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Effects of warming and altered precipitation on plant and nutrient
dynamics of a New England salt marsh

HEATHER CHARLES
1

AND JEFFREY S. DUKES
2

Department of Biology, University of Massachusetts, Boston, Massachusetts, USA

Abstract. Salt marsh structure and function, and consequently ability to support a range
of species and to provide ecosystem services, may be affected by climate change. To better
understand how salt marshes will respond to warming and associated shifts in precipitation,
we conducted a manipulative experiment in a tidal salt marsh in Massachusetts, USA. We
exposed two plant communities (one dominated by Spartina patens–Distichlis spicata and one
dominated by short form Spartina alterniflora) to five climate manipulations: warming via
passive open-topped chambers, doubled precipitation, warming and doubled precipitation,
extreme drought via rainout shelter, and ambient conditions. Modest daytime warming
increased total aboveground biomass of the S. alterniflora community (24%), but not the S.
patens–D. spicata community. Warming also increased maximum stem heights of S.
alterniflora (8%), S. patens (8%), and D. spicata (15%). Decomposition was marginally
accelerated by warming in the S. alterniflora community. Drought markedly increased total
biomass of the S. alterniflora community (53%) and live S. patens (69%), perhaps by alleviating
waterlogging of sediments. Decomposition was accelerated by increased precipitation and
slowed by drought, particularly in the S. patens–D. spicata community. Flowering phenology
responded minimally to the treatments, and pore water salinity, sulfide, ammonium, and
phosphate concentrations showed no treatment effects in either plant community. Our results
suggest that these salt marsh communities may be resilient to modest amounts of warming and
large changes in precipitation. If production increases under climate change, marshes will have
a greater ability to keep pace with sea-level rise, although an increase in decomposition could
offset this. As long as marshes are not inundated by flooding due to sea-level rise, increases in
aboveground biomass and stem heights suggest that marshes may continue to export carbon
and nutrients to coastal waters and may be able to increase their carbon storage capability by
increasing plant growth under future climate conditions.

Key words: altered precipitation; climate change; decomposition; Distichlis spicata; ecosystem services;
nutrient cycling; open-topped chamber; salt marsh; Spartina alterniflora; Spartina patens.

INTRODUCTION

Salt marsh ecosystems are highly productive, and

provide valuable services; they export biomass and

nutrients, filter pollutants and runoff, protect coastlines

from flooding and erosion, and sequester carbon. How

will these important ecosystems respond to climate

change? Warmer air, soil, and water, and changes in the

timing and amount of incoming freshwater could

strongly affect salt marshes (Scavia et al. 2002).

Although salt marshes are highly vulnerable to sea-level

rise, and studies related to climate change predominant-

ly focus on this threat, the effects of climate change on

marshes are likely to be interactive. For example, while

sea-level rise is likely to lead to marsh flooding and

inundation in the mid-Atlantic, precipitation-induced

shifts in stream flow could increase allochthonous

sediment delivery to marshes, enhancing the ability of

some marshes to accrete and keep pace with sea-level

rise (Najjar et al. 2000). However, if marshes do not

keep pace, they will be more susceptible to erosion by

storm surges, which are likely to be enhanced by

increases in storm frequency and intensity associated

with climate change. The ability of marshes to keep pace

with sea-level rise also depends on peat formation, and

thus primary production (Patrick and Delaune 1990,

Morris et al. 2002). Temperature can have important

effects on primary production, physiological processes,

and plant community composition. In addition, there is

evidence to suggest that warming could increase

accretion rates by increasing soil organic matter

production, and that warming could also affect the

carbon storage capabilities of marshes (Najjar et al.
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2000). Finally, sea-level rise is often correlated with

global temperature rise, though not always tightly

coupled to it, especially given shorter term fluctuations

in tidal ranges, and marsh subsidence (e.g., Varekamp et

al. 1992, Donnelly 2006).

Only a handful of researchers have examined the

impacts of experimental temperature increases on salt

marshes (Gray and Mogg 2001, Bertness and Ewanchuk

2002, Loebl et al. 2006). Their research suggests that

increasing temperatures could be enhancing the spread

of invasive plants (e.g., Spartina anglica), altering plant

interactions and plant community composition, and

affecting plant growth. To our knowledge, there are no

published studies in which temperature was experimen-

tally increased in salt marshes to specifically simulate

future climate conditions, as has been done in various

other ecosystems (Shaver et al. 2000), and no studies

experimentally addressing the interactive effects of

warming and precipitation.

In many ecosystems, precipitation manipulations have

evoked strong community-level and ecosystem-level

responses (e.g., Hanson et al. 2001, Davidson et al.

2004, English et al. 2005). However, extrapolating these

results to salt marshes, with their unique abiotic stresses,

is problematic. Models suggest that precipitation may

have regional scale impacts on marshes by altering

estuarine salinities and the amount and timing of river

discharge (Saenger 2006). Interannual variation in

precipitation leads to variation in salinity and soil

moisture in marshes, and consequently affects marsh

species composition, germination, and/or biomass (Alli-

son 1992, Dunton et al. 2001, Noe and Zedler 2001,

Alexander and Dunton 2002). In some cases, wet years

have been linked with the spread of invasives (e.g., less

salt-tolerant Phragmites australis; Minchinton 2002).

Large-scale manipulative experiments have focused on

precipitation as a physical disturbance and a mechanism

by which recently deposited sediment and nutrients are

mobilized and redistributed on the marsh surface

(Mwamba and Torres 2002). This could be significant

for the biota, since rainfall can redistribute a dispropor-

tionate amount of sediment relative to flooding by tides,

and rainfall preferentially mobilizes nitrogen over

organic carbon, leading to lower nutrient concentrations

and organic matter on the marsh surface, and in some

cases increased export from the marsh (Torres et al.

2003, Voulgaris and Meyers 2004). Although fewer

studies have artificially increased rainfall in a marsh to

assess plant population or community responses, results

suggest that biomass and species abundances can be

affected by additional precipitation (Nestler 1977, Cal-

laway and Sabraw 1994). We are unaware of published

studies that have artificially decreased precipitation in

marshes. In addition, precipitation studies on marshes in

the northeastern United States are lacking in the

literature.

Global climate models now project mean global

surface temperature increases of 1.8–4.08C by the end

of the 21st century (relative to the period from 1980 to

1999), and sea-level rise ranging from 0.18 m to 0.59 m

(IPCC 2007). On a regional scale, annual surface

temperature is projected to increase by 2.9–5.38C in the

northeastern United States by the end of the century

(relative to the period from 1961 to 1990), depending on

future emissions scenarios, with summer warming being

greater than or equal to winter warming (Hayhoe et al.

2007). Annual precipitation is projected to increase by 7–

14%, with winter increases of 12–30% and essentially no

change in summer precipitation, also depending on

future emissions scenarios. The anticipated intensifica-

tion of the hydrologic cycle will lead to more frequent

episodes of heavy precipitation and more frequent

droughts, particularly in summer and autumn (Hayhoe

et al. 2007). To address the gaps in research on climate

change in salt marshes, and considering the climate

predictions for the northeastern United States, we

conducted a manipulative experiment in which we

increased temperature and altered precipitation (both

increased and decreased vs. ambient) in two salt marsh

plant communities dominated by perennials (see Plate 1).

