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Many children in the U.S. initially come to understand the equal sign operationally, as a sym-
bol meaning “add up the numbers” rather than relationally, as an indication that the two sides 
of an equation share a common value. According to a change-resistance account (McNeil & 
Alibali, 2005b), children’s operational ways of thinking are never erased, and when activated, 
can interfere with mathematics learning and performance, even in educated adults. To test 
this theory, undergraduates practiced unfamiliar multiplication facts (e.g., 17-times table) in 
one of three conditions that differed in terms of how the equal sign was represented in the 
problems. In the operational words condition, the equal sign was replaced by operational 
words (e.g., “multiplies to”). In the relational words condition, the equal sign was replaced by 
relational words (e.g., “is equivalent to”). In the control condition, the equal sign was used in 
all problems. The hypothesis was that undergraduates’ fluency with practiced facts and trans-
fer problems would be hindered in the operational words condition compared to the other 
conditions. Results supported this hypothesis, indicating that the activation of operational 
thinking is indeed detrimental to learning and transfer, even in educated adults.
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Prior knowledge in a domain is typically beneficial for solv-
ing problems in that domain. However, when the context ac-
tivates prior domain knowledge that is unhelpful for and/or 
incompatible with the target problem, it can fail to support—
or even interfere with—performance (Bilalić, McLeod, & 
Gobet, 2008a, 2008b; Lippman, 1994; Lovett & Anderson, 
1996; Kotovsky, Hayes, & Simon, 1985; McNeil, Weinberg et 
al., 2010; Ricks & Wiley, 2014; Wiley, 1998). For example, use 
of mnemonic letters in algebraic expressions (e.g., c stands 
for the price of a cake, b stands for the price of a brownie) can 
activate children’s prior knowledge of letters as abbreviations, 
which hinders their ability to use letters as variables (McNeil, 
Weinberg et al., 2010). Similarly, presenting the equal sign 
within the context of an arithmetic problem (e.g., 15 + 13 
= 28) can activate overly narrow ways of thinking about the 
equal sign, which hinders children’s ability to learn from a 
lesson on the equal sign (McNeil, 2008). In the present study, 
we tested the idea that the activation of old, overly narrow 
ways of thinking can hinder learning, even after more gener-
alizable ways of thinking have been acquired. Specifically, we 
tested the hypothesis that activating narrow ways of thinking 
about the equal sign during arithmetic facts practice reduces 
the benefits of that practice, even in educated adults.

Children in the United States tend to interpret the equal 
sign in a narrow way. Instead of viewing it relationally as 
a symbol indicating that two quantities share a common 
value and are, thus, interchangeable within a mathemati-
cal context, they tend to view it operationally as a signal 

to add up all the numbers and put the total in ‘the blank’ 
(Alibali, 1999; Baroody & Ginsburg, 1983; Behr, Erlwanger, 
& Nichols, 1980; Falkner, Levi, & Carpenter, 1999; Jacobs, 
Franke, Carpenter, Levi, & Battey, 2007; Li, Ding, Capraro, 
& Capraro, 2008; Kieran, 1981; Loehr, Fyfe, & Rittle-John-
son, 2014; McNeil, 2005, 2008; Perry, 1991; Powell & Fuchs, 
2010; Renwick, 1932; Weaver, 1973). This is worrisome be-
cause this operational way of thinking does not generalize 
beyond simple arithmetic, and a relational understanding 
of the equal sign is critical for success in algebra (Falkner et 
al., 1999; Jacobs et al., 2007; Kieran, 1992; Knuth, Stephens, 
McNeil, & Alibali, 2006; National Research Council, 2001; 
Steinberg, Sleeman, & Ktorza, 1990). Indeed, Booth, Bar-
bieri, Eyer, & Pare-Blagoev (2014) have shown that errors 
involving the equal sign in Algebra 1 negatively predict stu-
dents’ year-end algebraic competence, even after controlling 
for the rates of other kinds of errors, such as those involving 
negation and fractions. 

A growing body of evidence indicates that children’s op-
erational ways of thinking about the equal sign, and equa-
tions more generally, are attributable, in part, to prior knowl-
edge constructed from their experience with arithmetic in 
elementary school (e.g., Baroody & Ginsburg, 1983; McNeil 
& Alibali, 2005b; McNeil, Rittle-Johnson, Hattikudur, & Pe-
tersen, 2010; McNeil et al., 2012; Seo & Ginsburg, 2003; Sher-
man & Bisanz, 2009). Children are typically taught arithme-
tic in an overly narrow way with little reference to the equal 
sign as an indicator of mathematical equivalence. Problems 
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are nearly always presented in the standard “operations =  
answer” format, with operations on the left and the answer on 
the right (McNeil et al., 2006; Seo & Ginsburg, 2003). More-
over, equality is typically expressed only with the equal sign 
or equal bar, rather than described in a fashion that more 
explicitly conveys the equivalence relation between the two 
sides of an equation. These narrow experiences lead children 
to construct narrow, operational ways of thinking about the 
equal sign, which are not easily overcome. 

