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ABSTRACT 
Reducing energy consumption by utilizing heat recovery systems has become increasingly important in industry. For 

this problem, heat pumps are one solution to recover waste heat. This paper presents an exploratory assessment of 

heat pump-type heat recovery systems using environmentally friendly refrigerants. The coefficient of performance 

(COP) of four different cycle configurations used to raise the temperature of heat media up to 160 °C with a waste 

heat of 80 °C are calculated and compared for the refrigerants R717, R365mfc, R1234ze(E), and R1234ze(Z). A 

multiple-stage “extraction” cycle drastically reduces the throttling loss in the expansion valve and the exergy loss in 

the condensers and consequently achieves the highest COP among the calculated cases with R1234ze(Z). A cascade 

cycle using R1234ze(Z) and R365mfc has a relatively high COP and also provides many practical benefits. Even 

with adverse conditions, the primary energy efficiency is greater than 1.3 when the transmission-end efficiency of 

the electric power generation is 0.37. The thermodynamic assessment demonstrated that the use of high-temperature 

heat pumps to recover waste heat is promising to reduce primary energy consumption for industrial applications. 

 

1. INTRODUCTION 
Steam boilers are often used for the drying process of wood or paint, food processing, the distillation process of 

drugs or drinks, and the cleaning process of machined components. However, in boiler systems, the heat loss from 

the large steam pipe and the emissions of greenhouse gases from fossil fuel consumption are considerable. 

Additionally, the heat exhaust from these relatively high-temperature processes is not utilized in many cases (e.g., 

US DOE, 2003). Therefore, recently, an attempt to introduce industrial heat pumps to recover waste heat and reduce 

primary energy consumption has attracted attention (e.g., US DOE, 2008; Jacobs et al., 2010). Conversely, in the 

past, there was a view that the efficiency of a heat pump is inferior to combustion in primary energy conversion 

(Kew, 1982). From the above significance, this study provides a brief thermodynamic assessment as the first 

screening of refrigerants and a case study to calculate more specifically the performances of proposed cycle 

configurations. First, a theoretical coefficient of performance (COP) of a basic heating cycle at condensing 

temperatures from 50 °C to the critical temperatures are evaluated for several refrigerants. Based on this screening, 

candidate refrigerants with different levels of critical temperature are selected, and four different cycle 

configurations are proposed for a case study. Secondly, the COP and the primary energy efficiency of these cycles 

using the selected refrigerants are calculated for the case of raising temperature of compressed water as a heat media 

up to 160 °C with waste heat of 80 °C. From the calculation results, the characteristic of the proposed cycles and the 

optimum refrigerant for the target temperature are discussed in this paper. 

 

2. THEORETICAL PERFORMANCE OF SELECTED REFRIGERANTS 
Table 1 compares the characteristics and properties of the selected refrigerants for industrial high-temperature heat 

pumps. In Table 1, the refrigerants are listed in the order of their critical temperature from left to right. The gray 

columns are newly recognized substances as refrigerants; the white columns are conventional refrigerants. The low 

GWP refrigerant R1234ze(E) and the isomer R1234ze(Z) have been vigorously investigated in this decade (Brown 

et al. 2009) as alternatives to R134a and R245fa. The natural refrigerant R717, i.e., ammonia, has excellent 

thermodynamic properties, as mentioned by many forerunners (e.g., Fleming, 1978; Pearson, 1999), and also quite 

strong toxicity. R717 is, therefore, considered only for the non-usage or low-pressure side in this study. R365 has 
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the highest critical temperature among the selected refrigerants. Although R365mfc has a relatively high GWP, a 

low-GWP alternative with similar physical properties, such as HFEs, will likely be found shortly.    

 

Figure 1 shows the performance of a theoretical heat-pump cycle using the selected refrigerants. Figure 1 (a) 

illustrates the calculation conditions of a theoretical cycle on the refrigerant T-s diagram to evaluate the heating COP, 

COPH, pressure ratio, Pd/Ps, and volumetric capacity, VCH. The temperature lift of 80 K and the subcool of 60 K are 

rather larger than the typical operation conditions of air conditioners and simulate an operation for the industrial heat 

pumps for waste heat recovery. The physical properties are calculated using REFPROP 9.1 (Lemmon et al., 2010) 

coupled with the incorporated coefficients optimized by Akasaka et al. (2013). Under the given conditions, the 

COPH and VCH are defined as below. 

