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ABSTRACT 

Diverging populations often shift patterns of signal use – a process that can contribute to reproductive isolation 

and speciation. Yet it is not clear why most traits gain or lose signal value during divergence. One reason this could 

occur is because changes in the relationship between signals and relevant physiological parameters degrade the 

reliability of a signal, or even change its underlying information content. Here we test the hypothesis that the 

relationship between signal trait elaboration and a central component of organismal health – oxidative stress – 

differs across closely related populations that have diverged in signal use and preferences. In the recently diverged 

barn swallow subspecies complex (Hirundo rustica, Family: Hirundinidae), different populations use different traits 

as sexual signals. Two of these traits, ventral breast plumage color and tail streamer length, differ markedly 

between North American H. r. erythrogaster and European H. r. rustica. Despite this divergence, variation in 

ventral plumage color was similarly associated with measures of oxidative damage across both populations. 

However, the directionality of these relationships differed between the sexes: darker male barn swallows had 

higher levels of plasma oxidative damage than their lighter counterparts, while the opposite relationship was seen 

in females. In contrast, relationships between tail streamer length and measures of oxidative stress were not 

consistent across populations. Some analyses indicated that in European H. r. rustica, where males bearing 

elongated streamers are preferred as mates, longer-streamered males were more oxidatively stressed; however, 

the opposite pattern was suggested in North American H. r. erythrogaster. Tail streamer length was not associated 

with measures of oxidative stress in females of either population. Differences in the physiological state of stronger 

signalers across populations and between the sexes may be related to costs or constraints on signal elaboration 

(e.g., biochemical pathways associated with melanogenesis), or reflect differences in how signal-mediated social 

interactions influence oxidative stress. Overall, our results suggest that while some phenotypic traits appear to be 

capable of conveying similar physiological information regardless of their use as signals, divergence in other 

phenotypic traits may be associated with shifts in their information content. 
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Diverging populations often shift patterns of signal use—a process that can contribute

to reproductive isolation and speciation. Yet it is not clear why most traits gain or lose

signal value during divergence. One reason this could occur is because changes in the

relationship between signals and relevant physiological parameters degrade the reliability

of a signal, or even change its underlying information content. Here we test the hypothesis

that the relationship between signal trait elaboration and a central component of

organismal health—oxidative stress—differs across closely related populations that have

diverged in signal use and preferences. In the recently diverged barn swallow subspecies

complex (Hirundo rustica, Family: Hirundinidae), different populations use different traits

as sexual signals. Two of these traits, ventral breast plumage color, and tail streamer

length, differ markedly between North American H. r. erythrogaster and European

H. r. rustica. Despite this divergence, variation in ventral plumage color was similarly

associated with measures of oxidative damage across both populations. However,

the directionality of these relationships differed between the sexes: darker male barn

swallows had higher levels of plasma oxidative damage than their lighter counterparts,

while the opposite relationship was seen in females. In contrast, relationships between

tail streamer length and measures of oxidative stress were not consistent across

populations. Some analyses indicated that in European H. r. rustica, where males

bearing elongated streamers are preferred as mates, longer-streamered males were

more oxidatively stressed; however, the opposite pattern was suggested in North

American H. r. erythrogaster. Tail streamer length was not associated with measures

of oxidative stress in females of either population. Differences in the physiological state

of stronger signalers across populations and between the sexes may be related to

costs or constraints on signal elaboration (e.g., biochemical pathways associated with

melanogenesis), or reflect differences in how signal-mediated social interactions influence

oxidative stress. Overall, our results suggest that while some phenotypic traits appear

to be capable of conveying similar physiological information regardless of their use as

signals, divergence in other phenotypic traits may be associated with shifts in their

information content.
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INTRODUCTION

Signal traits are aspects of behavior, morphology, or physiology,
that advertise information about how their bearer is likely to
perform in a competitive context (Zahavi, 1975; Schluter and
Price, 1993). Because the physiological state of an individual
is often a crucial aspect of performance, signals that are
causally linked with physiological measures can provide honest
information about performance in relevant environmental and
social contexts (Lailvaux and Irschick, 2006; Vitousek et al.,
2014). Signal development and display can be associated with
physiological state through many mechanisms. Some signals
are costly to produce or display, so their elaboration may
provide information about which individuals are able to bear
these costs. As such, experimental manipulations have shown
causal links between many aspects of physiological state and
signal elaboration, including endocrine levels and the capacity
to resist oxidative threats (Evans et al., 2000; McGraw et al.,
2002; Blount et al., 2003; Alonso-Alvarez et al., 2004; Safran
et al., 2008). Signals can also influence the physiological state
of their bearer through social mechanisms (Rubenstein and
Hauber, 2008; Oliveira, 2009; Vitousek et al., 2014). In situations
where signals are tested (e.g., during competition), bearing a
signal that does not equate with underlying competitive ability
may result in “social persecution” that induces physiological
costs (Rohwer, 1977; Tibbetts and Izzo, 2010). In contrast, if
signals are honestly reflective of competitive ability, then social
feedback about relative signal quality could induce positive
changes in physiological state by altering hormone levels or other
physiological mediators (Vitousek et al., 2013, 2014).

