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Abstract. In this study, an efficient spectral similarity method referred to as Weighted Chebyshev Distance (WCD) 
method is introduced for supervised classification of hyperspectral imagery (HSI) and target detection applications. 
The WCD is based on a simple spectral similarity based decision rule using limited amount of reference data. The 
estimation of upper and lower spectral boundaries of spectral signatures for all classes across spectral bands is 
referred to as a vector tunnel (VT). To obtain the reference information, the training signatures are provided 
randomly from existing data for a known class. After determination of the parameters of the WCD algorithm with 
the training set, classification or detection procedures are accomplished at each pixel. The comparative 
performances of the algorithms are tested under various cases. 

The decision criterion for classification of an input vector is based on choosing its class corresponding to the 
narrowest VT that the input vector fits in to. This is also shown to be approximated by the WCD in which the 
weights are chosen as an inverse power of the generalized standard deviation per spectral band. In computer 
experiments, the WCD classifier is compared with the Euclidian Distance (ED) classifier and the Spectral Angle 
Map (SAM) classifier. 

The WCD algorithm is also used for HSI target detection purpose. Target detection problem is considered as a two-
class classification problem. The WCD is characterized only by the target class spectral information. Then, this 
method is compared with ED, SAM, Spectral Matched Filter (SMF), Adaptive Cosine Estimator (ACE) and Support 
Vector Machine (SVM) algorithms. During these studies, threshold levels are evaluated based on the Receiver 
Operating Characteristic Curves (ROC).  
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1. Introduction 

Data received from satellite or airborne sensors may be analyzed to extract spatial information of 
surface materials. One of the major problems in remote sensing is the lack of sufficient spatial 
information corresponding to the investigated material. To overcome this problem, hyperspectral 
remote sensors have been developed to record the image at a large number of wavelengths. The 
reflectance spectra obtained in this way are called spectral signature or spectra, and uniquely 
characterize materials [1-2]. 

There are a big variety of potential civilian and military applications for HSI remote sensing. 
Among these applications, the main objective of target detection is to search the pixels in a HSI 
for the existence of a specific material. For this purpose, the measured hyperspectral data is 
compared with the reflectance spectra of the material derived from field work or laboratory study 
to determine whether the given input scene contains a target [3-4].  If we have no a priori 
information about targets, the detection approach can be based on searching for pixels whose 
spectral content is significantly different from the spectral content of the background [5]. 

The other major topic involving pixel labeling in a hyperspectral data cube is classification. In 
supervised classification, measured hyperspectral testing data is compared with the reference 
reflectance spectra (spectral signature) of each class to determine whether the input scene 
contains similar spectral characteristics of specified classes. If a priori information about classes 
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does not exist, unsupervised classification usually in the form of a clustering method is utilized 
to determine regions which have similar spectral characteristics [6-7]. 

Among a number of distance measures [8-10], there are two widely used computationally simple 
deterministic metrics for identification of spectral similarity between unknown spectra and 
desired spectra. They are ED measure and SAM measure.  

Due to inherent variations present in a class as well as presence of external disturbance factors in 
the recorded image, spectral signatures measured from samples of the same class have associated 
random variations. This leads to detection or classification algorithms based on statistical 
analysis. In statistical decision procedures, the normally distributed probabilistic model is widely 
used. Here the spectral signatures of all classes are modeled with multivariate normal vectors. 
The maximum likelihood (ML) classification algorithm is often used to assign an unknown pixel 
vector into a class. This decision is made by choosing the class that has the maximum 
probability.  In the Gaussian maximum likelihood (GML) classifier, the natural logarithm of the 
probability density function leads to the statistical distance measure known as the Mahalanobis 
Distance [10]. It plays a major role in target detection and classification algorithms.  

For target detection applications, background classes consist of different types of materials. So, 
target detection algorithms are different from classification algorithms by way of modeling 
background representations. If the target and background classes have the same covariance 
matrix, the quadratic detector becomes Fisher’s Linear Discriminant Function, or the SMF [5]. 
After performing minimum total energy based optimization, normalized MF becomes 
Constrained Energy Minimization (CEM) filter [10]. Other detection algorithms have been 
proposed based on statistical analysis in [11-14]. Most of these detectors are optimal when the 
target and background classes follow multivariate normal distributions with the same covariance 
matrix. In practical applications, these quantities are unavailable, and have to be estimated from 
existing data. Unfortunately, there is usually not sufficient data to determine the covariance 
matrix of the target, especially with hyperspectral data. Hence, data cube covariance matrix and a 
target spectral signature from a library or the mean of a small number of known target pixels is 
used. The SMF is the most commonly used method where the data cube mean is usually 
removed from the target and test pixel spectra.  

