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Exchange Coupling Mediated Through-Bonds and Through-
Space in Conformationally-Constrained Polyradical Scaffolds:
Calix[4]arene Nitroxide Tetraradicals And Diradical

Andrzej Rajca*,a, Sumit Mukherjeea, Maren Pinkb, and Suchada Rajcaa

aDepartment of Chemistry, University of Nebraska, Lincoln, NE 68588-0304. IUMSC

bDepartment of Chemistry, Indiana University, Bloomington, IN 47405-7102

Abstract
Calix[4]arenes constrained to 1,3-alternate conformation and functionalized at the upper rim with
four and two tert-butylnitroxides have been synthesized, and characterized by X-ray crystallography,
magnetic resonance (EPR and 1H NMR) spectroscopy, and magnetic studies. The 1,3-alternate
nitroxide tetraradical and diradical provide unique polyradical scaffolds for dissection of the through-
bond and through-space intramolecular exchange couplings. In addition, detailed magnetic studies
of the previously reported calix[4]arene nitroxide tetraradical, which possesses cone conformation
in solution, reveal conformational dependence of exchange coupling. Through-bond coupling
between the adjacent nitroxide radicals is mediated by the nitroxide-m-phenylene-CH2-m-phenylene-
nitroxide coupling pathway, and through-space coupling is found between the diagonal nitroxide
radicals at the conformationally-constrained N···N distance of 5–6 Å. Magnetic studies of the calix
[4]arene polyradical scaffolds in frozen solutions show that the through-bond exchange coupling in
the 1,3-alternate calix[4]arene tetraradical is antiferromagnetic, while that in cone calix[4]arene
tetraradical is ferromagnetic. The through-space exchange couplings are antiferromagnetic in both
cone and 1,3-alternate calix[4]arene tetraradical, as well as in the 1,3-alternate calix[4]arene
diradical. The exchange coupling constants (|J/k|) are of the order of 1 Kelvin.

Introduction
The spin-spin interactions between unpaired electrons in organic diradicals and polyradicals
are of critical importance in organic magnetism,1-3 molecular charge-transfer,4 and multiple
spin labeling in structural biology.5 When unpaired electrons are in close proximity, the
dominant interaction is likely to be exchange coupling, mediated through bonds and/or through
space.1 In general, the exchange coupling is mediated more effectively through bonds,
especially through cross-conjugated π-system, than through space.3,6-10 Such exchange
coupling can be either ferromagnetic or antiferromagnetic, depending upon the topology and
conformation of the coupling pathway connecting the radicals.1,8-12

Stable polyradical scaffolds with constrained conformations may provide a new approach for
controlling through-bond and through-space exchange couplings. The fixed conformations of
1,3-alternate and cone calix[4]arenes, that are functionalized at the upper rim with stable aryl-
delocalized radicals, may be viewed as such scaffolds.13a,14 In these scaffolds, the through-
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bond exchange coupling between the adjacent radicals is mediated by the radical-m-phenylene-
CH2-m-phenylene-radical coupling pathway, with distinct conformations in the 1,3-alternate
and cone calix[4]arenes (Figure 1). In addition, the through-space exchange coupling at fixed
radical-radical distances of approximately 5–6 Å, as found for the diagonal radicals, may be
probed (Figure 1).

Recently, we reported synthesis, crystallography, and magnetic characterization of the cone
calix[4]arene scaffold, nitroxide tetraradical 3 (Figure 2).13 In the solid state, this tetraradical
adopts a pinched cone conformation, forming an intramolecular dimer with strong
antiferromagnetic coupling (|J/k| = 200–300 K) between the two diagonal nitroxides. In
solution, 3 was found to possess a 4-fold symmetric cone conformation but exchange coupling
could only be estimated as 30 K > |J/k| ≫ 1.8 mK.13 Now we report the synthesis and studies
of ambient stable nitroxide tetraradical 1 and diradical 2 in the fixed 1,3-alternate calix[4]arene
conformations (Figure 2). Magnetic studies of 1 and 2, as well as magnetic studies of 3 in
solution, are described. Both through-bond and through-space exchange couplings are
determined, as well as their conformational dependence.

Results and Discussion
Synthesis

The synthesis starts from tetrabromocalix[4]arene 4, constrained in the 1,3-alternate
conformation (Scheme 1 and Supporting Information).15 The Li/Br exchange on 4 with an
excess amount of t-BuLi gives intermediate tetrakis(aryllithium), which is reacted with 2-
methyl-2-nitrosopropane dimer, to provide tetrahydroxylamine 5. An analogous procedure, in
which the t-BuLi is replaced with n-BuLi (2 equiv),16 gives dihydroxylamine 6.

The presence of the hydroxyl groups in 5 and 6 is confirmed by IR (e.g., νO-H ≈ 3230–3240
cm-1) and 1H NMR spectra (D2O-exchangable 4-proton or 2-proton singlet at 9.1–9.3 ppm).
In the 1H NMR spectra, only one sharp singlet for tert-butyl group protons is observed for each
compound. The other 1H resonances are relatively broadened at ambient temperature, due to
the restricted rotations along the C(aromatic)-N bonds; the coalescence temperatures for
aromatic protons suggest that the barrier for rotation is on the order of 15 kcal mol-1 (Table
S1, Supporting Information). In the high temperature limit, 5 and 6 possess D2d (T > 325 K)
and C2v (T > 306 K) point groups, respectively, on the 1H NMR (400 MHz) time scale.

Oxidation of 5 and 6 with freshly prepared silver oxide give the corresponding nitroxide
tetraradical 1 and diradical 2 (Scheme 1).

Molecular structure of 1 and 2
Nitroxide tetraradical 1 crystallizes with one molecule per asymmetric unit, without inclusion
of solvent. For diradical 2, two crystallographically unique molecules are found, with one
quarter benzene molecule per formula unit (one half benzene molecule per asymmetric unit).
The X-ray structure determinations of nitroxide tetraradical 1 and diradical 2 confirm 1,3-
alternate conformation of the calix[4]arene macrocycle for both molecules (Figure 3, Table 1).

In tetraradical 1, the molecular structure is consistent with significant repulsion between the
bulky tert-butyl nitroxide moieties. The N-C(ipso)-C(para) angles of <180° (e.g., N1-C3-C6
angle of 172°) and pyramidalized nitrogen atoms indicate outward bending of the nitroxide
groups, with relatively long N1···N3 (5.78 Å) and N2···N4 (5.70 Å) distances between the
diagonal nitroxide groups. Dihedral angles between nitroxide groups and benzene rings are
significantly different for each of the four aryl nitroxide units; for each pair of the diagonal
tert-butyl nitroxide moieties, the bulky tert-butyls occupy the significant part of the space
between the nitroxide groups (Figure 4).
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In diradical 2, the structures for the two crystallographically unique molecules show the two
nitroxide groups in relatively closer proximity, with N···N distances 5.07 and 5.37 Å and nearly
planar nitrogen atoms, compared to 1. In one of the unique molecules, the NO groups have
antiparallel N-O bond axes (anti) and they are coplanar with the benzene rings within each aryl
nitroxide moiety. In the other molecule, the NO groups have parallel N-O bond axes (syn) and
they form torsional angles of ~40° with the benzene rings within each aryl nitroxide moiety.

For 1 and 2, the C(ipso)-C(CH2)-C(ipso) angles within calix[4]arene macrocycles are in the
110 – 113° range.17 The dihedral angles between the planes defined by the C(ipso)-C(CH2)-
C(ipso) and the benzene rings are in the 59–73° range (Table S2, Supporting Information). In
this geometry of 1,3-alternate conformation, the π-systems of the adjacent arylnitroxides are
pointing away from each other. However, in a cone conformation, which is adopted by
tetraradical 3 in solution, the dihedral angles between the C(ipso)-C(CH2)-C(ipso) and benzene
ring planes are close to 90°, with the π-systems of the adjacent arylnitroxides pointing toward
each other. Therefore, the through-space interactions between the adjacent arylnitroxide
moieties in the 1,3-alternate conformation of 1 should be relatively small, compared to those
in the cone conformation of 3.

Structure of 1 and 2 in solution
1H NMR spectra of tetraradical 1 and diradical 2 in chloroform-d at room temperature show
resonances for those protons that are expected to possess relatively small spin densities, i.e.,
all protons except those of the aryl moieties of the arylnitroxides (Figure 5).1b,13a,18,19

Four broad resonances are observed for tetraradical 1, as expected for a structure with the
D2d point group. The relatively less broadened 12-proton and 16-proton singlets at 4.34 and
3.84 ppm are assigned to the methyl (CH3) and dimethylene (CH2CH2) of the
methoxyethyleneoxy (OCH2CH2OCH3) groups, respectively. The two most up-field shifted
broad singlets, 8-proton at −0.8 ppm and 36-proton at −5.9 ppm, are assigned to the methylene
groups of the macrocycle and the tert-butyl groups, respectively.

Four broad resonances with similar chemical shifts to those in 1 may be identified for diradical
2; specifically, two of those resonances appear in the −5 ppm region as a broad singlet with a
shoulder, which may be assigned to the two tert-butyl groups and four methylene groups of
the macrocycle.20 In addition, relatively narrow singlets at 7.47, 4.30, and 3.69 ppm are
assigned to the aromatic, OCH3, and OCH2CH2O protons of the diamagnetic bromophenyl
moieties of 2, respectively.

