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Theoretical analysis of low GWP mixture R600a/R1234ze as a possible  

alternative to R600a in domestic refrigerators 
 

Jinyou QIU, Hua ZHANG, Zilong WANG, Zhigang ZHOU 

 

(Institute of Refrigeration and Cryogenic Engineering, University of Shanghai for Science and 

Technology, Shanghai 200093, China) 

 

ABSTRACT 
 

In this study, a thermodynamic analysis of R600a and R600a/R1234ze mixture at three compositions of 0%, 20% 

and 50% R1234ze is measured in a domestic refrigerator. The main purpose of this study is to theoretically verify 

the possibility of applying the mixture R600a/R1234ze in large capacity refrigerator. The performance has been 

assessed for different condensing temperatures between 30℃ and 50℃ with constant -20℃ evaporating 

temperature .The performance of the refrigerator was compared in terms of volumetric cooling capacity, COP 

(coefficient of performance), compression ratio and compressor discharge temperature. The results show that the 

volumetric cooling capacity, COP, compressor power consumption and compressor discharge temperature of 

R600a/R1234ze mixture are similar to those of pure R600a,so that R600a compressor can be used for 

R600a/R1234ze mixture without any modifications. The amount charge of the mixture R600a/R1234ze is slight 

lower than that of R600a in the same equipment. Flammability decreases in R600a/R1234ze mixtures with 

increasing fractions of R1234ze.  This is one of desirable characteristic that can reduce risk of flammability and 

explosion in large capacity refrigerator system. 

 

1. INTRODUCTION 
 

Domestic refrigerators are identified as major energy consuming domestic appliances in every household(R. 

Radermacher & Kim, 1996). Over the past decades, conventional refrigerants such as HCFCs and HFCs have been 

used extensively in domestic refrigerators fields owing to their well chemical and thermodynamic properties. 

However, the increasing attention to environmental problems such as global warming, ozone depletion and 

atmospheric pollution has led to a large number of studies related to the selection of environmentally friendly 

refrigerants as working fluids for domestic refrigerators in recent years. R134a is considered as an environmentally 

safe refrigerant and is essentially non-toxic(Dietrich, 1993),but its GWP (global warming potential) effect is very 

high. The Kyoto Protocol of the United Nations Framework Convention on Climate Change (UNFCCC) asked for 

reduction in emission of six categories of greenhouse gases, including R134a, used as refrigerant in domestic 

refrigerators(Tasi, 2005). Therefore, according to Kyoto protocol(protocol, 1997), the consumption of R134a must 

be seriously reduced. From the environmental, ecological and health points of view, it is urgent to find some better 

substitutes for HFC (hydro fluorocarbon) refrigerants(Johnson, 1998). 

 

Recently, Mohanraj et al.(M. Mohanraj, C. Muraleedharan, & Jayaraj, 2011) have reviewed the developments of 

new refrigerant mixtures for vapor compression based refrigeration systems. They stated that hydrocarbon 

refrigerants are identified as long-term alternatives to phase out the existing halogenated refrigerants in the vapor 

compression based systems. Regarding the performance, hydrocarbon mixtures are found to be better substitutes for 

R12 and R134a in domestic refrigerators(M. Mohanraj, S. Jayaraj, & Muraleedharan, 2009). A survey conducted by 

Jose et al.(M.C. Jose, S. Jacobo, C. Daniel, & Jose, 2008) proved that certain hydrocarbons have excellent 

characteristics as refrigerants from a thermodynamic point of view. Furthermore, hydrocarbon as a refrigerant may 

be used in small systems like refrigerators and small freezers (with hydrocarbon charge lower than 150 g) provided 

that they incorporate a few special safety measures. 

