable electric production (REN21  2013 ). The main 
advantage of hydroelectric production over other renewables is the possibility of 
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responding quickly to demand peaks. During periods of low demand (e.g. at night) 
electricity can be used to pump water to reservoirs at higher altitudes, thus ensuring 
water availability for production during high demand periods. 

 Hydroelectricity has been presented as a “green” energy source, based on the 
lack of greenhouse gas emissions directly related to electricity production 
(Kosnik  2008 ). However, this view has been challenged in recent times due to the 
accounting of emissions from reservoirs and downstream water reaches 
(Fearnside  2004 ; Kemenes et al.  2007 ). Reservoir-linked emissions can be related 
to the deforestation of the area occupied by the water mass and the decay of sub-
merged organic matter (Fearnside  2000 ), and by the production of methane due 
to microbial metabolism in anoxic environments (Bastviken et al  2011 ). 
Hydroelectric development also has socioeconomic impacts on local communi-
ties, being cited as one of the main drivers of forced displacement and resettle-
ment (Scudder  2005 ). Resettlement usually involves a change in living means 
due to environmental constraints, e.g. when people are moved from fertile rural 
areas to cities (Wilmsen et al.  2011 ), and most often results in the impoverish-
ment of affected households (Scudder  2005 ). Flow regulation for hydroelectric 
production can negatively affect downstream agricultural lands (Kuenzer et al. 
 2013 ) and fi sheries (Silvano et al.  2009 ), while the creation of hydroelectric res-
ervoirs can have negative health implications in some areas (Yewhalaw et al. 
 2009 ). Nevertheless, we will not further discuss these global climate and social 
issues here and will henceforth focus on the ecological impacts of hydroelectric 
production on aquatic systems and their biota. Many of these impacts are related 
to the presence of dams and are thus not exclusive of hydroelectric infrastruc-
tures, being shared with those of dams devoted to irrigation, urban and industrial 
water supply, or other uses. 

    Barrier Effect 

 Dams constitute impassable barriers for the movement of most strictly aquatic ani-
mals. The fragmentation of river networks by dams has led to the collapse of migra-
tory fi sh populations in many areas of the world (e.g. Holmquist et al.  1998 ; Limburg 
and Waldman  2009 ; Hall et al.  2012 ). A search in the IUCN red list (  www.iuc-
nredlist.org    ) provides a list of 452 threatened fi sh species that are negatively affected 
by dams (threats 7.2.9, 7.2.10 or 7.2.11 in the IUCN threat classifi cation), including 
85 critically endangered and 8 extinct taxa. These numbers underestimate the real 
number of fi sh species affected by dams, because fi sh species have not been globally 
assessed and the red list covers less than 50 % of existing freshwater fi sh species. 

 The impacts of river fragmentation can be extreme for anadromous migratory 
fi sh, such as migratory salmonids (Fam. Salmonidae) or clupeids (Fam. Clupeidae), 
because the establishment of a dam can completely impede reproduction. Sturgeons 
(Fam. Acipenseridae) are perhaps the clearest example of highly threatened anadro-
mous fi sh affected by river fragmentation, with all 25 sturgeon species assessed by 
the IUCN negatively affected by dams. For example, the construction of the 
Gezhouba (in 1981) and Three Gorges (2003) dams in the Yangtze river has led to 
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large reductions in the ranges of the critically endangered Chinese ( Acipenser nudi-
ventris ) and Yangtze ( A. dabryanus ) sturgeons (Zhang et al.  2015 ). 

 Catadromous fi shes, i.e. those that reproduce in the sea but spend an important 
part of their life in freshwater systems, are often less severely impacted by dams 
than anadromous ones. However, the barriers can impede the occupancy of an 
important proportion of the original habitat of a species, which can in turn be 
translated into signifi cant population declines. For example, dam construction 
and associated loss of freshwater habitats is one of the main drivers of the recent 
collapse of the European eel ( Anguilla anguilla ) (Kettle et al.  2011 ). Dams also 
act as effective barriers for tropical catadromous fi sh assemblages, even preclud-
ing the upstream migration of climb-adapted gobies (Fam. Gobiidae; Cooney and 
Kwak  2013 ). Dams can also constitute important or absolute barriers for species 
that move along river systems, using different habitats within the year and/or dur-
ing different life-history stages. This is the case for several fi sh species in the 
Amazon basin, which have been severely affected by hydropower development in 
Brazil (Godinho and Kynard  2009 ), and also of different river dolphins in Asia 
(Dudgeon et al.  2006 ). 

 The impediment of downstream movement of the river biota is also a relevant 
impact of hydroelectric infrastructures. A key element of the downstream barrier is 
not the dam itself but the reservoir behind it. Reservoirs are stagnant water masses 
that differ radically from river systems, and thus can eliminate most of the ecologi-
cal cues followed by migrating fi shes, causing disruptions in their migrations 
(Pelicice et al.  2014 ). 

 Most, if not all, of the outfl ow of hydroelectric dams passes through a turbine 
system to produce electricity. Fish mortality in these turbines can be high, even 
approaching 100 %, although it is dependent on the type of turbines, their operation, 
and the different species and life history stages involved (Larinier and Travade 
 2002 ). Because the risk posed by turbines increases with body length, long-bodied 
species such as freshwater eels (Fam. Anguillidae) often are more severely affected 
by the downstream barrier effect of hydroelectric infrastructures (Calles et al.  2010 ). 

