Purdue University Purdue e-Pubs

Publications of the Ray W. Herrick Laboratories

School of Mechanical Engineering

9-2014

Optimization of Multi-Layer Microperforated Systems for Absorption and Transmission Loss

J Stuart Bolton *Purdue University*, bolton@purdue.edu

Nicholas Kim kim505@purdue.edu

Follow this and additional works at: http://docs.lib.purdue.edu/herrick

Bolton, J Stuart and Kim, Nicholas, "Optimization of Multi-Layer Microperforated Systems for Absorption and Transmission Loss" (2014). *Publications of the Ray W. Herrick Laboratories*. Paper 105. http://docs.lib.purdue.edu/herrick/105

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact epubs@purdue.edu for additional information.

Advancing the Technology and Practice of Noise Control Engineering

Optimization of multi-layer microperforated systems for absorption and transmission loss

Nicholas N. Kim J. Stuart Bolton

Herrick Laboratories, Purdue University

September 8-10, 2014

NoiseCon 2014

Introduction

 Microperforated Panel: Thin film with 100 microns scale holes

 $\hfill Clean, light \rightarrow$ one of alternative to fibrous sound absorbing material

NoiseCon 2014

Introduction

Acoustic Properties are controlled by:

- 1. Thickness of the panel
- 2. Diameter of the hole
- 3. Porosity
- 4. Mass per unit area
- 5. Air cavity depth

 By appropriate choice of these parameters, single panel can provide good acoustic performance in one or two octave band, but not in broader range.

 Multi-layer microperforated panels can make sound material, like functional absorber and barrier, lighter.

Introduction

Functional absorber

Barrier

Maximizing dissipation coefficient

Maximizing Transmission loss

Transfer Matrix Method

	Sound absorbing system	
<i>P</i> ₁ , <i>u</i> ₁	[<i>TM</i>]	<i>P</i> ₂ , <i>u</i> ₂

 $\begin{vmatrix} P_1 \\ u_1 \end{vmatrix} = \begin{vmatrix} TM_{11} & TM_{12} \\ TM_{21} & TM_{22} \end{vmatrix}_{total} \begin{vmatrix} P_2 \\ u_2 \end{vmatrix} = [TM]_1 [TM]_2 [TM]_3 \cdots [TM]_n \begin{vmatrix} P_2 \\ u_2 \end{vmatrix}$ $\Gamma = \frac{TM_{11}^{total} + TM_{12}^{total}(\cos\theta/\rho c) - (\rho c/\cos\theta)TM_{21}^{total} - TM_{22}^{total}}{TM_{11}^{total} + TM_{12}^{total}(\cos\theta/\rho c) + (\rho c/\cos\theta)TM_{21}^{total} + TM_{22}^{total}}$ $2e^{j\frac{\omega}{c}\cos\theta L}$ $\tau = \frac{-\tau}{TM_{11}^{total} + TM_{12}^{total}(\cos\theta/\rho c) + (\rho c/\cos\theta)TM_{21}^{total} + TM_{22}^{total}}$ $\overline{\alpha_d} = \frac{\int_0^{\pi/2} \alpha_d(\theta) \sin(\theta) \cos(\theta) \, d\theta}{\int_0^{\pi/2} \sin(\theta) \cos(\theta) \, d\theta} \quad \overline{\tau} = \frac{\int_0^{\pi/2} \tau(\theta) \sin(\theta) \cos(\theta) \, d\theta}{\int_0^{\pi/2} \sin(\theta) \cos(\theta) \, d\theta}$

NoiseCon 2014

September 8-10, 2014

Transfer Matrix Method

	Sound absorbing system	
<i>P</i> ₁ , <i>u</i> ₁	[<i>TM</i>]	<i>P</i> ₂ , <i>u</i> ₂

 $\begin{vmatrix} P_1 \\ u_1 \end{vmatrix} = \begin{vmatrix} TM_{11} & TM_{12} \\ TM_{21} & TM_{22} \end{vmatrix}_{total} \begin{vmatrix} P_2 \\ u_2 \end{vmatrix} = [TM]_1 [TM]_2 [TM]_3 \cdots [TM]_n \begin{vmatrix} P_2 \\ u_2 \end{vmatrix}$ $\Gamma = \frac{TM_{11}^{total} + TM_{12}^{total}(\cos\theta/\rho c) - (\rho c/\cos\theta)TM_{21}^{total} - TM_{22}^{total}}{TM_{11}^{total} + TM_{12}^{total}(\cos\theta/\rho c) + (\rho c/\cos\theta)TM_{21}^{total} + TM_{22}^{total}}$ $2e^{j\frac{\omega}{c}\cos\theta L}$ $\tau = \frac{-\tau}{TM_{11}^{total} + TM_{12}^{total}(\cos\theta/\rho c) + (\rho c/\cos\theta)TM_{21}^{total} + TM_{22}^{total}}$ $\overline{\alpha_d} = \frac{\int_0^{\pi/2} \alpha_d(\theta) \sin(\theta) \cos(\theta) \, d\theta}{\int_0^{\pi/2} \sin(\theta) \cos(\theta) \, d\theta} \quad \overline{\tau} = \frac{\int_0^{\pi/2} \tau(\theta) \sin(\theta) \cos(\theta) \, d\theta}{\int_0^{\pi/2} \sin(\theta) \cos(\theta) \, d\theta}$

