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ABSTRACT 

 
This work presents a flexible numerical platform to simulate a whole household refrigeration unit taking into 
account both the refrigeration cycle itself and the refrigerated compartments network. The methodology 
implemented to achieve the transient simulation of the whole system combines a transient-state approach for the 
refrigerated chambers network and a steady-state approach for the refrigerant loop. The latter includes the 
simulation of a capillary-tube/suction-line heat exchanger (to prevent liquid refrigerant from entering into the 
compressor), and the simulation of a receiver (to store excess refrigerant in its liquid state). In addition, the global 
system resolution includes two significant features, namely, a specific numerical method to predict the system 
dynamics when the compressor is switched off, and a control system to regulate the compartments inner 
temperatures by modifying a damper position (open/closed) and/or the compressor state (on/off).  
In this work, the major numerical aspects of the platform are briefly described. Furthermore, an illustrative 
numerical simulation of a household refrigerator including most of the model features is shown in order to see the 
model potential. 
 

1. INTRODUCTION 
 
The wide use of appliances such as air conditioners and household refrigerators represent a significant energy 
consume in several countries. The improved efficiency of the aforementioned devices may lead into important 
energy savings. The computer simulation has been extensively used to optimize the design and to study the 
performance of refrigeration systems. This approach has shown to be less time consuming and less costly than the 
conventional method (i.e. the repeated process of developing a prototype, testing its performance and modifying its 
structure).   
 
The simulation of any system can be carried out for steady-state or transient conditions. The former case is often 
used for performance prediction and unit design, while the latter is essential for control design (Qiao et al., 2010). 
The requirements for an ideal simulation tool include stability, robustness, flexibility/adaptability, accuracy, rapidity 
and a generic approach. These desirable characteristics may come into conflict between each other so that the 
research should be oriented to achieve the best compromise (Ding, 2007).       
 
The aim of this work is to implement a numerical platform able to simulate the transient behavior of household 
refrigerators considering all the relevant components/features but also reaching a compromise between the system 
simulation time and the level of detail. The most significant aspects of the simulation could be summarized as 
follows. The whole system is made up of two sub-systems (refrigerant cycle and refrigerated chambers network). 
The refrigerating cycle considers specific elements such as a capillary-tube/suction-line heat exchanger, a receiver 
placed downstream of the compressor, and an anti-condensation tube. The refrigerated chambers network includes 
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several chambers, walls, and solid inner objects. The control system of the refrigerated chambers is taken into 
account. The air loop throughout the refrigerated cabinets has a damper with two possible positions (open/closed). 
The whole system is simulated whether the compressor is switched off or on. Some of the system components are 
simulated with relatively detailed numerical models (e.g. the capillary tube is solved with a detailed distributed 
model). In addition to this, the system solver, which is based on a sequential methodology, has been adapted to link 
the two sub-systems and to reduce the simulation time in order to achieve long-time period simulations. 
 
The numerical platform presented herein is a flexible numerical tool. It has a component-based structure to establish 
a clear distinction between the whole system solver and the particular resolution scheme of each component. For 
instance, the platform allows to easily adapt/modify the system layout without any major change on the global 
structure (e.g. introduce a new element on the refrigerant cycle, simulate a different chamber layout, modify the 
system temperature control etc.). 
 
This work is divided in five Sections. The second Section is devoted to explain the main details of the numerical 
platform including the system solver, the strategies considered, and a brief review of the components numerical 
models. In the third Section, a full pseudo-transient simulation of a complete household refrigerator is numerically 
done. The simulation contains all the features mentioned in order to illustrate the platform capabilities. Finally, in 
the fourth Section some conclusions are given.           
 

2. NUMERICAL MODEL 
 

In this Section, the global resolution procedure used to solve thermal systems is described. Subsequently, the most 
important aspects that have been modified/added to achieve the complete simulation of a household refrigerator are 
listed and briefly explained. Finally, a brief review of the numerical models used to simulate each component of the 
system is provided. 
 