H cond comprCOP h h  ,   and   H V condVC h       (1) 

In Figures 1 (b), (c), and (d), COPH, Pd/Ps, and VCH are, respectively, plotted by varying the condensation 

temperature from 50 to the temperature just below the critical point. As the condensation temperature rises to the 

critical temperature, the COP monotonically increases. This theoretical COP indicates the possible line of the 

developments and does not take account of the irreversible losses. The pressure ratio decreases with increasing 

temperature, whereas the volumetric capacity increases. Under the condition of such a large temperature lift of 80 K, 

the pressure ratio easily exceeds 5. Operating steadily at pressure ratios beyond 5 with a single compression is 

difficult with existing technology. When the volumetric capacity is insufficient or far smaller than that of 

Table 1: Fundamental characteristics of candidate refrigerants 

 
R410A R134a R1234ze(E) R717 R1234ze(Z) R245fa R365mfc 

ODP 0 0 0 0 0 0 0 
GWP100* 6 1430 6 negligible <10 1030 794 
Safety 
classification** 

A1 A1 A2L B2 
A2L*** 

(expected) 
B1 

A2 
(expected) 

NBP****  [oC] -51.5 -26.1 -19.0 -33.3 9.8 15.1 40.2 
Pcrit   [MPa] 4.90 4.06 3.64 11.33 3.53 3.65 3.27 
Tcrit   [oC] 71.3 101.1 109.4 132.3 150.1 154.0 186.9 

* IPCC 4th report (Solomon et al., 2007)  ** ANSI/ASHRAE standard 34-2007 (A-Non-toxic, B-Toxic; 1-Non-
flammable, 1L-Mildly flammable, 2-Flammable)  *** Koyama et al. (2012)    **** Normal boiling point  
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(a)  calculation condition

Figure 1: Theoretical COP of a basic heating cycle allows large subcooling for selected refrigerants (TliftG 

= 80 K, SC = 60 K, SH = 3 K, hcompr= 1.0). The notations “ze(E)” and “ze(Z)” refer R1234ze(E) and 

R1234ze(Z), respectively. 
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conventional refrigerants, to maintain the heating capacity with same size of compressor and heat exchangers, the 

irreversible loss is prone to increase due to the required much higher refrigerant circulation ratio. To avoid this 

problem, much larger equipment is required; however, the market would not accept such an economic burden. To 

reduce the pressure ratio while increasing the volumetric capacity, techniques of multiple stages or cascading would 

be necessary, and selecting a refrigerant to operate at just below the critical temperature at a given condition is also 

important. Based upon this brief assessment, a case study with more specific cycle configurations on a heat recovery 

system is hereafter discussed. 

 

3. CASE STUDY ON HEAT RECOVERY SYSTEMS TO RAISE TEMPERATURE 

FROM 80 TO 160 °C 
In the following case study, the performance of an industrial heat pump system to recover waste heat is calculated. 

Utilizing the waste heat of 80 °C, the heat media of compressed water is preheated to 75 °C. Then, the compressed 

water at 1 MPa is heated from 75 °C to 160 °C by a heat pump system and delivers the heat to the usage site. The 

waste heat is, of course, used as the heat source of the heat pump.  

 
3.1 Cycle configurations 
Figure 2 shows four cycle configurations of the heat pump system for heat recovery. Figures 2 (a), (b), (c), and (d) 

are the proposed cycles: a triple tandem cycle, a two stage extraction cycle, a three stage extraction cycle, and a 

cascade cycle. In the triple tandem cycle of Figure 2 (a), an internal heat exchanger is used to reduce the pressure 

ratio of the third cycle. The extraction cycle shown in Figures 2 (b) and (c) is a unique system to extract the vapor 

from the compressor. The extracted vapor rejects heat in a condenser and then converges with the liquid that flowed 

through a condenser and an expansion valve on the higher pressure side. After the conversion, the enthalpy and the 

mass flow rate are increased by the liquid from the higher pressure side, and the heat is rejected to the compressed 

water in a sub-cooler. By converging the extracted vapor and the liquid from the higher-pressure side, the internal 

energy remaining in the liquid is utilized in the sub-cooler instead of losing it as the throttling loss in an expansion 

valve returning to the evaporator. In the cascade cycle of Figure 2 (d), the compressed water is heated with a sub-

cooler of the low temperature side cycle and continuously heated in the two stage extraction cycle of the high 

temperature side cycle. In the case where the COP is improved, an internal heat exchanger is applied in the cycles of 

