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Abstract 

A sensor concept is developed and analyzed for in situ characterization of a thin dielectric layer.  

An array of long, planar electrodes is flush-mounted into opposing faces of two substrates on 

either side of the dielectric layer.  The substrates are oriented such that the lengthwise dimensions 

of the opposing electrodes are orthogonal.  Capacitance is measured between single electrode pairs 

on opposite substrates while all other electrodes are grounded.  The electric field between the 

active electrodes is sharply focused at their crossing point, resulting in high sensitivity to void 

content in a square detection zone of the dielectric layer.  For a fixed interfacial gap size, direct 

proportionality of the capacitance with void fraction within the detection zone is poor for high 

electrode-to-electrode spacing on the substrates, but improves dramatically as this spacing is 

reduced.  Three methods of deriving a simulation-based sensitivity response of measured 

capacitance to any arbitrary two-dimensional void geometry are investigated.  The best method 

requires data from simulations of an empty air gap and a TIM-filled gap, and uses a reduced-order 

superposition technique to predict the normalized capacitance value obtained for any void 

geometry to within 10% of that predicted by a highly-fidelity direct simulation.  The sensing 

technique is demonstrated using manually introduced voids of 250 m to 2000 m diameter in a 

254 m-thick interface material layer with a dielectric constant of 4.7.  The relationship of the 

capacitance to the void fraction is shown to fall within the predicted bounds. 

Keywords: thermal interface, dielectric, capacitance, impedance, nondestructive, void, tomography 
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1.  Introduction 

 Dielectric materials are ubiquitous in industrial processes and products.  Dielectric thermal 

interface materials (TIMs) are often used in electronic packages, where efficient thermal transport is 

essential to continuous function.  Morphology characterization of these materials is required for 

predicting performance.  Measurement techniques used to characterize these materials may be used for 

other media, such as polymer sheets or dielectric fluids in narrow microfluidic channels, where non-

intrusive void/bubble detection is desired.  In microelectronic packages, heat generated by the processor 

must transfer through multiple intermediate components before it can be dissipated to the ambient.  

Thermal interface materials serve to minimize thermal contact resistances at component interfaces and 

prevent overheating.  Without a TIM layer present, heat flow is constricted to the solid-spot contacts 

between asperities on mating hard surfaces, which may only offer 1-2% of the nominal contact area [1]. 

 Predictive modeling of the time-dependent thermal conductance of TIM layers in service 

conditions informs industrial development of high-performance electronics [2].  Analytical and semi-

empirical models of thermal interface contact resistances have been reviewed by Prasher [3] and Gwinn 

and Webb [4].  Void formation is the primary thermal performance limitation for TIM layers.  The effects 

of TIM-to-substrate interface resistances may be considered when estimating the total layer resistance [3], 

but these are often inconsequential compared to the resistance due to voids in the bulk material.  The 

influence of voids on the TIM layer thermal resistance may be readily simulated by considering a reduced 

thermal conductivity within the void region.  Ankireddi and Copeland [5] simulated thermal transport in a 

large set of TIM layers with randomly distributed voids to produce statistical performance metrics that 

inform quality control guidelines for package assembly. 

 The uniformity of a TIM layer is typically determined by assembly processes and 

thermomechanical stresses experienced in service, and therefore, experimental characterization 

approaches that evaluate the evolution of performance in situ, during the course of thermomechanical 
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cycling, are required for obtaining real-time feedback on the TIM design.  Methods for experimental 

evaluation of TIM layers include direct evaluation of thermal performance [1, 4, 6, 7], indirect void 

detection by infrared imaging [8, 9] or infrared microscopy [10], and physical characterization.  First-

order physical characterization of voids may either be performed nondestructively with transparent 

substrates which cannot mimic TIM-substrate thermomechanical interactions experienced in real 

applications, or by destructive investigation which only provides data at a single point in time [7].  More 

detailed, nondestructive physical characterization of TIM layers may be achieved with acoustic 

microscopy [7, 9, 11] or x-ray imaging [11]. 

