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Corn (Zea mays L.) seeding rate optimization in Iowa,
USA

Mark A. Licht1 • Andrew W. Lenssen1 • Roger W. Elmore2

� The Author(s) 2016. This article is published with open access at Springerlink.com

Abstract Collecting soil, topography, and yield information has become more feasible and

reliable with advancements in precision technologies. Combined with the accessibility of

precision technologies and services to farmers, there has been increased interest and ability

to make site-specific crop management decisions. The objective of this research was to

develop procedures to optimize corn seeding rates and maximize yield using soil and

topographic parameters. Experimental treatments included five seeding rates (61 750;

74 100; 86 450; 98 800; and 111 150 seeds ha-1) in a randomized complete block design

in three central Iowa fields from 2012 to 2014 (nine site-years). Soil samples were analyzed

for available phosphorus (Olsen method), exchangeable potassium (ammonium-acetate

method), pH, soil organic matter (SOM), cation exchange capacity (CEC), and texture.

Topographic data (in-field elevation, slope, aspect, and curvature) were determined from

publically available light detection and ranging data. In four site-years, no interaction

occurred between seeding rate and the descriptive variables. Three of the site-years

resulted in a negative linear seeding rate response which made it impossible to determine

an optimum seeding rate above the lowest seeding rate treatment. The seeding rate opti-

mization process in five site-years resulted in seeding rate by variable interactions; four

site-years had a single seeding rate by variable interaction (pH, in-field elevation, or

curvature) and one site-year had three seeding rate by variable interactions (pH, CEC, and

SOM). Meaningful seeding rate optimizations occurred in only three of nine site-years.

There was not a consistent descriptive variable interaction with seeding rate as a result of

weather variability.
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Introduction

Corn grain yields have increased since the 1930s in Iowa and across the U.S. Corn Belt. As

corn grain yield increased, plant densities have also increased with a correlation of 0.65

(USDA-NASS 2015). Corn plant densities have increased by roughly 825 plants ha-1 -

year-1 in Iowa since 2000 (USDA-NASS 2015). Currently, seeding rate recommendations

that maximize yields for rainfed corn production in the central U.S. Corn Belt range from

69 000 to 98 800 seeds ha-1 or more (Hoeft et al. 2000; Mueller and Sisson 2013; Naf-

ziger 2012; Nielsen et al. 2015; Woli et al. 2014).

Corn yield exhibits a curvilinear response to increasing plant density where an optimal

density can be determined. Up to the optimal plant density, the increase in total grain yield

outweighs the reduction in yield per plant (Duncan 1984). After maximum yield is

attained, competition for water, nutrients, and light become too great causing both field and

per plant yields to decrease. Plant density yield response curves are influenced by biotic

and abiotic factors (Shanahan et al. 2004; Van Roekel and Coulter 2011). Agronomists

often assume that biotic yield-limiting factors such as incidence and severity of insects,

weeds, and pathogens occur in-season and that these factors are minimized by management

practices to as great an extent as possible in order to maximize yield. Abiotic factors that

cause yield variability include topography as well as soil physical and chemical properties

(Kaspar et al. 2004; Kravchenko and Bullock 2000; Kravchenko et al. 2003; Papiernik

et al. 2005; Shanahan et al. 2004). The use of precision agriculture technologies offers the

capability to better manage crop inputs and adjust for field variability associated with these

abiotic factors.

Precision agriculture is based on the premise of using field information and advances in

technology to manage crop requirements and agronomic practices in a site-specific manner

to account for spatial and temporal variability (Bouma 1999; Hoeft et al. 2000; Mulla and

Schepers 1997; Rawlins 1996; Searcy 1995). Early advances in precision agriculture

included grid soil sampling, variable fertilizer applications, global positioning systems and

yield mapping (Daberkow and McBride 1999; Mackay 1997; Taylor and Whelan 2010).

Over the last two decades, variable rate seeding has developed from a concept to reality

(Bullock et al. 1998; Clark and McGuckin 1996; Nafziger 2012). The advent of planter and

monitor technology with the capability of planting at variable seeding rates across a field

has given farmers and agronomists the ability to manage plant density using site-specific

approaches to potentially increase productivity and profitability. Agronomists are now

offering advice and services on variable rate seeding approaches.

Early in the adoption of variable rate seeding technology, Bullock et al. (1998) stated

that for variable seeding to be profitable and productive, there needed to be a spatial

relationship between yield and plant density as well as the influence of topographic and soil

parameters on the relationship between grain yield and plant density. Therefore, these

authors concluded that variable rate seeding would not be economically feasible at that

time because of the difficulty in characterizing fields.