2.1 System Resolution: Modular Approach  
The numerical procedure presented herein to simulate household refrigerators is based on a modular strategy where 
the whole system is defined by several discrete components and their links. The system solver is decoupled from the 
particular resolution algorithm of each component (the specific resolution of each component is carried out 
independently during the system iterations). In this work the system solver consists of a sequential procedure where 
the solution is attained iteratively by transferring appropriate information between the components. 
 

 
Figure 1: Simplified scheme of the refrigeration system. 
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The modular approach makes it possible to focus whether on the system solver or on any particular component 
without the need of major modifications to the global infrastructure. In other words, a different solver could be 
introduced at the system level, and similarly, the model of any component could be easily replaced (e.g. a heat 
exchanger model may vary from a simple ε-NTU approach to a distributed model considering two-phase flows or to 
any other model with a higher level of complexity). The modular approach also allows adding, subtracting and 
substituting components in order to represent a different system configuration. The object-oriented numerical tool 
called NEST used for this purpose has already been applied to energy balances in buildings (Damle et al., 2011a) 
and hermetic reciprocating compressors (Damle et al., 2011b).  
 

 
Figure 2: block diagram of the refrigeration system. 

 
In this particular work the modular approach is applied to household refrigerators. The scheme of a complete 
refrigerator (cycle and refrigerated chambers network) and the corresponding block diagram used for its modular 
resolution are presented in Figures 1 and 2 respectively. It is observed that each component of the cycle is 
represented by a discrete element in the block diagram.  

 

 
 

Figure 3: System global transient resolution algorithm. 
 

The basic transient solution scheme for a defined system is depicted in Figure 3. At the starting point, the whole 
system boundary conditions are defined (i.e. components external conditions) together with an initial guessed/known 
value map for each component. From then on, the iterative procedure of solving all the components independently 
and sharing the information between them begins. The resolution of a particular time step finishes when a converged 
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solution - defined by system level residual equations - is attained. Further calculations with the same procedure are 
carried out for the next time steps.  

 
 

2.2 Household Refrigerator Simulation 
The scope of the present work was to achieve a transient simulation of a complete household refrigerator including 
both the refrigerating cycle itself and the refrigerated chambers network (see Figure 1). The efforts were focused on 
different aspects: i) simulating all the relevant components which the system is made up, ii) taking into account all 
the system operational possibilities (e.g. compressor on/off, damper open/closed), iii) include the refrigerator 
temperature control, and iv) achieve a stable and low time-consuming simulation. The most significant aspects of 
the modified model are commented in the following paragraphs. 

 
2.2.1 System Components. The most relevant components of the household refrigerator were taken into account for 
the present simulation. On one hand, the refrigeration cycle, which is usually simplified to the four main elements 
(compressor, condenser, expansion device and evaporator) has been simulated considering the following 
components: a commercial compressor, an anti-condensation tube (i.e. tube located all the way along the edge of the 
freezer door and used to prevent ice generation), a typical wire-and-tube condenser, a capillary-tube/suction-line 
heat exchanger, a fin-and-tube evaporator, and a receiver (to store liquid refrigerant). On the other hand, the 
refrigerated compartments network includes three separated chambers (the freezer, the cooler and the chamber 
where the evaporator is located), four insulation layers (one for each chamber and a common wall shared by the 
cooler and freezer), an air circuit with a damper that can enable or block the air flow through the cooler, and two 
solid objects, one inside the cooler and one inside the freezer, which represent small brass cylinders used to measure 
the temperature to be regulated in these rooms (they could alternatively represent a piece of food).       