According to a “change resistance account” of children’s 
difficulties with equations (McNeil, 2014; McNeil & Alibali, 
2005b), acquisition and entrenchment of these operational 
ways of thinking serve as a barrier to constructing a formal, 
relational understanding of equations (cf. Knuth et al., 2006; 
Steinberg et al., 1990). Instead of coming to understand  the 
“=” in equations relationally, as a symbol that the two sides 
share a common value, children may become entrenched in 
the idea of the equal sign, and equations more generally, as 
commands to perform arithmetic operations. These opera-
tional ways of thinking include the idea that “=” expresses 
a unidirectional process in which numbers combine to pro-
duce a result. While children may understand that “2 + 2 = 4,” 
they will not agree that “4 = 2 + 2,” claiming that these state-
ments are incorrect or nonsensical (Baroody & Ginsburg, 
1983; Behr et al., 1980; Kieran, 1980). Similarly, children 
tend to solve problems with operations on both sides of the 
equal sign (e.g., 1 + 2 + 3 = 4 + __) incorrectly, with solution 
strategies that reflect the use of operational ways of thinking, 
such as adding up all of the numbers in the problem (Add 
All, e.g., 1 + 2 + 3 = 4 + 10; McNeil & Alibali, 2005b). Of 
note, children from countries whose early mathematics edu-
cation does not promote the acquisition of operational ways 
of thinking do not typically produce these ‘operational er-
rors’ (Li et al., 2008). Further, some studies have shown that 
younger children—children who may not have yet solidified 
operational ways of thinking about the equal sign—are more 
successful at solving problems with operations on both sides 
of the equal sign than their older peers (McNeil, 2007).	

There is a growing body of evidence that the negative ef-
fects of extracting and overgeneralizing operational ways of 
thinking persists into adulthood, even in individuals who 
have also acquired a correct, relational understanding of 
equations. Under time pressure, American university stu-
dents use the same Add All strategy used by children to solve 
problems with operations on both sides of the equal sign 
(Chesney, McNeil, Brockmole, & Kelly, 2013), particularly 
after completing tasks designed to activate operational ways 
of thinking (McNeil & Alibali 2005b, McNeil, Rittle-John-
son et al., 2010). That these errors result from early acqui-
sition of operational ways of thinking is further supported 
by data from university students who completed elementary 
school in Asian countries, where educational practices do 

not typically result in acquisition of these operational ways 
of thinking. Such participants rarely use the Add All strategy 
to solve problems with operations on both sides of the equal 
sign, even after completing tasks intended to activate opera-
tional ways of thinking (McNeil, Rittle-Johnson et al., 2010). 

Although operational ways of thinking appear to influ-
ence educated adults’ math performance when activated in 
the moment, there is no research to date that investigates 
whether the activation of operational ways of thinking influ-
ences adults’ learning. Studies with children have indicated 
that arithmetic practice that highlights relational thinking 
about the equal sign helps children learn correct strate-
gies for solving problems with operations on both sides of 
the equal sign (Chesney, McNeil, Petersen, & Dunwiddie, 
2012; Chesney et al., 2014; McNeil et al., 2012; McNeil et al., 
2011), and that arithmetic practice that activates operational 
ways of thinking hinders transfer of arithmetic knowledge 
(Chesney et al., 2012). These findings are predicted by the 
change-resistance account and underscore that bidirectional 
relations are not necessarily implied when one interprets the 
symbol “=” operationally (e.g., if 2 × 2 = 4 means “when you 
see ‘2 × 2 =,’ you should write ‘4’ at the end,” then it does 
not follow that when you see ‘4 =,’ you can write ‘2 × 2’ at 
the end). In contrast, a relational interpretation of “=” makes 
more explicit the bidirectional nature of the link between op-
erands and their total (e.g., if 2 × 2 = 4 means “2 × 2 is the 
same as 4,” then it follows that 4 is the same as 2 × 2). 

Educated adults are different from children in that their 
default way of thinking about the equal sign is relational (Mc-
Neil & Alibali, 2005a). Thus, in adults, contexts invoking ei-
ther relational or operational ways of thinking would serve 
to activate knowledge the learner already possesses, rather 
than to highlight concepts the learner has yet to assimilate. 
Yet, mere activation of operational ways of thinking could im-
pede learning, if operational thinking is activated instead of 
relational thinking. Indeed, research suggests that operational 
and relational thinking tend not to be activated at the same 
moment. A recent study by Chesney, McNeil, Brockmole, and 
Kelly (2013) found that in adults, solving problems with op-
erations on both sides of the equal sign correctly is positively 
predicted by the extent to which participants make relational 
eye movements, looking back and forth between the expres-
sions on the two sides of the equal sign as if relating them. 
In contrast, these eye movements negatively predicted use of 
incorrect, operational strategies like adding all the numbers. 
It seems that at any particular time, operational thinking and 
relational thinking are negatively associated with each other. 
Thus, activating operational ways of thinking may effectively 
distract participants from correct relational thinking about 
the equal sign and the concept of math equivalence.