A central question in sexual selection and speciation concerns
why populations diverge in signal phenotypes and preferences.
If diverging populations are exposed to new environmental and
social contexts, then shifts in signal use could result from different
signals being most informative in these novel contexts (Schluter
and Price, 1993). While substantial research has addressed the
potential for signal efficacy to change across ecological contexts
(Boughman, 2002; Tobias et al., 2010; Seehausen, 2015), less is
known about how the information content of signals changes
during divergence (Hebets and Papaj, 2005). Signal use could
change because a different physiological state is optimal in
different environments—and this information is most accurately
conveyed by a different signal trait—or because the same
optimal phenotypic state is best conveyed by different traits in
each population. Alternatively, the physiological correlates of
divergent phenotypic traits could differ in ways that are unrelated
to their use as signals.

While many aspects of physiological state may play a role

in sexual signaling, and in organismal function more broadly,

oxidative stress is believed to be a particularly important

element. Oxidative stress occurs when pro-oxidants—which can

be generated by a number of oxidative processes including

metabolism and immune activation—overwhelm antioxidant
defenses and damage important biological macromolecules
including DNA, proteins, and lipids (Costantini, 2008; McGraw
et al., 2010; Metcalfe and Alonso-Alvarez, 2010). Oxidative stress
can also impact senescence, at least in part through its effects

on telomere dynamics (Von Zglinicki, 2002; Monaghan and
Haussmann, 2006; Haussmann et al., 2011). Previous analyses
have found that signal traits are both influenced by and
can causally affect antioxidant capacity and oxidative damage
(reviewed in Costantini, 2014).

We compared the relationship between diverging
morphological traits and measures of oxidative stress in two
closely related but recently diverged subspecies of barn swallows
(Hirundo rustica, Family: Hirundinidae). Recently formed
sister taxa are advantageous for comparative studies because,
post-speciation, the process of divergence is confounded by
further evolutionary changes (Via, 2001; Coyne and Orr, 2004).
Recent mtDNA phylogeographic and microsatellite analyses in
the barn swallow subspecies complex suggest that this group
formed rapidly and is not strongly genetically differentiated,
despite marked differentiation in two sexual signals: tail streamer
length and the extent of ventral color (Dor et al., 2010). In
North American barn swallows (H. r. erythrogaster) melanin-
based ventral plumage coloration is a sexual signal; males with
naturally darker or experimentally darkened plumage gain
a higher proportion of paternity in their nests (Safran and
McGraw, 2004; Safran et al., 2005). In contrast, while elongated
tail streamers do not appear to be preferred by female H. r.
erythrogaster (Safran and McGraw 2004), this trait is strongly
sexually selected in European H. r. rustica (Møller, 1988). Males
with elongated tails pair more quickly and have higher overall
paternity levels (Saino et al., 1997a). Females in both subspecies
display slightly reduced versions of the same signal traits used
by males (Scordato and Safran, 2014). While the specific way
in which ornamental traits are used by female barn swallows
is not known, some evidence suggests that these traits may
hold signal value. In H. r. erythrogaster darker females have
greater reproductive success (Safran and McGraw, 2004), and
both naturally darker and experimentally darkened females
experience less oxidative damage (Vitousek et al., 2013). In H. r.
rustica, streamer length appears to be under directional selection
in females via increased reproductive success (Møller, 1993).

The specific signal traits used by barn swallows could be linked
to oxidative stress in many ways. Melanin-based traits like the
ventral plumage of barn swallows have been causally linked with
oxidative stress in many species (McGraw, 2008; Galván and
Alonso-Alvarez, 2009; Costantini, 2014); however, the direction
of causation varies, and the mechanisms that generate these
relationships are generally not well-resolved (Costantini, 2014).
Melanin production may be influenced by oxidative stress, or
by an allocation tradeoff between antioxidant defense and signal
development (Jawor and Breitwisch, 2003; Moreno and Møller,
2006; Galván and Alonso-Alvarez, 2008; Metcalfe and Alonso-
Alvarez, 2010). Melanin-based trait expression may also be
coupled with oxidative stress levels through pleiotropic links
between melanogenesis and the activity of the hypothalamic-
pituitary-adrenal (HPA) axis (Xiao et al., 2003; Ducrest et al.,
2008; Jenkins et al., 2013). Depending on the specific pigment
type produced (pheomelanins vs. eumelanins), these links may
be positive (Galván and Solano, 2009; Galván et al., 2011)
or negative (Almasi et al., 2010; Roulin and Ducrest, 2011).
Plumage color could also affect oxidative stress levels through
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other mechanisms, including by influencing thermoregulatory
capability (Sirkiä et al., 2010) or predation risk (Galván et al.,
2014). Tail streamer length may also be linked with oxidative
stress through several pathways. The ability to produce long tail
streamers could be impacted by oxidative stress when plumage
is replaced annually during seasonal molt. However, it is perhaps
more likely that the direct energetic cost of bearing tail streamers
longer or shorter than the aerodynamic optimum (Møller et al.,
1995; Rowe et al., 2001) would excessively elevate pro-oxidant
levels (Dowling and Simmons, 2009).