 
2.2.2 Control System. The transient simulation of the household refrigerator is equipped with a control system used 
to regulate the temperature inside both the freezer and the cooler. The control system used in this work is initially 
fed with four reference values, namely, the maximum and minimum temperatures allowed inside both the cooler and 
the freezer. During the transient numerical resolution an independent subroutine, in charge of the system control, is 
called once every time step. It works as follows: according to the input parameters (current freezer and cooler 
temperatures) and the predetermined reference values, the control system could modify two different operational 
characteristics, namely, the compressor state (on/off) and the damper position (open/closed). The control system 
could be easily changed or modified (e.g. include more inputs, act on other elements, etc…).  

 
2.2.3 Cycle with compressor switched off. In household refrigerators the compressor could be operating at different 
speeds and/or simply be switched on/off depending on the thermal load needs. The components arrangement used to 
represent the refrigerating cycle when the compressor is switched on is not adequate to predict the cycle behavior 
when the compressor is switched off because of the different phenomenology. Therefore, an alternative cycle lay-out 
has been proposed to predict the cycle behavior at the off state in order to fully simulate the transient characteristics 
of a household refrigerator.  

 
The implemented cycle configuration for the off condition is made up of only three components, namely, a high 
pressure side component (with a macro volume equivalent to the condenser and the anti-condensation tube inner 
volumes combined), a low pressure side component (with a macro volume equivalent to the evaporator, the receiver 
and the compressor inner volumes together), and an adiabatic capillary tube connecting both volumes (with the same 
diameter and total length of the non-adiabatic capillary tube used in the cycle when the compressor is switched on). 
The unique link between both components is the capillary tube as the compressor inner valves remain closed when 
the compressor is switched off. The resolution procedure is carried out sequentially every time step: the fluid state is 
recalculated inside both volumes from the capillary tube previously predicted mass flow rate. The heat exchange 
with the surroundings and the mass transfer between both macro volumes is also considered.  
 
2.2.4 Pseudo-transient approach. The pure transient simulation of the whole household refrigerator and its 
components is rather complex, time consuming, and with serious convergence challenges. In this work a pseudo-
transient approach is proposed in order to reach rapid and stable simulations. The whole system shown in Figure 1 is 
divided into two sub-systems, namely, the refrigerant loop and the refrigerated cabinets loop. The resolution 
procedure is carried out sequentially and combines two different approaches as the former loop is solved in a 
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stationary way while the latter is solved in a transitory way. This methodology is feasible due to the relatively larger 
time scale of the chambers network compared to the refrigeration cycle. Each sub-system is solved every time step 
and shares information with the other sub-system. On one hand, the temperature of the chamber where the 
evaporator is located acts as the boundary condition for the refrigerant loop, and on the other, the heat absorbed by 
the evaporator acts as the boundary condition for the chambers network.     

 
In the steady state simulation of the refrigerant loop the mass flow rate is common to all the components so that the 
resulting set of equations is indeterminate. In order to overcome this limitation, and to achieve full closure, the 
refrigerant mass inside the system must be known. Therefore the resolution methodology is carried out by means of 
two iterative loops. The refrigeration cycle is iteratively solved for a guessed compressor outlet pressure, which in 
turn is iteratively re-adjusted until convergence is attained (i.e. the calculated refrigerant mass is equal to the system 
refrigerant mass).    
 
The scope of this work, besides achieving a full pseudo-transient picture of the whole system, is to simulate long 
time periods of operation. In order to attain the latter goal the steady state simulation of the refrigerating loop was 
not solved every global system time step but instead it has been previously characterized. The steady state 
refrigerating cycle response to any boundary condition is calculated prior to the full simulation, therefore, at every 
system time step, the heat transferred from the evaporator chamber air to the evaporator itself  is readily obtained.  
 
2.3 Mathematical Model of Elements 
The studied household refrigerator includes two linked sub-systems (vapor compression refrigerant cycle and 
refrigerated cabinet network) with several components (see Section 2.2.1). In this Section a brief description of the 
models used to simulate the components is presented. 
 
