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Abstract

Complex decisions dramatically affect animal dispersal and space use. Dispersing individuals respond to a combination of
fine-scale environmental stimuli and internal attributes. Individual-based modeling offers a valuable approach for the
investigation of such interactions because it combines the heterogeneity of animal behaviors with spatial detail. Most
individual-based models (IBMs), however, vastly oversimplify animal behavior and such behavioral minimalism diminishes
the value of these models. We present program SEARCH (Spatially Explicit Animal Response to Composition of Habitat), a
spatially explicit, individual-based, population model of animal dispersal through realistic landscapes. SEARCH uses values in
Geographic Information System (GIS) maps to apply rules that animals follow during dispersal, thus allowing virtual animals
to respond to fine-scale features of the landscape and maintain a detailed memory of areas sensed during movement.
SEARCH also incorporates temporally dynamic landscapes so that the environment to which virtual animals respond can
change during the course of a simulation. Animals in SEARCH are behaviorally dynamic and able to respond to stimuli based
upon their individual experiences. Therefore, SEARCH is able to model behavioral traits of dispersing animals at fine scales
and with many dynamic aspects. Such added complexity allows investigation of unique ecological questions. To illustrate
SEARCH’s capabilities, we simulated case studies using three mammals. We examined the impact of seasonally variable food
resources on the weight distribution of dispersing raccoons (Procyon lotor), the effect of temporally dynamic mortality
pressure in combination with various levels of behavioral responsiveness in eastern chipmunks (Tamias striatus), and the
impact of behavioral plasticity and home range selection on disperser mortality and weight change in virtual American
martens (Martes americana). These simulations highlight the relevance of SEARCH for a variety of applications and illustrate
benefits it can provide for conservation planning.
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Introduction

Individual-based (or agent-based) modeling is established as a

valuable approach in disciplines such as landscape ecology and

conservation biology for cases where individual variation and

behavior are important drivers of system behavior [1], [2]. The

conceptual basis for individual-based modeling is that the behavior

of higher-level aggregations (i.e. populations, communities, eco-

systems) can be simulated through the mechanistic behavior of the

individuals that comprise that system [3]. In such systems the

population-level attributes of simulated species emerge from the

behavior and interaction of individuals that act according to

detailed mechanistic rules [1], [4]. This bottom-up approach offers

the opportunity for the marriage of traditional behavioral ecology

(which focuses on the small-scale behavior and individual

variation) and population and community ecology (which focus

on large-scale dynamics of higher-order groups) through the field

of behavioral landscape ecology [5–7].

Early IBMs used simplified behavioral rules for simulated

animals in order to reduce computing time and reduce model

complexity [8]. Unfortunately, oversimplified behavioral rules

have persisted in many modern models that are less constrained by

computing power. IBMs typically still include simplifications of

animal behavior such as fixed dispersal distances, omniscient

dispersers, or purely random walks [5], [9], [10]. The omission of

behavioral complexity can have important implications. Research

has shown that complex behavioral decisions drive patterns of

animal movement [5]. Empirical studies show that movements

based on behavioral decisions drive population expansion [10],

species invasion success [11], and animal response to changing

landscapes [12]. Further, ecological modeling has demonstrated

that complex behavioral decisions can dramatically affect the

viability of populations [13] and metapopulations [14], [15].

There is a need to incorporate more behavioral complexity into

IBMs to understand the main drivers of animal dispersal and

population dynamics [16–19]. Models that include too much

detail, however, are in danger of becoming overly convoluted and
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difficult to interpret [20]. Therefore, models should strive for the

optimal degree of complexity [20]. Because the appropriate degree

of complexity is difficult to assess and may vary with the research

goal, models with user-controlled levels of complexity are ideal.

Individual-based models that are able to include sufficient

behavioral complexity allow for the creation of a virtual

environment in which a wide variety of questions related to

population ecology could be investigated at relatively low cost and

considerably lower effort than large scale field experiments.

One area of research that is well suited for individual-based

modeling is animal dispersal. Natal dispersal [21–23] is vital for

the maintenance of viable populations because it is associated with

reductions in inbreeding [24], expansion of population range [25],

the ‘‘rescue’’ of metapopulation patches [26], reduction in

intraspecific competition for resources and mates [27], and the

ability of wild populations to respond to dynamic landscapes [28].

Dispersal constitutes a complex interaction between landscape

characteristics and animal behavior. Due to the rarity of dispersal

events and the challenges associated with observing it, empirical

research on animal dispersal is difficult [29], [30]. However,

individual-based modeling offers a method for investigating the

process and effect of animal dispersal [31].

Here we present program SEARCH (Spatially Explicit Animal

Response to Composition of Habitat), a spatially explicit,

individual-based model that incorporates a great degree of

behavioral complexity. SEARCH simulates the dispersal of

animals across a virtual landscape comprised of vector-based

Geographic Information System (GIS) maps that determine the

movement, foraging, mortality and spatial arrangement of animals

(referred to as movement, food, risk and suitability maps,

respectively). These maps can represent real areas such as those

generated from remotely sensed data or theoretical landscapes

with particular characteristics like those created based upon

habitat metrics. These maps are vector-based rather than raster or

regular geometry to reduce the potential for bias from spatial

representation [32]. As animals move they respond to local stimuli

such as habitat boundaries and are capable of changing behavior

states (e.g. foraging vs. searching) in response to their experience.

Simulations in SEARCH may employ temporally dynamic

landscapes, such that the environment to which animals respond

changes during the simulation. Thus, simulations can model

events such as land cover change, succession, seasonal shifts in

food availability, or diurnal patterns in predation pressure. As

SEARCH is a population model and incorporates breeding

stochastically, simulations may span many years and population-

level trends emerge as a result of the behavior of the individuals.

SEARCH also has flexibility in that many components can be

easily turned on or off allowing for variation in model complexity.

All code for SEARCH was written in the C# language utilizing

the.NET framework and employs ArcGIS (Environmental Sys-

tems Research Institute, Redlands, California, USA) for map

manipulation procedures. SEARCH is freely available in many

versions (as a graphic user interface or command-line application)

at http://code.google.com/p/paz-search.

SEARCH incorporates concepts and features from numerous

other individual-based and spatially explicit models. The modeling

work of Gustafson and Gardner [33] and Gardner and Gustafson

[25], which simulates animal movement along with energetics and

predation of dispersers, provide an important conceptual founda-

tion for this model. SEARCH also incorporates aspects and

concepts of other simulation models including (but not limited to)

the dynamic landscapes of ALMaSS [34] and BACH-MAP [35],

vector-based movement of Vuilleumier and Metzger [30],

behavioral state changes of Morales et al. [36], boundary

permeability of HexSim [37] and habitat selection rules similar

to Kramer-Schadt et al. [38] and Wiegand et al. [39]. SEARCH

incorporates many features of the models listed above (and others)

into a single population model which allows researchers to include

a high degree of behavioral complexity and landscape dynamics.

Most features in the model are optional and most users would not

use all capabilities of SEARCH in a single simulation, rather,

model complexity would be driven by the research question. In

fact, SEARCH incorporates flexibility to the degree that it could

be considered a modeling framework in which alternative features

can be implemented to create particular models.