 For more than a century there have been important technological develop-
ments to facilitate the movement of fi sh across dam barriers (Katopodis and 
Williams  2012 ). These structures have proven useful in several situations for 
good swimmer (e.g. salmonids) or good climber (e.g. eels) species (Laine et al. 
 2002 ; Feunteun  2002 ), especially for relatively small barriers. However, passing 
facilities designed for northern hemisphere fi sh (most commonly salmonids) 
often fail to be effective in other environments (e.g. Roberts  2001 ; Mallen‐
Cooper and Brand  2007 ). On the other hand, although technical solutions have 
been relatively successful in facilitating upstream fi sh migration, the elimination 
of the barrier effect for downstream movement is often much more complicated 
(Feunteun  2002 ). Proposed actions include the design of modifi ed turbines (Čada 
 2001 ) or the implementation of lateral bypasses (Gosset et al.  2005 ), but their 
effectiveness and widespread applicability has not been proven. Some successful 
restorations of fi sh populations by eliminating barrier effects exist, but failures 
have also been reported, even in cases where enormous efforts had been invested. 
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An analysis of anadromous fi sh restoration programs in large North American 
rivers fragmented by hydroelectric dams  concluded that strategies based on fi sh 
passes had failed and that dam removal was the only viable and realistic option 
(Brown et al.  2013 ).  

    Flow Regulation and Ecosystem-Level Impacts 

 The alterations of natural fl ow regimes (Poff et al.  2007 ) are one of the most wide-
spread human impacts on aquatic systems, with the overall potential for water reten-
tion in existing dams being more than fi ve times larger than the total volume of 
water of all the rivers in the world (Dudgeon et al.  2006 ). Flow regulation affects 
more than 60 % of the world’s large river systems, and there are regions (e.g. 
Europe) where unregulated large rivers do not exist anymore (Nilsson et al.  2005 ). 
In natural conditions, fl ow regimes differ among regions and among rivers within 
regions (Poff et al.  1997 ). This diversity in the functioning of river systems drives 
the high intersystem variability (or β-diversity) of the river biota. Flow regulation 
has homogenized this originally diverse scenario so that river systems are nowadays 
much more alike in their functioning than they were before dam construction (Poff 
et al.  2007 ). 

 Reservoirs retain water during fl ood periods and often increase baseline fl ows 
during naturally dry seasons, thus smoothing the temporal variability in fl ow condi-
tions (Poff et al.  1997 ). Of particular relevance is the buffering or elimination of 
peak fl oods due to their importance for river ecosystems, including their fl oodplains, 
riparian ecosystems, estuaries and deltas, as well as for their biota (FitzHugh and 
Vogel  2011 ). After the closure of the High Aswan dam in the mid-1960s, the dis-
charge of the Nile River during the annual fl ood period decreased by around tenfold 
(Tockner and Stanford  2002 ) with severe consequences for fl oodplain and estuary 
areas, even affecting marine fi sheries in the Eastern Mediterranean (White  1988 ). 
Elimination of fl oods reduces the lateral connectivity of river systems, often pre-
cluding the inundation of fl oodplains that are critical habitats for the reproduction 
of several aquatic and semiaquatic organisms (Nilsson and Dynesius  1994 ; FitzHugh 
and Vogel  2011 ). The impact of fl ow regulation extends beyond quantity of water 
and also affects water quality. Dams often release hypolimnetic water, which is cold 
and has little dissolved oxygen, with severe consequences on biological communi-
ties in downstream areas close to the dam (Ward and Stanford  1982 ; Jurajda et al. 
 1995 ; Zhong and Power  1996 ). 

 In water-abundant regions throughout the world, hydroelectric dams, especially 
small ones, are run-of-the-river facilities (Richter and Thomas  2007 ), in which the 
discharge running through the turbines is similar to that entering the reservoir. Dams 
operated in this way may have small effects, if any, for the fl ow regimes of river 
systems. However, hydroelectric facilities in drier areas and (especially) large 
hydroelectric dams do store water and disrupt hydrological regimes. Hydroelectric 
dams may also have specifi c, short-term impacts on river fl ow related to the 
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variability in electricity demand (Bevelhimer et al.  2015 ). The daily demand fl uc-
tuations can be translated into large, completely unnatural daily variations in fl ow 
below hydroelectric dams, with strong negative impacts on the aquatic biota 
(Cushman  1985 ).  

    Upstream Habitat Modifi cations 

 World’s reservoirs occupy a combined area of about 500,000 km 2 , similar to that of 
France (Nilsson  2009 ). The loss of terrestrial habitat affects valley bottoms espe-
cially, which are the most productive environments in many areas (e.g. mountains, 
high latitudes) and often host diverse and abundant biological communities (Nilsson 
and Dynesius  1994 ; Nilsson and Berggren  2000 ). The new water masses can also 
constitute effective barriers precluding the movement of terrestrial species and dis-
rupting migration behaviors (Nellemann et al.  2003 ). The loss of generally diverse 
riparian ecosystems is almost never compensated by the establishment of riparian 
vegetation around the reservoir shores, due to the high water-level fl uctuations. 
Whenever there is a chance for the formation of a riparian vegetation fringe, it is 
most often dominated by invasive plants and/or those typical of eutrophic systems 
(Hill et al.  1998 ; Nilsson  2009 ). However, reservoirs (including some hydroelectric 
facilities) can also constitute relevant feeding and breeding habitat for threatened 
species (McCartney  2009 ) and become refuge habitat in semi-arid territories during 
water shortages (Prenda et al.  2001 ). 

 The impoundment of a river generates a radically different and simplifi ed stag-
nant water mass that results in a hostile environment for an important part of the 
fl uvial biota (Baxter  1977 ). The lack of water currents and turbulence, and the loss 
of complexity in the substrate due to the deposition of fi ne sediments, produce a 
radical homogenization of the water landscape. As a consequence, species linked to 
running water or those needing complex habitat structures at some stage of their life 
history tend to be absent from reservoirs (Gido et al.  2009 ). The fl uctuation in water 
levels, which in hydroelectric dams can be large within each day (Nilsson  2009 ), 
hinders the occupation of the littoral zone by many slow-moving animals, including 
many invertebrate taxa (Baxter  1977 ). In general, the aquatic biota occupying reser-
voirs is simplifi ed and impoverished when compared to rivers (Gido et al.  2009 ; 
Clavero and Hermoso  2011 ), and results in low quality habitats for aquatic top pred-
ators (Palmeirim et al.  2014 ).  

