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 ABSTRACT 

Liu, Xing. M.S., Purdue University, December 2013. A Land Data Assimilation System 
(LDAS) Based Dataset for Regional Agro-climatic Assessment. Major Professor: Dev 
Niyogi. 

This study is part of a USDA sponsored project ----Useful to Usable (U2U): 

“Transforming Climate Variability and Change Information for Cereal Crop Producers”. 

The broader objective includes improving farm resilience and profitability in the U.S. 

Corn Belt region by transforming existing climate/weather data into usable knowledge 

and tools for the agricultural community.  

The specific tasks of this research are: (1) Build a high-resolution (4 km, daily) agro-

climatic dataset using a Land Data Assimilation System (LDAS). (2) Estimate regional 

corn yield across the Corn Belt with crop models and the agro-climatic dataset. (3) 

Evaluate the impacts of climate variability due to El Niño–Southern Oscillation (ENSO) 

on corn yield in the Corn Belt. 

Accordingly, a high-resolution (4 km, 1979-2012, daily) agro-climatic dataset across the 

U.S. Corn Belt has been built using the North America Land Data Assimilation System 

version 2 (NLDAS2) product. This newly developed dataset includes daily 

maximum/minimum temperature, precipitation, solar radiation, soil moisture, and soil 

temperature at four soil depths (0-10 cm, 10-40 cm, 40-100 cm, and 100-200 cm). 

Validations indicate strong agreement between this dataset and field measurements.  The 
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agro-climatic dataset was then used with a Hybrid-Maize crop model to estimate regional 

corn yield at grid scale. The crop model was first validated at the field and county scale 

and found to consistently overestimate yields at the county scale. This was attributed to 

the optimum field conditions considered in the model and the overall uncertainties. 

Comparison with NASS yield survey data indicates a 0.6 multiplicative factor provides 

good agreement with actual yields, and is recommended for county-scale simulations. 

Following the field/county scale model tests, a modeling framework was developed to 

simulate gridded crop yields. Results indicate that integrating spatial climatic information 

improved the regional performance of the Hybrid Maize model and this agro-climatic 

dataset shows good potential for developing agro-meteorological related applications. 

Finally, the impacts of the El Nino-Southern Oscillation (ENSO) on observed and 

simulated corn yields were examined. As a result, La Niña shows a significant negative 

impact on corn yield in the Corn Belt while the impact from El Niño is insignificant. It 

also has been found that La Niña correlates with relatively late planting dates in the Corn 

Belt. Based on a crop model study, the results indicate that for some counties, under 

optimal conditions, late planting dates can mitigate the negative impacts from the La 

Niña phase. 

Based on the studies above, reliable performance of the Hybrid Maize crop model and 

superior data ability of the new agro-climatic dataset have good potential to simulate 

regional corn yield with climate projections. The significant impacts of ENSO on corn 

yield indicate that advance ENSO warning may benefit field management in the Corn 

Belt.
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INTRODUCTION 

The U.S. Corn Belt produces nearly one-third of the global corn supply and contributes 

100 billion dollars annually to the economy. Weather conditions and climate variability 

have a great influence during the crop growing season. Maintaining the stability of corn 

production under climate variability becomes more and more important, as well as 

increasing the corn potential yield and narrowing the yield gap. Providing high-resolution 

weather-related agronomic information can help producers/researchers to make better 

field management decisions.  

This research is part of the NSF-USDA Useful to Usable (U2U) project, which is 

described as: “Transforming Climate Variability and Change Information for Cereal Crop 

Producers, is an integrated research and extension project working to improve farm 

resilience and profitability in the North Central Region by transforming existing climate 

information into usable knowledge for the agricultural community 

(www.Agclimate4U.org).” 

The major objectives of this sub-research are:  

• Provide a high-resolution agro-meteorological database of the U.S. Corn Belt. 

• Link the high-resolution meteorological data products with corn simulation 

models to estimate corn yield at a different spatial scale across the U.S. Corn Belt  

 

http://www.agclimate4u.org/
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• Evaluate the impacts of climate variability on the U.S. Corn Belt 

• Combine future weather/climate predictions with corn yield simulation.   

For this research, the Hybrid-Maize model was selected as the main crop model during 

the corn yield estimation process. The Land Data Assimilation System (LDAS) was used 

as the major reanalysis meteorological large raw data product. The El Niño–Southern 

Oscillation (ENSO) has been analyzed as the climate variability for possible impacts on 

corn yield.  The hypotheses were:  

1) The Hybrid-Maize model can provide reliable yield estimations at both the 

regional scale and field scale.  

2) The meteorological data products from the Land Data Assimilation are reliable 

for applying in corn yield simulation.  

3) The effects of the El Niño–Southern Oscillation (ENSO) on corn planting date 

and corn yield are significant.  

4) The bias range of future yield prediction is acceptable. 

This regional research will span over 30 years (1981-2010) and across 20 sites (Fig. 1.1) 

located in the U.S. Corn Belt, the site selections were based on the representative value of 

these sites and the date availability. Data sources are listed in Table 1.1. Detailed 

methodologies are presented in separate chapters. The main topic of each chapter are as 

follow: 

Chapter 1 provides the overall research background. 
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Chapter 2 describes the process and results of the sensitivity analysis and model 

validation of the Hybrid-Maize model across the U.S. Corn Belt. 

Chapter 3 presents the process of building a 4-km resolution agro-meteorological 

database based on the Land Data Assimilation System (LDAS) and High Resolution 

Land Data Assimilation System (HRLDAS). The process and results of running the crop 

model at gridded scale also described.  

Chapter 4 reports the effects of the El Niño–Southern Oscillation (ENSO) on corn 

planting date and corn yield. A crop model-based study on the impacts of alternating 

planting date on corn yield under different ENSO phases is also included. 

Chapter 5 discusses a preliminary study on simulating corn yield using climate model 

projected weather data.   
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Figure 1.0 Research area: County-scale simulation sites and two field-scale sites (black 
dots): Bondville, IL (40.00°N, 88.29°W) and Mead, NE (41.18°N, 96.44°W) 
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Table 1.0 Major data sources used in this research (detailed information was provided in 
separate chapters) 

Data Source Period 
Reanalysis contemporary 

meteorological data (e.g., air 
temperature, solar radiation, 

precipitation, etc.) 

Phase 2 of the North 
American Land Data 
Assimilation System 

(NLDAS-2) 

1979-2012 

On-site meteorological data 
of 18 county-level sites  

National Climatic Data 
Center (NCDC) 1981-2010 

On-site meteorological data 
of 2 field-level sites Ameriflux Mead, NE: 2002-2006 

Bondville, IL: 1997-2007 

Future projected data of 
Bondville, IL  

North American Regional 
Climate Change Assessment 

Program (NARCCAP) 
1979-2003 

Corn yield of 18 county-
level sites 

National Agricultural 
Statistics Service （NASS） 1981-2010 

Corn yield of 2 field-level 
sites Ameriflux 2001, 2003, 2005 

Planting date of 9 states in 
the U.S. Corn Belt 

National Agricultural 
Statistics Service （NASS） 1994-2010 
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CHAPTER 1. INTRODUCTION TO CROP MODEL, LAND DATA ASSIMILATION 

SYSTEM (LDAS), AND EL NIÑO–SOUTHERN OSCILLATION (ENSO) 

1.1 Introduction to the crop model 

 What is crop model 1.1.1

The model is a description of operations in a system structured by interacted objects 

(Soltani and Sinclair, 2012).  Objects are elemental unit-based on the observations 

(Haefner, 2005).    Depending on the way the systems are described, models can be 

classified into four groups (Haefner, 2005):     

1. Conceptual or verbal models—describe the operations of a system in natural 

common language. For example, the paragraphs in a textbook or web page which 

describes the carbon cycle. 

2.  Diagrammatic models--- graphically describe the operations of a system. For 

example, the “box-and-arrow” diagrams of the carbon cycle. 

3. Physical models --- physical mock-up of the system and the objects. For example, 

a car model or globe. 

4. Mathematical models ---mathematically describe the operations and relations.
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Crop growth is driven by carbon assimilation, plant development, respiration, and plant 

transpiration. Solar radiation influences the growth rate while temperature decides the 

growth duration (de Wit, 1978; Goudriaan and van Laar, 1994). Water stress and nitrogen 

stress limit leaf growth and biomass accumulation (Brisson et al., 2003). Crop models are 

mathematical models that use equations to describe the crop growth eco-physiological 

processes and development response to environmental variability and agricultural 

management.  

To describe a model, there are several critical common terms (Soltani and Sinclair, 2012): 

• Modelling: the process of developing a model.  

• Simulation: “running” a model to get output values. For example, the process of 

running a crop model to obtain the yield output called “simulation”.  

• System analysis: analyze the output from the simulations and then draw 

conclusions.  

Crop models, as well as other mathematical models, can be grouped into different 

categories (Soltani and Sinclair, 2012; Haefner, 2005): 

• Process-oriented or descriptive: a process-oriented model has explicit 

representations of mechanistic processes while a descriptive model is more 

empirical. Process-oriented models can become descriptive models at lower 

organization levels. 

• Static or dynamic: depends on whether the model accounts for the element of time. 

A dynamic model has an explicit representation of future system conditions. 
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• Continuous or discrete: a continuous model can take any value (e.g., 0.5 day) 

while a discrete model takes integers only (e.g., 5 days). 

• Deterministic or stochastic: a stochastic model allows for random events and 

variables are described by probability distributions instead of unique values. 

Generally, most crop models used in recent years are descriptive, dynamic, discrete, and 

deterministic. 

Crop models are built by equations, which include the amount of variables. When 

describing a crop model, these variables can be grouped into three forms (Goudriaan and 

van, 1994; Brun et al., 2006; Soltani and Sinclair, 2012):  

1. State variables: state variables illustrate the current status of the system. In a crop 

model, the state variables usually include yield, biomass, and leaf area index, etc. 

Equations in the crop model describe the evolution of state variables. 

2.  Parameters: variables represent the characteristics of a system, which usually keep 

constant values across simulations of interest. For example, in a crop model, the 

parameters include initial light use efficiency, growth respiration rate, and kernel 

filling rate, etc. 

3. Explanatory variables: also known as “driving variables”, they enter into the 

equations to help calculate the state variables. They are usually environmental 

variables, and in crop models, they typically include temperature and solar radiation 

as well as the management variables.  
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For the commonly used crop models, explanatory variables are usually considered as 

“input” for the model, while state variables are considered as “output”. 

Rabbinge (1993) classifies the crop production into three situations --- Potential 

production:  limited by solar radiation and temperature; Attainable production: adds 

influences from water, nitrogen, and phosphorus; Actual production: considers the 

possible yield reduction resulting from weeds, pests, and disease. Therefore, three 

themes of crop models were characteristic (Rabbinge and Kropff, 2008): 

1. Basic biophysical, physiological processes of crop growth. 

2. The influences of water-stress and nutrition-stress on crop growth. 

3. The influence of weeds, pests, and diseases on crop yield.  

Dynamic crop models were developed in the 1960s by de Wit (1966), and through more 

than 45 years of development, crop models have been used to support theoretical 

research, crop management, education, and policy analysis (Hammer et al., 2002). All 

crop models must simulate crop growth and development, biomass translocating from 

leaves to other organs, and yield (Yang et al., 2004)  

Based on the target simulated crop species, crop models can be divided into generic crop 

models and specific crop models. Generic simulation models describe the crop growth 

regardless of the crop species, and then modifies to simulate the phonological and 

physiological traits of selected crops (Yang et al., 2004).  Such models include SUCROS, 

WOFOST, and INTERCOM (Van Ittersum at al., 2003), STICS (Bryson et al., 2003), 

and EPIC (Jones et al., 1991). Specific crop models have been developed to simulate a 
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specific crop, such as DSSAT (Jones et al., 2003) and the Hybrid-Maize model (Yang et 

al., 2004, 2006).  

Specific crop models and generic crop models are different in the theoretical 

development stage and model driving schemes. For example, CERES-MAIZE (Jones et 

al., 1986), a corn specific model, has five growth stages: emergence---end of juvenile 

stage, tassel initiation, silking, effective grainfilling, and maturity. INTERCOM (Kropff 

and van Laar, 1993) has only two phases: from emergence to anthesis and then from 

anthesis to maturity. Specific models are mainly driven by temperature and solar 

radiation while generic models are primarily driven by the availability of carbon 

assimilation.  

