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Abstract - Primer pheromones play key roles in regulating division of labor, which is 

one of the most fundamental and defining aspects of insect sociality. Primer pheromones 

are chemical messengers that transmit hormone-like messages among colony members; 

in recipients these messages can either induce or suppress phenotypic caste 

differentiation. Here, we investigated soldier-caste-derived chemicals as possible primer 

pheromones in the lower termite Reticulitermes flavipes, a species for which no primer 

pheromones have yet been identified. We determined that soldier head extracts (SHE), 

when provided to totipotent workers along with the insect morphogenetic juvenile 

hormone (JH), significantly enhanced soldier caste differentiation. When applied alone, 

however, SHE had no impacts on caste differentiation, survivorship, or any other aspect 

of worker biology. These findings support that soldier-derived chemicals serve as primer 

pheromones which enhance the action of the endogenous morphogenetic hormone JH. 

Thus, SHE chemicals apparently have no effect when received under natural conditions 

by non-receptive individuals with presumably low JH titers. Gas chromatography-mass 

spectrometry analysis identified two terpenes as the most plentiful components of R. 

flavipes SHE. Through GC-MS and NMR analyses, these terpenes were identified as γ-

cadinene and its corresponding aldehyde, γ-cadinenal. Validative bioassays with 

commercially available cadinene confirmed its activity. However, several other 

previously identified terpenes were also significantly active. These findings reveal a 

novel primer pheromone-like function for soldier-derived terpenes in termites, and 

further suggest convergent evolution of terpene functions in enhancing JH-dependent 

soldier caste differentiation. 

 

 

Key Words- Termite; soldier; primer pheromone; juvenile hormone; terpene. 
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INTRODUCTION 

 

Social insect castes are groups of phenotypically, morphologically and 

behaviorally distinct individuals that cooperate to perform colony tasks (Wilson, 1971; 

Miura, 2004). Caste differentiation plays an important and necessary role in creating an 

effective division of labor. It is imperative that colonies find ways to regulate caste 

differentiation within this system. Improper regulation could result in the over-abundance 

or absence of specific castes, making colony tasks such as food acquisition, grooming, 

defense, and reproduction inefficient or even impossible.  

 

Polyphenisms are alternative morphological phenotypes that differentiate in 

response to environmental conditions (Nijhout, 2003). Termites use polyphenism to 

produce different castes that perform complementary roles within the colony (Miura, 

2004). Termite colonies are made up of three distinct castes that include 

workers/pseudergates, soldiers, and reproductives. Only soldiers and reproductives are 

considered adults in lower termites, while all castes can be adults in higher termites. 

Termite caste differentiation can proceed along two routes; the imaginal (winged) or the 

apterous (wingless) route. The first developmental branch point occurs when larvae 

differentiate into either workers or nymphs after the second instar (Buchli, 1958, Lainé 

and Wright, 2003). Workers can: (1) undergo status quo worker-to-worker molts, (2) 

differentiate into presoldiers (immediately followed by soldier differentiation) or (3) 

differentiate into apterous and eyeless third-form reproductives, or “ergatoid neotenics”. 

Nymphs can either; (1) regress into worker-like pseudergates, (2) differentiate into fully 

winged and eyed adult alates that disperse, mate, and become primary reproductives, or 

(3) differentiate into wingless and eyed non-dispersive second form reproductives, or 

“brachypterous neotenics” that serve as supplemental reproductives (Buchli, 1958; Lainé 

and Wright, 2003). 

 

Caste polyphenism in social insects is distinct from solitary insects because 

multiple castes that perform non-overlapping tasks are present in colonies at the same 

time (Miura, 2004). Individuals in termite colonies with the same genetic background can 
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differentiate into alternate phenotypes depending on a number of intrinsic and extrinsic 

factors (Lenz, 1976; Greenberg and Tobe, 1984; Koshikawa et al., 2005; Scharf et al., 

2007). One intrinsic factor is juvenile hormone (JH) (Scharf et al., 2003b; Park and 

Raina, 2004, 2005; Mao et al., 2005). Juvenile hormone is a morphogenetic hormone 

produced by a neurosecretory gland (the corpus allatum) that has a broad range of 

developmental and physiological effects (Wigglesworth, 1935; Schal et al., 1997; 

Truman and Riddiford, 1999; Gilbert et al., 2000; Truman et al., 2006). For example, in 

insects juvenile hormone plays a role in the control of larval/ nymphal development and 

metamorphosis, diapause, migratory behavior, wing length, seasonal development, 

reproduction, and caste determination (Hartfelder, 2000).  

 

 Primer pheromones are chemical messengers that are passed among individuals 

and trigger physiological responses in recipients (Wilson and Bossert, 1963). Primer 

pheromones are distinct from “releaser” pheromones, which elicit rapid behavioral 

responses in recipients (Vander Meer et al., 1998). Two examples of releaser pheromones 

in termites are the trail pheromone (Z,Z,E)-3,6,8-dodecatrien-1-ol (Matsumura, 1968) and 

the phagostimulatory pheromone hydroquinone (Reinhard et al., 2002). Three examples 

of primer pheromones from the honey bee are worker behavioral maturation inhibitory 

pheromone (ethyl oleate; Leoncini et al., 2004), brood pheromone (fatty acid esters; 

LeConte et al., 2006), and queen mandibular pheromone (5 carboxylate and aromatic 

components; Grozinger et al., 2007). Although no primer pheromones have been 

identified in termites, JH has been proposed as a possible termite primer pheromone 

(Henderson, 1998). Previous studies have shown that ectopic exposure of worker termites 

to JH III readily induces soldier caste differentiation (Howard and Haverty, 1979; Scharf 

et al., 2003b, 2005, 2007; Scharf et al., 2003b; Scharf et al., 2005; Zhou et al. 2006a,b, 

2007Zhou et al., 2006a; Zhou et al., 2006b; Zhou et al., 2007), indicating that JH can act 

via exogenous exposure. Under natural conditions, high endogenous JH titers in worker 

termites cause differentiation into presoldiers, and then into soldiers (Park and Raina, 

2004; Mao et al., 2005). Regardless of whether it acts exogenously as a primer 

pheromone, an endogenous hormone, or both, the role of JH in soldier development is 
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unique and in contrast to the immature “status quo” role of JH among insects (Henderson, 

1998).  

