Provided by Purdue E-Pubs

Purdue University

Purdue e-Pubs

Cyber Center Publications Cyber Center

11-2014

POSTER: Protecting Against Data Exfiltration
Insider Attacks Through Application Programs

Asmaa Mohamed Sallama
Purdue University

Elisa Bertino
Purdue University, bertino@cs.purdue.edu

Follow this and additional works at: http://docs.lib.purdue.edu/ccpubs

b Part of the Engineering Commons, Life Sciences Commons, Medicine and Health Sciences

Commons, and the Physical Sciences and Mathematics Commons

Sallama, Asmaa Mohamed and Bertino, Elisa, "POSTER: Protecting Against Data Exfiltration Insider Attacks Through Application
Programs" (2014). Cyber Center Publications. Paper 623.
http://dx.doi.org/10.1145/2660267.2662384

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact epubs@purdue.edu for

additional information.

https://core.ac.uk/display/77938621?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://docs.lib.purdue.edu?utm_source=docs.lib.purdue.edu%2Fccpubs%2F623&utm_medium=PDF&utm_campaign=PDFCoverPages
http://docs.lib.purdue.edu/ccpubs?utm_source=docs.lib.purdue.edu%2Fccpubs%2F623&utm_medium=PDF&utm_campaign=PDFCoverPages
http://docs.lib.purdue.edu/cc?utm_source=docs.lib.purdue.edu%2Fccpubs%2F623&utm_medium=PDF&utm_campaign=PDFCoverPages
http://docs.lib.purdue.edu/ccpubs?utm_source=docs.lib.purdue.edu%2Fccpubs%2F623&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/217?utm_source=docs.lib.purdue.edu%2Fccpubs%2F623&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1016?utm_source=docs.lib.purdue.edu%2Fccpubs%2F623&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/648?utm_source=docs.lib.purdue.edu%2Fccpubs%2F623&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/648?utm_source=docs.lib.purdue.edu%2Fccpubs%2F623&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/114?utm_source=docs.lib.purdue.edu%2Fccpubs%2F623&utm_medium=PDF&utm_campaign=PDFCoverPages

POSTER: Protecting Against Data Exfiltration Insider
Attacks Through Application Programs

Asmaa Sallam, Elisa Bertino
Computer Science Department
Purdue University
West Lafayette, IN 47906

asallam, bertino@purdue.edu

ABSTRACT

In this paper, we describe a system that distinguishes be-
tween legitimate and malicious database transactions per-
formed by application programs. Our system is particu-
larly useful for protecting against code-modification attacks
performed by insiders who have access to and can change
the programs’ source code to make them execute different
queries than those they are expected to execute. Our sys-
tem works with any type of DBMS and requires minimum
modification to application programs.

Categories and Subject Descriptors

H.2.m [Information Systems|: DATABASE MANAGE-
MENT—Miscellaneous

1. INTRODUCTION

Organizations ranging from government agencies (e.g., mil-
itary, judiciary, etc.) and contractors, to commercial enter-
prises and research labs are witnessing an increasing amount
of sophisticated insider attacks that are difficult to miti-
gate with existing security mechanisms and controls. In-
sider threats are staged either by disgruntled employees, or
by employees engaged in malicious activities such as espi-
onage. One of the most important objectives of insiders is
to exfiltrate sensitive data.

Protection against data exfiltration from insiders requires
combining different techniques [1]. One important tech-
nique is represented by anomaly detection tools which create
data-access profiles of normal transactions; accesses to the
database are monitored and checked upon these profiles to
detect anomalous accesses [4]. Some access patterns may
be indicative of insider attackers on a mission to steal data.
For example, consider a clerk who, for his/her daily activ-
ity, only needs to access 10% of the records in a table in the
database. An access by this clerk that retrieves all records
from this table is certainly anomalous. We refer the reader
to [2] for a discussion on anomalous access patterns.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage, and that copies bear this notice and the full ci-
tation on the first page. Copyrights for third-party components of this work must be
honored. For all other uses, contact the owner/author(s). Copyright is held by the
author/owner(s).

