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ABSTRACT 
 
Enhancing water shedding behavior on aluminum surfaces is important in the design of energy-efficient heat 

exchangers. In this work, a method for fabricating oil-infused aluminum surfaces for HVAC&R systems is described 

for the purpose of exploiting the slippery nature of such surfaces, thereby improving the overall surface wettability. 

A microstructured, porous aluminum fin stocks with heterogeneous   hydrophobic coating are infused with a 

secondary liquid acting as a lubricant that enhances slippery, liquid repellant and self-healing behavior. The 

objective of this work is to study the feasibility of using these surfaces to more effectively manage condensate/frost 

formation on heat exchangers. The effects of the underlying oil-infused microstructure and hydrophobic coating on 

the behavior of droplets are studied. Although the slippery surfaces are observed to decrease the contact angle of 

droplets, they promote mobility by reducing the interfacial energy and friction force. From preliminary experiments, 

critical inclination angles of small droplets (volume ≤30 µl) are reduced by more than 40° compared to baseline 

surfaces. Moreover, slippery surfaces delay the frost formation, and have only one fourth of the baseline water 

retention after self-defrosting. Therefore, such properties provide potential for improving the water drainage 

behavior for HVAC&R systems. 

 

1. INTRODUCTION 

 
Water retention on the air-side surface of metallic heat exchangers poses economic and safety issues (i.e. lower 

efficiency, enhancement of pressure drop and health hazard due to the growth of bacteria). Prior works have focused 

on the liquid repellent micro-structured surfaces (Sommers and Jacobi 2006, Rahman, et al. 2012, and Yu, et al. 

2013). However, these surfaces have limited oleophobicity (Tuteja, et al. 2008), potential to be damaged (Quere 

2008), or high manufacturing cost. In order to address some of these drawbacks, the development of an omniphobic, 

self-healing surface has been pursued. Inspired by the super-slippery surfaces of Nepenthes (Pitcher Plants), such 

surfaces were made possible by locking a liquid solution into the micro- or nano- structured surface (Bohn and 

Federle 2004). Synthetic surfaces mimicking this slippery, liquid-repellant, self-healing behavior have been recently 

reported (Wong et al. 2011, Kim et al. 2012, Xiao et al. 2013 and Rykaczewski et al. 2013). However, the potential 

applications of such surfaces on HVAC&R systems and their effects on thermal-hydraulic performance have not 

been considered in earlier works.  

 

In the current work, a method for fabricating slippery aluminum surfaces for mass production is discussed.  Using 

the specimens thus developed, experiments are performed for evaluating the suitability of such surfaces for 

managing water in HVAC&R applications. Various methods are employed to assess the behavior of water on these 

novel surfaces, including static contact angle measurements, sliding angle measurements, and condensation/ frosting 

experiments.  
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2. EXPERIMENTAL METHOD 

 

2.1 Fabrication of Slippery Surface 
The 2.54cm x 2.54 cm (1" x 1") aluminum substrate was made of Al alloy 1100 (99.9% pure Al). In order to remove 

all surface contaminants, the aluminum samples were first cleaned with acetone, followed by an ultrasonic water 

bath, and then were dried with nitrogen gas. Afterwards, the samples were anodized using high purity platinum as 

the cathode under a constant voltage of 10 V in an aqueous solution containing sulfuric acid (20 w/o) at room 

temperature for 15 min as shown in Fig. 1. The area ratio of the two electrodes was 1:1 and the distance between 

them was 3 cm. The specimen was anodized to form a porous alumina outer layer microstructure with an average 

thickness of 8.6±3.1µm (see Fig. 2). These microstructures were created for the purpose of locking the secondary 

liquid into the surface.  

 

After the anodization, the cleaned specimens were coated by heptadecafluoro tetra hydrodecyl-trichlorosilane 

(FDTS) using molecular vapor deposition (MVD) (Applied Microstructures). The MVD process deposited a 

monolayer hydrophobic coating on the surface which altered surface wettability by changing surface free energy. 

From the X-ray photoelectron spectroscopy (XPS) image analysis of anodized aluminum, it was found that the 

substrate had a composition of more than 95% aluminum oxide; the rest was aluminum sulfate (see Fig. 3a). The 

XPS images showed Si and Al peaks from the underlying substrate; however, no Cl peak was observed, indicating 

the small thickness of FDTS coating (see Fig. 3b). Perfluoropolyether (PFPE) was chosen as the secondary liquid, 

since PFPE has low volatility, surface tension (σ=21 mN m
-1

) and is immiscible with both aqueous and hydrocarbon 

phases (Ma et al., 2013). The secondary liquid was infused into surface by capillary force.  

 

 
Figure 1: Schematic of anodization apparatus 

 
Figure 2: Photograph of a sample specimen with SEM image showing underlying microstructure  
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Figure 3: XPS results of anodized aluminum rough surface (a) and hydrophobic rough surface (b) 

 

2.2 Static Contact Angle and Critical Inclination Angle Measurements 
Contact angle and sliding angle are important parameters used in characterizing and assessing the overall wettability 

of a surface. Contact angle measurements with an accuracy of ±0.1° were conducted using a CAM200 (KSV 

Instruments) optical goniometer in a class-100 cleanroom facility. Water droplets (5 µl) were injected on the surface 

using an automated dispenser. A high speed camera was used to capture the drop shape throughout the entire process 

for images analysis. The Young-Laplace equation was used for curve fitting.  