2.3.1 Compressor. The compressor model is based on the work by Ndiaye and Bernier (2010) where a simplified 
model is reported. It consists of three main parts, namely, shell inner volume, compression chamber, and discharge 
line. Both a mass and an energy balance equations are applied to the fluid inside the shell, while an energy balance 
over the compressor solid part is also considered. The model is fed with some empirical heat transfer coefficients 
and assumes the following hypotheses: oil effects are neglected, the suction pressure is equal to the pressure inside 
the shell, the suction and discharge mufflers influence is not taken into account, the mixture inside the shell is 
considered thermally homogeneous. In addition to the model equations, the compressor is characterized by the 
electromechanical, the volumetric and the isentropic efficiencies. The last two are also expressed by means of the 
compression pressure ratio (the corresponding mathematical relations are obtained from experimental tests or 
detailed numerical simulations previously carried out).  
 
2.3.2 Non-adiabatic tubes. The thermal and fluid-dynamic behavior of flows inside tubes is predicted with a 
distributed two-phase fluid flow model based on the work by García-Valladares et al. (2004). The fluid domain is 
represented by means of consecutive control volumes where the governing equations (continuity, momentum and 
energy) are applied and solved. The flow is evaluated on the basis of a step-by-step numerical implicit scheme 
where the wall temperature map acts as the boundary condition. The formulation requires the use of empirical 
correlations to evaluate the void fraction (ε), the shear stress (τ ) and the convective heat transfer coefficient used to 
evaluate the heat transferred between the tube and the fluid ( wallQ ).  
 
2.3.3 Heat Exchangers. For fin-and-tube evaporators different levels of simulation could be considered. First, the 
detailed model called CHESS (Pérez-Segarra et al., 2008, and Oliet et al., 2010) where the domain is divided into a 
set of control volumes as fin-and-tube blocks. That model allows steady and unsteady analysis, flexible geometry 
and circuitry, and working at dry or wet/frosting conditions. The inner refrigerant flow is solved with the two-phase 
flow model where non-uniform heat transfer coefficients can be considered in radial and axial directions. Second, a 
ε-NTU based (steady, multi-zone) fin-and-tube heat exchanger model is also available (quickCHESS), considering 
dry and wet airside conditions, and evaporation/condensation for the refrigerant (Oliet et al. 2007). A similar 
approach is used for the wire-and-tube condenser.  
 
2.3.4 Non-adiabatic capillary tube. The algorithm to simulate the capillary tube is detailed in Ablanque et al. 
(2010).  It is based on the two-phase flow algorithm presented in Section 2.3.2. The resolution procedure consists in 
determining the capillary tube critical condition. The mass flow rate inside a capillary tube increases as the 
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evaporating temperature decreases (lower discharge pressure) but only up to a critical value from which the mass 
flow rate remains constant. This critical limit occurs when the entropy generation equation is not accomplished 
anymore. This limit can be alternatively calculated when dp/dz approaches to infinity at the capillary tube discharge 
end. Then, once the critical condition is met, by comparing the current discharge pressure with the critical pressure 
(outlet pressure at critical conditions) it is possible to deduce if the capillary tube is operating at critical or non-
critical conditions. An additional control volume is considered at the capillary tube outlet end where an energy 
balance is applied to calculate the capillary tube discharge enthalpy (heat transfer and transient terms are neglected). 
 
2.3.5 Receiver. The numerical algorithm used to simulate this component is based on a full energy balance, where 
the following hypotheses have been assumed: i) the refrigerant inside the receiver is divided into perfectly defined 
liquid and vapor zones, ii) the internal energy is equal to the enthalpy in the liquid zone, iii) the kinetic and potential 
effects are neglected, iv) when mixed flow enters into the receiver it separates instantaneously. The model is 
comprehensively described in Sadurní (2010).  
 