By including two very different precipitation treatments,

we hoped to elucidate the significance of rainfall to this

marsh.

We hypothesized that warming would promote

aboveground plant growth by increasing photosynthetic

rates. However, we also expected that warming would

increase soil salinity by accelerating evaporation from

the marsh surface, which might decrease plant growth.

We expected that warming would increase microbial

activity and thus accelerate decomposition and nutrient

cycling, leading to higher nutrient availability. Since

sulfate reduction dominates microbial stages of decom-

position in salt marshes (Howarth and Teal 1979), we

expected warming to increase pore water sulfide

concentrations. Valiela et al. (1985) found that warmer

water accelerated salt marsh decomposition, a finding

we sought to extend to air temperatures. We also

expected that warming would advance flowering and

delay senescence, as has been seen in other warming

experiments (Shaver et al. 2000, Cleland et al. 2007).

We suspected that increasing precipitation would

decrease soil salinities enough to alleviate salt stress on

the marsh plants, and anticipated that these effects

would be most significant in poorly drained areas

(depressions), or infrequently flooded areas (high

marsh), and might increase the germination success of

annual fugitive species (e.g., Salicornia europea). We also

predicted that productivity would be positively corre-

lated with precipitation, as has been shown in other

studies (e.g., Nestler 1977). Reduced precipitation could

also slightly offset waterlogging stress due to anoxia.

Finally, we speculated that there could be interactive

effects of warming and precipitation as has been shown

in other experiments (Norby et al. 2007) if, for example,

warming increased evapotranspiration and led to

salinity stress, which was then offset by increased
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precipitation. We tested these hypotheses in two salt

marsh plant communities.

METHODS

Study site and timeframe

The experiment took place in a tidal salt marsh in the

Plum Island estuary in Rowley, Massachusetts, USA

(708510 W, 428430 N). The site is located adjacent to the

Rowley River, within the Plum Island Ecosystem (PIE)

Long Term Ecological Research site (LTER). The

marsh vegetation in this area is typical for New England

salt marshes with patterns of plant zonation based

predominantly on salinity and waterlogging, due to

differences in elevation, frequency of tidal inundation,

and soil drainage. Mean tidal range for the estuary is 2.9

m. Experimental plots were all located in the high marsh

at a mean elevation of 2 m, where the marsh is only

flooded about twice per month during spring tides, to a

mean depth of 10 cm. One set of plots was established in

a mixed community comprised exclusively of Spartina

patens (marsh hay) and Distichlis spicata (spike grass;

hereafter simply Distichlis), typical of the high marsh in

this area. Mean percent cover was 85% for S. patens,

90% for Distichlis, and 100% for standing dead

(numbers add to .100% due to overlapping canopy

layers). Another set of plots was established in slight

depressions in the high marsh, where salinities are high

and waterlogging causes the dominant Spartina alterni-

flora (cordgrass) to grow in a stunted ‘‘short form.’’

Spartina alterniflora also dominates the low marsh since

it is one of the few species that can tolerate daily tidal

flooding. The semidiurnal tides reduce salt and toxin

buildup in this zone, allowing S. alterniflora to grow in a

tall form (Bertness et al. 2002). In the high marsh

community, mean percent cover was 75% S. alterniflora,

15% Salicornia europea, 3% S. patens, ,1% Atriplex

patula, 75% standing dead, and 10% bare ground.

Monthly estimates of the percent cover of all species

showed no significant differences between treatments

(ANOVAs, P . 0.20), or over the time course of the

experiment, with the exception of an increase in standing

dead late in the growing season. Experimental manip-

ulations occurred during five months of the 2006

growing season, from the beginning of June until the

end of October.

Experimental design

The experimental design consisted of five main

treatments: control, increased precipitation, decreased

precipitation, warming, and warming plus increased

precipitation. In addition, open plots with no infra-

structure were established for comparison to framed

controls. We were not able to include an effective

treatment of decreased precipitation plus warming due

to the limitations of our experimental infrastructure. We

constructed five replicates of each treatment in each of

the two plant communities for a total of 50 framed plots

and 10 open plots. Plot locations were chosen for their

uniformity, and treatments were randomly assigned to

plots.

Each experimental plot was enclosed in a cube-shaped

PVC (polyvinyl chloride) frame, 833 83 cm in footprint

and 70 cm in height (Fig. 1), including a gap of 4–5 cm

between the base of the structures and the marsh

surface, which allowed normal tidal flow over the plots.

Warming was accomplished by wrapping ‘‘greenhouse

plastic’’ around the sides and partially covering the top

FIG. 1. Experimental design infrastructure. (a) Open-
topped chamber for warming marsh plots, (b) control frame,
and (c) rainout shelter for diverting rainfall from marsh plots.

HEATHER CHARLES AND JEFFREY S. DUKES1760 Ecological Applications
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of the PVC frames (Fig. 1a) to form passively warmed

open-topped chambers. The section of plastic on top of

the structures was added on 20 June 2006 to increase the

warming effect. Greenhouse plastic (Dura-Film Ther-

max, AT Plastics, Edmonton, Alberta, Canada) is

transparent 6 mil polyethylene (1 mil ¼ 0.001 inch ¼
25.4 lm) that is coated to retain infrared radiation. The

whitish tinge (Fig. 1) is an anticondensate coating that

affects the clarity of the film, but not the light

transmission (91% of photosynthetically active radia-

tion, PAR). The gap at the base of the structures and the

circular opening on top (;48 cm diameter) minimized

unwanted side effects of closed chambers, such as

retention of water vapor and excessive warming under

certain conditions (Marion et al. 1997). The plastic on

top was sloped slightly downward to allow rainfall to

drip into the plots. Although these chambers did not

allow for precise temperature control or significant

nighttime warming, they increased temperatures enough

to reasonably simulate the lower end of the range of

expected future conditions in New England, particularly

during the summer months (Hayhoe et al. 2007; Fig. 2).

We designed control frames (Fig. 1b) with polyethyl-

ene on two sides of the PVC frame to control for

shading without warming the plots. All experimental

frames and plots were oriented with corners on a north–

south axis, and control frames had plastic on the

southeast and southwest sides to maximize their shading

effect and thus their accuracy as controls.

Decreased precipitation plots were covered by a

rainout shelter consisting of a PVC frame, topped by a

funnel of polyethylene (Dura-Film, Super 4) not coated

to retain infrared radiation, and which transmitted 92%

of PAR (Fig. 1c). The funnel directed rain into a PVC

pipe that diverted it away from the plot. The top half of

these structures was covered with uncoated plastic to

keep out rain while maximizing air circulation.