 

It has been hypothesized that termite soldiers may play a role in regulating worker 

differentiation to other caste phenotypes (Henderson, 1998). For example, JH titers in 

workers rise upon removal from the colony (Okot-Kotber et al., 1993; Mao et al., 2005), 

which can result in presoldier / soldier formation (Mao et al., 2005). However, if workers 

are held with soldiers, worker JH titers remain below threshold levels and presoldier 

formation is attenuated (Mao et al., 2005; Park and Raina, 2005). It has been theorized 

that soldiers can down-regulate worker JH titers by acting as a JH “sink” (Henderson, 

1998; Mao et al., 2005) or by lifting some other primer pheromone’s inhibition on worker 

differentiation (Park and Raina, 2004, 2005; Mao et al., 2005).  

 

Previously, Lefeuve and Bordereau (1984) investigated live soldiers and the 

effects of methylene chloride (dichloromethane; DCM) soldier head extracts (SHE) on 

caste differentiation in the higher termite Nasutitermes lujae; they found that SHE 

inhibited worker-to-soldier differentiation. They further suggested that soldier termites 

may secrete an inhibitory pheromone that contributes to worker-soldier homeostasis in 

termite societies. Korb et al. (2003) also reported that DCM SHE inhibited soldier 

formation in the lower termite Cryptotermes secundus. Additionally, Okot-Kotber et al. 

(1991) also showed that soldier formation in Reticulitermes flavipes was reduced by 

DCM SHE when co-applied in combination with synthetic JH analogs. While these 

studies have verified primer pheromone-like effects for SHE, no bona-fide termite primer 

pheromones have yet been chemically identified. Thus, two important outstanding 

questions in termite research relate to whether or not caste-regulatory primer pheromones 

exist, and if so, what are their chemical structures and modes of action? 

 

R. flavipes and its European synonym R. santonensis are common and 

economically destructive termites in the U.S. and Europe; thus, there is a need to define 

their chemical ecology with respect to cast regulation. The central objective of this study 

was to investigate chemical constituents of R. flavipes SHE as possible primer 
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pheromones. To meet this objective, we conducted studies to (1) investigate SHE effects 

on JH-dependent soldier caste differentiation, (2) identify SHE constituents, and (3) 

compare constituent activity with previously identified soldier head chemicals. Through 

these studies, we provide evidence supporting the idea that soldier-derived terpenes play 

roles as caste-regulatory primer pheromones in termites. 

 

METHODS AND MATERIALS 

 

Termites. R. flavipes colonies were collected from various locations on the University of 

Florida campus. Termites were brought back to the laboratory and held for at least 2 

months before use. Laboratory colonies were maintained in darkness within sealed plastic 

boxes, at 22oC. A total of 9 termite colonies were tested, all of which contained male and 

female neotenic reproductives. Termite workers were considered workers if they did not 

possess any sign of wing buds or distended abdomens. Termites were identified as R. 

flavipes from sequence of the 16S mitochondrial-ribosomal RNA gene, (Szalanski et al., 

2003), gut fauna (Lewis and Forschler, 2004) and soldier morphology (Nutting, 1990).  

 

Dish Assays. Dish assays were conducted at 27°C as described previously (Scharf et al., 

2003b). Paired paper towel sandwiches were treated with respective control, JH III, and 

SHE treatments delivered in solvent (acetone). JH III (75% purity; Sigma; St. Louis, MO) 

was provided at 112.5 µg per dish in a volume of 200 µl acetone. This JH quantity was 

chosen based on its maximal efficacy and minimal mortality observed in previous 

concentration range studies (Scharf et al., 2003b). SHE was tested at several different 

quantities (see next section). After solvent evaporation, sandwiches were placed in 5 cm 

plastic Petri dishes and then received 150 µl of reverse osmosis water. Fifteen worker 

termites were placed in each dish. Every five days termites were counted, presoldier 

formation was noted, and deionized water was added if needed.  

 

Solider Head Extracts. Soldier head extract (SHE) was prepared by collecting soldiers 

from lab colonies, removing their heads, and then by homogenizing the heads (~80-150 

total, depending on the experiment) in acetone with a Tenbroeck glass homogenizer. SHE 



  Tarver et al.   

 7 

was fractionated by passing it through a glass Pasteur pipette filled with approximately 

250 mg of silica gel (60-200 mesh) on top of a glass wool plug. The eluting solvent in 

fractions consisted of 10 column volumes of the extraction solvent (acetone). The 

fractionated SHE was then brought to 50 ml in a volumetric flask.  

 

SHE Concentration Response and Investigation of Colony Variation. SHE 

prepared in acetone was tested at multiple concentrations on three R. flavipes colonies 

(Colonies 7, 8 and 9). Seven different treatments were tested: control (300 µl acetone), 

JH III (200 µl acetone containing 112.5 µg JH III), SHE alone (4 head equivalents), and 

JH III plus a range of soldier head extract equivalents (0.5, 1, 2 and 4). Each treatment 

was replicated six times.  

 

Gas Chromatography (GC) and Mass Spectrometry (MS). Thirty soldier and 

worker heads from two different colonies (colonies 5 and 7) were extracted as described 

above (acetone), in a volume of 2 ml and evaporated under N2 to 400 µl. Samples were 

first analyzed by GC/MS (electron ionization, 70eV) to confirm the presence of the 

previously published predominant terpenoids, namely γ-cadinene and γ-cadinenal 

(Nelson et al., 2001), and then subsequently quantified using a 6890 gas chromatograph 

(Agilent; Santa Clara, CA) coupled to a flame ionization detector as described in full by 

Schmelz et al. (2001). We also examined pine wood extracts, prepared from the same 

“shim” wood used to provision lab colonies (seasoned and kiln-baked), to specifically 

test the hypothesis that SHE chemicals are produced in termites de novo. Fresh pine 

wood sawdust (1.26 g) was extracted and analyzed as described above for head extracts 

(acetone).  

 To quantify semiochemical levels found in individual soldier heads, five 

individual soldier heads were extracted in a similar manner as above. Individual extracts 

were in a final volume of 400 µl; an internal standard of 400 ng of nonyl acetate was 

added to each sample. Samples were then separated by GC. Peaks were analyzed and 

quantified by comparing to the nonyl acetate standard.  
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Nuclear Magnetic Resonance (NMR) analysis. NMR analyses were performed to 

accurately identify the cadinene chemicals from the soldier heads. The two main peaks of 

the SHE were separated using preparative GC and analyzed by NMR. Initial sample 

preparation of soldier head solvent extracts utilized vapor phase extraction at 80ºC on 

polymeric adsorbent traps, followed by dichloromethane elution to remove less volatile 

contaminants (Schmelz et al., 2004). Micropreparative gas chromatography (GC) was 

accomplished using an Agilent (Santa Clara CA) 6890 gas chromatograph (He carrier 

gas; 5.7 ml min-1; cool on-column injector set to track oven) with an DB-1 column (30 m 

long, 530 µm i.d., 0.50 µm film thickness) with the temperature programmed from 35 °C 

(2 min hold) at 10 °C min-1 to 260 °C (hold for 5.5 min). Recovery of separated GC 

fractions followed from Heath and Dueben (1998) with slight modification. Specifically a 

glass press-fit splitter was used at the end of the DB-1 column, coupling a 0.5 m (150 µm 

i.d. fused silica) capillary to the flame ionization detector (FID) and a second 0.5 m (350 

µm i.d. fused silica) capillary directed to the heated transfer line and chilled glass 

capillary for sample collection. Under these conditions, the two predominant soldier head 

sesquiterpenes eluted at 16.1 and 18.9 min. Authentic standards of γ-cadinene were 

similarly chromatographed, eluted at 16.1 min and recollected for NMR.  