In Adaptive SMF (ASMF), the background clutter statistics is adapted locally by using a dual 
window centered at each pixel. The inner window is approximately the same size as the target. 
The outer window is larger and represents the local background clutter. The background 
covariance matrix is obtained from the pixels within the outer region. In this way, the spectral 
matched filter is adapted for every pixel.  

The performance of SMF that uses global background clutter statistics has been found to be 
worse than ASMF that uses the local clutter statistics around the test pixels [15-16]. On the other 
hand, the ASMF method is very slow compared to the SMF method because of the locally 
calculated background covariance matrix. In addition, since a relatively small number of data 
points representing background information around test pixels exist, a regularization process is 
needed to make the background covariance matrix more stable. Moreover, due to the inner 
window, it is not suitable for targets which have unpredictable size and shape like forest, mine, 
crop, and in applications such as disturbed soil, liquid leakage and gas exposure detection, etc.  

For sub-pixel targets, Kelly introduced a Generalized Likelihood Ratio (GLR) based detector by 
using unstructured background model [17]. ACE, ASMF detectors and their other versions, 
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Matched Subspace Detectors (MSDs) and Adaptive Subspace Detectors (ASDs) are also 
introduced [18-20]. By using structured background model, the orthogonal subspace projector 
(OSP) methods are widely employed [12, 21-22]. 

A new approach called kernel method has recently been used in classification, target detection, 
anomaly detection, and change detection with hyperspectral images [23-26]. The kernel 
approach is based on mapping the data using a non-linear transformation into a higher 
dimensional space, and then searching for a linear separation surface between the two classes. In 
this way, non-linear border surfaces in the original data space can be transformed to a hyperplane 
in a higher dimensional space. Replacing inner products by Mercer Kernel function inner product 
which can be computed in advance in terms of the input data is a major idea behind what is 
called the 'kernel trick' [25, 27].  

The best known kernel method is SVM, especially due to its satisfactory results in high 
dimensional feature spaces [26, 28]. The SVM approach consists of finding the optimal 
hyperplane that maximizes the distance between the closest training samples and the separating 
hyperplane. In a binary classification problem, the aim is to place all the data belonging to class 
+1 lie on one side of the separating hyperplane and all the data belonging to class -1 lie on the 
other side with an optimal distance called the margin. Type of kernel function affects the 
discriminant function. Some popular kernel functions are linear, polynomial, Gaussian radial 
basis function (GRBF) and sigmoid kernels. The GRBF kernel is often the most popular one 
used in the literature.  

In this study, an efficient spectral similarity method called WCD method for the supervised 
classification and detection of hyperspectral imagery is introduced. The estimation of upper and 
lower spectral boundaries of spectral signatures for reference classes across spectral bands is 
referred to as a VT. Detection or classification procedures can be carried out with VT parameters 
obtained from specifications of class references. In the case of learning with training data having 
labeled training vectors, this is also shown to be equivalent to the use of the WCD in which the 
weights are chosen as a power of the standard deviation per spectral band. 

2 WCD ALGORITHMS FOR TARGET DETECTION AND CLASSIFICATION 

Although various statistical detection and classification algorithms have been developed, 
insufficient training data and high dimensionality of spectra reduce the performance and 
effectiveness of these algorithms [29]. High-dimensional vector spaces have some unusual 
characteristics such as the Hughes effect [30]. Furthermore, high dimensionality may cause 
increasing the operation cost and reducing the separability of classes [31]. Some methods are 
developed to avoid increasing computation time and poor separation resulting from high 
dimensionality of hyperspectral data. One simple and effective way is to reduce the number of 
dimensions without sacrificing valuable information. This process is called feature extraction 
[32-34]. If not done properly, a reduction in the number of features may reduce discrimination 
power and lower the accuracy of the resulting recognition system. 

Although SVM may perform well in high dimensional spaces, a number of issues such as 
training time, proper choice of parameters and kernel function are still challenging [35]. 
Furthermore, in real applications, the stated assumptions during optimization are not optimal. 