CCS’14, November 3-7, 2014, Scottsdale, Arizona, USA.

ACM 978-1-4503-2957-6/14/11.

http://dx.doi.org/10.1145/2660267.2662384 .

1493

A major limitation of previous work on anomaly detection
for databases is to assume that queries are issued directly
by users. However, database queries are not necessarily only
issued by individuals but can also be issued by application
programs. A malicious insider, such as a software engineer
within the organization with the authorization to modify the
application programs, can exfiltrate data from a database by
modifying the source code of the program so that the pro-
gram issues queries different from those it normally sends.
One possible approach to address this problem would be
to create profiles of queries issued by application programs
and compare the actual accesses by the programs against
these profiles. Current commercial Security Information and
Event Management (SIEM) tools, that are able to capture
and log queries issued by application programs together with
relevant metadata, can be used for this purpose. However,
creating complete and accurate profiles is a challenge in the
case of application programs since programs issue different
queries depending on input parameters and context infor-
mation. Recording and saving all legitimate sequences of
queries is expensive in the case of large programs, large in-
put space, and high number of input parameters.

In this paper, we propose a different approach for sup-
porting profiling and anomaly detection for application pro-
grams. During the profile-creation phase, our approach uses
software testing techniques to build a profile for the program
in which the control structure of the program and locations
in the code where SQL queries are issued are recorded. Dur-
ing the detection phase, the system uses this profile and the
input values to compose the query strings that are expected
to be issued by the program. These expected queries are
then compared to the actual ones sent by the application
program to the DataBase Management System (DBMS) and
differences are considered anomalous.

The rest of this paper is organized as follows. Section 2
defines relevant notions from the software testing area. Sec-
tion 3 describes the architecture, algorithms and implemen-
tation of the proposed system. Section 4 concludes the pa-
per.

2. PRELIMINARIES

The Symbolic Execution technique [3] is a program
analysis technique that uses symbolic values as program in-
puts and symbolic expressions to represent the values of pro-
gram variables. The symbolic execution tree is the tree
representation of all the possible paths of the program; a
node in the tree stores the program variables as a function of
the symbolic inputs and the path constraint (PC) which

Query Result ‘

E“I-;p_p—li_c;;i:);l“: Query Query Query .1- p—
<> 1 —> -
Program ! Interceptor
i
1 (P¥) |
S RRECLEEE - Alert |
\ Query Response | _ __ >
Router Query Result
Input [Response l

Concretization of E-SET
of P*

Figure 1: System Architecture

is a conjunction of conditions on the input to follow a path in
the program. Symbolic execution is being used for software
testing [3] [5].

Software Instrumentation refers to adding additional
code to a program for monitoring some program behaviour.
Instrumentation can be done either statically (i.e., at com-
pile time) or dynamically (i.e., at runtime).

The Backward Data Slice of a variable in a program
at a specific statement is the sub-program that affects the
value of the variable at that point.

3. PROPOSED SYSTEM
3.1 Architecture

Our system consists of four components: a Target DBMS
(T-DBMS), the Anomaly Detection Engine (ADE), the Query
Interceptor, and the Response Router. These components
interact in order to check the proper sequence of queries sent
by an application program. T-DBMS is the DBMS that
stores and manages the database to be protected against in-
sider attacks. The ADE stores the application program pro-
file and performs the anomaly detection task. The Query
Interceptor intercepts the query, before it is sent to the T-
DBMS, and forwards it to the ADE for anomaly detection.
The Response Router checks the response policies in order
to take appropriate response to anomalies detected by the
ADE. Note that this architecture is designed so that no re-
strictions are imposed on the T-DBMS as a result of adding
the anomaly detection functionality since the T-DBMS al-
ways receives SQL queries and responds with their result set
which is the normal operation of a DBMS.

