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Abstract. In this study, an efficient spectral similarityethod referred to as Weighted Chebyshev Distance§ywV
method is introduced for supervised classificatbmyperspectral imagery (HSI) and target detecéipplications.
The WCD is based on a simple spectral similarityeoladecision rule using limited amount of referedata. The
estimation of upper and lower spectral boundariespectral signatures for all classes across sgeloands is
referred to as a vector tunnel (VT). To obtain tieéerence information, the training signatures previded
randomly from existing data for a known class. Affietermination of the parameters of the WCD atfariwith
the training set, classification or detection poges are accomplished at each pixel. The comparati
performances of the algorithms are tested undéowsicases.

The decision criterion for classification of an utpvector is based on choosing its class corredpgn the
narrowest VT that the input vector fits in to. Thésalso shown to be approximated by the WCD inciwhhe
weights are chosen as an inverse power of the glzert standard deviation per spectral band. Inprder
experiments, the WCD classifier is compared with Euclidian Distance (ED) classifier and the Smgctmgle
Map (SAM) classifier.

The WCD algorithm is also used for HSI target dédecpurpose. Target detection problem is consilleea two-
class classification problem. The WCD is charaztstionly by the target class spectral informatibnen, this

method is compared with ED, SAM, Spectral MatchégiF(SMF), Adaptive Cosine Estimator (ACE) andpgart

Vector Machine (SVM) algorithms. During these saglithreshold levels are evaluated based on theiRec
Operating Characteristic Curves (ROC).

Keywords: Hyperspectral Images, Supervised Classificatioarg@&t Detection, Weighted Chebyshev Distance
Algorithm

1. I ntroduction

Data received from satellite or airborne sensors may bezaubly extract spatial information of
surface materials. One of the major problems in remote gpissihe lack of sufficient spatial

information corresponding to the investigated material. To overtbim@roblem, hyperspectral

remote sensors have been developed to record the image at aulaniger of wavelengths. The

reflectance spectra obtained in this way are called spetty@hture or spectra, and uniquely
characterize materials [1-2].

There are a big variety of potential civilian and military éggtlons for HSI remote sensing.
Among these applications, the main objective of target detectionsisarch the pixels in a HSI
for the existence of a specific material. For this purposemébasured hyperspectral data is
compared with the reflectance spectra of the material denigedffeld work or laboratory study
to determine whether the given input scene contains a target [B-4}e have no a priori
information about targets, the detection approach can be based on sefcipimgls whose
spectral content is significantly different from the spectral content dfablkeground [5].

The other major topic involving pixel labeling in a hyperspéateda cube is classification. In

supervised classification, measured hyperspectral testirgislatompared with the reference
reflectance spectra (spectral signature) of each ctagietermine whether the input scene
contains similar spectral characteristics of specifiedselaslf a priori information about classes
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does not exist, unsupervised classification usually in the form lfsteang method is utilized
to determine regions which have similar spectral characteristics [6-7].

Among a number of distance measures [8-10], there are two wickycosmputationally simple
deterministic metrics for identification of spectral simtha between unknown spectra and
desired spectra. They are ED measure and SAM measure.

Due to inherent variations present in a class as well asre®f external disturbance factors in
the recorded image, spectral signatures measured from sarhfilessame class have associated
random variations. This leads to detection or classification dhigasitbased on statistical
analysis. In statistical decision procedures, the normally distdbprtobabilistic model is widely
used. Here the spectral signatures of all classes are mosligtemultivariate normal vectors.
The maximum likelihood (ML) classification algorithm is oftesed to assign an unknown pixel
vector into a class. This decision is made by choosing the ttasshas the maximum
probability. In the Gaussian maximum likelihood (GML) classjftae natural logarithm of the
probability density function leads to the statistical distancasome known as the Mahalanobis
Distance [10]. It plays a major role in target detection and classiicalgorithms.