It is clear from above evaluation that the amount of training time required for nonparametric 
methods rises with increase of dimensionality. In the proposed WCD method, the spectral 
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signatures of all known pixels are considered in the vector space, and the boundaries of the 
known spectral signatures are considered. This bounded region is to be called vector tunnel due 
to its tunnellike shape. The prediction of upper and lower spectral boundaries of all known 
classes spectral signatures constitutes the basic consideration leading to the proposed WCD 
target detection and classification algorithms. 

In spectral similarity-based methods, input test pixels can be modeled as nsx += a  where 
T

L21 x,,x,x )   ( ⋅⋅⋅=x  is the spectral sample of the L-band test pixel, T
L21 s,,s,s )   ( ⋅⋅⋅=s  is the 

reference spectral signature, a is a scaling constant, and n is an L-dimensional additive parameter 
vector depending  on a number of factors such as the illumination level. In this study, x is 
normalized by the inverse of the maximum value among the elements of the training vectors 
when ground truth is available. 

When the length of vectors x and s are linearly scaled by the constant a, the ED is also scaled by 
a while the SAM remains the same. Consequently, there is a high correlation between SAM and 
the reflectance spectra whereas ED is highly sensitive to illumination level. As a result, the 
variation of a affects ED while variation of n affects SAM substantially [13].  

The distance measure used in the proposed WCD algorithm can trace both the total changes of 
illumination level and shape of spectra. The WCD algorithm is based on the estimation of upper 
and lower spectral boundaries of all class spectral signatures across whole spectral bands. Entire 
pixel vectors from a known class are used to estimate the natural boundaries containing all 
possible pixels from the target class. We name this bounded region as VT due to tunnel like 
shape of the plots. This leads to the use of a special WCD between an input vector to be 
classified and the mean vector of a target class. The minimum such distance decides the proper 
class of the input vector. 

2.1 WCD Method for Classification Application 

The L-dimensional mean vector T
i,Li,2i,1 µ,,µ,µ )   ( ⋅⋅⋅=iµ  and the standard deviation vector 

T
i,Li,2i,1i σ,,σ,σ )  ( ⋅⋅⋅=σ  of the i th class are estimated from the GT data [36-41]. Using these 

statistical parameters and the VT scaling parameter itr  to be discussed, the initial decision rule is 

based on whether the test pixel vector T
L21 x,,x,x )  ( ⋅⋅⋅=x   is in the VT region given as  

iiiiii trtr stdµxstdµ ⋅+≤≤⋅−  c,2,1,i   ⋅⋅⋅=  (1) 

where subscript i refers to class number. If x  is in the i th class, then each pixel component must 
satisfy (1).  

In experimental work, we discovered that higher classification accuracy is achievable if the 
standard deviation vector is further generalized. Hence, the L-dimensional i th class generalized 
standard deviation vector is defined by 

(       )
, ,1 ,2 ,
p p p p T

σ , σ , , σ
i i j i i i L

= = ⋅⋅⋅std σ    i 1, 2, , c= ⋅⋅⋅  (2) 

where 
,
p
i j
σ  denotes the vector obtained by generating the p’th power of each component of the 

standard deviation vector. The value of p affects the performance results substantially, and the 
procedure for the estimation of its best value is discussed in Section 3.  
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Writing the upper and lower decision boundaries in (1) as iiii tr stdµHB ⋅+=  and 

iiii tr stdpµLB ⋅−=  respectively, the classification rule can be stated as 

itrmin   :subject to   ii HBxLB ≤≤  c,2,1,i   ⋅⋅⋅=  (3) 

By increasing itr  each VT can be broadened so that x  lies totally inside the corresponding VT.  

 
Figure 1. (a) VTs for different values of 

itr ,  (b) optimal VT defined by WCD (x)iη  shown by green curve. 

Thus, VT which hosts the test pixel vector x  with the smallest itr  is decided to be the right VT 

and x  is assigned to the class to which that VT belongs.  In practical implementation, for each 
class, the optimization of itr  can be achieved as follows: the value of  itr  is initialized with a 

small value and is increased by small increments until (1) is satisfied.  Figure 1.(a) shows how 
VTs are generated for nonzero itr  values around a class signature (red line in the figure). This 

procedure is repeated for all classes. We observe that minimum itr  approximately corresponds to 

the narrowest VT (in terms of itr ) according to (1). Hence, we choose this as the decision 

criterion: a pixel is assigned to the i’th class which has the minimum itr  value representing the 

narrowest VT. In this way, all pixels in the image are assigned as being a member of only one 
class. 