2.3.6 Refrigerated chambers. The refrigerated chambers are configured as a collection of other components, namely, 
air volumes, solid objects, and walls, which are linked between them. For instance, the component for an air volume 
consists of a single control volume including mass, moisture and energy balances. The component for walls consists 
of a multiple material layer, with one dimensional heat conduction, moisture transport, and heat convection at 
surfaces together with thermal radiation and solar gains. The solid objects exchange heat with the surroundings and 
could accumulate or release heat accordingly (food or temperature sensors with a non-negligible mass that could be 
inside the chambers are simulated with this type of component).   
 
 2.3.7 Air circuitry. The air flow that circulates through the three refrigerated chambers is also taken into account for 
calculating heat balances inside chambers. In addition, two possible circuit schemes are considered depending on 
whether the damper is open or closed (when the damper is closed no air is flowing from the evaporator chamber to 
the cooler). In this work the mass flow rates were not calculated but defined according to a preliminary design study.     

 
 

3. VIRTUAL REFRIGERATOR: ILLUSTRATIVE CASE 
 

In the current Section, an illustrative pseudo-transient numerical simulation of a full household refrigerator, 
consisting of refrigeration cycle and refrigerated chambers, is carried out. The system lay-out is depicted in Figure 1, 
while the simulation is based on the modular approach presented in Section 2.1 including all the features mentioned 
in Section 2.2. It should be remembered that in order to speed up the numerical model response, the refrigeration 
cycle is not solved every time step of the whole system when the compressor is switched on. Instead, the cycle has 
to be previously characterized (i.e. perform and store a set of simulations at different boundary conditions) so that 
the cycle response within the whole system transient simulation is instantaneous.  
 
The main characteristics of the refrigerated compartments network are described in this paragraph. The freezer 
volume is 0.133 m3, the cooler volume is 0.209 m3 and the evaporator chamber volume is 0.04 m3. The insulation 
used in walls has the following properties: thermal conductivity 0.029 W/m K, density 40 kg/m3 and specific heat 
1674 J/kg K. The solid objects located inside both the cooler and the freezer represent typical elements for 
temperature measurements. Their temperatures are calculated in each iteration step and used by the refrigerator 
control system. These objects are made of brass and have a volume of 2.7 cm3. 
 
The control system regulates the temperature of both the cooler and the freezer (the temperature of the brass objects 
not the air temperature). The minimum and maximum temperatures allowed in the cooler are 3 and 5 ºC, 
respectively, while the minimum and maximum temperatures allowed in the freezer are -20 and -18 ºC, respectively. 
The control system can modify the compressor operating state (on/off) as well as the damper operating position 
(open/closed) according to the following parameters: current compressor operating state (on/off), current damper 
position (open/closed), current rooms temperature values (temperature of brass objects), and the maximum and 
minimum allowed temperatures for both the cooler and the freezer. 
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Figure 4: Freezer and cooler relevant temperatures evolution. 
 

Figure 4 shows the pseudo-transient behavior of the most relevant temperatures in the studied household 
refrigerator. The aim of this particular Figure is to underline that a quite long period of time has been simulated (up 
to 20000 s) with a relatively short CPU time (3000 s). It could be observed how the system variables vary at the 
beginning of the simulation to finally reach a cyclical behavior which is repeated over the time. On one hand, the 
reason for the first unstable period is that the simulation starts from a set of initial/guessed values (air, brass object, 
and wall temperatures of all the chambers) which gradually converge into a thermally balanced solution. On the 
other hand, a perfectly cyclical behavior is achieved because the system external conditions are kept constant during 
all the simulation (e.g. environment temperature). The system control is well implemented as the temperature of the 
brass objects inside both the freezer and the cooler are always within the defined temperature range. A typical on/off 
cycle is extracted from Figure 4 and studied in the following paragraphs.  
 

 
 

Figure 5: Compressor power evolution during an on/off cycle of the refrigerator. 
 