An alternative but not mutually-exclusive mechanism to
explain potential links between signal traits and oxidative stress
is that bearing exaggerated signals—regardless of the specific
signal type—influences social interactions in ways that alter
oxidative stress levels (Vitousek et al., 2013, 2014). For example,
if stronger signalers are challenged more or less by conspecifics
(Rohwer, 1985; Tibbetts and Dale, 2004), or if mates alter their
provisioning investment based on signal quality (Dentressangle
et al., 2008; Vitousek et al., 2014), then changes in signal
elaboration could indirectly influence measures of oxidative
stress. Finally, observed correlations between signal traits and
oxidative stress may not be underlain by direct or indirect causal
links.

To test whether differences in signal-physiology relationships
among subspecies are associated with divergence in mate
preferences, we assessed links between signal elaboration and
two components of oxidative stress: plasma antioxidant capacity
and oxidative damage (reactive oxygen metabolites), in both
sexes of H. r. erythrogaster (breeding in Colorado, USA), and
H. r. rustica (breeding in South Bohemia, Czech Republic). If the
information content of signals is directly linked with trait type,
then we would predict that the physiological correlates of each
trait will be consistent across populations (Hypothesis 1: same
trait, same information). If a different trait is a better indicator
of a preferred physiological state in each population, then we
would expect to see the same physiological state predicted by
dark ventral coloration in North American H. r. erythrogaster
males and by tail streamer length in European H. r. rusticamales
(Hypothesis 2: different traits, same information). If both signal-
physiology relationships and the physiological state of preferred
individuals differ across populations, then we would expect to
find varying signal-physiology relationships across subspecies
(Hypothesis 3: same trait, different information). Alternatively,
signal traits could be unrelated to the measured physiological
traits (Hypothesis 4: same trait, no information).

METHODS

Capture and Sampling
Barn swallows were captured with mist nets or by hand at
breeding sites in Boulder and Jefferson Counties, Colorado,
USA (CO; from May–July of 2010; 76 male and 83 female
H. r. erythrogaster), and near Luznice, South Bohemia, Czech
Republic (CZ; in May and June of 2011; 35 male and 27
female H. r. rustica). Blood samples were taken within 3 min.
of disturbance and placed on ice for several hours until
centrifugation (10 min at 3500 rpm). Plasma was subsequently

frozen at −70◦C until analysis. Body mass was measured with a
Pesola spring balance (males and females in CO; males only in
CZ), and the right tail streamer measured to the nearest mm.
A sample of 4–6 breast feathers was plucked from the ventral
surface, mounted on an index card, and stored in the dark until
spectrophotometric analysis (Safran and McGraw, 2004). All
capture and handling protocols were approved by the University
of Colorado’s Animal Care and Use Committee (IACUC # SAF-
09-07-01), and by the Animal Care and Use Committees at the
Czech Academy of Sciences (041/2011), and Charles University
in Prague (4789/2008-30).

Feather Color Measurements
The color of melanin-based ventral breast plumage was scored
using a reflectance spectrophotometer (Ocean Optics USB4000),
according to previously described methods (Safran et al., 2010).
Briefly, ambient light was excluded using a metal probe holder
placed against the feather sample that ensured a constant distance
from the probe to the sample. A fiber-optic probe with a PX-
2 pulsed xenon light source at an angle of 90◦ to the feather
surface generated reflectance data relative to a white standard
(Ocean Optics WS-1) and a dark standard (for which all light
was excluded). During each sampling period, 20 spectra were
averaged with an integration period of 200ms. Each sample
of breast feathers was scored three times, and average values
were calculated. Previous analyses have indicated that ventral
plumage brightness, a heritable trait in barn swallows (Hubbard
et al., 2015), is highly correlated with hue and saturation in both
populations (CO: Vitousek et al., 2013, CZ: Adámková, Albrecht,
and Tomášek, unpublished data); we therefore used brightness
alone in analyses.

Analyses of Oxidative Damage and
Antioxidant Capacity
As a measure of oxidative damage, we used the d-ROMs
kit (Diacron International, Grosseto, Italy) (Costantini et al.,
2006, 2009) to assess the concentration of reactive oxygen
metabolites (ROMs)—in this case primarily hydroperoxides—
that derive from the oxidation of biomolecules. In this test a
chromogen mixture of alkyl-substituted aromatic amine reacts
with metabolites, inducing a color change proportional to the
concentration of metabolites. Plasma samples were added to
200µL of acetate buffer mixed with 2 µL of chromogen (N,
N-diethyl-p-phenylenediamine). After 75 min. of incubation
at 37◦C, the samples were centrifuged and 190µL of the
supernatant was pipetted onto a microwell plate (Costantini
et al., 2011b). The absorbance was read immediately at a
wavelength of 505 nm (BioTek Synergy HT; VT, USA).
Measured values were calibrated with a reference standard
that substituted a calibrator solution of lyophilized serum
for plasma, and converted to mM of H2O2 equivalents.
Intra-assay variability was 7.9% and inter-assay variability
was 6.7%.

