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a b s t r a c t

Listing a species under the Endangered Species Act (ESA) and developing a recovery plan requires U.S.
Fish and Wildlife Service to establish specific and measurable criteria for delisting. Generally, species
are listed because they face (or are perceived to face) elevated risk of extinction due to issues such as
habitat loss, invasive species, or other factors. Recovery plans identify recovery criteria that reduce
extinction risk to an acceptable level. It logically follows that the recovery criteria, the defined conditions
for removing a species from ESA protections, need to be closely related to extinction risk. Extinction prob-
ability is a population parameter estimated with a model that uses current demographic information to
project the population into the future over a number of replicates, calculating the proportion of replicated
populations that go extinct. We simulated extinction probabilities of piping plovers in the Great Plains
and estimated the relationship between extinction probability and various demographic parameters.
We tested the fit of regression models linking initial abundance, productivity, or population growth rate
to extinction risk, and then, using the regression parameter estimates, determined the conditions
required to reduce extinction probability to some pre-defined acceptable threshold. Binomial regression
models with mean population growth rate and the natural log of initial abundance were the best predic-
tors of extinction probability 50 years into the future. For example, based on our regression models, an
initial abundance of approximately 2400 females with an expected mean population growth rate of
1.0 will limit extinction risk for piping plovers in the Great Plains to less than 0.048. Our method provides
a straightforward way of developing specific and measurable recovery criteria linked directly to the core
issue of extinction risk.

Published by Elsevier Ltd.

1. Introduction

The central part of any recovery planning process for endan-
gered or threatened species is to establish criteria for recovery.
Under the various endangered species protection laws (e.g., the
US Endangered Species Act, the Canadian Species at Risk Act,
etc.) the reason endangered species are protected is because of
some elevated risk of extinction. When that risk of extinction is
somehow reduced, the species is considered recovered and there-
fore taken off the protected species list (delisted; 16 U.S.C. 1531
et seq.). It logically follows that recovery criteria for a species
should somehow be related to eliminating or greatly reducing
the risk of extinction (Goodman, 2002). Setting recovery criteria

is a decision in which, minimizing, eliminating or reducing the
probability of extinction for the protected species is the fundamen-
tal objective of endangered species protection and recovery efforts.
However extinction probability itself is not empirically measurable
and therefore recovery criteria serve as the means objectives or
measurable attributes of the extinction probability fundamental
objective. A rational process would first identify a tolerable level
of extinction risk for a species, and then use some process to iden-
tify measurable quantities that effectively represent extinction
risk. Structured decision making (SDM) is an increasingly applied
decision analytical approach to complex natural resource decision
making and may be well suited to endangered species manage-
ment (Gregory and Keeney, 2002; Gregory and Long, 2009;
McGowan, 2013). In SDM it is imperative to first establish
fundamental objectives and then select measurable attributes of
those fundamentals that are unambiguous, understandable,
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comprehensive, direct, and measurable (Keeney and Gregory,
2005; McGowan, 2013) to improve both the decision making trans-
parency and the likelihood of achieving the fundamental objec-
tives. The measurable attributes of extinction probability should
address each of those five criteria; indeed, a thorough structured
decision making process to set recovery criteria for a protected
species would use the criteria established by Keeney and Gregory
(2005) as objectives and also consider other fundamental objec-
tives such as monitoring costs and efficiency. Setting recovery cri-
teria would be a decision process that selects the best measurable
attributes that maximizes the precision of the relationship to
extinction probability but also minimizes costs and inefficiency.

Extinction probability is derived from a model that projects cur-
rent conditions into the future, replicates that projection under
demographic and environmental stochasticity with ecological
and statistical uncertainty, and calculates the proportion of repli-
cates that went extinct (Beissenger and Westphal, 1998; Morris
and Doak, 2002). Population projection models (conceptual or
quantitative, implicit or explicit) are key components of any effort
to manage a species or population (Starfield, 1997). Making effec-
tive management decisions requires the ability to make formal
predictions about the probable effects of management choices
(Starfield, 1997). Measuring extinction probability is impossible
with field data alone. However, models that predict extinction
can be used to develop surrogate metrics that represent measures
of extinction risk. Observation error associated with measuring
attributes of recovery criteria further complicates the setting of
recovery criteria. Inaccurate measurement could inhibit our ability
to detect whether a species is recovered or has gone extinct; it
could result in premature or delayed delisting. Recovery criteria
should in some way account for imperfect detection either by only
using metrics that can be accurately measured or by accounting for
observational uncertainty of measurable attributes when setting
the recovery criteria.

Piping plovers are a protected species under the U.S. Endan-
gered Species Act (ESA) and the Canadian Species at Risk Act
(SARA). Piping plovers are a small, widely distributed, migratory
shorebird (Elliott-Smith and Haig, 2004). In the United States there
are three separately listed populations, the Atlantic Coast (Threa-
tened), the Great Lakes (Endangered), and the Great Plains (Threa-
tened; U.S. Fish and Wildlife Service, 1985). Piping plovers are
listed as endangered throughout Canada (Environment Canada,
2012). In 2010 the U.S. Fish and Wildlife Service (USFWS) convened
a new recovery team and initiated an effort to revise the recovery
plan for piping plovers in the Great Plains. The previous recovery
plan for the Great Plains population was written in 1988
(USFWS, 1988) and new data and research suggested the recovery
plan may need to be redrafted. The Great Plains breeding popula-
tion spends the non-breeding season mainly on beaches, coastal
sand flats and marshes of the Gulf Coast in the United States and
Mexico (Elliott-Smith and Haig, 2004; Gratto-Trevor et al., 2012).
During the breeding season, birds nest on the ground in sand and
gravel substrates on river sandbars, reservoir beaches and alkali
wetlands (Prindiville Gaines and Ryan, 1988; Lefer et al., 2008;
Anteau et al., 2012) from Manitoba, Canada, to eastern Montana
and south to Nebraska, Colorado, and rarely in northeastern Kan-
sas, USA (Elliott-Smith and Haig, 2004).