Figures 2 (c) and (d), as drawn by the dashed line. The above cycles are stated as cases I, II, III, and IV in this paper.  

 
                      (a) case I: triple tandem cycle                                              (b) case II: two stage extraction cycle 

 

    
                       (c) case III: three stage extraction cycle                                        (d) case IV: cascade cycle 

Figure 2: Proposed cycle configurations for the heat recovery system 
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3.2 Calculation conditions and models for components 
Compressor: Regardless of the pressure ratio or the rotation speed, the isentropic, mechanical, and motor efficiency 

are given as 0.92, 0.85, and 0.90 for each compressor or compression process. 

Evaporator: Figure 3 illustrates the calculation model of the temperature distribution in the evaporator and the 

condenser/gas-cooler/subcooler on the T-Q diagram of the refrigerant. In this model, the pinch temperature (i.e., 

minimum approach temperature) is 5 K in the subcool and superheat regions, whereas it is 2 K in the two-phase 

region. The evaporation pressure is a saturation pressure that corresponds to the saturation temperature that is 2 K 

below the outlet temperature of the heat source fluid. The outlet temperature of superheated vapor is 5 K below the 

inlet temperature of the heat source fluid.  

Condenser/Gas-cooler/Subcooler: As shown in Figure 3, the condensation pressure is determined as corresponding 

to a saturation temperature that is 2 K above the outlet temperature of the compressed water. In the case where the 

pressure exceeds the critical point, the pressure in the gas-cooler is determined with a pinch temperature of 5 K. The 

gas-cooler is partitioned into 10 segments on the basis of entropy change, and the pinch temperature is the minimum 

temperature difference in those segments. For the subcooler, the pinch point that appears either at the entrance or the 

exit is greater than 5 K.  

Internal heat exchanger: As drawn by the dotted lines in Figure 2, an internal heat exchanger can be taken into 

account if it improves COP or if it is necessary to keep the refrigerant state superheated at the compressor discharge. 

The pinch point at either the entrance or the exit is always greater than 2 K. Under these conditions, the optimum 

point of the compressor suction temperature and the heat transfer rate in the internal heat exchanger are iteratively 

found. 

 

3.3 Calculation procedure for case III and IV 
The coefficient of performance (COP) of case III is calculated as follows. Considering the efficiencies, the shaft 

power hcompr and the total energy consumption W of compressors are expressed as, 

   

   

   

 
  
 

compr1 r3 3 2 r2 s mech 1 compr1 motor r1

compr2 r8 8 7 r7 s mech 2 compr2 motor r2 r3

3 compr3 motor r3compr3 r9 9 8 r8 s mech

,

,           

,

h h P s h W h m

h h P s h W h m m

W h mh h P s h

 hh  h

 hh  h

 h hh

     
 

      
      

   (2) 

When the inlet temperatures of the compressed water in the heat exchangers 2’ and 3 of heat transfer rates Q2’and 

Q3 are given, the state of this cycle is determined to satisfy the following heat balances.  

      

     

      

 

cond1
1 H2O H2O,i H2O H2O,i H2O r14 r13 r3 r2 r1

cond2 cond1
1 H2O H2O,i H2O H2O,i H2O r3 r12 r1

cond2 cond2
2 H2O H2O,i H2O H2O,i H2O r9 r10 r3 r2

cond3
2 H2O H2O,i H2O H2

Q h T h T m h h m m m

Q h T h T m h h m

Q h T h T m h h m m

Q h T h T





      
 

    
 

      
 

     

     

cond2
O,i H2O r4 r8 r2

cond3
3 H2O H2O,o H2O H2O,i H2O r5 r6 r3

m h h m

Q h T h T m h h m









   
 