To illustrate the ways in which the added behavioral complexity

of the program may be utilized, we present examples of the

application of SEARCH to three study populations. We demon-

strate map-swapping capabilities of SEARCH and illustrate its use

to investigate the impact of seasonally dynamic food resources on

raccoon (Procyon lotor) dispersers. Similarly, we demonstrate the

impacts of temporally variable predation risk on eastern chipmunk

(Tamias striatus) dispersal. Additionally, the effects of behavioral

state changes on weight distribution and disperser mortality were

investigated using American martens (Martes americana). Finally, we

simulated virtual martens that were given a range of home-range

choice rules that varied the importance of food resources, safety,

proximity, and search time when selecting a home-range center to

determine their effect on settlement time, dispersal distance, and

disperser mortality. Through these simulations we were able to

highlight some of the capabilities of SEARCH and underscore the

importance of incorporating an appropriate but flexible degree of

behavioral complexity into individual-based models.

Model Overview

The following model description follows the Overview – Design

Concepts – Details (ODD) protocol for describing individual-

based models [40], [41]. Therefore, the ‘‘Model Overview’’

section describes the model in broad terms, the ‘‘Design

Concepts’’ section discusses certain design concepts and the

degree to which they are employed in SEARCH, the ‘‘Details’’

section and the supplementary materials give detailed descriptions

of the processes and algorithms used in the model and the

remaining sections describe case studies conducted to illustrate the

capabilities of SEARCH.

Purpose
SEARCH simulates the dispersal and home-range establish-

ment of animals across a virtual landscape. Animals respond to

four vector GIS layers that contain values used by the rules for

animal movement, foraging, risk of predation, and the suitability

of habitat for home-range establishment and the configuration of

areas occupied by established resident animals. Thus, users are

able to investigate such factors as the potential impacts of

landscape change, habitat permeability, and energetic budgets

on animal populations. Output from SEARCH provides informa-

tion on both the characteristics of animal dispersal as well as the

associated emergent population-level attributes. SEARCH can be

used to simulate a variety of species and utilizes research from

disparate fields such as animal movement, foraging ecology, and

physiology to parameterize the model.

State Variables and Scales
Individuals within SEARCH can be one of two classes –

juvenile dispersers or adult residents. Dispersers are characterized

by a unique number, sex, weight, perception, activity mode,

behavioral state, and location. State variables for residents include

SEARCH
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animal number, sex, and home-range location. Population

characteristics such as age structure, sex ratio, and mortality rates

can be derived from these model outputs.

Dispersers interact with the environment by responding to

habitat characteristics represented in four vector GIS maps.

Polygon values contained in these maps drive animal movement,

foraging, mortality and home-range establishment by dictating

correlated random walk movement parameters, the probability of

acquiring prey and size of prey, the probability of being killed, and

the suitability for home-range establishment and whether or not a

location is currently occupied by a resident animal, respectively

(Table 1).

Time periods in SEARCH are discrete. The user defines the

time-step length ($ 1 minutes), dispersal season length ($ 1 day),

and the number of years of simulation ($ 1 year). The period of

the year outside of the dispersal season (i.e. the inter-dispersal

period) is modeled as a single, discrete time period. Spatial scales

employed by SEARCH follow the resolution and extent of user-

input GIS maps. The extents for case studies presented below are

0.25 km2–660 km2 but larger areas can be used [42].

Process Overview and Scheduling
In SEARCH, the user parameterizes the model to emulate the

movement, foraging ecology, and habitat use of the study species

(Table 2). Additionally, the default behavior of individuals can be

modified based upon sex, behavioral state, and time (Table 3).

During SEARCH simulations, animals traverse a virtual

landscape comprised of four GIS maps that each contains multiple

parameter values that are used to model virtual animal behavior

(Table 1). These maps are user created and can represent

biologically relevant landscape features such as habitat type, land

use, land cover, or topology. The initial landscape is populated by

adult residents and/or released juveniles from the social and

release maps, respectively. The initial population is input by the

user depending on the scenario that best models the system under

study. As animals move throughout the landscape, all four maps

are queried during each time-step by each animal. After each

animal movement segment, the location, energetic reserves, and

behavioral states are updated for that individual. Animals move,

forage, die and establish home ranges according to habitat and

species parameters. During a time-step, each animal completes

every action for that time-step in sequential order based on animal

number assigned geographically at the beginning of each year.

Once a user-defined threshold for number of steps taken or

number of sites visited is exceeded, animals select a site for a

possible home-range center from areas searched during dispersal.

Virtual animals then move to that site, and attempt to establish a

home range but may continue dispersing if they fail to locate a site

with unoccupied suitable habitat. Animals become residents once

a home range is established, but die if a home range is not

established during the dispersal period. During the inter-dispersal

period, residents are subject to random mortality and females

stochastically give birth to young which disperse the following

dispersal season.

Design Concepts

Objectives
In SEARCH each disperser’s objective is to establish a home

range before the end of the dispersal period. The behavioral traits

of virtual animals are expected to affect dispersal success. Animals

can be parameterized to remain in habitat that is of higher quality

than adjacent areas. Since habitat quality in simulations is typically

parameterized to correlate with increased safety and foraging

opportunities (although it need not be) dispersers that remain in

higher quality areas are typically less susceptible to predation or

starvation. Similarly, animals that switch behavior due to

perceived danger or low energy reserves behave in a way that

minimizes risk of predation or starvation. Finally, implicit in many

of the home-range selection criteria is the assumption that animals

choosing home-range locations of higher quality (i.e. better

foraging opportunities and/or lower mortality risks) will have

offspring that are less likely to succumb to predation or starvation

and will therefore have increased fitness.

Adaptation
Simulated animals make decisions in response to the environ-

ment and change behavior based on their individual experiences.

Such dispersal behaviors are expected to change dispersal success.

For example, animals calculate whether to cross a habitat

boundary during dispersal by comparing the relative habitat value

Table 1. Landscape parameter maps and field definitions input by the user to reflect variation in animal behavioral or
physiological responses to different GIS classifications.

Map type Field Definition Range

Movement Tortuosity Tortuosity of movement drawn from a wrapped Cauchy distribution where 0 produces a purely
random walk and 1 produces a linear movement

0–1

Step length Mean step length (m) per time-step; includes a field for standard deviation (6SD) $ 0

Energy use Energy used per time-step $ 0

Crossing Rank of location quality $ 0

Perceptual window modifier Modifies distance of perceptual window $ 0

Food Probability Probability of capturing a prey item per time-step 0–1

Size Mean size energy gain of captured prey; includes a field for standard deviation (6SD) $0

Risk Probability Probability of mortality due to depredation per time-step 0–1

Suitability Suitability Suitability of habitat for home-range establishment 0 or 1

Occupancy If occupied by a male 0 or 1

Occupancy If occupied by a female 0 or 1

Release Location, number, and gender of animals upon initialization na

doi:10.1371/journal.pone.0064656.t001

SEARCH
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at their current location with adjacent locations based upon values

in the movement map. Implied in this decision making is a simple

predictive model that assumes that remaining in areas of higher

habitat quality will increase their chance of home-range establish-

ment. Animals also evaluate the probability of successfully

capturing prey/forage when selecting a location for a home

range. In addition, animal activity mode may change based on a

user-defined energy threshold and the behavior of active animals

can also be affected by their perceived risk of predation. In these

ways, virtual animals respond to perceived danger or low energy

reserves by changing their behavioral state to respond to

conditions.