In this paper we present an SDM-rooted, transparent process
that uses population projection models and regression analysis of
simulated data to directly link recovery criteria (e.g., population
abundance targets, demographic parameter targets) to the proba-
bility of extinction. Our primary objective is to frame the process
of setting recovery criteria as a decision in which the fundamental
objective is to maximize the precision of the relationship of the
metric to extinction probability. To aid in that framing we present
a process for establishing and evaluating the link between

measurable attributes of a population and extinction probability
using simulation models and regression analysis of the simulated
data. We developed a population projection model for piping
plovers in the Great Plains to inform and support the recovery
planning process and to link piping plover abundance and other
demographic parameters to extinction probability. The model
builds on previously published models (Ryan et al., 1993;
Plissner and Haig, 2000; Larson et al., 2002; McGowan and Ryan,
2009) and incorporates existing data and expert opinion (i.e., con-
sultation with the recovery team) of population dynamics and
meta-population structure in the Great Plains. We used the model
to predict the necessary starting population size, spatial distribu-
tion, and population growth rate needed to reduce the probability
of extinction to a prescribed level. We also assessed how observa-
tion error and imprecision can affect recovery criteria. The end
result is a set of tables describing the sets of conditions (combina-
tions of initial population size and expected population growth
rate) that achieve recovery (reduced extinction risk), akin to an
optimal decision table (Williams et al., 2002), under perfect and
imperfect observability. Though population viability models have
been used in developing recovery criteria previously (e.g., Schultz
and Hammond, 2003), to our knowledge, creating a decision table
based on varied initial conditions and expected demographic rates
is a novel approach for establishing recovery criteria. Furthermore,
while extinction probability has been linked to initial population
conditions and input demographic parameters (e.g., Lande and
Orzack, 1988), establishing the measurable attributes of recovery
criteria directly quantitatively linked to extinction probability
has rarely, if ever, been carried out. Here, we are presenting a
method to utilize these relationships in the decision making con-
texts of establishing recovery criteria and delisting a species.

2. Methods

All projection models and analyses of simulated data were
developed and executed in program R (R core development team,
2011). Our process was initiated through consultation with the
piping plover Northern Great Plains recovery team, which
consisted of representatives from State or Federal wildlife or man-
agement (e.g., Nebraska Game and Parks Commission, the U.S.
Army Corps of Engineers) agencies. The team provided species
and management expertise and we relied on their input to ensure
that the model we developed was ecologically and management
relevant.

The model we developed included spatial structure that divided
the northern Great Plains into four breeding/management regions:
Southern Rivers (primarily the Platte River and Missouri River in
southern South Dakota and along the Nebraska-South Dakota bor-
der), Northern Rivers (the Missouri River and its constructed reser-
voirs in central South Dakota north through North Dakota and
Montana), alkali wetlands (i.e., along the Missouri Coteau in North
Dakota and Montana), and Prairie Canada (all river, reservoir and
wetland habitats in Prairie Canada; Fig. 1). The model included lim-
ited exchange of individuals between the breeding regions and can
be considered a meta-population model (Hanski, 1994). These
divisions of the breeding range were supported by the available
banding data (see below) from multiple studies in the Great Plains.
In addition to reflecting suspected regional boundaries between
breeding populations, these sub-population units would likely
have differing reproductive rates, different limiting factors, and
would therefore require potentially different management strate-
gies. That is, the management actions could be differentially effec-
tive among regions given the variation in ecological and physical
processes.
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The projection equations for the population were crafted as
algebraic expressions and the simulation program had one equa-
tion for each region. The equations were composed of a recruit-
ment term, a survival term, and immigration/emigration terms
where annually a small, random percentage of the sub-population
could depart each region and move to another region as follows:
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where Ni is the population size in region i, SA is the annual survival
rate of adults, Fi is the annual fecundity rate in region i (female
fledglings produced per breeding female) and SY is the juvenile (first
winter) annual survival rate. The subscript t indicates the year. The
super script j indicates any one of the three subpopulations in the
model available for immigration or emigration and T is the annual
transition rate from region i to j (emigration) or j to i (immigration).
Following McGowan and Ryan (2009), our model assumes that
annual adult and juvenile survival does not vary by region but that
fecundity does. Analyses distinguishing survival rate by region in
the Great Plains have not been conducted/completed, but survival
estimates from the Atlantic Coast population suggest that far north-
ern breeding birds (e.g., Nova Scotia) may have lower survival than
more southern birds, at least for juveniles (Calvert et al., 2006;
Hecht and Melvin, 2009). Without conclusive analyses to support
regional survival differences in the Great Plains (Cohen and
Gratto-Trevor, 2011, D. Catlin unpublished data), we decided to
keep survival consistent among regions. Overall mean adult survival
was set at 0.78 (SE = 0.03) and was based on unpublished (D. Catlin,
unpublished data) and published estimates (Larson et al., 2000;
Cohen and Gratto-Trevor, 2011; Roche et al., 2010). Overall mean
juvenile survival was set at 0.52 (SE = 0.12) and was based on
unpublished analyses of mark recapture data (D. Catlin, unpub-
lished data) and is similar to published values from Saskatchewan
at 0.57 (SE 0.05; Cohen and Gratto-Trevor, 2011). Survival rates

were modeled as beta-distributed random variables in the simula-
tion model.