The significant up-field chemical shifts of several parts-per-million for the protons of tert-butyl
groups and of methylene groups in tetraradical 1 and diradical 2, when compared to the
corresponding hydroxylamines 5 and 6, indicate substantial negative spin densities at the
hydrogen atoms in these groups. The negative sign of the spin density for the hydrogen atoms
of the tert-butyl groups is consistent with the spin polarization through σ-bonds of the positive
spin density at the nitrogen atom of the nitroxide, as found for N-tert-butylnitroxides.21 The
negative sign for the hydrogen atoms of the methylene groups is compatible with both
hyperconjugation and spin polarization of the negative spin density from the meta-carbon
(meta-position with respect to the nitroxide) in the benzene ring.22 The near coincidence of
resonances for the methyl (CH3) and dimethylene (CH2CH2) of the methoxyethyleneoxy
(OCH2CH2OCH3) groups in 1 and 2, and in diamagnetic 5 and 6, suggests negligible spin
densities at the hydrogen atoms of OCH2 fragment. Similar behavior was found in 3,5-
dimethyl-4-methoxyphenyl-tert-butylnitroxide, in which a very small value of 1H-hyperfine
splitting, aH = +0.0006 mT, for the methoxy hydrogens was ascribed to the twisting of the
methoxy group out of conjugation with the benzene ring and the nitroxide.22,23 These 1H
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NMR spectral assignments confirm the structures of 1 and 2 in solution, and are in agreement
with the reported spectra for the fixed cone calix[4]arene nitroxide tetraradical 3.13a

EPR spectrum of 1 in toluene at 295 K shows a well-resolved nonet (Figure 6). An excellent
numerical spectrum fit to a single component, i.e., nitroxide tetraradical 1, is obtained,
confirming high degree of radical purity (98+ %) of 1.24 The 14N hyperfine coupling with
peak-to-peak splitting ΔHpp ≈ 0.319 mT = aN/4, i.e., aN = 1.28 mT, is identical to the value
reported for 3,5-dimethyl-4-methoxyphenyl-tert-butylnitroxide.22,25 This result indicates
exchange-coupled nitroxides with a coupling constant significantly greater than the 14N
hyperfine coupling, |J/gμB| ≫ |aN|, i.e., |J/k| ≫ 1.8 mK. At 135 K, the EPR spectrum of 1 in
toluene glass shows a single peak in the |Δms| = 1 region, with a somewhat broader spectral
envelope, compared to the solution phase spectrum for the same sample (Figure 6).
Furthermore, the |Δms| = 2 transition is barely detectable. These results suggest that tetraradical
1 possesses rather small zero-field splitting (|D/hc|) that is compatible with relatively high
average symmetry for the disposition of nitroxide radicals.26,27

EPR spectra of diradical 2 in solution (toluene, toluene/chloroform (4:1), acetonitrile,
dichloromethane, and dichloromethane/methanol (4:1)) at ambient temperature show an
intense broad peak, with discernable pentuplet spectral pattern; furthermore, additional sharp
peaks, with relatively low intensity, are superimposed on the broad peak (Figure S6–S9,
Supporting Information). The EPR spectra of 2 in dichloromethane/methanol (4:1) show
pronounced sharpening at higher temperatures, with a clearly defined pentuplet at 320 K; upon
decreasing the temperature, this peak is progressively broadened. For 1 mM solution of 2 in
toluene at 295 K, the numerical spectrum fits are compatible with a mixture of diradical and
monoradical (98:2). Because of the dynamic effects, the quality of these fits is rather low,
especially compared to those for tetraradical 1;28 consequently, the 14N hyperfine coupling
with peak-to-peak splitting ΔHpp ≈ 0.8 mT = aN/2, i.e., aN = 1.6 mT for 2, should be viewed
as an approximate estimate. These results are in agreement with significant exchange coupling
between nitroxide radicals (|J/gμB| ≫ |aN|).

In rigid matrices, the EPR spectra of 2 clearly show the presence of significant zero-field
splitting, as indicated by the large spectral width of |Δms| = 1 region and relatively intense |
Δms| = 2 transition. The |Δms| = 1 spectrum of 2 in toluene/chloroform glass at 140 K consists
of four symmetrically disposed broad peaks, corresponding to the zero-field splitting
parameters |D/hc| = 1.39×10−2 cm−1 and |E/hc| = 0 cm−1(Figure 7). Similar four-peak |Δms| =
1 spectra are obtained at low temperatures in 2-methyltetrahydrofuran, dichloromethane/
methanol (4 : 1), and ethanol (Figures S10 and S11, Supporting Information); for the first two
matrices, the two side peaks consist of five symmetrically disposed shoulders (pentuplet-like),
corresponding to the 14N hyperfine coupling with spacings of (|Azz|/2)/hc ≈ 0.0013 cm-1 ((|
Azz|/2)/gμB ≈ 1.4 mT). (The pentuplet in the |Δms| = 2 region possesses similar 1.4-mT line
spacings.) It is usually assumed that the largest principal values of the magnetic dipole tensor
and nuclear hyperfine tensor correspond to the direction of the z-axis connecting the nitroxide
radicals and the direction of the nitrogen 2pπ-orbital, respectively.29 The observation of the
relatively large value of |Azz|/2 in the |Δms| = 1 region suggests that these two directions are
approximately coinciding; this may correspond to the limiting conformation of diradical 2,
with the parallel N-O bond axes and the planar phenylnitroxide moieties. Spectral widths of
the |Δms| = 1 regions, |2D/gμB| = 29 – 31 mT, are solvent dependent. Based upon a simple
point-dipole approximation, |2D/gμB| = 29 – 31 mT corresponds to an effective distance of
about 5.6 – 5.8 Å between the two magnetic dipoles.30 For 1 mM 2 in toluene/chloroform (4 :
1) with |2D/gμB| = 30 mT, the relative intensities of the |Δms| = 1 and |Δms| = 2 transitions are
5.06 × 10-4 at 9.4848 GHz, providing the interspin distance estimate of 5.73 Å.31 These
distance measurements, which are comparable to the expected distance between the mid-points
of the N-O bonds of the diagonal nitroxides in the 1,3-alternate conformation of 2, should be
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viewed as approximate estimates, as the spin density in 2 is delocalized and factors other than
magnetic dipole-dipole interactions may contribute to the value of |2D|.

The EPR spectra support structural assignments for 1 and 2, and provide the lower bound
estimate for |J|, similar to that found for 3. Values of J are determined by magnetic studies of
1 – 3.

Magnetic studies of 1, 2, and 3 in solution
Magnetization (M) is measured as a function of magnetic field (H = 0–5×104 Oe and T = 1.8,
3, and 5 K) and temperature (T = 1.8–300 K at H = 30000, 5000, or 500 Oe). The M vs. H and
M vs. T data are plotted as the M/Msat vs. H/T and the χT vs. T, respectively, where Msat is the
magnetization at saturation and χ is the paramagnetic susceptibility.

For tetraradical 1 in tetrahydrofuran (THF), the value of χT is constant in the 40–150 K range
(Figure 8). The downward turn in the χT vs. T plot at low temperature is consistent with
antiferromagnetic exchange coupling, corresponding to a mean-field parameter, θ ≈ −2.3 K.
The antiferromagnetic exchange coupling is most likely intramolecular, as the curvature and
onset of the downward turn is not dependent on concentration of 1 (5 and 13 mM). The presence
of antiferromagnetic exchange coupling is also indicated by the relatively slow saturation
behavior for the M vs. H data; the M/Msat vs. H/T plots at T = 1.8–5 K have significantly
different curvatures, that are much smaller than the curvature of the Brillouin curve for four
independent spins S = ½.

Considering their structural similarity, magnetic studies of diradical 2 may provide additional
insight into the nature of intramolecular antiferromagnetic exchange coupling in tetraradical
1. For 7 mM 2 in THF (Figure 9), the relatively small curvature of the downward turn in the
χT vs. T plot at low temperature and the slightly different curvatures of the M/Msat vs. H/T
plots in the T = 1.8–5 K range are readily corrected with a small mean-field parameter θ ≈
−0.5 K, accounting for weak antiferromagnetic exchange coupling between two spins S = ½.
Similar weak antiferromagnetic coupling (θ ≈ −0.5 K) is observed for more concentrated, 15
and 24 mM, samples of 2 in THF (Figure S13 and S14, Supporting Information).

Magnetic data for 5 mM 1 in 2-MeTHF and ~5 mM 2 in chloroform/methanol (1:1) suggest
significantly weaker antiferromagnetic exchange couplings, θ = −1.5 K and θ = −0.1 – (−0.2)
K, respectively; for 2, the magnetic data are approaching the near perfect paramagnetic
behavior of two independent spins S = ½ (Figure S16, Supporting Information).

These results indicate that exchange coupling in diradical 2 in THF is intramolecular and it is
significantly weaker, compared to that in tetraradical 1 in THF. This suggests that the stronger
antiferromagnetic exchange coupling in tetraradical 1 is mediated through bonds, with the
coupling pathway consisting of nitroxide-m-phenylene-CH2-m-phenylene-nitroxide; in
diradical 2, with the additional m-phenylene-CH2 unit in the coupling pathway, the through-
bond exchange coupling should be negligible.32 This would imply that the weak
antiferromagnetic exchange coupling for 2 in THF may be associated with the through-space
exchange coupling between the diagonal nitroxides. Such through-space exchange coupling is
likely to be antiferromagnetic and strongly dependent on the distance between the nitroxides
(NO). Although the N···N distance in the 1,3-alternate conformation of 2 is fixed at 5–6 Å,
rotation along the C(aryl)-N bonds may provide conformations with significantly different
N···O and O···O distances that may lead to modulation of the through-space exchange coupling
between the diagonal nitroxides. The evidence for such conformations is obtained from X-ray
crystallography and EPR spectroscopy of 2. In particular, the nitroxide-nitroxide distances, as
measured by the values of |2D| for 2, and the strength of the through-space antiferromagnetic
exchange coupling are dependent on the solvent (matrix).
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For tetraradical 1 and diradical 2, both temperature-dependence (χT vs. T) and field-dependence
(M vs. H) of the experimental magnetic data are well fit by the tetraradical model and the
diradical model, respectively. In these models, based upon the Heisenberg Hamiltonian
(2JSn•Sn+1),33 tetraradical 1 may be viewed as a cluster of four S = ½ spins located at the
vertices of a square (Figure 10, eq. 1 and 2); analogously, diradical 2 may be considered as a
dimer of two diagonally positioned S = ½ spins (Figure 10, eq. 3 and 4). Each of the four
identical pairwise exchange couplings (J1/k), along the sides of the square, corresponds
primarily to the through-bond exchange coupling between the adjacent nitroxides, mediated
by the nitroxide-m-phenylene-CH2-m-phenylene-nitroxide coupling pathway in 1. Each of the
two diagonal exchange couplings (J2/k) in the square corresponds to the through-space
exchange coupling between the diagonal nitroxides in 1 and 2. Another variable parameter is
used to account for impurities and inaccuracies in the mass balance, i.e., “magnetization at
saturation,” Msat (eq. 1 and 3, expressed in units of Bohr magnetons per nitroxide) and the mass
factor, w (eq. 2 and 4). (For selected fits, the mean-field parameter, θ, could be used in place
of J2/k.) N denotes number of moles of tetraradical (eq. 1 and 3). Equations 1 – 4 account for
paramagnetic saturation.

