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Efficient calculation of steady state probability
distribution for stochastic biochemical
reaction network
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Abstract

The Steady State (SS) probability distribution is an important quantity needed to characterize the steady state
behavior of many stochastic biochemical networks. In this paper, we propose an efficient and accurate approach to
calculating an approximate SS probability distribution from solution of the Chemical Master Equation (CME) under
the assumption of the existence of a unique deterministic SS of the system. To find the approximate solution to
the CME, a truncated state-space representation is used to reduce the state-space of the system and translate it to
a finite dimension. The subsequent ill-posed eigenvalue problem of a linear system for the finite state-space can
be converted to a well-posed system of linear equations and solved. The proposed strategy yields efficient and
accurate estimation of noise in stochastic biochemical systems. To demonstrate the approach, we applied the
method to characterize the noise behavior of a set of biochemical networks of ligand-receptor interactions for
Bone Morphogenetic Protein (BMP) signaling. We found that recruitment of type II receptors during the receptor
oligomerization by itself doesn’t not tend to lower noise in receptor signaling, but regulation by a secreted co-
factor may provide a substantial improvement in signaling relative to noise. The steady state probability
approximation method shortened the time necessary to calculate the probability distributions compared to earlier
approaches, such as Gillespie’s Stochastic Simulation Algorithm (SSA) while maintaining high accuracy.

Introduction
Many biological networks exhibit stochasticity due to a
combinatorial effect of low molecular concentrations
and slow system dynamics. One important biological
context where stochastic events likely have a large
impact is the Bone Morphogenetic Protein (BMP) sig-
naling pathway. BMPs make up the largest subfamily of
the Transforming Growth Factor-b superfamily and are
involved in numerous processes including growth, dif-
ferentiation and diseases [1]. Due to their potency at
driving development, they are also of great value for
stem-cell differentiations in cell culture. BMPs activate
near maximal signaling at 1nM concentration, have very
slow binding kinetics and require oligomerization

between multiple receptor subunits [1]. These properties
naturally lead to conditions for significant and long-
duration stochastic fluctuations in cellular signaling.
Interestingly, variability of BMP signaling appears to be
very low in vivo, while it is very high in stem cell culture
studies [2]. To understand the differences between
in vivo and in vitro signaling and determine how various
receptor oligomerization events might alter the signal
and noise, a more efficient means of solving the steady
state distributions for stochastic model was needed that
would allow for continuation of both parameters and
levels of the BMP pathway components.
Stochastic regulation can negatively impact the robust-

ness of the system [3,4] or instead, constructively con-
tribute to the phenotypic variation [5-7] in a species.
In stochastic reaction networks, the state of a species tra-
verses different trajectories in a probabilistic manner and
the distributions of states can be difficult to predict.
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As more biological data is available, stochastic modeling is
becoming increasingly popular to estimate properties in
networks where the time evolution of the system is unpre-
dictable and dependent on unavoidable randomness inher-
ent to the system. The complete solution can be calculated
from a Chemical Master Equation (CME) [8-10], that is
based on a Markovian approach that captures the inherent
randomness of biochemical systems.
The Chemical Master Equation (CME) describes the

dynamics of the probability distribution of a species of
chemical reactions. Precisely, the CME captures the rate
of change of probability that a system will be in state X at
time t for all the species of the system. Solution of the
CME is practically intractable due to the curse of dimen-
sionality, as the state-space of the system becomes enor-
mously large with increases in the species number and
concentrations (number of states nN, for N ® species,
n ® copies of each species). Moreover, the system often
involves interactions between different time-scales (slow
and fast reactions, frequent and infrequent transitions
between states) [11], which add further complexity.
Instead, numerical approaches are commonly used
[12-14] to realize the CME of the stochastic system.
In the analysis of stochastic biochemical networks,

steady state probability distributions for each species in
the system are determined to measure variability about
the deterministic steady state. The deviation around the
solution contributes to stochastic noise that can be quan-

tified by measuring the coefficient of variation � = σ
μ

(the ratio between the standard deviation s and the mean
level of species concentration μ) obtained by solving the
CME [9].
Frequently, Monte-carlo based simulation approaches