 

For critical inclination angle measurements, a droplet was placed on horizontal test sample using a precision micro-

pump. The volume of the droplet was from 10µl to 70µl. The sample holder was then slowly tilted using a threaded 

rod under the holder until imminent droplet motion was detected. The process was recorded using a high speed 

camera (Phantom v640).   

  

2.3 Condensation/Frosting Experiments 
The condensation and frosting experiments were conducted in a thermally controlled chamber (see Fig. 4). The 

chamber was made of Plexiglas and has dimensions of 30×30×22 cm
3
. The chamber was fixed on a stable frame. A 

humidifier was used to provide cold mist inside the chamber. Two hygrometers (Omega logger, accuracy: ±2%) 

were attached to monitor the relative humidity inside the chamber. A vortex tube cooler (EXAIR corporation, 

Model-3225) provided two streams of compressed air for the experiments. The cold air was injected into chamber. A 

slotted valve regulated the flow rate of the hot stream, and was used to adjust the temperature and flow rate of the 

cold air. The pressure of compressed air was about 60 kPa. The air velocity was measured at different points inside 

the chamber using a hot wire anemometer (VelociCalc®, uncertainty ±0.01 m/s). The sample was mounted on a 

Peltier cold plate by copper conductive tape to ensure better thermal contact. Thermocouples (uncertainty of ±0.2 ˚C) 

were used to measurement temperatures of the sample, inside and outside chamber. Four thermocouples were 

inserted into holes made at the side of the sample. In order to minimize thermal resistance, the air gaps between 

holes and thermocouples were filled with thermally conductive paste (Omegatherm®, 2.31 W/m-K). The 

temperature data were recorded and analyzed using Labview Software (National Instruments). The images of 

condensation/frosting process were obtained using a high speed camera (Phantom v640). 

 

The specimen was kept inside the chamber in the vertical direction. After a certain freezing time, the specimen was 

taken out of the chamber and was defrosted under natural convection. The frost drainage was collected on dry filter 

papers until the plate temperature rose by 5 ˚C. The dry and wet filter papers were weighted on a balance (Mettler, 

±0.0001g). The difference in mass between the wet and dry filter papers yielded the mass of frost drainage. The 

water retention ratio, calculated according to Eq. (1), was used for characterizing the surface performance of various 

samples.  

(a) (b) 
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frost

tionwaterreten

Mass

Mass
Ratio                                                              (1) 

 

A smaller water retention ratio implies better surface performance, i.e. less pressure drop, and potential enhancement 

of heat transfer.  

 

Figure 4: Schematic of the apparatus for condensation/frosting experiments  

 

3. EXPERIMENTAL RESULTS AND DISCUSSION 

 

3.1 Static Contact Angle and Critical Inclination Angle Results 
Contact angle experiments were conducted on the following aluminum surfaces: baseline surface with and without 

coating, anodized surface with and without coating, and two liquid infused surfaces. The results are summarized in 

Table 1. 

 

Table 1: Water droplet contact angle data 

Surfaces Contact angle, º 

Bare Aluminum (baseline) 90.6 ±1.2 

Bare Al + MVD (phobic flat) 113.5±1.5 

Anodized Aluminum (rough) ≈ 0 

Anodized Al +PFPE ≈ 0 

Anodized Al+ MVD (phobic rough) 130.2±5.9 

Anodized Al + MVD +PFPE (slippery) 105.0±3.5 

 

Compared to the baseline, the FDTS coated surface showed increased hydrophobicity with a larger contact angle. 

Because the density of water is only one third that of PFPE, the water droplet floats on the oil. The depth of water 

droplet immersed in the oil calculated from Young’s Equation is much larger than the oil layer infused into porous 

surfaces. This implies that the water droplet sits on the surface and has a direct contact with the substrate. Therefore, 

the FDTS coating directly affects the contact angle of the droplet with/without PFPE. Microstructures made by the 

anodization process increased the surface roughness. This roughness made hydrophilic surfaces more hydrophilic 

and hydrophobic surfaces more hydrophobic as the Wenzel (1936) and the Cassie-Baxter (1944) models suggest.  

Data Logger 

Sample 

Hygrometer Hygrometer 

Peltier Cooler 

Cold Mist Humidifier 

Compressed 
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Results from the critical inclination angle measurements for various surfaces are presented in Fig. 5. The surfaces 

without any oil infused have the roughness which increases the surface hydrophobicity, but also have many pins 

which hinder the drainage of the water droplet. Therefore, the flat hydrophobic surface had a similar sliding angle to 

that of a phobic rough surface. For surfaces with oil infused, the oil layer effectively reduces the number of pins on 

the surfaces, thereby lowering the sliding angle. Moreover, the oil/water interface has less surface tension compared 

to the solid/water interface. The enhancement was also observed for the surface with oil depletion (the amount of oil 

was 0.003g). In addition, sliding angle data for oil infused surfaces have less dependent on the volume of water 

droplet compared to surfaces without oil. Overall, the PFPE infused in the surface reduced the contact angle of the 

droplet, however, the mobility of droplet was improved by PFPE. 