Productivity estimates for each region were based on the best
available published estimates or the best available data. The south-
ern rivers region had an estimated 0.77 (SE = 0.24) female fledg-
lings per pair, derived from nest survival, chick survival, clutch
size and renesting rate data (D. Catlin, unpublished data) using a
Noon and Sauer (1992) approach for estimating fecundity
(McGowan and Ryan, 2009). The estimates for southern rivers
might be artificially elevated due to recent intensive habitat man-
agement by the U.S. Army Corps of Engineers in the area where the
data originated (Catlin, 2009). If that investment and effort are not
perpetuated, the fecundity levels in the Southern Rivers would
likely decline to levels similar to other riverine habitats in the
Northern Great Plains. Shaffer et al. (2013) reported that birds pro-
duced 0.32 (SE = 0.27) female fledglings per breeding female in the
northern rivers region during a three year study. McGowan and
Ryan (2009) reported that annual fecundity estimates from alkali
wetland habitats were highly variable, but averaged approximately
0.60 (SE = 0.47) female fledglings per female. For the Canadian
provinces we used 0.52 (SE = 0.40) females per female, based on
unpublished data (C. Gratto-Trevor, unpublished data) and esti-
mates incorporated into the McGowan and Ryan (2009) population
model. Fecundity parameters in each region were modeled as log-
normally distributed random variables; the parameters for model-
ing the log-normal distribution were derived using the delta
method to convert the means and standard errors (Morris and
Doak, 2002; McGowan et al., 2011b).

Mean transition rates between breeding regions were assumed
to be low. We have scant evidence of birds moving between
regions from several multi-year banding studies that have been
conducted. Movement data from mark-recapture studies in the
Great Plains indicate that long distance dispersal (e.g. from
Nebraska to North Dakota) occurs infrequently (D. Catlin, unpub-
lished data, C. Gratto-Trevor, unpublished data, Roche et al.,

Fig. 1. Conceptual diagram of the Great Plains piping plover meta-population dynamics, showing regional divisions, transition rates between regions and annual
intraregional dynamics where SA is the annual survival rate of adults, F is the annual fecundity rate in region i (female fledglings produced per breeding female) and SY is the
juvenile (first winter) annual survival rate, the super script j indicates any one of the three subpopulations in the model available for immigration or emigration and T is the
annual transition rate from region i to j (emigration) or j to i (immigration).
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2012) for adults and immature birds/first time breeders. Less than
two percent of birds banded in a multi-year mark-recapture study
in Saskatchewan were ever observed in another region, although
these are largely incidental resight data and do not reflect directed
efforts to study and sample interregional movement. For purposes
here we assumed the total emigration rate from each region was
0.02. We divided that rate equally among the other regions (i.e.
the immigration rate into any one region from another averaged
0.0066 (SE 0.02) of the population in the origin region in the previ-
ous year). We modeled these transition parameters as beta-distrib-
uted random variables. We used the method-of-moments
calculations to derive the beta distribution scale and shape param-
eters from the mean and standard error (see Morris and Doak, 2002
for details).

The model included a simple ceiling type density dependence
function that reduced productivity in a region to zero if the popu-
lation in that region exceeded a threshold of 6000 individuals.
There are limited published assessments of density dependence
in this population, but some data do indicate density-dependent
reproductive success occurs on the nesting beach/island scale (M.
Ryan unpublished data, Catlin, 2009; Anteau et al., 2014). It seems
logical that there must be some limiting effect of habitat availabil-
ity on population growth and abundance. McGowan et al. (2011a)
published a model with density-dependent juvenile survival, but
the density dependent function was generic and not empirically
based. The McGowan et al. (2011a) model was developed to dem-
onstrate the interaction of density dependence and incidental take,
not to serve as a management model for plovers in the Great Plains.
Here we used a common approach of setting a maximum ceiling
for the population without speculating on the details or functional
form of the density-dependent function, similar to McGowan and
Ryan (2009).

The two primary model outputs were mean expected
population growth rate and the probability of extinction in year
50. Calculating population growth was simply a matter of dividing
current population size by the population size in the previous year:

ki
t ¼

Ni
t

Ni
t�1

;

where k was the population growth rate for the ith management
region, N was the population size and t was the time step. Popula-
tion growth was calculated for each time step and the geometric
mean of k was calculated for each replicate. We also calculated
the mean population growth rate across replicates to obtain the
overall expected mean population growth rate.

We calculated regional quasi-extinction probability using a
Boolean-logic function that recorded a ‘‘one’’ if the population
was less than 50 individuals and a ‘‘0’’ if the population was greater
than 50 individuals for each year in each region for each replicate.
Quasi-extinction thresholds are frequently used in population
modeling as surrogates of true extinction to account for the com-
plexities of demographic stochasticity in a mathematically simple
way. Similarly, for the entire Great Plains population, we set a
quasi-extinction (hereafter extinction) threshold of 100 individu-
als. At the end of each simulation, we summed the number of
extinction events for each year and divided by the number of rep-
licates. We tracked extinction every year but for the post-simula-
tion analyses (see below) we looked only at the number of
replicates where the population was extinct at year 50 to allow
regions to be recolonized naturally by dispersal events from other
regions. At the regional level, this is not the same as a cumulative
extinction probability for each region, but more analogous to a sin-
gle year probability of extinction 50 years into the future. The state
of the system 50 years into the future is the end result of 50 years
of stochastic events, including previous extinction and colonization

and thus our tracking of regional extinction incorporates the
accumulation of those stochastic events. The overall population
estimate of extinction probability is equivalent to a cumulative
extinction probability because our model does not allow for recol-
onization from outside the Great Plains.

2.1. Uncertainty

There is a great deal of uncertainty embedded in our model.
Several of the parameters had no empirical estimates, were based
on limited data, or inferred from studies not directly estimating the
parameter of interest. Even the parameters that are empirically
estimated (e.g. survival or productivity) are subject to sampling
variation causing parametric uncertainty. The individuals that are
captured and studied and even the years that a study took place
can influence the mean estimates of demographic parameters
and the estimates of annual variation in those parameters
(McGowan et al., 2011b). Parametric uncertainty due to sampling
variance can have large effects on model predictions and those
effects should be incorporated into population projection models,
especially when modeling in a management context (McGowan
et al., 2011b). We followed the recommendations of McGowan
et al. (2011b) for incorporating parametric uncertainty into our
model for survival, fecundity and regional transition parameters.
We sampled mean values for each parameter in each replicate of
the population projection (sampling variability). The standard
deviation of survival due to sampling variation was 0.03, and for
fecundity it was 0.2 for all regions. The mean values for each rep-
licate were then used to create new statistical distributions to
select parameter values for each year in that replicate projection,
mimicking temporal variability in annual demographic rates.
Annual variation in survival was drawn from a beta distribution
with mean selected in the out replication loop and a standard devi-
ation of 0.001 for adults and 0.012 for immature birds. The stan-
dard deviation for fecundity to incorporate annual variation
varied from replicate to replicate and was generated in the outer
replication loop. This hierarchical approach allows the model to
include both parametric uncertainty and temporal variability into
the projections and assessment of extinction probability.