Crop models were developed for different objectives. Some are for scientific research 

while others are more suited for decision support; therefore, some models are complex 

while other are relative simple. However, it is improper to say the complexity of a crop 

model represents the reliability of the simulation. The complexity of a crop model 

represents the amount of equations and parameters, which means collecting the data of 

parameters and driving variables is a major problem of crop models. Therefore, when 

selecting the model, it is important to consider the study objectives and the data 

availability.  

Crop model simulations are usually constrained by collecting the input and calibrating the 

parameters, such as shortwave solar radiation, soil conditions, and kernel filling rate. 

Except for some controlled scientific research fields, those input data are difficult to 

obtain.  
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Since this research is designed to run a crop model at the regional scale, a relatively 

simpler model requiring less input data and fewer parameter calibrations is preferred. 

Therefore, for this research, the Hybrid-Maize model was selected. 

 The Hybrid-Maize Model 1.1.2

The Hybrid-Maize model was developed by combining the advantages of existing models.  

This model combined the attributes related to phenology from CERES-Maize (Jones et 

al., 1986) and the attributes related to organ growth from assimilated-driven models. The 

objective of developing this model is to simulate the potential corn yield and sensitivity 

to climatic variability (Yang et al., 2004).   

The Hybrid-Maize model requires three groups of input data: crop and management, 

weather, and soil (Fig.1.2). Crop and management data include corn maturity (in total 

growing degree days, or GDD), plant date, and plant population. For simulations under 

optimal water management (i.e., non-water limiting) of yield potential, required weather 

data includes daily minimum and maximum air temperature (˚C), daily sum of global 

radiation (MJ/𝑚2) , and no soil data is required. For rainfed conditions, the model also 

requires daily precipitation (mm), daily average air humidity, and reference 

evapotranspiration (ET, mm), and basic soil information including texture of topsoil and 

subsoil, bulk density of topsoil, and soil moisture conditions at planting.  

In past studies, the Hybrid-Maize model has demonstrated reliable performance in 

simulations and has shown considerable responsiveness to changing environmental 

conditions (Yang et al. 2004, 2006; Grassini et al., 2009). 
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1.2 Introduction to the Land Data Assimilation System (LDAS) and the NCAR High-

Resolution Land Data Assimilation System (HRLDAS) 

 Land Data Assimilation System 1.2.1

Traditionally, crop models usually run using weather station data, which are accurate and 

easy to access. However, weather station data are not spatially continuous and lack the 

key input data for crop models --- solar radiation. In the U.S., most weather stations 

provide air temperature and precipitation while the solar radiation is only available from 

a small percentage of weather stations (Bristow and Campbell, 1984; Meinke et al., 1995; 

Goodin et al., 1999; Mahmood and Hubbard, 2002; Grant et al., 2004).   

In previous modeling studies, solar radiation is usually estimated from a weather 

generator based on the location, precipitation, and temperature, such as Weather 

Generator (WGEN) (Richardson, 1981; Richardson and Wright, 1984), Simulation of 

Meteorological Variable (SIMMETEO; Geng et al., 1988), and the Weather Generator 

for Solar Radiation (WGRNR) (Hodges et al., 1985). However, some generators require 

detailed location-specific information which is not generally available (Grant et al., 2004) 

and data preparations are also time-consuming and require intensive computations for 

regional study. 

Because of the limitations of using weather-station data in crop model simulations, the 

Land Data Assimilation System (LDAS, Fig. 1.3), which provides spatial and temporal 

continuous weather data including solar radiation, was selected for this study.  
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The Land Data Assimilation System (LDAS) consists of land-surface models (LSM) 

forced with precipitation gauge observations, satellite data, radar precipitation 

measurements, and output from numerical prediction models. The goal of LDAS is using 

the model results (e.g., soil moisture, evapotranspiration) to support water-resource 

applications, numerical weather prediction studies, etc. This system has been run at 1/8th-

degrees resolution across central North America from January 1979 till near real-time 

(http://ldas.gsfc.nasa.gov/).   

The land-surface models (LSM) in the Land Data Assimilation System (LDAS) including 

Mosaic (Koster and Suarez, 1992, 1996), Noah (Chen et al., 1996; Koren et al., 1999; Ek 

et al., 2003; Mitchell et al., 2004; Niu et al., 2011; Xia et al., 2012), Sacramento (SAC; 

Burnash et al., 1973; Anderson, 1973; Anderson et al., 2006) and Variable Infiltration 

Capacity (VIC; Liang et al., 1994,1996; Wood et al., 1997).  The forcing data product in 

this system includes:  Global Land Data Assimilation System (GLDAS) forcing, Phase 1 

of the North American Land Data Assimilation System (NLDAS-1) forcing, and Phase 2 

of the North American Land Data Assimilation System (NLDAS-2) forcing. 

(http://ldas.gsfc.nasa.gov).  

Because of different characteristics in the four land-surface models mentioned previously, 

such as different model parameterizations, even though they used the same input forcing 

file, the outputs from each model are not the same. Dirmeyer et al. (2006) indicates that 

the means of output from multi-models are more representative than output from a single 

model.  

 

http://ldas.gsfc.nasa.gov/
http://ldas.gsfc.nasa.gov/
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This research uses Phase 2 of the North American Land Data Assimilation System 

(NLDAS-2) forcing file A, which was designed based on NLDAS-1 (Mitchell et al., 2004) 

forcing, providing gauge-based observed precipitation, bias-correcting shortwave 

radiation, and surface meteorology reanalyses at hourly temporal resolution, and 1/8th 

degree special resolution (Table 1.2; http://ldas.gsfc.nasa.gov/nldas/NLDASgoals.php). 

Except for precipitation, other meteorological forcing fields of the NLDAS-2 File are 

mostly derived from NCEP North American Regional Reanalysis (NARR).  The spatial 

resolution of NARR is 32-km and the temporal resolution is 3-hour. Forcing from NARR 

has been spatially interpolated and temporally disaggregated into NLDAS-2’s hourly 

1/8th –degree format. During interpolation, the surface downward longwave radiation, 

surface pressure, air temperature, and specific humidity have been adjusted vertically 

(Cosgrove et al., 2003).   

The downward shortwave radiation (solar radiation) in NLDAS-1 is primarily from 

satellite-derived Geostationary Operational Environmental Satellite (GOES) imagery 

(Pinker et al., 2003). In NLDAS-2, a bias-modification was applied to the downward 

shortwave radiation from NARR with the GOES-based data 

(http://ldas.gsfc.nasa.gov/nldas/NLDAS2forcing.php). In a previous study about the 

validation of solar radiation from NARR, a strong agreement (r= 0.98) with the station 

measurements was observed (Schroeder et al., 2009). 

The precipitation field in the NLDAS-2 File A is derived from hourly Doppler Stage II 

radar precipitation data (1996-present), PRISM topographical adjusted CPC daily 

CONUS gauge data (Daly et al., 1994; 1979-6 hourly CMORPH data 2002-present), and 

 

http://ldas.gsfc.nasa.gov/nldas/NLDASgoals.php
http://ldas.gsfc.nasa.gov/nldas/NLDAS2forcing.php
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3-hourly NARR precipitation data (1979-present) 

(http://ldas.gsfc.nasa.gov/nldas/NLDAS2forcing.php). 

The validation of NLDAS-2 is still underway, and from published validation studies, 

Noah-based NLDAS-2 generally matched observed soil temperature at different soil 

layers (Xia et al., 2013). Compared with NARR, NLDAS-2 has higher resolution both 

spatially and temporally. The downward shortwave radiation had been bias-corrected and 

the precipitation is observation-based while precipitation in NARR is simulation-based. 

In the study by Mo et al. (2011), they indicated that NLDAS has a better ability for 

capturing partitioning between runoff and evapotranspiration. NLDAS-2 has also been 

applied in estimating evapotranspiration (Peters-Lidard et al., 2011), drought indices 

estimation (Mo et al., 2011), and climatology of rainfall (Matsui et al., 2010).  

In this study, the hourly 1/8th degree-resolution NLDAS-2 forcing was used as the first-

step input files. Because this research aims to provide a 4-km-resolution product, the next 

step goes to the NCAR High-Resolution Land Data Assimilation System, which can 

increase the resolution of the forcing data from NLDAS, drive the Noah-based land-

surface model, and provide high-resolution meteorological and biophysical output. 

 NCAR High-Resolution Land Data Assimilation System 1.2.2

The High-Resolution Land Data Assimilation System (HRLDAS) was developed by the 

National Center for Atmospheric Research (NCAR, Chen et al., 2007).  The goal of 

developing HRLDAS is to meet the increasing need of high-resolution meteorological 

data products (e.g., air temperature, solar radiation) and provide high resolution initial 

 

http://ldas.gsfc.nasa.gov/nldas/NLDAS2forcing.php
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soil conditions for numerical weather prediction models coupled with a land surface 

model (e.g., WRF/Noah). 

Similar to LDAS, HRLDAS is also based on a land-surface model, namely the Noah 

Land Surface Model (Noah- LSM), which is driven by meteorological forcing files to 

simulate soil temperature, soil moisture, surface energy balance, surface water balance, 

etc.  

Noah-LSM was developed on the diurnally dependent Penman potential evaporation 

approach (Mahrt and Ek, 1984), the multilayer soil model (Mahrt and Pan, 1984) and the 

primitive canopy model (Pan and Mahrt, 1987). Chen et al. (1996) extended this model 

by including the canopy resistance approach and Ek et al. (2003) added the formulation 

of bare soil. 

Originally, Noah-LSM was developed to provide the land state for the NOAA/NCEP 

mesoscale Eta model (Betts et al., 1997; Chen et al., 1997; Ek et al., 2003). It has been 

included in LDAS, coupled with the Weather Research and Forecasting (WRF) regional 

atmosphere model, and is also used as the core in HRLDAS. 

The running scheme of HRLDAS is presented in Fig.1.2.  The input data for running 

Noah-LSM of HRLDAS includes three parts:  

1) Initialized data (e.g., multiple-level soil temperature, canopy water content). 

Generally, initialized data is only required for the initial time.  

2) Land-surface data, including geophysical information (e.g., latitude, longitude, 

terrain height, land use), soil texture, and vegetation category. In HRLDAS, the 
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land-surface data is produced by WRF processing. Because the WRF-grid has the 

same resolution as HRLDAS, data interpolation is not needed for land-surface 

data. The land-use input is based on 30-s U.S. Geological Survey (USGS) 24 

categories (Loveland et al., 1995).  Terrain height is based on USGS-derived 30-s 

topographical height data, soil texture is based on the U.S. General Soil Map, and 

green vegetation fraction is based on monthly satellite-derived green vegetation 

fraction (Gutman and Ignatov, 1998).   

3) Meteorological forcing data, including near-surface air temperature, downward 

shortwave radiation, and precipitation. The meteorological forcing data can be 

prepared from different sources. For example, it can merge the temperature data 

from NLDAS-2 forcing, precipitation data from NCEP stage-IV, and downward 

solar radiation derived from GEOS.   

Running HRLDAS has five steps (HRLDAS User’s Guide, 2012): 

1) Raw data preparation. 

2) Raw data extraction and organization for forcing data. 

3) Model grid configuration. 

4) Forcing data interpolation (bilinear). 

5) Noah-LSM simulations.  

The output data of HRLDAS can be customized, but commonly, the output includes four-

layer soil moisture, four-layer soil temperature, evapotranspiration, and meteorological 

data. The detailed information of input data and output data in this research is included in 

Chapter 3. 
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1.3 Studies Using LDAS/HRLDAS in Agricultural Applications 

Over the past three decades, remote-sensing data has been integrated with crop models to 

estimate growth stage and yields. Several studies indicate that remote-sensing data can 

improve the overall performance of crop models (Maas, 1988a, b; Delecolle et al., 1992; 

Moulin et al., 1998; Plummer, 2000; Doraiswamy et al., 2004, 2005).   

Doraiswamy et al. (2004, 2005) used MODIS-derived LAI to calibrate crop model 

parameters by adjusting the LAI simulated from the climate-based crop yield model. 