     
 

    (3) 

With a given heat load (Q1’+Q1+Q2’+Q2+Q3) and the compressed water temperatures and , the remaining 
cond2

H2O,iT
 cond3

H2O,iT

Table 2:  Typical calculation conditions for the case study  

Compressed 
water (1 MPa) 

inlet temp. (after pre-heating) TH2O,i 70°C 

outlet temp. TH2O,o 160°C 

Heat source 
inlet temp. Tsrc,i 80°C 
outlet temp. Tsrc,o 70°C 

Compressor 
isentropic efficiency hs 0.92 
mechanical efficiency hmech 0.85 
motor efficiency hmotor 0.90 

Evaporator 
pinch temp. at the entrance Ti

evap > 2 K 
pinch temp. at the exit To

evap > 5 K 

Condenser 
pinch temp. at the entrance Ti

cond > 2 K 
pinch temp. at the exit To

cond > 5 K 
Gas-cooler pinch temp. T GC > 5 K 
Subcooler pinch temp. T SC > 5 K 

Internal HEX pinch temp. T IH > 2 K 

 

Figure 3: Model for the approach temperature 
and pinch points in the heat exchangers 
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compressed water temperature  and the refrigerant mass flow rates mr1, mr2, and mr3 are iteratively obtained. 

Thus, the overall COP of the heating cycle of case III is, 

 
1 1 2 2 3

H
overall

1 2 3

Q Q Q Q Q
COP

W W W

    


 
      (4) 

For the cascade cycle case IV, the shaft power hcompr and the energy consumption W in the compressors are, 

   

   

   

 
  
 

compr1 r3 3 2 r2 s mech 1 compr1 motor r1

compr2 r8 8 7 r7 s mech 2 compr2 motor r2 r3

3 compr3 motor r3compr3 r9 9 8 r8 s mech

,

,           

,

h h P s h W h m

h h P s h W h m m

W h mh h P s h

 hh  h

 hh  h

 h hh

     
 

      
      

   (5) 

The cycle state is determined when the inlet temperatures of the compressed water in the heat exchangers 2’ and 3, 

and , are given to satisfy the following heat balances.

     

      

     

   

cond1
1 H2O H2O,i H2O H2O,i H2O r4 r5 r1

cond2 cond2
2 H2O H2O,i H2O H2O,i H2O r13 r14 r3 r2

cond3 cond2
2 H2O H2O,i H2O H2O,i H2O r8 r12 r2

cond3
3 H2O H2O,o H2O H2O,i H2

Q h T h T m h h m

Q h T h T m h h m m

Q h T h T m h h m

Q h T h T m



    
 

      
 

    
 

  
   O r9 r10 r3h h m








  


     (6) 

Additionally, in the cascade condenser, the following heat balance is maintained. 

     1 r3 r4 r1 r7 r6 r2 r3Q h h m h h m m           (7) 

From the above conditions, the refrigerant mass flow rates are determined at a given heat load. Thus, the overall 

COP of the heating cycle of case IV is, 

 
1 2 2 3

H
overall

1 2 3

Q Q Q Q
COP

W W W

   


 
      (8) 

By sequentially varying the parameters and , the combinations to maximize the overall COP of Eqs. (4) 

and (8) are found for case III and case IV. 

 
3.4 Calculation results for the target temperature of 160 °C with the typical conditions 
Table 3 lists the calculation results of the overall COP and supplementary information: the change in the compressed 

water temperature, refrigerants, COP, volumetric capacity, pressure ratio of the individual value or name for each 

stage. The performance is also expressed in terms of the primary energy efficiency, assuming the transmission-end-

efficiency of electric power generation of 0.37. As listed in Table 3, all of the primary energy efficiencies are above 

1.0, which indicates positive perspectives for the reduction of the primary energy consumption by the heat pump 

heat recovery systems. Figures 4, 5, and 6 are P-h and T-s diagrams that show the calculation results for the high-

temperature heat pump cycles of case I, III, and IV, respectively. The thick solid line indicates the state of the 

refrigerant along with numbers corresponding to those in Figure 2. The other two thin solid lines in the T-s diagrams 

indicate the temperature of the compressed water and heat source fluid as addressed to the refrigerant state. It should 

be noted that the horizontal axis shows the specific entropy of the refrigerant but not the water or heat source fluid. 

