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ABSTRACT 
 
This paper presents the investigation of the pressure drop in headers and development of correlation for pressure loss 
coefficient for single phase flow through round cylindrical headers of parallel MCHXs. The working fluid was 
compressed air flowing through header with 1 - 20 m/s based on smallest cross section while the velocity through 
micro-channels was in the range 6 - 30 m/s. The experimental results indicate that the pressure loss coefficient of inlet 
header is a linear function of the ratio of velocities through micro-channel tube and header, except for the first two 
micro-channel tubes; the pressure loss coefficient of outlet header is a quadratic function of the ratio of velocities 
through micro-channel tube and header, and decreases as the velocities through upstream micro-channel tubes 
increase. Correlations for predicting pressure drop of inlet header and outlet header are developed and agree for 98% 
of experimental data is within a ±15 Pa. 
 

1. INTRODUCTION 
 
Micro-channel heat exchangers show advantages over traditional fin-and-tube heat exchangers in compactness, lower 
refrigerant charge, etc. However, micro-channel heat exchangers face the problem of refrigerant distribution among 
parallel micro-channel tubes (Hrnjak, 2004; Hwang et al. 2007; Byun and Kim, 2011; Tuo and Hrnjak, 2012; Bowers 
et al., 2006; Dario et al. 2013; Ren et al., 2013) and pressure drop in the header strongly affects refrigerant distribution 
(Tuo and Hrnjak, 2013; Kim et al., 2004).  
 
Single phase flow is common in inlet headers (gas coolers, condensers, etc.), and outlet headers (DX and FGB 
evaporators, etc.). In addition, it is logical to clarify the situation in single phase flow before addressing two phase 
flow. For two-phase evaporator, the refrigerant in an outlet header is usually in single phase state, and the pressure 
drop in the outlet header significantly affects the mass flow rate distribution through parallel micro-channel tubes and 
consequently degrades the heat exchanger performance (Tuo et al., 2012; Tuo and Hrnjak, 2013). As a result, it is 
needed to accurately predict the single phase pressure drop of micro-channel heat exchanger. 
 
The single phase pressure drop of micro-channel heat exchanger could be broken down into two parts: pressure drop 
in micro-channel tubes and that in headers.  The single phase pressure drops in the micro-channel tubes are well 
studied (Graham and Dunn, 1995; Heun and Dunn, 1995; Yin et al. 2001; Hrnjak and Tu, 2007), and the results 
showed that the correlation of Churchill (1977) has a good prediction for the laminar and turbulent flow regimes in 
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the micro-channel tubes. The studies of pressure drop in the header are limited (Yin et al., 2002; Poggi et al., 2009). 
Yin et al. (2002) measured pressure drop in headers and generated a model based on the assumption that the pressure 
loss coefficients are uniform. Poggi et al. (2009) tested the pressure drop in a round inlet header, and the results show 
that the main pressure drop in the inlet header is caused by the contraction when flow passes over the first micro-
channel tube. However, to the best of author’s knowledge, there is still no information about non-uniformity of 
pressure loss coefficients in the headers. The change of pressure loss coefficient along the header results from the 
undeveloped flow in headers and the effect of flow through neighboring micro-channel tubes.  

 

This paper presents the investigation of the pressure drop and development of correlation for pressure loss coefficient 
for single phase flow through round cylindrical inlet and outlet headers. The results presented in this study are obtained 
by compressed air. The velocity through headers based on smallest cross section range from 1 m/s to 20 m/s while the 
velocity through micro-channel tubes is in the range from 6 m/s to 30 m/s, which cover the most of realistic working 
conditions in the residential and automotive air conditioning system. 
 

2. EXPERIMENTAL SETUP AND THE TEST FACILITY 
 

The test system consists of a gas tank, a temperature pre-conditioner and a header, as shown in Figure 1. For the inlet 
header test flow passes through m0, and then enters into the header. Part of gas leaves the header through the first 4 
micro-channel tubes (MC tubes #1 to #4), and the rest exits to the atmosphere through the header outlet. For the outlet 
header test, the gas goes through the first five micro-channel tubes (MC tubes #1 to #5). The mass flow rate transducer 
m0 is used to measure the mass flow rate through MC tube #5. 
 