 

 
Figure 5: Critical inclination angle measurements for various surfaces 

 

3.2 Condensation/Frosting Experiments 
The baseline, phobic rough and slippery surfaces were placed on the cold plate. The duration of each frosting cycle 

was about three hours. The chamber temperature and relative humidity were maintained at about 6-8 ˚C and 70%-80% 

RH, respectively. The cold plate was kept at three different temperatures, since plate temperature may affect the 

frost density and defrost rate. The defrosted occurred due to natural convection at room temperature (around 20-

21 °C) and 50%-55% RH.  

 

During the frosting cycle, the temperature of the specimen on the cold plate decreased gradually until a steady state 

condition was achieved. In addition, the temperature in the chamber was above freezing point. Therefore, water 

condensed on the surface first, and then froze. When the temperature of specimen was below the dew point, it is 

expected that the water started to condense on the oil/air interface rather than oil/solid interface. The change in 

system Gibbs free energies of each condition is calculated under experimental conditions using Eqns. 2 and 3, 

respectively. 
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The system free energy decreases when droplets nucleate on the oil/air interface, but increases when nucleation 

occurs on the oil-solid interface. Since the Gibbs free energy is a minimum at a stable equilibrium, droplets forming 

on the oil-air interface are expected. Before the water froze, condensed water was covered by an oil monolayer 

because of the positive spreading coefficient. (Note: The spreading coefficient is defined as
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owovwvow
Sp   ). When the spreading coefficient is positive, the oil will spontaneously spread on the 

surface of water (Carey, 2008). Small droplets grew bigger and drained due to gravity. Some small droplets made 

contact, maintained the water-oil interface, and eventually coalesced into a big droplet (see two circle markers in 

Figure 6). In addition, it was observed that the oil-infused surface delayed freezing. 

  

Figure 6: A photograph of the oil-infused surface during frosting/ defrosting experiment 

 

The water retention ratios of various specimens at three plate temperatures are shown in Fig. 7. The slippery surface 

retained less water and hence had a lower water retention ratio (~ 1%) compared to other surfaces (~ 4-6%). The 

water retention ratio of the slippery surface decreased by three fourths of baseline. Although the hydrophobic rough 

surface has larger contact angle (~ 130˚) than that of the oil-infused surface (~ 105˚), existence of oil on the surface 

reduced the friction and promoted the water drainage behavior. Surfaces except the slippery one showed similar 

behavior. The water retention ratio was unaffected by the temperature of the cold plate.   

 

 
Figure 7: The water retention ratio for various surfaces at different plate temperatures 

 

For the refrosting/defrosting tests, the samples were subject to previously mentioned frosting and defrosting cycles.  

The first frosting/defrosting cycle was not considered, therefore some water was retained on the surface. The sample 

was again put back to the controlled chamber for another frosting/defrosting cycle. The mass of water removed and 

retained were determined after the second cycle. The comparison of water retention ratios of the first and second 

cycle is shown in Fig. 8. The water retention on the surface increases with frosting/defrosting cycles. The main 

reason for such deteriorating water retention behavior is due to the depletion of oil during experiments. In addition, 

the water retention ratio of frosting/defrosting test is almost same as refrosting/defrosting test. This implies that the 

˚ 

Oil-infused surface  Flat surface 
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water retention from the previous cycle did not affect much on the water retention ratio of the following cycle. A 

possible reason for such behavior might be the retained water drained before freezing.  

 

 
Figure 8: The water retention ratio on slippery surface under different cycles 

 

4. CONCLUSIONS 

 
The present study reports a novel surface treatment for heat transfer surfaces in HVAC&R systems, where 

condensate, frost, or frost-melt management is important. The slippery surface provides more liquid/liquid interface 

rather than solid/liquid interface, resulting in a significant increase in droplet mobility, which may make this kind of 

surface valuable in application. On the basis of this work, the following conclusions are drawn: 

 The PFPE infused on the surface reduced the contact angle of water; however, the mobility of droplet was 

improved by PFPE.  

 The slippery surface had at least three times less water retention ratio than other surfaces. 

 A delay in frost formation was observed on the slippery surface.   

 The water retention on the slippery surface did not affect water retention ratio of refrost/defrost cycle. 

 Oil depletion was observed during condensation/frosting experiments.  Possible techniques for minimizing 

the oil depletion need to be explored.  

 

NOMENCLATURE 
 

A Area    (m
2
) 

g Specific Gibbs function  (J/kg) 

G Gibbs function   (J) 

m Mass of nuclei   (kg) 

P Pressure    (Pa) 

r Radius of nuclei   (m) 

v Specific volume   (m
3
/kg) 

V Volume of nuclei   (m
3
) 

 

Greek symbols 

σ interfacial tension   (N/m) 

ϴ contact angle   (°) 
 

Subscript  

o PFPE oil 

s substrate 
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v vapor 

w water 
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