The temperatures of the compressed water and heat source correspond to the refrigerant state. 

 

Figure 4 plots the results of the triple tandem cycle applying R1234ze(E), R1234ze(Z), and R365mfc for low, 

medium, and high sides, respectively. The major concern is the large pressure ratio of the high side cycle. In 

consequence of the large throttling loss due to the pressure ratio beyond 8, the overall COP decreases. To reduce the 

throttling loss, a momentum recovery using an ejector or an expander could be a possible solution. This would be a 

necessary step in the development, although this cycle has the advantage of easy control by the independent stages. 

 

Cases II and III of the multiple stage extraction cycle achieve much higher COP than that of the tandem cycle. When 

R1234ze(Z) and R365mfc are applied in the two stage extraction cycle (case II), as listed in Table 3, the overall 

COP is 4.83. When either R1234ze(Z) or R365mfc is applied in the three stage extraction cycle (case III-a or III-b), 

the COP is 4.94 or 4.84. Especially for the three stage extraction cycle, the pressure ratio of each stage is reduced 

cond1
H2O,iT

cond2
H2O,iT

 cond3
H2O,iT

cond2
H2O,iT

 cond3
H2O,iT
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below 3. This is a significant benefit of reducing the throttling loss in the expansion valves and the mechanical 

fatigue in the compressors. The reduction of the throttling loss is illustrated in Figure 5 (b) by the short line 

segments of 6-7, 10-11, and 14-1. Additionally, by utilizing the subcoolers, the irreversible loss of heat transfer is 

reduced. In the extraction cycle, the extracted vapor rejects the heat once in the condenser and then converges with 

the refrigerant flow from the high-pressure side, which is somewhat flashed in the expansion valve. Thus, the 

internal energy of the refrigerant flow is transferred to the compressed water as much as possible, rather than wasted 

in the expansion valve. The reduced irreversible loss is illustrated in Figure 5 (b) by the line indicating the 

compressed water temperature bending up to the refrigerant temperature of the line segments 4-7-8-9-10 and 3-11-

12-13-14. Comparing the overall COP between case III-a and III-b, the COP of case III-a is slightly higher than the 

others. The critical temperature, where the theoretical COP and volumetric capacity are almost maximized, of 

R1234ze(Z) is closer to the target temperature of the outlet compressed water. Most likely, this makes the use of 

R1234ze(Z) advantageous in the cycle. In addition, as shown in Figure 7 (a) the reduction in the COP with changes 

in the operation conditions is moderate, which means that this cycle could achieve the designed stable performance. 

The above mentioned thermodynamic attraction is significant; nevertheless, there is still a sticking point for the 

development. These multiple stage cycles do not allow the individual control of each stage, which makes the cycle 

control very difficult. To solve this problem partially, a cascade cycle is suggested. 

 

Table 3:  Calculation results for the supply temperature of 160 °C with a heat source temperature of 80 °C 

 
 

case 

TH2O1 TH2O2 TH2O3  
 

overall COP, 
(COPH)overall 

 
 

primary energy 
efficiency, hpe* 

refrig.1 refrig.2 refrig.3 

COP1 COP2 COP3 

VC1 VC2 VC3 

Pd/Ps1 Pd/Ps2 Pd/Ps3 

 
 
I 

70 to 100 100 to 130 130 to 160  
 

4.37 
 

 
 

1.62 
R1234ze(E) R1234ze(Z) R365mfc 

7.88 4.14 3.15 

11.54 4.80 2.32 

2.04 4.01 8.43 

 
 

II 

70 to 90 90 to 129 129 to 160  
 

4.83 

 
 

1.79 
R1234ze(Z) R365mfc 

10.96 4.18 

5.56 - 

1.77 4.66 1.81 

 
 

III-a 

70 to 99 99 to 125 125 to 160  
 

4.94 

 
 

1.83 
R1234ze(Z) 

4.94 

- 

2.16 1.69 1.62 

 
 

III-b 

70 to 104 104 to 128 128 to 160  
 

4.84 

 
 