    Reservoirs, Flows and Invasive Species 

 A relevant ecological impact of reservoirs is their relationship with invasive aquatic 
species (Havel et al.  2005 ). Reservoirs host more invasive species than rivers 
(Clavero and Hermoso  2011 ) and natural lakes (Johnson et al.  2008 ). The 
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invasibility of reservoirs can be related to two phenomena. First, reservoirs are sta-
ble environments and very homogeneous when compared to rivers (Clavero et al. 
 2013 ). These characteristics may facilitate the establishment of many widely intro-
duced species such as the common carp ( Cyprinus carpio ) or the zebra mussel 
( Dreissena polymorpha ). Second, reservoirs are associated with many of the activi-
ties related to the release of non-native aquatic organisms, such as sport-fi shing and 
recreational navigation (Havel et al.  2005 ; Johnson et al.  2008 ). 

 Reservoirs are not only easily invaded, but also act as facilitators for the invasion 
of associated river systems (Havel et al.  2005 ). Reservoirs may function as a source 
of individuals of invasive species to upstream river stretches (Rincón et al.  1990 ; 
MacIsaac et al.  2007 ). Naturally fl owing rivers are suboptimal habitats for many 
invasive species, especially in areas with high environmental fl uctuations for which 
invasive species may lack adaptations. However, reservoirs, being more stable and 
thus less hostile systems for invasive species, may compensate the environmental 
harshness of rivers by being a constant source of colonizing individuals. Reservoirs 
can also be a source of individuals of non-native species for downstream reaches 
(MacIsaac et al.  2007 ), the invasion process being in this case reinforced by the 
alteration of fl ow regimes. Most frequently, non-native species are not adapted to 
cope with the specifi c natural fl ow regimes of the river systems where they are 
released. The softening of discharge extremes due to fl ow regulation eases their 
establishment in river sectors downstream from reservoirs (Hermoso et al.  2011 ). 
Thus, apart from the barrier effects and habitat changes, reservoirs may exert an 
indirect negative impact on native species (both within the reservoir and in associ-
ated river systems) by enhancing populations of harmful invasive species (Hermoso 
et al.  2011 ; Clavero et al.  2013 )   

    Solar and Wind-Energy Infrastructures: Overview 

 During the last decades, the number of wind and solar energy developments has 
increased substantially all over the world, receiving support as alternative energy 
sources that can achieve substantial avoidance of greenhouse gas emissions. By the end 
of 2013, worldwide installed capacity for wind and solar energy were 318.1 and 138.9 
GW, respectively. China, USA, Germany and Spain accounted for more than 65 % of 
the worldwide installed capacity of wind energy (GWEC  2014 ), whereas solar energy 
installation has been led by Europe, followed by China, Japan, and the United States. 

 In this section, we review the impacts of solar and wind energy production and 
infrastructure. We consider direct impacts on wildlife populations through habitat 
transformation and demographic unbalances (e.g., Langston and Pullan  2003 ; 
Baerwald et al.  2008 ; Garvin et al.  2011 ) as well as changes in ecosystem function-
ing at different scales, which can be a source of further concern for communities 
and populations of both plant and animals. We include not only terrestrial infra-
structure but also the increasingly implemented and less studied offshore 
developments. 

Effects of Renewable Energy Production and Infrastructure on Wildlife
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    Effects on Landscapes and Ecosystems 

 The occupation of the territory by solar and wind energy systems (SWES) involves 
a change in land use, and their operational characteristics can locally modify mass 
and energy fl uxes, with potential effects on soil-plant processes and ecosystem ser-
vices such as soil formation and nutrient cycles (supporting services), climate and 
hydrology (regulating services), water and food supply (provisioning services), and 
recreational and aesthetic activities (cultural services). Some of these changes have 
been extensively reported, whereas others, mainly related to indirect impacts, still 
require further assessment (Tsousos et al  2005 ; Saidur et al.  2011 ; Leung and Yang 
 2012 ; Aman et al.  2015 ). 

 The main environmental impact of SWES is land use change. On average, the 
footprint area associated to SWES is estimated at 13–20 m 2  for a 5-MW wind tur-
bine, 1.9 m 2  for a 160-W solar photovoltaic system, and 1.9–2.4 km 2  for a 100-MW 
concentrated solar power system (Jacobson  2009 ), which results in 1 m 2  of land 
being required to produce 0.38–0.25 MW (wind energy) or 83–42 W (solar energy). 
Vegetation is usually removed and the soil is graded, which enhances soil erosion or 
aeolian sediment transport, as well as loss of organic carbon and nitrogen, espe-
cially in semiarid/arid conditions. Nonetheless, SWES impacts in terms of land-
scape (use and cover) disturbances are much lower than those due to conventional 
energy systems (Tsousos et al.  2005 ). Photovoltaic systems, for example, have 
higher land use effi ciency than other renewable energy sources and surface coal 
mining (70 % of global United States coal extraction). These numbers highlight the 
need for addressing solar energy environmental impacts (and energy issues, in gen-
eral) in the global framework of substitution, and not in their absolute values 
(Jacobson and Delucchi  2011 ). 

 Microclimatic conditions can be infl uenced by SWES (Baidya  2011 ; Hernandez 
et al.  2014 ). Ground-mounted photovoltaic arrays directly intercept precipitation 
and atmospheric deposition, change surface albedo and increase shading on a local 
basis, greatly altering the radiation budget on the ground surface. Moreover, their 
presence affects the wind speed and enhances turbulence at the near-surface atmo-
spheric boundary layer. All these factors may signifi cantly modify energy fl uxes 
over the affected surface and cause changes in local temperature, air and soil mois-
ture, thus affecting evaporation dynamics. Wind farms have little infl uence on the 
radiation components, but they strongly change the wind profi le distribution and 
magnitude, and affect turbulence and mixing within the atmospheric boundary 
layer, which also modifi es temperature and air moisture profi les, and again the fi nal 
energy and water budgets (Baidya et al.  2004 ). 