 

Even though R600a and its blends are widely used in domestic sector in Europe, their use in North America is not 

extensive yet (Bansal P., Vineyard E., & O., 2011). The reason is manufacturers’ fear of flammability and explosion 

hazards in domestic refrigerators (J.M., 2008). Nevertheless, R600a is the most frequently used hydrocarbon 

refrigerant with more than 95% of market share in many countries (RTOC, 2006). In 2004, 33% of global domestic 

refrigerator production used pure isobutane or its blends. It should be noted that normal use of R600a in refrigerators 
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has not resulted in any accidents (P. Wennerstrom, 2006). In contrast, some accidents have been reported during 

manufacturing or in the retrofitted equipment using hydrocarbons (Colbourne D., Suen K., & T., 2003). R600a has a 

higher density than air, and in case of leakage it spreads close to the floor; thus, the risk of flammability 

increases(Clodic D. & W., 1996). On the other hand, lower refrigerant charge reduces explosion risk. Some 

solutions to overcome the flammability of  hydrocarbon refrigerants were presented(A. Gigiel, 2004). Mixture 

refrigerants can have each advantages of individual. So, R600a mixing with synthetic refrigerants, such as R1234ze, 

can reduce the risk of flammability and explosion. Focus on R1234ze, this refrigerant has a GWP of 4(Nielsen, O.J., 

& al., 2007). According to the investigation by Osafune K.(2012) and Koyama S.(2013), R1234ze is expected to be 

categorized as ASHRAE safety classification A2L, and most metals, plastics, and elastomers are stable in this 

refrigerant.  

 

As the global environment is progressively concerned, greenhouse warming has also become very important these 

days besides the ozone depletion issue. One of the ways to alleviate greenhouse warming is to adopt the mixtures 

with low GWP and develop high efficiency refrigeration devices. From this point of view, the hydrocarbons and 

new synthetic refrigerant R1234ze with zero ODP and lower GWP could be possible alternative working fluid that 

can meet this need. The intention of this study is to show the possibility of applying the chosen refrigerant mixture 

in relatively large amount of charge refrigerator. Through this study, we hope that it could provide some useful data 

for the promising development of such domestic refrigerators in the future.  

 

2. CHARACTERISTICS OF R600a AND R1234ze 

 
The properties of R600a and R1234ze (such as vapor pressure, liquid density, latent heat, and suction specific 

volume) for wide range of temperatures (between 230 and 360K) are compared in Figs. 1. Fig. 1(a) depicts the 

variation of vapor pressure of R600a and R1234ze against temperature. It was observed that both have 

approximately the same vapor pressure at lower temperatures. However, the vapor pressure of R1234ze was found 

to be a little higher than that of R600a at higher temperatures from 330K to 360K. The liquid densities of R1234ze 

and R600a are compared in Fig. 1(b). The liquid density of R1234ze was found to be twice as much than that of 

R600a in the study range temperature, which will significantly reduce the refrigerant charge requirement. The 

variation of latent heat of two investigated refrigerants is shown in Fig. 1(c). It was observed that R1234ze is almost 

the half compared to R600a. From this point of view, R1234ze is slightly disadvantageous compared with R600a. 

But, this disadvantage could be compensated be the lower suction specific volume of R1234ze. Fig. 1(d) shows the 

variation of compressor suction specific volume of the refrigerants under study. The lower suction specific volume 

of R1234ze than that of R600a indicates the need for a smaller compressor size for the same mass flow rate, and this 

property would compensate the lower enthalpy of vaporization of R1234ze than that of R600a discussed earlier in 

Fig. 1(c).  

 

The other properties such as critical temperature, critical pressure, boiling point, molecular weight, ODP and GWP 

of R1234ze and R600a are compared in Table 1. R1234ze has zero ODP with low GWP of 4. The critical 

temperature and critical pressure of R1234ze were found to be lower than those of R600a. Computational analysis of 

the above said thermophysical properties have been done using REFPROP software version 9.0. 
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(c)                                                                    (d) 

Fig. 1: Thermodynamic properties of R134a and R1234yf: (a) Variation of vapor pressure with temperature, (b) 

Variation of liquid density with temperature, (c) Variation of latent heat with temperature, (d)Variation of specific 

volume with temperature 

 

Table 1: Properties of R600a and R1234ze 

Refrigerant 

Boiling 

point 

(℃) 

Molecular 

weight（kg/kmol） 

Critical 

temperature 

(℃) 