 The present work develops a new technique for the physical characterization of electrically 

insulating layers by capacitance measurement.  Impedance-based sensing has found applications in the 

measurement or detection of liquid level [12, 13], displacement [14], pressure [15, 16], pH level [17, 18], 

chemical concentration [18], polyimide curing [19], coating degradation [20, 21], flow regime [22], phase 

distribution in multi-phase flow over a surface [23], and imaging of buried objects [24].  Capacitance-

based sensing may be similarly applied for void detection in dielectric TIM layers.  Capacitance is 

measured using electrodes embedded in the mating substrates.  The contrast in dielectric strength between 

the TIM material and the void regions provides a means for void detection.  Ultimately, the method could 

provide a means to monitor an experimental TIM layer in situ as the material develops void regions, 

providing high-temporal-resolution data over aging or thermal cycling processes without pausing the 

thermal schedule of the material under test. 

 One convenient electrode configuration for capacitance-based sensing is to place an array of long, 

parallel electrodes on either side of the interfacial gap, oriented orthogonal to each other (orthogonal mesh 

configuration); this provides a grid of crossing points at which capacitance may be measured.  Immersed 

wire-mesh sensors employing this configuration (~0.1 mm electrode diameter with 2-3 mm pitch) have 

been used to characterize a cross-section of multiphase flow [25], with a binarized capacitance measured 

at each crossing-point corresponding to the local fluid phase.  This approach has also been demonstrated 

for packed beds [26] with resolution corresponding to the electrode pitch.  As an extension of this 
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concept, a field-focusing sensor has been used to characterize the phase distribution in flow through a 

channel between parallel plates containing embedded electrodes [27].  The resolution of this sensor 

degrades rapidly with increasing channel height, as the region of strong electrical field created by 

actuating an opposing electrode pair begins to significantly overlap with corresponding regions between 

adjacent pairs.  Although phase maps obtained from the field-focusing configuration may be improved 

with a deconvolution algorithm [28], spatial overlap in electric fields created by different pairs, as well as 

soft-field effects, obfuscate the task of assigning a local void fraction to each measurement. 

 An orthogonal mesh configuration of opposing substrate-embedded electrodes is analyzed here 

for an interfacial gap filled with a TIM layer as a means of obtaining a set of local void fractions over 

finite sections of the TIM footprint.  Three reduced-order models for characterizing the sensitivity 

response of a representative crossing point (junction) are evaluated against direct simulation of a large set 

of random 2D void geometries.  The reduced-order models are capable of providing an estimate of local 

void fraction in the TIM layer, to within uncertainty bounds that depend on sensor design.  An 

experimental apparatus is used to demonstrate sensor detection of voids that are between 250 m and 

2000 m in diameter present in a dielectric TIM layer of 254 m thickness. 

2. Sensor description 

 The near-field focusing sensor consists of two substrates containing electrodes flush-mounted 

into opposing substrate surfaces as shown in figure 1.  The electrode surfaces are exposed to the TIM 

layer in between the substrates.  Capacitance measurements taken between electrode pairs, at junctions 

where they overlap, yield information regarding the effective two-dimensional distribution of permittivity 

of the layer.  When the gap is filled with a dielectric medium, any air voids present near a junction reduce 

capacitance.  It has been shown that, for an electrode width of 640 m, femto-Farad measurement 

resolution is sufficient to resolve partial voiding of a junction region in a 25 m dielectric layer [29]. 
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 In the current work, a 254 m-thick dielectric solid-phase TIM layer is considered.  An 

experimental test unit, with electrode width w = 640 m, electrode depth d = 850 m, and electrode pitch 

p = 1550 m (see figure 1) is used for validation of the sensing approach.  The test cell contains two 

arrays of five copper electrodes each, embedded in transparent acrylic substrates.  Plastic spacers fit 

between the substrates to create a 254 m gap.  The TIM material chosen for simulation and experimental 

validation is Tflex SF210, with an estimated dielectric constant of 4.7 at the measurement frequency [30]. 

 An electrical characterization station was created with individual grounding probes for each of 

the electrode contacts and manually operated excitation and receiver probes.  The excitation and receiver 

probes are shielded by a coaxial grounded sheath.  To eliminate parasitic capacitance between the 

excitation and receiver probes, the probe length beyond shielding is minimized (~1 mm).  Capacitance is 

measured at 32 kHz with a commercial meter (Analog Devices, AD 7746) with absolute uncertainty of ±4 

fF [31].  Repeatability variation for several cases of a non-voided TIM layer was ±2 fF.  

Junction capacitances in the sensor array are measured sequentially for individual single 

opposing-electrode pairs, with the inactive electrodes held at the virtual ground of the capacitance meter.  