 
Figure 1: Test apparatus 

 

The header consists of a transparent PVC tube and ten micro-channel tubes. The tube spacing is 12.0 mm and the 
protrusion is 50%. The inner diameter of the PVC tube is 18.4 mm and length is 200 mm. The micro-channel tube has 
23 ports with 1.5 mm in thickness and the 17.9 mm in width.  The length and width of each port is 0.84 mm and 0.64 
mm, respectively. 
 

3. DATA REDUCTION  
 

The pressure drop at ith section shown in Figure 2 consists of the diverging/converging loss pressure drop Δpζ, i, 
acceleration pressure drop Δpacc, i and frictional pressure drop Δpf, i, as shown in Equation (1). In Equation (1), the 
acceleration pressure drop and friction pressure drop are computed by Equation (2) and Equation (3), respectively. 
Thus, the diverging/converging loss coefficient in the ith section is defined by the velocity at ith section (see Figure 2) 
by Equation (4).  

                                        ζ, i i acc, i f, i
p p p p      

                                                                     (1) 

                                        2 2
c,i c,i-1/ 2 / 2

acc, i
p v v                                                                                (2) 
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where ρ is the density; vc,i-1 and vc,i are the average velocities of flow through header at sections i-1 and i, respectively; 
λi-1 and λi are the friction loss coefficient at sections i-1 and i, respectively; li is the header length of ith section; Dh is 
hydraulic diameter of header; Seff and Stot are the effective friction perimeter and total perimeter of header, respectively, 
as shown in Figure 2. 
 

 
Figure 2: Schematic drawing of header at ith section 

 
 

4. RESULTS AND DISCUSSION 
 

4.1 Inlet header 
Figure 3 shows the effect of velocity through the ith micro-channel tube on Δpi. Figure 3(a) shows that under a certain 
flow velocity through header (vc0), the velocity through micro-channel tube (vt1) decreases the pressure drop (Δp1) 
when flows pass over micro-channel tube #1. This is because the contraction makes a very strong secondary flow 
between the micro-channel tubes #1 and #2, and as the velocity through micro-channel tube #1 increases, the suction 
force from the micro-channel tube becomes stronger and pulls some of fluid into the volume between the micro-
channel tubes #1 and #2 and below the line St shown in Figure 2. So, the flow through micro-channel tube affects the 
formation of secondary flow in the space behind. Figures 3(b) to 3(d) show that Δpi decreases as the velocity through 
the ith micro-channel tube increases. It is due to the increase of deceleration pressure drop. 
 
Figure 4 shows the effect of the velocity through upstream micro-channel tubes on Δpi. It shows that the velocity 
through micro-channel tube #1 (vt1) has significant impact on Δp2, but has no impact on Δp3, as shown in Figures 4(a) 
and 4(b). When vt1 is low, the contraction effect is dominant, and an eddy zone is formed between micro-channel tubes 
#1 and #2, resulting in a local low pressure region in that area and a negative Δp2.  When vt1 increases, the eddy zone 
between micro-channel tubes #1 and #2 will be affected because the pressure behind the micro-channel tube #1 will 
increase and reduce pressure drop. The results of experiment also indicate that the velocities through micro-channel 
tubes #2 and #3 have no impact on Δp3 and Δp4, respectively, as shown in Figures 4(c) and 4(d). This is because 
velocity profile is more developed and so the effect of diverging flow through the tube on eddy zone behind the tube 
has almost no impact on the main flow through the header.  
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  Figure 3: Effect of velocity on Δpi in the ith micro-channel tube 

 

  

  
Figure 4: Effect of velocity through upstream micro-channel tubes on Δpi of inlet header 

(a) (b) 

(d) (c) 

(a) (b) 

(c) (d) 
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Figure 5 shows the effect of the velocity through downstream micro-channel tubes vt, i+1 on Δpi. It shows that the 
velocity through downstream micro-channel tubes has no impact on the pressure drop. This is because the flow 
separation and eddy zone are formed after the flow diverging (Idelchik, 1994).  
 

 
     Figure 5: Effect of velocity through downstream micro-channel tubes on Δpi 

 
4.2 Outlet header 
Figure 6 shows the effect of velocity through the ith micro-channel tube on Δpi of outlet header. It shows that Δpi 
increases as a quadratic function of velocity through the ith micro-channel tube. 
 