[9,13] are used to solve stochastic problems. But, there
are drawbacks in this approach for networks where the
dynamics of different intermediate states of the system
are unknown and continuation of several parameters is
necessary to explore the system’s dependency. As a
screen of parameter values becomes necessary in such a
scenario, the Monte-carlo based approach doesn’t prove
to be efficient, as it generally takes longer time to
numerically simulate the process and satisfy the imposed
conditions. Moreover, simulation times increase with
increases in the total number of molecules, species and
the number of interactions between species.
In order to ameliorate the computational cost and

complexity, we present a method here to approximate
the steady state probability distribution by 1) reducing
the system’s state-space to a finite dimension using
truncated state-space method [15] and 2) subsequently,
translating an eigenvalue problem associated with a
CME to a system of linear equations. We illustrate that
the eigenvector (for an eigenvalue = 0) that represents

the steady state probability distribution can be solved
algebraically by approximating it as a system of linear
equations. Previously, the influence of stochastic fluctua-
tions on system behavior was studied also in [16], where
a moment closure approach was applied to reduce the
complexity associated with the identification of distribu-
tions. In contrast to the previous studies, here we use a
truncated state-space for steady state probability distri-
bution approximation, which is arguably more general
since we make no assumptions on the relationships of
the moments of the distribution.
The usefulness of the proposed method is illustrated

by considering the example networks of BMP signaling,
as described earlier in [17]. Here we examine two poten-
tial mechanisms of BMP signaling: 1) regulation between
the type I and type II receptors, and 2) regulation by
secreted co-factors, such as Crossveinless-2 (Cv-2). First,
we apply the approach to the recruitment of Type II
receptor into a BMP-bound type I receptor complex to
see if such step of receptor oligomerization contributes
qualitatively to the noise profile of the system. Following
this, we extend our earlier work that focused on extra-
cellular regulation of BMP signaling by SBPs to evaluate
the calculation approach and compare results to the
Type I/Type II receptor system.
Unlike SBPs, which tend to improve the signal to

noise ratio, we did not see a significant change in sto-
chastic variability with inclusion of Type II receptors.
This result supports a previous assumption made in [4]
where the recruitment of Type II receptor was excluded
to simplify the modeling steps while characterizing the
noise profile of a SBP regulated BMP signaling system.

Methods
Proposed approximation method
The Chemical Master Equation (CME), which is a set of
first order differential (ODE) equations, demonstrates
loss and gain of probabilities of discrete states of a system
[10] and is often applicable to represent the stochasticity
of the system. Consider a well-stirred system at thermal
equilibrium of N different species {S1, S2, . . . , SN} with
{X1, X2, . . . , XN} molecules respectively, participating in
a total of M biochemical reactions Rμ, where μ = 1, 2, . . .
M. The state of such a system is represented by the copy
number (Xn molecules) of each species (Sn) at any given
time t and is represented as X = [X1(t), X2(t), . . . , XN(t)].
Unless a non-zero initial state is assigned, the default
initial species concentrations are always zero (Xn(t = 0) =
0, where 1 ≤ n ≤ N).
Two other quantities are further required to con-

struct the system: 1) a state-change vector νμ and 2)
propensity functions [8,12,14,18] for the reactions Rμ,
μ = {1, 2, . . . , M}. The state-change vector νµ for
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reactions Rμ is defined as νμ = [ν1μ, ν2μ, . . . , νNμ]
T,

where νnμ represents the change in concentration of
species Sn, caused by the occurrence of Rμ reaction of
the underlying biochemical system. These equations
fully define the system and the time evolution of the
probability function P(X, t) can be obtained by the
solution of the Chemical Master Equation(CME)
[8,14,18]:

∂P(X, t)
∂t

=
M∑

μ=1

(
aμ(X − νμ)P(X − νμ, t)−

aμ(X)P(X, t)
) [

(X + vμ) ∈ �
]

(1)