As a measure of antioxidant capacity, we estimated the total
plasma antioxidant barrier (AOC) using the OXY-adsorbent test
(Diacron International, Grosseto, Italy). This test quantifies the
ability of plasma antioxidants (including proteins, ascorbate,
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thiols, vitamin E, and carotenoids) to resist oxidation by an
endogenously produced oxidant, hypochlorous acid (HOCl).
Plasma samples were diluted 1:100 with distilled water, and
a 200µL aliquot of HOCl solution was incubated with 5µL
of the diluted plasma for 10min at 37◦C (Costantini et al.,
2011b). Reference standards and blanks were prepared using
5µL of calibrator solution and water, respectively, and incubated
with 200µL of HOCl. At the end of the incubation, 5µL
of chromogen solution (N,N-diethyl-p-phenylenediamine) was
added. The absorbance was read immediately at a wavelength
of 505 nm (BioTek Synergy HT), and measured values
(expressed in mM of HOCl neutralized per mL of sample) were
calibrated with a reference standard that neutralized 350mM
of HOCl/mL. Intra-assay variability was 5.6% and inter-assay
variability was 8.9%.

Data Analyses
Data were analyzed using SAS 9.4. General linear models were
used to test the predictors of antioxidant capacity and reactive
oxygen metabolites. Data from both populations were combined,
but separate models were run for males and females. Initial
models in males contained the fixed effects: population, body
mass, corrected sampling date (see below), breast brightness,
streamer length, population × breast brightness, and population
× streamer length. Initial models for females contained the
same factors, with the exclusion of body mass, which was
not measured in CZ females. Fully parameterized models are
available as Supplementary Material (Table S1). Final models
were identified through backwards elimination of non-significant
effects (p> 0.15), and are presented here. Data on reactive oxygen
metabolites were reciprocally transformed, and model residuals
were checked to ensure they conformed to the assumption of
normality. Significant interactions between population and signal
traits were investigated using separate linear regressions in each
population.

Because sampling dates occurred at different times relative to
the initiation of the breeding season in the two populations, and
it was often not possible to determine the specific reproductive
stage of each captured individual, corrected sampling dates
were calculated for each individual by calculating the difference
between the actual sampling date and the mean sampling date of
individuals in that population. Thus, while this measure provides
an indication of whether an individual was sampled relatively
earlier or later than other individuals in its population, it does
not provide information about the breeding stage of an individual
that would enable us to assess true seasonal effects.

The data sets on oxidative damage and antioxidant capacity in
male barn swallows each contained a single outlier. Because of the
potential for these outliers to influence model outcomes, models
were run twice: once with the full data set, and once with the
single outlier excluded from the full model and throughout the
process of backwards elimination. Models of antioxidant capacity
run with and without the outlier (a male from CO with a z-score
of 3.4) did not differ qualitatively. Models of oxidative damage
run with and without the outlier on this measure (a male from
CZ with a z-score of 5.3) did differ. We present the results from
both sets of models here.

RESULTS

Divergent Signaling Phenotypes
As expected, analyses of both traits indicated significant
divergence between H. r. erythrogaster and H. r. rustica.
North American H. r. erythrogaster males have significantly
darker ventral breast coloration (t = 11.8, df = 40.4,
p < 0.0001), and shorter tail streamers (t = 11.1, df = 50.4,
p < 0.0001), than European H. r. rustica males (Figure 1).
Similar relationships were seen in females: H. r. erythrogaster
females had darker ventral breast coloration (t = 9.4, df =

38.3, p < 0.0001) and shorter tail streamers (t = 13.8,
df = 36.0, p < 0.0001) than their European counterparts
(Figure 1).

Male Signaling Phenotype and Measures of
Oxidative Stress
In male barn swallows, plasma antioxidant capacity was
significantly predicted by corrected sampling date (males
sampled earlier in the season had higher antioxidant capacity),
and by an interaction between population and streamer
length (Table 1, Table S1; final model all males: F(5, 100) =

546.76, n = 105, p < 0.0001; final model outlier removed:
F(5, 99) = 619.28, n = 105, p < 0.0001). Population-specific
regressions of significant interactions revealed that in North
American H. r. erythrogaster, males with shorter streamers have
a higher antioxidant capacity (outlier removed: F1 = 4.32,
p = 0.042), whereas in European H. r. rustica streamer length
does not predict antioxidant capacity (F1 = 0.14, p = 0.714;
Figure 2).

When all individuals are included in the analysis, oxidative
damage was significantly predicted by breast brightness
(Figure 3; higher in darker birds), and by the interaction
between population and streamer length (Table 1, Table S1; final
model: F(6, 85) = 833.21, n= 91, p< 0.0001). Population-specific
regressions indicated that in North American H. r. erythrogaster,
streamer length was unrelated to oxidative damage (Figure 2;
F1 = 2.32, p= 0.133), whereas European H. r. rusticamales with
longer streamers have greater oxidative damage (F1 = 4.37, p=
0.045). However, when the single outlier is excluded, oxidative
damage remains significantly higher in darker birds, but the
interaction between streamer length and population is no longer
significant [Table 1, Table S1; final model: F(7, 83) = 791.78,
n= 90, p < 0.0001].