1.79 
R365mfc 

4.84 

- 

2.70 1.69 1.85 

 
 

IV-a 

70 to 112 112 to 138 138 to 160  
4.68 

(temperature in the 
cascade condenser, 

117 °C ) 

 
 

1.73 
R1234ze(Z) R365mfc 

3.09 8.38 

2.96 - 10.79 

3.00 1.80 1.51 

 
 

IV-b 
 
 

70 to 87 87 to 126 126 to 160  
4.56 

(temperature in the 
cascade condenser, 

 92 °C ) 

 
 

1.69 
 
 

R717 R365mfc 

2.12 6.19 

5.23 - 9.88 

1.69 2.59 1.93 

* Transmission-end-efficiency of electric power generation is assumed as 0.37 
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For the cascade cycle case IV, the states of the low temperature side and the high temperature side are drawn by the 

dashed and solid lines in Figure 6. The irreversible loss due to the heat transfer is additionally generated in the 

cascade condenser, as illustrated by the area in between the solid line 6-7 and the dashed line 3-4. In consequence of 

the heat transfer loss, at the condensing temperature in the cascade condenser of 117 °C, the overall COP of the 

cascade cycle, case IV-a, applying R1234ze(Z) for the low side and R365mfc, is 4.68, which is somewhat lower 

than that of the multiple stage extraction cycles. As shown in Figure 7 (b), the overall COP of case IV decreases 

more than that of case III-a. The heat transfer loss in the cascade condenser can be increased according to the 

operation conditions, which does not occur in case III-a. Thus, the overall COP can be decreased considerably. 

Nevertheless, individual control is necessary for the high and low side stages. The cascade cycle brings some other 

practical benefits. For instance, the individual start and refrigerant selection of the low side stage can protect the 

compressors from the “liquid back” at the cold start. The lubricant oil can be selected for the particular temperature 

range of each stage. In addition, if a refrigerant possessing large volumetric capacity is used for the low side stage, 

then the downsizing of the compressor and some other parts of the heat pump can be allowed. Case IV-b is a 

cascade cycle applying R717 (i.e., ammonia) for the low stage side instead of R1234ze(Z), as listed in Table 3. The 

volumetric capacity of R717 at the low side stage is 5.23, which is 1.76 times that of the R1234ze(Z). This allows 

the drastic downsizing of the heat pumping unit and most likely the reduction in the irreversible loss by the pressure 

drop. Although the calculation result suggests slightly lower overall COP with R717 than with R1234ze(Z), the 

reversal pattern of the COP is possible in reality.  

 

3.5 Effects of the compressor and heat exchanger performance on the COP 
Table 4 shows the effect of the compressor efficiency and the heat exchanger size on the overall COP to set the 

lowest limit of development for these components. The variation in the overall COP of cases II, III-a, and IV-a is 
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Figure 4: State of the cycle: case I with R1234ze(E), R1234ze(E), and R365mfc 
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Figure 5: State of the cycle: case III-a with R1234ze(Z) 

 

1.4 1.6 1.8 2.0
Specific entropy  s   [kJ kg-1K-1]

R1234ze(Z)

heat source 

1.4 1.6 1.8 2.0

R365mfc

1 2

3

4

5

6compressed 

  w
ater

1.2 1.4 1.6 1.8

100

150

200

R1234ze(E)

T
e
m

p
e

ra
tu

re
  

T
  

 [
°C

]

1.2 1.4 1.6 1.8 2.0

100

150

200

Specific entropy  s   [kJ kg-1K-1]

T
e
m

p
e
ra

tu
re

  
T

  
 [
°C

]

R1234ze(Z)

2

1

3

4
6

8

5

79

10

1112
13

14

water te
mp.