Sensing
Animals in SEARCH are able to detect information in their

environment and respond to that information accordingly. During

movement, virtual animals sense the predation pressure, foraging

resources, habitat quality and the suitability of habitat for home

range establishment along with the presence of resident animals

around them. These attributes are detected by virtual animals at a

distance dependent upon the perceptual window of that animal

(see S.1.4 of Text S1 for detail). The characteristics detected by

virtual animals can be influenced by their behavioral states,

energetic reserves, gender, time of day and season such that

animals maintain a memory of the habitat as they perceived it

during dispersal. If animals revisit a location, the most recent

memory is stored and the totality of this memory is used when

animals select potential home range centers.

Interaction
SEARCH incorporates little interaction between individuals

and no direct interaction between dispersers. Indirect interaction

between individuals is modeled through the restriction of non-

overlapping home ranges between same-sex animals. This implies

some form of interactive exclusion between individuals. Similarly,

inter-dispersal reproduction implies male-female interaction

though this is not modeled explicitly in SEARCH.

Stochasticity
Nearly every action taken by animals in SEARCH is

probabilistic, thus stochasticity is critical. Animals in SEARCH

move based upon a correlated random walk where path tortuosity

can vary from completely random (mean vector length = 0) to

completely straight (mean vector length = 1) based upon a value

drawn from a wrapped Cauchy distribution [43], [44] that the

virtual animal obtains from the polygons in the movement map. In

addition, when dispersing individuals calculate the probability of

crossing a habitat boundary they do so by comparing the quality

values of adjacent polygons in the movement map to a random

number to determine whether to cross a habitat boundary.

Animal foraging uses stochasticity by assigning a probability of

successfully foraging to each polygon to determine if an animal

Table 2. Animal parameter values input by the user for the temporal aspects of the simulation along with basic attributes of
virtual animals.

Parameter Description

Dispersal season dates Start and end dates for dispersal season each year and the number of years to conduct simulation runs

Time-step resolution Number of minutes between time-steps

Start time Time of day that dispersal begins

Activity and resting periods Hours (6SD) of activity and rest from start time

Home-range center selection threshold Number of steps or suitable and unoccupied sites traversed before selecting a home-range center

Minimum home-range size Gender-specific minimum area required for a home range

Distance weighting factor Gender specific coefficient that modifies the effect of proximity on home-range center selection

Energy Initial, minimum and maximum energy allowable for each animal. Death occurs below the minimum value

Search/forage trigger Energy threshold below which animals switch behaviors from primarily searching to primarily foraging

Perception window Distance at which habitat suitability and occupancy are perceived during dispersal

Safe to risky Probability of switching from safe behavior to risky behavior

Risky to safe Probability of switching from risky behavior to safe behavior

doi:10.1371/journal.pone.0064656.t002

Table 3. Modifiers of animal behavior employed in SEARCH which allow the user to modify habitat values by multiplying them by
a real number to reflect variation caused by gender, activity mode, vigilance mode, time of day, and date.

Modifier Parameter modified

Prey acquisition probability Probability of acquiring prey in a given GIS classification

Predation probability Probability of mortality due to predation in a given GIS classification

Energy use The energy used in each GIS classification

Movement speed The movement distance per time-step in each GIS classification

Movement tortuosity The movement tortuosity in each GIS classification

Perception Animal perception distance in each GIS classification

doi:10.1371/journal.pone.0064656.t003

SEARCH
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gains energy. The amount of energy gained during successful

foraging bouts is drawn from a normal distribution based on a

user-specified mean and standard deviation derived from a map

polygon from the food map.

The likelihood of an animal dying during a time-step is assigned

based on the animal’s location, the time of day, season, and animal

parameters. Stochasticity is incorporated through a randomly

drawn number that determines if that animal dies. Resident

mortality is calculated in a similar way, although resident morality

probabilities are aspatial and occur during each time-step of the

dispersal season as well as once during the inter-dispersal season.

The vigilance mode of dispersing animals is determined by a

stochastic perception of risk. In this way, animals switch between

risky and safe behaviors. Animal activity bouts (i.e. active/resting)

are also determined by a stochastic process. The duration of each

active and resting period is drawn from a normal distribution

based on a user-defined mean and standard deviation of time.

Home-range center selection is weighted toward higher quality

sites but incorporates stochasticity in selecting a location. Animals

create home range polygons by generating a set of points around a

potential home-range center with random orientation and with

distances that are drawn from a distribution based on the

minimum home-range area for each sex to delineate the vertices

of that home-range polygon.

Breeding incorporates a number of stochastic processes.

Whether a resident female becomes pregnant during an inter-

dispersal period is based upon the probability of a female breeding.

For those female residents that do become pregnant, the number

of offspring produced is drawn from a normal distribution based

on a user-specified mean and standard deviation of litter size. The

sex of each offspring is determined probabilistically according to

the sex ratio parameter.

Emergence
Population-level patterns emerge based upon the behavior and

interactions of the individual animals in response to the spatio-

temporal configuration of habitat and conspecific residents. These

emergent properties develop from the interaction of baseline

behavioral parameters, individual variation (due to gender, activity

mode, etc.), interaction between individuals and stochasticity.

Such higher-order emergent properties can include population

density and spatial configuration, animal weight distribution,

mortality rates by source (starvation vs. predation), and mortality

locations.

Observation
During SEARCH simulations, data on the behavioral state

(energetic, vigilance mode, etc.) and fate of each individual are

produced during every time-step. This output includes a GIS

polygon map that depicts the animal movement and perception

during dispersal. Following each dispersal season, a landscape map

is also produced that depicts all existing home ranges. Other

population-level attributes (such as annual survivorship, popula-

tion density, habitat selection, etc.) can be calculated from the

individual and population output.

Details

Initialization
SEARCH can be initialized to reflect one of three scenarios.

First, the simulation can begin without existing home ranges and

all dispersers can be created based upon a map of releases. Such a

simulation could model the reintroduction of a species into an area

from where it had been extirpated. Second, the simulation can

begin with established home ranges throughout the landscape

without any released animals. Thus, all dispersers would be the

result of reproduction of established females (chosen randomly

based upon user-input parameters). This scenario would best

reflect the population dynamics of an established population.

Finally, simulations can implement a combination of resident

reproduction and release of individuals. In this way an augmen-

tation or supplementation of an existing population can be

modeled [42].

At the beginning of each simulation an empty memory map is

created for each individual. This map reflects the area perceived

by an animal during dispersal and the occupancy and suitability of

all areas observed. During each time-step the memory map is

updated for every animal to reflect the area perceived during

dispersal. When animals begin selecting potential home-range

centers, this map is used to eliminate all points in areas perceived

as unsuitable or occupied. For each animal a text file is also

created that records the animal’s conditions for all state variables

(i.e. location, energy level, etc.) during each time-step.