One electrode of the active pair serves as the excitation electrode, oscillating between ground and the 

supply voltage VDD, while the other electrode serves as the receiver, held at VDD/2.  Measurement of the 

desired capacitance with an oscillating driving potential in this stray-immune configuration [32] 

neutralizes spurious capacitance paths leading from the receiver to any constant-potential body such as 

nearby grounded electrodes.  Charge transfer from the excitation to the receiver determines the effective 

capacitance of the pair.  When a dielectric TIM layer fills the gap between substrates, the junction 

capacitance is higher than for an air gap; measured capacitance values that fall between the known values 

for TIM-filled and air gaps indicate a partially-voided condition in the TIM layer in the region of the 

junction. 
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3. Electric field modeling 

 The capacitance measurements in this work are taken at low frequency (32 kHz), resulting in a 

quasistatic electric field in the active electrode junction region of interest.  Electric potential, , is 

distributed throughout the domain according to the divergence of the electric displacement field, 

 ( )= 0ε φ   (1) 

For the active junction, the top electrode acts as the excitation electrode, oscillating between supply 

voltage, exc = VDD, and virtual ground, exc = 0, while the bottom electrode acts as receiver electrode, 

held constant at exc = VDD/2.  During the excitation wave trough, electric flux is from the receiver 

electrode to the excitation electrode, as shown in figure 2.  At the crest, the electric field is reversed with 

the flux going from the excitation to the receiver electrodes, but remains largely unchanged between the 

receiver electrode and grounded neighboring electrodes.  The capacitance of the junction is determined by 

the net charge transfer seen by the receiver electrode, Q. 

 For modeling purposes, the charge transfer to the receiver electrode may be calculated as the 

surface integral of the net displacement electric field on the exposed faces of the receiving electrode, 

 ( ) ( )
crest trough

d dQ ε φ ε φ =   −   S S  (2) 

Experimentally, the discharge is calculated via current I into the receiver electrode during the step change 

as 

  d

t t

t

Q I τ

+

 =  . (3) 

The junction capacitance is calculated as 

 

DD

Q
C

V


= . (4) 

 The simulation domain and boundary conditions for a representative internal sensor junction are 

shown in figure 3.  Two electrostatic numerical simulations are performed with the excitation electrode 
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set at exc = 0 and exc = VDD, with VDD = 1 V.  The charge transfer is calculated according to (2) using the 

simulation results at both excitation conditions.   

 In the simulation, a second-order 7-point numerical scheme is used to solve (1).  A regular mesh 

of approximately 400,000 control volumes is used.  The harmonic average of neighboring-cell 

permittivity values is used in the finite-difference spatial derivative approximations between adjacent 

cells.  Due to the high L/H aspect ratio of the layer, the limiting factor in grid independence is the number 

of cells bridging the thickness, H.  Eight control volumes were found sufficient to resolve the gradient 

across the gap, with a junction capacitance change of less than 0.03% when doubling the gap resolution.  

The TIM material, acrylic substrate, and air are modeled with dielectric constants of 4.7 [30], 3.0 [33], 

and 1.0 respectively. 

4. Reduced-order sensitivity function models  

4.1 Two-dimensional approximation 

 Capacitance values obtained from the simulation for the solid-TIM and air gap cases are 214 fF 

and 65 fF, respectively.  The span between these two values provides the means for detecting partial 

voiding conditions when the measurement resolution is on the order of 1 fF.  The detection volume of the 

junction is defined as the p × p × H gap volume centered at the junction.  In this analysis, the void fraction 

characterization is simplified by approximating the gap region as two-dimensional.  Thus, all voids are 

simulated as having constant cross-section in the z dimension, and the reduced-order model analysis is 

performed on the two-dimensional detection zone, , constituting the p × p region centered at the 

crossing point.  A sensitivity function (x,y) defined on the detection zone is proposed to describe the 

spatial sensitivity of the measured capacitance to any arbitrary void geometry, , as shown in figure 4. 