Using this method, the simulated yield was within 10% of county yields reported by the 

USDA National Agricultural Statistics Service (NASS).  However, in Doraiwamy’s 

studies, the meteorological input data are from 10 weather stations, and only three of 

them include solar radiation data.  The limitation in collecting meteorological data limits 

the application of remote-sensing based crop simulations at the larger regional scale.  

Fang et al. (2008) also used MODIS-derived LAI to calibrate crop model parameters, 

differently than Doraiswamy et al. (2004, 2005).  In Fang’s study, meteorological data 

from NLDAS was used in model simulations, and results indicate that NLDAS offers 

reasonable inputs for simulating crop yield over a regional scale. McNider et al. (2011) 

developed a real-time gridded crop model for assessing spatial drought stress on crops in 

the southeastern U.S. using high-resolution radar-derived precipitation, GOES satellite-

derived solar radiation, and NOAA Rapid Update Cycle RUC reanalysis temperature.  

However, in McNider’s study, the crop model calibration was only based on three sites in 

Alabama, therefore the calibration may not be applicable to other areas.  
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Currently, there is no investigation on applying data from LDAS or HRLDAS as an 

integrated input for running crop models across the U.S. Corn Belt at a high-resolution 

regional scale. Based on preliminary studies, it is advantageous to use LDAS/HRLDAS 

in agricultural applications which also include future yield projections at regional scale. 

In this research, the Hybrid-Model was selected as the major crop model, which is also a 

multiple model option rather than only running DSSAT. 

1.4 Introduction to El Niño–Southern Oscillation (ENSO) 

 Definition of El Niño–Southern Oscillation (ENSO) 1.4.1

Climate variability is the variability of climate records where the state of the climate 

system has no movement (Salinger et al., 2000), and where climate change has  shifted 

the climate system because of internal changes of the system itself or external changes 

resulting from natural or anthropogenic factors (International Panel on Climate Change, 

IPCC 1996). Climate variability occurs at long-term and short-term scales and is one of 

the characteristics of the global climate system (Mavi and Tupper, 2004).  

The El Niño-southern oscillation (ENSO) is the phenomenon resulting from the coupled 

interaction between the tropical oceans and atmosphere through changes in sea surface 

temperature (SSTs). ENSO is the major seasonal/interannual climate variability which 

has an influence throughout the world. ENSO includes three phases: El Niño years 

(Warm Events), La Niña years (Cold Events), and neutral years (Trenberth, 1997). There 

are different criterion to classify the ENSO years, the details of the ENSO classification 

in this research is included in Chapter 4. 
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 The Effects of ENSO on Weather Conditions in the U.S. Corn Belt  1.4.2

Cleaveland and Duvick (1992) showed that in Ohio, the El Niño phase correlates with 

higher probability of wet years while the La Niña phase is associated with drought years. 

Carlson et al. (1996) indicated that maximum temperatures in August are highly 

correlated to ENSO events in Iowa. Phillips et al. (1999) reported that in the Corn Belt, 

compared with neutral years, La Niña years tend to be warmer and drier in summer and 

El Niño years tend to be cooler and wetter.  

 The Effects of ENSO on Corn Yield  1.4.3

Many studies indicate that ENSO has a significant impact on crop yield (Garnett and 

Khandekar, 1992; Hammer et al., 2001; Podestá et al., 2002), including the southeastern 

U.S. (Garcia y Garcia et al., 2006; Hansen et al., 1998; Mavromatis et al., 2002) and the 

U.S. Corn Belt (Phillips et al., 1999; Hollinger et al.,).   Hansen et al. (1998) indicate that 

in the southeastern U.S., the mean corn yield in La Niña years was 13.9% higher than the 

yield in neutral and El Niño years. 

In the Midwest, Carlson et al. (1996) claimed that corn yield in the Midwest tended to be 

higher in El Niño years, and lower in La Niña years. Phillips et al. (1999) shows that 

ENSO explained 15% of inter-annual corn yield variability in the Corn Belt, positive corn 

yield anomalies were associated with El Niño years and negative corn yield anomalies 

associated La Niña years. 

ENSO prediction can be used to help producers in making better crop management 

decisions to reduce farm risk (Cabera et al., 2006. Garcia y Garcia et al., 2010), such as 
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changes to the planting dates. Solow et al. (1998) estimate that the annual value of perfect 

ENSO prediction to U.S. agriculture is $323 million. 

Based on these past studies, this research investigated the effects of ENSO on corn yields 

and planting dates in more sites across the U.S. Corn Belt, and also estimated the 

sensibility of crop models in response to ENSO events. 
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Figure 1.1 Framework of the Hybrid-Maize crop simulation model 

 

 

Figure 1.2 Framework of the Land Data Assimilation System (LDAS) 
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Table 1.1 Fields contained in NLDAS-2 forcing File A 

Description Units 

U wind component at 10 m m/s 

V wind component at 10 m m/s 

Air temperature at 2m K 

Specific humidity at 3m kg/kg 

Surface pressure Pa 

Surface downward longwave radiation W/m2 

Surface downward shortwave radiation W/m2 

Precipitation hourly total Kg/m2 

Fraction of total precipitation that is convective No units 

Convective Available Potential Energy(CAPE) J/kg 

Potential evaporation Kg/m2 
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CHAPTER 2. SENSITIVITY ANALYSIS AND VALIDATION OF THE HYBRID-

MAIZE SIMULATION MODEL OVER THE U.S CORN BELT 

The Hybrid Maize is a crop simulation model that estimates corn yields using agronomic 

and climatic information. This model has been used in prior studies but a long-term, 

regional analysis over the U.S. Corn Belt was lacking. In this chapter, such an assessment 

has been undertaken, including sensitive analysis and model validation. The study was 

conducted at two scales: county scale and field scale. The county-scale study is based on 

30-year daily weather data and the National Agricultural Statistics Service (NASS) 

survey corn yield data for 18 sites across the Midwest. The field-scale study is based on 

3-year daily weather data and measured corn yield data from two Ameriflux sites at 

Bondville, IL and Mead, NE. The overall scheme flowchart is provided in Fig. 2.1. The 

hypothesis in this chapter is:  the Hybrid-Maize model can provide reliable yield 

estimations at both the regional scale and field scale. 

2.1 Materials and methods 

 Data resources and locations 2.1.1

In this research, validations of the Hybrid Maize model were applied at two scales – the 

county scale and field scale.  The county-scale study included 18 counties across the 

Corn Belt (Fig. 1.1). These counties display representative values for corn yield and 
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climatic conditions, data availability, and accessibility and this plays an important role in 

selecting these counties. 

Thirty years of (1981-2010) daily weather data (minimum temperature, maximum 

temperature, and rainfall) were collected from the NOAA Summary of the Day Data Set 

for a representative station site within the county of interest. Due to the non-availability 

of downward shortwave radiation data in those selected weather stations, in this research, 

solar radiation was generated with the WeatherMan utility from the DSSAT crop 

simulation model package (Pickering et al. 1994). County corn yield data were collected 

from the National Agricultural Statistics Service (NASS) (http://www.nass.usda.gov/) 

annual survey. 

The field-scale study included two AmeriFlux sites: Bondville, IL (40,00°N, 88.29°W)  

and Mead, NE (41.18°N, 96.44°W)(Fig.  1.1). Hourly weather data (2001 ~2006), and 

yield data were collected for both sites from the AmeriFlux site and data exploration 

system (http://ameriflux.ornl.gov/). The data were analyzed, paired, and checked for 

consistency.  They were also analyzed for outliers and for any missing periods.   

 Crop model configuration  2.1.2

The Hybrid-Maize model requires three groups of input data: crop and management, 

weather, and soil. Crop and management data include corn maturity (in total growing 

degree day, or GDD), plant date, and plant population. For simulations under optimal 

water management (i.e., non-water limiting) of yield potential, required weather data 

 

http://www.nass.usda.gov/
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include daily minimum and maximum air temperature (˚C), daily sum of global radiation 

(MJ/𝑚2). No soil data is required. 

In this research, the model was run under optimal water conditions, which means no 

water stress was present. For the county-scale study, the planting date was set as May 1 

and the plant population was set to 78*100ha (31, 600/acre), the corn maturity condition 

is GDD 2500 (50F based) and the genetic parameters were set as model default. For the 

field-scale studies at Bondville, IL and Mead, NE, three years of corn planting data and 

corn yield are presented in Table 2.1. The breeding brand is Pioneer and the potential 

number of kernels per ear was set as 550.  The soil nitrogen condition was set as optimal 

at both sites 

 Sensitivity analysis scheme 2.1.3

The initial sensitivity analysis was conducted based on 30-year weather data for 18 

county-scale sites across the Midwest and use a one-at-a-time (OAT) approach in 

sensitivity analysis. Based on the model settings, there are three groups of 29 parameters 

tested, with parameter changes set at ±10%, ±20%, and ±30% of the default values. For 

the upper temperature cutoff for GDD accumulation, the changes in daily maximum 

temperature were ±3˚, ±7, ˚and ±10˚ (Table 2.2). Every change in the parameters 

resulted in changes in simulated yields. There are a total of 94,500 simulations for the 30 

years (1981-2010) of 18 county-scale sites. Besides using relative percentage change of 

simulated yield to indicate model sensitivity, Sensitivity Index (SI) was also used to 

assess model sensitivity, and was derived as: 
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SI=�(𝑂−𝑂𝐵𝐶)
(𝐼−𝐼𝐵𝐶)

 ∗  𝐼𝐵𝐶
𝑂𝐵𝐶

�                                                                                                      (1) 

Where O is the output value, 𝑂𝐵𝐶 is the output value for the baseline scenario which uses 

the default parameter values, I is the input value, and 𝐼𝐵𝐶 is the original input value of 

the baseline scenario. The larger the SI parameter, the more sensible the yield output is 

for a parameter. 

Due to the limitation of the OAT method in reflecting the interaction between parameters, 

in the second-step sensitive analysis, a global sensitivity analysis (Niyogi et al. 1997) 

was conducted based on 30-year weather data in Johnson County, IA. Since the focus 

was on parameters that can possibly be calibrated from remote sensing data and other 

methods at the regional scale, five parameters were selected based on the results of initial 

sensitivity analysis: K (light extinction coefficient), UT (upper temperature cutoff for 

growing degree days accumulation), TL (Threshold LAI above which leaf senescence 

due to light competition occurs), LUE (initial light use efficiency), and GRG (GDD10C 

requirement for germination). The 10 interaction groups are K+UT, K+TL, K+LUE, 

K+GRG, UT+TL, UT+LUE, UT+GRG, TL+LUE, TL+GRG, and LUE+GRG.  For 

every interaction running, two parameters were changed each time. There were a total of 

25 ∗ 30 = 960 factorial design simulations conducted for the five parameters. 

Sensitivity indices were calculated as: 

𝑌𝑖+𝑗 = 𝑌𝑑 + 𝛼𝑖 + 𝛼𝑗 + 𝛼𝑖𝑗                                                                                                (2) 

𝑌𝑑 is the result using default parameter values, 𝛼𝑖 and 𝛼𝑗 are the main effect of each 

parameter, and 𝛼𝑖𝑗 is the interaction effect between two parameters. Take K and LUE for 
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example; 𝑌𝐾+𝐿𝑈𝐸 is the simulated result when both parameters K and LUE were 

changed, 𝑌𝐾+𝐿𝑈𝐸 = 𝑓(𝐾, 𝐿𝑈𝐸), 𝑌𝐾 is the simulated result when only parameter K was 

changed, 𝑌𝐾 = 𝑓(𝐾).  𝑌𝐿𝑈𝐸  is the simulated result when only LUE was changed, 

𝑌𝐿𝑈𝐸 = 𝑓(𝐿𝑈𝐸).  𝛼𝐾 =𝑌𝐾 − 𝑌𝑑 is the main effect from  parameter K. 𝛼𝐿𝑈𝐸=𝑌𝐿𝑈𝐸 − 𝑌𝑑 is 

the main effect from parameter LUE. 𝛼𝐾+𝐿𝑈𝐸 = 𝑌𝐾+𝐿𝑈𝐸 − 𝑌𝑑 − 𝛼𝐾 − 𝛼𝐿𝑈𝐸 is the 

interaction effect between K and LUE. 

𝑉𝑇 =  ∑ 𝑉𝑖𝑖 + ∑ 𝑉𝑖𝑗𝑖<𝑗                                                                                                       (3) 

𝑉𝑇 is the total variability of the 960 simulations, 𝑉𝑖 is the sum of squares on the main 

effect of parameter i, 𝑉𝑖𝑗  is the sum of squares on the interaction effect between 

parameters.  