For target detection applications, background classes considteséni types of materials. So,
target detection algorithms are different from classificatdgorithms by way of modeling
background representations. If the target and background classeshbasame covariance
matrix, the quadratic detector becomes Fisher’s Linear Dis@irth Function, or the SMF [5].
After performing minimum total energy based optimization, norredlizMF becomes
Constrained Energy Minimization (CEM) filter [10]. Other detectialgorithms have been
proposed based on statistical analysis in [11-14]. Most of thesdaistace optimal when the
target and background classes follow multivariate normal distisitivith the same covariance
matrix. In practical applications, these quantities are undl@jland have to be estimated from
existing data. Unfortunately, there is usually not sufficieatadto determine the covariance
matrix of the target, especially with hyperspectral data. Hente cdae covariance matrix and a
target spectral signature from a library or the mean of & sinaber of known target pixels is
used. The SMF is the most commonly used method where the data cubeismesually
removed from the target and test pixel spectra.

In Adaptive SMF (ASMF), the background clutter statisticsdapaed locally by using a dual
window centered at each pixel. The inner window is approximatelgah®ee size as the target.
The outer window is larger and represents the local backgroungrcliihe background

covariance matrix is obtained from the pixels within the outgiore In this way, the spectral
matched filter is adapted for every pixel.

The performance of SMF that uses global background cluttestatsithas been found to be
worse than ASMF that uses the local clutter statistics arduntest pixels [15-16]. On the other
hand, the ASMF method is very slow compared to the SMF method bechtise locally
calculated background covariance matrix. In addition, since avedlasmall number of data
points representing background information around test pixels axisgularization process is
needed to make the background covariance matrix more stable. Mgordaeeto the inner
window, it is not suitable for targets which have unpredictableaszeshape like forest, mine,
crop, and in applications such as disturbed soil, liquid leakage and gas exposure detction, e

For sub-pixel targets, Kelly introduced a Generalized LikelihodibR&LR) based detector by
using unstructured background model [17]. ACE, ASMF detectors and dtiesr versions,
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Matched Subspace Detectors (MSDs) and Adaptive Subspace Detgs8ids) are also
introduced [18-20]. By using structured background model, the orthogonal sulpsppestor
(OSP) methods are widely employed [12, 21-22].

A new approach called kernel method has recently been used ifficdéies, target detection,
anomaly detection, and change detection with hyperspectrajesn$3-26]. The kernel
approach is based on mapping the data using a non-linear transfornmtom higher
dimensional space, and then searching for a linear separatiocesbetaveen the two classes. In
this way, non-linear border surfaces in the original data space can be traastoranhyperplane
in a higher dimensional space. Replacing inner products by Mercer Kernébfuncter product
which can be computed in advance in terms of the input data is a ishegobehind what is
called the 'kernel trick' [25, 27].

The best known kernel method is SVM, especially due to itsfaettisy results in high
dimensional feature spaces [26, 28]. The SVM approach consists ofdfitiden optimal
hyperplane that maximizes the distance between the closeshg samples and the separating
hyperplane. In a binary classification problem, the aim is to @ldbe data belonging to class
+1 lie on one side of the separating hyperplane and all the dataglre) to class -1 lie on the
other side with an optimal distance called the margin. Type afekdunction affects the
discriminant function. Some popular kernel functions are linear, polyhofaussian radial
basis function (GRBF) and sigmoid kernels. The GRBF kernel is ofte most popular one
used in the literature.

In this study, an efficient spectral similarity method caM@€D method for the supervised
classification and detection of hyperspectral imagery isdnited. The estimation of upper and
lower spectral boundaries of spectral signatures for referelasses across spectral bands is
referred to as a VT. Detection or classification proceduaase carried out with VT parameters
obtained from specifications of class references. In theafdearning with training data having
labeled training vectors, this is also shown to be equivalent to ¢hefuke WCD in which the
weights are chosen as a power of the standard deviation per spectral band.