300 350 400 450 500 550

1

2

3

4

5

Specific enthalpy  h   [kJ kg -1]

P
re

s
s
u

re
  P

  
 [
M

P
a

]

R1234ze(Z)

1 2

3

4

56

78

910

1112

1314



 

 2233, Page 8 
 

15th International Refrigeration and Air Conditioning Conference at Purdue, July 14-17, 2014 

listed in Table 4. The conditions are gradually changed in the following steps. First, lowering the isentropic 

compression efficiency from 0.92 to 0.85, and 0.80, respectively, equivalent to the overall efficiency of the 

compressor of 0.70, 0.65, and 0.61. Second, enlarging the pinch temperature differences in the condenser and 

evaporator from 2 to 5, and 8 K. Similarly, at the condenser outlet, the temperature difference is increased from 5 to 

8 K. With the first change in the isentropic compression efficiency, the overall COP decreases approximately 10%. 

With the enlarged temperature difference in the heat exchangers, the COP decreases approximately from 14 to 20%. 

The reason why the COP of case IV-a decreases more severely than the others is simply that many more heat 

exchangers are built into the cycle of case IV. Likewise, the COP decreases along with the gradually adverse 

conditions, and the primary energy efficiency decreases as well. At the worst conditions, the primary energy 

efficiencies are 1.38 to 1.51, still in excess of the criteria 1.0. Thus, once the assumed limit of development was 

achieved for a compressor and heat exchanger, these high-temperature heat pumps became advantageous over 

combustion boilers in terms of the energy consumption.  

 

3.6 Effects of the heat recovery rate on the COP 
Another major concern in the feasibility assessment is the balance of the waste heat amount and the heating load of 

the heat pumps. Ideally, if 100% of the waste heat was recovered, the heat pump systems could circulate the heat in 

a system perfectly, and other heating systems would be technically unnecessary. After complete removal of the 

waste heat, the heat source temperature is supposed to return to that of the ambient. Thus, the system has to raise the 

temperature from the ambient temperature to the target usage temperature that is, the net temperature lift. Further, 

































 (a) case III-a                                                                           (b)  case IV-a 

Figure 7: Variation in the overall COP against the change in the operation conditions 
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Figure 6: State of the cycle: case IV-a with R1234ze(Z) and R365mfc 
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the gross temperature lift, counting the driving temperature, is even greater. The large temperature lift leads almost 

directly to a decrease in the COP. There is a certain criterion of the heat-pump type heat recovery system to maintain 

a reasonable COP. To set the criteria of recovery amount, i.e., the heating capacity of the heat pump system, the 

change in the COP is simulated while varying the outlet temperature of the heat source fluid.  

 

Table 5 is the calculation results of the COP and the primary energy efficiency of cases II, III-a, and IV-a. The 

parenthesized percentages are the values relative to the COP at the initial conditions specified in Table 2. When the 

outlet temperature of the heat source fluid in the evaporator is 75 °C, the waste heat is relatively abundant compared 

to the recovery and temperature change of the heat source fluid over the evaporator of 80 °C, which is only 5 K. The 

overall COP is from 8 to 9 % higher than that at the initial conditions. When the outlet temperature is 55 °C, the 

temperature change of the heat source fluid is 25 K, which is 2.5 times that of the initial conditions. The COP 

decreases to 3.77, which is 80 % of the COP at the initial conditions; nevertheless, the primary energy efficiency is 

1.4, still above the criteria of 1.0. The amount of waste heat strongly depends on the environment where the systems 

are installed; therefore, there is preliminary estimate of the balance between the wasted and recovered heat. The 

above preliminary survey suggests that, under the conditions where the heat source temperature after usage is 

maintained above 55 K, heat recovery system of high-temperature applications are beneficial for the reduction of 

energy consumption.  

 

4. CONCLUSIONS 

An exploratory thermodynamic assessment of heat pump-type heat recovery systems using environmentally friendly 

refrigerants has been conducted. The coefficient of performance (COP) of four cycle configurations used to raise the 

temperature of compressed water up to 160 °C with a waste heat source of 80 °C were compared for the selected 

refrigerants R717, R365mfc, R1234ze(E), and R1234ze(Z). A multiple-stage “extraction” cycle drastically reduces 

the throttling loss in the expansion valve and the exergy loss in the condensers and consequently achieves the 

highest overall COP among the calculated cases, with refrigerant R1234ze(Z) having a critical temperature 

approximately equal to the target outlet water temperature. A cascade cycle using R1234ze(Z) and R365mfc results 

in a relatively high COP and also provides many practical benefits, such as the varied combination of refrigerants 

and lubricant oils and the prevention of the liquid-back caused by a cold start. At a compressor efficiency of 0.7 and 

an approach temperature difference in the heat exchangers of 2 K, the calculated overall COP ranges from 4.3 to 

4.94. This corresponds to a primary energy efficiency of 1.62 to 1.83 when the transmission-end-efficiency of 

electric power generation is 0.37. Even with a compressor efficiency of 0.61 and an approach temperature of 8 K, 

the primary energy efficiency is greater than 1.3. As described above, the thermodynamic assessment demonstrated 

the potential of high-temperature heat pumps to recover waste heat as promising systems to reduce the primary 

energy consumption for industrial applications.  