Main effect sensitivity index 𝑆𝑖=
𝑉𝑖
𝑉𝑇

                                                                                  (4) 

Interaction effect sensitivity index 𝑆𝑖𝑗=
𝑉𝑖𝑗
𝑉𝑇

                                                                       (5) 

Total effect sensitivity index 𝑆𝑖𝑇=
𝑉𝑖+𝑉𝑖𝑗
𝑉𝑇

                                                                           (6) 

For parameter LUE, 𝑆𝐿𝑈𝐸=𝑉𝐿𝑈𝐸
𝑉𝑇

 , the interaction effect sensitivity index between LUE and 

K is 𝑆𝐾+𝐿𝑈𝐸=𝑉𝐾+𝐿𝑈𝐸
𝑉𝑇

, the total effect sensitivity index of LUE is 

𝑆𝐿𝑈𝐸 𝑇=𝑉𝐿𝑈𝐸+𝑉𝐿𝑈𝐸+𝐾+𝑉𝐿𝑈𝐸+𝑈𝑇+⋯
𝑉𝑇

  . 

The calculations were conducted in the Excel spreadsheets. 
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 Model validation and regression analysis scheme 2.1.4

This research also validated the simulated yield data against actual yield data. The 

validations were conducted at two scales. For the county-scale study, we validated the 

30-year simulated yield output with NASS survey data. For the field-scale study, the 6-

year simulated yields were validated against field observations from Ameriflux at two 

field sites at Bondville, IL and Mead, NE. The difference between simulated yields and 

observed data were quantified using the mean absolute error (MAE):  

𝐷𝑖 =  𝑌𝑠 − 𝑌𝑎                                                                                                                    (7) 

Where 𝑌𝑠 is simulated yield data and 𝑌𝑎 is the actual data. MAE was calculated as 

𝑀𝐴𝐸 =  1
𝑁
∑ |𝐷𝑖|𝑁
𝑖=1                                                                                                           (8) 

The advantage of using MAE is that it is convenient and has the same units as the yield 

(Wallach et al. 2006).        

Since the Hybrid-Maize model was developed to simulate the potential yield without 

yield losses from water stress, nutrient deficiencies, diseases, pests and insects, multiple 

regression analysis was used to quantify the gap between the modeled potential yield 

data and the actual yield data. In order to obtain an averaged multiple coefficient, the 

constant in regression analysis was set to zero. This procedure allowed calibration of the 

model results to account for other environmental and agronomic as well as management 

decisions that were not available as input to the model. 
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2.2 Results  

 Sensitivity analysis results 2.2.1

The sensitivity index (Fig. 2.2) indicates that the five most sensitive parameters are G2 

(potential number of kernels per ear), G5 (potential kernel filling rate), LUE (initial light 

use efficiency), UT (Upper temperature cutoff for growing degree days) accumulation, 

and RG (growth respiration coefficient of grain). According to the relative change in 

yield simulation (Fig. 2.3), changes in G2 and G5 have the largest impact on yield 

simulation, and they have equal influence on the model. For the general parameters, the 

model is most sensitive to UT and it is noted that the model is much more sensitive to 

decreases in the UT value than increases in UT.  Among the respiration and 

photosynthesis parameters, LUE is the dominant one that most influences the model 

results. The sensitivity index of the yield simulation was significantly stable across the 

30 years of weather data with relatively small variations. Therefore the variation of 

climate in different years would have a moderate impact on the sensitivity analysis 

results for the optimum parameter conditions set in the model.   

In this paper, there were 29 parameters tested, however, when running the model under 

optimal water conditions, the model was not sensitive to nine of the parameters, meaning 

the relative change in model prediction of yield is non-significant when changing the 

parameters. The nine parameters include: FT (fraction of leaf biomass that can be 

translocated as carbohydrate to grain each day), MF (maximum fraction of leaf biomass 

at silking that can be translocated as carbohydrate to grain), EF (efficiency of 
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carbohydrate translocation from stem of leaf to grain), LF (senescent leaf area at 

maturity as a fraction of maximum LAI achieved at silking), EP (empirical parameters 

that determine the relative contribution of a soil layer to water uptake), LWS (leaf water 

suction at a permanent wilting point in cm), RTT (resistance of plants to transpiration in 

cm), MDE (maximum days allowed form planting to emergence), and MRG 

(maintenance respiration coefficient for grain).   

The results of the OAT sensitivity analysis indicate it is important to validate and 

calibrate the G2, G5, LUE, UT, and RG parameters. However, since the model will be 

applied across the Corn Belt at the regional scale and aim for future climate scenarios, it 

is difficult to collect genetic parameters for the whole domain. Therefore, based on the 

OAT sensitivity analysis results, an additional global sensitivity analysis based on 

factorial design was conducted. Five parameters: K, UT, TL, LUE, and GRG, whose 

information could be potentially obtained through remote sensing data and other 

methods at the regional scale, were selected. In Fig. 2.4, sensitivities smaller than 1% 

were ignored, and LUE had the largest sensitivity index. In Fig.  2.5, LUE contributes 

the most to the total sensitivity index. Therefore, calibrating LUE will be helpful for 

future regional applications.  

 Model validation at county-scale and field-scale  2.2.2

In order to apply the Hybrid-Maize model in the Midwest, the model was validated at 18 

county-scale sites across 30 years. The results (Fig.  2.6) show that there is bias but 

generally similar trends between the model-simulated yield and the NASS survey yield. 
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The MAE for the 18 sites is 5.4 Mg/ha (86 bu/acre).  There are two limitations which can 

explain the bias between the model-simulated yield and the NASS survey yield: (1) the 

Hybrid-Maize model was developed to simulate the potential yield under optimal 

conditions; (2) the NASS survey data is the average yield data which includes different 

varieties of corn and different agronomic management.  However, the overall similar 

trends between simulated yield and survey yield indicate that application of a regression 

analysis can help to narrow the gap between simulations and observations. At field level, 

Table 2.3 shows that the 3-year average simulated yield in Mead, NE is 8.54 Mg/ha (136 

bu/acre) while the 3-year average measured yield is 8.67 Mg/ha (138 bu/acre). The 3-

year average simulated yield in Bondville, IL is 10.30 Mg/ha (164 bu/acre), which is 

slightly lower than the 3-year average measured yield data of 10.99 Mg/ha (175 bu/acre). 

MAE of these two field sites is 0.63 Mg/ha (10 bu/acre). 

The bias between simulated and measured yield at field scale is narrower than the bias at 

the county scale. This could be because the two field sites are under better agronomic 

management than average producers, which helps the actual yield to approach the 

potential yield.  

 Regression analysis   2.2.3

After conducting the yield estimation through regression analysis, the bias between 

simulated and census yield was reduced (Fig.  2.7). The MAE of the yield data after 

regression analysis is 1.32 Mg/ha (21 bu/acre), which is much lower than the MAE 

before regression analysis. In order to obtain a multiple coefficient which can be applied 

regionally, during the regression analysis, the constant was set as 0. The averaged 
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multiple regression coefficient of the 18 site county-scale study is 0.6 with a variance of 

0.007. Therefore, if the Hybrid-Maize model is applied in predicting county average corn 

yield, it is possible that the model-simulated yield can be used by multiplying 0.6 to 

decrease the bias between the simulated potential yield and actual survey yield. Since the 

agronomic management of the two field sites is appropriate to help the yield approach 

the potential yield, there is no need to conduct a regression analysis at the field scale. 

2.3 Summary 

According to the results of two different sensitivity analyses, it was shown that yield 

simulations are sensitive to the genetic parameters: for instance, G2 (potential number of 

kernels per ear) and G5 (potential kernel filling rate). Also, the model is highly sensitive 

to LUE (initial light use efficiency) and is useful in calibrating those parameters. 

However, since the objective is to widely apply the Hybrid-Maize model across the Corn 

Belt, it is difficult to collect genetic parameters for the whole area. Calibrating the LUE is 

a possible way to improve model performance in future studies. The validation results 

indicate the Hybrid-Maize model performs well in simulating yield at field scale where 

there is appropriate agronomic management. Although when validating the model at the 

county scale, there is a gap between the simulated and actual survey yield, and after 

regression analysis, the gap can be narrowed down by a multiple of 0.6 with the original 

simulated results. The study has several key limitations: 1) the model was running under 

optimal water conditions during the study period, and 2) the lack of soil characteristics 

that can influence the model simulation. 
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Table 2.1 The planting date and plant density for Bondville, IL and Mead, NE 

Sites Year Planting date  Plant density (per ha) 

Bondville, IL 

2001 April 19 78,000 

2003 April 16 78,000 

2005 April 22 78,000 

Mead, NE 

2001 May 14 62,236 

2003 May 13 66,108 

2005 April 27 60,358 
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Table 2.2 Parameter variations for the one-at-a-time approach 
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Figure 2.1 Methodology flowchart 

Figure 2.2 Grain yield sensitivity index of parameters in the Hybrid-Maize model based 
on the one-at-a-time (OAT) approach 
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Figure 2.3 The average relative change in model prediction reflects the relative change in 

parameter values of the Hybrid-Maize model across 18 counties in the Corn Belt through 

30 years (1981-2010). 
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Figure 2.4 The eight largest factorial sensitivity indices based on (a) the factorial design 
and (b) the Pareto plot for the five largest factorial sensitivity indices 

 



51 

 

 

 

Figure 2.5 The main-effect and total sensitivity indices based on the factorial design 
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Figure 2.6 The Hybrid-Maize model validations at county scale for 18 sites across 30 

years 
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Figure 2.7 The simulated yield after regression with the survey data.  
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CHAPTER 3. BUILDING A HIGH-RESOLUTION AGRO-METEOROLOGICAL 

DATABASE AND ESTIMATING CORN YIELDS REGIONALLY ACROSS THE 

US CORN BELT 

Regional agro-meteorological applications are often constrained by the spatially 

discontinuous meteorological data from regular weather stations. Also, the application of 

crop models is often limited by the uncertainties of input hydro-meteorological data, such 

as solar radiation, soil moisture, soil temperature, evaporation/transpiration, and 

precipitation. These variables are routinely not available from weather stations except for 

specific experimental fields. Therefore, in this research, an approach has been developed 

which uses the Land Data Assimilation System (LDAS)/ High Resolution Land Data 

Assimilation System (HRLDAS) to build a high-resolution agro-meteorological database 

and then assimilate it into a crop growth model. 

Research objectives are to build a high resolution agro-meteorological database and 

estimate corn yield regionally over the U.S. Corn Belt at grid scale. Developing such a 

high resolution database and modeling framework is expected to provide answers that are 

needed for agricultural/climatic regional impact assessments and decision support tools.  

The hypotheses were: 
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1) This reanalysis agro-meteorological database can replace weather stations in 

regional agronomic applications.   

2) Solar radiation from this agro-meteorological database has stronger agreement 

with observations than when developed from weather generators. 

3)   By providing such information, the performance of the crop model will be 

superior when applied at a regional scale. 

To that end, this research validated the reanalysis meteorological data with site-measured 

data and validated model-simulated crop yield (driven by reanalysis meteorological data) 

with available NASS data for 20 sites across the Midwestern United States (Fig. 1.1).  

Figure 3.1 provides the overall methodology flowchart. 

3.1 Data Resources and locations 

As presented in the Fig. 3.1, in this research the meteorological data were collected from 

hourly NLDAS-2 forcing-A files in the Land Data Assimilation System (LDAS) from 

1981-2012, across the Corn Belt at 1/8 degree resolution. Each file includes air 

temperature, downward shortwave radiation, precipitation, etc. (Table 1.2). In order to 

validate the agro-meteorological database, 30-years (1981-2010) of measured 

temperature data for 18 counties (Fig. 1.1) were collected from the National Climatic 

Data Center (NCDC), and 10-years (1997-2007) measured solar radiation data for 

Bondville, IL were collected from Ameriflux. 30-years corn yield of 18 counties (Fig. 1.1) 

were collected from the National Agricultural Statistics Service (NASS) annual survey. 
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3.2 Agro-metrological database building    

 HRLDAS running procedures  3.2.1

In running the HRLDAS, the first step was to collect the raw meteorological data from 

NLDAS-2 (32-km resolution) and land-surface initialized data (e.g., soil temperature, soil 

moisture, and canopy water content) from EDAS, then extract the required parameters 

separately into Grib files. Functions in WRF defined the model grids and provided the 

land use categories, terrain height, soil texture, and green vegetation fraction to HRLDAS. 