Initially site-specific, variable rate seeding determinations for corn were based on past

yield productivity where higher yielding areas received higher seeding rates (Bullock et al.

1998; Butzen et al. 2012; Lowenberg-DeBoer 1999). However in Minnesota, Lamb et al.
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(1997) found that neither higher nor lower yielding field areas were consistent from year to

year and that only 4–42 % of grain yield variability in a given year was accounted for by

grain yield from previous years.

As variable rate seeding technology becomes more widely available and other precision

technology improves, variable rate seeding is now often based not only on past yield

productivity but also soil fertility, soil texture, SOM, landscape position, in-field elevation

or some combination thereof (Butzen et al. 2012; Doerge 1999; Gunzenhauser and

Shanahan 2011). Many of these factors relate to corn yield variability. Previously in Iowa,

Kaspar et al. (2003) determined that higher landscape positions and steep slopes had lower

yield potential than lower landscape positions in years with below average rainfall. Con-

versely, depressions and slight hillslopes had lower yield potential than landscape positions

conducive to topographic drainage in years with above normal rainfall. These findings

confirmed earlier work by Spitze et al. (1973) showing grain yields in northeast Nebraska

were influenced by soil drainage and topography, with lowland poorly drained areas having

higher yield potential than slopes and ridgetops.

The goals of this research were to (1) identify soil and topographic parameters that

interact with seeding rate to influence corn grain yield and (2) determine potential soil and

topographic parameters that can be used for site-specific optimization of corn seeding rates.

Methods

Experimental design

A field experiment was conducted over three growing seasons (2012–2014) and at three

locations in central Iowa, USA to study corn response to seeding rate across landscapes.

The fields were located in the Clarion-Nicollet-Webster soil association (Clarion [fine-

loamy, mixed, mesic, Typic Hapluduolls], Nicollet [fine-loamy, mixed, mesic, Aquic

Hapluduolls], and Webster [fine-loam, mixed, mesic, Typic Endoaquolls]). The same three

sites (Ames, 42o00050.6300N, -093o44024.8100W; Kelley, 41o57009.2700N, -093o41024.6000W;

and Ogden, 42o00021.5500N, -094o00049.0800W) were used each of the three years of the

experiment in a corn following corn rotation.

The experimental design at each site was a randomized complete block, with four

replications at the Ames and Kelley sites and five replications at the Ogden site. Experi-

mental treatments consisted of five seeding rates (61 750, 74 100, 86 450, 98 800, and

111 150 kernels ha-1). These seeding rates were chosen because they bracket the typical

seeding rate of 82 000 kernels ha-1 used by farmers in Iowa. The plots were 16 rows wide

at Ames and Kelley and 12 rows wide at Ogden by field length in a 0.762 m row spacing.

Field length was approximately 400 m at Ames and Kelley and 720 m at Ogden.

All field operations were conducted by Iowa State University farm operations staff at

the Ames and Kelley sites and the private farm operator at the Ogden site including fall and

spring tillage, fertilizer applications, planting, herbicide applications and harvest. At all

sites, a disk ripper was used for primary fall tillage and a full width field cultivator (Ames

and Kelley) or a rotary harrow (Ogden) for secondary spring tillage. Planting and har-

vesting equipment was consistent across years (Table 1). Fields at all sites followed typical

herbicide and soil fertility programs for phosphorus (P), potassium (K) and pH for the area

(Mallarino et al. 2013). A target nitrogen (N) application of 224 kg ha-1 was applied as a

split application at Ames and Ogden and as single spring pre-plant application at Kelley.
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Different hybrids were planted each site-year resulting in the use of nine hybrids (Table 1).

Climatic data was collected from Daymet Software version 2.0 (Thornton et al. 2015) for

summation of monthly and growing season precipitation and accumulated growing degree

days for each site-year and 30-year means for each site (Tables 2 and 3). Dayment software

interpolates and extrapolates daily weather parameters using weather observations dis-

tributed by the National Climate Data Center and SNOTEL (SNOwpack and TELemetry)

distributed by the Natural Resources Conservation Service, digital elevation models,

algorithms, and computer software to produce 1 km square surface grids.