(1)

(2)

(3)

(4)

The two-parameter numerical fits of the χT vs. T and the M/Msat vs. H/T data for diradical 2 in
THF, using the diradical model (eq. 3 and 4, with J1/k set to zero), give J2/k≈ −0.7 K for the
through-space exchange coupling between the diagonal nitroxides (Figure 9, and Figure S15,
Supporting Information).34

The numerical fits of 1 to the tetraradical model (Figure 10) would require three variable
parameters: J1/k,J2/k, and w (or Msat). Because such three-parameter fits are typically
overparametrized, the fits with two variable parameters for the χT vs. T data are considered.
The two-parameter fits for tetraradical 1 in THF, which account only for the through-space
exchange coupling (J2/k) as in diradical 2, give J2/k ≈ −2 K and unsatisfactory coefficient of
determination (R2 = 0.96, eq. S2, Supporting Information). The quality of two-parameter fits
is improved (R2 = 0.98) when the through-bond exchange coupling parameter is optimized
(J1/k ≈ −1.5 K), with J2/k set to zero; however, R2 significantly improves, when J2/k is set to
a small negative value rather than zero. For the χT vs. T data, the best fits (R2 = 0.998) give
J1/k≈ −1.3 K with J2/k set to about −1 K. Analogous fits are obtained for the M/Msat vs. H/T
data, with the smaller values of |J1/k| and |J2/k| (Figure 8 and Figure S12, Supporting
Information).35 Therefore, it is concluded that the through-bond exchange couplings between
the adjacent nitroxides and the through-space exchange couplings between the diagonal
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nitroxides in the 1,3-alternate calix[4]arene conformation of tetraradical 1 in THF are both
antiferromagnetic, with J1/k ≈ J2/k ≈ −1 K. Similar through-bond antiferromagnetic exchange
couplings, J1/k ≈ −0.9 K, but weaker through-space antiferromagnetic exchange couplings,
J2/k ≈ −0.3 K, are obtained for 5 mM 1 in 2-MeTHF.36

The results of magnetic studies for ~20 mM tetraradical 3 in THF or 2-MeTHF (Figure 11 and
Figure S18, and S19, Supporting Information) are qualitatively different, compared to those
for 1 in THF or 2-MeTHF. Notably, the χT vs. T plot for 3 shows an upward turn at T < 40 K,
consistent with the presence of ferromagnetic exchange coupling, most likely intramolecular.
The ferromagnetic exchange coupling is also indicated by the relatively fast saturation behavior
for the M vs. H data. The M/Msat vs. H/T plots at T = 1.8–5 K are bracketed by the Brillouin
curves corresponding to S = 1 and S = 1/2, i.e., the curvatures of the experimental data are
significantly greater, compared to the theoretically predicted paramagnetic behavior for four
independent spins S = 1/2. In addition to this ferromagnetic exchange coupling, a weaker
antiferromagnetic exchange coupling appears to be present; e.g., for 15 mM 3 in THF, an
additional downward turn may be observed in the χT vs. T plot at T ≈ 2–3 K. The strength of
antiferromagnetic exchange coupling in 3 is similar to that in diradical 2, and may be of a
similar origin, i.e., due to the direct through-space exchange coupling between the diagonal
nitroxides. In such a case, the magnetic data for 3 may be modeled by the cluster of four S =
½ spins positioned at the vertices of a square, as for tetraradical 1 (Figure 10).

The χT vs. T data for 3 in 2-MeTHF (Figure 11) provide an excellent 3-parameter fit to the
tetraradical model (eq. 2), to give J1/k = +1.0 K (ferromagnetic) for the through-bond exchange
coupling between the adjacent nitroxides and J2/k = −0.7 K (antiferromagnetic) for the direct
through-space coupling between the diagonal nitroxides. An alternative numerical fit with J1/
k = +1.3 K is obtained, when the presence of the antiferromagnetic exchange coupling is
modeled with a mean-field parameter θ = −0.7 K (Figure S17, Supporting Information). Similar
numerical fits are obtained for 3 in THF, though the values of |J2/k| are relatively greater (Figure
S18 and S19, Supporting Information).37,38

Magnetic studies of 1 and 2 in the solid state
The χT vs. T plots for solid tetraradical 1 (Figure 12) and diradical 2 (Figure S20, Supporting
Information) are flat, except for a downward turn at low temperatures.

In the flat sections of the plots (20–300 K), the values of χT = 1.45 and χT = 0.70 emu K
mol-1 are measured for solid 1 and 2, respectively. These values are in excellent agreement
with the theoretical, spin-only χT = 1.50 and χT = 0.75 emu K mol-1 for tetraradicals and
diradicals, with independent S = ½ radicals. Similarly, quantitative values of χT ≈ 1.3–1.5 and
χT≈ 0.8 emu K mol-1 are obtained for 1 and 2 in chloroform at room temperature (295–300
K), respectively, using the 1H NMR-based Evans method.39 Within accuracy of the Evans
method, these values are in good agreement with the values of χT for solid 1 and 2.

The downward turns of the χT vs. T plots at low temperature are consistent with overall
antiferromagnetic exchange couplings between nitroxide radicals. The presence of
anitferromagnetic exchange coupling is also indicated by the relatively slow saturation
behavior for the M vs. H data at 1.8 K. In particular, the overall antiferromagnetic exchange
coupling in 1 is significantly weaker in the solid state (θ ≈ −0.7 K), compared to that in THF
solution (θ ≈ −2.3 K).

For a quantitative fit to the magnetic data for solid 1 and 2, both intramolecular and
intermolecular exchange coupling would need to be considered. Such models may be suggested
by the analysis of the crystal packing.
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Crystal packing of 1 and 2
Crystal packing of both 1 and 2 may be described in terms of layers of calix[4]arene
macrocycles in the approximate bc- or (100)-plane (Figure 13, Figures S1–S3, Supporting
Information).

For tetraradical 1, dimers of nitroxides, in which the two N2-O4 moieties form two short sides
of parallelogram (N2-O4-N2-O4 torsion of 180°), with intermolecular O4···O4 distance of 4.60
Å, are found. Another intermolecular distance is the O1···N1 distance of 4.75 Å, which is found
in a uniform one-dimensional zig-zag chain of nitroxides along the c-axis (N1-O1-N1-O1
torsion of 166 °). In addition, short intermolecular O···C distances (O1···C2 = 3.97 Å and
O4···C11 = 3.58 Å) between the nitroxide groups and the corresponding ortho-carbon atoms
of the benzene rings are found. For each O···C distance, the N-O bond axis and the 2pπ(C)-
orbital axis (centered on carbon atom) are nearly orthogonal, with the N-O bond axis pointing
approximately toward the nodal plane of the 2pπ(C)-orbital. As these intermolecular
interactions are associated with relatively long distances and may contribute to either
ferromagnetic or antiferromagnetic exchange coupling, their overall impact on magnetic data
of solid 1 is probably small but not negligible. The χT vs. T and the M/Msat vs. H/T data for
solid 1 may still be fit to the tetraradical model (Figure 10, equations 1 and 2) but the
antiferromagnetic exchange coupling J1/k ≈ −0.6 K is much smaller compared to that in the
analogous fits of the solution data with J2/k set to zero. However, in contrast to the samples of
1 in THF, the numerical fits for solid 1 could not be improved by the additional weak
antiferromagnetic exchange couplings, such as J2/k < 0 or θ < 0, reflecting the impact of crystal
packing on magnetic data.

For diradical 2, the shortest intermolecular contacts are associated with the rectangular dimers
of nitroxides, which are formed between the two crystallographically unique molecules; the
N2A···O6B and N2B···O6A distances of 4.96 and 4.98 Å are found, respectively (Figure S3,
Supporting Information). Therefore, for one half of the nitroxide radicals, pairwise
intermolecular antiferromagnetic exchange coupling in solid 2 is expected. This intermolecular
exchange coupling may be described by the “diradical plus two monoradicals” model. In this
model, the one half of the nitroxide radicals, forming dimers, corresponds to exchange-coupled
“diradicals” and the other half of the nitroxide radicals are treated as independent S = ½
“monoradicals”. A comparable numerical fit for solid 2 is obtained using the diradical model,
describing intramolecular exchange coupling only.

For 1 and 2, the magnetic data in the solid state, in conjunction with the analysis of crystals
packing, are consistent with the magnetic data in solution. Nevertheless, the magnetic data for
1 and 2 in frozen solutions, devoid of detectable intermolecular exchange coupling, are far
more informative.

Conformational dependence of exchange coupling in 1 – 3
The magnetic studies of 1, 2, and 3 in frozen THF (or 2-MeTHF) indicated that the through-
bond exchange coupling between the adjacent nitroxides, mediated by the nitroxide-m-
phenylene-CH2-m-phenylene-nitroxide coupling pathway, is antiferromagnetic in 1 (J1/k ≈ −1
K) and ferromagnetic in 3 (J1/k ≈ +1 K). In addition, the through-space exchange coupling
between the diagonal nitroxides in 1, 2, and 3 is antiferromagnetic (J2/k ≈ −1 K).

For cross-conjugated m-phenylene-based diradicals, exchange coupling changes from
ferromagnetic (J > 0) to antiferromagnetic (J < 0) when the radical moieties are twisted out of
the plane of the m-phenylene with torsional angles of near 90 °.40-43 For diradicals, in which
radical moieties are cross-conjugated through two m-phenylenes, i.e., through 3,3’-
biphenylyne, antiferromagnetic exchange couplings are typically found;32b,44,45 however,
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there is no clear-cut evidence for the change of sign of J, upon severe twisting to the near 90
° torsional angle along the C1-C1’ bond.9,46 For trimethylene diradicals (and the related
tetraradicals) with constrained CCC-angles, Dougherty and coworkers developed the model
explaining the preference for high-spin ground states (ferromagnetic exchange coupling).7,8,
47-50

The antiferromagnetic and ferromagnetic through-bond exchange couplings in tetraradicals
1 and 3 indicate profound effect of torsions within the exchange pathway comprising of two
m-phenylene groups and one methylene group. Although this magnetic behavior is not well
understood, the relative orientations of π-systems, especially those of 2pπ-orbitals of the ipso-
carbon atoms adjacent to the methylene group, are likely to play an important role. Based upon
the experimental EPR spectra and the spin polarization mechanism within the π-system, the
two carbon atoms, which correspond to the non-bonding MO nodal positions of the benzylic-
like radicals, are expected to possess a substantial negative π-spin density.1,51 This electronic
structure may be compared to simple diradicals such as 2,2’-bis(allyl)methane or trimethylene,
52 though their detailed analyses concerning correlations between the torsional angles and the
exchange coupling are not available.53,54 We propose the following analysis. In the 1,3-
alternate calix[4]arene scaffold, the π-systems of the adjacent radicals are pointing away from
each other, and in the cone, they are pointing toward each other. The relative orientations of
the 2pπ-orbitals at ipso-positions in the 1,3-alternate and the cone calix[4]arene scaffolds are
analogous to the approximate (70,70)- and (90,90)-conformations of bis(allyl)methane
diradical (or trimethylene diradical), derived by the conrotatory and disrotatory motion from
the (0,0)-conformation, respectively (Figure 14). We suggest that the closer balance between
the through-space and through-bond interactions between the adjacent radicals is attained in
the cone calix[4]arene scaffold, compared to its 1,3-alternate analogue. Therefore, the cone
and 1,3-alternate calix[4]arene scaffolds favor through-bond ferromagnetic and
antiferromagnetic exchange coupling, respectively.

