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ABSTRACT

This paper describes an experimental study caaigan a refrigeration scroll compressor with aritheut vapour
injection. The test rig designed for that purpoakdws evaluating the performance over a wide rasfgeperating
conditions, by varying the supply pressure, thedtipn pressure, the discharge pressure, the sspplgrheating
and the injection superheating. 97 Steady-statetpare measured, with a maximum isentropic efiicyeof 64.1%
and a maximum consumed electrical power of 13.1 KWtitical analysis of the experimental resultshien carried
out to evaluate the quality of the data using ahimeclearning method. This method based on Gaus$iacesses
regression, is used to build a statistical opegatirap of the compressor as a function of the diffeinputs. This
statistical operating map can then be comparedg@xperimental data points to evaluate their aogur

1. INTRODUCTION

Multiple studies have demonstrated that using vapmuliquid injection during the compression pracesan
increase the part-load performance of refrigeratind heat pump systems (Winandy, 2002; Shi, 200%&dng,
2009). Injection compressors are now common compsrend largely adopted in many HVAC systems. Harev
accurate simulation models of the compressor dfaséded to improve and optimize such systems.

These models differ by their level of details, &trgsage, accuracy, application range, etc. In rcasgs, the target
systems are too complex to be modelled deterntaitfi i.e. taking into account all the physicahemical,
thermodynamic phenomena. Therefore, a whole rarigenaxels rely on experimental data to tune lumped
parameters (calibration) and check their accuraaldation). These models can be referred to ag lgo& or semi-
empirical models, a good example being the onegs®gp by Winandy and Lebrun (2002) and taking imtmoant
the main sources of losses such as under and gpansion, internal leakage, pressure drop, friciod ambient
losses.

Some other models can also be referred to as penepjrical, or statistical. It is the case e.glioéar regressions,
in which experimental data is used to derive thefft@ents of a purely mathematical expression thas not
originally designed to describe the physics of phecess. A very common example is the model prapasehe
European standard EN12900, expressing the conspaowdr and the refrigerant flow rate as a functidrthe
condensing and evaporation temperatures:
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Wy =Co+ C.Toy + Co.Tog + C3.TA + Cu. Top. Teg + C5. TE + Co. TS, + C7. T T2 1)
+Cq. T T + Co. TS,

Mcp = Cmo + le- Tev + sz- Tcd + Cm3- Tezv + Cm4- Tev- Tcd + Cms- Tczd + Cm6- Te?;z (2)
+Cm7-Tea- T + Cimg-Toy- T2y + Cino. TS,

The common point between these different types edets is that they rely on accurate experimenttd tatune
their parameters. However, this data is inheremiljtivariate and is subject to many sources ofe@ind errors,
such as sensor malfunctions, transient phenomeeaatmr misuse of the test rig, noise in the detpiaition chain,
unaccounted for external influences, etc. It igafare useful to develop a tool that can easilessshe quality of
the experimental data: this tool should measureett@ainability of the acquired variables with respto the
externally imposed operating conditions. It shomldreover assess the sensitivity of the dependeidbla to the
measured ones in order to reject non-relevant agpday (input) variables. The scientific literatupeovides

different examples of such experimental data fgedtion compressors (Winandy, 2002; Cho, 2000; GZtf)3;

Dutta, 2001; Wang, 2007), but none of these studieside a detailed analysis of the data quality ah the

explainability of the measured performance withrteasured operating conditions.

Gaussian Processes provide an automatic and rishostwork to perform multivariate regression. THeayesian
formulation allows predicting the variable of irgst for new/unseen data points. Furthermore, ivides

confidence intervals which boundaries depends erd#ia density: if the data density is locally hitite variance
will be small, on the opposite, if the density @wvl the variance is larger, leading to more distzomfidence
boundaries.

It can be shown that Gaussian Processes perforrh better than traditional linear regression in saveays. It is
less subject to over-fitting, to the Runge phenoonerand exhibits a much better behavior outsidéheffitting
range. It allows assessing the quality of the drpamtal data by building a smooth operating maphef process
with respect to the explanatory variables (inpat&) comparing the average distance between theiegrgal data
and this operating map.