Field data collection

Sub-plots were established within each replicated seeding rate treatment 30 m apart. At

Ames and Kelley, there were 11 sub-plots per strip and at Ogden there were 23 sub-plots

per strip. A sub-plot consisted of the center two rows of each strip by 5.3 m long and was

staked after planting. Sub-plots were located and marked using an Ashtech MobileMapper

100 (Sunnyvale, CA, USA) with a GNSS antenna that connected to the Iowa Real-Time

Network for real-time kinematic global positioning at a 10–20 mm horizontal accuracy.

Fourteen soil cores were taken to a depth of 150 mm at the sub-plot level and composite

samples were collected between planting and the fourth leaf stage (Abendroth et al. 2011).

Soil nutrient and texture analysis was conducted at Midwest Laboratories (Omaha, NE,

USA) using standard laboratory procedures. Soil nutrient analysis included P, K, pH, SOM,

and cation exchange capacity (CEC) (Dahnke 1975; Kalra 1997; Kuo 1996; Sumner and

Miller 1996). The sodium bicarbonate method was used for P (Olsen et al. 1954) and the

ammonium-acetate method was used for K (Helmke and Sparks 1996). Available water

holding capacity (AWC) was calculated using soil texture and SOM based on Saxton and

Rawls (2006).

Grain yield and topographic spatial data

Plots were harvested with combines equipped with calibrated yield monitors and GPS

receivers to attain geo-referenced grain yield and moisture information. The harvest width

was 9.1 m at Ames and Kelley, where logistically, the center 9.1 m of the 12.2 m seeding

rate plot was harvested and the remainder of the plot (four outside rows) was used for

collection of ear samples. At Ogden, the harvest width was 9.1 m and the entire plot width

was harvested. Yield monitor data were processed and cleaned using Ag Leader Tech-

nology SMS Basic (Ames, IA, USA) to ensure start/stop delays, flow shifts, offsets, and

erroneous points were omitted before exporting to ArcMap (ESRI 2014). ArcMap was used

to determine yield and grain moisture at the sub-plot level by creating 6 or 4.6 m buffers

around the central point of the sub-plot followed by a spatial join of the yield information.

The buffer distance was half the plot width resulting in yield information for each sub-plot

being an average of approximately five to seven yield monitor data points.

Topographic data were generated using 0.61 m contours from the LIDAR 3 m Digital

Elevation Model of Boone and Story counties (IA, USA) available from the Natural

Resources Geographic Information Systems Library of the Iowa Department of Natural

Resources (https://programs.iowadnr.gov/nrgislibx/). ArcMap spatial analyst tools were

used to determine in-field elevation, slope, curvature, and aspect of each sub-plot. In

ArcMap, in addition to slope curvature, planar curvature (curvature perpendicular to the

slope) and profile curvature (curvature parallel to the slope) can be determined (ESRI

2014). Positive curvature values result from convex slopes and negative curvature values
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result from concave slopes. Slope aspect identifies the direction a slope faces (0 to 360

degrees). For this analysis, slope aspect was transformed to ‘northness’ with values of -1

to 1 where slope aspects of negative one are more south facing and slopes of positive one

are more north facing.

Statistical analysis

Correlation and multiple regression analyses were conducted to understand and identify the

key independent variables that best explained corn grain yield (SAS Instiute SAS Institute

2012). A stepwise regression procedure was used with a = 0.05 for variable addition and

deletion in the final model prediction of grain yield. Independent variable collinearity in

the regression model was identified using variance inflation factors (VIF). Where VIF of

greater than 10.0 was identified, related independent variables were removed from the

regression analysis. Collinearity existed between planar and profile curvature which

resulted in the use of combined slope curvature. Silt and AWC were removed because

collinearity existed between sand, silt, clay, SOM, and AWC. Even with exclusion of

independent variables due to VIF greater than 10.0, P, K, SOM, and CEC had a VIF[ 10.0

in one, two, four, and two site-years respectively. These variables were important and are

common parameters used by farmers and agronomists and therefore retained within the

regression and mixed model analysis.

The optimum seeding rate was estimated using a model where corn grain yield was the

dependent variable. The initial model, included the effects of replication, seeding rate,

seeding rate squared, identified soil and topographic parameters plus the seeding rate

interaction with the soil and topographic parameters. A reduced model was then fit by

excluding non-significant seeding rate interactions with soil and topographic variables. It

was considered whether to include spatial dependence among residuals by fitting models

with spatially correlated residuals. Gaussian and exponential covariance structures were

computed from the X, Y coordinates of each sub-plot. The correlation between each pair of

sub-plots depended on their Euclidean distance. None of the nine site-years showed evi-

dence of spatial dependence in the residuals because the soil and topographic independent

variables included in the mixed model accounted for the geographic dependence of the

sub-plots.