Input
Time Parameters. SEARCH incorporates flexibility in the

temporal scale and extent of simulations. The user inputs the start

date of the simulation, the number of years to simulate ($ 1), the

number of days in the dispersal season ($ 1), the start time of day

1 of the dispersal season (0–23 hours) and the length of each time-

step in minutes ($ 1).

Maps. At the most basic level, virtual animals in SEARCH

respond to the user-specified parameters of five GIS maps

(Table 1). These map types include 4 polygon maps (movement,

food, risk and suitability) and 1 point map (assigning location and

number of released animals). The landscape in SEARCH is

dynamic in that any of the 5 GIS layers can be replaced at any

time during the simulation with a map with different parameters

and/or spatial configuration. Such map swapping can be

employed to simulate habitat change or management, landscape

disturbance or simply the variation in animal response to habitats

at different times of day or seasons (see case studies for examples).

Species Attributes. Energy parameters (with no units)

represent the initial energetic reserves of each disperser, the

minimum allowable energy level (below which animals die of

starvation) and the maximum possible energy level (Table 2).

During each time-step, energy is lost based upon the energetic cost

associated with a particular habitat as defined in the movement

map. Energy is gained if prey or forage is acquired based upon the

probability of foraging success and the amount gained is a function

of the size of the item on the food map.

Active dispersers move across the landscape relative to the

various parameters on the movement map (resting animals remain

static). The mean durations of active and resting periods are

assigned by the user (along with a standard deviation) that applies

to all dispersers. Activity periods of individual animals, however,

may diverge based upon the stochasticity in period length due to

variance around the mean (described by the standard deviation) so

that animal activity and rest cycles need not be synchronized with

one another. Animals may have many active and resting periods

within a single day but must begin each year active. The mean

values of all active and rest periods must sum to 24. Variability

around mean active and resting periods may cause animals to have

activity periods that do not exactly follow a 24-hour cycle.

Within SEARCH, active, dispersing animals can be either

foraging or searching. The particular behavior of each activity

mode can be specified by the user through the parameterization of

modifiers (see ‘‘Modifiers’’ in ‘‘Details’’ section; Table 3). The user

SEARCH
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could parameterize SEARCH so that the probability of an animal

successfully capturing a forage or prey item, for instance, would be

higher during foraging activity but lower when in searching mode.

All animals begin in searching mode but switch to foraging if their

energetic reserves fall below a user-defined threshold. Note both

searching and foraging animals are both capable of foraging or

establishing home ranges.

As with activity modes, virtual animals can also exhibit one of

two possible vigilance modes at any time. Individuals can either be

in safe mode or risky mode. The modifiers (as defined by the user;

Table 3) that affect animal behavior can differ based upon an

animal’s vigilance mode. The risk of an animal being killed, for

instance, could be decreased when an animal is in safe mode

(reflecting higher vigilance, for example) relative to risky mode.

Animals begin each dispersal season in risky mode but will change

to safe mode during any time-step if a randomly drawn number

falls within a user specified interval (see section S.7.2 of Text S1 for

details). Animals in safe mode change back to risky mode if a

randomly drawn number falls within the user specified interval (see

section S.7.2 of Text S1 for details).

The individual memory of each animal in SEARCH is retained

explicitly through the use of a memory map. An animal’s

perceptual range is the distance at which it can perceive and

respond to landscape features [45]. SEARCH, however, utilizes a

perceptual window that includes both perceptual range and small

scale wandering of animals during a time-step (similar to

assessment corridors of Doerr and Doerr [46], ellipses of Bélisle

et al. [47], and circle-ellipses of Selonen et al. [48]. In SEARCH,

this perceptual window is the area (with radius in meters) animals

perceive during dispersal. Within this memory map, animals retain

a complete record of the suitability and occupancy of perceived

areas. If a specific location or area is revisited, the most recent

suitability and occupancy status is overwritten on the memory

map. The perceptual distance of an animal can be modified based

upon that habitat type in which an animal occurs, the time of day,

or the season. For example, the user can reduce the animal-

perception window during low moonlight relative to the full moon

perception window [49].

Home-Range Attributes. Animals in SEARCH can be

triggered to begin selecting home-range centers based upon one

of two user-selected criteria – either a user-specified number of

time-steps have elapsed since the inception of dispersal or the

animal has visited a user-specified number of suitable and

unoccupied sites. Once this trigger is surpassed, animals choose

their preferred home-range center based on user-specified criteria

including the factors that most influence patch selection [50], [51].

These criteria consider either (1) the proximity of the site

(‘‘closest’’), (2) the proximity and food availability of a site

(‘‘food’’), (3) the proximity and risk of mortality at a site (‘‘risk’’), or

(4) the proximity, food and risk of a site (‘‘integrated’’). The user

chooses one of these four criteria for each run. The user also inputs

home-range establishment requirements including the minimum

area for a home range for each sex and the relative importance of

site proximity in home-range center selection for each sex

(Table 2). It is possible for users to effectively negate the effect of

proximity in home site selection by choosing a large value for the

distance weighting factor (Table 2).

Modifiers. In SEARCH, the user can modify the baseline

parameters for many behavioral traits of animals to reflect the

variability in behavior as a result of an animal’s gender, behavioral

state, the time of day, or the season (Table 3). Modifiers can be

created for both sexes (male and female), all four behavioral states

(risky-searching, risky-foraging, safe-searching, and safe-foraging),

and any number of temporal modifiers at two scales (hourly, daily).

For instance, the perceptual distance of an animal that relies on

vision may be increased during the day relative to night [49].

Resident Attributes. Residents are assigned a single, user-

specified probability of mortality during each time-step (indepen-

dent of location) but during the inter-dispersal period are subject

to a single mortality probability. Additionally, a proportion of

randomly selected females give birth to a user-defined (mean6SD)

number of young (when this integer is negative, 0 is used) that have

a sex ratio based on the defined probability of female offspring.

Young begin dispersal in the subsequent season at the center of the

mother’s home range.

Submodels
See Supplementary material for details including submodel

descriptions (Text S1), technical documentation (Text S2) and

process flow diagrams (Figure S1).

Illustrative Case Studies

To demonstrate the functionality of map swapping, behavioral

states and home range selection in SEARCH, we provide a

number of case studies here. These case studies are meant to be

illustrative of the capabilities of the model rather than complete

studies of model performance. These examples highlight some of

the possible applications of SEARCH to real-world scenarios and

demonstrate SEARCH’s applicability to a variety of systems.

Case Studies: Food Map Swapping
SEARCH is unique among individual-based models in that it

allows the user to exchange any of the four GIS maps to which

virtual animals respond (i.e. movement, risk, food, or social) at a

daily, seasonally, or yearly time scale allowing temporally dynamic

parameters. To illustrate the functionality and implications of

these map swapping capabilities we simulated two study systems

(raccoons in Indiana and chipmunks in Wisconsin).

In the first study system, the effects of seasonally dynamic food

resources on raccoon population dynamics were investigated.

