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Evolution of Trefoil Factor(s): Genetic and Spatio-
Temporal Expression of Trefoil Factor 2 in the Chicken
(Gallus Gallus Domesticus)
Zhengyu Jiang1, Amy C. Lossie1,2, Todd J. Applegate1*

1 Department of Animal Sciences, Purdue University, West Lafayette, Indiana, United States of America, 2 Department of Medicine, Indiana University School of Medicine,

Indianapolis, Indiana, United States of America

Abstract

Trefoil factors are essential healing initiators participating in mucosal reconstitution and tissue morphogenesis, especially on
the surfaces of the gastrointestinal tract. This family has been cloned and characterized predominantly from mammals and
amphibians. Avian species ingest stone and grit to help digest food, which may expose their gut to severe physical
conditions. To further the understanding of the function of the TFF gene family across species, we undertook this research
to clone, sequence, and characterize the spatio-temporal expression patterns of chicken TFF2 (ChTFF2) cDNA. Bioinformatics
analysis of the promoter region and deduced amino acid sequence demonstrated that ChTFF2 contained unique
characteristics; specifically the chicken promoter has multiple start sites and the protein contains a series of Lys-Lys-Val
repeats. Unlike mammals, where TFF2 is detected primarily in the stomach, and occasionally in the proximal duodenum,
chicken TFF2 transcripts are found throughout the gastrointestinal tract, with major expression sites in the glandular and
muscular stomach as well as evident expression in the colon, small intestine, cecal tonsil and crop. Temporal analysis of
intestinal ChTFF2 transcripts by quantitative RT-PCR showed high levels in embryos and a trend of constant expression
during embryonic and post-hatch development, with a reduction occurring around hatch. Phylogenetic analysis highlighted
the conservation of TFF proteins and functional divergence of trefoil domains, which suggest a transitional role in the bird
during evolution.
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Introduction

The trefoil factors (TFFs) are a family of small (7–12 kDa in

mammals) secretory protease-resistant peptides discovered in the

1980’s [1]. These proteins have a unique trefoil-like structure, and

are crucial for epithelial restitution and wound healing, especially

on mucosal surfaces (reviewed by [2][3][4][5][6]). Moreover,

TFFs hold tremendous therapeutic potential for preventing and

treating various gastrointestinal diseases in humans [7][8]. Named

from their ‘‘three-leaf’’ structure, the TFF cluster molecules share

a common cysteine-rich trefoil motif [2][9]. The highly-conserved

trefoil motif (also known as the P-domain) consists of the following

sequence: CX9–10CX9CX4CCX10C (where C represents cysteine

and X represents any other amino acid), which forms three

disulfide bonds in a unique 1–5, 2–4 and 3–6 of Cys-Cys linkage

structure [2]. Notably, this configuration differs from other similar

protein domains such as the EGF-repeat family, which forms 1–3,

2–4 and 5–6 Cys-Cys bonds, and may allow TFFs to use distinct

signaling cascades for their cellular functions, which include

promoting cell migration [6].

In mammals, three members of the TFF family have been

annotated: TFF1 or pS2, TFF2 or spasmolytic peptide, and TFF3

or intestinal trefoil factor (ITF) [2][9][10]. Structurally, TFF1 and

TFF3 contain one trefoil motif with six cysteines as well as a

seventh unpaired cysteine, which has been suggested to help with

dimerization [2][10]; TFF2 contains two trefoil motifs, both of

which are believed to be important for proper function. In vitro

recombinants of truncated frog TFF2 bearing one single trefoil

domain lose anti-apoptotic function but still promote cell

migration [11]. In addition, peptides containing four or more

trefoil domains have been identified from frog stomach; these

peptides are co-expressed with mucogenic cells and are proposed

to possess similar functions as mammalian TFFs [12].

The genes encoding TFFs have been characterized from

multiple mammals such as human, mouse, rat, dog, cat, cow,

wolf, rhesus monkey, short-tailed opossum, sheep, chimpanzee

and pig, as well as frog and toad [5][9][13][14]. Mammalian TFFs

are predominantly and profoundly expressed in the gastrointesti-

nal tract, where the expression of each gene and peptide is

delicately regulated in a tissue-specific and also topographically

complementary manner [15][16]. For example, Tff3, which is

predominantly expressed in the lower intestine, was dramatically

upregulated (40-fold) in the gastric antrum and Brunner’s gland (a

major site of Tff2 and Tff1 expression) in Tff2-deficient mice [17],

while Tff1-deficient mice demonstrated increased levels of Tff3,

and a complete loss of Tff2, mRNA in the stomach [18]. These

PLoS ONE | www.plosone.org 1 July 2011 | Volume 6 | Issue 7 | e22691



findings coupled with the structural similarity among the family

members, are consistent with a high degree of functional

redundancy among the TFF paralogs.