Here, [(X +νμ) Î Ω] is 1 if X +νμ Î Ω and 0 other-
wise. The CME representing the rate of change of prob-
ability P(X, t) in an in finitely large state-space X Î Ω is
given by taking Ω to be the non-truncated space: Ω =
NN, N = {0, 1, 2 . . .}
In Eq.1, aμ represents the propensity function to

account for transition from a given state X to any other
state, and νμ indicates the stoichiometry of the reaction
μ that results in such a transition. Eq.1 is a linear system
of differential equations and may be rewritten as follows:

d P

d t
= LP (2)

where P is the probability distribution P(X, t) for a
vector X = [X1, X2, . . . , XN] and L is the time indepen-
dent connection operator. For the steady state (SS) dis-
tribution Pss, we have:

i)Pss
X ≥ 0; ∀X ∈ � ii)

∑
X∈�

Pss(X) = 1

and iii) LPss = 0,
(3)

We assume that the deterministic steady state (SS) is
unique. The non-truncated state-space Ω can be
replaced with a truncated state-space �̂ [15,19] to
approximate the probability distribution P(X, t). We
define the truncated space as:

{
�̂ = {X : αi ≤ Xi ≤ βi, ∀i} (4)

where ai and bi are extendable left and right boundaries
of the truncated state-space. This approach is similar to
that in [20], in which it is shown that the approximation
based on the truncated space converges to the true steady
state distribution as the limits of the truncated state-space
converge to the limits of the original space.
The truncated state-space representation implies that

given some ε > 0, for a sufficiently large bi > 0 and suffi-
ciently small ai ≥ 0, the steady state probability distribu-
tion Pss (X) is approximated to within ε:

∑

X∈�̂

Pss(X) = 1 − ε

For an optimal SS probability approximation, ε should
be made as small as possible. In the truncated state-
space, Eq.3(iii) is represented as:

L̂P̂ss = 0 (5)

where L̂ is a matrix of propensities in �̂ . To get
the entries in L̂ we use Eq.1 modified so that

P (X, t) = 0 if X /∈ �̂ and aμ (X) = 0 if X + νμ /∈ �̂ . In the

truncated state-space �̂ , Eq.5 is an eigenvalue problem for

eigenvalue l = 0 and the eigenvector P̂SS can be obtained
algebraically, or with an iterative algorithm for a large,
sparse matrix L̂ .
Instead of finding the eigenvector, which can be an ill-

conditioned problem when there are nonzero eigenvalues
close to 0, we translate the problem to a well-conditioned
system of linear equations as follows.
We first evaluate the deterministic steady state (Y0) of

the system, and then select state X0 of the discrete system
closest to this deterministic steady state, where X0 =
round(Y0). Taking P̂ss to be the solution of Eq. 5 and
using the fact that the deterministic steady state solution
is unique, we observe that P̂ss (X0) is among the largest

entries of P̂ss . The states in �̂ are labeled as 1, 2, . . . , K
with state X0 denoted by j.
Then

P̂ss

P̂j
ss

= [P̂1
ss... P̂j

ss... P̂K
ss ]

T/P̂j
ss

= [q̂1, ... , q̂j−1, 1, q̂j+1 ...q̂K]T

(6)

where q̂k =
P̂k

ss

P̂j
ss

, k = 1 . . . K, q̂j = 1 . With

q̂ = [q̂1, ..., 1, ... q̂K ] Eq.5 now becomes L̂q̂ = 0 . Let L̂k be

the kth column of L̂ . Expanding L̂q̂ by column and rear-
ranging gives the following well-conditioned problem:

K∑
k=1,k �=j

L̂kq̂k = −L̂j or,

L̂′q̂′ = −L̂j

(7)

In Eq.7, L̂′ is the matrix L̂ with column j removed and
q̂′ is q̂ with entry q̂j removed. The error criterion for
the system is checked for the calculation of P̂ss until a
satisfactory value is obtained (see algorithm 1 for further
details).

Application
In order to demonstrate the usability of the proposed
steady state probability approximation method, we present
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here two example networks (example network 1 and 2)
from Bone Morphogenetic Protein(BMP) mediated signal-
ing, and characterize the stochastic behavior of the sys-
tems. In the example network 1, we consider the role of a
specific extracellular protein, Crossveineless-2(Cv-2),
which is part of a class of proteins known as Surface-asso-
ciated BMP-binding Proteins (SBPs) [4]. Cv-2 has the abil-
ity to regulate the stochastic noise in BMP signaling, and
in this example we demonstrate that the role of Cv-2 is
heavily dependent on reaction kinetics of the network: for
some sets of parameter values, Cv-2 increases the coeffi-
cient of variation of the steady state signaling distribution,
while for other parameter values it decreases the coeffi-
cient of variation.
In the second example network, we consider a model

simplification strategy as used in [4,17]. This strategy is
to omit a Type II receptor recruitment step from the
receptor oligomerization in a BMP patterning model,
under the assumption that the simplification step does
not affect the outcome of a BMP-mediated patterning
model. The obtained results by the use of steady state
probability approximation method provide a numerical
justification for the aforementioned simplification.