Our model also allowed us to include observation uncertainty
on abundance and population growth outputs. Our ability to assess
population status and management effectiveness is partly depen-
dent on our ability to observe the population accurately. However,
piping plovers are difficult to count given their cryptic coloration,
elusive behavior and the vastness of some breeding areas (e.g.,
shorelines of large reservoirs). Models, on the other hand, predict
precisely the expected number of individuals in the population
given survival and productivity, and estimates of future abundance
or extinction risk are derived from those precise predictions. Our
application of model-based prediction of extinction probability,
as it relates back to population size and population growth rate,
assumes highly accurate or near perfect ability to detect and count
a population through monitoring programs. Recovery criteria
based on those model predictions may lead to premature or
delayed delisting of a species due to imperfect monitoring and
population status assessment. Temporal and parametric uncer-
tainty accounts for variability in parameter estimates or stochastic
variation in the environment, but does not account for imperfect
monitoring of a population. To incorporate imperfect detection,
we included a post-projection randomized adjustment to number
of birds in the population and subsequently to population growth.
We took the actual number of breeding birds from the simulation
and the number of offspring produced in each year and multiplied
each by a uniform random number between 0.5 and 1.1. Our
uniform random distribution multiplier allows for both over and
undercounting of individuals in any region in any year but the
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distribution is skewed towards undercounting because one study
supported frequent and significant undercounting for current
monitoring efforts in the Northern Rivers region and consistent
but less significant undercounting in the Southern Rivers region
(Shaffer et al., 2013). We recorded the actual and the adjusted
abundances and population growth rates separately and used the
two to assess the effect of monitoring error on predicting extinc-
tion probability.

2.2. Parameter sensitivity simulations

We used the model to predict extinction risk region by region
and for the whole population at 50 years if current demographics
and management effort continues for the next 50 years. Initial pop-
ulation size and regional distributions were set to reflect the 2006
international ‘‘census’’ (2331 total females with 0.28 in southern
rivers, 0.16 in northern rivers, 0.20 in alkali wetlands, and 0.37 in
Prairie Canada) and the demographic parameters were set at the
baseline levels described above. We tested the sensitivity of extinc-
tion risk to changes in the density-dependent ceiling and to the
magnitude of inter-regional movement parameters, the two sets
of model parameters with the least amount of empirical support.
In one scenario we increased the density-dependent ceiling from
6000 per region to 10,000 per region. In a separate simulation,
restoring the ceiling to 6000, we increased the immigration rates
between regions from 0.0066 annually to 0.012 annually uniformly
across regions.

2.3. Simulating extinction risk related to initial conditions

We ran simulations to identify the minimum population size
and population growth rates required to reduce extinction risk to
an acceptably low threshold. This set of simulations input random
starting values for initial population abundance, regional distribu-
tion of the population and overall mean values for fecundity and
survival. We used three hierarchical looping functions, where over-
all means for survival and fecundity and initial population size
were selected in the outer loop, replicate means for survival and
fecundity were selected and sampling variance applied in the sec-
ond level loop, and temporal variability was applied in the inner
loop (the annual loop; Fig. 2). In the outer loop, initial population
size was drawn from a uniform random distribution bounded by
1000 and 10,000, mean fecundity was drawn from a uniform ran-
dom distribution bounded between 0.2 and 1.2 females produced
per breeding female, adult survival was drawn from a uniform dis-
tribution bounded by 0.65 and 0.85, and first year survival was
drawn from a uniform distribution bounded by 0.35 and 0.65.
The range of survival and fecundity values represent the full range
of published or reported values for piping plovers in the Great
Plains. The regional distribution parameters were also drawn from
a uniform random distribution and the four parameters were set to
sum to one. We ran 1000 replicates under these conditions to gen-
erate 1000 extinction probabilities and expected population
growth rates, one for each starting scenario. Under each of the
1000 different initial conditions, we replicated the population
1000 time in the secondary loop, 50 years into the future in the
annual loop (Fig. 2). Each extinction probability output from the
model was the proportion of the 1000 secondary replicates that
went extinct in 50 years. With those input and output data, we
evaluated a set of candidate binomial regression models (glm mod-
els in R where the family equaled ‘‘binomial’’ and weights were set
to the number of replicates) to investigate the relationship
between extinction probability (the response variable) and initial
population size, population growth rate, mean fecundity, mean
adult survival, and mean first year survival (the predictor
variables; abundance covariates were input as raw values or log

transformed values in different competing models) for both the
actual and adjusted data output from the simulations. This regres-
sion analysis was done at the Great Plains population level as well
as separately for each regional population. We used AIC model
selection to compare and select the best model to describe varia-
tion in extinction risk in each region due to those independent
variables (i.e., the model with the lowest AIC score and highest
model weight was considered best and if additional models fell
within 2.0 AIC units of the best model we relied on multi-model
inference; Burnham and Anderson, 2002) Model fit of the top
model was assessed using an X2 comparing the top model to a glo-
bal model (Crawley, 2007). We used the regression parameter esti-
mates from that model to populate a decision table that described
the population size and predicted population growth combinations
required to achieve the pre-determined acceptable extinction risk
threshold. We argue that the decision table can serve as a delisting
criterion for the population (i.e., the ‘‘decision’’ is whether to
delist).