Optimum seeding rates (SRopt) at each sub-plot were determined by solving the model

for maximum seeding rate:

Yield ¼ b0 þ b1SRþ b2SR
2 þ b3ðvar� SRÞ ð1Þ

Yield ¼ b0 þ ðb1 þ b3varÞSRþ b2SR
2 ð2Þ

SRmax solves Eq. 2

dYield

dSR
¼ b1 þ b3varþ 2b2SRmax ¼ 0 ð3Þ

SRopt ¼ SRmax ¼
�ðb1 þ b3varÞ

2b2
ð4Þ

where Yield is the corn grain yield, SR is the seeding rate, var represents those soil

attributes or topographic characteristics that interact with seeding rate, SRmax is the seeding

rate at which the highest yield can be expected, SRopt is the optimum seeding rate for the

sub-plot based on the derivatives of corn grain yield, seeding rate, and significant seeding
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rate 9 variable interactions. The PROC MIXED procedure in SAS was used for the

optimum seeding rate computations.

Results and discussion

Field variability assessment

Descriptive statistics revealed a significant amount of variability in soil properties and

topographic characteristics across and within sites, with coefficient of variation (CV)

values generally greater than 15 % (Tables 4, 5; Fig. 1). This amount of variability was

desired for the purpose of the experiment and sites were selected based on perceived and

known variability.

Mean grain yields across site-years were highly variable ranging from 10.4 to

12.7 Mg ha-1 with CV values ranging from 5.3 to 33.2 % (Table 4; Fig. 2). The greatest

within-site corn yield variability was at Ames in 2013 which can be attributed to large

variation in topographic characteristics combined with greater than normal precipitation

following planting causing reductions in stand establishment in field depressions (results

not shown). While the Kelley site in 2013 exhibited low corn grain yield variability, it too

experienced greater than normal precipitation in April and May which resulted in a mid-

Table 4 Descriptive statistics of grain yield and selected soil nutrient parameters at three central Iowa,
USA field experiment sites from 2012 to 2014

Parametera Ames Kelley Ogden

Year Mean Range CV
(%)

Mean Range CV
(%)

Mean Range CV
(%)

Grain yield, 2012 12.2 4.8–15.4 12.6 11.3 5.8–13.7 11.8 12.7 5.1–16.2 13.9

Mg ha-1 2013 10.4 0.4–13.3 33.2 10.7 6.4–12.3 8.8 10.8 0.9–16.0 17.4

2014 11.6 5.6–14.1 12.0 11.0 2.1–13.8 20.7 12.3 10.4–14.4 5.3

P, mg kg-1 2012 11 6–18 23.4 23 11–86 52.6 15 5–72 55.7

2013 12 5–47 47.1 28 9–74 42.4 17 5–81 58.8

2014 14 4–66 50.1 26 9 –61 37.4 19 5–68 50.4

K, mg kg-1 2012 170 120–224 15.9 224 176–412 18.9 185 93–369 29.4

2013 173 108–292 20.3 233 124–389 22.5 211 114–509 25.2

2014 166 85–281 18.9 216 128–381 20.6 196 85–470 29.8

pH 2012 6.5 5.3–7.9 12.5 5.9 5.2–7.2 7.7 7.0 4.6–8.1 12.6

2013 6.2 4.7–8.1 17.0 5.9 4.5–7.9 14.0 6.8 4.6–8.1 14.7

2014 6.2 4.6–8.1 17.5 5.9 4.7–8 14.5 6.7 4.5–8.1 15.6

CEC,
cmol kg-1

2012 23.1 12.2–37.6 31.5 24.9 15.8–33.3 15.2 26.9 17.1–42.7 20.3

2013 24.2 13.2–35.5 25.6 24.9 14.3–35.6 19.1 27.7 14.9–38.2 18.3

2014 25.6 12.3–41.5 27.1 26.2 13.8–38.7 21.0 26.6 13.2–43.1 21.6

OM, g kg-1 2012 40 14–68 36.5 34.5 22–57 18.0 42 24–86 27.6

2013 39 11–69 39.6 32.7 13–64 25.7 44 21–86 24.6

2014 45 15–78 35.8 38.7 18–65 21.8 47 22–95 24.3

a P phosphorus, K potassium, CEC cation exchange capacity, OM organic matter
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June planting date. Therefore, this site had less stand reduction due to saturated soil

conditions than the other sites in 2013.

