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ABSTRACT  
 

Lubricant selection is based on several lubricant properties to satisfied compressor and system reliability, longevity 

and energy efficiency performances. The use of non-miscible or low soluble lubricant can bring some technical 

advantage for the compressor and the system. This paper presents investigations results on low GWP refrigerant 

alternatives for light commercial and commercial applications. This experimental data are compared to well non 

data for usual refrigerant HFC/oil pairs. The work also targets the reduction refrigerant charge associated with the 

compressor characteristics. Miscibility of propane in an AKB, POE and PAG oils has been measured as well as 

resulting viscosity for each pairs. With too low viscosity values, AKB oil is not suitable for the compressors. PAG 

oil exhibits a low solubility compared to POE oil, and a miscibility limit that can be used to reduce the refrigerant 

charge in circuits. 
1. INTRODUCTION 

 

Recent developments in regulations governing the use of refrigerants with respect to their global environmental 

impact (2006/842/EC "F-GAS" regulation recently voted in the EU with a new revision coming into force on 

January 1rst 2015, or 2009/125/EC Ecodesign directive about energy performance) implies the development of new 

refrigerants for which reliable lubricants must be proposed very soon. Refrigeration loops with R-290 as working 

fluid is one of the possible solutions. Indeed, R-290 has a GWP = 3 kg eq. CO2/kg (Global Warming Potential) and 

0 ODP(Ozone Depletion Potential) with high commercial availability and at much lower prices than HFC or HFO. 

Moreover, R-290 and R-22’s saturation pressures are quite similar, but R-290’s volumetric refrigerating capacity is 

higher and discharge temperatures are much lower, which are advantages for the refrigerant load in the circuit and 

the compressor’s longevity. Continuous interest in hydrocarbons as natural refrigerants justifies the design of a 

propane compressor as well as the selection of suitable and efficient lubricants. The well-known problem with R-

290 comes from its high solubility in current oils.  

 

Thus, in this article we propose an overview of different couples of refrigerants (R-22, HFC, R-290) and lubricants 

(MO, PAG, AKB, POE, PVE). We compare these couples with our own measurements on different pairs R-290/oil.  

In a second step, some of the data is compared to measurements performed on a refrigeration loop by sampling from 

the carter of the compressor. Finally, tests related to compatibility with electrical motors are presented. 

 

2. EXPERIMENTAL METHOD 
 

2.1 Description of the experimental apparatus 
 

Solubility, viscosity and miscibility measurements of oil / refrigerant mixtures are performed on a specific test 

bench, depicted in Figure 1 and Figure 2. The experimental procedure consists of introducing predefined masses of 

oil and refrigerant into a known volume cell. Required concentrations of each component are measured using a high 

accuracy bench scale (± 0.02g). The filled cell is then immersed in a liquid bath which automatically controls the 

temperature with a range from -20°C to +90°C. The cell is equipped with a pressure sensor with accuracies equal to 

± 0.4% FS and a T type thermocouple (temperature measurement accuracy of ± 0.25 K for the global measurement 

chain). Each cell is also equipped with sight glasses providing the operator with a visual control of the mixture 

mailto:p.ginies@danfoss.com
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behavior and information to plot into the miscibility diagram of the mixture. The cells are designed for pressures less 

than 40 bar (4.10
6 
Pa). 

 

 

Figure 1: Schematic representation of the test facility 

 

 

Figure 2: Viscosity/solubility/miscibility cell (left) and miscibiliy/solubility cell (right) 

 

Density of pure oil is measured using an oscillating U-tube density meter (range: 0-3000 kg.m
-3

; accuracy: ± 0.5 

kg.m
-3

). The measurement principle of this instrument is based on the electronic measurement of the oscillation 

frequency from which the density value is calculated. 

 

A specific cell has been designed to perform simultaneous miscibility/viscosity/solubility measurements. Besides a 

pressure sensor and thermocouple this cell is fitted to a vibrating rod viscometer (range: 0-100 mPa.s; accuracy: 0.1 

mPa.s). A constant power source vibrates the rod immersed in the liquid phase and the amplitude variations are 

measured to determine the dynamic viscosity. The maximum service pressure is 100 bar (10
7 
Pa). 