Following this logic, we predicted that increasing the acti-
vation of operational ways of thinking during math practice 
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should reduce the benefits of that practice, both in terms 
of fluency with the target arithmetic facts, and in terms of 
transfer to related facts and to higher-level problems involv-
ing the facts. This is because increasing the salience of op-
erational ways of thinking during arithmetic practice should 
strengthen unidirectional, rather than bidirectional mental 
connections between operands and their values (e.g. opera-
tional ways of thinking support 2 × 2 → 4, but not 4 → 2 × 2, 
whereas relational thinking supports both) and, thus yield 
weaker links between totals and their operands relative to 
practice where the relational meaning is highlighted. In the 
current study, we considered the strengthening of such con-
nections that comes through study and practice to be learn-
ing. Such bidirectional links between totals and operands are 
thought to facilitate the use of inversion and related math 
concepts, such as the complement principle (if a + b = c, then 
c – b = a; if a × b = c, then c / b = a; see Bryant, Christie, & 
Rendu, 1999). These concepts are highly relational (Schnei-
der & Stern, 2009). They depend on the principle that when 
two values are in an equivalence relation, that relation is 
maintained if the same transformation is applied to both val-
ues.  Not only does x = y, but also, y = x, and x × z = y × z. 
As such, if x × z = w then x × z / z = w / z, and x = w / z, and 
w / z = x. All these facts are entailed by the equivalence rela-
tion symbolized here by “=.” However, none are entailed by 
an operational command such as “when you see x × z, write 
w.” As such, practice that highlights operational rather than 
relational thinking about the equal sign also has the potential 
to impact fluency with math facts that logically follow from 
the studied fact (4 = 2 × 2 implies 4 / 2 = 2) (see Chi & Ceci, 
1987 for a discussion of the interplay of content knowledge 
and memory structure). Taken together, these ideas suggest 
that people who practice arithmetic when operational ways 
of thinking are activated may more weakly develop these 
mental connections and, thus, should make fewer gains in 
computational fluency with both the practiced facts and the 
compliments of those facts at posttest than peers practicing 
the same sets when those operational ways of thinking are 
not activated.

In the current study, we used written words to activate 
operational ways of thinking about the equal sign during 
arithmetic practice and examined the effects on participants’ 
learning of multiplication tables, including transfer to divi-
sion compliments and algebra problems involving the prac-
ticed facts. We included two control groups: one that used 
written words to activate relational thinking about the equal 
sign during practice and one that only used the standard 
equal sign in the problems. We predicted that participants in 
the operational words condition would benefit less from the 
practice than would participants in the other two conditions 
and, thus, would exhibit poorer gains in computational flu-
ency on practiced and transfer problems.

Method

Participants 

The participants were 70 students at a highly selective uni-
versity in the Midwest. Each participated in a total of six ses-
sions, and received either extra credit or $30. We excluded 
four participants for failure to complete all the tasks or exper-
imenter error. Another four participants received their pri-
mary education in Asia, where, as discussed above, education 
practices do not typical lead students to extract operational 
ways of thinking from their early experience with arithmetic, 
and were thus excluded from the analyses. All other partici-
pants received their elementary education in the U.S, and/or 
U.S. provinces, protectorates or territories. The final sample 
included 62 students (36 female, 26 male; 49 white, 5 Asian, 1 
African American, 2 Hispanic, and 5 other; M age = 20 years). 
Among those who self-reported standardized test scores (SAT 
and/or ACT), the mean ACT Math score was 33.1 (n = 27), 
the mean SAT Math score was 731.1 (n = 37), and the mean 
SAT Verbal score was 717.1 (n = 38).

Materials and Apparatus 

Unless otherwise noted training and testing stimuli were 
presented using Superlab 4 software (Cedrus Corporation, 
2007) on Apple® iMac 5.1 computers running OS10.6. Each 
computer had a 17” LCD display with a resolution of 1440 x 
900 pixels and a refresh rate of 60 Hz. These screen dimen-
sions subtended approximately 34 deg x 22 deg of visual angle 
with participants seated ~60 cm from the screen. Degrees of 
visual angle are only approximate as no restraints were used 
to restrict head motion. Verbal responses were recorded by a 
SONY® MP3 IC recorder.