To increase precipitation, we sprinkled well water on

the plots with a watering can, with the same quantity of

water that fell during each rainfall event; thus, each plot

received double normal rainfall in total. Natural rainfall

amounts were obtained from the PIE-LTER weather

station ,4 km away in South Byefield, Massachusetts,

USA. We attempted to follow the natural temporal

variation in rainfall in our watering schedule (Fig. 3),

though this was not always feasible. We watered the

plots predominantly in between low and high tide or at

low tide. While we watered several times at high tide, it

was not always safe to access the site in these conditions.

Plots were watered in increments, instead of all at once,

to more closely mimic natural rainfall. Increased

precipitation treatments had the same infrastructure as

control plots, and increased precipitation plus warming

treatments had standard warming chambers. After a

relatively dry April, May and June were unusually wet,

and rain accumulated at normal rates between July and

October. Precipitation treatments began on 1 June and

ended the last week of October (Fig. 3). Decreased

precipitation plots received very little rainfall after 1

June, though occasional high winds and a few structural

failures allowed small amounts of rain to reach these

plots.

Monitoring manipulations

Temperature sensors were positioned in 10 of the

plots at a time and rotated over the course of the

experiment. They consisted of a HOBO pendant data-

logger (Onset Computer Corporation, Buzzards Bay,

Massachusetts, USA) that recorded temperature at a set

interval (every 5–15 min) inside a small solar radiation

shield (Spectrum Technologies, Plainfield, Illinois,

USA). Sensors were attached to a corner of the PVC

frame and were positioned in or just above the plant

canopy, about 30 cm from the ground, and extending

about half of the diagonal distance to the center of the

plots, on a section of PVC pipe. We measured salinity of

FIG. 2. Mean hourly air temperatures for control frames,
open-topped chambers, and rainout shelters from (a) 07:00 to
18:00 and (b) 19:00 to 07:00 hours over the course of the
experiment. Open-topped chambers were significantly warmer
than controls or rainout shelters during daytime hours, and
rainout shelters were slightly warmer than controls or chambers
during nighttime hours. See Results: Temperature, precipitation,
salinity and light for statistical results.
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water on the marsh surface several times prior to and

following watering, using a handheld salinity refractom-

eter, and we measured chloride concentrations in pore

water. We assessed shading due to greenhouse plastic by

measuring the amount of light passing through the

plastic, and actual light levels inside the various plots

using a ceptometer (AccuPAR, model LP-80, Decagon

Devices, Pullman, Washington, D.C., USA). These

measurements were made at the same height in each

structure (approximately halfway to the top) to assess

the light reaching the top of the plant canopy.

Response measurements

We measured aboveground productivity by harvest-

ing plants in a 203 20 cm subplot near the time of peak

biomass after new growth had ceased in September

(Valiela et al. 1975) and in a second subplot in October.

Subplots were positioned at least 10 cm from the edges

of the plots, in fixed, predetermined locations in each

plot. Plants in S. alterniflora plots were clipped as close

as possible to the marsh surface, whereas S. patens–

Distichlis were clipped just above the horizontal layer of

dead plant matter. Dead plant matter was not harvested

since it included litter from previous years. Live and

dead plant biomass was weighed after drying at 60–658C

in a forced-air oven. We also measured heights of the 10

tallest stems of each species on a monthly basis from

July to September, and averaged them for analyses. The

number of flowering stems of each species was counted

in each plot every two to four weeks when plants were

flowering (July to September). Percentage of flowering

stems was then estimated using stem density data from

September; thus for earlier time points, these are

conservative estimates.

We measured decomposition using litter bags. Re-

cently senesced tall-form S. alterniflora and mixed S.

patens–Distichlis–forbs were collected the previous fall

and air-dried. Fiberglass mesh litter bags (11 3 11 cm

with 2 mm mesh size) were filled with 2 6 0.03 g of either

S. patens or S. alterniflora (50% leaves and 50% stems,

approximately). Each Spartina alterniflora plot received

two litter bags containing S. alterniflora, since this is the

dominant species normally decomposing in this com-

munity. Each S. patens–Distichlis plot received two S.

alterniflora and two S. patens litter bags. This simulated

decomposition of wrack, comprised largely of tall form

S. alterniflora, which is sometimes found in the high

marsh. Litter bags were tethered to the marsh surface

and were positioned vertically to simulate decomposi-

tion of standing dead stems. One set of each type of litter

bag was retrieved after three months in the field, and the

other set was retrieved after five months. Litter was

gently rinsed with distilled water while still in litter bags.

Bags and litter were then dried in a forced air oven, and

litter was removed and weighed. Control and decom-

posed samples were ground in a Wiley mill (Thomas

Scientific, Swedesboro, New Jersey, USA) and again in a

custom made ball mill, dried overnight at 608C, and

cooled in a desiccator before weighing. Sediment

samples from each of the plant communities were also

obtained and dried. Carbon and nitrogen contents of

litter and sediment were determined with an elemental

FIG. 3. Cumulative precipitation received by plots during the 2006 growing season via rainfall and/or watering. In the legend,
‘‘þ precip.’’ refers to increased precipitation and ‘‘� precip.’’ refers to decreased precipitation. The arrow indicates the start of
experimental treatments. Stars indicate biomass harvest dates.
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analyzer (ECS 4010 Elemental Combustion System,

Costech Analytical Technologies, Valencia, California,

USA), and litter mass was corrected for the presence of

any sediment by assuming a constant carbon content

(Franck et al. 1997). Mass remaining at each time point

was calculated using corrected weights, and decompo-

sition constants (k) were calculated by plotting ln(mass

remaining/initial mass) against time, where k is the slope

of the regression (Austin and Vivanco 2006).

Nutrient availability (ammonium and phosphate),

salinity, and sulfide concentrations were assessed from

pore water samples taken on a monthly basis in August,

September, and October. Pore water samplers consisted

of 20 mL acid-washed glass scintillation vials filled with

deionized water, with a small section of 48 lm nylon

mesh covering the top, and held in place by an open-top

screw cap. Samplers were buried in the marsh horizon-

tally at a depth of ;15 cm in the center of the rooting

zone. Each plot contained one sampler, and subsequent

samplers were put in the same location. Upon removal

from the marsh, a subsample of unfiltered water was

treated with zinc acetate for sulfide preservation. The

remaining sample was filtered through a 0.45 lm
nitrocellulose filter (Millipore Corporation, Billerica,

Massachusetts, USA) and acidified with hydrochloric

acid prior to the remaining analyses. Ammonium and

phosphate were analyzed on an autoanalyzer. Chloride

concentrations were determined by coulometric titration

on a Haake Buchler chloridometer (Haake-Buchler

Instruments, Saddle Brook, New Jersey, USA), and

salinities (ppt) were calculated using a 1.80655 conver-

sion factor from g Cl/kg. Finally, sulfide concentrations

were determined on a spectrophotometer following the

method described by Cline (1969).

Statistical analyses

All statistical analyses were conducted using SPSS,

version 13.0 (SPSS 2004). Treatments entailed two fixed

factors: warming (two levels) and precipitation (three

levels), though it was not a fully factorial design since we

lacked a warming 3 decreased precipitation treatment.