 

2.2 Measurement procedure 
Initially, the empty cells are pumped down to a pressure of 1 mbar in order to remove non-condensable gases and 

solvent residues resulting from the cell cleaning process. They are then weighed and filled with oil by pressure 

difference until the expected mass is achieved. Next, the cell is pumped down again to a pressure below 20 mbar so 

that any trace of moisture is eliminated and weighted again (it is to be noticed that the oil vapor pressure cannot 

exceed 1 mbar (Razzouk A. et al. (2007)), moreover the second weighting gives the mass of oil in the cell after 

pumping down). Finally, a predetermined mass of refrigerant is introduced within the cell which is once again 

weighed. At this moment, both oil and refrigerant masses contained in the capacity are known precisely. The total 

mass concentration of refrigerant in the cell Cabs, eq. 1, stays constant under any pressure and temperature 

conditions. 
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Once the cell is immersed in the bath and stabilized at a given temperature, a certain period of time is required to 

reach steady state equilibrium. This time depends on the studied refrigerant-lubricant pair. From this moment, a data 

acquisition system is used to collect all the measured parameters during 10 minutes. This procedure is repeated 

from -20°C to 60°C (253.15 to 333.15K) with a temperature increment of 10 K. 

 

The volume of vapor phase in the cell can easily be calculated from its total volume and liquid phase volume. Two 

assumptions are made: first, regarding the very low vapor pressure of oil, vapor phase only contains refrigerant; 

secondly, liquid phase behaves as a homogeneous mixture. Finally, for given pressure and temperature conditions, 

the mass of vapor refrigerant in the cell can be calculated from Equation (2).  
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Knowing the refrigerant vapor mass, it is possible to determine the solubility of refrigerant in oil by Equation (3): 
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The performed experiments cover a wide range of solubility (from 0 % to 60 %) and the sight glasses were used to 

identify possible miscibility gap of mixtures. 

2.3 Some Results and Discussion 
The tables below contain the results of a measurement campaign on the couple R-290/POE ISO32. The results show 

the nonlinear nature of the solubility. According to the experimental procedure described in the previous paragraph, 

for each table the absolute concentration of refrigerant stays constant, but the mass of refrigerant dissolved in the oil 

(i.e. the solubility) varies with the cell’s temperature. As expected, the refrigerant solubility decreases when pressure 

and temperature rise. 

 

Different graphs can be drawn from these tables. The graphs of  Figure 3 and Figure 4  show the variations of 

resulting pressure and viscosity according to temperature and absolute concentration for the couple R-1270/POE 

ISO68. 

 

Table 1: Evolution of solubility and viscosity when superheat increases 

Point P [bar] T [°C] Xr [%] SC [K] μ [mPa.s-1] 

A 5 -2 29,86% 3 3 

B 5 5 20,92% 10 5,5 

C 5 19 10,51% 24 14 

D 5 41 5,76% 46 18 

E 5 50 4,80% 55 12 
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Table 1 resumes the evolutions of properties of this couple when it is heated under constant pressure. Points A to E 

are placed on the two graphs. When temperature increases under constant pressure:   

 solubility of the liquid phase decreases; 

 viscosity of the liquid phase of the mixture first increases (this is due to the refrigerant leaving the liquid 

phase) and then decreases (when the liquid phase becomes very poor in refrigerant, the viscosity decreases 

with temperature) 

For mark legend see table 2 

  

Figure 3: Pressure-temperature-concentration diagram 
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Figure 4: Viscosity-temperature-concentration diagram 

Experimental data is used in thermo dynamical models in order to produce (P,xr,T) graphs. Many of these models 

use activity factors (Martz W.L et al, Burton C.M .et al, Wahlström A,...). Indeed, this method allows to characterize 

liquid vapor equilibrium of a binary mixture with a limited number of variables and then to limit the number of 

measurement points. A brief description of the model used here has been described in previous papers (Charni and al 

; Fleming J.S. and Yan Y). 

Regarding the modelization of mixture viscosity, the effect of pressure on the dynamic viscosity is neglected here. 

As a result, a third order polynomial equation with temperature and refrigerant mass concentration as independent 

parameters was used to predict the dynamic viscosity. 

 

2.3 Comparison and Discussion 
 

The following graphs (Figure 5 and Figure 6) resume evolutions of solubility and viscosity when superheat varies, 

and for a saturation temperature Tsat=+10°C (283.15K). The eight studied couples are listed in Table 2; for each 

couple, the data source is indicated. 