3. Results

Under current conditions with low inter-regional transition
probabilities and a low density-dependent ceiling, the mean popu-
lation growth rate was 1.001 (SD = 0.029), extinction probability
was 0.033 and median abundance at 50 years was 11,379 (2.5
percentile = 63, 97.5 percentile = 24,858) females for the entire
Great Plains population. The southern rivers region, where inten-
sive habitat management has occurred in recent years had the low-
est extinction probability (0.043) and seemed to insulate the
overall population from extinction risk. Extinction probability in
the other three regions exceeded 6% at 50 years (Fig. 3). Increasing
the density dependent ceiling from 6000 birds in each region to
10,000 birds in each region did not greatly change overall extinc-
tion risk (from 0.043 to 0.030) but did increase the predicted med-
ian abundance over time (from�13,100 to �21,600 at 50 years) for
the whole Great Plains population. That same pattern was
observed in each of the individual regions. Increasing the interre-
gional transition probabilities resulted in a slight decrease in
extinction risk for the entire Great Plains population (0.043 with
low transition rate, 0.031 with higher transition rates), and very lit-
tle change in the total abundance (11,379 with low transition rate,
12,383 with higher transition rates). Region by region there was
very little change in extinction risk and all regions exhibited
increases in median abundance at 50 years when the transition
probability between regions was doubled.

The best regression model to explain variability in extinction
risk under perfect observability for the whole Great Plains popula-
tion had the natural log of population size (b = �1.032; SE = 0.006)
and the mean population growth rate over 50 years (b = �47.09;
SE = 0.130) as covariates (intercept = 52.114, SE = 0.156,
AIC = 22,519, DAIC = 0.00, w = 1.00; Table 1). That same model
structure garnered all the AIC weight at the whole population scale
and for each of the four population/management regions, therefore
our results and discussion focus on the whole population scale for
simplicity and brevity. Under an expected population growth of 1.0
and a minimum extinction threshold of 0.05, a total initial popula-
tion of approximately 2400 females is required (Table 2). Whereas,
a minimum extinction threshold of 0.01 and an expected popula-
tion growth of 1.00 requires a total initial population of >5600
females (Table 2). While the top model only included population
growth and initial population size, population growth rate may
not be easily measured in the field. It may be more useful to use
other, more empirically based metrics such as fecundity (Table 3).
If the purpose is to establish useful measurable attributes of the
fundamental objectives (i.e., eliminating or reducing extinction
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risk; e.g., Keeney and Gregory, 2005) using the top AIC model for
inference may be unnecessary; it may be prudent to limit the

candidate metrics in the regression analysis to only those that
are easily measurable for a specific species; the metrics included
in this model comparison essentially become the alternatives in a
recovery criteria decision analysis. A minimum extinction thresh-
old of 0.05 requires a mean fecundity (female chick produced per
female) of 0.80 and an initial population of approximately 5400
females (Table 3). Each regression parameter has an associated var-
iance and it may be important to represent this uncertainty in the
output of the analysis. One approach would be to calculate the 95%
C.I. of each regression parameter, then build additional extinction
probability tables for the upper (Table 4) and lower bound
(Table 5), or any other relevant and useful percentile of expected
variation.

When the observation model was applied to model output data,
accounting for imperfect observations of the population, the stron-
gest regression model in the AIC analyses for the whole Great
Plains population had log of counted initial population size
(b = �1.03; SE = 0.007) and expected population growth rate
(b = �46.7; SE = 0.129) as covariates in the regression. The top
model for the adjusted output data was the same model as the
perfect detection output but with different regression parameter
estimates (intercept = 52.6, SE = 0.156). That same model structure
garnered all the AIC weight in each of the four population/manage-
ment regions when the observation model was applied to the data.

Fig. 3. Probability of extinction of piping plovers for the entire Great Plains
population and by individual management region (Southern Rivers, Northern
Rivers, US Alkali Lakes and Prairie Canada) as estimated by a meta-population
model in each of 50 years.

Table 1
Candidate models and AIC results (scores, ranks and weights) for regression models to explain variation in extinction probability and identify the best variables for setting
recovery criteria.

Model AIC DAIC w

Ln(initial population size) + k 22519.95 0 1
Initial population size + k + Proportion in Region 1 24964.77 2444.82 0
Initial population size + k 24968.37 2448.42 0
Ln(initial population size) + Adult Survival + Immature Survival 39103.29 137811.6 0
k 46376.67 23856.72 0
Adult Survival + Juvenile Survival + Fecundity 47239.61 24719.66 0
Adult Survival + Juvenile Survival 106064.66 83544.71 0
Ln(initial population size) + Fecundity 145176.38 122656.43 0
Initial population size + Proportion in Region 1 200347.42 177827.47 0
Ln(initial population size) 200446.06 177926.11 0
Initial population size 200647.5 178127.55 0

Fig. 2. Hierarchical loop structure of the simulation demonstrating how our model selected initial values and overall means in the outer loop, applied sampling variance in
the replicate loop, and applied temporal variation in the annual loop.
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Again, required population size was dependent on the desired level
of extinction probability and the desired population growth rate.
Under all starting population size and growth rate combinations,
the estimated extinction probability was 7.9% greater when obser-
vation error was applied compared to perfect detection. Under an
expected population growth of 1.0 and a minimum extinction
threshold of 0.05, a total initial population of approximately
5600 females is required (Table 6). Whereas, a minimum extinc-
tion threshold of 0.01 and an expected population growth of 1.00
requires a total initial population much greater 5600 females
(Table 6). Alternatively, a population growth rate of 1.01 and an
initial population size of 3600 females would achieve a minimum
extinction threshold of 0.05 (Table 6). The numeric value of the
regression parameter estimates are not substantially different
when using the observation adjusted model from the perfect
observation model but the recovery criteria using the same
extinction risk threshold would be much larger.