We conducted two main sets of analyses to address this,

while avoiding the problems associated with unbalanced

designs. First, the three precipitation treatments (ambi-

ent, increased, and decreased) were analyzed by one-way

ANOVA, including data from only the ambient

temperature plots. Second, the four treatments that did

comprise a fully factorial warming 3 precipitation

experiment were analyzed by two-way ANOVA. We

focused on the effects of warming in these analyses, and

if any interactions between warming and precipitation

were found, we present the full results. Analyses were

conducted separately for the two plant communities; but

for a few variables, we also combined the data to assess

effects across the marsh (provided units of measurement

were the same). In these cases, the one-way ANOVA

became a two-way ANOVA (plant community 3

precipitation), and the two-way ANOVA became a

three-way ANOVA (plant community 3 warming 3

precipitation). For decomposition, we conducted the
previous analyses for S. alterniflora litter, since it was

located in both plant communities, as well as litter type
3 treatment ANOVAs for S. patens–Distichlis plots

since they contained two litter types. Pore water
chemistry results, which were obtained over three time

points with no a priori reason to suspect that these time
points would differ, were analyzed with repeated
measures ANOVA (RM-ANOVA). Note that in the

discussion of response variables, precipitation data are
taken from the one-way ANOVAs that exclude the

warming treatment, unless there are interactive effects of
precipitation and warming, or if precipitation and plant

community or litter type are being considered together
in the analysis. Homogeneity of variance was tested with

Levene’s test and examination of box plots; sphericity
was tested with Mauchly’s test, and if violated, the

Greenhouse–Geisser correction was reported. Percent-
ages were arcsine square-root transformed for analyses;

all other data are untransformed. Post-hoc multiple
comparisons between group means were conducted with

the Tukey’s hsd test. Finally, control plots were
compared with open plots using a standard t test, to

assess whether the basic infrastructure affected mea-
surements.

RESULTS

Temperature, precipitation, salinity, and light

Chambers increased air temperatures relative to

control frames or rainout shelters, but this increase
was temporally variable (Fig. 2). Temperature differ-

ences were assessed by comparing daily means of
temperatures from 07:00 to 19:00 and from 19:00 to

07:00 hours for each infrastructure type, using data-
loggers in the same infrastructure type as replicates.

During daytime hours, chambers warmed air relative to
control frames and rainout shelters, which did not differ

from one another (Fig. 2a; Tukey’s hsd between control
and chamber, P¼ 0.028; between rainout and chamber,

P ¼ 0.015; between control and rainout, P ¼ 0.492). At
night, rainout shelters warmed air slightly relative to

control frames and chambers, which did not differ from
one another (Fig. 2b; Tukey’s hsd between control and
rainout, P ¼ 0.004; between chamber and rainout, P ¼
0.010; between control and chamber, P ¼ 0.155).
Temperature differences were averaged for each month

for all logged time points, for time points between 07:00
and 19:00 hours (within six hours of solar noon,

approximately), and for time points between 10:00 and
16:00 hours (within three hours of solar noon, approx-

imately). Overall warming in experimental warming
chambers averaged 0.47–1.178C. Since the amount of

warming depends on solar input, warming from 07:00 to
19:00 hours averaged 0.89–2.278C, and warming from

10:00 to 16:00 hours averaged 1.23–2.778C. In June,
chambers did not warm air until the end of the month,

when partially open tops were added to the structures.
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For this reason, the earlier time points were not included

above. Air temperatures in framed controls did not

differ from those in open controls (day, RM-ANOVA,

F1,2 ¼ 0.365, P ¼ 0.607; night, RM-ANOVA, F1,2 ¼
1.056, P¼ 0.412). See Appendix A for further details on

temperature differences.

Chemical properties of the well water used to

supplement rainfall were compared with properties of

rain sampled weekly (approximately) at the weather

station from June 2000 to June 2001 (data available

online).3 Well water had a higher average pH than

natural rainfall (6.86 vs. 4.55), higher ammonium

concentration (94 lmol/L vs. 13.61 lmol/L, though

rainfall ranged from 0.64 lmol/L to 86.33 lmol/L), and

higher phosphate concentrations (15 lmol/L vs. 0.05

lmol/L, though rainfall ranged from 0 lmol/L to 0.83

lmol/L). The well water did not contain sulfides and had

a very low salinity (1.6 ppt or 0.886 g Cl/kg). We expect

these variables to be very low or negligible in rainwater,

though they were not directly measured. Prior to

watering, salinities of surface water ranged from 19–25

ppt (10.52–13.84 g Cl/kg) in all plots, as measured by

refractometer. Immediately after watering, salinity

dropped to 0–2.5 ppt (0–1.38 g Cl/kg), and returned

slowly to previous salinities, showing a mean of 5 ppt

(2.77 g Cl/kg) one to two hours after watering, and 10

ppt (5.54 g Cl/kg) four to five hours after watering (also

see pore water salinity results).

A comparison of the two greenhouse plastics (coated

to retain infrared and not coated) revealed that under

ideal conditions (sunny day, light directly overhead,

plastic wrinkle free and clean, ceptometer close to plastic

during measurements), both let through 91–92% of

PAR, per their specifications. Light levels were also

tested in the field and the three designs (Fig. 1a, b, c)

were compared. In October, when plastic had been

exposed to the elements for several months, the designs

did not differ in PAR transmission (one-way ANOVA,

F2,27 ¼ 2.151, P ¼ 0.136; means, open-topped chamber

82%, control frame 78%, rainout shelter 83%).

Plant production

Precipitation suppressed shoot growth in both plant

communities, though effects were greater in the S.

alterniflora community (Fig. 4), and warming enhanced

shoot growth in the S. alterniflora community (Fig. 5).

Across both plant communities, precipitation decreased

total aboveground biomass (including live and dead

biomass of all species present) in the October harvest

(Fig. 4; two-way ANOVA, F2,24 ¼ 5.312, P ¼ 0.012).

There was no interaction between plant community and

precipitation treatment. However, there was a margin-

ally significant interaction between plant community

and warming treatment in September (three-way AN-

OVA, F1,32 ¼ 4.067, P ¼ 0.052) as well as a significant

interaction in October (F1,32¼ 8.092, P¼ 0.008). In both

cases, analyses suggest that warming increased above-

PLATE 1. Experimental plots and infrastructure in the Spartina patens–Distichlis spicata salt marsh plant community. Photo
credit: J. S. Dukes.

3 hecosystems.mbl.edu/pie/data/wat/WAT-VA-rainfall.
htmi
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ground biomass production in the S. alterniflora

community, and either did not change or decreased it

in the S. patens–Distichlis community. Differences

between treatments also tended to be enhanced over

time in both communities, with more highly significant

results in October.

Drought dramatically increased biomass of the S.

alterniflora community in September and October (Fig.

4), with significant effects on live and standing dead S.

alterniflora, and on total biomass (September S. alter-

niflora live, one-way ANOVA, F2,12 ¼ 4.766, P ¼ 0.030;

S. alterniflora dead, F2,12 ¼ 16.737, P , 0.0001; total

biomass, F2,12¼ 9.311, P¼ 0.004; October S. alterniflora

live, F2,12¼ 5.572, P¼ 0.019; S. alterniflora dead, F2,12¼
6.684, P¼ 0.011; total biomass, F2,12¼ 7.397, P¼ 0.008).