 

1-Dimensional and 2-dimensional NMR spectra were acquired at 20ºC with 

standard techniques using TopSpin® (version 2.1) software on a Bruker Avance-II-600 

spectrometer equipped with a 1 mm high-temperature superconducting (HTS) CryoProbe 

(Brey et al. 2006). Solutions of the SHE γ-cadinene, ~ 10 µg/15 µl, the authentic γ-

cadinene, ~ 25 µg/17 µl and of the SHE γ-cadinene aldehyde, ~ 50 µg/10 µl, were 

prepared in CDCl3 (99.96 atom % D). These solutions were added via a 110 mm-needled 

10 µl syringe to 1 mm O.D. x 0.73 mm I.D. x 100 mm long capillary NMR tubes (Norell, 

Inc.). The capillaries were then attached to an appropriate Bruker MATCHTM apparatus 

before being lowered into the NMR magnet for analysis. Proton spectra were acquired at 

600.23 MHz using 45º pulses, 32768 complex points over an 11 ppm spectral width (SW) 

– corresponding to a 2.48 second acquisition time (AT), and a 3 second relaxation delay 

(RD). The 1H data was processed by zero filling the FID’s to 32768 real points before 

application of line broadening (LB) and Fourier transformation. An exponential LB value 
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of 0.4 Hz was used for integrated spectra, and a negative LB value of (–) 0.2 Hz was used 

for “peak picking.” The 1H chemical shift axis was referenced to CHCl3, assigned to 7.26 

ppm (Gottlieb et al. 1997). Abbreviations in 1H spectra: s = singlet, d = doublet, 

t = triplet, q = quartet, m = multiplet, J = apparent coupling constants in Hertz. 2-

Dimensional 1H/1H-COSY data sets (SW = 8 ppm, AT = 0.21 seconds, RD = 2 seconds, 

2-8 transients) were acquired with Bruker’s “cosygpqf” pulse sequence as 2048 complex 

points in the directly detected dimension (DD) and 512 increments in the indirect 

dimension (ID), and they were processed with sine-function apodization into 1024 x 1024 

point spectra. Carbon-13 spectra were acquired at 150.93 MHz using 45º pulses, 65536 

complex points over a 220 ppm SW – corresponding to a 0.98 second AT, and a 3 second 

RD. The 13C FID’s were Fourier transformed after zero filling to 65536 real points and 

applying an exponential LB value of 2 Hz. The 13C chemical shift axis was referenced to 

CDCl3, assigned to 77.16 ppm (Gottlieb et al. 1997). Multiplicity-edited 2-dimensional 
1H/13C-HSQC data sets (1H SW = 8 ppm, 13C SW = 170 ppm, AT = 0.14 seconds, 

RD = 2 seconds, 48-96 transients) were acquired with Bruker’s “hsqcedetgpsisp2.2” 

pulse sequence as 1348 complex points in the DD dimension and 256 increments in the 

ID dimension, and they were apodized with cosine squared-functions into 2048 x 512 

point spectra. 

 

Previously Identified Chemicals. Past research (Zalkow et al., 1981; Bagnères et al., 

1990; Nelson et al., 2001; Quintana et al., 2003) and our own GC-MS efforts (current 

report) have identified a number of chemicals from termite soldier heads. Chemicals (or 

close structural analogs) were tested individually in dish assays on a single R. flavipes 

colony (Colony 5). All treatments were applied at 50 µg/dish, with and without JH III 

(300 µl acetone containing 112.5 µg JH III). Individual chemical treatments were 

provided at a quantity equivalent to approximately 1/2 of the JH III dose in order to test 

synergistic effects on JH III-induced presoldier differentiation. This amount [50 µg/dish] 

approximates endogenous cadinene levels found in 25 soldier head equivalents, based on 

GC-MS analysis. Treatments were as follows: controls (300 µl acetone), SHE alone (4 

head equivalents in acetone), α-humulene (CAS: 6753-98-6, Fluka, Sigma Aldrich, St. 

Louis, MO), β -farnesene (CAS:18794-84-8, Bedoukian, Danbury, CT), cadinene (CAS: 
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29350-73-0, Vigon International, East Stroudsburg, PA), geranyl linalool (CAS: 1113-

21-9, Acros, New Jersey, NJ), linalool (CAS: 78-70-6, Aldrich), farnesol (CAS: 4602-84-

0, Bedoukian), (+)β-pinene oxide (CAS: 6931-54-0, Acros), limonene (CAS: 5989-27-5, 

Aldrich), nootkatone (CAS: 4674-50-4, Bedoukian), nerolidol (CAS: 7212-44-4, 

Bedoukian), α-pinene (CAS: 80-56-8, Acros), and geranylgeraniol (CAS: 24034-73-9, 

Fluka, Sigma Aldrich). Control treatments included acetone, JH III alone, SHE alone, JH 

III+SHE. All SHE was prepared in acetone. Each treatment was replicated three times.  

 

Statistical Analyses. In all experiments the number and caste of each termite in each 

dish was counted every five days. The percentage of presoldiers formed out of the total 

number of workers put into each assay was used in statistical analyses (Scharf et al., 

2003b, 2005; Zhou et al., 2006a,b) . Data were first analyzed for normality using the 

Levene test. If the data were not normal, the data were transformed to ranked averages 

and means separated using the Tukey-Kramer test (p<0.05). For bioassays with 

previously-identified soldier chemicals, ranked averages were separated using a LSD 

Student t-test (p<0.05). 