Table 2: Refrigerant/lubricant couples under the scope 

Refrigerant Lubricant Grade Data source 

R-407C POE 32 Oil supplier 

R-410A POE 32 Oil supplier 

R-22 MO 32 Authors 

R-22 POE 32 Oil supplier 

R-290 AKB 68 Oil supplier 

R-290 PAG1 68 Authors 

R-290 PAG2 68 Authors 

R-290 PAG3 68 Oil supplier 

 

R-22/POE32 has the highest values of refrigerant solubility and logically the lowest values of resulting viscosity 

(these values are still acceptable for a correct lubrication of the compressor). R-22/MO32 has a much lower 
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solubility and higher viscosity. This couple is also suitable and the lower solubility is an advantage regarding the 

total mass of refrigerant in a refrigeration loop. The two HFC based couples have intermediate solubilities and 

slightly higher viscosities. R-290/AKB68 has quite the same values of solubility as R-407C/POE32, but the 

resulting viscosity is much lower. When comparing R-290/AKB68 versus R-22/POE32, we find a solubility roughly 

divided by two and quite the same viscosity with very low values for small superheat: R-290/AKB ISO68 is not a 

good choice for compressor. 

 

Figure 7 shows two non-miscible states for the couple R-290/PAG3_ISO68. This pair presents a maximum 

miscibility limit of about 12% all over the pressure/temperature range of measurements. This explains why the R-

290/PAG3 has the lowest solubility. As a consequence, viscosity is too important for correct compressor operation, 

and this couple will be avoided. 

 

Figure 5: Evolution of solubility with superheat for T sat = 10°C (283.15K) 

 

Figure 6: Evolution of viscosity with superheat for T sat = 10°C (283.15K) 
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Figure 7: Partial miscibility of R-290/PAG3_ISO68 at 24°C (297.15 K), and absolute refrigerant concentration: 23% (left figure) 

and 31% (right figure) 

 

3. SOLUBILITY TESTS PERFORMED IN THE CARTER OF THE COMPRESSOR 
 

Suppliers provide Daniel plots, which, knowing the pressure and temperature, indicte the solubility of the refrigerant 

in the lubricant and the resulting viscosity. Unfortunately the data under low superheat conditions is not always very 

accurate. Furthermore, most of these plots do not give all lubricant ratio values (only 0% (pure refrigerant) and 70%, 

80% and 90%). Yet, it remains a very good starting point to compare several lubricants for the same refrigerant. 

This is very valuable to compare existing pairs of refrigerant-lubricant with long field experience like R22-MO, 

R22-AKB or like HFC-POE or HFC-PVE. The characteristic measurements performed on a test bench are based on 

steady state values; they give a good idea of the behavior of the refrigerant and lubricant chemistry. However, the 

measurements don’t ensure the behavior of the lubricant-refrigerant mixture in the compressor oil sump. 

 

In order to check the actual behavior of refrigerant/oil 

mixtures in a compressor, tests have been run in a 

refrigeration loop with a scroll compressor. The 

compressor oil pump is connected at the lower end of 

the crank shaft  (Figure 8).  

An oil pickup tube is used for the oil pump inlet. The 

oil pickup tube rotation induces shear stress on the 

lubricant and the oil sump lubricant is stirred by this 

mechanical action. This could bring a better 

homogeneity of the oil sump lubricant-refrigerant 

mixture and bring lubricant outgassing process 

benefits. 

 

 

 

 

 

  

Figure 8: Compressor’s crankshaft and oil pump 
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The compressor is a standard model with one extra fitting equipped with a valve in order to collect samples of 

oil/refrigerant mixture from the compressor oil sump. The process consists of running the compressor under steady 

state conditions and at controlled suction and discharge conditions. When the system conditions are stable, we 

sample a small quantity of lubricant mixture from the compressor oil sump. The sample vessel is weighed before 

sampling (w0) and after sampling (w1) in order to know the total mass sample (lubricant + refrigerant). Then the 

refrigerant is evacuated from the sample vessel, weighed again (w2) and the weight difference (w1-w2) gives the 

sample oil mass. The process is similar to oil circulation rate process measurement (ASHRAE standard 41.4-1996). 

With these 3 measurements, we obtain the refrigerant mass in the oil sump. 

 

To check the suitability of the lubricant all over the application range of the compressor, we proceeded with tests at 

different superheat values and different saturated suction temperatures. Recorded parameters were oil sump 

temperature, oil behavior inside the oil sump, oil level, presence of foam and type of foamy situation. 

 

For one saturated suction temperature (10°C/283.15K), the curves below (Figure 9) give the solubility versus 

superheat for different lubricants. For lower superheat values the measurement is repeated twice in order to have 

more consistent data. With a scroll compressor our measurements have demonstrated that impact of discharge 

pressure on Refrigerant/oil behavior in oil sump is negligible. 