NoiseCon 2014

September 8-10, 2014

Transfer Matrix Method

 $[TM]_{total} = [TM]_{mpp1} [TM]_{air1} [TM]_{mpp2} [TM]_{air2} \cdots [TM]_{mppN}$

$$[TM]_{air} = \begin{bmatrix} \cos(\omega l/c) & j\rho c sin(\omega l/c) \\ (j/\rho c) sin(\omega l)/c) & cos(\omega l/c) \end{bmatrix}$$
$$[TM]_{mpp} = \begin{bmatrix} 1 & Z_{mpp} \\ 0 & 1 \end{bmatrix}$$

NoiseCon 2014

September 8-10, 2014

Microperforated panel

Guo Model

$$R = \left(Re \left\{ \frac{j\omega t}{\sigma c} \left[1 - \frac{2}{k\sqrt{-j}} \frac{J_1(k\sqrt{-j})}{J_0(k\sqrt{-j})} \right]^{-1} \right\} + \frac{\alpha 2R_s}{\sigma \rho c} \right) \times \rho c$$

$$k = \alpha \sqrt{\frac{\omega \rho_0}{4\eta}}$$
 $R_s = \frac{\sqrt{2\omega \rho_0 \eta}}{2}$ $\alpha = 4$ when sharp end

• Previous work

• adjusted
$$\alpha$$
 by CFD calculation
 $\alpha = (16.9 \frac{t}{d} + 152.8) f^{-0.5}$

NoiseCon 2014

Microperforated panel

• Continuity and Force equilibrium

$$v_{y} = (1 - \sigma)v_{s} + \sigma v_{f}$$

$$P_{1} - P_{2} + (v_{f} - v_{s})R\frac{\sigma^{2}}{1 - \sigma} = j\omega m v_{s}$$

$$P_{1} - P_{2} + (v_{f} - v_{s})R\sigma = \rho h_{p}j\omega v_{f}$$

$$Z_{mpp} = \frac{R\sigma(1-\sigma)(j\omega m - j\omega\rho(t+2\delta)) + j\omega\rho(t+2\delta)\{j\omega m(1-\sigma) + R\sigma\}}{\sigma(1-\sigma)(R+j\omega m) + (1-\sigma)^2\rho(t+2\delta)j\omega + \sigma^2 R}$$

Optimization

Assumption

- Hole of the MPP is cylindrical and sharp edged.
- Flexural stiffness of the panel can be ignored.
- Only locally reaction case considered.

Optimization

Constraints

	Minimum	Maximum
N	2	20
<i>t</i> [mm]	0.2	0.8
<i>d</i> [mm]	0.1	0.3
σ	0.01	0.2
<i>m</i> [kg/m ²]	0.1	0.8
<i>l</i> [m]	0.001	0.2
$M [kg/m^2]$		3
<i>L</i> [m]		0.5

• Genetic Algorithm was used for optimization

• The number of panels

• For the error function, $1-\alpha_d$ was used in 500 to 4000 Hz.

- Both direction
- Maximize averaged dissipation coefficient

	Thickness	Diameter	Porosity	Mass per unit area	Distance to next panel
	[mm]	[mm]		[kg/m2]	[m]
Panel 1	0.222	0.100	0.137	0.714	0.001
Panel 2	0.200	0.300	0.089	0.100	0.001
Panel 3	0.200	0.300	0.137	0.100	0.100
Panel 4	0.200	0.100	0.012	0.100	0.123
Panel 5	0.202	0.300	0.137	0.100	0.002
Panel 6	0.251	0.100	0.075	0.719	0.017
Panel 7	0.224	0.100	0.084	0.244	0.005
Panel 8	0.200	0.300	0.073	0.101	0.123
Panel 9	0.251	0.300	0.137	0.719	0.123
Panel 10	0.205	0.300	0.073	0.101	_

- To compare optimized set, maximum resistance set was used.
- Maximum resistance set has same distance between panels, and same panel to make flow resistance maximum.
- The optimized set provides a much higher sound dissipation coefficient in the overall speech interference range

NoiseCon 2014

September 8-10, 2014

Optimization for Transmission loss

- One direction
- Maximize transmission loss

Optimization for Transmission loss

	Thickness	Diameter	Porosity	Mass per unit area	Distance to next p
	[mm]	[mm]		[kg/m2]	anel [m]
Panel 1	0.200	0.101	0.073	0.100	0.123
Panel 2	0.200	0.100	0.200	0.693	0.001
Panel 3	0.200	0.104	0.026	0.100	0.001
Panel 4	0.200	0.100	0.138	0.602	0.123
Panel 5	0.200	0.178	0.010	0.693	0.001
Panel 6	0.200	0.100	0.010	0.100	0.123
Panel 7	0.200	0.100	0.020	0.100	0.001
Panel 8	0.200	0.100	0.138	0.100	0.123
Panel 9	0.200	0.100	0.088	0.100	0.001
Panel 10	0.200	0.101	0.138	0.411	

Optimization for Transmission loss

- To compare optimized set, maximum resistance set was used.
- Maximum resistance set has same distance between panels, and same panel to make flow resistance maximum.
- Improved in low frequency range, but need to make smooth

Conclusion

• An appropriate combination of microperfoated panels can provide excellent performance for sound absorption.

 This suggests that a layered array of MPPs proper could be used to provide dissipation in a space

- Future work:
 - Make smooth for TL
 - Extend to the extended reaction case