Corn yields were the highest in 2012 and the lowest in 2013 (Table 4). Kelley was the

lower yielding site and Ogden was the higher yielding site. The annual corn yield vari-

ability can be attributed to climatic conditions: 2012 was extremely dry; 2013 was cool and

wet in April and May, followed by dry conditions; and 2014 was cool and wet throughout

the growing season (Tables 2, 3).

Correlation and regression analysis

Seeding rates and corn grain yield were correlated in seven of nine site-years. In six of

these seven site-years, corn grain yields were negatively correlated with seeding rate

(Table 6). Soil fertility parameters were inconsistently correlated with corn grain yields

across site-years. In the abnormally dry year of 2012, slope, curvature and in-field ele-

vation were negatively correlated with corn yield. Additionally, SOM and clay content

were positively correlated with grain yield. In totality, the combination of these parameters

suggest that water availability and storage are important parameters in determining yield

potential and an optimal seeding rate for specific areas within fields, especially in years

with dry weather conditions. Conversely, in 2013 and 2014, curvature and in-field ele-

vation each were positively correlated with corn grain yield while clay and sand content

were not consistently correlated with grain yield. Positive grain yield correlation with

slope, curvature, and in-field elevation indicate that while the ability to capture and store

water in a dry year is beneficial, in wet years a more variable topography results in water

dispersion from the summit and hillslope landscape positions, and results in higher corn

yields. The influence of soil water drainage and storage on grain yields have been well

known but are highly inconsistent depending on soil type, topography, and climatic

Fig. 1 Descriptive statistics of the soil variables and topographic characteristics of Ames, Kelley, and
Ogden in central Iowa in 2012, 2013, and 2014. Median, line within the box; 25/75th percentile, box;
10/90th percentile, whiskers; 5/95th percentile, black dot
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conditions of the research sites (Kaspar et al. 2004; Kravchenko and Bullock 2000; Runge

and Hons 1999; Spitze et al. 1973).

Generally, the step-wise regression models reflect the correlation coefficients for each

site-year (Table 7). The highest coefficients of determination (R2) for the regression model

analysis were at the Ames site with an R2 of 0.65 and 0.77 in 2012 and 2014 respectively.

The lowest R2 values were at Kelley in 2013, Ogden in 2012, and Ames in 2013,

R2 = 0.16, 0.17, and 0.20 respectively. Regression analysis included seeding rate and/or

seeding rate squared in all site-years except Ames in 2013. In most situations, the seeding

rate and seeding rate squared parameters were negative and extremely low, indicating little

influence of seeding rate on the yield prediction.

In both Ames and Kelley, the regression model R2 values were much lower in 2013

compared to 2012 and 2014. These lower R2 values can be attributed to areas of the field

that had reduced plant densities and yield due to saturated soil conditions early in the year

Fig. 2 Corn grain yield descriptive statistics by seeding rate for Ames, Kelley, and Ogden in 2012 to 2014.
Median, line within the box; 25/75th percentile, box; 10/90th percentile, whiskers; 5/95th percentile, black
dot