 Three different methods of deriving such a sensitivity function are explored.  In this analysis, 

capacitance is normalized as 

 
* S

S V

C C
C

C C

−
=

−
, (5) 
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where CS is the capacitance of the junction when filled with the TIM , and CV is the capacitance of the 

junction as an air gap.  The normalized capacitance of the junction, C*, follows the junction region void 

fraction, , from 0 at no voiding ( = 0) to 1 at complete voiding ( = 1).  In the subsequent analysis, the 

detection zone is also normalized by the electrode width, p, to a unit square, and the sensitivity function, 

(x,y), is normalized such that C* is obtained through integration of (x,y) on the unit square.  Thus, the 

forward problem of obtaining a predicted measurement given an arbitrary void geometry is simplified 

from a 3D electric field simulation to a 2D integral evaluation.  In the following subsections, three 

proposed methods of deriving the function (x,y) are developed, and their accuracy evaluated when 

directly used to obtain C* for random void geometries. 

4.2 Method 1: Perturbation 

 The perturbation method of characterizing sensitivity of junction capacitance exhaustively 

catalogues the response of a small void placed in each of an array of possible locations throughout the 

domain.  The magnitude of the change in capacitance of the junction is taken as the junction sensitivity at 

the x-y coordinate in the center of the void.  A set of simulations is used to characterize the sensitivity 

1(x,y) for the detection zone, using a 61 m × 61 m square void placed sequentially in a 25 × 25 array 

of locations within a one-quarter symmetry portion of the detection zone. The sensitivity function is 

normalized such that 

 ( )11 ,  dψ x y Ω=  . (6) 

The sensitivity function for the perturbation characterization method is shown in figure 5.  The 

capacitance measurement is most sensitive to the central w × w region where the electrodes cross, and 

least sensitive in the ‘dead regions’ at the corners of the detection zone (low values of 1).  The 

sensitivity function may be used to estimate the normalized capacitance for any void distribution as 

 ( )1 ,  d*C ψ x y ω=   (7) 
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4.3 Method 2: Voxel Capacitance 

 The voxel capacitance method requires division of the domain into a set of voxels, and allocates 

sensitivity according to the capacitance of each voxel, as may be derived from the energy, U, stored in a 

capacitor 

 
21

,
2

 CU V=   (8) 

where V is the voltage difference across the electrodes.  Combined with the volume integral of energy in 

an electric field, the capacitance is expressed as 

 
2

2

1
dC ε v

V
=
  E . (9) 

A discretization of this integral may be used to approximate the capacitance of each voxel, Cn, as 

 n n n

2

n2

1
C ε v

V



E  (10) 

When implementing this method, the cells of the mesh are used as the voxels.  Equation (10) is used to 

assign a capacitance value to every voxel after calculating the distribution of electric field, E, from the 

numerical solution of electric potential, , according to 

 φ= −E . (11) 

The sensitivity function may be calculated from just the solutions of the solid TIM case and the complete 

void case.  To reduce the dimensionality of the sensitivity function, z-direction dependence is 

incorporated through summation to provide an integral-averaged value of the sensitivity at the x-y 

location.  The x-y distribution of capacitance on the regular mesh may be expressed as 

 
k

2

i,j i,j,n i,j,n2
n 1DD

ε
C v

V =

=  E  (12) 

where all voxels within the p × p × H detection volume are considered, and i, j, and k index according to 

the coordinate directions.  Equation (12) is a discrete function that can be used to represent the sensitivity 

over the detection zone for the solid TIM, 2,S(x,y), and complete void, 2,V(x,y), cases, shown in figure 6.  
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The sensitivity functions are scaled such that the volume under the surface is equal to unity.  Any 

arbitrary void geometry may be modeled using a superposition of these two cases as, 

 
1

1 d

1

* S
S V

S V

V

C
C ψ ψ ω

C C

C

 
= − − 

 −
 . (13) 

4.4 Method 3: Mid-plane Flux 

 The third method considers the electric displacement field at the mid-plane of the gap between 

substrates to characterize the two-dimensional junction sensitivity.  Conservation of electric displacement 

flux requires that the net flux through any z plane in the detection zone must equal the net flux into the 

receiver electrode (neglecting interference from nearby grounded electrodes).  The distribution of 

displacement flux, Em, normal to the mid-plane of the detection zone may be represented as 

 H H
x,y, x,y,

2 2crest trough

ε ε φ ε φ
    

=  −      
    

mE k . (14) 

The capacitance of the junction may be written as  

 
1

d
DD

C ε Ω
V

=  mE . (15) 

The magnitude of Em serves as a two-dimensional sensitivity function for the detection zone.  Like the 

voxel capacitance method, this method requires only two simulations to characterize a known gap 

thickness, H.  The sensitivity function is normalized such that the volume under the surface is equal to 

unity for both the solid TIM case, 3,S(x,y), and the complete void case, 3,V(x,y), as shown in figure 7.  