2 WCDALGORITHMSFOR TARGET DETECTION AND CLASSIFICATION

Although various statistical detection and classification algmst have been developed,
insufficient training data and high dimensionality of spectra redhee performance and
effectiveness of these algorithms [29]. High-dimensional vectocesphave some unusual
characteristics such as the Hughes effect [30]. Furthernhayk, dimensionality may cause
increasing the operation cost and reducing the separabilityasdad [31]. Some methods are
developed to avoid increasing computation time and poor separation nggsintim high
dimensionality of hyperspectral data. One simple and effectayeisvto reduce the number of
dimensions without sacrificing valuable information. This processailed feature extraction
[32-34]. If not done properly, a reduction in the number of features ethyce discrimination
power and lower the accuracy of the resulting recognition system.

Although SVM may perform well in high dimensional spaces, a numbessokes such as
training time, proper choice of parameters and kernel functions@lfechallenging [35].
Furthermore, in real applications, the stated assumptions during optimizatiort apgimal.

It is clear from above evaluation that the amount of training tegeired for nonparametric
methods rises with increase of dimensionality. In the proposed WEMDonh the spectral
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signatures of all known pixels are considered in the vector spadethe boundaries of the
known spectral signatures are considered. This bounded region is tdedeveator tunnel due
to its tunnellike shape. The prediction of upper and lower spectral boesidzriall known
classes spectral signatures constitutes the basic considdestding to the proposed WCD
target detection and classification algorithms.

In spectral similarity-based methods, input test pixels can bedeled asx =as+n where

X =(%,%,0Mx )" is the spectral sample of the L-band test piet(s,s,,[IMs )" is the
reference spectral signatueels a scaling constant, ands an L-dimensional additive parameter
vector depending on a number of factors such as the illuminatioh levihis study,x is
normalized by the inverse of the maximum value among the elerokite training vectors
when ground truth is available.

When the length of vectossands are linearly scaled by the constanthe ED is also scaled by
a while the SAM remains the same. Consequently, there is a bigiation between SAM and
the reflectance spectra whereas ED is highly sensitivduimirnation level. As a result, the
variation ofa affects ED while variation af affects SAM substantially [13].

The distance measure used in the proposed WCD algorithm carbathcthe total changes of
illumination level and shape of spectra. The WCD algorithm is baise¢le estimation of upper
and lower spectral boundaries of all class spectral signataress whole spectral bands. Entire
pixel vectors from a known class are used to estimate the nawalbaries containing all
possible pixels from the target class. We name this bounded regi¥i @ue to tunnel like
shape of the plots. This leads to the use of a special WCD beawveémput vector to be
classified and the mean vector of a target class. The minimumdsstance decides the proper
class of the input vector.

2.1 WCD Method for Classification Application
The L-dimensional mean vectq, = (x,,,u,,,000u, )" and the standard deviation vector
6, =(0,,,0,,,0Mo, )" of thei class are estimated from the GT data [36-41]. Using these
statistical parameters and the VT scaling paranteté¢o be discussed, the initial decision rule is
based on whether the test pixel vecxor ()g,XZ,EDHJXL)T is in the VT region given as

po—tr Btd, < x<p, +tr, Gtd, i=1,21I[I,c (1)
where subscripit refers to class number. ¥ is in thei" class, then each pixel component must
satisfy (1).
In experimental work, we discovered that higher classificatiaruracy is achievable if the
standard deviation vector is further generalized. Hence, the L-donehg" class generalized
standard deviation vector is defined by

sd =oi'f’j = ',Or alf’z, [y qﬁ Y i=1, 2,1 ¢ )

wheresP. denotes the vector obtained by generatingptttepower of each component of the

standard deviation vector. The value of p affects the performascéis substantially, and the
procedure for the estimation of its best value is discussed in Section 3.
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Writing the upper and lower decision boundaries in (1) BB K =p, +tr, (d, and

LB, =p, —tr, [stdp, respectively, the classification rule can be stated as

min tr;, subjectta LB, < x < HB, i =1,2Il,c (3)

By increasingtr, each VT can be broadened so tRaties totally inside the corresponding VT.
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Figure 1. (a) VTs for different values of , (b) optimal VT defined by WCE,(x) shown by green curve.