123

Precision Agric



T
a
b
le

6
S
ig
n
ifi
ca
n
t
P
ea
rs
o
n
co
rr
el
at
io
n
co
ef
fi
ci
en
ts
o
f
co
rn

g
ra
in

y
ie
ld

to
so
il
an
d
to
p
o
g
ra
p
h
ic

p
ar
am

et
er
s,
2
0
1
2
–
2
0
1
4

A
m
es

K
el
le
y

O
g
d
en

2
0
1
2

2
0
1
3

2
0
1
4

2
0
1
2

2
0
1
3

2
0
1
4

2
0
1
2

2
0
1
3

2
0
1
4

S
ee
d
in
g
ra
te

0
.1
7
*
*

n
s

-
0
.5
5
*
*
*

-
0
.3
8
*
*
*

-
0
.2
7
*
*
*

-
0
.1
5
*

-
0
.1
0
*

n
s

-
0
.1
6
*
*
*

P
0
.5
5
*
*
*

n
s

-
0
.2
2
*
*

0
.2
7
*
*

n
s

-
0
.3
4
*
*
*

0
.1
5
*
*

n
s

0
.4
3
*
*
*

K
0
.6
3
*
*
*

n
s

n
s

0
.3
0
*
*
*

n
s

-
0
.2
9
*
*
*

n
s

-
0
.2
6
*
*
*

0
.3
1
*
*
*

p
H

n
s

-
0
.2
9
*
*
*

-
0
.7
0
*
*
*

N
s

n
s

-
0
.4
4
*
*
*

0
.0
9
*

-
0
.2
6
*
*
*

-
0
.4
0
*
*
*

S
O
M

0
.4
6
*
*
*

-
0
.2
9
*
*
*

-
0
.5
0
*
*
*

0
.3
6
*
*
*

n
s

-
0
.4
2
*
*
*

0
.1
9
*
*
*

-
0
.3
7
*
*
*

0
.0
9
*

C
E
C

0
.4
3
*
*
*

-
0
.3
3
*
*
*

-
0
.4
2
*
*
*

0
.4
0
*
*
*

n
s

-
0
.3
3
*
*
*

0
.1
0
*

-
0
.2
7
*
*
*

n
s

S
an
d

-
0
.5
2
*
*
*

0
.1
3
*

n
s

N
s

n
s

n
s

-
0
.1
9
*
*
*

n
s

n
s

S
il
t

0
.4
6
*
*
*

n
s

-
0
.1
4
*

N
s

n
s

n
s

0
.1
9
*
*
*

-
0
.1
1
*
*

n
s

C
la
y

0
.2
2
*
*

n
s

0
.1
6
*

N
s

n
s

n
s

0
.0
9
*

n
s

n
s

S
lo
p
e

-
0
.4
6
*
*
*

0
.2
4
*
*

0
.2
7
*
*
*

-
0
.2
0
*
*

n
s

0
.1
8
*
*

-
0
.1
9
*
*
*

0
.2
8
*
*
*

-
0
.0
9
*

C
u
rv
at
u
re

-
0
.1
9
*
*

n
s

n
s

-
0
.3
4
*
*
*

n
s

0
.4
4
*
*
*

-
0
.1
4
*
*

n
s

n
s

A
sp
ec
t

n
s

n
s

-
0
.2
9
*
*
*

0
.1
6
*

n
s

n
s

-
0
.1
6
*
*

0
.1
1
*
*

-
0
.1
4
*
*

E
le
v
at
io
n

-
0
.5
8
*
*
*

0
.2
4
*
*

0
.3
9
*
*
*

-
0
.2
4
*
*

n
s

0
.4
4
*
*
*

-
0
.3
1
*
*
*

0
.5
3
*
*
*

n
s

M
in
im

u
m

an
d
m
ax
im

u
m

n
u
m
b
er

o
f
o
b
se
rv
at
io
n
s
fo
r
th
e
co
rr
el
at
io
n
p
ar
am

et
er
s:
A
m
es
-2
0
1
2
,
n
=

1
8
7
–
2
2
0
;
K
el
le
y
-2
0
1
2
,
n
=

1
8
0
–
2
2
0
;
O
g
d
en
-2
0
1
2
,
n
=

3
5
2
–
5
5
4
;
A
m
es
-

2
0
1
3
,
n
=

1
9
3
–
2
2
0
;
K
el
le
y
-2
0
1
3
,
n
=

2
2
0
;
O
g
d
en
-2
0
1
3
,
n
=

5
5
3
–
5
5
4
;
A
m
es
-2
0
1
4
,
n
=

2
1
9
–
2
2
0
;
K
el
le
y
-2
0
1
4
,
n
=

2
2
0
;
O
g
d
en
-2
0
1
4
,
n
=

5
5
2
–
5
5
4

n
s
n
o
t
si
g
n
ifi
ca
n
t

*
S
ig
n
ifi
ca
n
t
at

th
e
0
.0
5
p
ro
b
ab
il
it
y
le
v
el
;
*
*
S
ig
n
ifi
ca
n
t
at

th
e
0
.0
1
p
ro
b
ab
il
it
y
le
v
el
;
*
*
*
S
ig
n
ifi
ca
n
t
at

th
e
0
.0
0
1
p
ro
b
ab
il
it
y
le
v
el

123

Precision Agric



T
a
b
le

7
R
eg
re
ss
io
n
m
o
d
el
s
fo
r
p
re
d
ic
ti
n
g
co
rn

g
ra
in

y
ie
ld
s
u
si
n
g
se
ed
in
g
ra
te

(r
at
e
an
d
ra
te

sq
u
ar
ed
),
so
il
p
ar
am

et
er
s,
an
d
to
p
o
g
ra
p
h
ic

ch
ar
ac
te
ri
st
ic
s.
A
ll
m
o
d
el
s
w
er
e

si
g
n
ifi
ca
n
t
at

th
e
0
.0
0
0
1
p
ro
b
ab
il
it
y
le
v
el

S
it
e-
y
ea
r

R
eg
re
ss
io
n
m
o
d
el
a

M
o
d
el

R
2

A
m
es
,
2
0
1
2

Y
=

1
3
5
.7
6
?