 These effects are also dependent on the diurnal cycle of solar radiation. 
Photovoltaic panels reduce the shortwave refl ected solar radiation due to their lower 
albedo when compared to ground surface, but they increase the ratio of diffuse/
direct shortwave radiation below the panel (Scherba et al.  2011 ). Changes of soil 
conductance and air warming below panels are not clear, because the effects on 
wind must be taken into account and different results can be obtained depending on 
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different additional factors (Taha  2013 ). Finally, the rainfall interception results in 
an enhanced draining along the points from the lower end of the panel surface, 
which signifi cantly alters the infi ltration/runoff ratio over the ground beneath, espe-
cially for light and intermittent rainfall events. Drop erosion processes may also 
occur due to this redistribution of rainfall over the ground. At larger scales, the dif-
ferent importance of each hydrological component in the water cycle would be 
altered, but the signifi cance of this change is dependent on the time distribution 
pattern of precipitation at the area and the local arid/wet regime (Pisinaras et al. 
 2014 ). Since solar energy facilities are effi cient in regions with high insolation rates, 
arid and semiarid areas would be more affected by these impacts, not all of them 
being negative (Turney and Fthenakis  2011 ). 

 As for wind-farms, the impacts on temperature have been observed in both direc-
tions. Night-time surface temperature may be increased downwind from turbines, 
since warmer air eddies would mix into the cooler air; the inverse effect would be 
observed during daytime. Under stable atmosphere conditions, an increase in evapo-
transpiration would be expected. Direct effects on microclimate may also induce 
indirect impacts on the physical environment. Besides water in air and soil, other 
gases like CO2, methane, and nitrous oxide could modify their concentration pro-
fi les over the area affected by SWES, not only due to mixing condition alterations 
but also to the forcing action of changes in temperature. Changes of 0.7–3.5 °C have 
been measured within the infl uence area of wind farms (Baidya and Traiteur  2010 ; 
Zhou et al.  2012 ), and increases of 2.5–26.0 °C in the area surrounding solar facili-
ties in the developed environment (Scherba et al.  2011 ). Plant and soil processes 
involving water and energy exchanges, microbial activity, C and N cycling, and 
other biogeochemical cycles could be signifi cantly altered depending on the initial 
conditions, and the extent and location of the SWES, with further consequences on 
the ecosystem dynamics (Armstrong et al.  2014 ). 

 Potential effects on climate may work at larger scales. For example, Wang and 
Prinn ( 2010 ) concluded from modelling that the induced changes by wind farms in 
surface heat fl uxes and temperature could result in modifi ed cloud cover distribu-
tions, while Fiedler and Bukovsky ( 2011 ) obtained an increase of rainfall after mod-
elling on a large scale. However, global circulation models and their downscaling to 
surface models still have a signifi cant uncertainty related to the adequate inclusion 
of interactions between physical and biological processes (Cramer et al.  2001 ; 
Hawkins and Sutton  2011 ).  

    Effects of Solar Plants and Wind Farms on Wildlife 

 Solar plants are relatively new and their effects on biodiversity have been scarcely 
documented (but see DeVault et al.  2014 ). On a local scale, impacts are associated 
with the above-mentioned habitat transformation and wildlife mortality (Lovich and 
Ennen  2011 ; Hernandez et al.  2014 ). For example, avian mortalities at a 10 MW 
concentrating solar thermal power plant in California, USA averaged 1.9–2.2 
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individuals per week, and were mainly caused by collision with site infrastructure 
(81 %), particularly with heliostats, and to a lesser degree, burning when heliostats 
were oriented towards standby points (19 %), especially for aerial foraging species 
(McCrary et al.  1986 ). Moreover, mortality rates can be increased because of the 
soil degradation and the creation of roads, and exotic species invasions could even 
occur. 

 One potential solution proposed to reduce the negative impacts of solar energy 
production on wildlife is to locate some solar facilities on unused portions of airport 
lands (DeVault et al.  2012 ,  2014 ). Airports represent one of the only land use types 
where reduction in wildlife occurrence is justifi ed and socially acceptable, due to 
the risk of wildlife-aircraft collisions (DeVault et al.  2013 ). Thus, wildlife conserva-
tion is largely discouraged at airports because of safety concerns (Blackwell et al. 
 2013 ). Further, airports often occupy extensive areas and much of the land is unde-
veloped; for example, airports in the USA collectively contain well over 3300 km 2  
of idle grasslands (DeVault et al.  2012 ). Also, photovoltaic solar facilities are largely 
compatible with airport operation from a safety perspective (Barrett and DeVita 
 2011 ), and solar energy production using photovoltaic arrays is generally economi-
cally advantageous for airports (DeVault et al.  2012 ). 

 Concern about wildlife mortality at wind farms began to surface in the late 1980s 
and early 1990s, and it was mostly focused on the Altamont Pass Wind Resource 
Area (APWRA), a 165 km 2  wind farm near San Francisco, California. Hundreds to 
thousands of birds, including more than 40 species, some of them endangered, died 
there every year (Asmus  2005 ; Thelander and Rugge  2000 ; Smallwood and 
Thelander  2005 ; Thelander  2004 ; Smallwood and Thelander  2008 ). Such fatalities 
are not limited to California or the USA (Erickson et al.  2001 ; US GAO  2005 ). 
European countries such as Spain and Belgium also have reported hundreds of birds 
killed by turbines (Lowther  1998 ; Everaert and Stienen  2007 ). Thus, much wind 
farm-wildlife research has been devoted to investigating how wind farm develop-
ments impact bird populations (e.g., Langston and Pullan  2003 ; Baerwald et al. 
 2008 ; Garvin et al.  2011 ), in particular collision rates of birds with turbines as well 
as factors infl uencing interspecifi c and local variability (reviewed in Drewitt and 
Langston  2006 ,  2008 ; Kuvlesky et al.  2007 ; Stewart et al.  2007 ; Loss et al.  2013 ; 
Marqués et al.  2014 ). These studies show that the effects of wind farms on birds are 
highly variable (while most wind turbines actually kill none or very few individuals, 
some turbines kill many), and depend on a wide range of factors, including the 
development type, the topography of the surrounding land, the habitats affected and 
the number and species of birds present (Barrios and Rodriguez  2004 ). In general, 
risks are higher when turbines are placed on ridges and upwind slopes, built close to 
migration routes, or operated during periods of poor visibility such as fog, rain, and 
at night (Sovacool  2009 ). Also, modern, monopole wind turbines might kill fewer 
birds than older, lattice turbines, such as those that were located at APWRA (Loss 
et al.  2013 ; but see Barrios and Rodriguez  2004 ). 