Thus, VT which hosts the test pixel vectorwith the smallestr, is decided to be the right VT

and X is assigned to the class to which that VT belongs. In praatigdémentation, for each
class, the optimization of; can be achieved as follows: the value ©f is initialized with a

small value and is increased by small increments until (4atisfied. Figure 1.(a) shows how
VTs are generated for nonzeto values around a class signature (red line in the figure). This

procedure is repeated for all classes. We observe that mintm@approximately corresponds to
the narrowest VT (in terms offr;) according to (1). Hence, we choose this as the decision
criterion: a pixel is assigned to théh class which has the minimumn value representing the

narrowest VT. In this way, all pixels in the image are awsigas being a member of only one
class.

Writing (1) in another format and making proper arrangements shaivthe VT method is
equivalent to minimizing WCD. We start by writing (1) as

—tr, 8d, < x-p, <tr, &d i=1,2100,c (4)

Eq (4) must be satisfied for each entry of the vecsbds,, X and p,. Therefore, we can
express the requirement in (4) for each entry as

1
_tri S—p(Xj—pij)Stri
i

j=1,210,L (5)

1
O__p(xj _ﬂij)

ij

=t j=1,210[,L (6)




is obtained. If (6) is satisfied for maximum of left hand sitentit is satisfied for ajl Thus, we
can combine the condition for @lin a single statement as

1
_p(xj_:uij)Stri

o

max
1< j<L

j =1, 2,[[[’,|_ (7)
For given two L-dimensional vectob$ andy , the weighted,,, or the WCD, is defined by [21]

d..(x,y) =||diag (w; )(x =y)|_ = max (w|x, - y|) j=12100,L @8

1<js<L

where diag (w;) is a diagonal matrix whose diagonal entries are weightswhich multiply

j" entry of vectorx -y . By comparing (7) and (8), we observe that the left-hand side of (7) is the
weighted Chebyshev distangeen by

diag(a—ﬁ)(x 1)

1

ni(x):di’m(x,ui)z i =1, 2, [[[,c (9)

0

Choosing the smallestr, among the classes to decide the class chosen corresponds
approximately to the final decision criterion given by

Class(x) = arg imin{ni )} i=1,210l,c (10)

An example of this procedure is illustrated in Figure 1. Theergreurve based om,(X)
computed by (9) shows the chosen VT.

In summary, there are three steps of the proposed WCD algorithm as follows:

1) The mean and standard deviation vectors of the classes are ealdatising the training
set.

2) The WCD measures of the test pixels are calculated for all classemys
3) Each test pixel is labeled to a class based on the minimum WCD measure acooftig t

A related supervised classification algorithm is the paeglpked (PP) method [36-37]. The PP
method does not use parameters as in the WCD method. The usegbfedeChebyshev
distance in terms of the inverpah power of feature standard deviations and optimizatign of
constitute the most important differences between the WCD and PP methods.

2.2WCD Method for Target Detection Application
The VT consists of the L-dimensional target class mean v@ctofu,, u,, M0, )" and the L-

dimensional target class standard deviation vestsr(c,,0,,(IJc, )" estimated from the data
[36-41]. Using these statistical parameters and the Constaat Aldrm Rate (CFAR) threshold
parameter] , the decision rule is based on whether the pixel is in the target VT region as

p-ne<xs<p+nlé (11)



meaning that each target pixel component must satisfy (11). foresrd the upper and lower
decision boundaries are calculatedtd8 = p +77 [6 andLB =p -7 [6, the target VT region
can be stated as

LB < x < HB (12)

The decision boundary generated by (12) is based on the L-dimensiontlthd pixel value

lies between low and high tunnel boundaries for all bands, it is adceptdarget. If the
unknown pixel value does not satisfy the criteria, it is assigndtietdackground category.
Writing (2) in another form and making proper arrangements show thieatvVT can be

characterized as a WCD. We start by writing (11) as

-ne<x-psnis (13)
Eq (13) must be satisfied for each entry of the veetprs and p . Therefore, we can express
the requirement in (13) for each entry as
1 :
—n s —(X-u)<sn i=1,21I[,L (14)

wherei refers to the th band number. (14) can also be written as

<n i=1,2[[[,L (15)