 

RESULTS 

 

  SHE Concentration Response. Three colonies were examined in SHE dose-response 

bioassays using SHE prepared in acetone (Fig. 1). Two of the three colonies responded 

similarly, but one colony (colony-9) responded slightly differently, which led to a 

significant colony effect in the ANOVA (df=2,117, F=4.788, p=0.01). Nonetheless, a 

pooled dose-response analysis of the three colonies was conducted. Presoldier induction 

significantly increased when termite workers were co-exposed to SHE and JH III, as 

compared to treatments of JH III alone (p<0.05). Controls treated with either acetone or 

SHE alone resulted in no presoldier formation. Presoldiers first appeared between days 

10 and 15, and reached maximum levels by day 25 in all SHE + JH III and JH III-alone 

treatments. This analysis verifies that SHE does indeed cause a significant increase in 

presoldier formation when combined with JH III; however, this effect is not significantly 

dose-dependent in the range of 0.5 - 4 head equivalents (df= 6,117, F= 32.32, p<0.0001).  



  Tarver et al.   

 11 

   

GC- MS and NMR Analysis. GC-FID analyses of soldier head extract identified two 

major sets of peaks (Fig. 2). Retention times, peak size, and GC-MS spectra of the two 

sets of peaks have similar profiles as Zalkow et al., (1981) and Nelson et al., (2001), who 

identified γ-cadinene and γ-cadinenal as major whole-head extract components (Fig. S2). 

The first peak, γ-cadinene, was identified by comparing its spectra with those in the 

literature, as well as by a gas-chromatographic comparison with the same sample. 

Additionally, comparison of the SHE γ-cadinene and of an authentic sample of γ-

cadinene (kindly provided by Dr. Bartelt, USDA-ARS-NCAUR; Peoria, IL) by GC-MS 

analysis (EI, 70 eV) gave the same EI mass spectra and identical GC retention times. The 

mass spectrum and the 1H (600 MHz) NMR spectrum of the SHE γ-cadinene were the 

same as those described for γ-cadinene by Quintana et al. (2003). Our analyses further 

confirmed that the SHE γ-cadinene and the authentic sample of γ-cadinene produced the 

same NMR spectra. That is, except for trace impurities in the natural sample, they gave 

identical 1-dimensional (1H) and 2-dimensional (1H/1H-COSY and 1H/13C-HSQC) NMR 

spectra.  

 

The corresponding γ-cadinene aldehyde (γ-cadinenal), assumed to arise from allylic 

oxidation of the olefinic methyl group of γ-cadinene, was identified by comparison of its 
1H NMR spectrum (see data below) and EI-mass spectrum (Fig. S2) to those reported by 

Kaiser and Lamparsky (1983). Since we observed some small differences between their 

400 MHz 1H spectrum and ours at 600 MHz, we also report the details of our 1H NMR 

spectrum here, along with the fifteen chemical shifts for the 13C NMR resonances of the 

SHE γ-cadinene aldehyde.   

 

NMR results are as follows; additional data and structural information can be provided 

upon request. 1H NMR (600 MHz, CHCl3 = 7.26 ppm (Gottlieb et al. 1997)) δ 9.47 (s, 1 

H), 6.91 s, 1H), 4.74 (“d”, J = 1.5, 1 H), 4.62 (“d”, J = 1.3, 1 H), 2.52-2.46 (m, 1 H), 2.44 

(ddd, J = 2.9, 4.0, 13.0, 1 H), 2.26 (d septets, J = 3.3, 6.9, 1 H), 2.15-2.07 (multiplets, 2 

H), 2.06 (broad dt, J = 4.5, 13.1, 1 H), 1.97-1.91 (t of “five-line patterns”, 1H), 1.90-1.84 
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(multiplets, 2 H), 1.50-1.41 (multiplet, 1 H), 1.42 (tt, J = 3.2, 11.6, 1 H), 1.21 (dq, J = 4.2, 

12.8, 1 H), 0.99 (d, J = 6.9, 3 H), 0.82 (d, J = 6.9, 3 H).  

 
13C NMR (151 MHz, CDCl3 = 77.16 ppm (Gottlieb et al. 1997)) δ 194.76, 151.78, 

151.75, 141.77, 104.65, 46.37, 46.05, 44.07, 36.05, 26.69, 26.65, 24.45, 21.87, 21.57, 

15.34.    

  

The average amount of γ-cadinene and γ-cadinenal from soldiers was 1.44 ± 0.29 

and 9.42 ± 1.75 µg, respectively. The amount of γ-cadinenal was significantly higher than 

the amount of γ-cadinene (df= 1,8, F=20.2864, p=0.0020). Although weakly abundant in 

the worker extracts, the γ-cadinene and γ-cadinenal were substantially more prevalent in 

the soldier heads (Fig. 2). Pine wood extracts prepared using an identical extraction 

method did not indicate any similarity to chemicals found in SHE (Fig. 2), supporting 

that cadinene and cadinenal are produced de novo.  

 

Cadinene and Previously Described Soldier Chemicals Enhance JH-induced 

Presoldier Differentiation. Twelve previously identified soldier-derived chemicals were 

tested for their ability to induce presoldier formation in dish assays. All of these 

previously described chemicals (except nootkatone and nerolidol), when tested in 

combination with JH III, caused significant increases in presoldier differentiation relative 

to JH III alone. When tested without JH III, the soldier chemicals caused no presoldier 

differentiation (df= 26,63, F= 14.4633, p<0.0001) (Fig. 3). Similar to all previous assays, 

no presoldiers were observed in acetone controls, while high presoldier induction levels 

(~80%) were observed in SHE + JH III treatments. Treatments of JH III alone induced 

significantly lower presoldier levels (~20%), which are comparable to results of 

preceding experiments as presented above.  
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DISCUSSION 

 

In previous research, termite soldier-produced chemicals have mostly been 

investigated as a taxonomic tool for species identification (Zalkow et al., 1981; 

Prestwich, 1983; Bagneres et al., 1990; Nelson et al., 2001; Quintana et al., 2003, Nelson 

etl al. 2008). Such research has identified a number of chemicals in soldier secretions, but 

little consideration has been given to roles of these chemicals in caste differentiation. The 

study presented here confirms the effects of R. flavipes SHE on JH-induced presoldier 

differentiation. Results from multiple bioassays on different colonies at different times of 

the year indicated that SHE synergistically increased worker to soldier morphogenesis 

when applied in combination with JH III. These findings support the idea that the soldier 

caste, in addition to playing a defensive role, also plays a part in caste regulation within 

termite society (Henderson, 1998).  

 

Our study also supports previous research showing ectopic JH III treatments 

cause some workers to molt into presoldiers (and onto soldiers) (Scharf et al., 2003b, 

2005, 2007; Zhou et al. 2006a,b). The JH III mediated worker–to-soldier molt is an 

atypical example of a JH III response when compared to other insect groups. In most 

insects, JH causes insects to remain as immature forms during a molt, while the absence 

of JH causes the insect to molt into an adult form. Thus, termites have apparently co-

opted JH for a different function than other insect groups.  