Critical 

pressure 

(MPa) 

Ozone 

depletion 

potential 

Global 

warming 

potential 

R600a –11.73 58.12 135 3.650 0 0 

R1234ze -18.8 114.04 109.5 3.636 0 4 

 

3. CYCLE PERFORMANCE ANALYSIS 

 
Fig. 2(a) shows a schematic diagram of a simple refrigerator cycle composed of an evaporator, condenser, 

compressor, capillary tube expansion device. As shown in Fig. 2(b), this refrigerator cycle consists of a non-

isentropic compression process, an isobaric heat rejection process, an adiabatic expansion process, and an isobaric 

evaporation process. In the pressure–enthalpy diagram, the process path 1-2-3′-3-4-1′-1. In order to obtain 

meaningful results from the refrigerator, the thermodynamic performances of the cycle are evaluated based on 

thermodynamic cycle analysis method. Steady flow energy equation and mass balance equation have been employed 

in each individual process of the cycle. Also the following assumptions have been made to simplify the analysis: 

 

1. Heat transfer with the ambient is negligible. 

2. Compression process is adiabatic but non-isentropic. 

3. Evaporation and condensation processes are non-isobaric but pressure drops are constant. 

4. Throttling process is adiabatic. 

5. Vapor is at saturated or superheated condition at the exit to the evaporator. 

The detailed characteristics of the cycle can be found as follows: 

Refrigerating capacity of evaporator per unit of mass: 

                                                                                             (1) 

Volumetric heating capacity per unit of swept volume at the inlet of the compressor: 

         ⁄                                                                                       (2) 

Specific work of compressor: 

            ⁄                                                                                 (3) 

The isentropic efficiency of the compressor is defined as: 

                  ⁄                                                                           (4) 

The coefficient of performance of heat pump (COP): 

       ⁄                                                                                       (5) 
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(a)                                                             (b) 

Fig. 2: (a) A Schematic diagram of refrigerator cycle， 

(b) Pressure-enthalpy diagram of refrigerator cycle. 
Where h1 is the enthalpy of the compressor inlet; h2s is the enthalpy of the compressor outlet at the isentropic 

compression processes; h2 is the enthalpy of the compressor outlet at the actual compression processes. In the 

following analysis, these calculations are accomplished by using REFPROP software version 9.0.(Lemmon, Huber, 

& McLinden, 2010). 

 

4. RESULTS AND DISCUSSIONS 

 

The effects of the two parameters on the cycle performance are analytically investigated over a range of values. The 

performance has been assessed for different condensing temperatures between 30 and 50℃ with constant -20℃ 

evaporating temperature. In addition, the compressor is assumed to have an isentropic efficiency ηs = 0.85, which is 

constant and does not vary with the compression ratio in all cases.  

 

3.1 Variation of Coefficient of performance (COP) 
The COP is compared in Fig. 3(a). The COP of mixtures was found to be close to R600a for a wide range of 

condensing temperatures. The deviations for pure R600a and mixtures are 0.3% and 0.6% at 40℃ condensing  

 

  
（a）                                                             （b） 

  
（c）                                                              （d） 

Fig. 3: (a) Variation of pressure ratio with evaporator temperature, (b) Variation of volumetric cooling capacity with 

evaporator temperature, (c) Variation of COP with evaporator temperature, (d) Variation of compressor discharge 

temperature with evaporator temperature. 
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temperature, respectively. And the deviations are found to be small with condensing temperature decreases.  The 

COP for both R600a and mixtures decrease by about 35.1%,34.7% and 33.9% with an increase in condensing 

temperature from 30℃ to 50℃, respectively. 

 

3.2 Variation of volumetric cooling capacity (VCC) 
VCC is the major factor considered for choosing the alternative, which influences the size of the compressors. The 

variation of VCC at different operating temperatures is illustrated in Fig. 3(b). VCC of mixtures were found to be 

slightly large than that of R134a for a wide range of condensing temperatures. The maximum deviations in VCC are 

found to be 2.3% and 7.1%, respectively. Hence, the mixtures can be used as drop-in substitute without major 

modification in the existing R600a systems. So, from this point of view, the size of the compressors can be smaller 

for using these mixtures. 