O_L(Xi_:ui)

If (15) is satisfied for the maximum of the left-hand sideentit is satisfied for all. Thus, we
can combine the condition for @lin a single statement as

I )‘ i=1,2[0[,L (16)
l<I<L 0'

For given two L-dimensional vector¥ and Y, the weightedl, distance, or the WCD, is
defined by [40]

d,(x,y)=|diag (w, )(x —y)|, = max (w][x - y|) (17)

1<islL

where diag(w ) is the diagonal matrix whose diagonal entries are weights By comparing
(16) and (17), we observe that the left-hand side of (16) is the A/C),

diag (= )(x - p)

d,(x) =d,(x,p)= i=12[[[,L (18)

Y

Using d.(x) distance measure, the weighted Chebyshev decision rule becomes
d.(x) <7 i =1,2[[[,L (19)

Thus, a test pixel is classified as belonging to the tanges if (19) is satisfied. The threshold
parameter; can be estimated with the aid of ROC curves as explained mettt section. It can

also be selected according to the detection and false adde® lby the user, such as max
detection rate or min false alarm rate.



3 EXPERIMENTAL RESULTSAND PERFORMANCE EVALUATION

The three hyperspectral images used in the experiments rdx@e Visible/ Infrared Imaging
Spectrometer (AVIRIS) Indiana’'s Pine, Botswana and Kennedy Space (Bt

AVIRIS Indiana's Pine

The AVIRIS data was acquired by the National Aeronautics andeSpdministration (NASA)
on 12 June 1992. It consists of 145 by 145 pixels (20m spatial resolutidn?2® spectral
bands, with about two-thirds agriculture, and one-third forest or otherdstigd vegetation. A
total of 16 cover classes are identified in the ground truth datder removing the absorption
and low-SNR bands, 180 remaining spectral channels were used for the study [42].

Botswana Hyperion (BOTS)

Hyperion data with 9 identified classes of complex natural vagetavere acquired over the
Okavango Delta, Botswana, in May 2001 [43]. The general class grouprigde seasonal
swamps, occasional swamps, and woodlands. Signatures of severa$ @essspectrally
overlapped, typically resulting in poor classification accuraciéier removing water
absorption, noisy, and overlapping spectral bands, 145 bands were used dticatias
experiments. The embedding and classification results are reportedSaiadkes.

Kennedy Space Center (KSC)

Airborne hyperspectral data were acquired by NASA AVIB&asor at 18-m spatial resolution
over KSC during March 1996 [43]. Noisy and water absorption bands wem/ed, leaving
176 features for 13 wetland and upland classes of interest. Cabbagégmaimock (c3) and
broad leaf/oak hammock (c6) are upland trees; willow swamp (e2yiwood swamp (c7),
graminoid marsh (c8), and spartina marsh (c9) are trees arsgglaswetlands. Their spectral
signatures are mixed and often exhibit only subtle differendas.r&sults for all 13 classes
including these “difficult” classes are reported for the embedding arslfdagon experiments.

Table 1. AVIRIS, BOTS and KSC data sets.

AVIRIS BOTS KSC

No Target Classes Size Target Classes | Size Target Classes Size
cl | Alfalfa 54 Water 15¢€ Scruk 761
c2 | Corr-no till 143¢ Floocplain 22¢ Willow swamg 243
c3 | Corr-min till 834 Ripariar 237 Cabbage ham 25¢€
c4 | Corr 234 Firesca 17¢ Cabbage pal 252
c5 | Grass/Pas 497 Island interio 18< Slash pin 161
c6 | Grass/Tree 747 Woodland 19¢ Oak 22¢
c7 | Grass/Past. Movt 26 Sevanni 162 Hardwood swam 10&
c8 | Hay-Windowec 48¢ Short mopanr 124 Graminoid mars 431
c9 | Oats 20 Exposed soi 111 Spartina mars 52C
c1C | Soybean-no till 96¢ Cattail mars 404
cl1 | Soybean-min till 246¢ Salt mars 41¢
clz | Soybean-cleantill 614 Mud flats 502
cl: | Whea 212 Wate 927
cl4 | Wood: 129¢

clt | Bldg-Gras-Tree 38C

cl€ | Stone Steel Tow 95

Classes and sample sizes for every data set are presented in Table 1.