This paper presents an experimental campaign daotié on a vapour injection scroll compressor. Tést rig is
described and the main experimental results areiged. A critical analysis of the experimental déathen
provided using a novel method involving GaussiascBsses regression.

2. EXPERIMENTAL SETUP

The compressor under investigation is a standdrijeeation scroll compressor with vapour injectidrne swept
volume is 166 cm?3 and the nominal rotational spe€900 rpm.

In order to test the compressor over a wide rariggperating conditions, a dedicated test rig idtbihis test rig
differs from a standard injection heat pump becatige necessary to ensure an independent confrbbth the
evaporation and injection pressures. The superteati the compressor supply and injection port khalso be
controlled.

A schematic representation of the test rig is psepan Figure 1: The refrigerant loop comprisesa@nnevaporator,
an injection evaporator, the compressor, a condears several expansion valves. The refrigeraf4687C. The
main evaporator and injection evaporator are fat wiglycol water (50% volumetric solution of prdgrye glycol).
The glycol water loop comprises a pump, an elegitrimiler, an expansion tank, a by-pass loop affiérdit
manual control valves (at the inlet and outlethaf main evaporator and the injection evaporator).

The condenser is cooled by tap water with a rekitimn pump to achieve a good control of both tiletiand outlet
water temperatures.

The characteristics of the main components areigedvhereunder:
* The main evaporator is a coaxial heat exchanger.
» The second evaporator is a coaxial heat exchanger
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» The boiler is made of two concentric cylinders, thirnal cylinder being completely closed andefill
with gaseous nitrogen to deal with the thermal ez of the liquid. The glycol water is heated 1y
electrical resistances (6 resistances of 9 kW aresidtances of 6 kW). A flow-check sensor is ithsthat
the boiler exhaust, to protect the boiler from tveating. The pump nominal flow rate is 40m3/h.

» The boiler is equipped with a temperature reguhasigstem, which allows maintaining a stable tenpeea
at the boiler exhaust (by switching on and off amtlulating the electric resistances).

» Two expansion valves are installed in parallehi@ injection loop. This configuration is necesdaggause
of the wide range of thermal loads to be testedying the thermal load has an impact on the refeage
flow rate, which requires the use of expansion eslwith different orifice sizes.

» Three expansion valves are installed with diffeiaifice sizes for the same reason as above.

» The condenser is a shell and tubes heat exchandersa tap water for refrigerant condensation.

i
T=Temperature \Z e
P=Pressure €l

W=Mechanical power *

M=Refrigerant mass flow JRBI PUMP Tam

D=Refrigerant density =2 @
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RB=Stop valve

@ DO

SECOND o
EVAPORATOR
1 RBIT

=

COMPRESSOR

PUMP

MAIN
EVAPORATOR 1 E1)

[BOILEY

Figure 1. Text bench layout (adapted from Zabeth, 2011)

3. EXPERIMENTAL RESULTS

97 operating points are measured by averagingtteglg-state data on a period of about 120 sec@uine tests
are carried out with injection while for some othehe injection valve is close. The operating ¢ooms are varied
to cover a testing range as wide as possible Wéttdst rig. In this work two types of variables distinguished:

* The imposed operating conditions: these conditemesimposed to the compressor by the test rig and b
the operator. These variables are consider&apats of the process.

» The measured performance variables: these variabdesonsequences of the inputs variables and depen
on the compressor only. They are imposed by thegsand are consideredoaputs of the process.

It should be noted that the distinction betweerutrgmd output variable can be arbitrary. As an gayrit can be
considered that the evaporation pressure is impbgéke process and the evaporator mass flow sdataposed by
the compressor. However, it would also be acceptabkonsider the mass flow as an input and thespre as an
output.

The main performance indicator considered heredbmpressor isentropic efficiency. It computefbdews:
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Mgy (hex,s _hsu) + Minj (hinj,ex,s_hinj)
£ = 7 3)

where h,,; and h;,;.,s are the isentropic outlet enthalpy considering theply and injection entropies
respectively.