Normalized capacitance, C*, is calculated by (13).  The mid-plane flux method provides a smoother 

sensitivity function than the perturbation or voxel methods. 

4.5 Assessment of sensitivity derivation methods 

 The three sensitivity functions account for reduction of the capacitance through attenuation of the 

electric displacement field by voiding; however, all three functions are subject to two sources of error: the 
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assumption of complete independence of detection zones, and the presence of ‘soft-field’ effects near the 

permittivity step-change of the void perimeter/TIM interface.   

 The first source of error arises from the influence on the capacitance measurement from voiding 

outside the detection zone.  The inactive electrodes are grounded to minimize this effect by damping the 

electric field beyond the active junction; however, the capacitance of the junction will still exhibit some 

dependency on the void distribution in adjacent detection zones.  The normalized error, E*, obtained by 

using a sensitivity function is defined by 

 
ψ*

S V

C C
E

C C

−
=

−
 (16) 

where C indicates the value obtained through use of the sensitivity function, and C indicates the 

simulated capacitance value.  The normalized error represents the positive or negative error in predicted 

capacitance as a proportion of the range between the air gap and TIM-filled cases.   

 Error associated with the influence of voids outside the active detection zone may be quantified 

by comparing direct simulations of capacitance to values obtained from a sensitivity function for worst-

case scenarios.  The error of the mid-plane flux capacitance prediction for a TIM-filled detection zone 

when the adjacent detection zones are air-filled is illustrated in table 1(b) and visa versa in table 1(e).  

For these unlikely cases, normalized errors of 0.093 and -0.126 are observed.  A less conservative 

scenario featuring circular void geometries of diameter p centered in adjacent zones is also shown, with 

errors of 0.072 (table 1(c)) and -0.093 (table 1(f)). 

 The soft-field effects arise from the distortion of electric field pathlines due to nonuniform 

permittivity distributions.  Soft-field effects increase in proportion to the dielectric contrast (TIM/Void) 

[32].  Here, isolated soft-field effects are not analyzed, but a statistical study is conducted, as described 

below, to quantify the overall error resulting from both sources. 

 To gauge relative accuracy of the three methods, a Monte Carlo approach with 500 cases is used 

to produce a statistical comparison of the capacitance response obtained by the reduced-order sensitivity 

functions versus direct simulation.  Each case consists of a simulated junction containing between one and 
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five elliptical void regions of random location, size, and orientation.  Elliptical axes of the voids vary 

randomly in size between 0.02p and 1.6p.  The union of all voids constitutes the region, , for each case.  

Random cases were generated until a selected set of 500 could uniformly span all void fractions in 10% 

increments.  Select cases are illustrated in figure 8. 

 Each case is simulated directly to establish the exact capacitance value, C, and then compared to 

the capacitance value obtained through each of the three sensitivity function approximations.  A box plot 

of error distribution for each method is shown in figure 9 with statistics provided in table 2.  Each of the 

methods underpredicts the direct simulation by several percent.  The mid-plane flux method performs best 

with a normalized mean error of -0.021 and standard deviation of 0.020 as shown in table 2.  The errors 

are attributed to soft-field effects and codependency of adjacent detection zones. 

 The set of cases analyzed suggests a weak dependence of error on void fraction, with high void 

fraction cases generally displaying larger underestimates.  However, a detailed study of error as a function 

of void fraction, including soft-field effects and the bias introduced by the condition of neighbor zones 

(see table 1) is beyond the scope of the current work. 

5. Inverse procedure for error quantification 

 While data obtained from the sensor are insufficient for reconstructing exact void geometries, 

they may be used to obtain a set of localized void fractions corresponding to the set of p × p regions 

composing the domain of interest.  In this section, the sensitivity function derived using the mid-plane 

flux method is used to solve the inverse problem of quantifying the potential error of using a normalized 

capacitance measurement as a direct indicator of void fraction.  The utility of the near-field focusing 

sensor lies in the prediction of void fraction in a single detection zone by the normalized capacitance, 

 χ C  . (17) 