 
Figure 6: Effect of velocity through the ith micro-channel tube on Δpi in outlet header  

 
Figure 7 shows the effect of velocity through upstream micro-channel tubes on Δpi of outlet header. It shows that Δpi 
of outlet header decreases as the velocities through (i-1)th and (i-2)th micro-channel tubes increases.  The reason is that 
as the velocity in upstream micro-channel tube increases, vci increase and consequently acceleration pressure drop 
decreases. In addition, this results in decreasing of vti/vci, resulting in the decrease of converging loss coefficient of 
current section (ζi), as shown in Figure 12. 

 
Figure 8 shows the effect of velocity through downstream micro-channel tube on Δpi of outlet header. It shows that 
like the inlet header case, the velocity through the (i+1)th micro-channel tube has no impact on Δpi of outlet header 
except the velocity through micro-channel tube #2. As shown in Figure 8(a), the only different case is at high velocity 
through tube #2 (vt2) and low velocity through tube 1 or through header (vc1). The velocity through the (i+1)th micro-
channel tube is so large that the flow through it almost blocks the flow through header. 
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Figure 7: Effect of velocity through the upstream micro-channel tubes on Δpi in outlet header 

 

  

  
Figure 8: Effect of velocity through the (i+1)th micro-channel tube on Δpi in outlet header 

(c) 

(a) 

(a) (b) 

(d) 

(b) 

(c) (d) 
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5. DEVELOPMENT OF THE CORRELATION 
 

Until now, there is no correlation to reflect non-uniformity of pressure loss coefficient in headers. Yin et al. (2002) 
measured pressure drop in headers and generated a correlation based on the assumption that the pressure loss 
coefficients are uniform. As shown in Figure 9, Yin’s correlation can provide satisfactory prediction to the total 
pressure drop of headers for the present experimental data, however, it is not suitable to predict the pressure drop of 
ith section (Δpi) for both inlet and outlet headers. The possible reasons is that the pressure drop of ith section (Δpi) for 
both inlet and outlet headers varies with locations and is a function of velocity through micro-channel tube and that 
through header. Therefore, the non-uniformity of pressure loss coefficient in headers and the impacts of velocities 
through micro-channel tube and headers should be reflected in the new correlation. 
 

 
          (a) Inlet header                                      (b) outlet header 

Figure 9: Comparison of the current experimental data with the predicted values obtained by Yin’s correlation 
 

5.1 Correlation for inlet header: 
Based on the experimental results we can say that the pressure drop of ith section (Δpi) is function of the velocity 
through the ith micro-channel tube (vt, i) and the velocity though header before flow diverging at ith section (vc, i-1). 
However, the velocities through the (i-1)th micro-channel tube (vt, i-1) and (i+1)th micro-channel tube (vt, i+1) has no 
impact on the pressure drop of ith section (Δpi), except vt,1 which has great impact on Δp2 due to the contraction. 

 

 
Figure 10: Pressure loss coefficient is a function of vt,i/vc,i-1, vt,i , vt,i-1 and location 

 

 

Figure 10 shows the relations between the pressure loss coefficient of ith section (ζi) and the parameters of the ith micro-
channel tube (vt, i), the velocity though header before flow diverging at ith section (vc, i-1) and locations, and the relations 
between ζ2 and vt,1.  It shows that if “i” is equal or larger than 3, ζi is a linear function of vt, i/vc, i-1. As a result, the 
correlation for ζi should describe the pressure loss coefficient of contraction and diverging flow separately for ζ1 and 
ζ2, while others ζi (i≥3) can be treated equally as a linear function of vt, i/vc, i-1 while adding the effect of and location. 
Based on that the correlation for pressure loss coefficient in inlet header ζi is expressed as Equation (5). Using 
nonlinear fitting method the values of a1 to a14 in Equation (5) are found to be: -14.582, 4.017, 0.111, -0.218, -24.230, 
7.261, 0.242, -0.031, 0.269, 0.297, -0.044, 17.340, -1.715 and 0.165, respectively.                                                               
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The correlation is validated by the experimental data, as shown in Figure 11. The predicted pressure drops of ith section 
of inlet header (Δpi) using the correlation agree with 98% of the experimental data (292 points) obtained in the present 
study within a deviation of ±15 Pa, as shown in Figure 11(b). In addition, the predicted total pressure drop (ΣΔpi) 
agrees with 95% of experiment data within a deviation of ±15 Pa, which means the developed correlation has a good 
accuracy to predict the total pressure drop of header. 
 