In September, drought plots had 54% more biomass

than ambient plots (Tukey’s hsd, P ¼ 0.005) and 46%

more biomass than increased precipitation plots (Tu-

key’s hsd, P¼0.011). In October, drought plots had 52%

more biomass than ambient plots (Tukey’s hsd, P ¼
0.030) and 71% more biomass than increased precipita-

tion plots (Tukey’s hsd, P ¼ 0.009).

Precipitation did not affect total biomass of the S.

patens–Distichlis community in either month (Fig. 4),

FIG. 4. Aboveground biomass for ambient and altered precipitation treatments in the S. alterniflora and S. patens–Distichlis
communities harvested in (a) September and (b) October. Other species in the S. alterniflora community include S. patens,
Salicornia, and Atriplex. Different letters above columns represent statistically significant (P , 0.05) differences between total
biomass for different treatments. See Results: Plant production for additional information on live and standing dead results. Error
bars represent standard error for total biomass (live þ dead). Results are shown from two-way ANOVA of total biomass
considering both plant communities together for the three precipitation treatments.

* P , 0.05; *** P , 0.001; n.s.¼ not significant.
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although in October drought increased live S. patens

biomass and total live biomass (by 69% for live S. patens

compared to ambient plots; live S. patens, F2,12¼ 5.614,

P ¼ 0.019; total live, F2,12 ¼ 3.977, P ¼ 0.047).

Warming increased total biomass of the S. alterniflora

community by 21% in September (two-way ANOVA,

F1,16¼ 6.275, P¼ 0.023), and by 26% in October (F1,16¼
4.867, P ¼ 0.042; Fig. 5). Interestingly, total biomass

showed the opposite trend in the S. patens–Distichlis

community, although these results were only marginally

significant (Fig. 5; September, F1,16 ¼ 1.769, P ¼ 0.202;

October, F1,16 ¼ 3.641, P ¼ 0.074). Warming increased

live S. alterniflora biomass in both months (September,

F1,16 ¼ 6.626, P ¼ 0.02; October, F1,16 ¼ 8.269, P ¼
0.011), as did increased precipitation (September, F1,16¼
3.543, P ¼ 0.078; October, F1,16 ¼ 11.787, P ¼ 0.003).

Total aboveground biomass did not vary between the

open treatment (with no infrastructure) and the framed

control treatment, regardless of community or harvest

date (S. alterniflora community t test, P¼ 0.195 and P¼
0.471 for September and October, respectively; S.

patens–Distichlis community t test, P ¼ 0.316 and P ¼
0.892 for September and October, respectively). Stem

densities of the dominant species increased during the

growing season, but stem counts did not vary with

precipitation or warming treatments in any month.

FIG. 5. Aboveground biomass for ambient and warmed treatments in the S. alterniflora and S. patens–Distichlis communities
harvested in (a) September and (b) October. Other species in the S. alterniflora community include S. patens, Salicornia, and
Atriplex. Different letters above columns represent statistically significant (P , 0.05) differences between total biomass. See Results:
Plant production for additional information on live and standing dead results. Error bars represent standard error for total biomass
(live þ dead). Results are shown from two-way ANOVA of total biomass considering both plant communities together for the
ambient and warmed treatments.

� P , 0.10; ** P , 0.01; *** P , 0.001; n.s.¼ not significant.
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Stem heights

Warming increased stem heights for all three of the
main species in the plots, and at most of the

measurement time points (Fig. 6). Spartina alterniflora
stem height increased by 8% in July (two-way ANOVA,

F1,16 ¼ 5.122, P ¼ 0.038), by 7% in August (though this
was only marginally significant; F1,16¼3.625, P¼0.075),

and by 10% in September (F1,16 ¼ 6.982, P ¼ 0.018).
Warming increased S. patens stem heights in August

(11% increase, F1,16 ¼ 5.706, P ¼ 0.030); similar trends
were not significant in July and September (July, 5%

increase, F1,16 ¼ 2.372, P ¼ 0.143; September, 9%

increase, F1,16¼ 1.376, P¼ 0.258). Warming consistently

increased Distichlis stem heights, by 16% in July (F1,16¼
13.313, P¼0.002), by 16% in August (F1,16¼13.927, P¼
0.002), and by 14% in September (F1,16 ¼ 4.800, P ¼
0.044). Precipitation did not affect stem heights, though

there was a trend towards increased stem heights with
drought in most months (Appendix B). There were no
interactions between warming and precipitation.

Stem height was one of the few variables where the

chamber walls may have affected the measurements,
though we would expect any effect to be the same across
treatments due to the similarity of the infrastructure.

Stem heights in open plots (no infrastructure) were
compared to those in control plots to check for effects.

The infrastructure did not affect Spartina alterniflora
stem heights, but S. patens stems were taller in control

plots in July (15%, t test, P¼ 0.046) and August (18%, t
test, P¼ 0.034), as were Distichlis stems in August (17%,

t test, P ¼ 0.034). While these two species grew slightly
taller in response to some feature of the infrastructure

(perhaps diffusion of incident light), the observed
responses to warming remain robust.

Flowering phenology

The proportion of flowering S. alterniflora stems was
not affected by either precipitation (August, one-way

ANOVA, F2,12 ¼ 0.182, P ¼ 0.836; September, F2,12 ¼
0.090, P ¼ 0.914) or warming (August, two-way
ANOVA, F1,16 ¼ 0.135, P ¼ 0.718; September, F1,16 ¼
0.062, P¼0.807). There were no S. alterniflora flowers at
the first measurement time point in July. Spartina patens

and Distichlis flowers were present at all of the time
points, but there was no effect of precipitation on the

proportion of flowering stems of either species (one-way
ANOVA, all P values .0.07).

There were also no warming or interactive effects on
S. patens in any month (two-way ANOVA, all P values

.0.08); however in September there was an interaction
between warming and precipitation that affected the

proportion of Distichlis stems flowering (two-way
ANOVA, F1,16 ¼ 5.034, P ¼ 0.039). Warming increased

the percentage of flowering Distichlis stems if precipita-
tion was increased (from 2% 6 1% to 5% 6 1% [mean 6

SE]), but decreased the percentage of flowering stems in
ambient precipitation. Earlier measurements show a

similar trend, but these results were only marginally

significant (two-way ANOVAS, P � 0.068–0.081 for all

analyses).

Decomposition and litter nitrogen dynamics

Overall, S. alterniflora litter decomposed slightly

faster in the S. patens–Distichlis community than in

FIG. 6. Mean stem height per plot for S. alterniflora, S.
patens, and Distichlis under ambient and warmed treatments for
three time periods: 12–14 July, 16–17 August, and 23–24
September. Different letters above columns represent statisti-
cally significant (or marginally significant) differences. Bold
letters signify P , 0.05; standard letters, P¼ 0.075. Error bars
represent standard error.
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the S. alterniflora community, after both three months

(two-way ANOVA, F1,23 ¼ 5.951, P ¼ 0.023) and five

months (F1,23¼ 4.526, P¼ 0.044). Analyses from the S.

patens–Distichlis community showed that S. alterniflora

litter decomposes faster than S. patens litter in general

(percentage mass remaining at three months, F1,22 ¼
8.576, P ¼ 0.008; percentage mass remaining at five

months, F1,22 ¼ 7.281, P ¼ 0.013).