The second step was to downscale the raw meteorological data from 1/8 degreee 

resolution to 4-km resolution by running the consolidation module in HRLDAS.   This 

step provided basic high-resolution meteorological data of every hour and initialized 

land-surface conditions for the first hour of each year, which are the input for running the 

last-step model.  The “input” data across the Corn Belt contain a total of 419×530 = 

222,070 grids. The parameters included in each grid are listed in Table 3.1. In this 

research, these basic hourly 4-km resolution meteorological data were grouped as 

“Database 1”.  

The last step was applying the 4-km resolution meteorological data to drive the Noah 

LSM to simulate the soil conditions (e.g., soil moisture, soil temperature), ET 

(evapotranspiration), etc. The “spin-up” time for Noah LSM in this research is 24 months 

(1979.01-1980.12). 

The final outputs from HRLDAS are hourly and at 4-km resolution. In this research, the 

outputs across the Corn Belt contain a total of 222,070 grids. The parameters included in 
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each grid are listed in Table 3.2. Figure 3.2 presents the overall process of running 

HRLDAS. The hourly 4-km resolution output data are grouped as “Database 2”.  

This research used temperature, precipitation, and solar radiation from Database 1 and 

soil temperature and soil moisture from Database 2. Figures 3.3 and 3.4 present the 

sample parameter images from Database 2.  

 Data extraction and origination 3.2.2

One of the goals in this research is to build a high-resolution agro-meteorological 

database which can be easily applied to crop models and other agronomic decision tools. 

The minimum requirements of meteorological inputs for crop models (e.g., the Hybrid 

Maize model) include daily minimum temperature, daily maximum temperature, solar 

radiation, and precipitation. Therefore, to meet the needs of crop models, data extraction 

from the hourly database into daily data was required. In this research, NCAR command 

Language (NCL) was the major programming language in the data extraction process. 

Unit conversion was also applied during the extraction process.  

The data extraction from hourly to daily has been applied with air temperature, 

precipitation, solar radiation, soil moisture, soil temperature, etc. (Fig. 3.5). “Database 3” 

is compiled using these daily data (Table 3.3). Figure 3.6 presents the sample parameter 

image from Database 3.   

It is notable that the time zone of Database1 and Database 2 is Universal Time Zone. 

Because the daily meteorological data will be applied at local time, some bias might exist 

caused by gaps in the time zones.  Here the data hasn’t been corrected to local time 
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because: 1) the research area crossed 3 time zones (Eastern Time Zone, Central Time 

Zone, and Mountain Time Zone), and is complicated to correct in this preliminary study. 

2) It is a high possibility that daily maximum and minimum temperature are not 

influenced by the time zone gap. For example, at Universal Time Zone, today is defined 

from 00:00 to 00:00, while converted to the Eastern Time Zone the local time is from 

yesterday’s 19:00 to today’s 19:00.   The daily maximum and minimum temperature is 

usually included during this time period. 

Simply said, when accessing this agro-meteorological database (Database 3), users just 

need to provide the location’s coordinates, and then the system will extract the requested 

data of that specific location.    

3.3 Meteorological data validation  

 Temperature validation  3.3.1

In order to test the reliance of this agro-meteorological database (Database 3), several 

validations were applied in this study, for example, daily maximum temperature and daily 

minimum temperature from Database 3 of Johnson County, IA was compared with the 

site observations. The validation results (Fig. 3.7) indicate that the reanalysis daily 

maximum and minimum temperature in Database 3 have strong agreement with the 

observations, for maximum temperature, r^2= 0.97, for minimum temperature, r^2 = 0.95. 

 Solar radiation validation  3.3.2

As mentioned in Chapter 1, crop models are often limited by the lack of solar radiation 

data. A major part of this agro-meteorological database (Database 3) provides daily solar 

 



60 

 

 

radiation data, which can be used by not only crop models, but also other agronomic 

decision tools.  

The solar radiation data from Database 3 was compared with the observed solar radiation 

data of Bondville, IL which were collected from Ameriflux. The validation results (Fig. 

3.8) indicate that the reanalysis solar radiation data from Database 3 fit well with the 

measured real data (r^2 = 0.81). This study also validates the solar radiation from the 

weather generator (WeatherAid, Yang et al. 2005) where the r^2 between generated solar 

radiation and measured observations is 0.67 (Fig. 3.9), which indicates that solar 

radiation data from this agro-meteorological database (Database 3) are better than solar 

radiation generated by the weather generator. 

3.4 Gridded crop model running system --- estimating corn yield regionally across 

Corn Belt with the agro-meteorological database 

After the meteorological data validations, it has been shown that the meteorological data 

from the Agro-meteorological database (Database 3) are reliable. In this section, a 

process of estimating corn yield regionally at 4-km resolution will be illustrated.  

 Validation of simulated corn yield at county scale.   3.4.1

In Chapter 2, the Hybrid-Maize model validations were driven by weather station 

meteorological data.  In that chapter, new validations of the crop model were driven by 

meteorological data from reanalysis data based on the agro-meteorological database 

(Database 3). These new validations were performed to ensure the reliability of reanalysis 
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database use in crop modeling, which is important for applying this this database in 

regional corn yield estimations.  

 In these new validations, except for the meteorological input data, other model settings 

(e.g., water condition, planting date) are kept the same as those used for the validations in 

chapter 2;  it helps to clarify whether this agro-meteorological database is superior to 

traditional station data. 

Based on the regression analysis results in Chapter 2, each simulated corn yield in this 

chapter has been rescaled by a factor of 0.6. The averaged MAE for 18 sites using 

meteorological input from the weather station is 1.25 Mg/ha  while the averaged MAE 

derived  using meteorological input from Database 3 is 1.27 Mg/ha (Table 3.3). The one-

way ANOVA tests between simulated corn yield driven by meteorological input from 

weather station data and 30-years simulated corn yield driven by reanalysis 

meteorological input from Database 3 (Table 3.4) report that except for Olmstead County, 

MN and Sauk County, WI, the P-Values of the other 16 counties are larger than 0.05. 

This means at the 95% confidence interval, for most counties, there is no significant 

difference between the two driven scenarios. The results indicate this reanalysis agro-

meteorological database (Database 3) has great potential when expanding to regional 

corn yield simulations. 

 Estimating corn yield across Corn Belt at 4-km resolution 3.4.2

The research domain contains a total of 222,070 4 km ×4 km grids.  Consequently, 

running the crop model across the whole area needs to create 222,070 weather input files. 
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However, not all the grids are cropland. In order to extract the non-cropland grids, a mask 

file based on USGS land-use categories has been created. Therefore, in this research, the 

regional corn yield simulations were only applied on the cropland, which is more precise 

than simulating every single grid. The total cropland 4 km ×4 km grids total around 

85,000 across the Corn Belt. 

After creating the input files, the Hybrid-Maize model will run automatically using a 

script. Because this is preliminary research, the management settings (e.g., planting date 

and plant density) of the Hybrid-Maize model are the same for every cropland grid. Other 

parameter settings are the same as the county-scale simulations in Chapter 2.  Figure 3.10 

depicts the overall process while the sample figure of gridded yield output is presented in 

Fig. 3.11. The frequency histogram (Fig.3.12 (a)) of NASS surveyed corn yield of the 

U.S. Corn Belt (2003) shows the highest frequencies of yield are located between 

120(bu/acre) ~ 160(bu/acre). The histogram of the estimated yield (Fig.3.12 (b)) 

illustrates the highest frequencies of yield are distributed between100 (bu/acre) 

~120(bu/acre).The result indicates at regional scale, the model was under estimated the 

corn yield, and the histogram also shows the model cannot catch the extreme events 

(extremely high or low) of the corn yield. The possible reason is during this preliminary 

gridded crop running, the planting date was set as May 1st for all the grid points.   

3.5 Case study based on the gridded yield estimation system --- the impacts of planting 

date on corn yield  

In order to optimize corn yield and make corn replanting decisions, it is important to 

know the corn yield response to different planting dates (Nafziger1994). Based on the 

 



63 

 

 

gridded corn yield estimation process, the Hybrid-Maize model was running under 

different planting dates in 2003: April 1st, May 1st, and June 1st. MultiSpec (V 3.3.  Biehl 

and Landgrebe 2002) was applied in analyzing the gridded yield outputs.   

The yield frequency histogram of the 85,000 cropland grids across the Corn Belt (Fig. 

3.13) indicates that under each planting date, the highest frequency of the yield was 100-

120 bu/acre. When model running under planting on Aril 1st, the estimated yield data 

show a higher frequency of reach to 120-140 bu/acre and 140-160 bu/acre than planting 

on May 1st and June 1st. Planting on June 1st can bring the highest frequency to 160-180 

bu/acre, but it also results in the highest frequency in low yield (50-100 bu/acre) 

demonstrating that late planting is acceptable for some areas but can hurt the yield in 

other areas. Although the overall performance in the histogram shows planting on April 

1st is better than the other two dates, it is still improper to conclude that based on the 

model estimations, April 1st is the best planting date. 

In MultiSpec, the three gridded yield image outputs of different planting dates had been 

combined into a single multispectral image file with three 3 channels (channel 1: Planting 

on April 1st, channel 2: Planting on May 1st, channel 3: Planting on June 1st).  Channel 2 

minus channel 1 is the model-simulated yields responding to a change in planting dates 

from April 1st to May 1st. Similarly, channel 3 minus channel 2 is the model-simulated 

yields responding to a planting date change from May 1st to June 1st. The results (Fig. 

3.14) indicate that the impact of planting date on corn yield is varied for different areas. 

For example, in Fig. 3.14 (a), when the planting date changes from April 1st to May 1st, 

the estimated corn yield data for the majority of Iowa  are decreased while the yield data 
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of Michigan are increased, indicating that the best planting date for  Michigan is later 

than Iowa. However, it doesn’t mean that for Michigan, the later planting date can bring 

better results.  In Fig. 3.14(b), when the planting date changes from May 1st to June 1st, 

the estimated yield data of Michigan are no longer increased. On the contrary, the yield 

data are decreased. It can be concluded that in 2003, the best planting date for the 

majority of Michigan is a day or several days during May 1st to June 1st. For further 

applications, this gridded crop model running system can test every single planting date 

to pick up the “best planting date”.  

It also notable that in Fig. 3.14, the yield varied range of changing planting date from 

May 1st to June 1st is doubled of changing planting date from April 1st to May 1st. This 

result indicates that late planting dates bring more uncertainty or risk regarding the corn 

yield, and caution is needed when making late planting decisions. 

The most important advantage of this gridded crop model system is to provide a regional 

perspective on the impacts of meteorological factors in the simulation of crop growth. 

Although there are several limitations of this preliminary gridded model system, such as 

ignored soil moisture, soil type and non-dynamic plant density, it still has great potential 

for wide use in agronomic and agro-economic applications, and in future studies, soil 

moisture will be added.  
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3.6 Extended application of the Agro-meteorological database---Growing degree days 

map 

Growing degree days (GDD), as heat units, are often used to describe and predict crop 

growth stages (Miller et al. 2001; Swan et al. 1987). The basic equation of daily GDD is: 

GDD = (𝑇𝑀𝐴𝑋+𝑇𝑀𝐼𝑁)
2

− 𝑇𝐵𝐴𝑆𝐸                                                                                              (1) 

Where 𝑇𝑀𝐴𝑋 is the daily maximum temperature and  𝑇𝑀𝐼𝑁 is the daily minimum 

temperature, 𝑇𝐵𝐴𝑆𝐸 is the base temperature for plant growth and plant growth will be 

limited when the temperature is below 𝑇𝐵𝐴𝑆𝐸  (McMaster and Wilhelm 1997).  Different 

plant species have different 𝑇𝐵𝐴𝑆𝐸  (Wang 1960). Because this research focuses on corn, 

the  𝑇𝐵𝐴𝑆𝐸 of corn is 10˚C (Cross and Zuber 1972). The GDD for corn is often calculated 

with the upper temperature threshold (𝑇𝑈𝑇).  In this research, 𝑇𝑈𝑇 was set at 34˚C; the 

default value of the Hybrid-Maize model. To calculate the GDD, the methods used in this 

research are: (1) If  (𝑇𝑀𝐴𝑋+𝑇𝑀𝐼𝑁)
2

  is less than𝑇𝐵𝐴𝑆𝐸, then GDD = 0; (2) If 𝑇𝑀𝐴𝑋  is larger 

than 𝑇𝑈𝑇, then Tmax = 𝑇𝑈𝑇.  