When (17) is used to estimate an unknown void fraction from a capacitance measurement, some level of 

error is introduced because it is not known whether the void is located in the central region of high 
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sensitivity in the detection zone, or in a peripheral region of low sensitivity.  The sensitivity function may 

be used to bound this error by considering two limiting cases of void distribution, as demonstrated in 

figure 10(a) using the mid-plane flux method.  In the first case, voiding begins at the most sensitive 

central region of the detection zone, and grows by preferring the next most sensitive available region of 

the detection zone.  In this case, normalized capacitance increases sharply, and provides an overestimate 

of void fraction, as shown by the upper curve in figure 10(a).  In the second case, voiding begins at the 

least sensitive peripheral region of the detection zone, and grows by preferring the next least sensitive 

available region.  In this case, normalized capacitance lags behind void fraction, providing an 

underestimate, as shown by the bottom curve.  The curves create a bounding envelope that quantifies the 

potential error in estimating void fraction as the normalized capacitance value in (17).  This error is due to 

the dead regions in the corners of the detection zone, which result from wide electrode spacing.  Because 

the two bounding curves were created from the mid-plane flux sensitivity function, each is subject to the 

error, E*, associated with that sensitivity function (table 2).  The total potential error of (17) is E* in 

addition to the error bounds depicted in figure 10(a). 

 As can be seen from figure 10(a), errors as large as ±20 % can occur when normalized 

capacitance is used to estimate void fraction for the simulated geometry where there is a large spacing 

between electrodes (p/w = 2.42); however, agreement between void fraction and normalized capacitance 

improves as the spacing between electrodes decreases, as seen in figure 10(b).  In the limit (p/w → 1), 

dead regions no longer exist, and the envelope collapses, representing independence of void morphology 

(albeit still subject to the error, E*, of the sensitivity function). 

6. Experimental results 

 Experimental values of CS and CV are roughly 20% higher than the simulation values as shown in 

table 3.  In order to calibrate for this discrepancy, experimental values of CS and CV are used in (13).  As 

the simulation represents an internal junction surrounded by grounded electrodes, the sensitivity function 

shown in figure 7 applies only to the 3 × 3 set of internal junctions of the system. 
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 In the experiment, 17 different cases were tested using Tflex SF210.  Through voids of different 

diameters and locations were created in 1 cm × 1 cm samples of the TIM.  The sample and spacers were 

first placed on one substrate, and then the opposing substrate was pressed on top.  A fixed weight was 

used to apply a constant pressure of 12 kPa in all the tests. 

 In the test cases, artificial voids were created ranging between 250 m and 2000 m in diameter.  

All voids were placed within the detection zones of the 3 × 3 set of internal junctions.  The void outlines 

were measured optically by viewing the void through the transparent substrates with a 5X magnification 

microscope.  Void shapes were approximated as 2D, and fitted to an ellipse.  Uncertainty in the phase 

boundaries due to z-direction variations near the void edges was quantified by defining outlines 

corresponding to the minimum and maximum possible void areas as shown in figure 11.  Voids in the 

images were located spatially by observing coordinates of nearby intersections of electrode edges.  

Repeatability error in the measurements of C* was 0.02. 

 Because some voids bridge more than one detection zone, the 17 test cases yield 41 partially-

voided junctions.  Select cases are shown in figure 12, which illustrates the optically identified bounds of 

void geometry and the capacitance measurements, normalized as C* values. 

 The experimental capacitance values are compared against those predicted from the mid-plane 

flux method in figure 13.  Each data point is shown as a span between a high and a low estimate, which 

respectively correspond to the minimum and maximum estimated area outlines of the void.  Slight 

delamination of the TIM (failure to remain in contact with the top substrate) is observed as an annular 

region surrounding the induced void.  This region is included in the estimate of the maximum void size.  

The data indicate that for cases with a large span in figure 13, this generally represents an overly 

conservative estimate (bottom of range). 

 Normalized capacitance as a predictor of void fraction is shown for the data in figure 14, with 

overlaid solid lines indicating the bounding envelope as predicted using the mid-plane flux method.  The 

data validate the sensor concept as a viable method for estimating void content in the dielectric layer.  The 
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smallest void successfully detected in the TIM layer in one detection volume (1.55 mm × 1.55 mm × 254 

µm) is approximately 250 m in size, corresponding to a void fraction of roughly 0.02. 

7. Conclusion 

 The near-field focusing sensor with an orthogonal electrode mesh configuration has been 

demonstrated as a means to measure void content in a thin dielectric layer.  Characterization of sensor 

response with a two-dimensional sensitivity function is described as a means of bounding the error of 

void fraction estimates obtained with the sensor.  Void detection in a 254 m thick thermal interface 

material is experimentally illustrated using the method developed.  