The rate of shoot litter decomposition was slightly

accelerated by increased precipitation and slowed by the

drought treatment, but the significance of this pattern

depended on the plant community and litter type (Table

1). When considering data from both plant communities

together, litter of S. alterniflora decomposed slightly

faster under increased precipitation and slightly slower

with decreased precipitation (marginally significant at

three months: two-way ANOVA, F2,23 ¼ 2.730, P ¼
0.086; highly significant at five months: F2,23¼5.974, P¼
0.008). The S. patens–Distichlis community had both S.

alterniflora and S. patens litter bags. Combining data for

both of these litter types showed a significant acceler-

ation of decomposition with increasing precipitation in

the S. patens–Distichlis community after both three

months and five months (two-way ANOVA, F2,28 ¼
4.122, P ¼ 0.030; F2,28 ¼ 4.200, P ¼ 0.029, respectively).

The effect of precipitation on decomposition was only

marginally significant, but strongest for S. alterniflora

litter in the S. patens–Distichlis community vs. other

litter–plant community combinations (Table 1). Precip-

itation affected decomposition of S. alterniflora litter in

the S. patens–Distichlis community after both three

months (one-way ANOVA, F2,12 ¼ 3.604, P ¼ 0.059;

Tukey’s hsd between decreased and increased precipita-

tion, P ¼ 0.049) and five months (F2,12 ¼ 3.575, P ¼
0.064; Tukey’s hsd, P ¼ 0.055).

Warming marginally accelerated decomposition of S.

alterniflora litter in the S. alterniflora community during

the first three months (53.6% vs. 57.9% mass remaining,

two-way ANOVA, F1,16¼4.295, P¼0.055). Afterwards,

this trend disappeared, perhaps due to the overall

slowing of decomposition, or due to a significant

interaction between warming and precipitation at this

point (percentage mass remaining, two-way ANOVA,

F1,16¼8.406, P¼0.010). Warming did not affect the rate

of decomposition of either S. alterniflora or S. patens–

Distichlis litter in the S. patens–Distichlis community.

Precipitation also affected the nitrogen concentration

of S. alterniflora litter in the S. alterniflora community

after three months (one-way ANOVA, F2,12¼ 6.791, P¼
0.011). From an initial concentration of 0.52%, nitrogen

concentrations increased to 0.69% in decreased precip-

itation plots, 0.83% in control plots, and 0.92% in

increased precipitation plots (Tukey’s hsd between

decreased and increased precipitation, P ¼ 0.009;

Tukey’s hsd between control and decreased precipita-

tion, P ¼ 0.081). At five months, the trend was similar,

but no longer significant (F2,12 ¼ 2.210, P ¼ 0.152).

Likewise, the total amount of nitrogen in the litter was

significantly affected after three months (F2,12¼ 11.082,

P ¼ 0.002). Nitrogen mineralization was greatest under

drought conditions, whereas nitrogen content stayed

roughly the same with doubled rainfall. Initial nitrogen

content of S. alterniflora litter was 5.19 mg per gram of

litter. After decomposition, the total nitrogen content

per gram of initial litter ranged from 4.07 6 0.20 mg

(mean 6 SE) for drought plots, to 4.78 6 0.21 mg for

control plots, to 5.30 6 0.15 mg for increased

precipitation plots (Tukey’s hsd between decreased and

increased precipitation, P¼ 0.001; Tukey’s hsd between

control and decreased precipitation, P ¼ 0.045). The S.

patens–Distichlis community showed similar trends for

nitrogen content of both litter types, but the differences

were not significant (P . 0.2 for all analyses). Warming

did not significantly alter nitrogen dynamics in either

plant community or litter type.

TABLE 1. Decomposition rates and decay values (mean 6 SE) for litter in different plant communities and with different
precipitation treatments.

Plant community and precipitation treatment
Litter remaining
at 3 months (%)

Decay constant (k)
at 0–3 months

Litter remaining
at 5 months (%)

Decay constant (k)
at 3–5 months

S. alterniflora plots–S. alterniflora litter

Decreased precipitation 59.2 6 1.4 2.100 6 0.094 51.8 6 2.2 0.817 6 0.244
Ambient precipitation 57.6 6 2.1 2.216 6 0.148 51.6 6 1.5 0.657 6 0.270
Increased precipitation 58.1 6 1.4 2.176 6 0.094 45.0 6 3.1 1.590 6 0.497

S. patens–Distichlis plots–S. alterniflora litter

Decreased precipitation 58.6a 6 2.2 2.150a 6 0.154 49.2a 6 1.3 1.040 6 0.320
Ambient precipitation 53.7a,b 6 2.2 2.503a,b 6 0.163 46.4a,b 6 2.3 0.884 6 0.091
Increased precipitation 49.3b 6 2.9 2.854b 6 0.241 40.9b 6 2.9 1.170 6 0.572

S. patens–Distichlis plots–S. patens litter

Decreased precipitation 64.3 6 1.9 1.775 6 0.116 55.9 6 1.9 0.839 6 0.152
Ambient precipitation 59.7 6 3.1 2.089 6 0.215 50.2 6 2.6 1.031 6 0.431
Increased precipitation 56.0 6 3.1 2.346 6 0.218 48.3 6 5.0 1.113 6 0.317

Notes: Different lowercase letters represent marginally significant (0.059 , P , 0.064) differences. Warmed plots were not
included since they were not significantly different. See Results: Decomposition and litter nitrogen dynamics for further information.
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Pore water chemistry

Pore water salinity and ammonium and phosphate

concentrations were analyzed for both plant communi-

ties; sulfide concentrations were analyzed for the S.

alterniflora community, but not for the S. patens–

Distichlis community as measurements were below the

detection limit of 0.134 lmol/L (Appendix C). Precip-

itation did not affect any of the pore water variables

considered in either the S. alterniflora community (RM-

ANOVA, F8,20 ¼ 0.484, P ¼ 0.853) or the S. patens–

Distichlis community (RM-ANOVA, F6,22 ¼ 0.790, P ¼
0.587). Likewise, warming did not significantly affect

pore water chemistry in either community (S. alterniflora

community, RM-ANOVA, F4,13 ¼ 0.861, P ¼ 0.512; S.

patens–Distichlis community, RM-ANOVA, F3,14 ¼
0.708, P ¼ 0.563). The clearest pore water result was

an effect of the month of sampling in all analyses

(Appendix C; RM-ANOVA, all P values ,0.01). These

results suggest that nutrient concentrations, salinity, and

sulfide all varied temporally in the marsh, mostly

independently of any experimental treatments. In

addition, and as expected, pore water chemistry varied

substantially between plant communities in the marsh.