Design

The design was a pretest–intervention–posttest randomized 
experiment. Participants were randomly assigned to practice 
unfamiliar multiplication facts in one of three conditions that 
differed in terms of how the equal sign was represented in the 
problems. To ensure that the results were not dependent on 
the particular times tables practiced, half of the participants 
in each group were randomly assigned to study the 19-times 
table and the other half were randomly assign to instead 
study the 17-times table (cf. Haverty, 1999). All participants 
were also assigned to study the 18-times table (which was 
tested at posttest) and the 15-times table. The 15-times table 
was included as a distracter to help reduce the possibility that 
cross-talk between the participants might lead them to real-
ize that they were in different conditions. Posttest questions 
involved the 18-times table (which all participants practiced), 
the 17- and 19-times tables (which were each practiced by 
half the participants), and the 16-times table (which none 
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of the participants practiced). We did not use the 15-times 
table in posttest, as we expected that the participants would 
already be quite familiar with the 15-times table, given that 
it involves a multiple of 5 and that 15-minute units are com-
monly employed in timekeeping. Thus, at posttest, partici-
pants had practice with half the times tables involved in the 
posttest, though which tables were practiced varied between 
groups. In the operational words condition, the equal sign was 
replaced in 23 of the 30 practiced problems by operational 
words (e.g., 8 “makes,” 8 “multiplies to,” and 7 “equals”). In 
the relational words condition, the equal sign was replaced in 
23 of the 30 practiced problems by relational words (e.g., 8 
“is the same amount as,” 8 “is equivalent to,” and 7 “is equal 
to”). Operational and relational words were chosen to match 
those used in prior studies with children (Chesney et al., 
2012), with the exception that the operational phrase “mul-
tiplies to” was used rather than the addition specific “adds 
up to”. In the control condition, the equal sign  was used in 
all problems. This yielded six groups in a 3 (word condition) 
x 2 (number condition) design, with 9–11 participants in each 
group. The times table tested at posttest (16, 17, 18, or 19) 
was a within-subjects factor.

We hypothesized that the activation of operational ways 
of thinking would reduce the benefits of practice, particu-
larly in regards to the participants’ ability to make use of the 
studied information in transfer tasks, such as algebra and 
division problems. It was important to include a relational 
words condition to ensure that effects could be attributed to 
the operational words, rather than to the novelty of seeing 
words in place of the equal sign. It was important to include 
an equal sign only control condition to ensure that effects 
could be attributed to the negative effects of activating op-
erational ways of thinking, rather than to beneficial effects of 
activating relational thinking.

Procedure 

Participants were randomly assigned to groups (as above). 
Each participant completed six sessions over a two-week pe-
riod: a pretest session, four practice sessions, and a posttest 
session. Each session took ~30 min. Participants completed no 
more than one session per day. The mean time from first to last 
session (inclusive) was 10.9 days (SD = 0.9, range = 10–14). 

Session 1: Pretest

In the first session, participants first completed an algebra 
pretest and then a multiplication pretest.

Algebra. Participants completed 36 algebra problems (e.g., 
18 (z + 2) = 54), involving division by, division to, or multi-
plication of 17, 18, and 19 (12 problems each). Problems ap-
peared on the computer screen, one at a time, centered over 
a text box. Problems and text boxes remained on the screen 
until participants entered their answers into the box.

Multiplication. Participants were asked to solve 80 multi-
plication facts corresponding to the 12, 13, 14, 15, 16, 17, 18, 
and 19 times tables (these values multiplied by 1–10). On each 
trial, participants first saw a letter or pair of letters, which they 
were asked to recite aloud. They then hit a key to bring up 
a problem. This problem was presented without any equality 
symbol (e.g. “18 x 5”). Participants were asked to hit a key as 
soon as they knew the answer. On this key strike, the problem 
would disappear, and a text box would appear into which they 
could enter their solution. After solving each problem, they 
were asked to say how they got the answer aloud.

Sessions 2–5: Practice Dependent on Assigned Condition

In the first 3 practice sessions (sessions 2–4), participants 
began by studying a novel multiplication table (Session 2: 
17 or 19, depending on their assigned number condition; 
Session 3: 18, Session 4: 15). While they studied, a multipli-
cation table including all ten of the novel table’s completed 
math-facts was presented on a computer screen. The equal 
sign was replaced with words as described in the design sec-
tion for the participants in the Operational words and Rela-
tional words conditions, while Control participants always 
saw the equal sign (see Figure 1). The table remained on the 
screen until participants indicated that they had finished 
studying or five minutes had passed, whichever came first. 
Participants then practiced solving problems from this novel 
table. The computer presented problems one at a time on a 
computer screen. These problems did not include solutions, 
but did include the equal sign or the alternative words as ap-
propriate to the participants’ condition. Participants had up 
to five seconds to enter an answer, and then were shown the 
completed equation. Problems were presented several times, 
in random order. In session 2, they saw 6 repetitions of each 
problem in their assigned table (60 total). In session 3, they 
saw 6 repetitions of each 18 table problem, 6 of each 17 or 
19 table problem, and then 3 each of problems from both 
tables intermingled (180 total). In session 4, they saw 6 rep-
etitions of each 15 table problem, 6 repetitions of each 18 
table problem, 6 of each 17 or 19 table problem, and then 3 
each of problems from all 3 tables intermingled (270 total). 
At the end of sessions 2–4, flashcards of the novel practiced 
table were given to the participants, so they could practice 
at home in between sessions. The flashcards used the same 
word or equal sign format to represent equality as had been 
used in the table they studied at the start of the session. In the 
last practice session, session 5, no new table was added, and 
participants rather practiced problems from each of their 3 
studied tables (6 each, intermingled, 180 total). 