An NCL script was used to calculate the daily GDD of every single grid in the whole 

research domain. The total GDD had been accumulated from the planting date. In this 

particular study, the planting date was set as May 1st. Because in the Hybrid Maize model, 

GDD (𝑇𝐵𝐴𝑆𝐸 =10˚C) = 1389 was considered as maturity for corn, GDD = 1389 is the 

reference line in the GDD maps. In order for ease of use by U.S. corn producers, the 

temperature unit was converted to Fahrenheit, so the reference line is GDD (𝑇𝐵𝐴𝑆𝐸 = 
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50˚F) = 2500. Sample GDD maps are listed in Fig. 3.15, which can be the reference for 

estimating corn harvest date.  

3.7 Summary 

The goal of building this high- resolution agro-meteorological database is to bring 

available reanalysis meteorological information from the Land Data Assimilation System 

(LDAS) to usable agronomic applications, such as crop models. Through interpolating 

data from 32-km into 4-km and running Noah-LSM by the High- Resolution Land Data 

Assimilation System, an hourly database was created. To meet with the needs of most 

agronomic applications, finally a daily database of 32 years (1981- 2012) was built, 

which includes daily maximum temperature, daily minimum temperature, solar radiation, 

precipitation, etc. The validations of meteorological parameters in the agro-

meteorological database show a strong agreement between the reanalysis data and site 

observations. Data from this database are a better fit with observed data especially for 

solar radiation when compared with weather generator data. Validations of estimated 

corn yield show that there is no significant difference between the crop model driven by 

meteorological inputs from this database and   from weather stations. These results give 

confidence to widely apply this high-resolution agro-meteorological database in 

agronomic applications, which not only can save time in data collecting , but the spatially 

continuous dataset  can also help to understand how meteorological factors influence crop 

growth at the regional scale.     

Based on this high-resolution agro-meteorological database, a gridded crop model system 

has been developed. The preliminary gridded yield outputs provide a regional perspective 
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on corn yield simulation which can also be applied in related studies, such as the impact 

of planting date on corn yield.  

This agro-meteorological database has great potential for wide application in agronomic 

and agro-economic areas and is not limited to combining it with a crop model to estimate 

regional corn yield at grid-scale or for developing GDD maps. Moreover, owing to 

similar formats between datasets from LDAS and the North American Regional Climate 

Change Assessment Program (NARCCAP), it will be time efficient to combine future 

projections with this database.   
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Table 3.1 Parameters in HRLDAS input files (Database 1). 
Name Unit Description 

Included in each hourly file 

T2D K Temperature at 2 m 

Q2D kg kg{-1} Specific Humidity at 2 m 

U2D m s-1 Horizontal wind speed at 10 m 

V2D m s-1 Vertical wind speed at 10 m 

PSFC Pa Surface Pressure 

RAINRATE mm Rainrate 

SWDOWN W m{-2} Downward short-wave radiation flux 

LWDOWN W m{-2} Downward long-wave radiation flux 

Included in the first-hour file of each day 

WEASD kg m{-2} Water equivalent snow depth 

VEGFRA % green vegetation fraction 

Included in the first-hour file of each year 

SMOIS_1 kg m-3 Soil Moist 0-10 cm below ground layer 

SMOIS_2 kg m-3 Soil Moist 10-40 cm below ground layer 

SMOIS_3 kg m-3 Soil Moist 40-100 cm below ground layer 

SMOIS_  4 kg m-3 Soil Moist 100-200 cm below ground layer 

STEMP_1 K Soil temperature  0-10 cm below ground layer 

STEMP_2 K Soil temperature  10-40 cm below ground layer 

STEMP_3 K Soil temperature  40-100 cm below ground layer 

STEMP_4 K Soil temperature  100-200 cm below ground layer 

CANWAT kg m-2 Plant Canopy Surface Water 

GVFMIN % Minimum green vegetation fraction 

GVFMAX % Maximum green vegetation fraction 

Z2D m  
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Table 3.2 Parameters in HRLDAS hourly output files (Database 2) 

Name Unit Description 

IVGTYP category Dominant vegetation category 

ISLTYP category Dominant soil category 

SKINTEMP K Skin temperature 

CANWAT mm Canopy water content 

SOIL_T (4-layers) K soil temperature 

SOIL_M (4-layers) m{3} m{-3} volumetric soil moisture 

SOIL_W (4-layers) m{3} m{-3} liquid volumetric soil moisture 

SOIL_MX mm total column soil moisture 

SFCRNOFF mm Accumulated surface runoff 

UGDRNOFF mm Accumulated underground runoff 

INTRFLOW mm Accumulated interflow runoff 

SFCEVP mm Accumulated evaporation from surface 

ETAKIN mm Evapotranspiration 

CANEVP mm Accumulated canopy evaporation 

EDIRX mm Accumulated direct soil evaporation 

ETTX mm Accumulated plant transpiration 

ALBEDX fraction Albedo 

WEASD m Water equivalent snow depth 

ACRAIN mm Accumulated precipitation 

ACSNOM mm Accumulated snow melt 

ESNOW mm Accumulated evaporation of snow 

DRIP mm Accumulated canopy drip 

DEWFALL mm Accumulated dewfall 
 

  

 



71 

 

 

Table 3.2 Continued 

SNODEP m Snow depth 

VEGFRA fraction Green vegetation fraction 

Z0 m Roughness length 
 

HFX W m{-2 Upward surface sensible heat flux 

QFX W m{-2} Upward surface latent heat flux 
 

GRDFLX W m{-2} Ground heat flux at surface 
 

SW W m{-2} Downward shortwave radiation flux 

LW W m{-2} Downward longwave radiation flux 

FDOWN W m{-2} 
 

Radiation forcing at the surface 
 

XLAI dimensionless 
 

Leaf area index 
 

SNOTIME s Snow age 

EMBRD s Background Emissivity 
 

SNOALB fraction Maximum albedo over deep snow 
 

NOAHRES W m{-2} 
 

Residual of surface energy balance 
 

CH  Heat Exchange Coefficient 
 

 

Table 3.3 Parameters in daily files (Database 3). 

Name Unit Description 

Tmax C Daily maximum temperature 

Tmin C Daily minimum temperature 

SR MJ m{-2} Daily solar radiation 

Prep mm Daily precipitation 

Soil_M m{3} m{-3} Daily averaged soil moisture 

Soli_T k Daily averaged soil temperature 

ET mm Daily evapotranspiration 
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Table 3.4 30-year mean absolute error (MAE) of corn yield simulations   

County 

MAE1 
(model driven by station 

input) 

MAE2 
(model driven by reanalysis 

input) 
Johnson, IA 1.05 1.02 

Winnebago,IA 1.03 1.07 
DeKalb, IL 0.90 1.13 

Douglass, IL 1.16 1.18 
Huntington,IN 0.79 0.81 

Jasper,IN 0.86 0.85 
Shawnees, KS 0.92 1.02 
Olmstead, MN 1.24 0.97 
Renville, MN 1.22 1.08 

Adair, MO 1.68 1.58 
NewMadrid, MO 2.28 2.39 

Platte, NE 0.86 1.36 
Union, OH 1.04 1.11 
Rock, WI 1.03 0.84 
Sauk,WI 1.38 1.32 

GrandForks , ND 2.11 2.70 
Lucas , OH 0.83 0.88 

Brookings, SD 2.12 1.57 
average 1.25 1.27 
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Table 3.5 -Value from one-way ANOVA test between 30-years simulated corn yield 
driven by meteorological input and reanalysis meteorological input form Database 3 

County 
 

P-Value between two different simulation-driven scenarios  
Johnson, IA 0.13 

Winnebago,IA 0.47 
Dekalb, IL 0.51 

Douglass, IL 0.73 
Huntington,IN 0.7 

Jasper,IN 
 

0.61 
Shawnees, KS 0.09 
Olmstead, MN 0.005 
Renville, MN 0.4 

Adair, MO 0.07 
NewMadrid, MO 0.48 

Platte, NE 0.06 
Union, OH 0.5 
Rock, WI 0.14 
Sauk,WI 0.01 

GrandForks, ND 0.04 
Lucas, OH 0.29 

Brookings, SD 0.96 
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Figure 3.1 Methodology flowchart for chapter 3 

 

Figure 3.2 The overall process of running the HRLDAS 
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Figure 3.3 Sample image of 4-layer soil moisture from Database 2 
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Figure 3.4 Sample image of 4-layer soil moisture from Database 2 
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Figure 3.5 Building an agro-meteorological database (Database 3) from HRLDAS 

 



78 

 

 

 

Figure 3.6 Sample images of parameters in Database 3 
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Figure 3.7 Validations of daily maximum and minimum temperature from Database 3. 

 

Figure 3.8 Validations of solar radiation from Database 3. 
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Figure 3.9 Validations of solar radiation from the solar radiation generator. 

 

 

Figure 3.10 Process of running the Hybrid-Maize model at grid scale. 
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Figure 3.11 Sample image of gridded yield (bu/acre) estimation output 
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Figure 3.12 (a) Histogram of NASS surveyed yield across the U.S. Corn Belt (2003). (b) 
Histogram of grid-scale estimated corn yield (2003, planting date May 1st) 
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Figure 3.13 Histogram of grid-scale estimated corn yield under different planting date 
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Figure 3.14 The estimated corn yield difference between different planting dates. (a) 
Planting on April 1st, 2003 compared with planting on May 1st, 2003.  (b) Planting on 
May 1st, 2003 compared with planting on June 1st, 2003.   
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Figure 3.15 GDD50F map of the U.S. Corn Belt from May 1, 2003.
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CHAPTER 4. EL NIÑO–SOUTHERN OSCILLATION (ENSO) WITH CORN AND 

CORN SIMULATION MODEL IN U.S. CORN BELT   

As mentioned in Chapter 1, many studies indicate that ENSO has a significant impact on 

crop yield. In this chapter, three topics will be discussed: (1) The impact of the El Niño–

Southern Oscillation (ENSO) on corn yield and corn planting date. (2) Can the crop 

model capture ENSO climate variability? (3) A model-based study to evaluate yields as 

influenced by planting date under different ENSO phases. Based on previous related 

studies, the hypotheses are: (1) El Niño has a positive influence on corn yield while La 

Niña has negative impacts on corn yield. (2) Planting dates are significantly different 

under different ENSO phases. (3) The crop model –Hybrid-Maize model can catch the 

ENSO climate variability well, and the model driven by reanalysis data will have a much 

stronger ENSO feedback than onsite data. 

4.1 Data Resources and locations 

In this chapter, 18 counties across the U.S. Corn Belt (Fig. 1.1) were selected. Thirty 

years of corn yield data were collected from the National Agricultural Statistics Service 

(NASS) (http://www.nass.usda.gov/) annual survey. Because this study focuses on the 

impacts of climate variability, which needs decrease the influences from new techniques 

on corn yield, the original surveyed data were detrended to the 30 – year (1981-2010) 
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averaged yield. Planting dates of nine states in the U.S. Corn Belt were collected from the 

NASS report (1994 – 2010) and include NE, KS, MN, MO, WI, IL, IN, IA, and OH.  The 

meteorological data of these 18 counties were collected from the National Climatic Data 

Center (NCDC) and the agro-meteorological database described in Chapter 3. 