1
.3
5
e-

5
R
at
e
-

8
.6
9
e-

1
0
R
at
e2

?
0
.0
5
K

?
0
.1
5
p
H

-
0
.0
2
S
O
M

-
0
.1
4
C
E
C
-

6
.0
6
e-

3
S
D

-
0
.0
2
C
L
-

0
.0
7
S
L

-
0
.3
7
E

0
.6
5

A
m
es
,
2
0
1
3

Y
=

1
9
.7
6
?

0
.0
1
K

-
0
.3
5
p
H

-
0
.1
7
C
E
C
-

0
.0
1
S
D

-
0
.0
1
C
L
-

0
.0
5
S
L
-

0
.2
5
C

0
.2
0

A
m
es
,
2
0
1
4

Y
=

1
7
.5
4
-

3
.9
0
e-

5
R
at
e
-

4
.0
2
e-

1
0
R
at
e2

-
0
.0
1
P
?

0
.0
1
K

-
0
.7
7
p
H

?
0
.0
1
S
O
M

-
0
.0
7
C
E
C
-

9
.4
5
e-

4
S
D

-
0
.0
2
S
L

0
.7
7

K
el
le
y
,
2
0
1
2

Y
=

9
3
.7
3
-

2
.9
3
e-

5
R
at
e
-

0
.0
3
P
?

0
.0
1
K

-
0
.6
8
p
H

?
0
.1
6
C
E
C
-

8
.8
6
e-

3
C
L
?

0
.0
5
S
L
-

0
.3
4
C
?

0
.4
9
A

-
0
.2
7
E

0
.5
0

K
el
le
y
,
2
0
1
3

Y
=

8
5
.0
4
-

1
.3
7
e-

5
R
at
e
-

2
.3
7
e-

1
0
R
at
e2

-
0
.0
1
P
?

2
.3
4
e-

3
K

-
0
.2
4
p
H

?
0
.0
3
C
E
C
-

2
.5
4
e-

3
C
L
?

0
.0
4
S
L
-

0
.2
3
E

0
.1
6

K
el
le
y
,
2
0
1
4

Y
=

-
1
9
3
.3
4
-

2
.0
7
e-

5
R
at
e
-

0
.0
1
K

-
0
.9
0
p
H

?
0
.0
6
C
E
C
-

0
.0
1
S
D

-
0
.0
1
C
L
?

1
.6
0
C
-

0
.2
8
A

?
0
.6
8
E

0
.4
1

O
g
d
en
,
2
0
1
2

Y
=

1
8
6
.8
5
-

8
.8
7
e-

6
R
at
e
-

7
.9
5
e-

1
0
R
at
e2

?
0
.0
3
P
-

7
.7
6
e-

3
K

-
5
.6
6
e-

3
S
D

-
0
.0
6
S
L
-

0
.3
3
C
-

0
.2
6
A

-
0
.5
1
E

0
.1
9

O
g
d
en
,
2
0
1
3

Y
=

-
3
3
3
.6
4
-

4
.3
2
e-

1
0
R
at
e2

?
0
.0
1
P
-

4
.9
1
e-

3
K

?
1
.5
6
e-

3
S
D

?
4
.6
4
e-

3
C
L
?

0
.0
6
S
L
-

0
.1
9
C
?

1
.0
3
E

0
.3
2

O
g
d
en
,
2
0
1
4

Y
=

6
9
.8
5
-

6
.2
1
e-

6
R
at
e
-

6
.2
3
e-

1
0
R
at
e2

?
0
.0
2
P
-

0
.3
0
p
H

?
0
.0
1
C
E
C
-

0
.0
2
S
L
?

0
.0
7
C
-

0
.0
8
A

-
0
.1
7
E

0
.3
9

Y
co
rn

g
ra
in

y
ie
ld

(M
g
h
a-

1
),
R
a
te

se
ed
in
g
ra
te

(s
ee
d
s
h
a-

1
),
P
p
h
o
sp
h
o
ru
s
(m

g
k
g
-
1
),
K

p
o
ta
ss
iu
m

(m
g
k
g
-
1
),
S
O
M

so
il
o
rg
an
ic

m
at
te
r
(g

k
g
-
1
),
C
E
C

ca
ti
o
n
ex
ch
an
g
e

ca
p
ac
it
y
(c
m
o
l
k
g
-
1
),
S
D

sa
n
d
(g

k
g
-
1
),
C
L
cl
ay

(g
k
g
-
1
),
S
L
sl
o
p
e
(d
eg
re
es
),
C

cu
rv
at
u
re
,
A
as
p
ec
t
(r
ad
ia
n
s)
,
E
el
ev
at
io
n
(m

)
a

R
eg
re
ss
io
n
m
o
d
el
s
d
er
iv
ed

fr
o
m

ea
ch

si
te
-y
ea
r
d
at
a
se
t

123

Precision Agric



and dry conditions that were detrimental to grain production during grain fill later in the

season. Therefore, most of the parameter coefficients in the regression model were low and

therefore had little effect on the yield prediction.