Female Signaling Phenotype and Measures
Of Oxidative Stress
In female barn swallows, plasma antioxidant capacity was
not significantly predicted by any of the morphological traits
measured, but females measured earlier in the season had higher
antioxidant capacity [Table 1; final model: F(3, 93) = 580.58,
n= 96, p < 0.0001]. The final model of oxidative damage
includes breast brightness alone; darker females had significantly
lower levels of oxidative damage in both populations [Table 1,
Figure 3; final model: F(2, 86) = 1650.11, n= 88, p < 0.0001].
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FIGURE 1 | The elaboration of sexual traits in divergent populations of

barn swallows. (A) North American H. r. erythrogaster (red) have significantly

shorter tail streamers than European H. r. rustica (blue) in both males and

females. (B) H. r. erythrogaster of both sexes also have darker ventral breast

plumage than H. r. rustica.

DISCUSSION

During divergence, shifts in signal use could occur because
changes in signal-physiology relationships degrade signal
reliability, or alter or eliminate its underlying information
content (Schluter and Price, 1993). Yet while closely related
species often differ in signal use, little is known about how the
information content of signals changes during divergence. Our
analyses indicate that in diverging populations of barn swallows,
central components of physiological state (oxidative damage and
plasma antioxidant capacity) are predicted by variation in the
elaboration of two distinct plumage traits. While one of these
signal traits (ventral color) is similarly associated with oxidative
damage across populations, the other (tail streamer length) may
not be.

The comparative approach utilized here does not enable us to
determine whether signal traits are causally linked with measures
of oxidative stress, or whether the observed relationships
represent either a spurious relationship or result from both traits
being uni-directionally influenced by a third unknown factor.

TABLE 1 | Final GLMs of antioxidant capacity and oxidative damage in

male and female barn swallows.

Model Parameter Estimate F P

ANTIOXIDANT CAPACITY: MALES

Population 147.50 2.60 0.110

Corrected sampling date −0.790 6.58 0.012

Streamer length 0.328 2.19 0.142

Population*streamer length −1.950 4.82 0.030

ANTIOXIDANT CAPACITY—OUTLIER REMOVED: MALES

Population 136.55 2.51 0.116

Corrected sampling date −0.651 4.96 0.028

Streamer length 0.308 2.10 0.151

Population*streamer length −1.815 4.68 0.033

OXIDATIVE DAMAGE: MALES

Population 0.433 2.42 0.124

Corrected sampling date 0.002 2.60 0.111

Streamer length 0.003 0.00 0.952

Breast brightness −0.005 7.91 0.006

Population*streamer length −0.006 4.48 0.037

OXIDATIVE DAMAGE—OUTLIER REMOVED: MALES

Population 0.435 2.11 0.150

Corrected sampling date 0.002 4.39 0.039

Streamer length 0.001 0.67 0.416

Breast brightness −0.003 9.39 0.003

Population*streamer length −0.004 2.13 0.148

Population*breast brightness −0.006 3.18 0.078

ANTIOXIDANT CAPACITY: FEMALES

Corrected sampling date −1.37 17.42 <0.001

Streamer length 0.901 2.42 0.123

OXIDATIVE DAMAGE: FEMALES

Breast brightness 0.003 8.99 0.004

Significant factors are bolded.

Previous experiments, however, have found that both plumage
color and tail length causally influence measures of oxidative
stress and other physiological traits in barn swallows (Saino et al.,
1997b,c; Safran et al., 2008; Vitousek et al., 2013). Whether these
causal links are present across trait types, populations, and the
sexes is not known, and the specific mechanisms generating these
links are not well-understood. The observational data presented
here do, however, provide some insight into the mechanisms that
could potentially generate these links.

Plumage Brightness
Ventral plumage color, a trait that is sexually selected in
North American H. r. erythrogaster (Safran et al., 2005) but
is not predictive of pairing success (clutch initiation date)
in European H. r. rustica (Wilkins et al., unpublished data),
is similarly associated with measures of oxidative stress in
males of both populations. Males with darker ventral coloration
have higher levels of oxidative damage, but do not differ in
antioxidant capacity. Comparative data on plumage color signals
in male barn swallows are therefore consistent with our first
hypothesis: that the physiological correlates of a specific trait
will remain constant across diverging populations (same trait,
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FIGURE 2 | Male tail streamer length is differently associated with

measures of oxidative stress in recently diverged populations that

differ in signal use. Regressions of tail streamer length on: (A) Plasma

antioxidant capacity (mM HOCl neutralized), and (B) oxidative damage (mM

H2O2 equivalents) in North American H. r. erythrogaster (red symbols and

regression line) and European H. r. rustica (blue symbols and regression line).

Shading represents the 95% confidence interval for the linear regression.

same information hypothesis). Intriguingly, while females also
showed a consistent relationship between ventral plumage color
and oxidative damage across populations, the direction of this
relationship differed: in both North American H. r. erythrogaster
and European H. r. rustica, darker females had less oxidative
damage.