The variation range of the inputs and outputs dytite experimental campaign is summarized in Thble

Table 1: Overview of the experimental results

| Variable name | Range
Imposed oper ating conditions (inputs):
Supply pressu Psubar] 1.52-9.21
Injection pressul Pinj [bar] 1.98-14.1
Dischargi pressur Pex [bar] 11.3-33.2
Supply superheatit AT, [K] 1.1-43.€
Injection superheatir AT i [K] 0.5-52.7
M easur ed perfor mance data (outputs)
Supply mass flow ra My, [kg/s] 0.0410- 0.242"
Injection mass flow ra M;,; [kg/s] 0-0.042¢
Electrical powe W [kW] 4.4-13.1
Exhaust temperatt T.. [°C] 56.5-121.2
Recalculated performance data:
Isentropic efficienc | £, [%] | 44.7-64.]

Figure 2 shows as an example the measured isentéffmiency as a function of the overall presstatéo. A trend

can clearly be deducted from this plot: the efficigincreases with the pressure ratio, passesngxémum around
r,=4 and then decreases. This effect is a well-knefiect and is due to under and over-expansion $ofaoilin,

2012). However, Figure 2 also shows a large sdatfeamong the data points, due to the variatiomthef other
operating conditions. This highlights the necesgityconduct multivariate analyses for this kindposbblem: the
isentropic efficiency (an output) depends on mbentone operating conditions (inputs). It is therefimportant to
determine which are the relevant inputs, and tabdish with which accuracy a given set of inputa ba used to
predict the measured output values.

0.65,

L ‘:. . ®
0.6 };;:‘" .'o!.':.o.
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Figure 2: Measured isentropic efficiency vs. pressure ratio

22" International Compressor Engineering Conferend¢euatue, July 14-17, 2014



1650, Page 5

4. DATA ANALYSIS

To assess the quality of the measured data, avaidtie regression is performed using Gaussian eBses
(Rsmussen, 2006). Gaussian Processes regressigrattern recognition technique (Bishop, 2006).sehmethods
build a model from a learning set, comprising haghuts and corresponding outputs. The model cam bleeapplied
to new/unseen inputs and provide an output, i.ekeme prediction. Pattern recognition techniquesehbgen

successfully applied to various fields (e.g. impgecessing, bioinformatics, neuroimaging). Thiserdgcsuccess is
mostly due to the introduction of kernel methodadante, 2005), which allow a computationally effiti way of

solving ill-posed problems, and, along with propegularization, avoid overfitting (Shawe-Taylor,02). Kernel

methods consist of a collection of algorithms basedpair-wise similarity measures between all eXaswr

patterns, summarized in kernel matrix. The choice of the kernel is an important paramefethe modelling

procedure, since it defines characteristics oftloelel, e.g. smoothness, periodicity, complexity.

In the present case, the goal is to build a smouthidimensional hyperplane representing the perforce map of
one output as a function of the inputs. The hymemplshould be smooth to avoid fast variations i dinection or
another, which thereby assumes slow, continuousgg®in output values. In this context, any outtiata point
(e.g. due to a sensor malfunction) would have g h@v weight in the building of the hyperplane, whiwould lead
to a large distance between the data point antytherplane, in the multidimensional space.

In the present work, the smoothness of the hypeepis defined by the choice of a Square Expone(figl a.k.a
Gaussian) kernel. Mathematically, considering asltt D = {x, v}, i=1...N, consisting of pairs ofamples (or
feature vectors) x,0 R° andlabels y,, the SE kernel is written:

kse (X, X)) = 0% exp (— %) 4)

Where ke represents the similarity between feature vectand x’,o° is the variance and | is the length-scale, i.e. |
determines the speed at which the model can vary.

In the present case, it is suspected that the msjumild not vary at the same speed in all direstide. input
dimension. To allow for different speeds of vanatiin different dimensions, the model is based artoAatic
Relevance Determination (ARD), which defines a thrgrale per dimension, instead of one length-staleall
dimensions.

To assess the accuracy of the model, a cross-tialidia usually performed. This means that the sizttés divided
in two: one part is considered as training sehuidd the model (with inputs and output), and tlleeo is used to
predict the labels;¥ of new/unseen inputs. The predicted labels aem ttompared to the true labels o avoid
losing data, the partitioning is then rotated, wiach partition (referred to as a fold) leadingato accuracy
evaluation. Results are then averaged across ditigas. In this work, the accuracy of the modedsnassessed
using a Mean Average Relative Error (MARE), base@ ¢eave-one-out cross validation. |.e. for eadth, fone data
point was used as test while all the others weee tis train the model.