Conclusion
Through-bond and through-space exchange coupling in the calix[4]arene scaffolds
functionalized on the upper rim with nitroxide radicals were studied. The through-bond
exchange coupling between the adjacent nitroxide radicals is controlled by the conformation
of the nitroxide-m-phenylene-CH2-m-phenylene-nitroxide coupling pathway. In the 1,3-
alternate calix[4]arene scaffold (tetraradical 1), the exchange coupling is antiferromagnetic
(J1/k ≈ −1 K) and, in the cone calix[4]arene scaffold (tetraradical 3), the exchange coupling is
ferromagnetic (J1/k ≈ +1 K). The through-space exchange coupling between the diagonal
nitroxides at the N···N distance of 5–6 Å in the 1,3-alternate and cone calix[4]arene scaffolds
(1, 2, and 3) is antiferromagnetic (J2/k < 0), with the matrix-dependent coupling strength (|J2/
k| < −1 K).

Highly symmetric (D2d point group) and electron-rich 1,3-alternate calix[4]arene may serve
as a scaffold for polyradicals with negligible net magnetic dipole-dipole coupling and, possibly,
ionophoric properties. Control of both exchange coupling and magnetic dipole-dipole
coupling, as well as their modulation by metal ions, are of importance for electronic relaxation
processes, especially for the development of organic paramagnetic contrast agents.6

Experimental Section
Tetrahydroxylamine 5

t-BuLi in pentane (1.70 M, 0.80 mL, 1.31 mmol) was added to a solution of tetrabromocalix
[4]arene 4 (0.152 g, 0.156 mmol) in THF (10 mL) at −78 °C. The resultant yellowish-orange
solution was stirred at −78 °C for 2 h, and then allowed to attain −25 °C for 15 min. The color
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of the solution changed to a dark orange. Subsequently, the reaction mixture was cooled to −78
°C, and then a solution of 2-methyl-2-nitrosopropane dimer (65.4 mg, 0.375 mmol) in THF
(3.5 mL) was added. The reaction mixture was allowed to attain room temperature overnight.
The usual aqueous workup with ether, including drying over MgSO4, was followed by column
chromatography (TLC grade silica, 14 – 20% ether in hexanes), to yield tetrahydroxylamine
5 (75.8 mg, 48%) as a white powder. From two other reactions done on 400-mg scale, 0.205
g (49%) and 0.248 g (60%) of tetrahydroxylamine 5 was obtained from 0.402 g and 0.401 g
of tetrabromocalix[4]arene 4, respectively. M.p. 232–234 °C (under Ar, dec). 1H NMR (400
MHz, CDCl3): 9.277 (s, 4H, exch D2O), 7.369 (bs, 4H, ArH), 6.677 (bs, 4H, ArH), 3.911 (bs,
s, 12H), 3.75 (bs, 4H), 3.540 (s, 12H, OMe), 3.47, 3.36 (bs 2H), bs, 8H), 1.152 (s, 36H, t-
Bu). 13C NMR (100 MHz, CDCl3): 152.6, 142.1, 132.5, 131.8, 126.2, 124.7, 124.6, 72.4, 72.2,
59.7, 59.0, 26.1. IR (ZnSe, cm-1): 3225, 3090, 2931, 2875, 1592, 1454, 1386, 1359, 1210, 1125,
1063, 1030, 878. LR/HR FABMS (3-NBA matrix): m/z (ion type, % RA for m/z 500–1300,
deviation for the formula) at 1005.6134 ([M + H]+, 100, 3.0 ppm for 12C56

1H85
14N4

16O12),
1004.6084 ([M]+, 88, 0.2 ppm for 12C56

1H84
14N4

16O12).

Dihydroxylamine 6
n-BuLi in hexane (2.14 M, 0.16 mL, 0.34 mmol) was added to a solution of tetrabromocalix
[4]arene 4 (0.151 g, 0.155 mmol) in THF (10 mL) at −78 °C. The resultant bright orange
solution was stirred at −78 °C for 2 h, and then allowed to attain −30 °C for 15 min.
Subsequently, a dark orange solution was cooled to −78 °C, and then a solution of 2-methyl-2-
nitrosopropane dimer (32.4 mg, 0.186 mmol) in THF (3 mL) was added. The reaction mixture
was allowed to attain room temperature overnight. The green reaction mixture was subjected
to a usual aqueous workup with ether, including drying over MgSO4, and then evaporated to
dryness. Column chromatography (TLC grade silica, 14 – 17% ether in hexanes) gave
dihydroxylamine 6 (57.6 mg, 37%) as white powder. M.p. 218–219 °C (under N2, dec). From
another reaction on 400-mg scale, 0.183 g (44%) of dihydroxylamine 6 was obtained from
0.406 g of tetrabromocalix[4]arene 4. 1H NMR (400 MHz, CDCl3): 9.124 (s, 2H, exch D2O),
7.36 (bs, 2H), 7.260 (s, under the solvent peak, 4H), 6.79 (bs, 2H), 3.90, 3.87 (bm, m, 12H),
3.81 (m, 4H), 3.644 (s, 6H), 3.530 (s, 6H), 3.33–3.48 (bm, 8H), 1.177 (s, 18H). 13C NMR (125
MHz, CDCl3): 154.4, 152.6, 142.3, 135.5, 134.6, 133.2, 131.9, 114.9, 72.5, 72.4, 72.3, 72.0,
59.9, 59.4, 59.3, 58.9, 34.1, and 26.1. IR (ZnSe, cm-1): 3235, 3070, 2933, 2877, 1596, 1573,
1451, 1361, 1199, 1125, 1059, 1028, 850, 717. LR/HR FABMS (3-NBA matrix): m/z (ion type,
% RA for m/z 700–1500, deviation for the formula) at 991.2975 ([M+4]+, 38, −7.0 ppm
for 12C48

1H64
14N2

16O10
81Br2), 988.2939 ([M+2]+, 53, −3.3 ppm

for 12C48
1H64

14N2
16O10

81Br79Br), 986.2918 ([M]+, 25, 1.0 ppm
for 12C48

1H64
14N2

16O10
79Br2), 970.3 ([M−18]+, 100).

Nitroxide tetraradical 1
Freshly prepared silver oxide (0.285 g, 1.23 mmol) was added to a solution of
tetrahydroxylamine 5 (0.124 g, 0.0199 mmol) in CHCl3 (6 mL). After stirring at room
temperature in darkness for 9 h, the reaction mixture was filtered, and then the red filtrate was
evaporated to dryness to obtain the nitroxide tetraradical 1 (0.119 g, 96 %) as a brick-red solid.
Similar procedure, except for the increased amount of silver oxide (40 vs. 15 equiv), gave 0.193
g (96%) of 1 from 0.200 g of tetrahydroxylamine 5; this was the primary sample for magnetic
and spectroscopic studies. Two other reactions were carried out with tetrahydroxylamine 5
(75.8 mg and 0.205 g) and silver oxide (40 equiv) in dichloromethane; the crudes obtained
after filtration and drying, were further recrystallized from methanol, to yield 39.6 mg (52%)
and 0.109 g (53%) of 1, respectively. 1H NMR spectra of the recrystallized samples showed a
sharp singlet at ~3.6 ppm (1.5H, assigned to residual methanol) and a broad singlet at 7.1 ppm
(0.14H). All yields are reported after correcting for the extraneous 1H NMR resonances (solvent
of crystallization, stopcock grease, etc.). M.p. 169–171 °C (under Ar, dec). 1H NMR (500
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MHz, CDCl3): 4.341 (bs, 12H), 3.842 (bs, 16H), −0.753 (bs, 8H), −5.881 (v. bs, 36H). IR
(ZnSe, cm-1): 3078, 2978, 2930, 2878, 1576, 1458, 1347, 1203, 1123, 1050, 883. Evans method
(4 measurements, CDCl3/CHCl3, 297–300 K), χT = 1.30–1.52 emu K mol-1 (3.6, 4.1, 4.0, 3.5
unpaired electrons).

Nitroxide diradical 2
Freshly prepared silver oxide (0.530 g, 2.286 mmol) was added to a solution of
dihydroxylamine 6 (56.5 mg, 0.057 mmol) in CH2Cl2 (1.5 mL). After stirring at room
temperature in darkness for 4 h, the reaction mixture was filtered, and then the red filtrate was
evaporated to dryness to obtain a reddish-orange oil. Column purification with deactivated
flash silica gel at 0 °C under nitrogen, followed by recrystallization from ether/heptane mixture
gave diradical 2 (23.9 mg, 42%) as dark-red needles. From another reaction on 150-mg scale
(using 20 equiv of silver oxide), 70.5 mg (47%) of diradical 2 was obtained from 0.150 g of
dihydroxylamine 6. Yields are corrected for the residual solvents (ether and heptane) remaining
after recrystallization. Magnetic and spectroscopic studies were carried using another sample
of 2 (orange-red solid), which was prepared from dihydroxylamine 6 and silver oxide in
chloroform. M.p. 151–153 °C (under Ar, dec). 1H NMR (500 MHz, CDCl3): 7.469 (s, 4H),
4.304, 4.084, ~3.9, 3.688 (s, bs, bs, s, 28–32H), −5.132 (v. bs(sh) 22–26H). IR (ZnSe, cm-1):
3077, 2929, 2875, 1574, 1451, 1364, 1195, 1124, 1054, 925, 858. Evans method (2
measurements, CDCl3/CHCl3, 298 and 300 K), χT ≈ 0.80, 0.78 emu K mol-1 (2.2, 2.1 unpaired
electrons).
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Figure 1.
1,3-Alternate and cone calix[4]arene scaffolds, functionalized on the upper rims with radicals.
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Figure 2.
Nitroxide tetraradical 1 and diradical 2 with the constrained conformations of 1,3-alternate
calix[4]arene, and nitroxide tetraradical 3 with the constrained conformation of cone calix[4]
arene.
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Figure 3.
Molecular structure and conformation for nitroxide tetraradical 1 (left) and diradical 2 (right)
with constrained conformations of 1,3-alternate calix[4]arene. Carbon, nitrogen, and oxygens
atoms are depicted with thermal ellipsoids set at the 50% probability level. Only one of the
two unique molecules of 2 and without the solvent of crystallization (benzene) is shown.
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Figure 4.
Conformation of the tert-butyl nitroxide moieties (ball-and-stick) in crystalline nitroxide
tetraradical 1 and diradical 2. For 2, two crystallographically unique molecules are shown; in
one of the molecules, disorder in the ethylenoxymethyl chain and the tert-butyl group is omitted
for clarity.
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Figure 5.
1H NMR (500 MHz, chloroform-d, LB = 1 Hz) spectra for nitroxide tetraradical 1 (top) and
diradical 2 (bottom). Inset plot: LB = 10 Hz. The singlets at 7.26 ppm and ~1.5 ppm correspond
to the residual non-deuterated chloroform and water peaks. The other sharp, relatively weak
peaks are assigned to diamagnetic impurities.
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Figure 6.
EPR (X-Band) spectra of 1 in toluene at 295 K and 135 K. Numerical fit (red dashed line) to
the experimental spectrum at 295 K corresponds to a single nitroxide tetraradical species;
correlation coefficient is 0.999 and the values for the variable parameters are: Lorentzian line
width of 0.156 mT, g-shift of −0.045 mT (g-value = 2.0059), 14N-splitting of 0.319 mT for 4
nuclei, 1H-splitting of 0.048 mT for 8 nuclei.
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Figure 7.
EPR (X-Band, 9.4424 GHz) spectrum of 0.6 mM nitroxide diradical 2 in toluene/chloroform
(4 : 1) at 140 K. The spectral simulation of the |Δms| = 1 region is shown as red trace. The
fitting parameters for the spectral simulation to the S = 1 state are: |D/hc| = 1.39 × 10−2 cm−1