Table 4:  Effects of the compressor efficiency and heat 

exchanger size (parenthesized percentages are 

relative COPs compared to the initial COPs). 

co
n
d
it

io
n
s 

 initial →  →  →  →  → adverse condition 

hs

hmech 

hmotor 

0.92 

0.85 

0.90 

0.85 

→ 

→ 

0.80 

→ 

→ 

→ 

→ 

→ 

→ 

→ 

→ 

hcompr 0.70 0.65 0.61 → → 

Ti
EVAP 

Ti
COND 

To
COND 

2.0 K 

2.0 K 

5.0 K 

→ 

→ 

→ 

→ 

→ 

→ 

5.0 K 

5.0 K 

→ 

8.0 K 

8.0 K 

8.0 K 

(C
O

P
H
) o

v
er

al
l case II 4.83 

(100%) 

4.64 

(94%) 

4.32 

(89%) 

4.25 

(88%) 

4.08 

(84%) 

case III-a 4.94 

(100%) 

4.62 

(96%) 

4.39 

(91%) 

4.34 

(90%) 

4.14 

(86%) 

case IV-a 4.68 

(100%) 

4.39 

(94%) 

4.18 

(89%) 

3.99 

(85%) 

3.74 

(80%) 

h
p
e 

case II 1.79 1.72 1.60 1.57 1.51 

case III-a 1.83 1.71 1.62 1.61 1.53 

case IV-a 1.73 1.62 1.55 1.48 1.38 

 

Table 5:  Effects of the temperature distribution in the 

heat source fluid (parenthesized percentages are 

relative values to the initial COPs). 

co
n
d
it

io
n
s 

 high  → initial  →  →  →  →  → →low 

Tsrc,i→ 

Tsrc,o 

80→ 

75 °C 

80→ 

70 °C 

80→ 

65 °C 

80→ 

60 °C 

80→ 

55 °C 

Tsrc 5 K 10 K 15 K 20 K 25 K 

(C
O

P
H
) o

v
er

al
l case II 5.25 

(109%) 

4.83 

(100%) 

4.47 

(92%) 

4.15 

(86%) 

3.87 

(80%) 

case III-a 5.40 

(109%) 

4.94 

(100%) 

4.54 

(92%) 

4.20 

(85%) 

3.92 

(79%) 

case IV-a 5.06 

(108%) 

4.68 

(100%) 

4.34 

(93%) 

4.04 

(86%) 

3.77 

(81%) 

h
p
e 

case II 1.94 1.79 1.65 1.54 1.43 

case III-a 2.00 1.83 1.68 1.55 1.45 

case IV-a 1.87 1.73 1.61 1.50 1.40 
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NOMENCLATURE 
COP coefficient of performance ( - )  Subscripts/Superscripts 

P pressure (Pa)  compr compressor 

Q heat transfer rate (W)  GC gas cooler 

SC degree of subcool (K)  H heating 

SH degree of superheat (K)  cond condenser 

T temperature (°C)  SC subcooler 

VC volumetric capacity (J m-3)  evap evaporator 

W work or input energy (W)  V vapor 

h specific enthalpy (J kg-1)  r refrigerant 

m mass flow rate (kg s-1)  H2O compressed water (heat media) 

s entropy (J kg-1K-1)  src heat source (waste heat) 

hcompr compressor efficiency ( - )  IH internal heat exchanger 

hmech mechanical efficiency ( - )  i inlet 

hmotor motor efficiency ( - )  o outlet 

hpe primary energy efficiency ( - )  overall overall 

hs isentropic efficiency  ( - )    

 density (kg m-3)    
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