Writing (1) in another format and making proper arrangements show that the VT method is 
equivalent to minimizing WCD.  We start by writing (1) as 

iiiii trtr stdµxstd ⋅≤−≤⋅−  c,2,1,i   ⋅⋅⋅=  (4) 

Eq (4) must be satisfied for each entry of the vectors istd , x  and iµ . Therefore, we can 

express the requirement in (4) for each entry as 

ip
ij

i tr
σ

1
tr ≤−≤− )µ(x ijj   c,2,1,i   ⋅⋅⋅=  

L,2,1,j   ⋅⋅⋅=  (5) 

where i refers to the class number and j refers to the band number. After further arranging  (5), 

iijjp
ij

trµx
σ

1 ≤− )(  
c,2,1,i   ⋅⋅⋅=  
L,2,1,j   ⋅⋅⋅=  (6) 
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is obtained. If (6) is satisfied for maximum of left hand side, then it is satisfied for all j. Thus, we 
can combine the condition for all j in a single statement as 

iijjp
ij

Lj
trµx

σ

1 ≤−
≤≤

)(max
1

 
c,2,1,i   ⋅⋅⋅=  
L,2,1,j   ⋅⋅⋅=  (7) 

For given two L-dimensional vectors x  and y , the weighted ∞l , or the WCD, is defined by [21] 

)(max))((),( jjj
Lj

j yxwwdiagd −=−=
≤≤∞∞

1
yxyx  L,2,1,j   ⋅⋅⋅=  (8) 

where )( jwdiag  is a diagonal matrix whose diagonal entries are weights jw s which multiply 

j th entry of vector yx − . By comparing (7) and (8), we observe that the left-hand side of (7) is the 
weighted Chebyshev distance given by 

, ( , ) ( )( )i i i ip
ij

1
η d diag

σ
∞

∞

= = −(x) x µ x µ  c,2,1,i   ⋅⋅⋅=  (9) 

Choosing the smallest itr  among the classes to decide the class chosen corresponds 

approximately to the final decision criterion given by  

{ }(x)x i
i

ηClass minarg=)(  c,2,1,i   ⋅⋅⋅=  (10) 

An example of this procedure is illustrated in Figure 1. The green curve based on (x)iη  

computed by (9) shows the chosen VT.   

In summary, there are three steps of the proposed WCD algorithm as follows: 

1) The mean and standard deviation vectors of the classes are calculated by using the training 
set. 

2) The WCD measures of the test pixels are calculated for all classes by using (9). 

3) Each test pixel is labeled to a class based on the minimum WCD measure according to (10).  

A related supervised classification algorithm is the parallelepiped (PP) method [36-37]. The PP 
method does not use parameters as in the WCD method. The use of weighted Chebyshev 
distance in terms of the inverse p th power of feature standard deviations and optimization of p 
constitute the most important differences between the WCD and PP methods.  

2.2 WCD Method for Target Detection Application 

The VT consists of the L-dimensional target class mean vector T
L21 µ,,µ,µ )   ( ⋅⋅⋅=µ  and the L-

dimensional target class standard deviation vector T
L21 σ,,σ,σ )  ( ⋅⋅⋅=σ   estimated from the data 

[36-41]. Using these statistical parameters and the Constant False Alarm Rate (CFAR) threshold 
parameter η , the  decision rule is based on whether the pixel is in the target VT region as 

η η− ⋅ ≤ ≤ + ⋅µ σ x µ σ  (11) 
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meaning that each target pixel component must satisfy (11). Therefore, if the upper and lower 
decision boundaries are calculated as η= + ⋅H B µ σ  and η= − ⋅LB µ σ , the target VT region 
can be stated as 

HBxLB ≤≤  (12) 

The decision boundary generated by (12) is based on the L-dimensional VT. If the pixel value 
lies between low and high tunnel boundaries for all bands, it is accepted as target. If the 
unknown pixel value does not satisfy the criteria, it is assigned to the background category. 
Writing (2) in another form and making proper arrangements show that the VT can be 
characterized as a WCD.  We start by writing (11) as 