 

The combination of SHE with ectopic JH III treatments synergistically enhanced 

presoldier development relative to JH III alone, while SHE by itself caused no presoldier 

induction. This suggests that SHE probably does not contain significant quantities of JH. 

Preliminary thin layer chromatography separations of JH III and SHE showed no 

common bands (MRT unpublished), supporting the absence of JH III in SHE. Therefore, 

in our assays, we conclude that chemicals from soldier heads modulate the termite 

response to ectopically applied JH III, thereby enhancing JH III activity. We hypothesize 

that, endogenously, the synergistic effect of these SHE terpenes is manifest only in 

individuals with elevated JH titers.  
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The results from this study are in contrast with past reports concluding that 

soldiers and extracts from soldiers inhibit presoldier formation (Lefeuve and Bordereau, 

1984; Okot-Kotber et al., 1991; Korb et al., 2003). There are several differences between 

the current and past research that could at least partially explain these discrepancies. 

First, Lefeuve and Bordereau (1984) exposed groups of 200 workers of the higher termite 

Nasutitermes lujae to one of three treatments that included nothing, live soldiers, or SHE 

extracted in DCM. Differences between this and our study include extraction solvent, 

termite species, and group size. Korb et al. (2003) tested the effect of precocene II, an 

allatectomizing agent, and SHE extracted in DCM on whole colonies of the lower 

termite, Cryptotermes secundus. Differences between our study and that of Korb et al. 

(2003) include solvent, termite species, and treatment size. Also, Korb et al. did not test 

precocene in combination with natural JH or SHE. Okot-Kotber et al. (1991) tested 

combinations of methoprene and SHE extracted in DCM on R. flavipes in a dish assay, 

similar to ours, and found that the combination resulted in less presoldier formation than 

treatments of methoprene alone. In unreported work, we found no difference between 

SHE extracted in DCM or acetone (see Table S1 and Fig. S1 included as supplementary 

online material), eliminating the effect of solvent. However, we used JH III in our study 

while Okot-Kotber et al. (1991) used the JH analog methoprene. Other factors that may 

explain some of the differences between our study and preceding studies may be colony 

conditions at the time of testing and the time of year at which testing was performed; e.g., 

responses to SHE and JH may vary among termite colonies, as well as within a colony 

over a year according to season.  

 

While our results suggest components of Reticulitermes SHE function as primer 

pheromones, soldier secretions of other termite species have bona fide defensive 

functions. For example, Coptotermes soldiers produce latex to defend against predators 

(Prestwich, 1983, 1984; Abe et al., 2000). Our proposed primer pheromone function for 

Reticulitermes head chemicals, is supported by a study by Zalkow et al. (1981) who 

assayed a number of R. flavipes and R. virginicus soldier head chemicals against the 

native fire ant, Solenopsis geminata. Their results indicated the ants had not been sprayed 
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with an irritant or toxicant and that the soldier head chemicals have non-defensive 

functions.  

 

 No evidence was obtained in the present study to suggest that the chemicals are 

expelled from soldiers. One explanation for the soldiers having a large amount of putative 

primer pheromone in their heads is to serve as a recruiting mechanism after an individual 

soldier is killed. For example, if a soldier is killed when defending the colony, the 

chemicals acquired while disposing of the body may signal nestmate workers to 

differentiate into soldiers. Since workers also contained small amounts of cadinene and 

cadinenal, another possibility is that soldiers may absorb and sequester these compounds 

away from workers in order to suppress worker differentiation. For example, live soldiers 

suppress worker JH titers and inhibit presoldier formation (Park and Raina, 2004; Mao et 

al., 2005). Future research efforts will test hypotheses relating to impacts of live and dead 

soldiers in nestmate differentiation and terpene sequestration. 

 

Of the soldier head terpenes identified in previous research, all but two 

significantly enhanced JH-induced presoldier formation when combined with JH III at a 

ratio of 1:2 (terpene:JH). When applied at the same concentration without JH III, 

however, none of the terpenes induced presoldier formation. This suggests that 

Reticulitermes have the ability to utilize an array of terpenes as cues to trigger soldier 

caste differentiation, provided that endogenous JH titers are above critical thresholds. 

Future research should determine what structural features of the terpenes are necessary 

for activity.  

 

 The regulation of termite caste differentiation is important in maintaining social 

structure and function, and therefore the disruption of termite caste differentiation / 

homeostasis may be able to be used as a control method. By using the termite’s own 

chemistry (i.e., soldier-derived terpenes), it may be possible to develop a specific 

termiticide that causes a large proportion of worker termites to molt into soldiers. 

Because soldier termites cannot feed themselves, this would likely cause the termite 

colony to starve or at least have a severe effect on the colony. For example, in our study 
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(unpublished results), mortality was greatest in replicates in which a high proportion of 

worker termites molted into presoldiers.  

 

 In summary, the findings presented here verify a role beyond defense for the 

soldier caste within termite societies, as initially proposed by Henderson (1998). These 

results indicate that non-JH terpenes from termite soldier castes can influence caste 

polyphenism in nestmates. The results presented here help identify part of the complex 

chemical communication system that termites utilize to maintain a balanced social 

environment.  

 
Acknowledgements - We thank Drs. Nancy Denslow, Daniel Hahn, Mike Haverty, 

Larry Cool and Faith Oi for helpful discussions; Caitlin Buckspan for bioassay 

assistance; Marsha Wheeler and Jody Green for review of manuscript drafts. We also 

thank Dr. Robert J. Bartelt from the USDA-ARS_NCAUR (Peoria, IL) for kindly 

providing us with an authentic sample of (+)-γ-cadinene for us to draw comparisons with. 

Also the authors gratefully acknowledge the National Science Foundation for financial 

support through the User Program of the National High Magnetic Field Laboratory 

(NHMFL), which supported our NMR studies at the Advanced Magnetic Resonance 

Imaging and Spectroscopy (AMRIS) facility in the McKnight Brain Institute of the 

University of Florida (UF). The 600 MHz 1-mm HTS cryogenic NMR probe used in 

this work was developed through a collaboration among UF, the NHMFL, and Bruker 

BioSpin, and that development was funded by a National Institutes of Health grant 

(P41RR016105) (Brey et al. 2006). This work was supported by USDA-CSREES-NRI 

grant no. 2007-35607-17777 to M.E.S. 