3.2 Phases of Operation

The proposed system operates in two phases: Profile-
Creation phase and Detection phase. Details on each phase
are given in what follows.

3.2.1 Profile-Creation phase

In this phase, the binary of the application program is
given as input to a profiler that analyzes the program stat-
ically. The profiler first finds statements in the program
that issue SQL queries to the DBMS. It then computes the
combined backward data slices of the variables used to com-
pose the query strings. The result of this operation is a
sub-program of the original one for which the profiler con-
structs and outputs a variation of the Symbolic Execution
Tree which we refer to as Extended Symbolic Execution

1494

input char: x
input integer: y <«—— 1.1 Send input to ADE
ql = “SELECT salary FROM employees WHERE id =" +y
send q1 to the DBMS
salary = extract salary from resultset of q1
if (salary > 1000)

salary = salary + 200
else

salary = salary * 1.2
q2 = “UPDATE employees SET salary =" + salary

+ “WHEREid="+7y;

send q2 to the DBMS

WONUTEWN RO

2.ql = “SELECT salary FROM
employees WHERE id =" + sym_y

3. send g1 to DBMS

/ 4. salary = sym_z /

4/\

5. salary = sym_z + 200
PC=svm z <1000

!

6.salary =sym_z * 1.2
PC=sym z>=1000

!

7. 92 = UPDATE employees SET
salary =” + salary + “WHERE id =" +
(sym_z +200) ;

8. g2 = UPDATE employees SET
salary =" + salary + “WHERE id =" +
(sym_z*1.2);

v
9. send g2 to DBMS [10. send g2 to DBMS]

Figure 2: Example

1 Monitor () {
2. if (currNode.type == ‘Wait-For-Query’) {
3. Expected = ‘Q’;
4. ExpectedQuery
= getExpectedQueryString(currNode);
5. Wait();
6. } else if (currNode.type == ‘Wait-For-Input’) {
7. Expected = ‘T’
8. Wait();
9. Save received input to correct variables;
10. } else if (currNode.type == ‘Computation”) {
11. Perform Computations in currNode;
12.
13. currNode = currNode.next;
14. Monitor();
15. |}
1. | Signal() {
2. if (Expected == ‘Q’ && receivedType = ‘Q’) {
3. if(ExpectedQuery == receivedQuery) {
4., return BENIGN;
5. }
6. } else if (Expected == ‘T’ && receivedType = T’) {
7. Use received as input;
8. return BENIGN;
9. }
10. RAISE ANOMALY;
11. | }

Figure 3: Detection Algorithm

Tree (E-SET). The profiler also instruments the program
by adding statements to send input values to the ADE; the
result is a modified version of the program which will be
used in production instead of the original.

Unlike the normal Symbolic Execution Tree, the E-SET
differentiates between three types of nodes: Computation,
Wait-For-Query, and Wait-For-Input nodes. “Computation”
nodes are nodes that contain expressions for variables in the
program as functions of inputs. “Wait-For-Query” nodes in-
dicate locations in the execution paths of the application
program where input should be provided by the user. “Wait-
For-Input” nodes are locations where the program sends
queries to the DBMS. Figure 2 shows an example program,
and its corresponding E-SET and instrumentation. During
Profile-Creation, Statements 3 and 10 are identified by the
profiler to be accessing the DBMS. The profiler then com-
putes the backward data slices of the query strings: ql and
q2. The resulting sub-program (P’) will contain all state-
ments except 0 and 11. Since Statement 1 has a user input,
a new statement (1.1) is added to P’ to compose program
P* that will be run by users.

3.2.2 Detection Phase / Concrete Execution of the
program

At program run-time, whenever the program opens a new
connection to the DBMS during a user session, the Query
Interceptor, which is listening on the communication line
between the DBMS and the program, notifies the ADE of the
new connection. As a result, the ADE creates a new process
that would be responsible for any further communication
between the ADE and the Query Interceptor. Based on the
user-input and the E-SET of the program, the process will
know the path the program P* should follow and queries
expected to be issued by the program. This operation is
referred to as concretizing the Symbolic Execution Tree.
The ADE compares queries actually sent by the program
and those it generated as explained next.