4. Discussion

In our model, under the baseline scenario, mean population
growth rates and projected abundance were higher, and extinction
probabilities were much lower than in previous efforts to model
this population (Ryan et al., 1993; Plissner and Haig, 2000;
Larson et al., 2002; McGowan and Ryan, 2009). We expect that this
is primarily due to three factors that distinguished our model from
previous efforts. In recent years, due in large part to intensive hab-
itat and predator exclusionary management, reproductive success
has greatly increased in the northern Great Plains, especially in
the ‘‘Southern Rivers’’ region where the USACE has invested tre-
mendous effort in habitat creation projects (Catlin, 2009; Catlin
et al., 2011). These increased reproductive success rates led to
increased population growth and decreased extinction probability,
but habitat and predator management may need to be maintained
over time in order for these population growth and extinction

Table 2
Expected extinction probability at 50 years into the future under mean population
growth rate and starting population size combinations with perfect observability of
the population.

Starting population size Average population growth

0.97 0.98 0.99 1 1.01 1.02

2000 0.196 0.132 0.087 0.056 0.036 0.023
2200 0.181 0.121 0.079 0.051 0.033 0.021
2400 0.168 0.112 0.073 0.047 0.030 0.019
2600 0.157 0.104 0.068 0.043 0.028 0.017
2800 0.147 0.097 0.063 0.040 0.026 0.016
3000 0.138 0.091 0.059 0.038 0.024 0.015
3200 0.131 0.086 0.055 0.035 0.022 0.014
3400 0.124 0.081 0.052 0.033 0.021 0.013
3600 0.117 0.077 0.049 0.031 0.020 0.012
3800 0.112 0.073 0.047 0.030 0.019 0.012
4000 0.107 0.069 0.044 0.028 0.018 0.011
4200 0.102 0.066 0.042 0.027 0.017 0.011
4400 0.098 0.063 0.040 0.026 0.016 0.010
4600 0.094 0.061 0.039 0.025 0.015 0.010
4800 0.090 0.058 0.037 0.024 0.015 0.009
5000 0.087 0.056 0.036 0.023 0.014 0.009
5200 0.083 0.054 0.034 0.022 0.014 0.009
5400 0.081 0.052 0.033 0.021 0.013 0.008
5600 0.078 0.050 0.032 0.020 0.013 0.008

Table 3
Expected extinction probability at 50 years into the future under mean fecundity rate
and starting population size combinations.

Starting population size Average fecundity

0.6 0.7 0.8 0.9 1 1.1

2000 0.123 0.086 0.060 0.041 0.028 0.019
2200 0.122 0.085 0.059 0.040 0.027 0.018
2400 0.120 0.084 0.058 0.039 0.027 0.018
2600 0.118 0.083 0.057 0.039 0.026 0.018
2800 0.117 0.082 0.056 0.038 0.026 0.018
3000 0.116 0.081 0.056 0.038 0.026 0.017
3200 0.115 0.080 0.055 0.038 0.025 0.017
3400 0.114 0.079 0.054 0.037 0.025 0.017
3600 0.113 0.078 0.054 0.037 0.025 0.017
3800 0.112 0.078 0.053 0.036 0.025 0.017
4000 0.111 0.077 0.053 0.036 0.024 0.017
4200 0.110 0.076 0.052 0.036 0.024 0.016
4400 0.109 0.076 0.052 0.036 0.024 0.016
4600 0.108 0.075 0.052 0.035 0.024 0.016
4800 0.107 0.075 0.051 0.035 0.024 0.016
5000 0.107 0.074 0.051 0.035 0.024 0.016
5200 0.106 0.074 0.051 0.034 0.023 0.016
5400 0.105 0.073 0.050 0.034 0.023 0.016
5600 0.105 0.073 0.050 0.034 0.023 0.016

Table 4
Upper bound of the 95% confidence interval of the expected extinction probability at
50 years into the future under mean population growth rate and starting population
size combinations with perfect observability of the population (generated using the
upper bound of the regression model parameters to predict extinction probability).

Starting population size Average population growth

0.97 0.98 0.99 1 1.01 1.02

2000 0.319 0.227 0.155 0.103 0.067 0.043
2200 0.298 0.210 0.143 0.094 0.061 0.039
2400 0.280 0.196 0.132 0.087 0.056 0.036
2600 0.264 0.183 0.123 0.081 0.052 0.033
2800 0.250 0.172 0.115 0.075 0.049 0.031
3000 0.237 0.162 0.108 0.071 0.045 0.029
3200 0.225 0.154 0.102 0.066 0.043 0.027
3400 0.214 0.146 0.097 0.063 0.040 0.026
3600 0.205 0.139 0.092 0.059 0.038 0.024
3800 0.196 0.132 0.087 0.056 0.036 0.023
4000 0.188 0.126 0.083 0.054 0.034 0.022
4200 0.180 0.121 0.079 0.051 0.033 0.021
4400 0.173 0.116 0.076 0.049 0.031 0.020
4600 0.167 0.112 0.073 0.047 0.030 0.019
4800 0.161 0.107 0.070 0.045 0.029 0.018
5000 0.156 0.103 0.067 0.043 0.028 0.017
5200 0.150 0.100 0.065 0.042 0.026 0.017
5400 0.145 0.096 0.063 0.040 0.025 0.016
5600 0.141 0.093 0.060 0.039 0.025 0.016

Table 5
Lower bound of the 95% confidence interval of the expected extinction probability at
50 years into the future under mean population growth rate and starting population
size combinations with perfect observability of the population (generated using the
upper bound of the regression model parameters to predict extinction probability).