 There is a general acceptance of the idea that collision mortality would increases 
with bird abundance (Musters et al.  1996 ; Osborn et al.  2000 ; Drewitt and Langston 
 2006 ; Tellería  2009a ,  b ). Although linearity in this relationship could be, a priori, a 

J.A. Sánchez-Zapata et al.



107

simplistic assumption because of interspecifi c differences in susceptibility to this 
infrastructure, higher abundance of individuals of species sensitive to collision at 
wind farms would increase fatality rates. In particular, raptors, grouse, gulls and 
terns tend to collide more often than expected from their occurrence and numbers 
(Carrete et al.  2009 ,  2012 ). Thus, the most effective measures to minimize negative 
effects on birds is to identify the dangerous locations and avoid locating wind tur-
bines there. Most accidents with birds occur in places where the more vulnerable 
species concentrate, so the use of reliable estimates of abundances (such as those 
derived from the location and size of breeding or roosting sites; Carrete et al.  2012 ) 
should be preferred over highly variable punctual, year estimates (Barrios and 
Rodriguez  2004 ; de Lucas et al.  2008 ). Otherwise, as is case for most current risk 
assessments studies in countries such as Spain, it is not surprising to fi nd weak rela-
tionships between the predicted risk and the recorded mortality at wind farms 
(Ferrer et al.  2011 ). 

 A major diffi culty in assessing the impact of wind farms on bird populations is 
the scarcity of long-term studies at operational wind farms. Thus, there is a wide-
spread belief that wind farms have, at most, a low impact on animal populations 
(Marris and Fairless  2004 ). However, the few studies evaluating the long-lasting 
effects of wind farms on wildlife advise caution. A recent study carried out in the 
UK using long-term data of breeding bird abundances show that wind farm develop-
ments may result in signifi cant reductions in habitat usage (from 100 to 800 m from 
the turbines after construction) by some species. This result in the decline in the 
abundance of some breeding birds such as red grouses  Lagopus lagopus scoticus , 
snipes  Gallinago gallinago  and curlews  Numenius arquata  (in some cases by up to 
50 % within 500 m of the turbines during construction), without general recoveries 
after the fi rst year of operation (Pearce-Higgins et al.  2009 ,  2012 ). Another study 
focused on the impact of wind farm mortality on the demography of an endangered 
species, the Egyptian vulture  Neophron percnopterus , show that even very low lev-
els of additional mortality can be signifi cant for this long-lived species with low 
productivity and slow maturation rate (Carrete et al.  2009 ; Sanz-Aguilar et al.  2015 ), 
as is the case with many endangered or rare long-lived species (Saether and Bakke 
 2000 ). Very low reductions in survival rates of territorial and non-territorial birds 
(−0.015 and −0.008, respectively) associated with wind-farms can have signifi cant 
population impacts (Carrete et al.  2009 ; Bellebaum et al.  2012 ; Sanz-Aguilar et al. 
 2015 ). Regrettably, this a widespread scenario affecting many other long-lived 
endangered species also killed at wind farms in different European countries (e.g., 
at least 10 white-tailed sea eagle  Haliaeetus albacilla  per year in Norway;   http://
www.statkraft.com/pub/wind_power/feature_articles    ), in the USA (e.g., 65 golden 
eagles  Aquila chrysaetos  in California per year; Smallwood and Thelander  2008 ) 
and in Australia (e.g., at least 12 Tasmanian wedge-tailed eagles  Aquila audax fl eayi  
in 4 years;   http://www.windaction.org/news/17683    ). 

 The other taxonomic group highly affected by wind farm mortality are bats. 
The fi rst reports of bat fatalities at wind farms occurred in North America and 
Europe during the 1990s (Kunz et al.  2007 ; Rydell et al.  2010 ). However, the 
occurrence of bat fatalities at wind farms is a global phenomenon with cases 
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described from numerous countries including Australia (Hull and Cawthen  2013 ) 
and South Africa (Doty and Martin  2013 ). The lack of information on the impact 
of wind farms on bat populations refl ects the severity and poor understanding of 
the problem. This is concerning because in a country such as the United States, 
which produced 51,630 MW of wind-energy in 2012, some studies have esti-
mated that wind farms kill between 600,000 and 888,000 bats per year (Hayes 
 2013 ; Smallwood  2013 ). Spain is one of the world leaders in wind farm technol-
ogy and in 2010 produced 19,148 MW of wind-energy. Despite defi ciencies in 
post-construction monitoring of the impact of wind farms on wildlife (e.g. biases 
in searcher effi ciency and carcass scavenging), the estimated number of wind-
energy related bat fatalities in Spain can be comparable to the highest estimates 
available from North America (Camina  2012 ). In fact, bat mortality at wind farms 
tends to be higher than that of birds (Barclay et al.  2007 ). For example, in USA, 
estimates are 888,000 bats killed per year  vs  573,000 birds (Smallwood  2013 ). 
This is of great concern because bats are extremely long-lived for their size and 
they have a low reproductive potential (Barclay and Harder  2003 ). Thus, the 
cumulative impacts of this new hazard could result in long-term population 
declines or even extinctions in certain areas (Kunz et al.  2007 ), especially given 
that many bat populations are already under severe stress due to mortality from 
white-nose syndrome (Foley et al.  2011 ). 