Background
During embryonic development, positional information is
transduced by morphogens to underlying cells that
respond to the concentration gradient of morphogen and
eventually differentiate into distinct cell types [21]. For
example, Decapentaplegic (Dpp), a drosophila homologue
of BMP2/4, forms a spatial profile to pattern dorsal tissues
in Drosophila development [21]. In a canonical BMP sig-
naling pathway, dimeric ligands bind to receptors and
form a heterotetrameric complex that consists of two
Type I and two Type II receptors. The heterotetrameric
receptor complex then phosphorylates the intracellular
signal transducer Smad and the phosphorylated Smad
forms a complex with a co-Smad. Subsequently, the
Smad/Co-Smad complex accumulates in the nucleus and
regulates gene expressions in a concentration dependent
manner [17,22].
BMP regulation occurs at many points along the path-

way, and a lot of focus has been on identifying and
understanding how the ligand activity is regulated in the
extracellular environment by secreted binding proteins.
These include molecules such as Cv-2, HSPGs, among
other reviewed in [1]. A focus of this work is to gain a
better understanding of how regulation in the extracellu-
lar region impacts cell signaling noise, and eventually
cell-to-cell variability.

Example networks
In many biochemical networks, where dynamics of the
intermediate interactions of different species (proteins)

and molecular complexes are largely unknown, screen-
ing plays a significant role in the classification of
dynamics-dependent network behavior. For example:

1. In a biochemical network where a class of secreted,
surface-associated BMP binding proteins (SBPs) such
as, Crossveinless-2 (Cv-2, node D as in Figure 1) [4]
is allowed to regulate BMP signaling, the intermediate
dynamics of the system that result in the formation
and decoupling of a transient state BMP:Type I:Cv-2
(node M as in Figure 1) are largely unknown.
2. In the patterning modeling of BMP signaling path-
ways, it is often argued as a simplification strategy that
omitting the step of recruitment of a Type II receptor
to a bound BMP:Type I receptor complex doesn’t
affect the outcomes of patterning models [4,17,23,24].
While valid in the deterministic sense, it is not clear
how this reduction impacts our estimates for noise in
the sytem.

In these systems, we apply our SS probability approxi-
mation method to evaluate the probability distribution of
different species and calculate the mean (μ), standard
deviation (s) and the coefficient of variation (� = σ

μ ;
defined as the ratio between the standard deviation and
the mean of any species) of the species distribution.
Together with this information, we can screen the net-
work for largely unknown dynamics of the intermediate
interactions and classify solutions according to a model’s
ability to meet specific performance objectives.

BMP-signaling regulation by SBPs
Signaling network
The single-cell local stochastic model that includes extra-
cellular BMP(A), receptors (B), and SBPs such as, Cv-2
(D) with biochemical interactions, rate parameters, and
connectivity is based on the network shown in Figure 1.
Mass balance equations are listed below:

R1 : ∅ k0−→ A R2 : A
k−0−→ ∅ R3 : A + B

k1−→ C

R4 : C
k−1−→ A + B R5 : A + D

k2−→ E

R6 : E
k−2−→ A + D R7 : B + E

k3−→ Z

R8 : Z
k−3−→ B + E R9 : C + D

k4−→ Z

R10 : Z
k−4−→ C + D

Out of all complexes (C = BMP:Type I Receptor = BR, E
= BMP:Cv-2, Z = BMP:Type I receptor: Cv-2), available
experimental evidence suggests that only ligand-bound
receptors C (BMP:Type I Receptor = BR) initiate signaling
to regulate downstream gene expression [17]. To focus on
the noise compensation by regulation of receptors by
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SBPs, the extracellular level of BMP (A) is treated as a

parameter A = k0
k−0

and the interactions (1-10) are simpli-

fied accordingly. For example, in the simplified model

reaction R3 is represented R′
1 : B

Ak1−−→ C .