Seeding rate optimization

The focus of this work was to determine if there is a way to use known field characteristics

combined with seeding rate treatments and yield outcomes to determine optimum seeding

rates for future plantings based on those known field characteristics. The results showed

that in four site-years (Ames 2013 and Kelley 2012, 2013, and 2014) there was no opti-

mized seeding rate due to a lack of a seeding rate interactions with soil parameters and

topographic characteristics (Fig. 3). This does not mean soil parameters or topographic

characteristics do not influence corn grain yields. It does mean that the optimization of

seeding rates was not affected by the selected field characteristics.

Five site-years had a seeding rate interaction with a soil parameter(s) and/or topographic

characteristic(s). Of the five site-years, Ames 2014 had optimum seeding rates below the

range of corn seeding rate treatments used in the experiment, thus limiting the validity and

usefulness of the seeding rate optimization analysis for this site-year. This is very likely

due to low coefficient estimates for seeding rate interactions with pH, CEC, and SOM

combined with essentially no coefficient estimate for seeding rate squared (-2.84e-10). In

Ames in 2014, the seeding rate response curve across the field had a narrow range of peak

yields between the 61 750 and 74 100 seeds ha-1 seeding rates.

Four site-years (Ames 2012 and Ogden 2012, 2013, 2014) provided corn seeding rate

optimizations that fell within the range of seeding rate treatments used in the experiment,

Fig. 3 Range of optimized seeding rates for each sub-plot of each site-year from central Iowa. Median, line
within the box; 25/75th percentile, box; 10/90th percentile, whiskers; 5/95th percentile, black dot; dashed
line indicates upper and lower seeding rate treatment used
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three of which provided a range of optimum seeding rates large enough to develop a

dynamic seeding rate response curve (Fig. 4). The Ames 2012 optimum seeding rates

ranged from 92 950 to 95 430 seeds ha-1 while the Ogden site had mean optimum seeding

rates of 83 270, 90 680, and 81 020 seeds ha-1 in 2012, 2013, and 2014, respectively. The

Ogden site-year seeding rate response curves match up to seeding rate response curves

used as the basis for corn seeding rate recommendations that maximize yields (Hoeft et al.

2000; Mueller and Sisson 2013; Nafziger 2012; Nielsen et al. 2015; Woli et al. 2014).

Conclusions

The site years of this study proved not only to have large variability of soil and topographic

parameters but also considerable corn grain yield and optimum seeding rate variability.

Individual sites exhibited different corn yield and seeding rate responses due in part to

differences in field variability. Slope, curvature, in-field elevation, and SOM were com-

monly correlated with corn yield in dry climatic conditions of 2012. When the planting and

growing season had normal to cool/wet conditions, corn yield correlations to variables

were less consistent. Regression models for all site-years were inconsistent in the amount

of yield variability accounted for by the soil and topographic variables (16–77 %).

When seeding rate optimization was performed, only three of nine site-years resulted in

meaningful seeding rate response curves that warranted use of variable seeding rates across

fields. Even in those site-years, there was considerable variation of the optimization model.

These findings support the hypothesis that for variable rate seeding to be viable there is a

need for seeding rate to be influenced by soil attributes and topographic characteristics with

an additional need for consistency of seeding rate interaction with soil attributes and

topographic characteristics from year to year and field to field.

Determining a single optimum seeding rate methodology based on soil and/or topo-

graphic variables across a farming operation seems unlikely due to seeding rate response

and interactions with variability of climatic conditions and field characteristics. Based on

this study, further research needs to be conducted to better understand how seeding rate

optimization can be accomplished effectively. Development of seeding rate response

curves for individual management zones based on indices that account for the influence of

Fig. 4 Corn grain yield at the optimized seeding rate for each sub-plot for Ogden in 2012–2014
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soil fertility, water holding capacity, and landscape position on seeding rate response

curves would be of great value.
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