DISCUSSION

Climate change clearly poses a major risk to salt

marsh habitats through its effects on sea level. The

ability of marshes to keep pace with sea-level rise and to

provide shoreline protection will depend on their ability

to accrete both vertically and horizontally. Although

inorganic sedimentation is more important in some

marshes, organic inputs from the marshes themselves

also contribute to accretion (Chmura and Hung 2004,

Nyman et al. 2006), particularly in marshes where

sediment inputs tend to be less important (e.g., marshes

along the northern Atlantic coast of the United States

vs. the southern Atlantic coast; Bertness 1999). A more

productive marsh, as we observed with drought and

warming, could trap more inorganic sediments during

tidal flushing (Leonard and Croft 2006) and directly

contribute more organic inputs to the sediment.

Although we did not observe differences in stem density

among our treatments, such differences have been

shown to reduce wave energy and contribute to

sedimentation (Lightbody and Nepf 2006). We speculate

that increased allocation to leaves or increased stem

widths may have occurred, both of which could also

contribute to sedimentation to a lesser degree. In the

case of Spartina patens and Distichlis spicata, biomass

did not increase, but stems were longer. Long, thin stems

such as these often bend and lay flat or at an angle on

the marsh surface, which could also enhance sedimen-

tation. Aboveground biomass is also complemented by

the larger pool of belowground biomass, which is

considered by Turner et al. (2004) to be even more

important in determining marsh elevation. This would

be a useful variable to assess in future experiments.

We expected to see increases in shoot biomass and

decomposition rates with warming, but only observed

these responses in the Spartina alterniflora community.

While our measurements were unable to identify a

conclusive mechanism for the responses, increased

allocation to leaves, which are more prominent in S.

alterniflora than in the other perennials, could have

increased photosynthesis at the whole-plant level,

leading to higher aboveground biomass. We expected

that warming would increase leaf-level photosynthetic

rates and soil microbial activity (with associated

increases in nutrient availability), stimulating biomass

production. Unfortunately, our measurements of these

factors were inconclusive. In the case of photosynthesis,

data from a single measurement date suggested the

opposite pattern (Charles 2007), but we did not have a

rich enough data set to draw robust conclusions. In the

case of soil microbial activity, our pore water samplers

did not detect increases in nutrient availability. This

could have been an artifact of sampler placement;

because our pore water samplers were located in the

middle of the rooting zone, they may have missed

changes in chemical composition and nutrient concen-

trations occurring at shallower depths. The chambers

may have only warmed the top few centimeters of

sediment. We also speculate that differences in the

phenotypic plasticity of species contributed to the

difference in warming response among communities.

Spartina alterniflora has been shown to be very plastic in

terms of height, as demonstrated by its high tolerance of,

and strong response to, salinity (Nestler 1977).

We anticipated that additional precipitation would

decrease soil salinity and alleviate salt stress, leading to

increased plant growth. Although surface water showed

decreased salinity for several hours or longer after

watering, watered plots did not have significantly

different pore water salinities, which may explain the

lack of a biomass response to increased precipitation.

Freshwater may have decreased salinity in the rooting

zone, but with only brief effects, as has been seen with

natural heavy rainfall events (Alexander and Dunton

2002), or increased waterlogging may have offset any

positive effects of transient decreases in salinity (Morris

and Haskin 1990). Likewise, the drought treatment

could have slightly alleviated waterlogging, particularly

during an unusually wet late spring and early summer.

However, we have no data with which to assess the

importance of this mechanism. Increased aeration and

oxidation of the rhizosphere in the drought treatment

may have enhanced production by leading to higher

nutrient and lower sulfide concentrations (Portnoy and

Giblin 1997). Pore water chemical analyses also showed

no difference with the drought treatment, but short-term

effects may have been missed by our monthly sampling

schedule, since Noe and Zedler (2001) have observed

strikingly different salinity and soil moisture patterns

when measuring pore water daily after rainfall vs.

weekly or monthly. In addition, our pore water samplers
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may have been buried too deeply to detect important

salinity differences at shallow depths. Finally, side

effects of the infrastructure could partially explain the

observed biomass differences. In particular, the cham-

bers could have altered nighttime air temperatures (Fig.

2b), relative or absolute humidity (a common side effect

of open-topped chambers and partial enclosures [Mari-

on et al. 1997], though this may be partially ameliorated

by the wet marsh environment), or had undetected

effects on light reaching the plants. Although infrastruc-

ture shading could in theory increase stem heights, the

lack of a difference in biomass between open and control

plots suggests this mechanism is unlikely. Regardless of

the mechanisms underlying the precipitation-induced

shifts in production, our results suggest that marsh

communities that are flooded infrequently (e.g., by

spring tides only) are sensitive to altered precipitation.

It is critical to consider our plot-scale results in the

context of larger, regional-scale effects of precipitation

change. Regional projections for precipitation are less

certain than those for warming (Hayhoe et al. 2007).

Nevertheless, many model projections for the northeast-

ern United States include increased runoff, an advance-

ment in the timing of spring peak stream flows, and a

shift in the timing of precipitation to include more

periods of both heavy rainfall and drought (Hayhoe et

al. 2007). Such changes would likely affect estuarine

salinities, as has been shown for Chesapeake Bay

(Saenger 2006). Decreased estuarine salinities would

decrease plant stress, and could lead to increased

productivity and shifts in species composition toward

more freshwater-tolerant species. Increased estuarine

salinities would have the opposite effect, but our plot-

scale results suggest that plant stress could be partly

offset by decreased waterlogging or some other aspect of

drought conditions.

Likewise, regional and global predictions for sea-level

rise are highly variable (IPCC 2007). However, even a

relatively small rise would have a variety of dramatic

impacts on marshes, beyond the major threats from

inundation discussed earlier. Sea level itself (specifically

duration and frequency of tidal flooding) is a major

determinant of marsh productivity, particularly during

the summer months when growth rate is maximal. The

impact of sea level may depend on the amount of rainfall

in a given year, becoming more important in a year with

low rainfall for example (Morris and Haskin 1990). The

increased productivity that we witnessed under drought

conditions may slightly decrease the significance of

shifting tidal regimes to these plants. As marshes become

inundated, peat saturation, salinity, and sulfide concen-

trations increase, and redox potential decreases, leading

to a predictable shift in plant community composition.

For example, in New England marshes, salt tolerant S.

alterniflora and annual forbs often replace S. patens,

Distichlis, and Juncus gerardi in areas of increased

inundation (Warren and Niering 1993, Donnelly and

Bertness 2001). In marshes where landward migration is

impeded by human development, marshes may not only

become smaller, but large areas may shift to these early

successional species, and in the case of S. alterniflora in

our study, may be more susceptible to the effects of

warming and precipitation. Other studies indicate that

recruitment of seed bank species, such as Salicornia and

Atriplex in this marsh, may decrease with increasing

tidal inundation (Baldwin 1996), and losing these

pioneer species could lead to less plant growth in salt

pannes on the marsh platform.