 The sensor requires no moving parts, and measurements may be taken continuously.  The in situ 

nature of this method makes it an ideal candidate for monitoring temporally evolving void structures in 

dielectric layers in real time without stopping or suspending the sample stress schedule for data collection.  

The simplicity of the instrumentation required makes this technique viable for high-volume testing in an 

industrial setting. 
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Table 1. Simulation results for errors obtained by neglecting void geometries outside the detection zone 

for different void distributions.  Darkened regions indicate voids. 

Description 
Void 

Geometry 

Capacitance 

C (fF) 

Normalized 

Error E* 

(a) TIM-

filled in 

zone and in 

adjacent 

zones  

214 0 

(b) Voided 

in adjacent 

zones 
 

200 0.093 

(c) Voids of 

size p 

centered in 

adjacent 

zones  

203 0.072 

(d) Voided 

in zone and 

in adjacent 

zones  

65 0 

(e) TIM-

filled 

adjacent 

zones  

84 -0.126 

(f) TIM 

regions of 

size p in 

adjacent 

zones  

79 -0.093 
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Table 2. Error incurred with the three reduced-order sensitivity methods compared to direct simulation. 

Method E* Mean E* Std. Dev. 

1. Perturbation -0.024 0.025 

2. Voxel Capacitance -0.029 0.047 

3. Mid-plane Flux -0.021 0.020 
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Table 3. Experimental values for solid TIM junction capacitance, CS, and complete air-void capacitance, 

CV.  Corresponding simulation values of a representative junction are CS = 214 fF, CV = 65 fF with CS/CV 

= 3.26.  Data represents the 3 × 3 set of interior junctions. 

Solid TIM: CS (fF) 

272 266 272 

270 264 270 

273 267 274 

Complete Void: CV (fF) 

82 77 83 

82 78 84 

85 82 88 

Ratio: CS /CV 

3.32 3.45 3.28 

3.29 3.38 3.21 

3.21 3.26 3.11 
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Figure 1. Schematic diagram of near-field focusing sensor. 
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Figure 2. Two-dimensional illustration of junction cross-section boundary conditions at the trough and 

crest of the excitation signal during capacitance measurement with VDD = 1.  Dashed line indicates 2D 

projection of simulation domain. 
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Figure 3. Simulation domain for a single internal junction, extending to grounded sidewalls of adjacent 

electrodes. 
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Figure 4. Top view of simulation domain with p × p detection zone and void sub-domain. 
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Figure 5. Normalized junction sensitivity function in the detection zone calculated by the perturbation 

characterization method. 
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Figure 6. Normalized junction sensitivity function in the detection zone calculated from the voxel 

capacitance method for a solid TIM case (a) and completely voided case (b). 
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Figure 7. Normalized junction sensitivity function in the detection zone calculated from the mid-plane 

flux method for a solid TIM case (a) and completely voided case (b). 
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Figure 8. Selected cases from the set of 500 random void distributions used to compare the capacitance 

response obtained by reduced-order methods versus direct simulation.  The p × p detection zones are 

shown, with black regions indicating voids. 
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Figure 9. Error distributions of reduced-order sensitivity characterization methods, calculated from the 

set of 500 random cases of void distribution. 
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Figure 10. (a) Void fraction prediction envelope obtained by the mid-plane flux method (inset graphics 

represent void fractions of 0.3 and 0.7) and (b) variation of this envelope for decreasing ratios of electrode 

pitch to width. 
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Figure 11. Photograph of void in TIM layer as viewed through the transparent substrate. 
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Figure 12. Experimental void geometries for selected cases with black and gray respectively indicating 

the optically measured small estimate and large estimate of void geometry, (left), with experimentally 

measured values of C* on the 3 × 3 grid of electrode junctions (right).  Measurements of |C*| < 0.02 are 

eliminated as noise.  Case (c) corresponds to figure 11. 
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Figure 13. Junction capacitance due to the presence of artificial voids as measured experimentally and 

predicted using the visualized void boundaries.  Each prediction is shown as a span between small and 

large void boundary limits. 
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Figure 14. Optically measured void fraction versus normalized capacitance overlaid with void fraction 

bounds obtained from the mid-plane flux method. 
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