However, the mechanism(s) controlling TFF gene expression

remain unclear. The spatial localization of TFF2 in the

gastrointestinal tract varies among different species. In pigs,

pTFF2 peptide has been localized to acinar cells of the pancreas

[19], mucous cells of stomach and throughout the small intestine

[20]. In rodents and humans, TFF2 is abundant in gastric, pyloric

and Brunner’s glands, but markedly lower in small intestine and

colon [3][21]. These species-specific expression patterns highlight

the potential functional diversity of TFF genes across species.

Most of the understanding of the function of TFFs stems from

studies in rodents, humans and amphibians [12][13]; little

information is available from avian species, although a potential

role for TFFs in cellular architecture assembly was recently

speculated in chicken gizzard [22]. In the present study, chicken

TFF2 cDNA was cloned, sequenced and the spatio-temporal

expression patterns characterized. Analysis of TFF genes in non-

mammalian model systems provides important contributions to

better understand the functional importance of the TFF genes in

wound healing in the gut, and deepens the evolutionary

understanding of the biological function of TFF proteins in

animal and human health.

Figure 1. Sequence and analysis of ChTFF2. A: Strategy of amplying and sequencing full length ChTFF2 cDNA. B: RLM-RACE products were
electrophoresed in a 2% agarose gel. Lane 1: 39 RACE product; lane 2: water control; lane 3: 59 RACE product; lane 4: water control. D: Intron-exon
localization of ChTFF2 at chromosome. C: Representative electrophoresis result from EcoRI digestion of purified plasmids inserted with 59 RACE
product indicates alternative start site with shorter product in lane 2 as compared with lane 1 and 3; alternative transcription starting site was
confirmed by sequencing determination. The ORFs are gray. E: Potential regulatory sequences in the promoter of the ChTFF2 as compared with
human; nucleotides are numbered with +1 being the A of the ATG initiation codon; target sequences for the underlined transcription factors (motif)
are in bold. F: Full-length ChTFF2 cDNA sequence and deduced amino acids.
doi:10.1371/journal.pone.0022691.g001

Trefoil Factor Evolution
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Results

1 Cloning and analysis of the full-length ChTFF2cDNA
The ChTFF2 cDNA spans 4.3 kb on chicken chromosome 1

(112,805,710 to 112,810,087, WUGSC 2.1/galGal3; Genome

Bioinformatics Group at UC Santa Cruz [http://genome.ucsc.

edu/]; (Figure 1. D)). Chicken TFF2 shares 49.1% identity to

human and mouse cDNAs (Figure 2. A). An alternative

transcriptional start site (TSS) at +32 nucleotides (Figure 1. F)

was identified. This resulted in the TSS mapping from upstream to

26 bp downstream of the TATA-box, which is the location of the

annotated TSS in humans. A T450C single nucleotide polymor-

phism within the chicken cDNA was identified, implying

heterogeneity within the genetic line. Alignment with the human

sequence using Transcription Element Search System (TESS)

indicates that possible cis-acting elements include TBP, GATA

[23] and HNF3/FKH [24].

2 Deduced amino acid sequences of chicken, turkey and
duck TFF2

The deduced amino acid sequence of ChTFF2 precursor

predicts a 13.7-kDa, 122 residue protein that includes signal

peptides, trefoil domains (TD), an inter-TD domain and terminus

(Figure 2. B). Since the genomes of other avian species are less-well

characterized, the deduced chicken TFF2 amino acid sequences

were used in BLAST to scan the Ensembl and/or pre-Ensembl

genome databases for Meleagris gallopavo (turkey, Ensembl), Anas

platyrhynchos (duck, Ensembl) and Taeniopygia guttata (zebra finch,

pre-Esembl). Alignment results showed that the degree of

homology of TFF2 proteins among avian species (83% identity)

is greater than that when aligned with human and mouse proteins

(61.9%, Figure 2. B), and avian TFF2 is presumed to be the

mammalian ortholog of TFF2.