Raccoons in north-central Indiana experience dramatic shifts in

forage availability throughout the year due to corn maturation and

the subsequent superabundance of food resources [52], [53]. This

temporal shift in food availability was modeled in SEARCH by

swapping food maps during corn maturation in the summer to

reflect the increase in both the likelihood of successful foraging and

the amount of energy gained during a foraging bout in an

agricultural polygon. Because agriculture was the dominant cover

type in the area and virtual raccoons were expected to forage

heavily there, we predicted that raccoons that experienced

temporally dynamic food resources would have dramatically

different changes in mass compared to animals exposed to static

foraging resources.

Methods. Raccoon simulations were conducted for a single

year with a dispersal season of 150 days (the maximum observed

raccoon colonization time in one study – Beasley unpublished

data) and 1 hour time-steps on GIS layers digitized from USGS

aerial photos of a 4 km64 km area of the upper Wabash River

basin in north-central Indiana (for more detail see: [53] and [54];

Supplementary material, Table S1) simulations began with

resident raccoons present on the landscape based on estimated

raccoon density in the study area [55] and all dispersers were the

product of resident reproduction. For virtual raccoons, energy

parameters were used as a surrogate of mass. To approximate

raccoon weight limits observed in field studies, dispersers began

with a mass of 3750 g, had a maximum mass of 10000 g and died

of starvation if their body mass fell below 1800 g [56], [57],
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(Beasley unpublished data). Dispersers were active for 12 h during

the night (1800 until 600) and rested for 12 h during the day [58],

[59], [60]. Translocated raccoons typically establish home ranges

after 2 weeks of dispersing [61] so this value (168 active steps) was

used as the trigger time for virtual raccoons to begin choosing

home-range centers. Animals used the integrated criteria for

home-range center selection and had minimum home-range sizes

of 0.29 km2 and 0.12 km2 for males and females, respectively [53].

Resident virtual raccoons were subject to a mortality probability

each time-step (8.3461025) and during the inter-dispersal season

(0.194) based on published raccoon survival estimates [62–66].

Surviving resident females had a 90% pregnancy probability

during the inter-dispersal season [67], [68], Beasley unpublished

data) and produced young based on a litter size with mean 3.5 and

standard deviation of 1 [56], [69–72], Beasley unpublished data).

To simulate corn maturation, virtual animals were exposed to

maps with low food resources in agricultural areas for 37 days,

superabundant food resources in these areas for 76 days and then

low resources for another 37 days. The weight distribution of

successful dispersers in simulations with dynamic food maps was

compared to that of the null model with a constant intermediate

forage probability and energy gain. All modifiers were set to 1 to

effectively eliminate variability due to gender, time, or behavior.

For each scenario, 10 replicates were conducted and the weight

change of every successful disperser in each simulation was

recorded. Because the weight changes of dispersers within a

simulation were not independent, we used a mixed modeling

approach to avoid pseudoreplication [73], [74]. Each replicate

simulation was nested within the corresponding scenario (static or

dynamic food resources) and a nested ANOVA was conducted

[75] to determine if the mean weight change of virtual raccoons

differed among the scenarios.

Results/Discussion. In simulations of raccoons, the weight

distributions of animals differed significantly between simulations

with and without temporally dynamic food resources

(t18 = 220.78, p,0.0001). Virtual raccoons that experienced static

values for energetic gain from agricultural habitats gained an

average of 475 g (SD = 230, n = 58). Virtual raccoons subjected to

temporally dynamic agricultural food resources (with relative

scarcity followed by superabundance and then scarcity again) lost

an average of 473 g (SD = 228, n = 54) during the simulations

(Figure 1).

The observed differences in virtual raccoon weight changes

seem to be due to the amount of time animals dispersed before

settling. Nearly all (96%) successful dispersers in the temporally

dynamic simulation settled before agricultural areas produced

superabundant food resources. These animals, therefore, were

only subjected to food scarcity in agricultural areas and, not

surprisingly, all lost weight during the simulation. The two

dispersers that settled after the food map swap either settled one

day after the food switch (losing 1108 g) or settled well after the

superabundant food emergence and gained 701 g during the

simulation. Therefore, temporally dynamic food resources appear

to have a substantial effect on virtual animal weight distribution

but this effect is dependent on the animal’s dispersal time.

Simulations of raccoon weight changes in response to dynamic

food resources underscore the impact dynamic landscapes can

have on animal populations. Animal populations that exploit

seasonal food resources (including anthropogenic or naturally

ephemeral sources) can be easily simulated in SEARCH. This

capability allows researchers to include more temporal complexity

in foraging resources than would be possible in simulations with

static food availability.

Case Studies: Risk Map Swapping and Behavioral
Response

An appreciation for the importance of spatial heterogeneity in

predation pressure on animal populations (i.e. the ‘landscape of

fear’; [76] has gained recognition within the ecological commu-

nity. Numerous animal populations are impacted by and respond

to spatial variation in mortality risk [77–81]. The importance of

temporal heterogeneity in predation pressure has been studied less

frequently, however. Temporal variation in mortality risk has been

shown to have significant impact on survival and behavior in a few

populations [82–84].

We investigated the potential population-level impacts of

temporal variation in predation and the impact of behavioral

response to such variation by modeling the dispersal of chipmunks

in northern Wisconsin (Supplementary material, Table S2). Over

the entirety of each simulation run virtual chipmunks were

exposed to 1) a homogeneous static risk of mortality, 2) a spatially

heterogeneous but temporally static predation risk or 3) different

diurnal and nocturnal predation probabilities that were both

spatially heterogeneous. Additionally we simulated virtual chip-

munks that responded to variation in predation risk through

variable permeability of habitat boundaries. Animals either had no

response to habitat boundaries, or preferentially remained in

habitat with lower predation risk (independent of time), lower

predation risk based upon current time or lower predation risk

based upon predicted future risk.

Methods. Chipmunks are exposed to different predators at

different times of day, such as raptors during daylight and

mustelids at night [85], [86], (Zollner unpublished data).

Furthermore, the timing of chipmunk activity in conjunction with

predators has been shown to affect survival in field experiments

[87]. In SEARCH, predation risk was modeled using a habitat-

specific, empirically derived index of predation pressure where

motion sensor cameras observed relative predation intensity of

taxidermied chipmunks at different times in varying habitats

(Zollner unpublished data). This was combined with published

annual mortality values of chipmunks [88] to estimate simulation

predation rates. Data used to calculate predation probabilities

were combined, segregated spatially or segregated spatially and

temporally to create predation maps that were aspatial, spatially

Figure 1. Raccoon weight change. Mean (6 1 SD) change in weight
of virtual raccoons for simulations with static and temporally dynamic
food maps. Weight change values are for animals that successfully
established home ranges during the simulation (Base n = 58; Swap
n = 54).
doi:10.1371/journal.pone.0064656.g001
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heterogeneous or spatially and temporally heterogeneous, respec-

tively. Temporally dynamic landscapes were simulated by

swapping risk maps that represented daytime (6:00 – 18:00) and

nighttime (18:00 – 6:00) mortality risk. Alternatively, chipmunks

were simulated that had a constant predation risk with either

aspatial or spatially variable risk.