Figure 5 shows the compressor power consumption evolution during a complete on/off cycle. The power 
consumption is only reported during the first portion of the on/off cycle because the compressor is switched on 
(within numbers 1 to 5 according to the Figure), and on the contrary, the power consumption is not reported for the 
second portion because the compressor is switched off (within number 5 and number 1 of the next cycle). For this 
illustrative case the damper is opened by the control system two times within an on/off cycle. It is interesting to see 
how the compression consumption rises when the damper is opened by the control system. It occurs that at this 
specific point the “cold” air from the freezer mixes with the “hot” air from the cooler, and therefore, the air 
temperature in contact with the evaporator increases and forces the refrigerating cycle to consume more energy. It 
can be deduced that when the temperature of the brass object inside the cooler is too high as shown in Figure 8 (this 
is the reference temperature for the cooler), the damper is opened by the control system (see numbers 2 and 4), then 
the room temperature drops rapidly to an acceptable lower value, and the damper is closed again by the control 
system (see numbers 3 and 5).      
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Figure 6: System pressures evolution during an on/off cycle of the refrigerator. 
 

Figure 6 shows the evolution of both the high and low pressures of the refrigerating cycle. It is observed that during 
the “on” phase (from number 1 to number 5), the system pressures vary little, except for the particular moments 
when the damper position changes. As it has been seen before, a change on the damper position generates a sudden 
change on the system load demand, and therefore, the refrigerant cycle pressures are directly affected. In this Figure 
the consequences of the “off” phase over the refrigerating cycle are clearly observed (see the last section from 
number 5 to the next number 1). When the compressor is switched off, the system high pressure begins to drop and 
the system low pressure begins to rise, and after some time, the whole system pressure equalizes. In this particular 
case, the refrigerating cycle equalized pressure is about 3 bar.      
 

 
 

Figure 7: Freezer relevant temperatures evolution during an on/off cycle of the refrigerator. 
 

Figure 7 shows both the freezer air and the brass object temperatures. The evolution of the air temperature inside the 
freezer during an on/off cycle is as follows. First, the compressor is switched on and the damper is closed so that the 
freezer air temperature decreases (from number 1 to number 2), second, when the damper is opened by the control 
system due to an increase of the cooler temperature (see Figure 8), the air temperature rises as the “hot” air coming 
from the cooler mixes with the current air (from number 2 to number 3), third, again the damper is closed by the 
control system so again the air temperature drops (section from number 3 to number 4), fourth, the damper is opened 
again (from number 4 to number 5), and fifth, the compressor is switched off (because both chambers temperatures 
have attained acceptable values) and the air temperature begins to rise due to the freezer external heat gains. The 
evolution of the solid brass object temperature follows a similar behavior to the air. However, this object is not 
affected by sudden heat exchanges like the air (i.e. when the damper is open and the freezer air mixes with air 
coming from the cooler). 
 
Figure 8 presents a similar picture than Figure 7 but for the temperatures inside the cooler. In this case similar 
conclusions can be drawn as regards the air and the object temperatures evolution. However, it can be seen that both 
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the air and the object temperatures are always increasing when the damper is closed whether the compressor is 
switched on or off due to the external heat gains of the cooler. These temperatures diminish only when the damper is 
opened by the control system so that “cold” air coming from the evaporator chamber arrives. 
 

 
 

Figure 8: Cooler relevant temperatures evolution during an on/off cycle of the refrigerator. 
 

4. CONCLUSIONS 
 

In the present work a numerical simulation of a household refrigerator system in transient conditions has been 
carried out. The main goal was to implement a flexible numerical platform to study household refrigerators 
including its most relevant components/aspects and reaching a compromise between the system transient execution 
time and its simulation detail level. The illustrative case analyzed herein was based on typical household refrigerator 
geometries and components but the work was mainly focused on numerical aspects rather than validations. The 
upcoming step is oriented to validate the model and to study relevant aspects of the system (e.g. to analyze the 
influence of particular parameters over the whole system, to study control strategies in long time period simulations, 
etc.). 
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