 

3.3 Variation of pressure ratio 
For any refrigerants to be a suitable alternative for R600a in a conventional refrigeration system, it must meet certain 

criteria. One of these criteria is the compression ratio. The pressure ratio of the refrigerant influences the volumetric 

efficiency of the compressor. Fig. 3(c) shows the pressure ratios as a function of condensing temperature .The 

pressure ratio of mixtures were observed to be slightly higher than that of R600a by about 1.9% and 5.3% at 40℃ 

condensing temperature, respectively. Hence, the mixtures can be used as drop-in substitute without major 

modification in the existing R600a systems. 

 

3.4 Compressor discharge temperature 
The compressor discharge temperature is the major factor influencing the life of the refrigerant compressors. The 

higher compressor discharge temperature will affect the properties of lubricants. The comparison of compressor 

discharge temperature of R600a and mixtures is depicted in Fig. 3(d). The compressor discharge temperatures of 

mixtures were found to be slightly higher than that of R600a for a wide range of condensing temperatures. The 

compressor discharge temperature increases with condensing temperature rises for both R600a and mixtures. And, 

the maximum of the temperature is within the safe level.  

 

3.5 Degree of superheat 
Analyzing the influence of the superheat degree on the COP, Fig. 4(a), it can be observed that the value of the COP 

obtained using R600a and mixtures both increases with the superheat degree rises. Fig.11, it can be seen that the 

COP obtained  increases 5.6～5.9% with the average superheat degree rises 10℃ for both R600a and mixtures. And 

the COP obtained using mixtures are more sensitive than that of R600a with the superheat degree rises. So, from this 

point of view, the COP is improved more for mixtures than that of R600a with the superheat degree rises. But, the 

compressor discharge temperature increases with the superheat degree rises for both R600a and mixtures depicted in 

Fig. 4(b), which is due to the higher compressor suction temperature with the superheat degree rises. This fact 

influences the life of the refrigerant compressors and affects the properties of lubricants. But, the maximums are all 

within the safe value. 

 

 
（a）                                                             （b） 

Fig. 4: (a) Variation of COP with degree of superheat (tevap.=-25℃; tcond.=40℃),  

(b) Variation of Compressor discharge temperature with degree of superheat (tevap.=-25℃; tcond.=40℃). 
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5. CONCLUSIONS 
 
Thermodynamic performance assessment has been made for a domestic refrigerator working with pure R600a and 

mixture of R600a and R1234ze, and the following conclusions were made. 

 

• VCC of the mixtures was found to be closer with R600a. Hence, the mixtures can be used in R600a domestic 

refrigerator  without major modifications. 

• The COP of the domestic refrigerator working with mixtures were found to be slightly lower than that of R600a by 

0.3% and 0.6% at 40℃ condensing temperature, respectively. And, the deviations are found to be smaller with the 

condensing temperature decreases.  

• The flammability and explosion of the mixture R600a/R1234ze decrease greatly compares with pure R600a. 

So, the mixture R600a/R1234ze can be charged to the large system at the same risk of flammability and 

explosion. 

 

NOMENCLATURE 

 
The nomenclature should be located at the end of the text using the following format: 

COP           coefficient of performance                       

P                pressure (kPa)   

H                specific enthalpy (kJ•kg
-1

)                     

ηs                isentropic efficiency 

w                specific work of compressor(kJ•kg
-1

)            

 π                pressure ratio  

qe                refrigerating capacity per unit of mass (kJ•kg
-1

)       

qh                heating capacity per unit of mass (kJ•kg
-1

)           

qhv              heating capacity per unit of swept volume (kJ•m
-3

)     

t                  temperature (℃)                                  

v                 specific volume (m3•kg
-1

)                        

Subscripts 
d                 compressor discharge 

e                 evaporator 

c                 condenser 

sd                superheat degree  

evap.           evaporating 

cond.           condensing 

1-4              state points of refrigerant 
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