While we do not test the mechanisms underlying these
relationships, the observed patterns provide some clues about

FIGURE 3 | Plumage brightness is oppositely related to plasma

oxidative damage in male and female barn swallows: (A) Darker males

(those with lower plumage brightness scores) have higher plasma

oxidative damage (mM H2O2 equivalents) across both populations, (B)

Darker females have lower oxidative damage. Simple regressions shown,

with H. r. erythrogaster in red and H. r. rustica in blue. Shading represents the

95% confidence interval for the linear regression.

the nature of the links between oxidative stress and plumage
color. Because the plumage of these long-distance migrants
is developed on the wintering grounds, long before the
reproductive period, persistent links between signals and
oxidative stress seem more likely to be driven by either
fundamental constraints on system functionality (Hill, 2011), or
by causal effects of trait display on oxidative stress (Vitousek
et al., 2013). Similarly, the elevated levels of oxidative damage in
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darker male barn swallows is not consistent with trait elaboration
providing information about the ability of an individual to resist
challenges and withstand oxidative threats (von Schantz et al.,
1999; Jawor and Breitwisch, 2003). The contrasting patterns
found in males and females may, however, be consistent with the
hypothesis that specific types of melanic pigments are differently
linked with susceptibility to stress (Galván and Solano, 2015).
While barn swallow plumage contains both eumelanins and
pheomelanins, at least inH. r. erythrogaster, pheomelanin content
appears to play a stronger role in male coloration than in
female coloration (McGraw et al., 2005). Male ventral breast
plumage contains more pheomelanins (but not eumelanins)
than female plumage, and in males, but not females, the ratio
of eumelanins to pheomelanins significantly predicts plumage
coloration (McGraw et al., 2005). It is not known whether the
sexes differ similarly in pigment composition in H. r. rustica, as
the pigmentary basis of breast feathers has not been assessed (but
see McGraw et al., 2004; Saino et al., 2013b).

Opposite relationships between these two types of
melanic pigments and oxidative stress could occur through
pleiotropic links between melanogenesis and the activity
of the hypothalamic-pituitary-adrenal (HPA) axis—which
often increases reactive oxygen metabolites (Haussmann
and Marchetto, 2010; Costantini et al., 2011a). Pheomelanin
production is influenced by agouti-related signaling protein,
which also stimulates HPA axis activity (Xiao et al., 2003).
Thus, darker pheomelanic individuals may be more
sensitive to stressors (Galván and Alonso-Alvarez, 2011;
Roulin and Ducrest, 2011; Saino et al., 2013a; Galván and
Solano, 2015). In contrast, eumelanin pigment production
is increased by melanin-stimulating hormone, which also
binds to receptors in the hypothalamus that decrease
HPA axis activity during the hormonal stress response
(Racca et al., 2005; Ducrest et al., 2008). Thus, darker
eumelanic individuals are predicted to display weaker
hormonal stress responses (Almasi et al., 2010; Roulin and
Ducrest, 2011)—and likely also lower levels of oxidative
stress. Differences in the costs or trade-offs associated with
producing these two pigment types could also be driven
by other mechanisms. Pheomelanin production depends
on the potent antioxidant glutathione; thus, the diversion
of glutathione to pheomelanogenesis may be costly in
organisms facing oxidative threats (Costantini, 2014). In
contrast, eumelanogenesis can be inhibited by glutathione
(Galván and Alonso-Alvarez, 2008, 2009; Hõrak et al., 2010).
Thus, it is possible that, through any of several mechanisms,
the consistent sex differences across populations in the
directionality of the relationship between plumage brightness
and oxidative stress are driven by differences in the costs
or constraints of producing pheomelanic vs. eumelanic
pigments.

Previous experiments in female H. r. erythrogaster, however,
suggest that plumage coloration is causally linked with oxidative
damage. Females manipulated to display darker plumage rapidly
decrease plasma oxidative damage, adopting levels similar to
naturally darker birds (Vitousek et al., 2013). While causal links
between plumage color and oxidative damage have not been

examined in males, or in H. r. rustica, erythrogaster males
manipulated to display darker feathers rapidly decrease both
testosterone and body mass (Safran et al., 2008), patterns that
could be consistent with elevated levels of oxidative stress
(Alonso-Alvarez et al., 2007; Costantini, 2014). Thus, at least
in H. r. erythrogaster, plumage coloration appears to influence
aspects of physiological state. The observed relationships between
plumage color and oxidative damage in this study could be
generated by consistent sex differences in the direct costs or
benefits of displaying darker plumage—for example, if darker
males suffer a thermoregulatory cost on the wing, while darker
females are better able to retain heat during incubation (Sirkiä
et al., 2010). Alternatively, plumage color may influence social
interactions or reproductive effort in ways that alter oxidative
stress (Vitousek et al., 2013, 2014). For example, if darker males
invest more in costly reproductive behaviors this could increase
their oxidative stress. This mechanism would be most likely to
generate the observed patterns if, despite divergence of ventral
coloration between the subspecies, this trait holds signal value
in both populations. In H. r. rustica, ventral color, which is
substantially lighter than in H. r. erythrogaster (Figure 1), does
not predict the onset of breeding in males or females (Wilkins
et al., unpublished data), as it does in H. r. erythrogaster (Safran
and McGraw, 2004; Safran et al., 2005). However, it is not
known whether in H. r. rustica, males with darker ventral color
are preferred as extra-pair mates, or whether this trait plays a
role in mediating other social interactions during or outside of
the reproductive period. Experimental work in other systems
has found that the value of the resource held by a signaler, or
receiver motivation, can influence the likelihood that a signal
will be tested (Tibbetts, 2008). If, during the breeding season, the
plumage signals of male barn swallows are tested (e.g., during
mate or nest site defense, or extra-pair mate assessment), while
the signals of females are trusted, then we would predict that
darker males would have higher levels of oxidative damage, while
darker females would have lower oxidative damage—as seen
here.