(|D/gμB| = 14.9 mT), |E/hc| = 0 cm−1, gx = 2.0064, gy = 2.0064, gz = 2.0030, Gaussian line
(Lx = 12 G, Ly = 20 G, Lz = 40 G). The center lines correspond to an S = ½ (monoradical)
impurity.
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Figure 8.
SQUID magnetometry for 5 mM 1 in THF with numerical fits to the tetraradical model (Figure
10, eq. 1 and 2). For the χT vs. T fits (top) and the M/Msat vs. H/T fits (bottom), the J2/k (diagonal
coupling) is set to −1.1 K and −0.5 K, respectively. The variable parameters (parameter
dependence and R2) are as follows: at 30000 Oe in the warming mode, J1/k = −1.4 K, w = 1.11
(0.32, 0.998); at 5000 Oe in the warming mode, J1/k = −1.2 K, w = 1.10 (0.30, 0.995); at 1.8
K, J1/k = −0.6 K, Msat = 0.76 μB (0.85, 0.999); at 3 K, J1/k = −0.7 K, Msat = 0.86 μB (0.97,
1.000).

Rajca et al. Page 22

J Am Chem Soc. Author manuscript; available in PMC 2008 October 6.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 9.
SQUID magnetometry for 7 mM 2 in THF with numerical fits to the diradical model (eq. 4
with J1/k = 0). For the χT vs. T fits (top) and the M/Msat vs. H/T fits (bottom), the variable
parameters (parameter dependence and R2) are as follows: at 5000 Oe in the warming mode,
J2/k = −0.8 K, w = 0.89 (0.25, 0.990); at 5000 Oe in the cooling mode, J2/k = −0.8 K, w = 0.88
(0.26, 0.982); at 1.8 K, J2/k = −0.6 K, Msat = 0.80 μB (0.62, 1.000); at 3 K, J2/k = −0.6 K,
Msat = 0.82 μB (0.91, 1.000).
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Figure 10.
Cluster of spins S = ½ with pairwise exchange couplings J1 (through-bond) and J2 (through-
space) as the tetraradical model for 1 and 3. The diradical model for 2 corresponds to a dimer
of spins S = ½ with pairwise exchange coupling J2.
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Figure 11.
SQUID magnetometry for 20 mM 3 in 2-MeTHF with numerical fit to the tetraradical model
(Figure 10, equation 2). For the χT vs. T plot (top), the variable parameters (parameter
dependence) for the numerical fit to tetraradical model at 5000 Oe in the cooling mode are as
follows: J1/k = 1.0 K (0.98), J2/k = −0.7 K (0.98), w = 0.85 (0.61); R2 = 0.996. For the M/
Msat vs. H/T plot at T = 2 K (bottom), theoretical Brillouin curves for paramagnet with S = ½
and S = 1 are shown.
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Figure 12.
SQUID magnetometry for solid nitroxide tetraradical 1 with numerical fits to the tetraradical
model, using J2/k = 0 (Figure 10, equations 1 and 2). The variable parameters (parameter
dependence and R2) are as follows: at 1.8 K, J1/k = −0.6 K, Msat = 0.94 μB (0.75, 1.000); at 3
K, J1/k = −0.5 K, Msat = 0.95 μB (0.94, 1.000); at 5000 Oe in the warming mode, J1/k = −0.6
K, w = 0.96 (0.23, 0.993).
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Figure 13.
Crystal packing of nitroxide tetraradical 1. Hydrogen atoms are omitted for clarity.

Rajca et al. Page 27

J Am Chem Soc. Author manuscript; available in PMC 2008 October 6.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 14.
Relative orientations of the 2pπ-orbitals at the ipso-positions in the 1,3-alternate and cone calix
[4]arene polyradical scaffolds, and the corresponding trimethylene and 2,2’-bis(allyl)methane
diradicals.
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Scheme 1.
Synthesis of nitroxide tetraradical 1 and diradical 2
Conditions: (i) t-BuLi (8 equiv), THF, −78 °C for 2 h, then −20 °C for 15 min; (ii)
[(CH3)3CNO]2 (2.1 equiv) in THF, −78 °C then slowly warm up to room temperature
overnight; (iii) n-BuLi (2.2 equiv), THF; (iv) [(CH3)3CNO]2 (1.2 equiv); (v) Ag2O, CHCl3 or
CH2Cl2.
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Table 1
Summary of the X-ray crystallographic data.

property 1 2 (0.25•C6H6)
molecular formula C56H80N4O12 C49.50H63.50Br2N2O10
formula weight 1001.24 1006.34
crystal/color red block red block
crystal system monoclinic triclinic
space group P21/c P-1
a, Å 14.920(4) 14.698(5)
b, Å 35.167(9) 19.752(6)
c, Å 10.593(3) 20.370(7)
α, ° 90 96.911(9)
β, ° 100.379(7) 110.227(9)
χ, ° 90 111.428(9)
volume, Å3 5467(2) 4955(3)
Z 4 4
Dcalcd/g cm-3 1.216 1.349
reflns collected 82665 66102
unique reflns 12675 (Rint = 0.0554) 22927 (Rint = 0.0627)
data / restraints / parameters 12675 / 0 / 665 22927 / 48 / 1206
R1 (I > 2σ(I)) 0.0461 0.0483
wR2 (I > 2σ(I)) 0.1141 0.1082
GOF 1.019 1.014
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1. Materials and Special Procedures.     

Ether, tetrahydrofuran (THF), and 2-methyltetrahydrofuran (2-MeTHF) for use on the vacuum line 

were distilled from sodium/benzophenone prior to use.   t-BuLi was obtained from either Aldrich (1.7 M 

in pentane) or Acros (1.5 M in pentane); prior to use, their concentrations were determined by titration 

with N-pivaloyl-o-toluidine.S1  Other major commercially available chemicals were obtained from 

Aldrich.   Column chromatography was carried out with flash silica gel, particle size 40–63 µm (EMD 

Chemicals).  Deactivated silica was prepared by stirring flash silica gel with a solution of 2% Et3N in 

pentane for 40 – 45 min.  The silica gel was then transferred to a column and washed successively with 

pentane, acetone and pentane, following which it was dried overnight under a steady air pressure (~5 

psi).  This was then used for the column purifications in the usual way. 

25,26,27,28–Tetrahydroxycalix[4]arene was obtained by AlCl3–catalyzed removal of the tert-butyl 

groups from p-tert-butylcalix[4]arene according to the literature procedure.S2  Preparation of 

5,11,17,23-tetrabromo-25,26,27,28-tetrakis(methoxyethoxy)calix[4]arene (4) in the locked 1,3-alternate 

conformation is described below. 

 

2. NMR Spectroscopy and Other Analyses.   

NMR spectra were obtained using Bruker spectrometers (1H, 500 MHz and 400 MHz) using CDCl3 as 

solvent.  The chemical shift references were as follows: (1H) TMS, 0.0 ppm and (13C) CDCl3, 77.0 ppm.  

Typical 1D FID was subjected to exponential multiplication with an exponent of 0.1 Hz (for 1H) and 1.0 

– 2.0 Hz (for 13C); for selected spectra, both exponential and Gaussian multiplications were used, with 

exponents indicated as EM and GB for each applicable spectrum.   

Values of the magnetic moment and χT were obtained in chloroform using the 1H NMR based Evans 

method.S3  Concentric NMR tubes were used (Wilmad, cat. No. WGS-5BL). The outer NMR tube 

contained a solution of the paramagnetic sample in an approximately 1 : 1 (v/v) mixture of CDCl3 and 

CHCl3 with accurately determined concentration and the inner concentric tube contained pure CHCl3. 
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Diamagnetic susceptibility of CHCl3 (χdia = −0.497 × 10−6 emu g−1) and Pascal constant correction for 

the nitroxide diradical (−0.603 × 10−3 emu mol−1) and tetraradical (−0.652 × 10−3 emu mol−1) were 

used.S4 

IR spectra were obtained using a Nicolet Avatar 360 FT-IR instrument, equipped with an ATR 

sampling accessory (Spectra Tech, Inc.).  A few drops of the compound in CH2Cl2 were applied to the 

surface of a ZnSe ATR plate horizontal parallelogram (45°, Wilmad).  After the solvent evaporated, the 

spectrum was acquired (128 scans, 4-cm-1 resolution). 

MS analyses were carried out at the Nebraska Center for Mass Spectrometry. 

Table S1. Summary of variable temperature 1H NMR (400 MHz) spectroscopic studies of 

tetrahydroxylamine 5 (C2Cl4/benzene-d6) and dihydroxylamine 6 (chloroform-d). 

 Chemical shifts 

(Hz) 

Temperatures 

(° C) 

ν1 ν2 ν1−ν2 Tslow exchange Tcoalescence

kcoal  

(s−1) 

∆G‡  

(kcal mol-1) 

Tetrahydroxylamine 5 

2953.6 2685.2 268.4 25  52 597 14.8 

Dihydroxylamine 6 

2926.4 2907.2 19.2 −30 5 44.6 14.1 

2953.2 2716.4 238.8 −30 33 526 14.1 
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3.  X-ray Crystallography of 1 and 2. 