 

REFERENCES 

 

ABE, T., BIGNELL, D. E., and HIGASHI, M. 2000. Termites: Evolution, Sociality, 
Symbioses, Ecology. Dordrecht, the Netherlands: Kluwer Academic Press. 

BAGNÈRES, A. G., CLÉMENT, J. L., BLUM, M. S., SEVERSON, R. F., JOULIE, C., 
and LANGE, C. 1990. Cuticular hydrocarbons and defensive compounds of 
Reticulitermes flavipes (Kollar) and R. santonensis (Feytaud): Polymorphism and 



  Tarver et al.   

 17 

chemotaxonomy. J. Chem. Ecol. 16:3213-3244. 

BUCHLI, H. 1958. L'origine des castes et les poetntialities ontogeniques des termites 
europeens du genre Reticulitermes holmgren. Ann. Sci. Nat. Zool. 20:261-429. 

BREY, W.W., EDISON, A.S., NAST, R.E., ROCCA, J.R., SAHA, S., WITHERS, R.S. 
2006. Design, Construction and validation of a 1mm triple resonance high-
temperature superconducting probe for NMR. J. Mag. Res. 179 (2), 290-293. 

CASTLE, G. B. 1934. The damp-wood termites of western United States, genus 
Zootermopsis,pp. 273-310, in C.A.Koifoed (eds.). Termites and termite control. 
2nd ed. University of California Press, Berkeley, California. 

FEI, H., and HENDERSON, G. R. 2002. Formosan subterranean termite wood 
consumption and worker survival as affected by temperature and soldier 
proportion. Environ. Entomol. 31:509-514. 

FEYEREISEN, R. 2005. Insect cytochrome P450, pp.1-77, in G.K. Iatrou, Gill SS, (eds.) 
Comprehensive Molecular Insect Science [vol. 4]: Biochemistry and Molecular 
Biology. Elsevier, Amsterdam. 

GILBERT, L. I., GRANGER, N. A., and ROE, R. M. 2000. The juvenile hormones: 
historical facts and speculations on future research directions. Insect. Biochem. 

Molec Biol. 30:617-644. 

GOTTLIEB, H.E., KOTLYAR, V., and NUDELMAN, A,M. 1997. NMR Chemical 
Shifts of Common Laboratory Solvents as Trace Impurities. J. Org. Chem. 62 
(21), 7512-7515. 

GREENBERG, S., and TOBE, S. S. 1984. Adaptation of a radiochemical assay for 
juvenile hormone biosynthesis to study caste differentiation in a primitive termite. 
J. Insect. Physiol. 31:347-352. 

GROZINGER, C. M., FISCHER, P., and HAMPTON, J. E. 2007. Uncoupling primer and 
release responses to pheromone in honey bees. Naturwissenschaften 94:375-379. 

HARTFELDER, K. 2000. Insect juvenile hormone: from "status quo" to high society. 
Braz. J. Med. Biol. Res.(33):157-177. 

HAYASHI, Y., LO, N., MIYATA, H., and KITADE, O. 2007. Sex-linked genetic 
influence on caste determination in a termite. Science 318:985-987. 

HEATH, R.R and DUEBEN, B.D. 1998. Analytical and preparative gas chromatography, 
pp. 85–126, in J. G. Millar, and K. F. Haynes (eds.). Methods in Chemical 
Ecology: Chemical Methods, vol. 1. Kluwer, New York. 

HENDERSON, G. R. 1998. Primer pheromones and possible soldier caste influences on 
the evolution of sociality in lower termites, pp. 314-330, in R.K. Vander Meer, 



  Tarver et al.   

 18 

Breed MD, Espelie KE, Winston ML (eds) Pheromone Communication in Social 
Insects. Westview Press, Boulder. 

HOJO, M., MATSUMOTO, T., and MIURA, T. 2007. Cloning and expression of a 
geranylgeranyl diphosphate synthase gene: insights into the synthesis of termite 
defence secretion. Insect Mol. Biol. 16:121-131. 

HOJO, M., MORIOKA, M., MATSUMOTO, T., and MIURA, T. 2005. Identification of 
soldier caste-specific protein in the frontal gland of nasute termite Nasuitetermes 

takasagoensis (Isoptera: Termitidae). Insect Biochem. Molec. 35:347-354. 

HOWARD, R. W., and HAVERTY, M. I. 1979. Termites and juvenile hormone analogs: 
a review of methodology and observed effects. Sociobiology 4:269-278. 

HOWARD, R. W., and HAVERTY, M. I. 1981. Production of soldiers and maintenance 
of soldier proportion by laboratory experimental groups of Reticulitermes flavipes 
(Kollar) and Reticulitermes virginicus (Banks) (Isoptera: Rhinotermitidae). 
Insectes Soc. 28:32-39. 

HUGO, E., GOTTLIEB, V. K., and NUDELMAN, A,M. 1997. NMR Chemical Shifts of 
Common Laboratory Solvents as Trace Impurities. J. Org. Chem. 62 (21), 7512-
7515. 

KAISER, R., and LAMPARSKY, R. 1983. New carbonyl compounds in the high-boiling 
fraction of lavender oil. 1st communication. Helv. Chim. Acta 66:1835-1842. 

KORB, J., ROUX, E. A., and LENZ, M. 2003. Proximate factors influencing soldier 
development in the basal termite Cryptotermes secundus (Hill). Insectes Soc. 
50:299-303. 

KOSHIKAWA, S., CORNETTE, R., HOJO, M., MAEKAWA, K., MATSUMOTO, T., 
and MIURA, T. 2005. Screening of genes expressed in developing mandibles 
during soldier differentiation in the termite Hodotermopsis sjostedti. FEBS. J. 
579:1365-1370. 

LAINÉ, L. V., and WRIGHT, D. J. 2003. The life cycle of Reticulitermes spp. (Isoptera: 
Rhinotermitidae): what do we know? Bull. Entomol. Res. 93:267-378. 

LECONTE, Y., BECARD, J. M., COSTAGLIOLA, G., DE VAUBLANC, G., 
MAÂTOUI, M., CRAUSER, D., PLAETTNER, E., and SLESSOR, K. N. 2006. 
Larval salivary glands are a source of primer and releaser pheromone in honey 
bee. Naturwissenschaften 93:237-241. 

LEFEUVE, P., and BORDEREAU, C. 1984. Soldier formation regulated by a primer 
pheromone from the soldier frontal gland in a higher termite, Nasutitermes lujae. 
Proc. Natl. Acad. Sci. USA. 81:7665-7668. 

LENZ, M. 1976. The dependence of hormone effects in caste determination on external 



  Tarver et al.   