Starting population size Average population growth

0.97 0.98 0.99 1 1.01 1.02

2000 0.113 0.073 0.047 0.030 0.019 0.012
2200 0.103 0.067 0.043 0.027 0.017 0.011
2400 0.095 0.062 0.039 0.025 0.016 0.010
2600 0.088 0.057 0.036 0.023 0.014 0.009
2800 0.082 0.053 0.034 0.021 0.013 0.008
3000 0.077 0.049 0.031 0.020 0.012 0.008
3200 0.072 0.046 0.029 0.018 0.012 0.007
3400 0.068 0.044 0.028 0.017 0.011 0.007
3600 0.064 0.041 0.026 0.016 0.010 0.006
3800 0.061 0.039 0.025 0.015 0.010 0.006
4000 0.058 0.037 0.023 0.015 0.009 0.006
4200 0.055 0.035 0.022 0.014 0.009 0.005
4400 0.053 0.034 0.021 0.013 0.008 0.005
4600 0.051 0.032 0.020 0.013 0.008 0.005
4800 0.049 0.031 0.019 0.012 0.008 0.005
5000 0.047 0.030 0.019 0.012 0.007 0.005
5200 0.045 0.028 0.018 0.011 0.007 0.004
5400 0.043 0.027 0.017 0.011 0.007 0.004
5600 0.042 0.026 0.017 0.010 0.006 0.004
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probability predictions to come to fruition. We also used updated
and improved estimates of annual survival for adults and juvenile
birds (Catlin, 2009; Roche et al., 2010; Cohen and Gratto-Trevor,
2011) and the mean estimates of survival were somewhat higher
than estimates used in previous models (Root et al., 1992; Larson
et al., 2000). Given that population growth and extinction probabil-
ity are highly sensitive to annual survival rates (Ryan et al., 1993;
Larson et al., 2002) using higher survival rates in our model led to
more stable and optimistic population projections. Finally, we
expect that the meta-population structure insulated the overall
population from extinction because the probability of concurrent
extinction in all four subpopulations was low.

Extinction probability exhibited low sensitivity to the modeled
density-dependent ceiling for each regional population and to
transition rates between regions. It is possible that despite dou-
bling the rate of transition among regions, the transition rates we
used in our simulations were still too small to generate large
changes in extinction probability. Transition probability of individ-
uals moving among management regions has been indirectly stud-
ied for approximately 10 years. While extensive mark-recapture
and resighting studies have taken place in the Northern Great
Plains, those studies were focused on estimating survival and other
demographic parameters, not interregional movement probabili-
ties. In those studies few instances of inter-regional movement
were observed and therefore we assumed, based on those data,
that transition rates were low. Opportunity for interregional move-
ment is probably greatest between Northern Rivers and U.S. Alkali
Lakes, given their proximity to one another. Emerging data
(Shaffer, unpublished data) may indicate that movement rates
between at least some regions may be much higher than we
assumed. Mid-way through the 2013 breeding season, no fewer
than 8 adult plovers captured and marked from nests in Northern
Rivers Region had been resighted within the Alkali Lakes Region
despite limited resighting effort in the Alkali Lakes (U.S. Geological
Survey, unpublished data). We tested the sensitivity of extinction
probability to transitions rates that were quite low, but still within
the realm of possibility given the observed data; a posteriori simu-
lations with mean transition rates set to 0.13 showed an increase
in extinction probability to 0.083 for the entire Great Plains popu-
lation; the insulating effect of regional structure on population
viability is potentially lessened by increased connectivity. It may
be prudent to further evaluate transition rates among regions to
more accurately parameterize a meta-population model.

We used our model to demonstrate the effect of observation
error in the field on conditions required for recovery. In our case,
field-based counting error led to undercounting, on average, of
individuals in the population, which therefore led to a substantial
inflation of the required population size for delisting given a spe-
cific extinction probability and a desire for stationary populations
(population growth equal to 1.00; Tables 1 and 2). For piping plo-
vers in the northern Great Plains, counting error undoubtedly
occurs as this is a species whose primary strategy for survival
and reproduction is to not be seen (Elliott-Smith and Haig, 2004).
We accessed one study (Shaffer et al., 2013) that indicated a signif-
icant monitoring program in the Northern Rivers and Southern
Rivers management regions typically undercounted. We applied
that error to all management units in our model but more specific
measurement error could be empirically evaluated to more accu-
rately reflect counting error in each of the regions in our model.
We are not arguing that our specific observation error is the best
approach for all wildlife species or even for piping plovers, but
rather trying to demonstrate how observation error can affect
model predictions and management decisions, in this case setting
recovery criteria. Given the potentially massive effect of observa-
tion error on the recovery criterion, and the possible risk involved
with prematurely or delayed delisting, careful and detailed region
specific assessment of observation error processes and effects may
be warranted Great Plains for piping plovers, and generally may be
important for other species in other contexts. Regardless of specific
implications for piping plovers, our purpose here was to explore
the effect of potential counting error on recovery criteria, and our
simulations and analysis indicate that measurement error may
be important to consider when establishing delisting criteria.

We have presented a logical and transparent method for estab-
lishing recovery criteria that integrates the best available science
on a given species and a simulation based approach. While some
understanding of population dynamics is required to implement
our method, McGowan and Ryan (2010) demonstrate that develop-
ing a useful model for endangered species decision making may
not be as data limited or challenging as some might predict. We
acknowledge previously documented limitations to specificity of
results from population viability analyses (e.g. McCarthy et al.,
2003) and suggest that, with improved accounting of parametric
uncertainty (e.g., McGowan et al., 2011b), limited projection hori-
zons (e.g., less than 50 year projections) and frequent model updat-
ing and reassessment of results, viability models can be useful in
the context we presented.

The regression results and inferential capacity of this analysis
may be sensitive to the simulation conditions set up in the model.
We tried to explore a wide variety of scenarios by drawing repli-
cate values from uniform distributions in which the upper and
lower bounds spanned the range of estimated demographic
parameters for this population to generate highly variable param-
eter combinations (i.e., initial population size, fecundity and sur-
vival) to fully explore the parameter and subsequent decision
space. Selecting an appropriate range of input values can greatly
affect the regression analysis and the ranges deserve careful con-
sideration. We recommend using a very large range because inter-
polating within the bounds of a regression model is more
defendable than extrapolating beyond the bounds. Further, the
regression model precision and predictive power would be highly
related to the number of replicates in the simulation model, i.e.,
10,000 replicates would likely return greatly reduced regression
model uncertainty than a 100 replicate simulation. In this analysis,
there should be a balance between presenting a false sense of cer-
tainty by using too many replicates versus presenting so much
uncertainty with too few replicates that decision making is
impeded. Furthermore, users of our approach could apply addi-
tional layers of risk aversion to listed species by using the lower

Table 6
Expected extinction probability at 50 years into the future under mean population
growth rate and starting population size combinations with imperfect observability of
the population.