In addition to the classification, a step of featselection was considered: it automatically seledtich inputs are
of importance for the model and reduce the dimevaity of the hyperplane. In this work, the apptoéallowed is
the same as in (Shrouff, 2012): the inputs are cddse by one, and for each possible combinatiommits (e.g.
[Psds [Psw Bnil, [Psw Pinj» Pexe ATsw ATinj]), @ GP regression is performed and evaluated f@dtere set leading to the
smallest MARE is then considered for further cliasaiion.

Figure 3 and Figure 4 present two examples of sumlysis for the case with two different inputste inputs
regression is the maximum dimensionality that cendisplayed in a 3D plot). The smooth surface s GP
regression while each cross indicated a data plinEigure 3, the output power is predicted as rection of the
injection pressure and of the discharge pressure. distance between the data points and the snsomthce is
small, which indicates a good fit and shows that tlutput can be correctly predicted with these mmuts. In that
case, the value of MARE is 2.25%. On the contrigure 4 shows that the distance between the datéspand the
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smooth surface is high when the two inputs arerjeetion pressure and the supply temperature. ifldisates that
those inputs are not suitable to predict the oupputer. In that case the value of MARE is 15.3%.

In addition to features containing only a low leeéinformation regarding the variable of interexiding irrelevant
features also adds noise to the inputs-output painsidered for training the model. Therefores iexpected that the
MARE will first decrease when adding relevant disiens, but will then increase when adding too mamyevant
features (inputs).

|

L1

!

Wdot [kW]

Figure 3: Prediction of the output power with two relevamputs (R; and R,)

Wdot [kW]
A A

I

40
0 2 5 10 15

Tsu [°C] Pex [bar]

Figure4: Prediction of the power with a non-significantinget (R, and T,)
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The different inputs can therefore be classifieteims of relevance by their impact on MARE. The RERvalues
are reported in Figure 5 for the different combioas, starting by the most relevant input and agldire following
most relevant inputs at each simulation. As shawfigure 5, the MARE decreases for the three fimstits, but
increases when the temperature inputs are addes.shbws that the temperatures should not be ceretdas
relevant inputs for this process.

[pex] | 7.91
[pex, psu] | 2.25
[pex, pinj, psul 1 1.33
[pex, pinj, psu, tsu] 1 1.46
[pex,pinj,psu,tsu,tinj] 1 1.86
0 2 4 6 :
MARE [%]

Figure5: MARE for different set of inputs

5. CONCLUSIONS

This paper presents a novel method to analyse mezh®xperimental compressor data. The method reles
Gaussian Processes regression and allows evaluhBnguality of the data using a numerical indic§tddARE).
This kind of indicator is of primary importancense it can be used to assess the quality of ctioeléetween
some measured operating conditions (inputs) andesomeasured performance data (outputs). It proviales
benchmarking standard to compare different seéxpérimental data.

In addition to the evaluation of the quality of timeasurements, the method also allows to evaluaighwariable
are relevant for the prediction of the output value

The method is illustrated for the practical casemfinjection scroll compressor. The test rig destgto measure
the compressor performance is described, togethbrits control. 97 steady-state operating points measured,
and the achieved performance is provided. By apglyihe method proposed in this paper, it can beloded that
the output power can be predicted with the measexpthnatory variables with an average error 08%3
Furthermore, the feature selection capability ef phoposed method allows determining the relevariikle in the
prediction of the output power. These variablesthesthree pressure levels. The temperature measatse only
present a very limited influence on the performaand should not be taken into account since theyedse the
accuracy of the prediction.

NOMENCLATURE
P, ¢ pressur (bau) inj injection
T temperatur (K) S isentropic
M mass flow rat (kgle) su supply
W mechanical compressor pov (W)
\Y} volume (md)
N compressor revolution spe  (1/9)
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h specific enthalp (J/ke)

Subscripts Greek symbols

cp compressor A difference

ex exhausted € efficiency
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