Previous analyses of the relationship between ventral color
and susceptibility to stress have yielded mixed results. Ventral
color was not related to HPA activity in H. r. erythrogaster
males during molt or reproduction (Jenkins et al., 2013),
suggesting that increased HPA activity in darker pheomelanic
individuals is unlikely to drive the observed patterns with
oxidative damage. Studies in a European population of
H. r. rustica suggest that darker males—but not darker
females—have lower survival rates (Saino et al., 2013a, but
see Galván and Møller, 2013). It is not known, however,
whether feather color is causally linked with survival in this
population, and if so, whether this occurs through direct
costs or constraints on pheomelanin production (Galván
et al., 2011), or from physical or social costs of signal
display.

Elucidating the direction and nature of causal links between
ventral color and oxidative damage will require further
experiments into the development and use of these traits within
and across diverging populations. Additionally, as measures of
oxidative stress can be highly labile, future studies that test
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whether the observed relationships differ across life history
stages or environments, or represent context-dependent life
history trade-offs (Beaulieu et al., 2015), could shed light on
how and when diverging signals may convey specific, reliable
information. Because we were not able to determine the
reproductive sub-stage of individuals in the study, it is possible
that differences between individuals, or between populations,
in sample timing influenced the observed patterns. Future
analyses that incorporate the specific reproductive stage of
individuals—ideally as part of a repeated sampling design—
could provide insight into the presence and nature of context-
dependent links between signals and physiological state both
within and among populations. In this analysis, we focused on
a single region of ventral plumage color, the breast, as breast
brightness has been shown to be strongly and causally associated
with reproductive success in H. r. erythrogaster (Safran and
McGraw, 2004; Safran et al., 2005). However, other plumage
signals, including throat coloration, may hold signal value in
H. r. rustica (Perrier et al., 2002; Wilkins et al., unpublished
data). Some evidence also suggests that the relative roles of
eumelanin- and pheomelanin-based pigments in determining
plumage color differ between plumage patches (Saino et al.,
2013b). Future analyses should be expanded to encompass other
plumage traits that may hold signal value, and their pigmentary
basis, and include additional key measures of physiological state
and social interactions.

Tail Streamer Length
In contrast to the patterns observed with ventral color,
comparative data on tail streamer length suggests that this
trait is associated with different physiological information in
males of these two subspecies. In European H. r. rustica,
longer-streamered males did not differ in antioxidant capacity,
but the analysis from the full data set indicated that they
had greater levels of oxidative damage than shorter-streamered
males. Thus, where tail streamer length is under positive sexual
selection, males with longer streamers appear to experience
higher levels of oxidative stress. In contrast, in North American
H. r. erythrogaster, shorter-streamered males had a higher
antioxidant capacity, but streamer length was not associated
with oxidative damage. As plasma antioxidant levels are often
up-regulated in response to oxidative threats, this pattern
could indicate that shorter-streamered H. r. erythrogaster
males are more oxidatively stressed (Costantini and Verhulst,
2009); however, this pattern could also result from naturally
stronger antioxidant defenses in these males. Conclusions
related to oxidative damage should be treated with caution
due to the significant effect of the single outlier on the
model outcomes. However, both models of antioxidant capacity
(with and without the outlier) suggest that the physiological
state of longer-streamered males differs across these diverging
populations.

In male European barn swallows,H. r. rustica, sexual selection
has resulted in the elongation of streamers past the aerodynamic
optimum (Buchanan and Evans, 2000; Rowe et al., 2001). Barn
swallows are aerial insectivores and so acquire all of their
energetic resources during flight; thus, the apparent increase