Starting population size Average population growth

0.97 0.98 0.99 1 1.01 1.02

2000 0.373 0.272 0.190 0.128 0.084 0.055
2200 0.350 0.253 0.175 0.117 0.077 0.050
2400 0.330 0.236 0.162 0.108 0.071 0.046
2600 0.312 0.222 0.151 0.101 0.066 0.042
2800 0.296 0.209 0.142 0.094 0.061 0.039
3000 0.281 0.197 0.133 0.088 0.057 0.037
3200 0.268 0.187 0.126 0.083 0.054 0.034
3400 0.256 0.177 0.119 0.078 0.050 0.032
3600 0.245 0.169 0.113 0.074 0.048 0.030
3800 0.235 0.161 0.108 0.070 0.045 0.029
4000 0.225 0.154 0.103 0.067 0.043 0.027
4200 0.217 0.148 0.098 0.064 0.041 0.026
4400 0.208 0.142 0.094 0.061 0.039 0.025
4600 0.201 0.136 0.090 0.058 0.037 0.024
4800 0.194 0.131 0.086 0.056 0.036 0.023
5000 0.188 0.126 0.083 0.054 0.034 0.022
5200 0.181 0.122 0.080 0.052 0.033 0.021
5400 0.176 0.118 0.077 0.050 0.032 0.020
5600 0.170 0.114 0.075 0.048 0.031 0.019
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bound or some other percentile of the regression parameters
which would likely increase the recovery thresholds (i.e., higher
population requirements, population growth rates or fecundity),
but also reduce the risk of premature delisting. It may be possible
and sufficient, with some demographic parameters, like fecundity,
to forego the regression step of this analysis and build a decision
table directly by simulating multiple scenarios and parameter
combinations. However, the regression approach presents a gener-
alized approach where any measurable attribute of the population
that can be incorporated into the simulation model can be used to
set recovery criteria that are directly linked to extinction probabil-
ity. Furthermore, the regression modeling step allows recovery
planners to concurrently evaluate the predictive power and the
utility of multiple demographic parameters as measurable attri-
butes of extinction probability through model selection (or some
other model comparison technique). Under this approach, decision
makers could evaluate multiple candidate measurable attributes in
terms of their utility and precision for predicting extinction prob-
ability using regression and model selection to compare competing
models of the simulation data.

With our model and regression analysis we can quantify the
extinction probability for any given starting population size and
expected population growth rate for the modeled species. Conceiv-
ably, this type of analysis and table could be done for any measur-
able population parameter. If certain parameters are difficult to
measure, such as adult survival or population growth rate, the
analysis could be limited to quantities that are measurable with
precision. We demonstrated that even though population growth
and initial abundance were the best predictors of extinction prob-
ability, a similar table could be constructed for mean fecundity.
Though fecundity was not heavily supported as a covariate of
extinction probability in the model selection analysis, the regres-
sion model had a adequate fit to the data according to the X2 good-
ness of fit test and seems to adequately describe variation in
extinction probability (p < 0.001) to potentially be a useful predic-
tor and measurable attribute for extinction probability. The trade-
off faced by recovery planners is that fecundity seems to be a lower
quality predictor or extinction probability, but maybe more
accurately and easily measured than population growth rate.

The result of this regression-based approach is similar (in prac-
tice, not mathematically) to a state dependent optimization output
table that identifies the optimal action under any state of the man-
aged system. With our approach, a recovery team could select, a
priori, an acceptable extinction risk for the protected species and
subsequently use our regression-based analysis of projection data
to identify combinations of expected population growth and pop-
ulation size (or other demographic parameters) that constitute
recovery for the species/population; that is, the conditions where
extinction probability is acceptably low to warrant de-listing. The
recovery team could then set delisting criteria and manage the
population accordingly to achieve the target population growth
rate and population size (or other demographic parameters) as sur-
rogate measures of the fundamental objective of avoiding or reduc-
ing extinction risk. The regression-based approach allows recovery
planners to present and evaluate sets of recovery criteria using
alterative combinations of parameters that meet the a priori
extinction risk threshold. For example, de-listing may be allowable
at lower abundance if higher population growth rates or fecundi-
ties are expected, as long as the extinction risk threshold is likely
to be met according to the model predictions.

To our knowledge this is a unique approach to establishing
recovery criteria for an endangered or protected species. One in
which an acceptable level of risk to that species persistence is first
identified through discussion of risk tolerance. The conditions
required to achieve that acceptable level of risk are then identified
through simulation modeling and regression analysis. We recognize

that extinction probability has been previously linked to starting
population size or population growth rate (e.g., Lande and Orzack,
1988), but here we present an approach that explicitly and transpar-
ently incorporates this relationship into the process of establishing
recovery criteria. Historically recovery targets for listed species
were typically set by setting some abundance threshold higher than
current without any explicit link to extinction risk (e.g., USFWS,
1988; Schemske et al., 1994; Elphick et al., 2001; Neel and
Che-Castaldo ,2013). Some recovery plans in more recent years have
use population models to assess species status and even to link
recovery criteria to population growth rate (Goodman, 2002;
USFWS, 2001, 2012) and a rare few have centered on extinction
probability (USFWS, 2002). Under our projection modeling and
regression based approach, the attributes of recovery are specific,
measurable and directly related to extinction probability. The
measurable criteria are also scientific and transparently derived
but the core objective, the acceptable level of extinction risk to a
species, is a matter of societal value and risk tolerance and the objec-
tive is open for reasoned debate. This framework, a priori selecting
an acceptable extinction risk and then using a projection model to
link measurable attributes of the population to extinction risk and
identify the conditions for delisting trough analysis of simulation
output, could be applied to any endangered population for which
a model could be constructed. From species to species the primary
differences will be model structure and the range of input values
for the replicate simulations; however we envision application for
birds, mammals, reptiles, invertebrates and protected flora. The real
limiting factor is the ability to identify an acceptable extinction risk
then build a model to output extinction probability.
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