η η− ⋅ ≤ − ≤ ⋅σ x µ σ  (13) 

Eq (13) must be satisfied for each entry of the vectorsσ , x  and µ . Therefore, we can express 
the requirement in (13) for each entry as 

ηµη ≤−≤− )( ii
i

x
σ

1
  L,2,1,i   ⋅⋅⋅=  (14) 

where i refers to the i th band number.  (14) can also be written as 

η≤− )( ii
i

µx
σ

1
 L,2,1,i   ⋅⋅⋅=  (15) 

If (15) is satisfied for the maximum of the left-hand side, then it is satisfied for all i. Thus, we 
can combine the condition for all i in a single statement as 

η≤−
≤≤

)(max ii
i

Li
µx

σ

1
1

 L,2,1,i   ⋅⋅⋅=  (16) 

For given two L-dimensional vectors x  and y , the weighted ∞l  distance, or the WCD, is 
defined by [40]  

)(max))((),( iii
Li

i yxwwdiagd −=−=
≤≤∞∞

1
yxyx  (17) 

where )( iwdiag  is the diagonal matrix whose diagonal entries are weights iw ’s. By comparing 

(16) and (17), we observe that the left-hand side of (16) is the WCD (x)cd , 

∞
∞ −== ))((),( µxµx(x)

i
c

σ

1
diagdd  L,2,1,i   ⋅⋅⋅=  (18) 

Using (x)cd  distance measure, the weighted Chebyshev decision rule becomes  

η≤(x)cd  L,2,1,i   ⋅⋅⋅=  (19) 

Thus, a test pixel is classified as belonging to the target class if (19) is satisfied. The threshold 
parameter η  can be estimated with the aid of ROC curves as explained in the next section. It can 
also be selected according to the detection and false alarm rates by the user, such as max 
detection rate or min false alarm rate. 
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3 EXPERIMENTAL RESULTS AND PERFORMANCE EVALUATION  

The three hyperspectral images used in the experiments are Airborne Visible/ Infrared Imaging 
Spectrometer (AVIRIS) Indiana's Pine, Botswana and Kennedy Space Center (KSC). 

AVIRIS Indiana's Pine 

The AVIRIS data was acquired by the National Aeronautics and Space Administration (NASA) 
on 12 June 1992. It consists of 145 by 145 pixels (20m spatial resolution) and 220 spectral 
bands, with about two-thirds agriculture, and one-third forest or other long lasting vegetation. A 
total of 16 cover classes are identified in the ground truth data set. After removing the absorption 
and low-SNR bands, 180 remaining spectral channels were used for the study [42].  

Botswana Hyperion (BOTS) 

Hyperion data with 9 identified classes of complex natural vegetation were acquired over the 
Okavango Delta, Botswana, in May 2001 [43]. The general class groupings include seasonal 
swamps, occasional swamps, and woodlands. Signatures of several classes are spectrally 
overlapped, typically resulting in poor classification accuracies. After removing water 
absorption, noisy, and overlapping spectral bands, 145 bands were used for classification 
experiments. The embedding and classification results are reported for all 9 classes.  

Kennedy Space Center (KSC) 

Airborne hyperspectral data were acquired by NASA AVIRIS sensor at 18-m spatial resolution 
over KSC during March 1996 [43]. Noisy and water absorption bands were removed, leaving 
176 features for 13 wetland and upland classes of interest. Cabbage palm hammock (c3) and 
broad leaf/oak hammock (c6) are upland trees; willow swamp (c2), hardwood swamp (c7), 
graminoid marsh (c8), and spartina marsh (c9) are trees and grasses in wetlands. Their spectral 
signatures are mixed and often exhibit only subtle differences. The results for all 13 classes 
including these “difficult” classes are reported for the embedding and classification experiments. 

Table 1. AVIRIS, BOTS and KSC data sets. 