 Bats may be attracted to wind turbines for many different reasons, including 
curiosity, searching for food or potential roosts, or social interactions (Cryan and 
Barclay  2009 ). The presence of aviation warning lights on the turbines does not 
increase mortality rate (Johnson et al.  2004 ; Bennett and Hale  2014 ); however a 
recent study has shown that tree roosting bat species from North America were 
attracted to the turbines (Cryan et al.  2014 ). This attraction could be due to the 
visual confusion of the turbines silhouettes with trees, reinforced by other cues such 
as similar downwind airfl ow patterns. Attraction of tree bats to other tree-like struc-
tures such as tall communication towers only appears to occur in the late summer 
and autumn, possibly because of social rather than foraging behavior, as they emit 
fewer feeding buzzes around these sites (Jameson and Willis  2014 ). 

 About half of dead bats examined around wind turbines do not show any external 
injury caused by direct collisions with turning blades. Instead, most of them have 
pulmonary lesions and internal hemorrhages compatible with barotrauma caused by 
rapid air-pressure reduction near fast moving turbine blades (Baerwald et al.  2008 ). 
Barotrauma has not been suggested as a cause of bird mortality because of differ-
ences in their respiratory anatomy. Although the ability to echolocate allows bats to 
detect and avoid turbines blades, it seems they cannot detect rapid pressure reduc-
tions and may die even if they do not come in contact with the blades. 

 Out of the 23 species of bats reported to be affected by wind turbines in North 
America (  http://www.batcon.org/    ), about 80 % of fatalities involve migratory tree- 
roosting bats (mainly  Lasiurus cinereus, L. borealis  and  Lasionycteris noctivagans ; 
Arnett et al.  2008 ). In Europe, 27 bat species have been reported as killed by tur-
bines (  http://www.eurobats.org/    ), and 98 % of these fatalities belong to a “high- 
risk” species group formed by bats included in the aerial-hawking guild (i.e., species 
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that catch their prey in open spaces; Rydell et al.  2010 . Although it could seem that 
different bat species groups are susceptible to wind turbines in America and Europe, 
it should be taken into account that all migratory tree-roosting bats from America 
are aerial-hawking, while mortality of migratory species also occurs in Europe but 
in smaller proportions (64 % in NW Europe, Rydell et al.  2010 ; 56 % in Greece, 
Georgiakakis et al.  2012 ; 40 % in Portugal, Amorim et al.  2012 ). However, a signifi -
cant proportion of migratory killed bats in Europe belong to resident populations 
(Lehnert et al.  2014 ). 

 In both North America and Europe most bat fatalities (90 %) occur during the 
late summer and early autumn with another minor peak occasionally seen in the 
spring (Kunz et al.  2007 ; Rydell et al.  2010 ). There are no consistent sex or age 
biases in bat mortality during these periods (Arnett  et al .  2008 ; Rydell et al.  2010 ; 
Hull and Cawthen  2013 ). Young bats are not more vulnerable despite their typical 
dispersal behavior and expected lack of experience. In North America, the mortality 
peak coincides with the migration period of tree-roosting bats. 

 As among birds, some studies have attempted to generalize bat mortality patterns 
associated with wind farms. Highest bat mortality has been observed along forested 
ridge tops in the Appalachian Mountains and forested hilltops in southern Germany, 
with lowest records in fl at agricultural landscapes. Although local concentrations of 
mortality at specifi c turbines has been occasionally described (Piorkowski and 
O’Connell  2010 ; Georgiakakis et al.  2012 ), most bat fatalities are randomly distrib-
uted across turbines (Arnett et al.  2008 ), making it diffi cult to draw clear guidelines 
for conservation planning (Kunz et al.  2007 ; Rydell et al.  2010 ). However, most 
fatalities occur during low wind nights (<6 m/s) in late summer and the fi rst half of 
autumn, thus increasing the cut-in speed of the turbines on nights with high risk of 
bat collision would be an effective management tool to reduce mortality. Indeed, 
these methods have achieved reductions of bat fatalities from 50 to 90 % with mar-
ginal power loss (≤ 1 % of total annual output) (Baerwald et al.  2009 ; Arnett et al. 
 2011 ). Conversely, other management measures such as acoustic deterrents are less 
effective, in part due to rapid atmospheric attenuation of ultrasounds (Arnett et al. 
 2013 ). 

 Offshore wind energy is developing rapidly and is rapidly occupying marine 
areas to produce low carbon energy. Whilst acknowledging that research into the 
impacts of the offshore renewable industry is still in its infancy, it is widely regarded 
that the risk for impacts on the marine environment may not be negligible and must 
be taken seriously. Noise disturbance, electromagnetic fi elds, and migration barriers 
have had some negative effects on fi sh, marine mammals, birds and seabed com-
munities (Wilhelmsson et al.  2010 ). On the other hand, these installations create 
‘no-take zones’ around them and their underwater vicinity that can function as arti-
fi cial reefs, which leads to a greater abundance of many species (Wilhelmsson et al. 
 2010 ). But if not properly planned and managed, these installations can adversely 
affect marine biodiversity through habitat loss, collisions with turbines, deviation of 
the migratory routes, noise and electromagnetic disturbance and navigational haz-
ards for ships (Desholm and Kahlert  2005 ; Larsen and Guillemette  2007 ; 
Wilhelmsson et al.  2010 ). 
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 In spite of the previous information, the understanding of the potential implica-
tions of large-scale renewable energy developments has not kept pace with the 
recent rise in the number of development proposals. The risk that an animal could 
be killed at a wind turbine is probably small compared to the risks faced from other 
human activities (Calvert et al.  2013 ; DeVault  2015 ), and some not very successful 
attempts have been made to compare wind turbine mortality with fatality rates asso-
ciated with energy sources (for example, by calculating a number of birds killed per 
kWh generated for wind electricity, fossil-fuel, and nuclear power systems; Sovacool 
 2009 ). However, the point here is not to ascertain that turbines are or are not the 
leading cause of bird deaths, something that can change when considering the cur-
rent pace and scale of wind energy development (Loss et al.  2013 ). The point is to 
recognize that renewable energy can help to reduce greenhouse gas emissions and 
slow-down climate change, but we should develop them in ways that account for 
and minimize their impacts on wildlife. Unlike fossil-fuel and nuclear power plants, 
which spread their wildlife-related impacts across large scales, most of the impact 
from wind farms occurs locally, so solutions are relatively straightforward.   