3.1 Classification Results

The labeled classes of the AVIRIS, BOTS and KSC HSI daedafided in to three equal

portions. The means of the first portion spectral signatures a&@ as training spectral

signatures for classes. The second portion spectral signatenesear as validation data, and the
last portion spectral signatures are used for testing purpgoeasidering the various power of

standard deviation (p) in (1), the WCD method is tested by usingefieeence, test and

validation data given in Table 2.

Table 2. AVIRIS, BOTS and KSC training, testing aradidation data sets.

Amount of data

AVIRIS BOTS KSC
Class | Ref | Test Val Class | Ref | Test Val Class | Ref | Test | Val
cl 18 18 18 cl 52 54 52 cl 252 | 25t | 25%
c3 27¢ | 27¢ 27¢ c2 76 76 76 c2 81 81 81
c6 24¢ | 24¢ 24¢ c3 79 79 79 c3 85 86 85
c8 16% | 162 162 c4 59 60 59 c5 53 55 53
c9 6 8 6 c5 61 61 61 c7 35 35 35
cls 70 72 70 c7 54 54 54 c9 17z | 174 | 17z
cld | 431 | 43z 431 c8 41 42 41 cl] 13¢ | 141 | 13¢
cle 31 33 31 c9 37 37 37 clz 167 | 16¢ | 167
clz | 30€| 30¢ | 30¢

According to the results given in Figure 2, the best performanes ase obtained with 0.5-0.8
values of p. In the experimental study, p was selected as Benasthe best value of three data.
After this determination, the test and validation pixels in thage were combined to generate a
larger testing set.
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Figure 2. The variation of classification accuraeferred to as performances
with respect to the power of standard devic denoted by .

The classification performance results of the WCD method ve#ipect to the investigated
classes are compared with the SAM and ED methods quantitativellyigure 3. The
performance values are defined as the percentage of correct lalmlerfprlass.

According to the results shown in Figure 3, the performance of OB Wethod is better since
the WCD performances of the classes individually are betterthiea8BAM and ED methods for
most of the classes. Considering the total classificationtse@uerall performances) for the
SAM, ED and WCD methods respectively, the WCD method is considebektigr than SAM
and ED methods in the experiments performed.
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Figure 3. The performance results of the SAM, EB WCD using
(a) AVIRIS, (b) BOTS and (c) KSC data.

3.2 Target Detection Results

For investigation with the AVIRIS, BOTS and KSC data sets, reptasve %2, %5, %10 and
%20 of target pixels (min 10 samples) were selected for eash ak training set. The means of
the pixel spectra in the training set were used as targdrapggnatures, and all pixels in the
image were utilized to determine classification accuracy.therED, SAM, SMF and ACE
methods, corresponding equations are used respectively. Whole data cubed igluring
estimation of the global background covariance matrix for the SMFACE. All pixels in the
image were checked to decide if the ED, SAM, SMF, ACE and WtBsures from the target
signatures were smaller/bigger than their respective thresholds (TR)

In the experimental study, the results of the WCD detectse wompared with the ED, SAM,
SMF, ACE and SVM detectors quantitatively by the ROC curveée ROC curves describe
True Positive Rate (TPR) as a function of False Positive &R). To visualize the tradeoff
between TPR representing the Detection Rate (DR) and FiPRirsg for the False Alarm Rate
(FAR), a ROC curve can be constructed by plotting TPR versBsféiPa range of TR. Due to a
big amount of TR values for all cases, it is redundant to plpoabible ROC curves. Hence, the
estimation of the area under the ROC curve corresponding to avesmgtiah rate (ADR) is
used for capturing the detector performance [44]. One of thehtbice values can be used to
determine optimal detector performance according to user preferenceR afr FPR.