The simplified model as obtained from reactions R1 to
R10, has 5 species {S1, S2, . . . , S5} and is described com-
pletely by a total of 8 different chemical reactions. Time
evolution of all species quantities are specified by a state
vector X(t) = [X1(t), X2(t), . . . , X5(t)]

T and state-change
vector vμ (μ = 1, 2, . . . 8), corresponding to all reactions
that describe the system. For example, when μ = 1, v1 is
[-1 +1 0 0 0]T for reaction R′

1 of the simplified system.
In this example network, techniques like those in [25]
were used to verify that there is a unique steady state
equilibrium and this ensures the applicability of the
algorithm for this example network. Numerically, we
used the polynomial root finding package hom4ps2 to
ensure that there was only one equilibrium in the posi-
tive orthant [26]. It’s worthwhile to mention that a simi-
lar approach is adopted in example network 2 to ensure
the unique deterministic steady state. For both the net-
works, we numerically determined the deterministic
steady state value Y0 using Newton’s method as

incorporated in SBTOOLBOX2 [27]. A generalized algo-
rithm for simulation according to the steady state
approximation as outlined in Methods section is given
in algorithm 1.
Algorithm 1 Evaluate steady state (SS) distribution:

L̂P̂ss = 0
Require: Unique deterministic SS solution X0

1. Reaction Networks with N Reaction R1, . . . , RN
2. Choose: ε, g0, g
3. Solve: ODE for steady state(SS) = Y0 and find dis-
crete state X0 closest to Y0, where X0 = round(Y0).
4. Initiate, ai, bi; where αi = (X0)i − γ0 ,
βi = (X0)i + γ0

5. Determine: Truncated state-space �̂ as shown in
Eq.4 and L̂ as described after Eq.5
6. Determine: Column j of L̂ corresponding to X0

7. Form L̂′ and L̂j as describe after Eq. 7.
8. Solve: L̂′q̂′ = −L̂j

9. Find P̂ss = [q̂1,...,q̂j−1,1,q̂q+1...q̂K ]T

η
, where

q̂′ = [q̂1, ..., q̂j−1, q̂j+1, ...q̂K]T and h > 0 and

η = 1 +
K∑

l=1,l�=j
q̂l is chosen so that

∑

X∈�̂

P̂ss(X) = 1

Figure 1 Example network of BMP signaling. BMP signaling is mediated by BMP:Type I Receptor (C) forms either by direct interaction
between BMP (A) and Type I (B) or via an intermediate state with BMP:Type I:Cv-2 (Z). Initially B interacts with A (Type I receptor), D (Cv-2) and
forms C (BMP:Type I receptor) and E (BMP:Cv-2) complexes respectively. Then the complexes C, E can generate the intermediate state BMP:Cv-2:
Type I complex (node Z) by interacting with D and B respectively. In the network, only BR(node C) has the ability to turn on downstream
signaling. Upon BR formation, the complex recruits type II receptor, and later initiates the phosphorylation of intracellular Smad protein.
Signaling leads to pSmad accumulation within the nucleus and gene expressions of BMP targets.
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10. Verify:

if
∑

X∈�̂,Xi= δi

P̂ss(X) ≥ ε, for δi = ai, or δi = bi then

ai ¬ ai - g
bi ¬ bi + g
Return to 5

end if

In the algorithm, the values of g0, g are problem
dependent based on the anticipated spread of the steady
state (SS) distribution. Larger g and g0 favor a larger �̂ ,
with correspondingly better accuracy, but this comes at
the expense of a larger state-space and more time
required to solve the Eq.7. The parameter ε also controls
the accuracy of the solution. In the truncated state-
space, the tail of the distribution is essentially pushed in
to the main part of the distribution and smaller ε means
that less of the tail is changed.
Simulation and discussion
The binding kinetics between BMPs (species A, Figure 1) +
receptors (species B), and BMPs + Cv-2 (species C) are
largely known from the biacore analysis data [28,29]. How-
ever, the kinetic data associated with the intermediate tri-
partite complex BMP:Cv-2:Type I receptor (species Z,
Figure 1) are currently unknown. In order to better under-
stand the dependence of the steady state distribution on
the kinetic parameters, we performed a parameter screen
for the forward and reverse reaction rates (k±s, s = 3, 4) for
the formation and decoupling of species Z. For each of
these four parameters, we use 5 evenly-spaced points on a
logarithmic scale with the range [10-1 to 101] nM-1s-1 for
the forward rates and [10-3 to 100] s-1 for the reverse reac-
tion rates. This produces a parameter grid that contains a
total of 625 different parameter vectors.
For an appropriate comparison of the noise attenua-