 AVIRIS  BOTS  KSC 
No Target Classes Size  Target Classes Size  Target Classes Size 
c1 Alfalfa 54  Water  158  Scrub 761 
c2 Corn-no till 1434  Floodplain 228  Willow swamp 243 
c3 Corn-min till  834  Riparian 237  Cabbage hamm 256 
c4 Corn 234  Firescar 178  Cabbage palm 252 
c5 Grass/Past. 497  Island interior 183  Slash pine 161 
c6 Grass/Trees 747  Woodlands 199  Oak 229 
c7 Grass/Past. Moved 26  Savanna 162  Hardwood swamp 105 
c8 Hay-Windowed 489  Short mopane 124  Graminoid marsh 431 
c9 Oats 20  Exposed soils 111  Spartina marsh 520 
c10 Soybeans-no till 968     Cattail marsh 404 
c11 Soybeans-min till  2468     Salt marsh 419 
c12 Soybeans-clean till  614     Mud flats 503 
c13 Wheat 212     Water 927 
c14 Woods 1294       
c15 Bldg-Grass-Tree 380       
c16 Stone Steel Tower 95       

Classes and sample sizes for every data set are presented in Table 1. 
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3.1 Classification Results 

The labeled classes of the AVIRIS, BOTS and KSC HSI date are divided in to three equal 
portions. The means of the first portion spectral signatures are used as training spectral 
signatures for classes. The second portion spectral signatures are used as validation data, and the 
last portion spectral signatures are used for testing purposes. Considering the various power of 
standard deviation (p) in (1), the WCD method is tested by using the reference, test and 
validation data given in Table 2.  

Table 2. AVIRIS, BOTS and KSC training, testing and validation data sets. 

Amount of data 
AVIRIS  BOTS  KSC 

Class Ref Test Val  Class Ref Test Val  Class Ref Test Val 
c1 18 18 18  c1 52 54 52  c1 253 255 253 
c3 278 278 278  c2 76 76 76  c2 81 81 81 
c6 249 249 249  c3 79 79 79  c3 85 86 85 
c8 163 163 163  c4 59 60 59  c5 53 55 53 
c9 6 8 6  c5 61 61 61  c7 35 35 35 
c13 70 72 70  c7 54 54 54  c9 173 174 173 
c14 431 432 431  c8 41 42 41  c11 139 141 139 
c16 31 33 31  c9 37 37 37  c12 167 169 167 

          c13 309 309 309 

According to the results given in Figure 2, the best performance rates are obtained with 0.5-0.8 
values of p. In the experimental study, p was selected as 0.6 as being the best value of three data. 
After this determination, the test and validation pixels in the image were combined to generate a 
larger testing set.  

 

The classification performance results of the WCD method with respect to the investigated 
classes are compared with the SAM and ED methods quantitatively in Figure 3. The 
performance values are defined as the percentage of correct labels for every class. 

According to the results shown in Figure 3, the performance of the WCD method is better since 
the WCD performances of the classes individually are better than the SAM and ED methods for 
most of the classes. Considering the total classification results (overall performances) for the 
SAM, ED and WCD methods respectively, the WCD method is considerably better than SAM 
and ED methods in the experiments performed.  

Figure 2. The variation of classification accuracy referred to as performances 
with respect to the power of standard deviation denoted by p. 
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3.2 Target Detection Results 

For investigation with the AVIRIS, BOTS and KSC data sets, representative %2, %5, %10 and 
%20 of target pixels (min 10 samples) were selected for each class as training set. The means of 
the pixel spectra in the training set were used as target spectral signatures, and all pixels in the 
image were utilized to determine classification accuracy. For the ED, SAM, SMF and ACE 
methods, corresponding equations are used respectively. Whole data cube is used during 
estimation of the global background covariance matrix for the SMF and ACE. All pixels in the 
image were checked to decide if the ED, SAM, SMF, ACE and WCD measures from the target 
signatures were smaller/bigger than their respective thresholds (TR). 

In the experimental study, the results of the WCD detector were compared with the ED, SAM, 
SMF, ACE and SVM detectors quantitatively by the ROC curves. The ROC curves describe 
True Positive Rate (TPR) as a function of False Positive Rate (FPR). To visualize the tradeoff 
between TPR representing the Detection Rate (DR) and FPR standing for the False Alarm Rate 
(FAR), a ROC curve can be constructed by plotting TPR versus FPR for a range of TR. Due to a 
big amount of TR values for all cases, it is redundant to plot all possible ROC curves. Hence, the 
estimation of the area under the ROC curve corresponding to average detection rate (ADR) is 
used for capturing the detector performance [44]. One of the threshold values can be used to 
determine optimal detector performance according to user preferences of TPR or FPR.  