  

Figure 9: Lubricant % in oil sump versus superheat (K) for T sat = 10°C (283.15K) 

 

 

 

4. COMPATIBILITY WITH COMPRESSOR MOTOR MATERIALS 
 

Hermetic compressor motor materials can be affected by the new refrigerants/lubricants applications. For the screen 

process we evaluate several situations such as preliminary compatibility tests with plastic parts and motor insulation 

materials, or simple tests on compressors in order to see if the life testing indicates good chances of success.… 

 

The compatibility test should be run with the lubricant and the refrigerant in bomb test. We evaluate magnet wire 

(twist pair), insulation material like Mylar, leads, cluster, varnish bonding stress, insulation sleeves, lacing tape, 

motor protection support,…. 
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The objective of this work is to age parts inside a pressure vessel for 14 days at 150°C (423.15K)and then compare 

first with new material and also with other samples aged with experienced couples of lubricant/refrigerant (e.g: R-

22MO, HFC/POE; HFC/PVE). First, compatibility tests are performed with lubricant and R-134a. At the end, the 

selected material will be checked with R-290 refrigerant including gaskets. 

 

Dielectric and resistivity characteristic was not always available. In order to start the selection process we measured 

dielectric breakdown voltage and the sample PPM water content.   

 

Table 3 below shows some of the results. We identified some impact on Mylar insulation material; it becomes very 

brittle on PAG2 lubricant. 

 

Table 3: Lubricant investigation list 

 

Lubricant 
Lubricant 
Family  

Viscosity 
(cSt) 

Compatibility test 
Dielectric test 

IEC 156/63 

MO32 MO 32 OK (R22 Reference 1) > 25kV 

MO2 MO 68 Not Done Not Done 

POE32 POE 32 OK (R410A-R134a Reference 2) > 25kV 

POE1 POE 68 OK (R407C-R22 Reference 3) > 25kV 

POE2 POE 85 OK > 25kV 

POE3 POE 68 OK (R407CReference 4) > 25kV 

AKB1 AKB 68 OK > 25kV 

AKB2 AKB 68 Not Done Not Done 

PAG1 PAG 68 OK > 25kV 

PAG2 PAG 68 NO OK > 25kV 

PAG3 PAG 68 OK > 25kV 

PAG4 PAG 68 To Be Done > 25kV 

PAG5 PAG 100 Not Done To Be Done 

PV1 PVE 100 Not Done Not Done 
  Note: ‘Reference  1 to 4’ are present qualified lubricants for HCFC or HFC & used as baseline 

 

5. CONCLUSION  
 

Low refrigerant system charge is a key for R290 systems. The use of low R-290 solubility lubricants allows 

designing low charge units. 

The work done shows two interesting candidates. One would be based on POE and the other on PAG base oil. 

This study was done for lubricant selection. Subsequently, the compressor and system qualification work can start. 

The reduction of refrigerant charge mass is a key for HC applications: less charge will allow using larger capacity 

units by end users while staying within the requirements of standards like EN378 or ISO 5149. 

Based on 0.1 kg of R290/ kW of cooling capacity (F. Poggi, H. Macchi-Tejeda, D. Leducq, A. Bontemps), lubricant 

selection can reduce the R-290 mass in oil sump from 30 to 50%. In a classic system design based with 0.1 kg of 

R290/ kW, for 60kW capacity we estimate at least 18 to 30% refrigerant charge reduction. 

 

 

 

 

=================== 

The present work has been supported by the FP7 European project ‘Next Generation of Heat Pumps working with 

Natural fluids’(NxtHPG).   
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NOMENCLATURE 

 
AKB alkylbenzene  

HC hydrocarbon 

HFC hydrofluorocarbon 

HFO  hydrofluoroolefin  

MO  mineral oil 

PAG polyalkylene glycol 

POE polyolester 

C massic concentration % 

cSt cinematic viscosity 1cSt = 1 mm2/s 

M mass   kg 

P pressure   bar (10
5
 Pa)  

T temperature  °C (K-273.15) 

V volume   m
3
 

 

PVE polyvinyl ether  

POE polyolester 

 

Greek 

 dynamic viscosity cP (10
-3

Pa.s) 

 volumic mass   kg/m
3
 

 

Subscripts 

Abs absolute 

L liquid  

Oil lubricant 

R refrigerant 

Sat saturation 

Tot total  

TBD To Be Done 

V vapor 
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