 19 

factors, pp. 73-90, in M. Lüscher (eds). Phase and Caste Determination in Insects. 
Endocrine Aspects. Pergamon Press, Oxford. 

LEONCINI, I., LE CONTE, Y., COSTAGLIOLA, G., PLETTNER, E., TOTH, A. L., 
WANG, M., HUANG, Z., BÈCARD, J.-M., CRAUSER, D., SLESSOR, K. N., 
and ROBINSON, G. E. 2004. Regulation of behavioral maturation by a primer 
pheromone production by adult worker honey bees. Pro. Natl. Acad. Sci. USA. 
101:17559-17564. 

LEWIS, J. L., and FORSCHLER, B. T. 2004. Protist communities from four castes and 
three species of Reticulitermes (Isoptera: Rhinotermitidae). Ann. Entomol. Soc. 

Am. 97:1242-1251. 

LONG, C. E., THORNE, B. L., and BREISCH, N. L. 2003. Termite colony ontogeny: a 
long-term assessment of reproductive lifespan, caste ratios and colony size in 
Reticulitermes flavipes. Bull. Entomol. Res. 93:439-445. 

LUSCHER, M. Functions of the corpora allata in the development of termites; 1963. p 
244-250. 

MAO, L., HENDERSON, G., LUI, Y., and LAINE, R. A. 2005. Formosan subterranean 
termite (Isoptera: Rhinotermitidae) soldiers regulate juvenile hormone levels and 
caste differentiation in workers. Ann. Ent. Soc. Am. 98:340-345. 

MATSUMURA, F., COPPEL, H. C., and TAI, A. 1968. Isolation and identification of 
termite trail-following pheromone. Nature 219:963-964. 

MIURA, T. 2004. Proximate mechanisms and evolution of caste polyphenism in social 
insects: From sociality to genes. Ecol. Res. 19:141-148. 

MIURA, T., and MATSUMOTO, T. 2000. Soldier morphogenesis in a nasute termite: 
discovery of a disc-like structure forming a soldier nasus. Proc. Roy. Soc. Lond. 

B. Bio. 267:1185-1189. 

MIYATA, H., FURUICHI, H., and KITADE, O. 2004. Patterns of neotenic 
differentiation in a subterranean termite, Reticulitermes speratus (Isoptera: 
Rhinotermitidae). Entomol. Sci. 7:309-314. 

NELSON, L. J., COOL, L. G., FORSCHLER, B. T., and HAVERTY, M. I. 2001. 
Correspondence of soldier defense secretion mixtures with cuticular hydrocarbon 
phenotypes for chemotaxonomy of the termite genus Reticulitermes in North 
America. J. Chem. Ecol. 27:1449-1479. 

NELSON, L. J., COOL, L. G., SOLEK, C.W., and HAVERTY, M. I. 2008. Cuticular 
hydrocarbons and soldier defense secretions of Reticulitermes in southern 
California: a critical analysis of the taxonomy on the genus in north America. J. 

Chem. Ecol.. in press. 



  Tarver et al.   

 20 

NIJHOUT, F., H. 2003. Development and evolution of adaptive polyphenisms. Evol. 

Dev. 5:9-18. 

NUTTING, W. L. 1990. Insect: Isoptera, pp. 997-1032, in D.L. Dindal (eds) Wiley and 
Sons, New York, New York. 

OKOT-KOTBER, B. M., PRESTWICH, G. D., STRAMBI, A., and STRAMBI, C. 1993. 
Changes in morphogenetic hormone titers in isolated workers of the termite 
Reticulitermes flavipes (Kollar). Gen. Comp. Endocrinol. 90:290-295. 

OKOT-KOTBER, B. M., UJVARY, I., MOLLAAGHABABA, R., SZURDOKI, F., 
MATOLCSY, G., and PRESTWICH, G. D. 1991. Physiological influence on 
fenoxycarb pro-insecticides and soldier head extracts of various termite species on 
soldier differentiation in Reticulitermes flavipes (Isoptera). Sociobiology 19:77-
89. 

PARK, Y. I., and RAINA, A. K. 2003. Factors regulating caste differentiation in the 
formosan subterranean termite with emphasis on soldier formation. Sociobiology 
41:1-12. 

PARK, Y. I., and RAINA, A. K. 2004. Juvenile hormone III titers and regulation of 
soldier caste in Coptotermes formosanus. J. Insect. Physiol. 50:561-566. 

PARK, Y. I., and RAINA, A. K. 2005. Regulation of juvenile hormone titers by soldiers 
in the Formosan subterranean termite, Coptotermes formosanus. J. Insect. 

Physiol. 51:358-391. 

PRESTWICH, G. D. 1983. Chemical systematics of termite exocrine secretions. Ann. 

Rev. Eco. Syst. 14:287-311. 

PRESTWICH, G. D. 1984. Defense mechanisms of termites. Ann. Rev. Entomol. 29:201-
232. 

QUINTANA, A., REINHARD, J., FAURE, P. U., BAGNÈRES, A.-G., MOSSIOT, G., 
and CLÉMENT, J.-L. 2003. Interspecific variation in terpenoid composition on 
defensive secretions of European Reticulitermes termites. J. Chem. Ecol. 29:639-
652. 

REINHARD, J., LACEY, M. J., IBARRA, F., SCHROEDER, F. C., KAIB, M., and 
LENZ, M. 2002. Hydroquinone: a general phagostimulating pheromone in 
termites. J. Chem. Ecol. 28:1-14. 

SCHAL, C., HOLBROOK, G. L., BACHMANN, J. A. S., and SEVALA, V. L. 1999. 
Reproductive biology of the German cockroach, Blattella germanica: juvenile 
hormone as a pleiotropic master regulator. Arch. Insect. Biochem. Physiol. 
35:405-426. 

SCHARF, M. E., BUCKSPAN, C. E., GRZYMALA, T. F., and ZHOU, X. 2007. 



  Tarver et al.   

 21 

Regulation of polyphenic differentiation in the termite Reticulitermes flavipes by 
interaction of intrinsic and extrinsic factors. J. Exp. Biol. 210:171-179. 

SCHARF, M. E., RATLIFF, C. R., WU-SCHARF, D., ZHOU, X., PITTENDRIGH, B. 
R., and BENNETT, G. W. 2005. Effects of juvenile hormone III on 
Reticulitermes flavipes: changes in hemolymph protein composition and gene 
expression. Insect Biochem. Molec. 35:207-215. 

SCHARF, M. E., RATLIFF, C. R., HOTELING, J. T., PITTENDRIGH, B. R., and 
BENNETT, G. W. 2003a. Caste differentiation responses of two sympatric 
Reticulitermes termite species to juvenile hormone homologs and synthetic 
juvenoids in two laboratory assays. Insectes Soc. 50:346-354. 