All data were collected on Bruker SMART system at IUMSC (Indiana University).  Data collection, 

structure solution, and refinement are briefly summarized below; more detailed description may be 

found in the accompanying crystallographic information files (CIFs).  The single crystals for the X-ray 

crystallographic studies were obtained via slow evaporation of solvent at room temperature: nitroxide 

tetraradical 1 (label: SM-5-4recry) and diradical 2 (label: SM-5-5recry). 

Data collection, structure solution and refinement.  All data collections were carried out using Mo 

Kα radiation (λ = 0.71073 Å, graphite monochromator) at 137 K.  The intensity data were corrected for 

absorption.S5  Final cell constants were calculated from the xyz centroids of strong reflections from the 

actual data collection after integration.S6

Space groups were determined based on intensity statistics and systematic absences.  Structures were 

solved with direct methods using SIR-92S7 and refined with full-matrix least squares / difference Fourier 

cycles using SHELXL-97.S8 All non-hydrogen atoms were refined with anisotropic displacement 

parameters.  The hydrogen atoms were placed in ideal positions and refined as riding atoms with 

relative isotropic displacement parameters. 

Nitroxide tetraradical 1.   The compound crystallized in space group P21/c with one molecule per 

asymmetric unit.  The final full matrix least squares refinement converged to R1 = 0.0461 and wR2 = 

0.1276 (F2, all data).  The remaining electron density was located on bonds.  

Nitroxide diradical 2.  The compound crystallized in space group P-1 with two molecules and one 

half solvent molecule (benzene) per asymmetric unit.  The final full matrix least squares refinement 

converged to R1 = 0.0483 and wR2 = 0.1257 (F2, all data).  The remaining electron density is located 

near the bromine atoms.  Disorder was observed for a tert-butyl group and methoxyethylene; they were 

refined with a set of appropriate restraints and constraints. 
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Table S2.  Dihedral angles between the planes defined by the C(ipso)-C(CH2)-C(ipso) and benzene ring 

planes (illustrated as triangles and hexagons) for nitroxide tetraradical 1 and diradical 2. 

                   
Nitroxide tetraradical 1 

Plane to plane 

(defined by the following carbon 
atoms) 

Angle (plane to plane) 

            [ °] 

Ph 1-6 to 5,7,8 115.7 (or 64.3) 

5,7,8 to Ph 8-13 118.4 (or 61.6) 

Ph 8-13 to 12,14,15 114.3 (or 65.7) 

12,14,15 to Ph 15-20 61.5 

Ph 15-20 to 19,21,22 67.5 

19,21,22 to Ph 22-27 64.3 

Ph 22-27 to 26,28,1 67.9 

26,28,1 to Ph 1-6 120.8 (or 59.2) 

 

Nitroxide diradical 2  

Molecule A Molecule B 

Plane to plane 

(defined by the following 
carbon atoms) 

Angle (plane to plane) 

              [ °] 

Plane to plane 

(defined by the following 
carbon atoms) 

Angle (plane to plane) 

             [ °] 

Ph 1-6 to 5,7,8 68.0 Ph 1-6 to 5,7,8 111.6 (or 68.4) 

5,7,8 to Ph 8-13 70.2 5,7,8 to Ph 8-13 70.3 

Ph 8-13 to 12,14,15 107.4 (or 72.6) Ph 8-13 to 12,14,15 73.4 

12,14,15 to Ph 15-20 65.0 12,14,15 to Ph15-20 66.1 

Ph 15-20 to 19,21,22 65.1 Ph 15-20 to 19,21,22 113.9 or 66.1 

19,21,22 to Ph 22-27 69.9 19,21,22 to Ph 22-27 69.4 

Ph 22-27 to 26,28,1 72.4 Ph 22-27 to 26,28,1 70.0 

26,28,1 to Ph 1-6 114.4 (or 65.6) 26,28,1 to Ph 1-6 70.4 
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4.  EPR Spectroscopy of 1 and 2, and Magnetic Studies of 1, 2, and 3. 

 EPR spectroscopy.  CW X-band EPR spectra for 1 and 2 in solution were acquired on Bruker EMX 

instrument, equipped with a frequency counter and nitrogen flow temperature control (130–320 K).  The 

samples were contained in the 4-mm O.D. EPR quartz tubes, equipped with high-vac PTFE stopcocks.  

Solvent was vacuum transferred into the tube, to form a homogeneous solution after attaining ambient 

temperature.  Spectra were obtained using dual mode cavity, with the oscillating magnetic field 

perpendicular (TE102) to the swept magnetic field.  The g-values were referenced using DPPH (g = 

2.0037, powder, Aldrich).   

For distance (r, in Å) measurements based upon Eaton’s equation (eq. S1), the relative intensities of 

the the |∆ms| = 1 and |∆ms| = 2 regions for 1 mM diradical 2 in toluene/chloroform were obtained by 

double integration with baseline correction; intensity of the monoradical was negligible.  The 

instrument settings for the |∆ms| = 2 region were as follows: microwave (MW) power attenuation = 10 

dB (power = 20.4 mW) and receiver gain = 5 × 105; analogous settings for the |∆ms| = 1 region were 40 

dB (2.046 × 10-2 mW) and 1 × 105.  Except for the center fields, all other settings, including MW 

frequency (ν = 9.4848 GHz), modulation amplitude (2 G), number of scans, and sweep width (600 G), 

were identical. 

relative intensity = [19.5 × (9.1)2]/r6ν2                         (S1)        

 SQUID Magnetometry.  Quantum Design (San Diego, CA) MPMS5S (with continuous 

temperature control) was used.  All samples were contained in home-made 5-mm O.D. EPR quality 

quartz tubes, modified to possess a thin bottom, which is 6 cm from the end of the tube.S9 

For solution samples, tetraradical 1, diradical 2, or tetraradical 3 were loaded into the tube, placed 

under vacuum, and then solvents were vacuum transferred.  The tube was flame sealed under vacuum.  

The samples were carefully inserted to the magnetometer, with the sample chamber at 290–300 K.  The 

sequence of measurements started with a cooling mode from 300 K to 1.8 K, and then followed with the 

other sequences of measurements below the melting point of the solution (1.8–150 K).  Correction for 

diamagnetism was carried out by extrapolation of the χ vs. 1/T plots, typically, from the 60–140 K 
S7

 



temperature range (R2 = 0.9999).  However, for selected samples in 2-methyltetrahydrofuran, a wider 

temperature range (up to the temperature of 240 K) was used.  Usually the cooling mode data, with 10–

60 s delays, after a “stable temperature” was indicated by the MPMS at each temperature, were used for 

such extrapolations. 

For solid state samples, 1 or 2 was loaded to the tube, placed under vacuum, and then flame sealed 

under partial pressure of helium gas.  For one of the samples of tetraradical 1  (Figure 12), following the 

measurements, the SQUID sample tube was opened and cleaned, and then identical sequences of 

measurements were carried out for the point-by-point correction for diamagnetism; additional 

corrections were based upon Pascal constants, scaled by a factor of 0.9, i.e., χdia = 0.9×6.52×10-4 emu 

mol-1.  For all other samples of solid di- and tetraradicals, the correction for diamagnetism was based 

upon high temperature extrapolation of the χ vs. 1/T plots, i.e., a suitable numerical factor (Mdia) was 

added to the magnetization (M), until the χT vs. T plot becomes flat in the high temperature range.   

 EPR Spectral Simulations and Numerical Curve Fitting for SQUID Magnetic Data.  The 

WINEPR SimFonia program (Version 1.25, Bruker) was used for spectral simulations of nitroxide 

diradical 2 in rigid matrices.  WinSIM program (Public EPR Software Tools, D. A. O’Brien, D. R. 

Duling, Y. C. Fann) was used for numerical fitting of solution phase EPR spectra.   

The SigmaPlot for Windows software package was used for numerical curve fitting of the magnetic 

data.  The reliability of a fit is measured by the parameter dependence, which is defined as follows: 

dependence = 1 – ((variance of the parameter, other parameters constant)/(variance of the parameter, 

other parameters changing)).  Values close to 1 indicate an overparametrized fit.  The quality of fits is 

measured by a coefficient of determination (R2), which is defined for nonlinear numerical fits of the 

magnetic data as follows (eq. S2):  

                      R2 = 1 – [(Σ(yi – Yi)2)/(Σ(yi – <y>)2)]                              (S2) 

where yi, Yi , and <y> denote experimental values, fitted values, and the arithmetic mean of the 

experimental values.  Values close to 1 indicate a fit of high quality. 
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5.  Alternative Models for Numerical Fitting of Magnetic Data for Tetraradical 1 and Diradical 2.   

Two diradicals model.  In this model, it is assumed that all nitroxide moieties are involved in only 

one dominant pairwise antiferromagnetic exchange coupling (J/k).  For isolated 1 and 2, this model 

describes pairwise exchange couplings between the diagonal nitroxides only.  For solid 1 and 2, the four 

nitroxide moieties are described as two diradicals.  For tetraradical 1, equations for the field-dependence 

of magnetization (M vs. H) and temperature dependence of magnetic susceptibility (χT vs. T) are 

provided (eq. S3, eq. S4a).  N denotes the number of moles of tetraradical 1 (eq. S3). Also, impurities 

and inaccuracies in the mass balance are accounted for by the “magnetization at saturation,” Msat (eq. 

S3) and the mass factor, w (eq. S4a).  Both equations account for paramagnetic saturation.  A similar 

model may be used to fit the χT vs. T data for diradical 2 (eq. S4b).  

M = (11180N)Msat[F1 + F2]                                                             (S3) 

χT = (1.118T/H)w[F1 + F2]                                                              (S4a) 

χT = (1.118T/2H)w[F1 + F2]                                                            (S4b) 

Fn = [2sinh(a)]/[1 + 2cosh(a) + exp((–2Jn/k)/T)]; n = 1, 2 

a = 1.345(H/T); J1 = J2

 

It should be noted that the replacement of the J2 = 0 restraint in equations S5, S6a, and S6b with a J1 = 

J2 restraint gives equations S3, S4a, and S4b.  Also, setting J1 = 0 in the tetraradical model (eq. 1, 2, and 

4, maint text) gives equations (and numerical fits) that are identical to equations S3, S4a, and S4b.  Still 

another option is a three-parameter fit, using eq. S4a with J1 ≠ J2 (e.g., ref 32, main text), for tetraradical 

1. 