Simulation scenarios contrasted the empirical conditions

described above with a range of responses to predation risk by

virtual chipmunks. Animals without response to habitat boundar-

ies used crossing values that were identical for all habitat types

except for those areas into which animals never entered (cross.

value none in Supplementary material, Table S2). Virtual animals

that responded to spatial variation in predation risk had crossing

values that scaled boundary permeability to the relative predation

risk of habitat types independent of time (cross. value base in

Supplementary material, Table S2). Temporally responsive

animals had crossing values that determined boundary crossing

relative to time-dependent predation risk either currently (cross.

value day and night relative to risk map swapping in Supplemen-

tary material, Table S2) or predictively (cross. value day and night

1 hour prior to risk map swapping in Supplementary material,

Table S2).

All combinations of predation variation and behavioral response

were simulated for a total of 12 simulation scenarios. Therefore,

animals in particular simulations 1) responded at a coarser scale

than risk was simulated (under-response), 2) responded at the same

scale as risk was simulated (correct-response) or 3) responded at a

finer scale than risk was simulated (over-response).

Simulation output consisted of both overall and predation-

specific (e.g. only animals that died of predation rather than from a

failure to establish a home range by the end of the dispersal season)

mortality rates. Both rates were compared among populations of

all scenarios to determine if variation in predation risk and animal

response to predation pressure impacted survival of the popula-

tion. We predicted that both types of mortality rate in each

population would scale inversely with the degree of response of the

virtual chipmunks (i.e. under-response . correct response . over-

response).

All chipmunk simulations were run for 2 years with a 30 day

dispersal season and 5 min time-steps on GIS maps

500 m6500 m (derived from digitized aerial photos). All virtual

dispersers were produced through reproduction of resident

animals present on the landscape at the beginning of the

simulation based on estimated chipmunk density in the study

area (Zollner unpublished data). Dispersing animals were active

for 4 h beginning at 9 AM [89] and had a baseline perceptual

window of 120 m [90]. Animals were triggered to begin choosing

home-range centers after 1000 active steps or roughly 3 weeks of

dispersal [91]. Virtual chipmunks used the closest site criteria and

had minimum home-range requirements of 0.002 km2 for both

sexes [89]. All resident females became pregnant and produced

litters (mean = 4.5, SD = 0.5) and had an equal chance of male and

female young [89]. We eliminated energy as a limiting factor due

to insufficient data by creating ideal foraging conditions (i.e. 100%

success) and no energy loss during movements. Similarly, resident

mortality was eliminated and all multiplicative modifiers were set

as 1 to turn off variability due to gender, time and behavior.

For each scenario, 10 replicate simulations were conducted and

the overall and predation-specific mortality rates of the dispersers

were determined. The data were then power transformed (raised

to 0.75) in order to satisfy assumptions of equal variance and

normalized residuals (Shapiro-Wilk, W = 0.985073, p = 0.2086)

and an ANOVA was conducted to compare overall mortality and

predation rates based upon simulated risk and animal behavior.

Contrasts were then used to compare the average predation rates

of simulations with varying degrees of animal responsiveness (i.e.

under, correct or over-response; all tests conducted in SAS 9.3;

[75]).

Results/Discussion. Simulations of virtual chipmunks sug-

gested that the effect of predation was compensatory in the overall

mortality rate of the population. Overall mortality rates did not

differ among virtual dispersing chipmunks in the 12 simulated

scenarios (F11, 108 = 0.85, p = 0.59) nor did overall mortality differ

between the three levels of responsiveness of animals to their

experienced predation (all pairwise p.0.25; Figure 2a). Predation-

specific mortality, however, was significantly different between

scenarios (F11, 108 = 2.08, p = 0.0277). In addition, contrasts of

predation rate between levels of responsiveness differed with

greater simulated mortality rates for under-responsive populations

as compared to the others (Table 4, Figure 2b).

The overall mortality rates were the same for all simulations

despite differences in predation-specific mortality. Thus, it appears

that predation, as a result of variation in probabilities of mortality

and animal response, is only a compensatory factor within overall

mortality of simulated eastern chipmunks. Therefore, factors other

than predation, such as competition for space, seem to be driving

mortality. Interestingly, the compensatory effect of predation has

also been suggested for eastern chipmunks based on the results of

field studies [92].

As expected, chipmunks that were under-responsive to the

variability in predation risk exhibited the highest predation rates.

Interestingly, virtual animals that over-responded to predation

variability had the same predation rates as those that responded at

the appropriate scale. This suggests that while over-responding

animals did not gain any advantage through their behavior they

also suffered no mortality cost from their over-responsiveness.

These simulations highlight the capabilities and possible

implications of fine-scale, temporally dynamic predation risk in

conjunction with variable behavioral response in SEARCH. Most

models use coarse, static mortality risk to model predation [82],

[83]. SEARCH simulations with virtual chipmunks have demon-

strated that the inclusion of temporally and spatially variable risk,

when combined with various degrees of behavioral response, can

dramatically affect predation mortality. While the overall mortality

was unaffected (thus the population dynamics nearly identical) by

the inclusion of this added complexity, predation-specific mortality

differed greatly. Therefore, research concerned with cause-specific

mortality would benefit from the fine-scale temporal component of

predation available in SEARCH.

Case Studies: Behavioral States
Many spatially explicit individual-based models are behaviorally

minimalistic and assume static behavior for mathematical conve-

nience or due to lack of empirical data [5]. Empirical research,

however, has shown the behavioral states of dispersers to have

dramatic effects on population dynamics [36], [93], [94].

SEARCH allows users to provide virtual animals with greater

behavioral complexity by defining the conditions under which

animals switch activity or behavioral state.

We conducted SEARCH simulations to investigate the impact

of increasing behavioral complexity on dispersal characteristics of

simulated American martens. We simulated martens with varying

degrees of responsiveness to behavioral triggers (low energy

reserves and narrow predator escapes) and measured the weight

change of individual virtual martens along with the disperser

mortality rates under each scenario.

Methods. Simulations were conducted for one year on GIS

maps of Wisconsin (derived from data from the U.S. Forest Service
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– Chequamegon-Nicolet National Forest Combined Data Systems

STAND data and the Wisconsin Department of Natural

Resources’ WISCLAND Level 3 GIS data [95]. Initial residents

(17 male and 25 females) were created using the output of a

separate simulation (the closest home-range selection of final case

study) to approximate the distribution of martens following the

four years of releases from 1987–1990 [96]. Additionally, the

population was augmented with a release of 14 animals to simulate

a portion of the marten releases in the study area in 2008 [97],

[98].

Spatial parameters for movement were derived from marten

snow backtracking data, foraging parameters were based on small

mammal trapping data, and predation risk parameters were based

on predator indices (Zollner unpublished data; Supplementary

material, Tables S3, S4 and S5). Habitat suitability on the social

map was based on Dumyahn et al. [99] and Wright [100]. The

dispersal season was 60 d [101] with 1 h time-steps. Animals

began active behavior at 4 am with alternating activity and rest

periods of 4.5 h and 7.5 h (all with SD = 8) [102]. Marten energy

values were based on conversions of body mass to kilocalories.

Animals dispersed with 4548 units of initial energy and had

minimum and maximum energy limits of 3866 and 5003 units,

respectively [102]. Virtual martens had a baseline perceptual

window of 100 m (from perceptual range of Gardner and

Gustafson [25]. A baseline value of 270 active steps, or an average

of 30 days, was used for a trigger value after which individuals

began establishing home ranges. Virtual martens had minimum

home ranges of 4.25 km2 and 2.32 km2 for males and females,

respectively [99]. Residents were subject to a 561025 time-step

mortality probability and a 0.17 inter-dispersal mortality [103].