Session 6: Posttest

In the last session, participants completed an assessment of 
their understanding of the equal sign (not relevant to the 
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current study; no significant differences across conditions 
were found), followed by an algebra posttest, a multiplication 
posttest, and a division transfer test. The algebra problems, 
problem formats, and methods were identical to those of the 
pretest. The multiplication problems were limited to the 16-, 
17-, 18-, and 19-times tables but were otherwise identical 
to the pretest. On the division problems, participants were 
asked to solve 40 division facts analogous to the 16-, 17-, 
18-, and 19-times tables (these values times 1–10 divided 
by 1–10, such as 54/3, or these values times 1–10 divided by 
these values, such as 72/18). Presentation formats and meth-
ods were identical to those of the multiplication problems.

Results

We sought to determine if the benefit of practice differed 
across the practice groups. Accuracy was near ceiling at pre-
test. Therefore, analyses focused on reaction time: faster reac-
tion time indicated better computational fluency. Mean RTs 
were determined for each participant for each kind of prob-
lem. In addition, for assessments that were given at pretest and 
posttest, we calculated the pre-to-post improvement in reac-
tion time for a more direct measure of the benefit of practice.

Pretest

Multiplication

Accuracy on the pretest multiplication problems was high, 
with participants solving 94.7% of the problems correctly on 
average. Upon inspection of the data, we noticed that the re-
action times appeared to be faster for even times tables (12: 
M = 3807 ms, SD = 1919 ms; 14: M = 5758 ms, SD = 3240 
ms; 16: M = 6200 ms, SD = 3593 ms; 18: M = 6559 ms, SD = 
4588 ms) than for odd times tables (13: M = 5357 ms, SD = 
2820 ms; 15: M = 4718 ms, SD = 2462 ms; 17: M = 6629 ms, 
SD = 3890 ms; and 19: M = 7201 ms, SD = 5181 ms). Thus, 

we included parity (Even or Odd) as a within-subjects factor 
and had four exemplars of increasing size within each parity 
condition (Even exemplars: size 1 = 12, size 2 = 14, size 3 = 
16, size 4 = 18; Odd exemplars: size 1 = 13, size 2 = 15, size 
3 = 17, size 4 = 19). We conducted a 3 (word condition: con-
trol, relational words, operational words) x 2 (number condi-
tion: 17 or 19) x 2 (parity: even or odd table) x 4 (size: 1, 2, 3, 
or 4) mixed ANOVA with word condition and number con-
dition as the between-subjects factors, parity and size as the 
within-subjects factors, and average reaction time (in ms) as 
the dependent variable. Results showed no significant main 
effects or interactions for word condition or number condi-
tion (all p’s > .10), suggesting that random assignment did 
a good job of equating the conditions at pretest. However, 
there was a main effect of parity, with reaction times faster 
for even versus odd times tables, F(1, 56) = 16.18, p < .001, 
partial eta squared = .22. There was also a main effect of size, 
F(3, 168) = 24.94, p < .001, partial eta squared = .31, with re-
action time increasing with size, Flinear(1, 56) = 33.53, p <.001, 
partial eta squared = .37. These main effects were qualified 
by a significant parity by size interaction, F(3, 168) = 12.85, 
p < .001, partial eta squared = .19. Inspection of the data in-
dicated that the 15-times table was driving the interaction. 
Reaction time for the 15-times table was lower than would be 
expected given its status as an odd exemplar of size 2.    

Algebra

Accuracy on the pretest algebra problems was high, with 
participants solving 87.1% of the problems correctly on aver-
age. We conducted a 3 (word condition: control, relational 
words, operational words) x 2 (number condition: 17 or 19) x 
3 (exemplar: 17, 18, or 19) mixed ANOVA with word condi-
tion and number condition as the between-subjects factors, 
exemplar as the within-subjects factor, and average reaction 
time (in ms) as the dependent variable. Results showed no 
significant main effects or interactions for word condition 

Figure 1.
Example of how the practice problems looked in the three word conditions.
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or number condition (all p’s > .10), suggesting that random 
assignment did a good job of equating the conditions at pre-
test. However, there was a main effect of exemplar, F(2, 112) 
= 3.27, p = .04, partial eta squared = .06, with reaction times 
fastest for algebra problems involving the 17-times table and 
slowest for algebra problems involving the 19-times table, 
Flinear(1, 56) = 7.63, p = .008, partial eta squared = .12.

Posttest

Multiplication Task

Accuracy on the posttest multiplication problems was high, 
with participants solving 94.5% of the problems correctly on 
average. Given that accuracy was near ceiling to begin with 
and did not significantly improve between pretest and post-
test (p = .484), analyses focused on gains in reaction time.   We 
considered improvements in reaction time from pre-to-post 
to be a metric of learning, as such increases in computational 
fluency suggest strengthened mental connections between 
multiplication problems and their solutions. To examine 
how the word condition impacted the benefit of practice on 
fluency with multiplication facts, we conducted a 3 (word 
condition: control, relational words, operational words) x 2 
(number condition: 17 or 19) x 2 (parity: even or odd table) 
x 2 (fact type: practiced or not practiced) mixed ANOVA 
with word condition and number condition as the between-
subjects factors, parity and fact type as the within-subjects 
factors, and average improvement in reaction time from pre-
test to posttest (in ms) as the dependent variable. Note that 
the 18-times table is even and practiced, the 16-times table is 
even and not practiced, and the 17- and 19-times tables are 
both odd and practiced or not practiced by different halves 
of the participant sample. Also note that higher values of the 
dependent variable indicate greater improvements in partici-
pants’ performance from pretest to posttest. 