Diradical plus two S = ½ monoradicals model.   In this model, it is assumed that one half of the 

nitroxide moieties may be described as exchange-coupled diradicals and the other half of the nitroxide 

moieties are treated as independent S = ½ monoradicals.   In other words, the four nitroxide moieties in 

solid 1 and 2 could be described as one diradical plus two S = ½ monoradicals. 
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For tetraradical 1, both temperature-dependence (χT vs. T) and field-dependence (M vs. H) of the 

experimental magnetic data are well fit by the model of “one diradical plus two S = ½ monoradicals”, 

with antiferromagnetic exchange coupling (J/k) in the “diradical” (eq. S5 and eq. S6a).  N denotes 

number of moles of tetraradical 1 (eq. S5).  Also, impurities and inaccuracies in the mass balance are 

accounted for by the “magnetization at saturation,” Msat (eq. S5) and the mass factor, w (eq. S6a).  Both 

equations account for paramagnetic saturation.  Similar model may be used to fit the χT vs. T data for 

diradical 2 (eq. S6b). 

 

    

M = (11180N)Msat[F1 + F2]                                                   (S5) 

χT = (1.118T/H)w[F1 + F2]                                                      (S6a) 

χT = (1.118T/2H)w[F1 + F2]                                                     (S6b) 

Fn = [2sinh(a)]/[1 + 2cosh(a) + exp((–2Jn/k)/T)]; n = 1, 2 

a = 1.345(H/T); J2 = 0 
 

Two-parameter numerical fits (eq. S5, S6a, and S6b) for tetraradical 1 and diradical 2 give similar 

antiferromagnetic exchange coupling, J/k ≈ –1.8 K, between isolated pairs of nitroxide moieties. 

 

6. Preparation of Tetrabromocalix[4]arene 4. 

25,26,27,28-Tetrakis(methoxyethoxy)calix[4]arene.  To a mixture of 2-methoxyethanol (22.85 g, 

300 mM, sm-4-19) and 40 mL of dry pyridine, p-TsCl (63 g, 330 mM) was added in portions, in such a 

way that the temperature of the reaction mixture did not exceed 20 ºC.  The stirring was continued for 6 

h, after which the reaction mixture was taken up in ether and water, and then the ether layer was washed 

thoroughly with water.  Then it was dried over MgSO4 and the ether was removed under reduced 

pressure.  The resulting 2-methoxyethyl tosylate (yellow oil) was used without further purification.  

Similarly, four additional reactions (sm-4-27, sm-4-89, sm-6-53, sm-6-72) on 25-g scales gave the crude 
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product with the estimated purity of 90−92% by 1H NMR spectroscopy.  The yields of these crude 

products were in the 60−72% range. 

A mixture of 25,26,27,28-tetrahydroxycalix[4]arene (2.00 g, 4.71 mmol) and Cs2CO3 (46.1 g, 0.141 

mol) in DMF (110 mL) was stirred at 80 °C for 30 min.  Subsequently 2-methoxyethyl tosylate (32.7 g, 

0.141 mol) was added and the reaction mixture was kept at 80 °C for 5 h.  Upon cooling to ambient 

temperature, the reaction mixture was poured into water (400 mL).  After extraction with CH2Cl2 (3 × 

125 mL), the combined organic layers were washed with 1 N HCl (1 × 125 mL) and brine (3 × 125 mL).  

In order to remove the excess tosylate, a mixture of the resulting residue, KI (2 g), and Et3N (2 mL) in 

CH3CN (60 mL) was refluxed for 1 h.  The solvent was removed in vacuo.  CH2Cl2 (100 mL) was added 

to the residue whereupon the organic layer was washed with 1 N HCl (1 × 100 mL) and water (2 × 125 

mL).  The organic layer was dried over MgSO4. Concentration in vacuo gave a brown gel-like solid 

which was triturated with cold MeOH to afford a white solid (1.39 g, 45%, m.p. 197−199 °C; lit.S10 

198−200 °C).  In three additional reactions carried out on 1-g, 1.5-g, and 0.1-g scale, the product of 

trituration was further recrystallized from CH2Cl2/MeOH, to provide the product in 46−48% (lit.S10 

76%) yields. 1H NMR (500 MHz, CDCl3): 7.070 (d, J = 7.0, 8H), 6.710 (t, J = 7.0, 4H), 3.786 (t, J = 

5.0, 8H), 3.478 (t, J = 5.0, 8H), 3.648 (s, 8H), 3.388 (s, 12H). 

5,11,17,23-Tetrabromo-25,26,27,28-tetrakis(methoxyethoxy)calix[4]arene (4).S11 N-

bromosuccinimide (5.7 g, 31.9 mmol) and 25,26,27,28-tetrakis(methoxyethoxy)calix[4]arene (2.38 g, 

3.62 mmol) in methyl ethyl ketone (115 mL) were stirred at room temperature for 24 h.  Subsequently, 

NaHSO3 (5 mL, 10% in water) was added to the stirred reaction mixture.  The aqueous workup with 

CH2Cl2 (25 mL), drying over MgSO4, concentration in vacuo, and recrystallization of the crude in 

CH2Cl2/MeOH gave white crystals (2.92 g, 83%, m.p. 255 °C, sm-6-60).  From other five reactions 

carried out on 100-mg (sm-4-34), 588-mg (sm-4-40), 750-mg (sm-4-88), 1.4-g (sm-5-7), and 1.3-g (sm-

5-97) scale, tetrabromocalix[4]arene 4 was obtained in 81−93% yields.  The higher yields correspond to 

the crude mixtures, which were of sufficient purity (>95% based upon 1H NMR spectra) for the 
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subsequent steps in the synthesis.  1H NMR (500 MHz, CDCl3, sm-6-60recry1): 7.312 (s, 8H), 3.853 

(m, 8H), 3.734 (m, 8H), 3.595 (s, 8H), 3.456 (s, 12H).  13C NMR (125 MHz, CDCl3, sm-6-60recry1): 

154.6, 134.6, 133.2, 114.9, 71.94, 71.91, 59.3, 34.1.  IR (ZnSe, cm-1, sm-6-60recry1): 2918, 2880, 1577, 

1450, 1365, 1195, 1130, 1050, 852.  LR/HR FABMS (3-NBA, sm-6-60recry1): m/z (ion type, % RA in 

the m/z 700−1400, deviation for the formula) at 975.9721 ([M+8]+, 29, −3.5 ppm for 12C40H44
16O8

81Br4), 

973.9657 ([M+6]+, 61, 5.2 ppm for 12C40H44
16O8

81Br3
79Br), 971.9660 ([M+4]+, 100, 7.0 ppm for 

12C40H44
16O8

81Br2
79Br2), 969.9664 ([M+2]+, 62, 8.8 ppm for 12C40H44

16O8
81Br79Br3), 967.9737 ([M]+, 16, 

3.3 ppm for 12C40H44
16O8

79Br4). 
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Figure S1.  Crystal packing of 1 as viewed in the approximate direction of the crystallographic a-axis.  

The NO groups, with the short intermolecular O···O and N···O distances of 4.60 and 4.75 Å, are shown 

in ball-and-stick.  Hydrogen atoms are omitted for clarity. 

 

Figure S2.  Crystal packing of 1 as viewed in the approximate direction of the crystallographic c-axis.  

The NO groups and carbon atoms, with the short intermolecular O···C distances (O1···C2 = 3.97 Å and  

O4···C11 = 3.58 Å), are shown in ball-and-stick.  Hydrogen atoms are omitted for clarity. 

 

 
S14

 



 

Figure S3.  Crystal packing of 2 as viewed in the approximate direction of the crystallographic a-axis.  

The NO groups forming intermolecular dimers are shown in ball-and-stick; the short intermolecular 

N···O distances of 4.96 and 4.98 Å are found.  Both angles and torsions are within 5° of the values 

expected for a rectangular arrangement of the NO groups within the dimer.  Hydrogen atoms, disorder, 

and solvent of crystallization (benzene) are omitted for clarity. 
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Figure S4.  EPR (X-band) spectra of 1 mM nitroxide tetraradical 1 in toluene at room temperature.   

Left spectrum, red trace:  single species numerical fit (R = 0.999, WinSim), as shown in Figure 6 (main 

text), with the following variable parameters [rel. concentration, Lorentzian percentage, line width, g-

shift (g-value), 14N-splitting (spin, number), 1H-splitting (spin, number)]: species no. 1 [100, 100%, 

1.560, −0.450 (2.0059), 3.190 (1, 4), 0.480 (0.5, 8)].  Right spectrum (ks980r2), red trace: three-species 

numerical fit (R = 0.999, WinSim) with the following variable parameters [rel concentration, Lorentzian 

percentage, line width, g-shift (g-value), 14N-splitting (spin, number), 1H-splitting (spin, number)]: 

species no. 1 [98.7, 100%, 1.510, −0.450 (2.0059), 3.190 (1, 4), 0.490 (0.5, 8)], species no. 2 [1.1, 

100%, 1.510, −0.400 (2.0058), 4.330 (1, 3), 0.620 (0.5, 6)], species no. 3 [0.2, 100%, 0.510, −0.500 

(2.0059), 6.570 (1, 2), 0.800 (0.5, 4)].  The line widths, g-shifts, and hyperfine splittings are reported in 

Gauss.  Green trace: Residual Intensity (the difference between Experimental Intensity and Simulation 

Intensity multiplied by a factor of 2). 
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Figure S5. EPR (X-band) spectra of 0.6 mM nitroxide tetraradical 1 in toluene/chloroform (4 : 1) at 296 

K (PT366r1).  Red trace:  single species numerical fit (R = 0.999, WinSim), with the following variable 

parameters [rel. concentration, Lorentzian percentage, line width, g-shift (g-value), 14N-splitting (spin, 

number), 1H-splitting (spin, number)]: species no. 1 [100, 100%, 1.680, 3.780 (2.0056), 3.290 (1, 4), 

0.390 (0.5, 8)].  The line widths, g-shifts, and hyperfine splittings are reported in Gauss.  Green trace: 

Residual Intensity (Experimental Intensity−Simulation Intensity) 
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Figure S6.  EPR (X-band) spectrum of 1.1 mM nitroxide diradical 2 in toluene at 295 K (KS1263r3).  

Red trace: numerical fit (R = 0.994, WinSim) with the following variable parameters [rel concentration, 

Lorentzian percentage, line width, g-shift (g-value), 14N-splitting (spin, number), 1H-splitting (spin, 

number)]: species no. 1 [97.880, 100%, 7.860, −0.550 (2.0064), 6.520 (1, 2)], species no. 2 [2.120, 80%, 

1.080, 0.070 (2.0060), 12.910 (1, 1), 1.970 (0.5, 2)].  The 1H-splitting for the diradical was not included.  