Surviving resident females had a 74.4% likelihood of becoming

pregnant [104], [105], had litter sizes with a mean of 3 and

standard deviation of 1 [105] with a balanced sex ratio [104].

Gender and temporal modifiers were set to 1 with the exception of

the male risk modifier which was 0.7632 to model the low

mortality risk of male martens compared to females [103].

We simulated virtual martens with different sensitivities to low

energy reserves. Martens that fell below the energy threshold

switched activity mode from searching to foraging behavior (and

vice versa). Martens in foraging mode had an increased likelihood

of capturing prey and a decrease in energy use, movement speed,

mean vector length and perceptual window distance as compared

to searching martens (Supplementary material, Table S6). The

baseline, reduced and increased threshold levels for simulations

were set at 4250, 4000 and 4500, respectively. We predicted a

positive relationship between energetic threshold level and animal

weight change due to those animals’ ability to respond to their

level of energetic reserves. We predicted no effect of threshold level

on disperser mortality compared to simulations with behaviorally

static animals, however, due to the low likelihood of animal

starvation.

Similarly, we simulated martens with one of three levels of

response to perceived mortality risk (animals switching from risky

to safe behavior and vice versa). The baseline response was a 1%

Figure 2. Eastern chipmunk mortality rate. Mean (6 1 SD) A) overall mortality rate and B) predation-specific mortality rate for virtual chipmunks
with varying levels of response to simulated predation risk.
doi:10.1371/journal.pone.0064656.g002

Table 4. Contrasts of average predation-specific mortality between simulations of virtual chipmunks with varying degrees of
responsiveness to simulated predation pressure.

Contrast Difference Standard error Degrees of freedom t-value p-value

Over vs. Under 20.4425 0.1829 108 22.42 0.0172

Over vs. Correct 20.1280 0.2240 108 20.57 0.5687

Correct vs. Under 20.2772 0.1530 108 21.81 0.0728

Over vs. Pooled Others 20.5706 0.3421 108 21.67 0.0982

Correct vs. Pooled Others 20.0373 0.0818 108 20.46 0.6493

Under vs. Pooled Others 0.2399 0.1002 108 2.40 0.0183

doi:10.1371/journal.pone.0064656.t004
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probability of switching vigilance modes during a single time-step.

Animals with increased responsiveness had a 10% likelihood of

changing and animals with reduced response had a 0.1% chance

of changing behavior. Animals displaying safe behavior represent-

ed animals with increased vigilance and thus had an increased

perceptual window [106] but decreased speed (due to vigilance

pauses; [107], [108]) and mortality risk [109] compared to those

exhibiting risky behavior (Supplementary material, Table S6).

Because the safe-risky trigger responds only to perceived predation

risk, we predicted that animals with varying levels of responsive-

ness would have different levels of disperser mortality but no

differences in mean animal weight change over the course of the

simulation as compared to virtual animal without behavioral state

changes.

Finally, a scenario was conducted where marten had both a

baseline level of danger response (1% probability of behavioral

switch) and a baseline level of response to low energy (4250 units).

Modifiers for animals in each of the four possible behavioral states

were the product of the values for the activity and vigilance modes

(Supplementary material, Table S6). We predicted that virtual

animals with both predation and energetic behavioral responses

would have different weight changes and mortality rates compared

to the null model where animal behavior was constant.

Three replicates of each scenario were conducted in SEARCH.

A single disperser mortality rate per simulation was recorded.

Because these data satisfied the assumptions of normality (Shapiro-

Wilk, W = 0.983142, p = 0.9459) and homogeneous variances

(Levene, F = 2.35, p = 0.0745) the survival values for the 8

behavioral states were compared using an ANOVA. A post hoc

Dunnett’s comparison [110] of the control with the 7 experimental

setups (three levels of risk response, three levels of energetic

response, one level of both responses; simultaneous a= 0.05) was

conducted.

Because the dispersal characteristics of individual animals in the

same simulation were not independent (i.e. fate of one animal

affected that of another such as an animal settling precluding

another individual from establishing a home range in an area),

animal weights were considered multiple measurements from a

single replicate to avoid pseudoreplication [73], [74]. Because

these data failed to satisfy both the normality and equality of

variances assumptions, these data were rank transformed in order

to conduct non-parametric tests [111]. The means of the rank

transformed data were compared using a nested ANOVA. A post

hoc Dunnett’s comparison was conducted to compare the mean

values of simulation runs to those virtual martens that had no

behavioral modifiers relative to weight distribution (all tests

conducted in SAS 9.3; [75]).

Results/Discussion. The inclusion and degree of sensitivity

of animal behavioral state changes had significant effects on

dispersal mortality and weight distribution. The mean ranked

weight distributions of animals differed (F7, 16 = 280.57, p,0.0001)

and was the response variable most affected by the various

behavioral states. The differences in weight changes of animals

appeared to be driven primarily by the search-foraging threshold

(Figure 3a). All four conditions that used the search-forage trigger

(low threshold, base threshold, high threshold, base foraging

threshold combined with base risky) had significantly lower weight

changes compared to animals that had no behavioral state changes

(Dunnett’s test, p,0.05, dferror = 874, MSE = 22968, tcrit = 2.6).

Mean weight change had a positive relationship with forage-search

threshold level where the lowest threshold level resulted in animals

with the greatest weight loss. The risky-safe vigilance modes,

Figure 3. Effect of behavioral state switching on American martens. Mean (6 1 SD) marten A) weight change (pooled for all replicates) and
B) mortality rate for eight behavioral state scenarios (three replicates per scenario). Simulations consisted of animals with no behavioral state changes
(no behav.), a search-forage threshold of 4000 (low forage), a search-forage threshold of 4250 (base forage), a search-forage threshold of 4500 (high
forage), a risky-safe proability of 0.001 (rare risky), a risky-safe probability of 0.01 (base risky), a risky-safe probability of 0.1 (common risky) or a search-
forage threshold of 4250 and a safe-risky probability of 0.01 (base forage and base risky). Asterisk denotes scenarios that were significantly different
from no behavior simulations.
doi:10.1371/journal.pone.0064656.g003
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however, had no significant effect on animal weight compared to

animals without behavioral state changes (all p.0.05). There was

an apparent positive correlation between the variance in animal

weight and the probability of vigilance mode change though this

was not tested explicitly.

As expected, the search-forage threshold had a much stronger

effect on virtual marten weights than the risky-safe probability.

Animals subjected to differences in foraging and searching

behavior had weights approaching the threshold for behavioral

state change. In these situations, animals in the searching mode

lost weight until they fell below the threshold, switched to foraging

mode and began gaining weight. This resulted in animal weights

that commonly oscillated around the threshold value. The risky-

search probability, on the other hand, was stochastic and

independent of an animal’s energy reserves. All levels of this

parameter, therefore, had little direct effect on weight change.

Instead the probability of switching vigilance modes seemed to

have more influence on the variance of animal weight changes

than on the mean population weight change.