4.2 ENSO years classification  

To classify ENSO years, in this study, the annual JMA-based “ENSO year” index 

(COAPS, 2010) was used. This index is based on the 5-month running mean of sea 

surface temperature (SST) anomalies, which are spatially averaged across the tropical 

Pacific  (4°S-4°N, 150°W-90°W). When index data are equal or larger than 0.5°C for six 

consecutive months, the year starting in October through the following September is 

classified as an El Niño year. If index data are equal or less than -0.5°C for six 

consecutive months, of the year starting in October through the following September is 

classified as La Niña years, while others are classified as Neutral years (COAPS 2010; 

Japan Meteorological Agency 1991). Based on this criterion, 30 years (1981-2010) were 

grouped into three ENSO phase, eight years are classified as El Niño years, 17 years are 

classified as Neutral years, and five years are classified as La Niña years (Table 4.1) 

4.3 The impacts of the El Niño–Southern Oscillation (ENSO) on corn yield in U.S. 

Corn Belt 

Based on the classification of the ENSO years, the detrended surveyed data from 18 

counties were grouped by the ENSO phases (Table 4.2).  The ratios between yield data in 

El Niño years and yield data in Neutral years indicate that 13 counties obtained higher 
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yield in El Niño years. The ratios between yield data in La Niña years and yield data in 

Neutral years show that for 11counties, the yield data were decreased during La Niña 

years. The overall summary of these 18 counties (Table 4.3) also shows that El Niño 

events have a positive influence (ratio = 1.03) on corn yield while La Niña events have a 

negative impact (ratio = 0.96). When running an ANOVA test for the total yield data of 

18 sites, the results report the negative impacts of the La Niña phase on corn yield is 

significant at the 99% level of confidence (p-Value = 0.0055) while the positive impacts 

of the El Niño phase on corn yield is not significant at the 95% level of confidence (p –

Value = 0.06).The results of negative impacts from La Niña are similar in previous 

studies which were reviewed in Chapter 1. The reason for lower yield in La Niña years 

could be the summers tend to be warmer and drier in La Niña years than Neutral years in 

the Corn Belt. Additionally, cooler temperatures and higher rainfall rates in El Niño years 

might lead to yield improvement in some counties (Phillips et al. 1999). It is notable that 

the spatial pattern of ENSO impacts is not homogeneous, and more detailed regional 

studies are preferred in the future.  

4.4 The impacts of the El Niño–Southern Oscillation (ENSO) on corn planting date in 

U.S. Corn Belt   

Based on the NASS report, the active planting dates of the nine states are from April 16th 

to June 4th, and the most active planting dates are varied in different states. For most 

states, the most active planting dates are from April 30th to May 14th.  For some states, 

such as Missouri (MO), the most active planting dates are in early April (Fig. 4.1).  The 

corn weekly percentage planted data were grouped into three ENSO phases (Table 4.4).  
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In Fig. 4.2, it can be seen that in most states, the majority of the active planting dates in 

La Niña years are later than in Neutral years. The influence pattern in El Niño years is not 

clear. Figure 4.3 displays the summary of weekly percentage of corn planted for the nine 

states, and clearly indicates that the peak of percentage planted in La Niña years is one-

week later than in Neutral years (p-Value = 0.0014). In El Niño years, the weekly 

percentage planted data are significantly different from the data in Neutral years (p-Value 

= 0.0026), while the data from El Niño years are more normally distributed. The peak 

under the El Niño phase is 19% while the peak under the La Niña phase is 23%, with a 22% 

peak under the Neutral phase. 

4.5 Can crop model capture the climate variability? 

The ability of crop models to capture climate variability is very important   when 

conducting climate change impact studies. To investigate whether crop models can 

capture the impacts of   El Niño / La Niña, in this research, the Hybrid-Maize model was 

run using two meteorological input datasets: onsite data from NCDC versus regional 

reanalysis data from the agro-meteorological database. The hypothesis being that even if 

the onsite data may have a limited ENSO signature, the reanalysis data will have a much 

stronger ENSO feedback embedded within. The Hybrid-Maize model simulated 30-years 

(1981-2010) of corn yield from 18 counties (Fig. 1.1) across the Corn Belt. The model’s 

setting and running scheme are the same as described in Chapter 2 and Chapter 3.  
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 Crop model running with onsite meteorological data 4.5.1

Table 4.5 listed the 30-year averaged simulated corn yield for 18 counties. The overall 

summary of these 18 counties (Table 4.6) also shows that El Niño events have a positive 

influence (ratio = 1.04) on corn yield while La Niña events have a slight negative impact 

(ratio = 0.99). When applying ANOVA tests for all the simulated yield data from the 18 

sites, the results indicate that the negative impacts of the La Niña phase on corn yield is 

not significant at the 95% level of confidence  (p-Value = 0.8).  The positive impacts of 

the El Niño phase on corn yield is not significant at the 95% level of confidence (p –

Value = 0.05). The averaged MAE (Table 4.7) of the simulated yield show that during El 

Niño years, MAE is larger than in Neutral years with a significant difference at the 95% 

level of confidence (p-Value = 0.04). The MAE difference between La Niña years and 

Neutral years is not significant at 95%. 

These results indicate that when running the Hybrid-Maize model with onsite 

meteorological data, the model cannot capture the impacts of ENSO on corn yield (at 95% 

level). The MAE during El Niño years is significantly larger than Neutral years, and 

indicates that the simulations in El Niño years have more bias than simulations in the 

other two phases. 

 Crop model running with reanalysis meteorological data 4.5.2

Table 4.8 listed the 30-year averaged simulated corn yield from 18 counties. The overall 

summary of these 18 counties (Table 4.9) show both El Niño events have a slight 

influence (ratio = 0.99) on corn yield while La Niña events have a strong negative impact 
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(ratio = 0.90). When applying ANOVA tests for all the simulated yield data from the 18 

sites, the results indicate that the negative impacts of the La Niña phase on corn yield is 

significant at the 99% level of confidence (p-Value < < 0.0001), and the impacts of the El 

Niño phase on corn yield is not significant at the 90% level of confidence (p –Value = 

0.05). The difference between averaged MAE (Table 4.10) of the simulated yield and 

detrended observed yield under different ENSO phases is not significant: for El Niño 

years the P-value = 0.26, and for La Niña years the P-value = 0.59. 

These results show that when running the Hybrid-Maize model with reanalysis 

meteorological data, the model can capture the impacts of ENSO on corn yield, 

especially the negative influence from La Niña (at 99% level). The MAE data under three 

ENSO phases were not significantly different.  

Through running the Hybrid-Maize crop model with two meteorological datasets, it can 

be concluded that when the model is running with the reanalysis dataset, the impacts of 

ENSO on corn yield can be captured.  

4.6 A model-based study ---Corn yields as influenced by planting date under different 

ENSO phases 

It was discussed that corn yield and planting dates are influenced by ENSO phases, but 

there is no study to explore the impacts of planting date on corn yield under different 

ENSO phases. The planting date is one of the key management factors which highly 

relates to the corn yield. It is of great importance to know whether the planting date 

effects will vary by ENSO events. In this study, the Hybrid-Maize model was selected to 
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simulate 30-year (1981-2010) corn yield data from 18 counties (Fig. 1.1) for eight 

planting dates from April 16th to June 4th. Simulated yield data were grouped by ENSO 

phases.   

Figure 4.4 lists the simulated corn yield for different planting dates and the data has been 

grouped into three ENSO phases. It can be seen that the impact of alternating planting 

dates under different ENSO phases is varied by county. For instance, in Dekalb, IL, 

Huntington, IN, and Japer, IN, under the La Niña phase, the simulated yields are 

increased when the planting dates change from May 8th to June 4th.  While under El Niño 

and Neutral phases, the yields are decreased with a change to later planting dates. For 

these counties, based on the model, choosing a late planting date can mitigate the 

negative impacts of La Niña on corn yield. This result could explain the findings in 

Chapter 4.4 where the planting dates in La Niña years are later than Neutral years. 

However, it is also notable that in Olmstead, MN, Renville, MN, and Grand Forks, ND, 

the corn yield decreased with a change in planting date under all three ENSO phases. For 

these counties, the planting date decisions are not influenced by ENSO phases; earlier 

planting dates can bring higher yields. Table 4.10 listed the mean simulated yield, yield 

standard deviation, and yield range of eight planting dates. When changing the research 

scale from county to regional, no significant difference was found when the ANOVA test 

was applied to the total 18 counties data , which means when exploring the combined 

(ENSO + planting date) impacts on corn yield, the county scale is preferred.  
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4.7 Summary 

The main findings in the chapter are: (1) The La Niña phase has significant negative 

impacts on corn yield and during La Niña years, the planting dates are significantly later 

than Neutral years. (2) The Hybrid-Maize model can capture the ENSO impacts when 

running with reanalysis meteorological data.  (3) Based on this model study, in some 

counties, late planting can mitigate negative impacts from the La Niña phase.  More 

detailed studies will be applied at different spatial levels in the future.  
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Table 4.1 Annual JMA-based classifications of years (1981- 2010) into ENSO phases 

El Niño Neutral  La Niña 
1982 1981 1994 1988 
1986 1983 1995 1998 
1987 1984 1996 1999 
1991 1985 2000 2007 
1997 1989 2001 2010 
2002 1990 2003  
2006 1992 2004  
2009 1993 2005  

  2008  
 

Table 4.2 Observed average corn yield (1981-2013) of 18 counties grouped into ENSO 
phases 

County Yield(kg/ha) Yield Ratio 

 El Niño La Niña Neutral El Niño/Neutral  La 
Niña/Neutral  

Johnson County, IA 8930 7296 8298 1.08 0.88 
Winnebago County, IA 9359 9183 8919 1.05 1.03 

DeKalb County, IL 9233 9448 9282 0.99 1.02 
Douglass County, IL 9232 8284 9173 1.01 0.90 

Huntington County, IN 8222 7495 8470 0.97 0.88 
Jasper County, IN 8390 7896 8442 0.99 0.94 

Shawnee County, KS 7300 7221 7246 1.01 1.00 
Olmstead County, MN 9415 8726 8673 1.09 1.01 
Renville County, MN 9495 8345 8733 1.09 0.96 

Adair County, MO 7122 4804 6698 1.06 0.72 
NewMadrid County, 

MO 9006 8427 9290 0.97 0.91 

Platte County, NE 8520 8742 8379 1.02 1.04 
Union County, OH 7907 7887 7939 1.00 0.99 
Rock County, WI 8389 8002 8269 1.01 0.97 
Sauk County,WI 8211 7658 7753 1.06 0.99 

GrandForks County, ND 6076 6131 5158 1.18 1.19 
Lucas County, OH 8518 8574 8930 0.95 0.96 

Brookings, SD 6764 6565 6498 1.04 1.01 
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Table 4.3 Total observed average corn yield (1981-2013) of 18 counties grouped into 
ENSO phases  

ENSO phase Yield Yield Ratio 

 (kg/ha) (event years/neutral years) 
El Niño 8338 1.03 
La Niña 7816 0.96 
Neutral 8119 
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Table 4.4 Averaged (1994 – 2010) percentage corn planted of every week from April 16th 
to Jun 4th grouped into ENSO phases. 