in measures of oxidative stress in longer-streamered H. r.
rustica males could result from the increased energetic cost
of foraging faced by these males. The lack of a relationship
between tail streamer length and measures of oxidative stress
in female H. r. rustica, who have shorter tail streamers than
males (Figure 1), is consistent with females being closer to
the aerodynamic optimum in this population. The elevated
antioxidant levels in shorter-streamered North American H.
r. erythrogaster males, which are consistent with elevated
levels of oxidative stress, are particularly interesting. Previous
analyses have indicated that short streamers could fall below
the aerodynamic optimum for foraging flight (Buchanan and
Evans, 2000; Rowe et al., 2001). Thus, shorter-streamered male
H. r. erythrogaster—which appear to be preferred as mates by
females (Safran et al., in revision)—could face increased foraging
costs that translate into elevated oxidative stress. However,
while female H. r. erythrogaster have even shorter tail streamers
than their male counterparts (Figure 1), female tail length was
unrelated to measures of oxidative stress. This could be because
the direct costs of bearing shortened streamers differ in the
sexes. For example, the increased wing-loading generated by
elongated streamers might present a higher cost to shorter-
winged females (Rowe et al., 2001), or differences in the
foraging or reproductive behavior of female H. r. erythrogaster
could select for shorter tail length. It is also possible that
the opposing patterns in signal elaboration and physiological
state in these two populations are influenced more by the
social costs of trait display, or by signal-driven changes in
reproductive effort, than by the direct effect of streamer length
on aerial efficiency. For example, if tail length does not influence
social status or social interactions in female barn swallows—but
does in males—then we would expect to see social feedback-
induced links between oxidative stress and tail length in males
(that differ in directionality between populations) but not in
females.

CONCLUSIONS

Our analyses indicate that during the process of divergence, some
morphological traits remain consistent indicators of oxidative
damage, despite apparent shifts in signal use. Other traits,
however, differ in their relationships with physiological state,
and thus their potential information content, across diverging
populations. While we did not directly assess the mechanisms
that link signal traits and oxidative stress in barn swallows, our
findings provided some clues about the nature of these links.
As populations diverge, the same signals could be associated
with different physiological states because of differences in the
cost of producing or displaying an ornament across different
physical environments (e.g., the same ornament is more costly
to display in one environment than another), or because the
same signal is differently elaborated in two populations (e.g.,
tail streamer length above or below the aerodynamic optimum:
Rowe et al., 2001). Alternatively, divergent signal-physiology
patterns could be a direct result of differences in the way
signals are used across populations (e.g., social feedback about
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signal elaboration influences physiological state in populations
where the trait is used as a social signal, but not where it
is not). A comprehensive understanding of the relationship
between signals and physiological state during divergence will
require measuring a much wider variety of traits across multiple
populations and contexts, in combination with experimental
tests of the diversity of mechanisms that can generate these
links. Our results do, however, suggest that the relationships
between specific sexual traits and oxidative stress—a central
component of organismal health—may be differently altered
during divergence.
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Table S1: Full GLMs of antioxidant capacity and oxidative damage in barn swallows. 
 

Model 
Parameter 
Estimate F P 

 
Antioxidant Capacity: Males (F8,95=334.27, n=103, p<0.0001) 
       Population 230.15 5.12 0.026 
       Corrected sampling date -0.727 4.74 0.032 
       Body mass -0.731 0.04 0.833 
       Streamer length 0.509 1.89 0.173 
       Breast brightness 0.606 0.11 0.743 
       Population*streamer length -2.259 6.19 0.015 
       Population*breast brightness -1.617 1.79 0.184 
Antioxidant Capacity: Male Outlier Removed  (F8,94=375.95, n=102, p<0.0001)  
       Population 195.05 4.08 0.046 
       Corrected sampling date -0.658 4.32 0.040 
       Body mass -0.071 0.00 0.983 
       Streamer length 0.478 1.60 0.209 
       Breast brightness 0.610 0.06 0.812 
       Population*streamer length -2.037 5.61 0.020 
       Population*breast brightness -0.937 0.66 0.420 
Oxidative Damage: Males  (F8,83=625.02, n=91, p<0.0001) 
       Population -0.620 4.04 0.048 
       Corrected sampling date -0.002 3.29 0.073 
       Body mass 0.001 0.01 0.930 
       Streamer length -0.003 0.00 0.981 
       Breast brightness 0.003 9.87 0.002 
       Population*streamer length 0.006 5.04 0.027 
       Population*breast brightness 0.005 1.87 0.175 
 Oxidative Damage: Male Outlier Removed (F8,82=684.64, n=90, p<0.0001) 
       Population -0.436 2.10 0.152 
       Corrected sampling date -0.002 4.13 0.045 
       Body mass 0.001 0.02 0.885 
       Streamer length -0.001 0.62 0.432 
       Breast brightness 0.002 9.28 0.003 
       Population*streamer length 0.004 2.13 0.149 
       Population*breast brightness 0.006 2.96 0.089 
Antioxidant Capacity: Females  (F7,89=245.79, n=96, p<0.0001) 
       Population -150.73 0.50 0.479 
       Corrected sampling date -1.306 12.06 0.001 
       Streamer length 0.953 2.21 0.141 
       Breast brightness -0.837 0.54 0.464 
       Population*streamer length 1.486 0.43 0.516 
       Population*breast brightness 0.819 0.50 0.482 
Oxidative Damage: Females  (F7,78=453.88, n=85, p<0.0001) 
       Population -0.617 0.88 0.351 
       Corrected sampling date -0.001 0.60 0.441 
       Streamer length -0.006 0.19 0.668 
       Breast brightness -0.001 1.71 0.195 
       Population*streamer length 0.008 1.46 0.230 
       Population*breast brightness -0.002 0.30 0.587 
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