Simulations including behavioral state changes differed signif-

icantly in terms of disperser mortality (F7, 16 = 8.10, p = 0.0003).

Simulations with the high and baseline forage-search threshold as

well as simulations with both the base threshold and base risky had

significantly lower disperser mortality than simulations with virtual

animals with static behavior (using a simultaneous a= 0.05). Most

dramatically, simulations with base levels of both vigilance mode

and activity mode changes had less than 40% the mortality rate of

simulations with static behavior (Figure 3b).

Both types of behavioral complexity reduced mortality of virtual

martens with the lowest mortality rates associated with animals

with both types of behavioral response. Inclusion of the search-

foraging threshold allowed animals to avoid starvation by

responding to low energy reserves and changing behavior to

maximize energetic gain. Similarly, the risky-safe probability

allowed virtual animals to react to predation escapes and respond

with safer behavior but was independent of observed mortality risk

and was, therefore, purely stochastic. Thus, the forage-search

threshold more dramatically affected mortality as it responded to

the systematic threat of starvation while the safe-risky behavior

responded to a stochastic probability of a predation escape.

Behavioral variability in SEARCH resulted in animals that

behaved differently than would have been possible in simulations

without this flexibility. This added behavioral complexity signif-

icantly affected dispersal characteristics of virtual martens.

Therefore, the dynamics of animals that utilize different behav-

ioral states or strategies could be dramatically impacted by the

inclusion or exclusion of behaviorally complexity in simulation

modeling. SEARCH allows researchers to evaluate whether this

increased complexity affects the population under study and

incorporates it when it is found to be necessary to accurately

model the system.

Case Studies: Home-Range Trigger and Decision Criteria
SEARCH employs a number of options for home-range

selection. These selection criteria differentially prioritize sites

based on the factors most associated with animal habitat selection

(i.e. foraging opportunities, [112]; predation risk, [113]; proximity,

[114]). Empirical and modeling studies have shown that dispersal

and space use of animals is affected by how they weigh the

potential costs and benefits of sites when selecting from a number

of potential home range locations [39], [115], [116].

We studied the impact of varied prioritization of these costs and

benefits for particular locations on dispersal distance, settlement

time, and disperser mortality of virtual American martens.

Dispersers in SEARCH select home-range locations based on a

user-specified prioritization of attributes. We investigated the effect

of the different home-range selection criteria on the dispersal of

American marten. Simulations consisted of virtual animals that

chose home-range locations based on only proximity (to current

location), proximity and food availability, proximity and mortality

risk, or proximity and food and risk together. For each scenario the

dispersal distance, time to settlement and mortality of dispersers

was measured. We predicted that the different home range

selection criteria would result in differences in dispersal distance

but not settlement time or disperser mortality because we expected

animals to travel further to find appropriate home sites when using

more restrictive selection criteria.

Methods. Marten simulations (with same parameterization as

6.3 except where specified) were run for 4 years on

33.4 km628.7 km GIS map layers (same sources as ‘‘Behavioral

States’’ case study). The simulation began without any resident

individuals present in the area and animals were added to the

simulation through releases every year that corresponded with

actual releases of American martens in Wisconsin [96] as well as

reproduction of successful dispersers. For each scenario, three

replicates were simulated.

To satisfy the assumptions of normality and equal variances,

some of the data were transformed. Dispersal distances were

square-root transformed (Shapiro-Wilk, W = 0.9979, p = 0.2604;

Levene, F = 1.19, p = 0.2920), settlement times were rank trans-

formed and unmodified mortality values were used (Shapiro-Wilk,

W = 0.8750, p = 0.0757; Levene, F = 1.07, p = 0.4162). Dispersal

distances and times contained pseudoreplication due to the fact

that the fate of an individual could be affected by that of another

animal in the same simulation. Therefore, a nested ANOVA was

conducted to detect differences among scenarios. Because a single

mortality rate was measured for each simulation, a standard

ANOVA was conducted to determine if scenarios differed in

respect to disperser mortality (all tests conducted in SAS 9.3; [75]).

Results/Discussion. The criteria used for home-range

center selection had little effect on any of the response variables

of virtual animals. Mean dispersal distances were nearly identical

for all four criteria (F3, 8 = 1.31, p = 0.338; Figure 4a). Similarly,

settlement times were fairly constant across the home-range

selection scenarios (F3, 8 = 1.69, p = 0.2450; Figure 4b). Finally, the

mortality rates for simulations with the four criteria were nearly

identical (F3, 8 = 0.56, p = 0.654; Figure 4c).

Overall, virtual martens in SEARCH simulations exhibited the

same dispersal characteristics (distance, time and mortality rate) in

response to a variety of home range selection rules. At first, these

negative results appear inconsequential and such non-significant

results are often overlooked [117]. This case study, however,

highlights one of the major advantages of simulation models that

have the capability of flexible levels of complexity. Models with

features that can be turned on or off allow researchers to

experimentally test the level of model complexity needed to

adequately simulate the species in question [1]. In our case we

found that more complex home-range selection criteria had no

effect on the dispersal characteristics of virtual martens in

Wisconsin. Therefore, future research on this study system could

use simplified home-range selection rules (primarily the ‘closest’

home-range criterion) allowing for a simulation structure that only

includes necessary complexity [19]. Of course this particular form

of model simplification would not pertain to all cases, but the

principle of refinement of model application through experimen-

tation is a valuable asset that could be used in many implemen-

tations of SEARCH.
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Summary

We present SEARCH, a newly developed, spatially explicit,

individual based model. SEARCH incorporates a high degree of

behavioral complexity and allows for temporally dynamic

landscapes. SEARCH is parameter-intensive which allows re-

searchers to utilize all available data in parameterizing the model.

However, SEARCH has the flexibility to allow users to ‘‘turn off’’

functions in the model when data for parameterization are

unavailable (as would be the case for some component of the

model in nearly every case). This functionality enables users to

investigate when added behavioral complexity results in quanti-

tatively different model outcomes. Thus, users can investigate the

model’s sensitivity to added complexity and evaluate the benefits

and costs of incorporating behavioral complexity. Users are

therefore able to optimize model functionality for the research

question and population under study.

SEARCH is applicable to a number of species in a wide variety

of systems though probably best suited for solitary mammals. It is a

model that is ideal for simulating behaviorally complex popula-

tions with small abundances in a conservation setting. Further-

more, SEARCH allows researchers to simulate habitat and

population manipulations that would be impractical in a field

setting and offers that ability to project population dynamics into

the future. There are a number of limitations to SEARCH,

however. For example, the interaction between individuals in

SEARCH is fairly rudimentary and the dynamic aspects of maps

in SEARCH must be determined a priori (rather than as a response

to model behavior). Furthermore, the breeding algorithms in

SEARCH are not spatially explicit nor are they responsive to the

state of the individual animal. Despite such shortcomings,

SEARCH offers researchers a tool for investigating animal

dispersal (and the subsequent population dynamics) that is not

species specific but is capable of incorporating behavioral

complexity not found in most comparable models. Thus the use

of this tool has the potential to offer valuable insight into the role of

the interplay between complex behavior and landscape configu-

ration to animal population dynamics and management.
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