tion both in the presence and in the absence of Cv - 2,
species C (BMP: Type I Receptor = BR) concentration
should remain the same regardless of the intermediate

dynamics. During simulation, the amount of available
receptors (B) was fixed at 100, and a maximum of 30%
receptor occupancy was allowed for the screening of the
network. To ensure an equal amount of BR formation
for each parameter vector, we modified the level of free
ligand (A). For computational tractability, the screen is
limited to a maximum continuation of 200 Cv-2 mole-
cules, which allowed us to capture responses for all 625
different parameter sets.
In order to quantify noise in the system we measured

the coefficient of variation (� = σ
μ

) that relates the stan-
dard deviation (s) to the mean (μ) level of bound recep-
tors. The parameter screen on the intermediate
dynamics yields three primary qualitative subclasses for
Cv-2 behavior in regulation of extracellular BR (C) fluc-
tuation amplitude: i) reduced amplitude ii) increased
amplitude and iii) mixed amplitude behavior [4]. Three
primary types of responses of Cv-2 action on BMP fluc-
tuations are shown in Figure 2a-c. As seen from Figure
2a, Cv-2 leads to a reduction of BR noise amplitude,
and this is true for all Cv-2 Î [0,200]. The value of the
coefficient of variation (Λ) decreases for both increases
in the level of bound receptor and the level of Cv-2.
The subclass of increased amplitude demonstrates that
increasing the level of Cv-2 in the system increases the
value of the coefficient of variation (ΛCv2 ≠ 0 > ΛCv2 = 0)
and is valid for the range of Cv-2 values considered in
the screen (for a detailed discussion on this, interested
readers can refer [4]). Lastly, mixed amplitude is classi-
fied as type iii, which demonstrates that Cv-2 can both
increase and decrease the level of stochastic noise in the
system (Figure 2c).
To clarify Cv-2 action further, we calculated per-

centage change in the amplitude using

(% noise change = (�Cv−2=105−�Cv−2=0)
�Cv−2=0

× 100) for each

parameter set output for a given amount of BR produc-
tion (30 complexes) and Cv-2 value (105 molecules).

Figure 2 Screening result. a, b, c) Coefficient of variation (� = σ
μ

) for BR (C) (1 to 30 molecules) formation is shown both in the presence of
Cv - 2 = 105 molecules (gray) and in the absence of Cv-2 (black), where a, b, c represents the noise attenuation, noise amplification and biphasic
subclasses of Cv-2 behavior respectively. d) Histogram of noise change for all 625 parameter sets demonstrates that the majority of solutions
result in noise attenuation.
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Based on the percent change of the coefficient of varia-
tion, we classify the screening outcome: negative percent
change corresponds to noise attenuation whereas the
positive change gives noise amplification. A histogram
of all 625 parameters are shown in Figure 2d and in [4].
The implication of the screening result is that Cv-2
clearly reduces the variability of receptor activation
throughout the range of Cv-2 tested. However, as
demonstrated in Figure 2d, such a phenomenon as
exhibited by SBPs like Cv-2 is found to be highly para-
meter dependent.
During the simulation, the kinetic rate constants for

the intermediate complex BMP:receptor:Cv-2 (node Z,
Figure 1) formation and decoupling were chosen from
the parameter grid and representative kinetic rate con-
stants for three different type of Cv-2 responses are
enumerated in Table 1.
Analysis of Type II receptor recruitment process
In the signaling network shown in Figure 3, recruitment
of Type II (= R1) receptors can happen in two different
ways: 1) BMP binds with Type I (= R1) first and subse-
quently, recruits Type II receptors to form a tripartite
complex BMP:Type I: Type II (BR1R2), and 2) BMP