SCHARF, M. E., WU-SCHARF, D., PITTENDRIGH, B. R., and BENNETT, G. W. 
2003b. Caste- and development- associated gene expression in a lower termite. 
Genome. Biol. 4(R62). [http://genomebiology.com/2003/4/10/R62] 

SCHMELZ, E. A., ALBORN, H. T., and TUMLINSON, J. H. 2001. The influence of 
intact-plant and excised-leaf bioassay designs on volicitin- and jasmonic acid-
induced sesquiterpene volatile release in Zea mays. Planta 214:171-179. 

SCHMELZ, E. A., ENGELBERTH, J., TUMLINSON, J.H., BLOCK, A and ALBORN, 
H. T., 2004. The use of vapor phase extraction in metabolic profiling of 
phytohormones and other metabolites. Plant J. 39:790–808. 

SZALANSKI, A. L., AUSTIN, J. W., and OWENS, C. B. 2003. Identification of 
Reticulitermes spp. (Isoptera: Reticulitermatidae) from South Central United 
States by PCR-RFLP. J. Econ. Entomol. 96:1514-1519. 

TRUMAN, J. W., HIRUMA, K., ALLEE, J. P., MACWHINNIE, G. B., CHAMPLIN, D. 
T., and RIDDIFORD, L. M. 2006. Juvenile hormone is required to couple 
imaginal disc formation with nutrition in insects. Science 312:1385-1388. 

TRUMAN, J. W., and RIDDIFORD, L. M. 1999. The origins of insect metamorphosis. 
Nature 401:447-452. 

VANDER MEER R. K., BREED M. D., ESPELIE K. E, and WINSTON M. L. 1998. 
Pheromone Communication in Social Insects. Westview Press,Boulder, Colorado. 

WALLER, D. A., and LA FAGE, J. P. 1988. Environmental influence on soldier 
differentiation in Coptotermes formosanus. Insectes Soc. 35:144-152. 

WIGGLESWORTH, V. B. 1935. Functions of the corpus allatum in insects. Nature 
136:338. 

WILSON, E. O. 1971. The insect societies. Belknap Press, Cambridge.. 

WILSON, E. O., and BOSSERT, W. H. 1963. Chemical communication among animals. 



  Tarver et al.   

 22 

Recent Prog. Horm. Res. 19:673-716. 

ZALKOW, L. H., HOWARD, R. W., GELBAUM, L. T., GORDON, M. M., DEUTSCH, 
H. M., and BLUM, M. S. 1981. Chemical ecology of Reticulitermes flavipes 
(Kollar) and R. virginicus (Banks) (Rhinotermitidae): Chemistry of the soldier 
cephalic secretions. J. Chem. Ecol. 7:717-731. 

ZHOU, X., OI, F. M., and SCHARF, M. E. 2006a. Social exploitation of hexamerin: 
RNAi reveals a major caste-regulatory factor in termites. Proc. Natl. Acad. Sci. 

USA. 103:4499-4504. 

ZHOU, X., TARVER, M. R., BENNETT, G. W., OI, F. M., and SCHARF, M. E. 2006b. 
Two hexamerin genes from the termite R. flavipes: sequence, evolution, 
expression and proposed function in caste regulation. Gene 376:47-58. 

ZHOU, X., TARVER, M. R., and SCHARF, M. E. 2007. Hexamerin-based regulation of 
juvenile hormone-dependent gene expression underlies phenotypic plasticity in a 
social insect. Development 134:601-610. 

 

 



  Tarver et al.   

 23 

Fig. 1 Soldier head extract (SHE) dose-response. Worker termites were exposed to different 
soldier head equivalents (eq) or control treatments for 25 days. SHE was prepared in acetone. 
Soldier head extract alone was applied at 4 head equivalents. The number of head equivalents 
tested in combination with JH III was 0.5, 1, 2 and 4. Each treatment was replicated six times on 
three different colonies (7,8 and 9). The graphs for colonies 7,8 and 9 show cumulative avg. ± std. 
error presoldier induction through assay day 25 for each of the separate colonies. The graph at the 
bottom right shows cumulative avg. ± std. error presoldier induction for the combined colony 
responses. Letters represent significant differences at p<0.05. 
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Fig. 2 Analysis of soldier head, worker head, and pine extracts by gas chromatography. 
Gas chromatograms of acetone extracts prepared from thirty soldier (top) and worker (middle) 
heads, as well as 1.26 g of seasoned pine wood (bottom). Pine wood was seasoned and identical 
to that used to feed termite colonies.  
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Fig. 3 Previously described soldier-derived terpenes synergistically enhance JH-
dependent presoldier differentiation. Twelve previously identified soldier chemicals (mono-, 
sesqui- and di-terpenes) were tested for their ability to induce presoldier differentiation, alone and 
in combination with JH III. Treatments included; negative controls (300 µl acetone), SHE (4 
soldier head equivalents), humulene, β-farnesene, cadinene, geranyl linalool, linalool, farnesol, β-
pinene, limonene, nootkatone, nerolidol, α-pinene, and geranyl geraniol. All soldier head 
chemicals were tested at 50 µg / dish, with and without JH III (150 µg). Each treatment was 
replicated three times. The graph shows cumulative avg. ± std. error presoldier induction through 
assay day 25. Letters represent significant differences at p<0.05. 
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Fig. S1. Effects of soldier head extracts prepared in DCM on four R. flavipes colonies. 
Workers were isolated from colonies and exposed to five different treatments for 25 days. Soldier 
head extracts (SHE) were obtained by homogenizing soldier heads in methylene chloride (DCM – 
MeCl2). The graph shows cumulative avg. ± std. error presoldier induction through assay day 25. 
Groups of bars with different letters indicate significant differences at p<0.05. 
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Fig. S2.  Analysis of soldier head extracts by mass spectrometry. Dominant compounds 
identified by gas chromatography were analyzed using mass spectrometry and NMR and were 
identified as (A) γ-cadinene and (B) γ-cadinenal. Spectral data: (A) γ-cadinene m/z (rel. int.): 
204 (17), 189 (3), 176 (2), 161 (100), 148 (6), 133 (30), 119 (41), 105 (54), 91 (47), 79 (31), 67 
(13), 55 (14), 41 (28); (B) γ-cadinenal m/z (rel. int.): 218 (19), 203 (4), 189 (4), 175 (33), 157 
(49), 147 (48), 133 (61), 119 (26), 105 (72), 91 (100), 79 (63), 67 (30), 55 (27), 41 (64). 
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