The example of optimal TR values and corresponding FPR's by using ROC curves for the data 
sets corresponding to %90-91 TPR is given in Table 3. 
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Figure 3. The performance results of the SAM, ED and WCD using 
(a) AVIRIS, (b) BOTS  and (c) KSC data. 
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Table 3 The example of optimal TR values and FPR by using ROC curves corresponding to %90-91 TPR. 

Target 
Class 

AVIRIS BOTS KSC 

FPR (%) TPR (%) TR FPR (%) TPR (%) TR FPR (%) TPR (%) TR 

c1 3,07 90,91 4,47 0,00 90,54 7,64 6,27 90,88 2,90 
c2 28,72 90,94 2,35 3,11 90,37 3,65 11,80 90,13 3,39 
c3 29,21 90,81 2,52 10,20 90,31 2,37 3,55 90,24 2,89 
c4 40,71 90,05 2,43 1,36 90,48 3,07 12,74 90,08 4,31 
c5 25,18 90,60 2,35 2,36 90,17 3,36 14,04 90,07 2,61 
c6 11,83 91,37 2,69 21,29 91,01 1,97 18,53 90,87 3,16 
c7 1,31 93,75 4,41 2,68 90,13 1,81 2,66 90,53 2,67 
c8 0,99 91,59 3,12 5,77 90,35 3,72 20,69 90,02 2,45 
c9 2,43 90,00 3,01 9,60 90,10 1,87 5,44 90,39 2,67 
c10 24,89 91,04 2,43    16,87 90,10 2,35 
c11 24,16 90,14 2,77    1,17 90,22 3,00 
c12 35,84 90,60 2,35    14,93 90,06 2,94 
c13 0,54 90,58 3,68    0,00 90,42 2,67 
c14 11,49 90,64 3,22       
c15 39,10 90,64 2,27       
c16 3,55 90,59 4,37       

The performance results of the AVIRIS, BOTS and KSC data sets are given in Fig.4 and Fig.5 In 
these figures, performance is defined as the area under the ROC curve. According to Fig.4, the 
WCD method is better than the ED, SAM, SMF and ACE methods for most of the classes when 
using a small number of samples. 

 

It is also observed in Fig.5 that the SMF and ACE methods are becoming relatively better with 
good representative reference spectra. It is clear from this result that the SMF and ACE are very 
dependent on the amount of reference data for representative spectral signature. On the contrary, 
the more stable results are obtained from the ED, SAM and WCD methods by using %2, %5, 
%10 and %20 training sets. 

Fig.4 The SMF, ACE, ED, SAM and WCD % performances of the AVIRIS (a), BOTS (b) and KSC (c) 
data when using %2 training set. 
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The results of the SMF and ACE are becoming better for some classes using good representative 
data, whereas the WCD method may be preferable in most cases considering easy 
implementation and shorter computation times shown in Fig.6. 

 Fig.6 The computation time of the ED, SAM, SMF, ACE and WCD methods with AVIRIS data. 
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Fig.5 The comparison of the SMF, AMF, ED, SAM and WCD performances with %2, %5, %10 and 
%20 training sets for AVIRIS, BOTS and KSC. 
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Next the SVM method was compared with the WCD method in several ways.  For 
implementation of the SVM method in C, SVMlight software was used [45]. 

Table 4. CB and SB combinations of AVIRIS, BOTS and KSC data based on chosen classes. 