Results showed a main effect of parity, with pre-to-post 
improvements greater for odd versus even times tables, F(1, 
56) = 14.59, p < .001, partial eta squared = .21. There was also 
a main effect of fact type, with pre-to-post improvements 
greater for practiced versus not practiced facts, F(1, 56) = 
62.48, p < .001, partial eta squared = .53. Most importantly, 
the only other effect that was statistically significant was the 
interaction between word condition and fact type, F(2, 56) = 
3.17, p =.049, partial eta squared = .10. As shown in Figure 
2, the difference in pre-to-post improvement for practiced 
versus unpracticed facts (i.e., the difference between the blue 
and red bars in Figure 2) was significantly smaller in the op-
erational words condition (M = 1885 ms, SD = 1877 ms) than 
in the other two conditions (M = 3471 ms, SD = 3318 ms),  
t(60) = 2.06, p = .043, BF01 = .119, but it did not differ signifi-
cantly in the relational words and control conditions (rela-
tional words M = 2753 ms, SD = 2921 ms, control M = 4122 ms,  
SD = 3585 ms), t(38) = 1.32, p = .196, BF01= .410. (Note: 
Bayes factors are estimated via a method described by Jarosz 
and Wiley [2014]).

Division Task

The division task was intended as a test of transfer. As such, 
division problems were not included on the pretest to avoid 
sensitizing the participants to the problems. Accuracy on the 
division problems was high, with participants solving 94.4% 
of the problems correctly on average. Thus, the analyses of the 
division problems also focused on participants’ reaction time, 
with faster reaction times (lower values of the dependent vari-
able) indicating better performance. We conducted a 3 (word 
condition: control, relational words, operational words) x 2 
(number condition: 17 or 19) x 2 (parity: even or odd table) 
x 2 (fact type: practiced or not practiced) mixed ANOVA 
with word condition and number condition as the between-
subjects factors, parity and fact type as the within-subjects 

Figure 2.
Pre-to-post improvement in reaction time as a function of word condition and fact type. Higher bars denote greater improve-
ment. Error bars show standard error.
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factors, and average reaction time (in ms) as the dependent 
variable. We also ran a similar ANCOVA, with mean reac-
tion time to pretest multiplication problems based on the 16, 
17, 18, and 19 tables as a covariate in order to account for 
individual differences between pre-intervention ability, and 
conclusions were the same as those reported below.

In contrast to the results with the multiplication problems, 
there was not a significant effect of parity, F(1, 56) = 0.99, p 
= .33, partial eta squared = .02. However, there was a main 
effect of fact type, with reaction time faster for division prob-
lems transformed from practiced versus unpracticed facts, 
F(1, 56) = 90.66, p < .001, partial eta squared = .62. As with 
the multiplication problems, the only other effect that was 
statistically significant was the interaction between word 
condition and fact type, F(2, 56) = 4.42, p =.016, partial eta 
squared = .14. As shown in Figure 3, the difference in reac-
tion time for division problems transformed from practiced 
versus unpracticed facts (i.e., the difference between the red 
and blue bars in Figure 3) was significantly smaller in the op-
erational words condition (M = 1690 ms, SD = 2250 ms) than 
in the other two conditions (M = 3517 ms, SD = 2434), t(60) 
= 2.90, p = .005, BF01 = .017 but it did not differ significantly 
in the relational words and control conditions (relational 
words M = 3230 ms, SD = 2481 ms, control M = 3776 ms, SD 
= 2422 ms), t(38) = 0.70, p = .48, BF01 = .772.

Algebra Task

Accuracy on the posttest algebra problems was high, with 
participants solving 88.4% of the problems correctly on av-
erage. Given that accuracy was high at pretest and did not 
significantly improve between pretest and posttest (p = .469), 
analyses again focused on gains in reaction time. To examine 

how the word condition affected transfer of the practiced 
multiplication facts to solving algebra problems involving 
the facts, we conducted a 3 (word condition: control, rela-
tional words, operational words) x 2 (number condition: 
17 or 19) x 3 (fact type: odd practiced, even practiced, or 
odd not practiced) mixed ANOVA with word condition and 
number condition as the between-subjects factors, fact type 
as the within-subjects factors, and average improvement in 
reaction time from pretest to posttest (in ms) as the depen-
dent variable. 