The line widths, g-shifts, and hyperfine splittings are reported in Gauss.  Green trace: numerical fit for 

species no. 1 in isolation with above optimized parameters. 
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Figure S7. EPR (X-band) spectrum of 0.65 mM nitroxide diradical 2 in toluene/chloroform (4 : 1) at 

296 K (PT364r1).  Red trace: numerical fit (R = 0.995, Winsim) with the following variable parameters 

[rel concentration, Lorentzian percentage, line width, g-shift (g-value), 14N-splitting (spin, number), 1H-

splitting (spin, number)]: species no. 1 [97.060, 99%, 8.290, 4.520 (2.0061), 6.570 (1, 2)], species no. 2 

[2.940, 93%, 1.110, 5.000 (2.0058), 13.230 (1, 1), 1.890 (0.5, 2)].  The 1H-splitting for the diradical was 

not included.  The line widths, g-shifts, and hyperfine splittings are reported in Gauss.  Green trace: 

numerical fit for species no. 1 in isolation with above optimized parameters.  (Using DPPH standard, g 

= 2.0058 is obtained.)  
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Figure S8. EPR (X-band) spectra of 1 mM nitroxide diradical 2 in DCM/MeOH (4 : 1).  Purple trace 

(topmost): spectrum at 320 K (KS765r6).  Green trace (center): spectrum at 295 K (KS1263r5).  Blue 

trace (lowermost): spectrum at 280 K (KS765r4).  Identical sample was used for spectra at 280 K and 

320 K.   
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Figure S9.   EPR (X-band) spectra of 1 mM nitroxide diradical 2 at room temperature.  Left spectrum: 2 

in acetonitrile (KS955r2).  Right spectrum: 2 in dichloromethane at 297 K (KS970r2). 
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Figure S10.  EPR (X-Band, 9.6561 GHz) spectrum of 1 mM nitroxide diradical 2 in 

dichloromethane/methanol (4 : 1) at 140 K (label: KS1263r14).  The spectral simulation of the |∆ms| = 1 

region is shown as red trace.  The fitting parameters for the spectral simulation for the S = 1 state are: 

|D/hc| = 1.36 × 10−2 cm−1 (D = 145 G), |E/hc| = 0 cm−1, gx = 2.0062, gy = 2.0062, gz = 2.0035, |Azz/2|/hc 

≈ 1.3 × 10−3 cm−1, Gaussian line (Lx = 20 G, Ly = 22 G, Lz = 12 G).  The center lines correspond to an S 

= ½ (monoradical) impurity. 
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Figure S11A.  EPR (X-Band, 9.4389 GHz) spectrum of 0.7 mM nitroxide diradical 2 in 2-MeTHF at 

140 K (label: PT363r2/r4).  The spectral simulation of the |∆ms| = 1 region is shown as red trace.  The 

fitting parameters for the spectral simulation for the S = 1 state are: |D/hc| = 1.39 × 10−2 cm−1 (D = 149 

G), |E/hc| = 0 cm−1, gx = 2.0064, gy = 2.0064, gz = 2.0031, |Azz/2|/hc ≈ 1.3 × 10−3 cm−1, and Gaussian line 

(Lx = 11 G, Ly = 13 G, Lz = 11 G).  The center lines correspond to an S = ½ (monoradical) impurity. 

 

 

 

 

 

 

 

S23

 



 

 

 

 

 

Figure S11B.  EPR (X-Band, 9.4876 GHz) spectrum of 0.7 mM nitroxide diradical 2 in 2-MeTHF at 

135 K (label: SM1112r4/r5).  The spectral simulation of the |∆ms| = 1 region is shown as red trace.  The 

fitting parameters for the spectral simulation for the S = 1 state are: |D/hc| = 1.405 × 10−2 cm−1, |E/hc| = 

0 cm−1, gx = 2.0063, gy = 2.0063, gz = 2.0028, |Azz/2|/hc ≈ 1.2 × 10−3 cm−1, and Gaussian line (Lx = 11 G, 

Ly = 13 G, Lz = 11 G).  The center lines correspond to an S = ½ (monoradical) impurity. 
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Figure S12.  SQUID magnetometry for concentrated (13 mM) solution of 1 in THF (label: SM988r1F) 

with numerical fits to the tetraradical model (Figure 10, eq. 1 and 2).  For the χT vs. T fits (top) and the 

M/Msat vs. H/T fits (bottom), the J2/k (diagonal coupling) is set to –1.1 K and –0.6 K, respectively.  The 

variable parameters (parameter dependence and R2) are as follows: at 30000 Oe in the warming mode, 

J1/k = –1.3 K, w = 0.90 (0.32, 0.998); at 5000 Oe in the warming mode, J1/k = –1.2 K, w = 0.90 (0.30, 

0.995); at 1.8 K, J1/k = –0.6 K, Msat = 0.62 µB (0.86, 0.999); at 3 K, J1/k = –0.7 K, Msat = 0.70 µB (0.97, 

1.000). 
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Figure S13.  SQUID magnetometry for dilute (7 mM) solution of nitroxide diradical 2 in THF (label: 

KD1256F).  The experimental data are identical to that in Figure 9 (main text).  The mean-field 

numerical fits (θ = –0.5 K or θ = –0.6 K) are shown.   For the χT vs. T data, numerical fit to the 

diradical model is shown for reference.   In the magnetization plot, the solid lines correspond to 

Brillouin functions with S = ½ and S = 1.

 

 

S26

 



 

Figure S14.  SQUID magnetometry for concentrated (24 mM) solution of nitroxide diradical 2 in THF 

(label: KD1247G).   In the χT vs. T plots, the solid line corresponds to numerical fit to the Brillouin 

function of two independent spins S = ½ with the following variable parameters (parameter dependence 

and R ): mean-field parameter, θ = –0.5 K, and weight factor, w = 0.91 (0.35 and R  = 0.999).  In the 

M/M  vs. H/(T – θ) plots at 1.8, 3, and 5 K, where θ = –0.5 K is the mean-field parameter, the solid 

lines correspond to Brillouin functions with S = ½ and S = 1. 

2 2
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Figure S15.  SQUID magnetometry for concentrated (24 mM) solution of nitroxide diradical 2 in THF 

(label: KD1247H) with numerical fits to the diradical model (eq. 4 with J1/k = 0).  The experimental 

data are identical to that in Figure S14.  For the χT vs. T fits (top) and the M/Msat vs. H/T fits (bottom), 

the variable parameters (parameter dependence and R2) are as follows: at 5000 Oe in the cooling mode, 

J2/k = –0.7 K, w = 0.91 (0.26, 0.990); at 1.8 K, J2/k = –0.7 K, Msat = 0.85 µB (0.63, 1.000); at 3 K, J2/k = 

–0.7 K, Msat = 0.88 µB (0.92, 1.000). 
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Figure S16.  SQUID magnetometry for ~5 mM nitroxide diradical 2 in chloroform/methanol (1:1) 

(label: H0235r1G).  Main plot: M/Msat vs. H/(T – θ) at 1.8 K, where θ = –0.2 K is the mean-field 

parameter; the solid line corresponds to Brillouin function with S = ½.  Inset plot: χT vs. T in cooling 

mode; the solid line corresponds to Brillouin function with S = ½ and mean-field parameter θ = –0.1 K. 
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Figure S17.  SQUID magnetometry for 20 mM 3 in 2-MeTHF (label: J1829RI) with numerical fit to the 

tetraradical model with mean-field parameter (Figure 10).  The experimental data are identical to that in 

Figure 11 (main text).  For the χT vs. T plot (top), the variable parameters (parameter dependence) for 

numerical at 5000 Oe in the warming mode are as follows: J1/k = +1.3 K (0.98), θ = –0.7 K (0.98), w = 

0.85 (0.56); R2 = 0.997.  For the M/Msat vs. H/T plot at T = 2 K (bottom), theoretical Brillouin curves for 

paramagnet with S = ½ and S = 1 are shown. 
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Figure S18.  SQUID magnetometry for 15 mM 3 in THF (label: TR4081F3) with numerical fit to the 

tetraradical model (Figure 10, equation 2).  For the χT vs. T plot (top), the variable parameters 

(parameter dependence) for the numerical fit to tetraradical model at 5000 Oe in the cooling mode are 

as follows: J1/k = +0.9 K (0.98), J2/k = –0.8 K (0.98), w = 1.02 (0.64); R2 = 0.991.  Analogous fit is 

obtained at 5000 Oe in the warming mode (R2 = 0.986).  For the M/Msat vs. H/T plot at T = 2 K 

(bottom), theoretical Brillouin curves for paramagnet with S = ½ and S = 1 are shown. 
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Figure S19.  SQUID magnetometry for 15 mM 3 in THF (label: TR4081F6) with numerical fit to the 

tetraradical model (Figure 10, equation 2).  For the χT vs. T plot (top), the variable parameters 

(parameter dependence) for the numerical fit to tetraradical model at 5000 Oe in the cooling mode are 

as follows: J1/k = +0.7 K (0.98), J2/k = –0.7 K (0.98), w = 1.02 (0.63); R2 = 0.983.  Analogous fit is 

obtained at 5000 Oe in the warming mode (R2 = 0.978).  For the M/Msat vs. H/T plot at T = 2 K 

(bottom), theoretical Brillouin curves for paramagnet with S = ½ and S = 1 are shown. 
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Figure S20.  SQUID magnetometry for solid dinitroxide 2: χT vs. T plots (label: H157R2H).  The 

numerical fit (solid line) to the model of “diradical plus two S = ½ monoradicals” (eq. S5b) has the 

following variable parameters (and their parameter dependence) at 5000 Oe in the warming mode: J/k = 

–1.8 K and w = 0.94 (0.23). 
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Figure S21.  IR (ATR, ZnSe) spectrum of the calix[4]arene tetrahydroxylamine 5. 

 

 

Figure S22.  IR (ATR, ZnSe) spectrum of the calix[4]arene nitroxide tetraradical 1.     
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Figure S23.  IR (ATR, ZnSe) spectrum of the calix[4]arene dihydroxylamine 6.    

 

 

 

 

Figure S24.  IR (ATR, ZnSe) spectrum of the calix[4]arene nitroxide diradical 2. 
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Figure S25.  1H NMR (400 MHz, chloroform-d) spectrum of tetrahydroxylamine 5 (label: sm-10-
17col1_run2). 
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Figure S26.  1H NMR (400 MHz, chloroform-d) spectrum of dihydroxylamine 6 (label: sm-10-11col1-
run2). 
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  Figure S27.  1H NMR (400 MHz, chloroform-d) spectrum of tetrabromocalix[4]arene 4  

                       (label: SM-6-60recry1).                 
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