directly interacts with Type I and Type II separately,
and an intermediate state forms a tripartite BMP:Type I:
Type II complex. In both situations, BMP:Type I:Type II
complex (BR1R2) is the sole signaling complex responsi-
ble for the activation of downstream pathways.
All possible biochemical interactions that represent

the ligand binding with Type I receptors and further
recruitment of Type II receptors are:

r1 : B + R1
k1−→ BR1 r2 : BR1

k−1−→ B + R1 r3 : B + R2
k2−→ BR2

r4 : BR2
k−2−→ B + R2 r5 : BR1 + R2

k3−→ BR1R2 r6 : BR1R2
k−3−→ BR1 + R2

r7 : BR2 + R1
k4−→ BR1R2 r8 : BR1R2

k−4−→ BR2 + R1

The chemical interaction of Case II can easily be
obtained from the interactions (r1 to r8) of Case III
(Figure 3) by equaling the kinetic rate constants k±2 and
k±4 of Case III to zero. For the kinetics, we relied on the
published data [1]. The rate at which a Type II receptor
is recruited upon formation of a BMP:Type I complex
(BR1) is comparatively faster than the rate of BMPs and
Type I receptors interactions [17]. However, exact values
of the rates of formulation of (BR1R2) complex are not
readily available, and hence, parameters were screened

Table 1 Kinetic rates, Figure 2(a,b,c)

Figure k3 (molecule-1 sec-1) k-3 (sec-1) k4 (molecule-1 sec-1) k-4 (sec-1)

2a 1.3282 0.0100 1.3282 0.0100

2b 0.0133 1.0000 0.1328 0.0100

2c 0.1328 1.0000 0.4200 1.0000

Figure 3 Network cases for Type II recruitment analysis in context of Drosophila melanogaster development. Case I) Recruitment of Type
II is overlooked here and it imitates the simplified model used in previous studies. In this type of network, BMP:Type I complex (BR1) acts as the
sole signaling complex. Case II) Upon the formation of a BMP: Type I complex, subsequent recruitment of Type II receptor is considered here. But a
direct interaction between BMP and Type II receptor doesn’t happen in the network. Here, a tripartite complex BMP:Type I:Type II (BR1R2) activates
the downstream pathways. Case III) Similar to Case II, but with an exception that a direct interaction between BMP and Type II receptor is allowed
to form a BMP:Type II complex (BR2) by changing BR1 to BR2. The kinetic equations are equivalent to the SBP system investigated in [4].
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over the physiological ranges with values between [10-1 to
101] nM-1 s-1 for the forward rates and [10-3 to 100] s-1

for the reverse reaction rates.
Simulation and discussion
To simulate the networks (as shown in Figure 3) for the
calculation of the coefficient of variation Λ, we applied
the truncated state-space approximation. During the
simulation, a target of 1 to 30 signaling complexes (BR1

for Case I and BR1R2 for Case II, Case III) in the extra-
cellular region is considered so a direct comparison can
be made for the coefficient of variation (� = σ

μ
)

between BR1 and BR1R2.

The coefficient of variation (Λ) for BR1R2 remains very
close to the coefficient of variation of BR1 as shown in
Figure 4a. Proximity in the coefficient of variation
between BR1 and BR1R2 (as shown in Figure 4a) demon-
strates that the stochastic variability of the system is not
affected by the recruitment of the Type II receptor. It is
also found that increasing the concentration of R2 brings
the coefficient of variation of BR1R2 into very close
agreement with the coefficient of variation of BR1 as
shown in Figure 4b. A similar outcome is obtained from
the simulation of Case III of the Figure 3 and the result
is shown in Figure 4c. Finally, all the outcomes are

Figure 4 Comparison of Λ. a) The coefficient of variation of BR1 (calculated from Case I Figure 3)and BR1R2 complexes (calculated from Case II
Figure 3) is compared. The variability of the system seems to be invariant in the presence of Type II. b) Concentration dependency of Λ as a
function of R2. c) Same as plot “a”, however, direct interaction of BMP and Type II is allowed as in Case III, Figure 3. It’s clear that the stochasticity
of the system does not change over the range of values tested. d) Summary of BR1R2 formation and its impact on signaling noise.