The example of optimal TR values and corresponding FPR's by R€curves for the data
sets corresponding to %90-91 TPR is given in Table 3.

10



Table 3 The example of optimal TR values and FPRdyg ROC curves corresponding to %90-91 TPR.

Target AVIRIS BOTS KSC

Class | FPR(%) TPR(%) TR |FPR(%) TPR(%) TR |FPR(%) TPR(%) TR
cl 3,07 90,91 4,47 0,00 90,54 7,64 6,27 90,88 2,90
c2 28,72 90,94 2,39 3,11 90,37 3,65 11,80 90,13 933
c3 29,21 90,81 2,52 10,20 90,31 2,37 3,55 90,24 928
c4 40,71 90,05 2,43 1,36 90,48 3,07 12,74 90,08 143
c5 25,18 90,60 2,39 2,36 90,17 3,36 14,04 90,07 126
c6 11,83 91,37 269 21,29 91,01 1,97 18,53 90,87 16 3,
c7 1,31 93,75 4,41 2,68 90,13 1,81 2,66 90,53 2,67
c8 0,99 91,59 3,12 5,77 90,35 3,7p 20,69 90,02 2,45
c9 2,43 90,00 3,01 9,60 90,10 1,87 5,44 90,39 2,67
c10 24,89 91,04 2,43 16,87 90,10 2,85
cl1 24,16 90,14 2,71 1,17 90,22 3,00
c12 35,84 90,60 2,35 14,93 90,06 2,04
c13 0,54 90,58 3,69 0,00 90,42 2,67
cl4 11,49 90,64 3,27
c15 39,10 90,64 2,21
c16 3,55 90,59 4,37

The performance results of the AVIRIS, BOTS and KSC dataasetgiven in Fig.4 and Fig.5 In
these figures, performance is defined as the area under thec®R@& According to Fig.4, the
WCD method is better than the ED, SAM, SMF and ACE methods fet aidhe classes when
using a small number of samples.
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Fig.4 The SMF, ACE, ED, SAM and WCD % performancéthe AVIRIS (a), BOTS (b) and KSC (c)
data when using %2 training set.

It is also observed in Fig.5 that the SMF and ACE methods are beroefatively better with
good representative reference spectra. It is clear fromesust that the SMF and ACE are very
dependent on the amount of reference data for representative Ispgotture. On the contrary,
the more stable results are obtained from the ED, SAM and WQGBod®by using %2, %5,
%10 and %20 training sets.
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Fig.5 The comparison of the SMF, AMF, ED, SAM an€/ performances with %2, %5, %10 and
%20 training sets for AVIRIS, BOTS and KSC.

The results of the SMF and ACE are becoming better for stasses using good representative
data, whereas the WCD method may be preferable in most case&ledogs easy
implementation and shorter computation times shown in Fig.6.
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Fig.6 The computation time of the ED, SAM, SMF, AG@id WCD methods with AVIRIS data.
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Next the SVM method was compared with the WCD method in sewesgls. For
implementation of the SVM method in C, SV software was used [45].

Table 4. CB and SB combinations of AVIRIS, BOTS &®IC data based on chosen classes.