State ENSO Planting date       
  16-Apr 23-Apr 30-Apr 07-May 14-May 21-May 28-May 04-Jun 

NE El Niño 1 6 19 25 28 15 4 2 
 La Niña 0 4 10 22 29 22 9 4 
 Neural 1 5 16 27 20 19 7 3 

KS El Niño 11 12 17 19 17 14 9 2 
 La Niña 4 10 20 15 22 16 6 5 
 Neural 12 14 20 20 14 11 4 5 

MN El Niño 0 4 26 28 21 13 6 2 
 La Niña 0 3 28 39 19 6 3 2 
 Neural 1 3 17 28 16 19 9 4 

MO El Niño 24 14 12 11 11 10 9 5 
 La Niña 9 17 17 8 10 14 9 11 
 Neural 25 16 15 10 6 8 6 3 

WI El Niño 0 2 8 15 20 19 16 9 
 La Niña 0 2 9 18 27 22 13 8 
 Neural 0 0 7 15 32 18 13 5 

IL El Niño 3 13 19 15 11 5 18 8 
 La Niña 1 13 17 19 22 13 11 4 
 Neural 7 15 20 21 11 5 8 0 

IN El Niño 1 3 13 15 10 8 21 13 
 La Niña 1 6 13 14 24 23 12 4 
 Neural 3 8 17 23 15 7 9 1 

IA El Niño 1 10 26 25 23 10 4 1 
 La Niña 0 7 15 25 31 13 5 3 
 Neural 1 7 24 28 16 13 7 1 

OH El Niño 2 3 18 21 10 8 19 8 
 La Niña 2 3 15 15 28 16 14 6 
 Neural 2 7 12 28 18 8 9 7 
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Table 4.5 Simulated average corn yield (1981-2013) of 18 counties driven by onsite 
meteorological data grouped into ENSO phases 

County Yield(kg/ha) Yield Ratio 

 
El 

Niño La Niña Neutral El Niño/Neutral  La Niña/Neutral  

Johnson, IA 7831 7291 7911 0.99 0.92 
Winnebago, IA 9299 9270 9202 1.01 1.01 

DeKalb , IL 9209 8270 8966 1.03 0.92 
Douglass, IL 7789 7335 8234 0.95 0.89 

Huntington, IN 8950 7821 8772 1.02 0.89 
Jasper, IN 8888 7903 8828 1.01 0.90 

Shawnee, KS 6961 6388 7303 0.95 0.87 
Olmstead, MN 8845 9363 7675 1.15 1.22 
Renville, MN 9564 9782 8551 1.12 1.14 

Adair, MO 8292 7183 8063 1.03 0.89 
NewMadrid, MO 6638 6370 6986 0.95 0.91 

Platte, NE 7871 7532 7923 0.99 0.95 
Union, OH 8804 7829 8588 1.03 0.91 
Rock, WI 9151 8539 9296 0.98 0.92 
Sauk ,WI 8619 9290 7534 1.14 1.23 

GrandForks, ND 7679 8018 6989 1.10 1.15 
Lucas, OH 9202 8500 9003 1.02 0.94 

Brookings, SD 6743 7873 5391 1.25 1.46 
 

Table 4.6 Total simulated average corn yield (1981-2013) of 18 counties driven by onsite 
meteorological data grouped into ENSO phases  

ENSO phase Yield Yield Ratio 

 (kg/ha) (event years/neutral years) 
El Niño 8352 1.04 
La Niña 8031 0.99 
Neutral 8068 

  

Table 4.7 Mean absolute error (MAE) between simulated corn yields driven by onsite 
meteorological data with detrended observed data (1981-2010, 18 counties) 

  El Niño La Niña Neutral 
MAE (kg/ha) 1370.94 1185.83 1253.55 
Std.Dev of bias 985.17 948.69 1055.55 
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Table 4.8 Simulated average corn yield (1981-2013) of 18 counties driven by reanalysis 
meteorological data grouped into ENSO phases 

County Yield(kg/ha) Yield Ratio 

  El Niño La Niña Neutral El 
Niño/Neutral  

La 
Niña/Neutral  

Johnson, IA 7822 7247 7962 0.98 0.91 
Winnebago, IA 9049 8156 9272 0.98 0.88 

DeKalb , IL 8905 7961 8885 1.00 0.90 
Douglass, IL 7945 7426 8255 0.96 0.90 

Huntington, IN 8694 7688 8773 0.99 0.88 
Jasper, IN 8615 7788 8765 0.98 0.89 

Shawnee, KS 6193 6294 6780 0.91 0.93 
Olmstead, MN 9594 8930 9406 1.02 0.95 
Renville, MN 9004 7406 8979 1.00 0.82 

Adair, MO 7385 6838 7752 0.95 0.88 
NewMadrid, MO 6669 6258 6810 0.98 0.92 

Platte, NE 6910 6899 7704 0.90 0.90 
Union, OH 8712 7736 8907 0.98 0.87 
Rock, WI 8915 7948 8856 1.01 0.90 
Sauk ,WI 9217 8887 9068 1.02 0.98 

GrandForks, ND 8597 7847 8226 1.05 0.95 
Lucas, OH 8861 8014 8864 1.00 0.90 

Brookings, SD 8335 7180 8235 1.01 0.87 
 

Table 4.9 Total simulated average corn yield (1981-2013) of 18 counties driven by 
reanalysis meteorological data grouped into ENSO phases 

ENSO phase Yield Yield Ratio 
  (kg/ha) (event years/neutral years) 

El Niño 8301 0.99 
La Niña 7583 0.90 
Neutral 8417   

 

Table 4.10 Mean absolute error (MAE) between simulated corn yields driven by 
reanalysis meteorological data with detrended observed data (1981-2010, 18 counties)  

  El Niño La Niña Neutral 
MAE (kg/ha) 1370.94 1185.83 1253.55 
Std.Dev of bias 985.17 948.69 1055.55 
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Table 4.11 Mean simulated yield, yield standard deviation and yield range of 8 planting 
date (18 counties, 1981-2010) 

County Mean yield(Mg/ha) Yield std    Yield range  
   El Niño Neutral La Niña El Niño Neutral La Niña El Niño Neutral La Niña 

Johnson, IA 8.0353 7.93924 7.2662 0.2927 0.07255 0.1314 0.8085 0.208588 0.4044 

Winnebago, IA 9.0082 8.6621 9.3153 0.4715 0.7048 0.2205 1.42875 1.952824 0.6564 

DeKalb, IL 9.11756 8.9270 8.5457 0.09096 0.1731 0.3370 0.27375 0.5982 0.9264 

Douglass, IL 8.1245 8.2701 7.35120 0.3735 0.1074 0.08887 0.9975 0.2958 0.24960 

Huntington, IN 9.0871 8.8742 8.1209 0.2045 0.1081 0.3924 0.4972 0.2876 1.1316 

Jasper, IN 8.9228 8.9922 8.2934 0.1955 0.1788 0.3176 0.5392 0.4761 0.9903 

Shawnee, KS 7.1782 7.33350 6.3945 0.2308 0.06106 0.1131 0.6097 0.19129 0.3312 

Olmstead, MN 7.945 6.8821 8.8999 1.091 0.9235 0.5257 3.049 2.5708 1.5192 

Renville, MN 9.1042 8.0060 9.3483 0.7483 0.7795 0.5234 2.1563 2.1681 1.5348 

Adair, MO 8.5151 8.2747 7.3181 0.3152 0.2541 0.1530 0.7762 0.6776 0.4848 

NewMadrid,MO 6.7357 6.9339 6.2369 0.1218 0.1101 0.1608 0.3833 0.3187 0.4080 

Platte, NE 8.1360 8.0253 7.58595 0.2933 0.1248 0.09460 0.7163 0.3191 0.30000 

Union, OH 8.9487 8.7457 8.0844 0.2154 0.2055 0.3189 0.5587 0.5548 0.8568 

Rock, WI 8.9160 8.9179 8.9439 0.3716 0.4316 0.4804 1.0133 1.2494 1.3116 

Sauk,WI 7.876 6.9469 9.0003 1.101 0.9112 0.4842 3.123 2.5761 1.4184 

GrandForks, ND 7.162714 6.07916 7.502229 0.8739 0.9425 0.8759 2.4255 2.550706 2.4444 

Lucas, OH 9.0688 8.9802 8.7825 0.2167 0.1785 0.4181 0.5445 0.5619 1.1508 

Brookings, SD 7.766 6.3596 9.4810 1.104 0.9265 0.9119 2.996 2.5422 2.4852 
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Figure 4.1 Averaged (1994 – 2010) weekly corn percentage planted for 9 states in U.S 
Corn Belt. 
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Figure 4.2 Averaged (1994 – 2010) weekly corn percentage planted of 9 states under 
different ENSO phase. 
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Figure 4.3 9-sates averaged (1994 – 2010) weekly corn percentage planted under 
different ENSO phase (significantly different at 99% level of confidence). 
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Figure 4.4 Corn yield simulations with different planting dates grouped into three ENSO 
Phases
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CHAPTER 5. RUNNING CROP MODEL WITH FUTURE CLIMATE PROJECTION 

The most important application of a crop model is projecting the future yield. Based on 

the reliability of crop models evaluated in the previous chapters, here a preliminary test 

of running the crop model (the Hybrid-Maize) with regional climate models (RCMs) will 

be discussed. 

5.1 Data source and research location 

In this study, the research site is Bondville, IL (40.00°N, 88.29°W). Climate model-

simulated meteorological data were collected from the North American Regional Climate 

Change Assessment Program (NARCCAP, Mearns et al. 2009). Measured meteorological 

data were collected from AmeriFlux. NARCCAP data-driven simulated yields were 

compared with onsite meteorological data-driven simulated yields. The test period is 

1981-2003. 

5.2 NARCCAP meteorological data validations 

To apply the climate model-simulated meteorological data with the crop model, it is 

necessary to validate the data reliability. In this research, the validations were conducted 

for daily maximum temperature (˚C), daily minimum temperature (˚C), and daily 

accumulated solar radiation (MJ/𝑚2). The validation of daily maximum temperature (Fig. 

5.1) shows that the NARCCAP climate model-simulated maximum temperature slightly
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 underestimated lower values (< 10°C ) and overestimated higher values (generally > 

10 °C). Validation of daily minimum temperature (Fig. 5.2) shows a similar pattern as the 

maximum temperature where higher values (generally >10 °C) were overestimated and 

lower values (<10°C) are underestimated. Validation of daily solar radiation indicates 

that the climate model overestimated solar radiation values (Fig. 5.2). The overall 

agreement between NARCCAP-simulated values and Ameriflux observed data are 

acceptable for application in crop simulations.  

5.3 Running crop model with NARCCAP meteorological model  

The Hybrid-Maize model was used to simulate corn yields from 1981 to 2003 with two 

meteorological data scenarios: (1) NARCCAP data, and (2) Onsite data. The purpose of 

using these two data sources is to evaluate the performance of running the crop model 

with NARCCAP climate model-simulated data. If the bias between the results of the 

scenarios is not significant or can be rescaled, it means that the crop model can be driven 

by the NARCCAP future projected climate data. The model settings of these two 

scenarios were unified. Simulated corn yield driven by NARCCAP data shows a similar 

trend with simulated corn yield driven by onsite data (Fig. 5.4). Mean simulated yield 

bias between the two crop model-driven schemes are 17.5 bu/acre (1.1 Mg/ha). Applying 

regression analysis to rescale the NARCCAP-driven data will decrease the bias to 7.8 

bu/acre (0.5 Mg/ha) (Fig. 5.5). 

Based on meteorological data validations and simulated yield data validations in 

Bondville, IL, NARCAAP climate model-simulated meteorological data shows good 

potential when applied with corn yield simulations. However, since this preliminary 
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study only evaluated one site, more tests are needed before applying future projections 

from NARCCAP at a regional scale.  

 

 

Figure 5.1 Validation of daily maximum temperature from NARCCAP (Bondville, IL) 
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Figure 5.2 Validation of daily minimum temperature from NARCCAP (Bondville, IL) 

 

Figure 5.3 Validation of daily accumulated solar radiation from NARCCAP (Bondville, 

IL) 
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Figure 5.4 Validation of daily accumulated solar radiation from NARCCAP (Bondville, 
IL) 

 

Figure 5.5 Rescaled simulated corn yield with NARCCAP meteorological input and 
Onsite meteorological model input. 
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CONCLUSION 

In this research, a high-resolution reanalysis agro-meteorological database across the U.S. 

Corn Belt has been compiled with raw data from the Land Data Assimilation System 

(LDAS) which includes daily maximum/minimum temperature, precipitation, solar 

radiation, etc. Validations of meteorological data show strong agreement between this 

reanalysis database and observed data, which gives confidence for wide use of this agro-

meteorological database with agro-related applications at different spatial scales. 

Spatially-continuous daily solar radiation data are available in this database which 

provides a solution to the problem of sparse historical solar radiation in crop model 

related research. 

A gridded crop model running system has been developed based on this agro-

meteorological database and the Hybrid-Maize crop model. After validation, this system 

shows good potential for estimating regional corn yield at a gridded scale under different 

scenarios (e.g., different planting dates). 

La Niña in ENSO phases show significant negative impacts on corn yield and are a factor 

in the relatively late planting dates in the Corn Belt. The Hybrid-Maize crop model can 

capture the impacts of ENSO on corn yield when the model is driven by reanalysis data 

from the agro-meteorological database.
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The key limitations of this research include: (1) lack of soil information and standardized 

management variables when running the crop model across the Corn Belt.  (2) Only one 

classification method and one ENSO index were used in this research. (3) Eighteen 

county-scale sites are relative small sample size for regional studies.  

Future study based on this research will focus on: (1) evaluating hydrological parameters 

in the agro-meteorological database. (2)  The addition of dynamic soil information and 

field management information to the gridded crop model. (3) Classifying ENSO years 

with ensemble methods and the ENSO index. (4) Expansion of the validation sample size.        
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