    Energy Infrastructure: Power Lines and Wildlife 

 Renewable energy produced by wind, solar and hydroelectric facilities not only 
impact biodiversity during the production stage; these facilities also need power 
lines to transport the electricity to fi nal consumers. An extraordinarily dense net-
work of power poles and lines is located around cities and industrial areas, and have 
impacts on wildlife in various landscapes around the world. Power lines have sig-
nifi cant potential impacts on biodiversity, mainly through changes in habitat struc-
ture and wildlife mortality. 

 The presence of poles and wires introduces lineal anthropogenic structures that 
alter the visual natural quality and create division lines on the landscape (Arriaza 
et al.  2004 ). This applies especially to transmission lines, the higher voltage power 
lines (> 66 kV). Their presence causes severe changes in habitat structure, increas-
ing fragmentation as a consequence of the removal of natural vegetation below the 
lines (Luken et al.  1992 ; Forrester et al.  2005 ). This change does not always have 
negative consequences; some species could benefi t from the new habitats created 
(Askins et al.  2012 ), e.g. forest ungulates could benefi t from foraging in power line 
rights-of-way where there is increased availability of pastures compared to adjacent 
forest (Bartzke et al.  2014 ). However, transmission power lines can behave as barri-
ers to animal movements by disrupting migratory routes and promoting the devel-
opment of avoidance strategies, as described for the reindeer ( Rhandifer tarandus ) 
(Reimers et al .   2007 ; Vistnes et al .   2004 ). Moreover, as a consequence of electric 
transmission, power lines generate strong electromagnetic fi elds, UV discharges 
and acoustic pollution which can affect animal health and behavior (Phernie et al. 
 2000 ; Tyler et al.  2014 ) and have also been identifi ed as causes of wildfi res (Tenforde 
 1992 ; Haas et al.  2005 ). 
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 Probably the most serious environmental impact of power lines is avian mortality 
caused by electrocution, entangling, and collision (Bevanger  1998 ; Gangoso and 
Palacios  2002 ). Mortality associated with power lines can accelerate the declines of 
several species and affect occupation patterns (Sergio et al.  2004 ) or population 
dynamics (Schaub et al.  2010 ). Power lines are currently considered one of the main 
human-related causes of bird mortality worldwide (Bevanger  1998 ; Loss et al. 
 2014 ). 

    Electrocutions and Collisions 

 Electrocution and collision with power lines are among the main causes of popula-
tion declines for some species, mainly raptors (Lehman et al.  2007 ). These include 
the Cape Vulture ( Gyps capensis ) in South Africa (Ledger and Hobbs  1999 ), the 
Egyptian vulture ( Neophron pernopterus ) in Canary Islands and East Africa 
(Donázar et al.  2002 ; Angelov et al.  2011 ), the griffon vulture ( Gyps fulvus ) in Israel 
(Leshem  1985 ), the eagle owl ( Bubo bubo ) in France (Bayle  1999 ) and Italy 
(Rubolini et al.  2001 ), the golden eagle ( Aquila chrysaetos ) and the bald eagle 
( Haliaetus leucocephalus ) in USA (Harness and Wilson  2001 ) and Canada (Wayland 
et al.  2003 ) and the Spanish imperial eagle ( Aquila adalberti ) (González et al.  2007 ) 
and Bonelli’s eagle ( Aquila fasciata ) (Real et al.  2001 ) in Spain. 

 Several studies have found that bird mortality at electric facilities is not ran-
domly distributed, but concentrated in a very small percentage of pylons (Mañosa 
 2001 ; Guil et al.  2011 ). For example, electrocutions mostly occur in distribution 
power lines (<66 kV), where the dimensions of the supports are conducive to ani-
mals simultaneously touching the wires and the support. Other factors affecting 
electrocution risk are the characteristics of the landscape (topography, vegetation, 
prey abundance), that of the pylon (cross harm design, material) and weather condi-
tions (external factors), with all of them usually being spatially correlated (Bevanger 
 1998 ; Haas  1980 ; Ferrer et al.  1991 ; APLIC  1996 ; Janss and Ferrer  1999 ,  2001 ; 
Mañosa  2001 ; Lehman et al.  2007 ). Identifying the most dangerous pylons and cor-
recting or replacing them can signifi cantly reduce the number of fatalities (Tintó 
et al.  2010 ; López-López et al.  2011 ; Guil et al.  2011 ). 

 Collisions occur when a fl ying bird hits any of the wires (conductors or ground 
wires). Collisions can occur at any type of power line, and even at other lines such 
as telephone and telegraph wires or railway catenary (Bevanger  1994 ,  1998 ). Many 
studies have reported annual estimates of bird mortality due to collisions with power 
lines, and extrapolations from these studies produce estimates ranging from hun-
dreds of thousands to millions of dead individuals (Manville  2005 ; Rioux et al .  
 2013 ; Loss et al .   2014 ). Although estimates may be biased upward due to the lack 
of random selection of sampling sites (Bevanger  1999 ; Jenkins et al .   2010 ), there is 
a general consensus that this impact is one of the main causes behind the population 
declines of some endangered species either locally or globally (Bevanger  1998 ; 
APLIC  2012 ). This is the case for the Whooping crane ( Grus americana ) and the 
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California condor ( Gymnogyps californianus ) in the USA and the Great bustard 
( Otis tarda ) and the Little bustard ( Tetrax tetrax ) in the Iberian peninsula (BirdLife 
International  2004 ; Silva et al .   2010 ; APLIC  2012 ). More than 350 bird species are 
considered susceptible to collisions with power lines (Manville  2005 ; Prinsen et al. 
 2011a ), including more than 50 % of the Spanish (Pérez-García and Botella  2012 ) 
and 17 % of the Italian breeding bird species (Rubolini et al.  2005 ). 