We did not focus on recruitment effects within the

plant communities. In the fall, as well as the following

early spring, when most recruitment occurs, an increase

in the number of heavy rainfall events is likely to

accelerate germination, with consequences for species

composition and productivity of the marsh (Noe and

Zedler 2001, Alexander and Dunton 2002). Our different

results from the two plant communities suggest that

shifts in species composition could modify some of the

biomass responses we observed. Similarly, responses

could be modified by changes in community structure

due to sea-level rise or warmer temperatures, as

described in the previous paragraph. Marshes at lower

latitudes tend to have relatively more stressful environ-

ments due to warmer temperatures for a longer portion

of the year, leading to increased evaporation and salt

accumulation. Under these conditions, facilitative plant

interactions (e.g., shading by neighboring plants leading

to decreased salt stress) are more common and become

very important (Bertness and Ewanchuk 2002). In the

relatively less stressful northern marshes, including our

study site, warmer conditions could cause plant interac-

tions to become more facilitative, reducing the strength

of interspecific competition.

Decomposition, like production, has implications for

accretion and marsh elevation, in addition to nutrient

cycling, soil formation, carbon sequestration, and waste

treatment. Decomposition is particularly important for

accretion in the high marsh where plants tend to decay

more slowly due to less frequent tidal flushing, lower

sediment input, and lower litter quality, in the case of S.

patens and Distichlis (Valiela et al. 1985). If, as we

observed, marsh productivity remains steady or increas-

es, then reductions in decomposition would accelerate

accretion (Foote and Reynolds 1997). However, our

results also suggest that wetter conditions could speed

decomposition and offset changes in productivity,

primarily because microbes decompose wet substrates

faster (Foote and Reynolds 1997). Similarly, microbial

activity increases in response to warming, likely leading

to the increased rate of decay observed in the S.

alterniflora community. This result supports the obser-

vations of Montagna and Ruber (1980) that decompo-

sition of S. alterniflora litter responds to seasonal

temperature differences. Decomposition in the S.

patens–Distichlis community may have been less respon-

sive to warming due to differences in litter quality or

microclimate. At a regional scale, warmer water can also
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increase decomposition, either via warming of oceans,

rivers, and estuaries, or of standing water on the marsh

surface (Valiela et al. 1985). Taken together, these

results suggest that decomposition rates are likely to

increase in the future, although periodic decreases

during periods of drought may offset increases to some

extent.

The litter nitrogen retention associated with increas-

ing precipitation in the S. alterniflora community

suggests that any additional nitrogen lost through

leaching or other processes was compensated for by

accumulation of microbial biomass or exudates, or by

greater incorporation of nitrogen via nitrogen fixation

or uptake of dissolved nitrogen (White 1994). White

(1994) found that external nitrogen incorporation was

associated with warmer temperatures and higher mois-

ture content, and may be beneficial to the marsh as a

mechanism of nitrogen gain and retention, even leading

to increased availability the following year. Interesting-

ly, Parton et al. (2007) have shown that nitrogen

immobilization and release from litter are predictably

dependent on initial tissue nitrogen, regardless of

climate, across a broad range of ecosystems. The

precipitation-induced changes we observed in litter

nitrogen dynamics did not translate into changes in

pore water nutrient concentrations. However, it is

possible that any increase in remineralization of

nutrients was offset by increased plant growth and

uptake, leading to no net change in pore water.

Salt marshes sequester carbon due to their high

productivity and slow decomposition under anaerobic

conditions. Hussein et al. (2004) calculated that a

Maryland marsh had stored 83.5 6 23 g C�m�2�yr�1
over the most recent 150-yr period. Their model of the

marsh predicted higher future carbon sequestration,

which could be a negative feedback to global warming if

marsh elevation keeps pace with sea-level rise. Redfield

(1972), studying the development of a New England

marsh, discovered layers of high marsh peat more than

20 feet thick, and estimated them to be 3600 years old.

Whether salt marshes continue to sequester carbon at

current rates or begin to lose carbon depends in part on

the balance between production and decomposition

described previously. Sea-level rise may also lead to

carbon loss from marshes by altering the balance

between production and respiration (Miller et al. 2001).

Salt marshes export biomass and nutrients, to the

direct benefit of marine food webs, and the indirect

benefit of humans. Teal (1962) estimated outwelling of

organic particulate matter and detritus to an estuary as

being equivalent to 40% of marsh productivity. More

recently, Duarte and Cebrián (1996) reported a mean

export of 18.6% for marsh plants, after evaluating all the

available studies that reported the fate of net primary

productivity in marine ecosystems, and dividing the

pathways of organic carbon transfer into decomposi-

tion, herbivory, exportation, and storage. Export

percentages vary widely across marshes, but even

marshes with low export may make a significant

contribution to local marsh creeks and estuaries, if not

to the regional coastal waters. We did not directly

examine export in our study. However, since marshes

concurrently store and export biomass, and we have

shown stable or increasing productivity, our results

suggest that export is likely to continue. This conclusion

could be strengthened by modeling efforts that include a

more comprehensive assessment of inputs to the marsh

(from sedimentation, aboveground and belowground

biomass). Such efforts could produce an organic matter

budget that would give further insight into the ability of

New England marshes to accrete in the face of sea-level

rise. Such efforts could also include countervailing

effects of climate change, such as the possibility that

increased rainfall would erode the marsh surface and

enhance the movement of particulate and dissolved

organic carbon into tidal creeks (Chalmers et al. 1985).

Little is known about the controls on phenology of

flowering in salt marsh plants. We expected that

warming would advance the timing of flowering, but

did not find clear evidence for this. Blits and Gallagher

(1991) found that increasing salinity can both delay and

decrease inflorescence production for the marsh ecotype

of Sporobolus virginicus, leading to greater allocation of

resources to belowground growth. Although such

changes in phenology have important implications for

future plant growth, organic matter accumulation, and

carbon sequestration, little research has been conducted

in this area.

Many questions regarding the effects of warming and

altered precipitation on both salt marshes and other

ecosystems remain unanswered, particularly whether

there will be interactions between these variables and

other components of climate change. In a long-term

study (now .20 years), researchers have shown that

sedge-dominated wetland communities respond to sup-

plemental CO2 by increasing plant growth, shoot

density, and net ecosystem exchange (NEE), with

drought-induced salinity stress reducing these responses

(Rasse et al. 2005). Taken together, data from this and

other studies suggest that there could be important

interactive effects of different climate change drivers.

The combined effects of climate change and other global

changes such as eutrophication, increasing waterborne

pollution, the spread of invasive species, and land use

change may strongly affect marsh composition and

function during this century. Our short-term study

suggests that marshes may be fairly resilient to large

changes in precipitation and modest levels of warming.

Nonetheless, the changes we observed indicate that

production and nutrient cycling in marshes will respond

to both warming and precipitation, with implications for

marsh ecosystem services. Further study, as well as

incorporation of these types of data into modeling

efforts, is warranted to assess whether these impacts will

be amplified over a longer time period, whether the

measured variables will respond in a linear fashion to
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more extreme climate predictions, how regional-scale

precipitation changes will work in conjunction with local

impacts, and whether marshes in other regions will

respond similarly.
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