Results showed a main effect of fact type, F(2, 112) = 
13.89, p < .001, partial eta squared = .20, with pre-to-post 
improvement greatest for problems involving the two prac-
ticed times tables (odd practiced: M = 7742 ms, SD = 6156 
ms; even practiced: M = 7694 ms, SD = 7086 ms) and low-
est for problems involving the not practiced table (M = 4327 
ms, SD = 7889 ms). There was also a marginal interaction 
between fact type and number condition, F(2, 112) = 2.80, p 
= .07, partial eta squared = .05, with the difference between 
practiced and unpracticed facts greater in those who prac-
ticed the 19-times table versus the 17-times table. Although 
differences across word conditions were not as strong as 
they were with the multiplication and division problems, the 
pre-to-post improvement on algebra problems involving the 
practiced odd times table (17 or 19 depending on number 
condition) in the operational word condition (M = 5673 ms, 
SD = 4133 ms) was less than the improvement in the other 
two conditions (M = 8881 ms, SD = 6807 ms), t(60) = 2.01, p 
= .049, BF01 = .132, and there was no difference between the 
relational words (M = 8453 ms, SD = 5900 ms) and control 
(M = 9269 ms, SD = 7661 ms) conditions, t(38) = .374, p = 
.71, BF01 = .929 (see Figure 4). 

Figure 3.
Reaction times for solving division problems as a function of word condition and fact type.  Lower bars denote better performance. 
Error bars show standard error.
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Discussion

The present experiment provides the first evidence that de-
liberately activating operational ways of thinking during 
arithmetic practice impairs adults’ learning from that prac-
tice. Educated adults randomly assigned to practice multipli-
cation facts in which some of the equal signs were replaced 
by operational words showed poorer gains in computational 
fluency than both adults who practiced multiplication facts 
with equal signs, and adults who practiced multiplication 
facts in which some of the equal signs were replaced by re-
lational words. These lower gains were exhibited not only in 
reaction times on the practiced problems, but also in reac-
tion times for close transfer tasks, including division com-
pliments and algebra problems involving the practiced facts. 
These results replicate and extend prior findings (Chesney et 
al., 2013; McNeil & Alibali, 2005b; McNeil, Rittle-Johnson et 
al., 2010) suggesting that educated adults are still negatively 
affected by the operational ways of thinking about equa-
tions that they constructed during elementary school, even 
though they have learned and succeeded in algebra. Results 
also lend further support to the change resistance account 
(Chesney et al., 2013; McNeil, 2014; McNeil & Alibali, 2005b; 
McNeil, Rittle-Johnson et al., 2010). Children’s construction 
and overgeneralization of operational ways of thinking about 
equations can have long-term negative effects on individuals’ 
performance on higher-level mathematics tasks, particularly 
those that invoke relational notions of mathematics. 

Potential Mechanisms 

Our results support the hypothesis that activating opera-
tional ways of thinking about the equal sign can impair not 
only adults’ learning of those facts, but also their transfer of 

multiplication knowledge to division tasks. However, the 
specific mechanisms involved in these effects remain un-
clear. The explanation that we have been advancing in this 
paper is that the operational words activate operational rath-
er than relational ways of thinking about the equal sign, and 
thus fail to highlight the interchangeability of the two sides 
of the practiced equations. The interchangeable nature of two 
sides of an equation is intrinsic to relational thinking about 
the equal sign (Jones, Inglis, Gilmore, & Dowens, 2012). If 
consideration of this interchangeability is activated during 
practice, as is the case if the equal sign is considered rela-
tionally, then it may strengthen the bi-directional connec-
tions between math facts and their total values. The ability to 
make use of math fact knowledge in novel situations should 
be supported by such interconnections. As discussed in the 
introduction, the derivation of novel related math facts, such 
as mathematical compliments, depends on the understand-
ing of a bidirectional equivalence relation. The statement “A 
× B is the same value as C” implies “C / B is the same value as 
A.” However, the command “If you see A × B, write C” does 
not. Indeed, recent research (Chesney et al., 2014) has dem-
onstrated that children who have a better understanding of 
equivalence relations are also better able to make use of solv-
ing strategies that rely on these interrelations (e.g. decom-
position strategies: 9 + 3 = 10 + 2 = 12). Thus, participants 
in the operational words condition may have demonstrated 
poorer learning and transfer in the present study because 
these connections were less strongly formed, or not formed 
at all. In contrast, the relational words and traditional equal 
sign presumably activated relational thinking, at least for our 
highly educated sample, thereby strengthening these bidi-
rectional connections and, in turn, aiding recall and trans-
fer. This result is consistent with past studies showing that 

Figure 4.
Pre-to-post improvement in reaction time on algebra problems involving facts from the practiced odd times table (17 or 19 de-
pending on number condition) as a function of word condition. Higher bars denote greater improvement. Error bars show stan-
dard error.
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different arithmetic problem formats can activate different 
prior knowledge and lead to differences in computational flu-
ency and solving strategies (e.g., Campbell & Albert, 2009).

One possible alternative hypothesis is that the use of op-
erational words during practice reduced gains not because 
they activated prior concepts of the equal sign, but merely 
because they stood in contrast to the participants’ default 
relational interpretation of the equal sign. That is, while re-
lational words may be consistent with participants’ default 
relational thinking about the equal sign, operational words 
would be inconsistent with this thinking and, thus, be dis-
tracting to the task at hand. The current paradigm cannot 
distinguish between the possibilities that the operational 
words were detrimental to learning because they invoked 
previously learned, incorrect operational ways of think-
ing, or merely because they were non-relational. However, 
we note that prior research with adults suggests that invok-
ing operational ways of thinking is specifically detrimental 
in those who have previously learned operational ways of 
thinking (McNeil & Alibali, 2005a; McNeil, Rittle-Johnson 
et al., 2010). Regardless, in either case, the use of operational 
words during problem solving—words commonly used dur-
ing math instruction (Hamann & Ashcraft, 1986)—would 
lead to poorer learning outcomes.