Target AVIRIS BOTS KSC

Class CB SB CB SB CB SB
cl 2,5,11, 14, 16 2,11 3,5,6,8 3,16 2,48,40,12 2,6,12
c2 8,5,11,14,16 11, 14 3,56,8 1,|6 1,3,9,11 3,7,11
c3 8,5,11,14,16 11, 14 2,5,6,8 2,|6 1,59,711,13 3,7,11
c4 8,5,11,14,16 11, 14 2,5,6,8 1,3 3,9,11,13 3,7,11
c5 2,8,11,14,16 14,14 2,4,6,8 1,9 2,89, 11 3,7,11
c6 2,8,11,14,16 13, 14 24,5,8 1,14 1,3,30,12 3,7,11
c7 2,8,11, 14, 16 2,11 2,4,6,8 1,4 1,3,31,13 2,3,8
c8 2,5,11, 14, 16 3,11 1,3,4,6 1,13 3,%,21,13 3,7,11
c9 2,8,11,14,16 13, 14 2,4,6,8 1,4 2,4,40,12 3,711
c10 2,5,8, 14,16 2,16 3,5,4,7,9,11 3, 5|
cll 2,5,8, 14,16 2,16 1,3,5,7,9,10 3 5
cl2 2,5,8, 14,16 2,16 3,5,7,9,11,13 ,B 5
c13 2,8,11, 14, 16 4,12 1,357,911 31
cl4 2,5,8,11,16 2,5
cl5 2,8,11,14,16 14, 14
cl6 2,5,8,11,14 6,9

During the implementation of the SVM, one of the classes is selected as tartjatee different
types of background representations were considered. The firstivaasthe full background
(FB) with all classes, the second case was the complex lbackh(CB) representation, and the
last one was the simple background (SB) representation as ghdwahle 4. 30 reference pixels
(10 pixels for classes less than 50 pixels) were randomly chasertafget and every
corresponding class of background.

100 -
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Fig.7 The WCD and SVM % performances for the AVIR&}, BOTS (b) and KSC
(c) data when using FB, CB and SB.
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With the full and complex representation of background classesy loettection performances
were obtained as shown in Fig.7. With the simple representation ofjyrbackl classes,

substantially different performance results were obtained. Aouprto the results, the best
detection rates were obtained with the SVM method using FBlwsdrdted in Fig.4. The

performance of the WCD method is slightly better than the Sivkhe case of CB for most
classes. With the SB representation, the WCD method is much theiteSVM for all classes.

From this result, it is observed that the SVM method is highigigee to background selection
whereas the WCD method is much more robust with different typbaakiground because it is
using only target information during the detection process.

4. CONCLUSIONS

In this study, an efficient and computationally fast spectrailaity method called WCD
algorithm is introduced for HSI supervised classification andetadgtection applications.
Estimation of upper and lower spectral boundaries of all targes dpectral signatures across
spectral bands constitutes the basic consideration underlying tie algGrithm. The data sets
used were the AVIRIS, BOTS and KSC data.

The VT concept leads to the use of a WCD measure per clask ishdefined in terms of the
generalized class standard deviation. The minimum Chebyshev distacides the chosen class
of an input pixel vector. The method was investigated in supervisesificlaison of labeled
hyperspectral image data in comparison to SAM and ED methods. olbserved from the
classification results that the performances of the WCEhodgewith the AVIRIS, BOTS and
KSC data are better than the classification results oS and ED methods for most of the
classes.

In addition, the resulting decision rule is that a test pixel belemdjse target class if its WCD
measure is less than a CFAR threshold chosen by the user. T@squmoalgorithm was
investigated with AVIRIS, BOTS and KSC data. The detection pmdoce results were
compared with the ED, SAM, SMF, ACE and radial basis SVM detecfoantitatively by the
areas under the ROC curves. According to these results, thenpantms of the WCD algorithm
are better than the ED, SAM, SMF and ACE for most of thesekin case of limited amount of
reference data. The SMF and ACE methods are considerably depemdeapresentative
reference data, and the SVM is highly sensitive to differentdraakd representation whereas
the WCD is much more stable and robust in all cases.

For classification purpose, the proposed technique is not dependentpoariastatistical
information about classes to a high degree except for mean s/emor feature standard
deviations, or dimensional reduction. For target detection applicatioissnot dependent on
background reference data, second order statistical informabiaunt éarget and background
except for target feature standard deviations estimated frorirdinéng data, or dimensional
reduction.

Simplicity, high speed of computation, stability in the case ofedsing numbers of reference
sample data, and robustness against different types of backgrounaheakéCD algorithm
attractive for use in high dimensional target detection applicatespecially with targets which
are unpredictable in size and shape. It is also a computatiorfatigrdéf method of classifying
hyperspectral images with high accuracy.
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