Figure 5 Comparison between SSA and Direct SS method. a) In Gillespie’s method larger ‘End Time’ (ET) is required (which translates into a
higher processing cost and time) to ensure the accuracy of outcome. Three different ET: 280 hrs, 2800 hrs, 28000 hrs are shown. b) Effect of
kinetics associated with BR1 interacting with R2. The steps of interactions are clearly shown in Case II of Figure 3.
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summarized in Figure 4d, where it is shown that regard-
less of the different cases as shown in Figure 3 the coef-
ficient of variation (Λ) of BR1R2 is approximately equal
to that of BR1.
Additionally, it is also found from the simulated result

that the rate at which the BMP:Type I recruits Type II
receptor (Case II in Figure 3) also decides the effect of
Type II recruitment process on the stochastic variability
of the system. With a comparatively slower rate, the
coefficient of variation tends to oscillate as observed in
Figure 5b. When the recruitment rate is slower than the
formation rate of BMP:Type I complex, free Type II
receptors fail to get frequent access to BMPs via the
BMP:Type I:Type II tripartite complex, and can cause
the concentration of BMP:Type I:Type II complex to
oscillate more than the case with a comparatively faster
dynamics. Thus, mitigating noise is not a natural output
of receptor oligomerization + transudction and instead,
requires another co-factor such as Cv-2 [4].

Benchmarking of Direct SS approximation method
Carrying out large-scale stochastic simulation can be
time consuming but calculation of the approximate solu-
tion via a truncated state-space can greatly improve the
speed. In order to show the performance improvement in
terms of computational cost and time of direct SS
approximation in the analysis of stochastic biochemical
networks, we benchmarked the method by comparing it
with Gillespie’s stochastic simulation algorithm (SSA)
method [9] for numerical calculations of stochastic bio-
chemical networks. In the benchmarking, the processing
time taken by each method was calculated based on the
steps in the blue box as mentioned in the flow chart dia-
gram (Figure 6). The sample problem was calculated for
both methods on the same hardware and software config-
uration: Processor: Intel(R) Xeon (R) CPU E5405, 2.00
GHz (quad-core), RAM: 16 GB, SBTOOLBOX2 [27] and
Matlab R2010a with SiMBiology 3.0.
The processing time and computed Λ values for a target

BR1R2 = 20 for Case II, Figure 3, is provided in Table 2 to
show the accuracy and time gain that can be obtained if
the proposed direct SS distribution approximation method
is used. Gillespie’s SSA takes longer to generate an output
that contains enough information to calculate the distribu-
tion as compared to the time taken by Direct SS approxi-
mation method. The problem becomes severe when
continuation of a multiple parameters are necessary to
explore the system’s parameter dependency as done pre-
viously in [4].
In Table 2, the term ‘End time (ET) in Gillespie’s SSA’

corresponds to the amount of time the system dynamics
were allowed to evolve. The accuracy of the Gillespie’s
SSA approach depends on the ‘End time in Gillespie’s
SSA’(directly contributes to the processing time) set in the

model simulation, and is shown clearly in Figure 5a and
Table 2. Very low propensities require long simulation
times in Gillespie’s SSA due to the infrequency of events.
Accuracy of Gillespie’s method for the sample example
increases as the ‘End time in Gillespie’s SSA’ is increased.
This large simulation time in turn directly impacts the
processing time, resulting in a large computational cost to
achieve the desired accuracy (Table 2).

Conclusions
In this study, we illustrate an approach of determining
the steady state probability distribution efficiently to
carry on continuation in multiple variables within a
large-scale parameter screen. The approach is demon-
strated further with a couple of applications, where we
investigated 1) the dynamic dependency of a class of
proteins, known as SBPs, in the regulation of BMP sig-
naling, and 2) the binding of Type II receptor in BMP
signaling. The results suggest that the recruitment of a

Figure 6 Benchmarking of Direct SS approximation method.
Benchmarking of Direct SS approximation method.
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type II receptor in BMP signaling doesn’t affect the sto-
chasticity of the system over the range of concentration
and parameters investigated. Direct calculation of the SS
probability distribution can be successfully applied to
systems with a unique deterministic SS solution, and
future work will investigate similar approaches for other
biochemical systems.
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