 Mortality rates due to power line collisions depend on biological, environmental, 
and engineering-related factors (Loss et al .   2014 ). Collision vulnerability varies 
between species due to several biological traits such as size, wing loading, fl ocking 
and fl ight behavior, habitat use, maneuverability in fl ight and vision. Species with 
high wing loading such as herons, cranes, swans, vultures and condors tend to be 
more frequently reported in collision casualties (APLIC  2012 , and references 
therein). Flocking species, like waterfowl, and colonial species that move daily 
between resting or breeding sites to foraging areas are more vulnerable than solitary 
ones because these individuals have less space to maneuver and limited vision of the 
obstacle (Bevanger  1998 ; Janss  2000 ; Martin and Shaw  2010 ; Martin  2011 ). Vision 
in bird species and its relationship to collisions have been reviewed by Martin 
( 2011 ), who suggested that bird collisions may be the result of both visual and per-
ceptual constraints. Environmental factors such as weather conditions and visibility 
interact with biological characteristics (see above), enhancing risk of collisions. 
Stormy weather, fog, and wind can alter fl ight patterns (i.e. altitudes) and affect 
visual detection, increasing the probability of accidents (APLIC  2012 ). The location 
and technical design of power lines are among the most studied factors affecting 
bird collisions. The presence of shield wires above the conductor phases in trans-
mission lines (> 60 kV) and its smaller diameter increases the risk of collisions and 
ground wires are involved in most bird fatalities (Bevanger and Brøseth  2001 ; 
Prinsen et al.  2011b ; APLIC  2012 ). The location of power lines in areas with high 
bird abundances (i.e. wetlands) and landscape features can affect the path of bird 
fl ight directing them to wires (Janss and Ferrer  2001 ; Martin and Shaw  2010 ). Lines 
crossing migration, frequent displacement routes, or mountain ridges also can 
increase collision risk.  

    Mitigation Measures 

 The design and implementation of mitigation measures to avoid or reduce fatalities 
with power lines peaked in 1990s (Bevanger  1999 ; Janss and Ferrer  1999 ; Lehman 
et al.  2007 ). Despite the extensive literature during the last 25 years, and that modi-
fi cation of power lines has proven to be an effective method for reducing mortality 
in dangerous power poles (Janss and Ferrer  1999 ; Harness and Garrett  1999 ; Guil 
et al .   2011 ; López-López et al .   2011 ), power lines still remain an important bird 
mortality source worldwide (Bayle  1999 ; Rubolini et al.  2005 ; Lehman et al.  2007 ). 
The fi rst step to reduce the negative effect of power line installation should be an 
effi cient planning of electric transmission and distribution, in order to minimize the 
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extension of the actual and the future electric network. This can be achieved through 
a spatial aggregation of distribution and transmission lines or by bringing power 
generation closer to users (Prinsen et al.  2011a ,  b ). The burial of the lines is the most 
effective solution to prevent the majority of the impacts of power lines on biodiver-
sity and is the safest modifi cation for birds. In fact, it is the only measure which 
eliminates the risk of electrocution and collision (APLIC  2006 ). But unfortunately, 
the economic cost is 3–20 higher than traditional overhead lines (APLIC  1994 ; 
Prinsen et al.  2011a ,  b ) and can only be performed under certain conditions (e.g., 
low relief, medium voltage lines). Indeed, only in some countries of Central Europe 
it has been widely implemented as a common practice (Netherland, Belgium, 
Germany, and Norway). 

 The most widely used measure to mitigate avian electrocutions are the use of 
deterrents and modifi cation of the supports, increasing the distance between con-
ductors, and isolating the supports or spreaders to ensure that there is no contact 
between birds and wires (Harness and Garrett  1999 ; Haas et al.  2005 ; APLIC  2006 ; 
Prinsen et al.  2011b ). Flight diverters (spirals, plates or spheres) attached to the 
wires are widely used to increase their visibility and reduce collisions. Effectiveness 
of fl ight diverters has been evaluated with diverse results, ranging from no reduction 
in mortality (e.g. Scott et al.  1972 ; Janss and Ferrer  1998 ; Anderson  2001 ) to slight 
(9 %, Barrientos et al.  2012 ) and strong reductions (60–80 %, Alonso et al.  1994 ; 
Bevanger and Brøseth  2001 ).   

    Conclusions 

 The production and transportation of renewable energy has several environmental 
impacts, ranging from the population to the ecosystem level (Table  1 ). Hydroelectric 
production is the major source of renewable energy worldwide and probably the 
most impacting one, not only because of its geographical extent but also because it 
affects ecosystem processes at the large scale. Migratory species like fi shes are the 
most dramatically impacted taxa by hydroelectric infrastructure. Wind energy pro-
duction is also an emerging source of environmental impact at both local and 
regional scales, with strong effects on certain bird and bat populations. Solar facili-
ties impact mostly at the local scale through habitat alteration, although their effects 
on wildlife have rarely been studied. All these sources of energy share the need for 
transportation by means of power lines that have signifi cant negative effects, par-
ticularly on bird populations at local and regional scales.

   Fighting climate change is one of the major challenges of contemporary society 
and renewable energies are a key instrument to reduce greenhouse emissions. 
However, the greener energy is the one that it is not consumed, so reducing energy 
consumption should be the highest priority to minimize the effects of energy pro-
duction on ecosystems and wildlife. Nevertheless, the increasing demand and even 
the need to turn from conventional fuel-dependent to renewable energies require the 
understanding of the potential effects of the latter on the environment. Under this 
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scenario, we consider that reducing energy consumption, planning infrastructures, 
and adopting mitigation measures should be, in that order, the key strategies to 
minimize the effects of renewable energy production and transportation. We would 
also recommend improving research on the emerging wind and solar facilities 
through more comprehensive assessments that require large spatio-temporal data 
sets. The scientifi c evidence of the long-term effects of hydroelectric production on 
species, populations, and ecosystems might help to visualize the potential effects of 
the other emerging renewable energy sources.     
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   Table 1    Summary of the main effects of renewable energy on ecosystems and wildlife   

 Energy source  Ecosystem/habitats  Scale  Processes  Wildlife 

 Hydroelectric  Freshwater 
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