Target  
Class 

AVIRIS BOTS KSC 
CB SB CB SB CB SB 

c1 2, 5, 11, 14, 16 2, 11 3, 5, 6, 8 3, 6 2, 4, 6, 8, 10, 12 2, 6, 12 
c2 8, 5, 11, 14, 16 11, 16 3, 5, 6, 8 1, 6 1, 3, 5, 7, 9, 11 3, 7, 11 
c3 8, 5, 11, 14, 16 11, 16 2, 5, 6, 8 2, 6 1, 5, 7,  9, 11, 13 3, 7, 11 
c4 8, 5, 11, 14, 16 11, 16 2, 5, 6, 8 1, 3 3, 5, 7, 9, 11, 13 3, 7, 11 
c5 2, 8, 11, 14, 16 14, 16 2, 4, 6, 8 1, 9 2, 3, 5, 8, 9, 11 3, 7, 11 
c6 2, 8, 11, 14, 16 13, 14 2,4, 5, 8 1, 4 1, 3, 5, 8, 10, 12 3, 7, 11 
c7 2, 8, 11, 14, 16 2, 11 2, 4, 6, 8 1, 4 1, 3, 5, 9, 11, 13 2, 3, 8 
c8 2, 5, 11, 14, 16 3, 11 1, 3, 4, 6 1, 3 3, 5, 7, 9, 11, 13 3, 7, 11 
c9 2, 8, 11, 14, 16 13, 14 2, 4, 6, 8 1, 4 2, 4, 6, 8, 10, 12 3, 7, 11 
c10 2, 5, 8, 14, 16 2, 16   3, 5, 4, 7, 9, 11 3, 5, 7 
c11 2, 5, 8, 14, 16 2, 16   1, 3, 5, 7, 9, 10 3, 5, 9 
c12 2, 5, 8, 14, 16 2, 16   3, 5, 7, 9, 11, 13 1, 5, 9 
c13 2, 8, 11, 14, 16 4, 12   1, 3, 5, 7, 9, 11 3, 7, 11 
c14 2, 5, 8, 11, 16 2, 5     
c15 2, 8, 11, 14, 16 14, 16     
c16 2, 5, 8, 11, 14 6, 9     

During the implementation of the SVM, one of the classes is selected as target and three different 
types of background representations were considered. The first case was the full background 
(FB) with all classes, the second case was the complex background (CB) representation, and the 
last one was the simple background (SB) representation as shown in Table 4. 30 reference pixels 
(10 pixels for classes less than 50 pixels) were randomly chosen for target and every 
corresponding class of background.  
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Fig.7 The WCD and SVM % performances for the AVIRIS (a), BOTS (b) and KSC 
(c) data when using FB, CB and SB. 
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With the full and complex representation of background classes, better detection performances 
were obtained as shown in Fig.7. With the simple representation of background classes, 
substantially different performance results were obtained. According to the results, the best 
detection rates were obtained with the SVM method using FB as illustrated in Fig.4. The 
performance of the WCD method is slightly better than the SVM in the case of CB for most 
classes. With the SB representation, the WCD method is much better than SVM for all classes. 
From this result, it is observed that the SVM method is highly sensitive to background selection 
whereas the WCD method is much more robust with different types of background because it is 
using only target information during the detection process. 

4.  CONCLUSIONS 

In this study, an efficient and computationally fast spectral similarity method called WCD 
algorithm is introduced for HSI supervised classification and target detection applications. 
Estimation of upper and lower spectral boundaries of all target class spectral signatures across 
spectral bands constitutes the basic consideration underlying the WCD algorithm. The data sets 
used were the AVIRIS, BOTS and KSC data. 

The VT concept leads to the use of a WCD measure per class which is defined in terms of the 
generalized class standard deviation. The minimum Chebyshev distance decides the chosen class 
of an input pixel vector. The method was investigated in supervised classification of labeled 
hyperspectral image data in comparison to SAM and ED methods. It is observed from the 
classification results that the performances of the WCD method with the AVIRIS, BOTS and 
KSC data are better than the classification results of the SAM and ED methods for most of the 
classes. 

In addition, the resulting decision rule is that a test pixel belongs to the target class if its WCD 
measure is less than a CFAR threshold chosen by the user. The proposed algorithm was 
investigated with AVIRIS, BOTS and KSC data. The detection performance results were 
compared with the ED, SAM, SMF, ACE and radial basis SVM detectors quantitatively by the 
areas under the ROC curves. According to these results, the performances of the WCD algorithm 
are better than the ED, SAM, SMF and ACE for most of the classes in case of limited amount of 
reference data. The SMF and ACE methods are considerably dependent on representative 
reference data, and the SVM is highly sensitive to different background representation whereas 
the WCD is much more stable and robust in all cases.   

For classification purpose, the proposed technique is not dependent on a priori statistical 
information about classes to a high degree except for mean vectors and feature standard 
deviations, or dimensional reduction. For target detection applications, it is not dependent on 
background reference data, second order statistical information about target and background 
except for target feature standard deviations estimated from the training data, or dimensional 
reduction.  

Simplicity, high speed of computation, stability in the case of decreasing numbers of reference 
sample data, and robustness against different types of background make the WCD algorithm 
attractive for use in high dimensional target detection applications, especially with targets which 
are unpredictable in size and shape. It is also a computationally efficient method of classifying 
hyperspectral images with high accuracy. 
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