Limitations and Future Directions

One limitation of the current design is that all of the par-
ticipants were quite well educated and high in math ability 
at the start of the study. They were admitted into and attend-
ed an elite university, and their self-reported ACT and SAT 
scores were quite high. As such, these participants would be 
expected to have a firm grasp of both arithmetic and alge-
bra and likely understand that the equal sign is a relational 
symbol expressing mathematical equivalence (McNeil & Ali-
bali, 2005a). Indeed, given that the participants in the control 
condition received no less benefit from practice than those 
in the relational word condition (see Figures 2, 3, and 4), 
we can conclude that our control participants defaulted to 
a relational understanding of the equal sign in the absence 
of other cues. This is consistent with previous work on edu-
cated adults’ default interpretation of the equal sign (McNeil 
& Alibali, 2005a). However, the default interpretation may be 
different in a less educated group of adults. Such individuals 
might be more likely to spontaneously activate operational 
ways of thinking during practice, with detrimental effects on 
their learning similar to what was seen for participants in 
the current study’s operational words condition. As a con-
sequence, in individuals with less math ability, the effect of 
using operational vs. relational words in practice might also 
manifest an added benefit in the relational words condition 
instead of only reduced gains in the operational words con-
dition. Indeed, such a benefit for relational words has been 

shown in children who practiced math facts in a similar 
paradigm (Chesney et al., 2012). Future work is needed to 
determine if this would also be the case with less educated 
adults (e.g., a community college sample). If so, it is possible 
that educators may be able to take advantage of these simple 
verbal cues to aid the learning of their adult students.

Critics may also question whether it is truly detrimental 
for children to construct operational ways of thinking of 
equations, given that the highly educated students in our 
sample were able to become highly educated and to gain ac-
ceptance to an elite university despite having constructed 
them during elementary school. However, this study was not 
designed to establish the educational attainment of students 
that do and do not construct operational ways of thinking 
about equations, but rather to demonstrate how operational 
ways of thinking can continue to interfere with mathematical 
thought, even in a select subset of students who have suc-
ceeded in spite of them. If even these high achieving students 
can be hindered by the operational ways of thinking that were 
constructed in elementary school, one has to wonder about 
the detrimental effects these ways of thinking have on more 
typical learners or learners from disadvantaged groups. We, 
therefore, agree with calls from mathematics educators to 
determine what changes can be implemented in US elemen-
tary mathematics curricula to foster the development of rela-
tional thinking in elementary school (Baroody & Ginsburg, 
1983; Carpenter, Levi, Franke, & Zeringue, 2005; Jacobs et al., 
2007; McNeil, 2008; Schliemann, Carraher, & Brizuela, 2007; 
Stephens, Blanton, Knuth, Isler, & Gardiner, in press). For-
tunately, there is mounting evidence that even minor differ-
ences in curricula, such as teaching the equal sign in concert 
with inequality symbols (Hattikudur & Alibali, 2010), alter-
ing the timing of practice and conceptual instruction (Loehr 
et al., 2014), presenting problems in concrete form (Sherman 
& Bisanz, 2009), writing addition facts in non-traditional,  
c = a + b formats (McNeil et al., 2011), and practicing addi-
tion facts organized by equivalent sums (McNeil et al., 2012) 
can increase this relational thinking.

Conclusions

The current findings support the position that prior knowl-
edge can negatively impact not only problem solving, but also 
the ability to learn from practice. Indeed, minor changes in 
the surface forms of problems can help or hinder learning 
depending on the prior knowledge those surface forms in-
voke.  Here we found that the operational ways of thinking 
constructed back in elementary school can have negative ef-
fects on mathematical performance that extend far beyond el-
ementary school. It appears that when these operational ways 
of thinking are activated, they can impair learning even in 
highly educated adults who possess a clear understanding of 
the relational nature of the equal sign. Once these operational 
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ways of thinking are acquired in elementary school, it appears 
that individuals never truly unlearn them (McNeil, Rittle-
Johnson et al., 2010). Rather, they exist in tandem with the 
later learned relational thinking, and can be activated to the 
learners’ detriment. Even adults with sufficient mastery over 
higher-level mathematics to garner them entry into elite uni-
versities still show negative effects of these early (mis)under-
standings (Chesney et al., 2012; McNeil & Alibali, 2005b; Mc-
Neil, Rittle-Johnson et al., 2010). Altering elementary school 
curricula so as to support the early acquisition of relational 
rather than operational ways of thinking about the equal sign 
could thus have long-term benefits, as future students would 
not need to overcome the impediment these operational ways 
of thinking present to their mathematical performance. 
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