The newly-created process runs the algorithms in Fig-
ure 3. It starts by setting the variable currNode to the root
node of the E-SET and then calls the function Monitor().
Monitor() checks the type of node currNode is pointing to. If
it is ‘Wait-For-Query’ or ‘Wait-For-Input’, the process sleeps
waiting for external input from either the Query Interceptor
or T-DBMS (lines 2:9). Otherwise (the node type should
be a ‘computation’), the process performs the computations
indicated in the node, moves currNode to the next node in
the tree and calls Monitor() again (lines 11, 13, 14).

The function Signal() is called when the process receives
an external input. It checks that the type of input it is
expecting is the same as what it received (lines 2 and 6).
In case the process is waiting for a query, the query string
it is expecting is compared to the one it received too; if
they are similar, the process returns from Signal() (lines
2:5) and continues processing nodes. All other scenarios are
rejected and an anomaly is raised. Note that additional
synchronization between P* and the ADE process has to be
performed for the algorithm to work properly. For instance,
in case P* is done with a computation which has not yet
been finished by the ADE process, input can be sent to the
ADE process while it is not waiting for it; Signal() then
has to check that P* is ahead of it and choose to defer the
processing of the input accordingly.

1495

3.3 Implementation

We have developed an initial solution based on tools which
perform Symbolic Execution of the program. JPF[5] and
CUTE6] are well-known tools whose source codes are avail-
able for modification.

An important implementation issue to mention is that the
program flow and values of variables may depend on the re-
sult sets of SQL queries as in line 4 in the example code in
Figure 2. In our solution, we consider the result as input.
However, this approach is problematic if the result set of a
query is large and therefore needs long time to be processed.
One solution to this problem, that we are currently investi-
gating, is to instrument the program to directly send values
of some variables to the ADE so that the ADE does not need
to perform all the computation.

Another important issue concerns securing all the anomaly
detection system components, such as the ADE and the
Query Interceptor, as well as all the communications be-
tween these components and the T-DBMS and application
programs. Currently available security tools can be com-
bined and deployed to address this issue.

4. CONCLUSION

In this paper, we presented a system for protecting against
data exfiltration attacks based on source-code modification.
As part of future work, we will extend our system along
several directions. For example, as currently the system
only deals with desktop applications, we will investigate its
application to web-based ones. We also believe that the
technique described can be used for tracking user behaviour
at the OS level and therefore it can be used for collecting and
using data provenance. The idea of integrating the Profile-
Creation phase with a testing technique that uses Symbolic
Execution of the program is also another direction of future
work.

5. REFERENCES

[1] E. Bertino. Data Protection from Insider Threats.
Synthesis Lectures on Data Management. Morgan and
Claypool Publishers, 2012.

E. Bertino and G. Ghinita. Towards mechanisms for
detection and prevention of data exfiltration by insiders:
keynote talk paper. ASIACCS, pages 10-19, 2011.

P. Godefroid, N. Klarlund, and K. Sen. Dart: Directed
automated random testing. PLDI, 2005.

A. Kamra, E. Terzi, and E. Bertino. Detecting
anomalous access patterns in relational databases.
VLDB, 2008.

C. S. Pasareanu, W. Visse, D. Bushnell, J. Geldenhuys,
P. Mehlitz, and N. Rungta. Symbolic pathfinder:
Integrating symbolic execution with model checking for
java bytecode analysis. ASE, 2010.

K. Sen, D. Marinov, and G. Agha. Cute: A concolic
unit testing engine for c. ESEC-FSE, 2005.

2l

(4]

[5]

	Purdue University
	Purdue e-Pubs
	11-2014

	POSTER: Protecting Against Data Exfiltration Insider Attacks Through Application Programs
	Asmaa Mohamed Sallama
	Elisa Bertino

	tmp.1418410968.pdf.22J69