 
           (a) Predicted pressure drop along header     (b) Accuracy of predicted pressure drop 

Figure 11: Comparison of the predicted values with the experimental pressure drops in inlet header 
 

5.2 Correlation for outlet header: 
 

Based on the experimental results we can say that the pressure drop of ith section (Δpi) is function of the velocities 
through the ith, (i-1)th and (i-2)th micro-channel tubes (vt, i, vt, i-1 and vt, i-2) and the velocity though header before flow 
diverging at ith section (vc, i-1). However, the velocity through the (i+1)th micro-channel tube (vt, i+1) has no impact on 
the pressure drop of ith section (Δpi). 
 

Figure 12 shows that the pressure loss coefficient of ith section (ζi) is a quadratic function of vt, i/vc, i. In addition, when 
“i” is equal or larger than 3, ζi follows the same trend with vt, i/vc, i. As a result, the correlation for ζi has to be based on 
the fact that ζi is a quadratic function of vt, i/vc, i, and also vt, i-1/vc, i and vt, i-2/vc, i and in addition has the effect of location. 
Based on that, the formulation of ζi is expressed as Equation (6), and by using nonlinear fitting method, the values of 
a1 to a9 in Equation (6) are from our data determined to be: 0.048, -0.888, -1.273, 3.352, 0.059, -0.221, -0.276, -0.112 
and 0.252 respectively. 

 
Figure 12: Pressure loss coefficient is a function of vt,i/vc,i, vt,i-1/vt,i, and vt,i-2/vt,i 
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The correlation is validated by the experimental data, as shown in Figure 13. The correlation well predict the pressure 
drop along the headers as shown in Figure 13(a), and the predicted pressure drops of outlet header using the correlation 
agree with 98% of the experimental data (393 data points) obtained in the present study within a deviation of ±15 Pa 
as shown in Figure 13(b). In addition, the predicted total pressure drop (ΣΔpi) agrees with 90% of experiment data 
within a deviation of ±15 Pa.  
 

 
         (a) Predicted pressure drop along header     (b) Accuracy of predicted pressure drop 

Figure 13: Comparison of the predicted values with the experimental pressure drops of outlet header 
 
 

6. SUMMARY AND CONCLUSION 
 
The paper presented investigation of pressure drop and development of the correlation for pressure loss coefficients 
for single phase flow through round cylindrical inlet and outlet headers of micro-channel parallel flow heat exchangers. 
The correlation is experimentally validated for almost 600 cases and the deviation of pressure drop is within ±15Pa.  
Some other findings are as follows:  
 

 The pressure drop of inlet header at the ith section (Δpi) is function of the velocity through the ith micro-
channel tube (vt, i) and the velocity though header before flow diverging at ith section (vc, i-1). The velocities 
through the (i-1)th micro-channel tube (vt, i-1) and the (i+1)th micro-channel tube (vt, i+1) have no impact on the 
pressure drop of ith section (Δpi).  

 The pressure drop of the outlet header at the ith section (Δpi) is a function of the velocity through the ith micro-
channel tube (vt, i) and the velocity though header after flow converging at ith section (vc, i), and the velocities 
through the (i-1)th and (i-2)th micro-channel tubes (vt, i-1 and vt, i-2) have great impact on the pressure drop of 
ith section (Δpi). 

 The diverging pressure loss coefficient of inlet header ζi is a linear function of vt, i/vc, i-1.  
 The converging pressure loss coefficient of outlet header ζi is a quadratic function of vt, i/vc, i, and ζi follows 

the same trend with vt, i/vc, i when i is equal or larger than 3. 
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NOMENCLATURE 
 

 
D Diameter (m) Subscript 
l Length (m) acc Acceleration 
S Perimeter (m) c Confluence flow in header 
v Velocity (m/s) eff Effective friction loss 

Greek symbols f Friction 
ζ Diverging/converging loss coefficient h Hydraulic 
λ Frictional loss coefficient i ith section of header 

 Density (kg m-3) t Tube 
Δp Pressure drop (Pa) tot Total 
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