Several amino acids are highly conserved among aves, mouse

and human; The 13 Cys residues that comprise the trefoil domains

and the sequences surrounding the second, fifth and sixth Cys

within each trefoil domain are highly conserved [25]. Sequence

comparisons indicate that the TFF2 trefoil domain consensus

sequence is CX6–7RXNCGXPGIX4CX3GCCFX6VPWCF. This

highly conserved region suggests functional importance of these

residues for trefoil factors and their structural formation, likely

through disulfide bond formation, protection from protease attack,

and/or receptor binding. The sequence positions of secondary

structures (a-helixes and b-sheets) and loops within the ChTFF2

TD are predicted from the human sequence (Figure 2. B) [25].

Figure 2. Sequence alignment. A: sequence alignments for chicken TFF2 cDNA with human and mouse. B: Amino acid sequence alignment and
analysis for chicken with predicted sequences of other avian species and human and mouse; domains are indicated below aligned sequences. PTD:
trefoil domain (P domain); locations of conserved Cys bonds and secondary structural element: a-helixes, b-sheets and loops are indicated.
doi:10.1371/journal.pone.0022691.g002

Table 1. Primer sequences for RT-PCR, RACE and qRT-PCR.

Forward/Reverse Primer sequence (59 to 39)

TFF2

RT-PCR1 Forward CCA GAG CAA TGG ATC TGA AGG

Reverse CAT CTC CTG CTT ATG CAC TCC TTA

RT-PCR2 Forward AAG TTA AGA AAG TGT GCC CTG CT

Reverse CCT ACT GAG AGA ACA AAA GTT GTG G

39GSP Forward CCT GGT GCT TCA CTG CTA AAC CAA AG

59 GSP Reverse CAG CAG GAT GTG CCC GGA AG

qRT-PCR Forward CTG AAC AGC AAT AAC CAC CC

Reverse TAA TCC CCA CAG AGA CCA CA

18S Forward GCC ACC CGA GAT TGA GCA ATA ACA

Reverse TAG ACA CAA GCT GAG CCA GTC AGT

doi:10.1371/journal.pone.0022691.t001

Trefoil Factor Evolution
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3 Spatio-temporal expression pattern of chicken TFF2
Distribution of ChTFF2 mRNA was performed with tissues

obtained from 3 adult laying hens using the forward RT-PCR1

primer paired with the reverse RT-PCR2 primer (Table 1,

Figure 3. F and G). ChTFF2 transcripts were detected along the

gastrointestinal tract of the bird. A markedly high expression of

ChTFF2 mRNA was observed in the proventriculus (glandular

stomach) and gizzard (muscular stomach). Intermediate to low

levels were found in colon, crop, small intestine (duodenum,

jejunum and ileum) and cecal tonsil. ChTFF2 mRNA was not

detected in spleen, liver, brain (Figure 2. F) and heart (data not

shown).

Quantitative expression of ChTFF2 mRNA in the small intestine

during late embryonic and early post-hatch stages is shown

(Figure 2 C, D, and E). We observed a relatively high abundance

of ChTff2 mRNA in duodenal and jejunal tissues from E14.5 to

E18.5, with a slight decrease in expression from E21.5 to H1. This

demarks the transition to lower post-hatch expression levels. In the

ileum, ChTFF2 mRNA levels remain relatively constant, except for

a sharp reduction at hatch. Gene expression differences in the

small intestine were statistically significant for age (P,0.001) and

region (p,0.05). The significant region by age interaction

(P,0.001) reflected a greater embryonic expression in duodenum

than jejunum or ileum, with a higher post-hatch expression in

ileum than duodenum and jejunum.

4 Phylogenetic tree of TFF2
To explore the evolutionary relationship of chicken TFF2

homologues, phylogenetic analyses of TFF2 was performed in a

variety of vertebrate and invertebrate species (Figure 4, see Figure

S1 for information on distance and sequence alignment). Protein

sequences were retrieved from the NCBI, Ensembl and pre-

ensembl databases. Since the genomes of some species were poorly

characterized, their TFF2 homologues were obtained by genome-

wide scans with known TFF2 proteins from closely related species.

To further investigate the functional divergence of TFF2,

functional domains of TFF2 sequences were phylogenetically

analyzed separately. All two trefoil domain (TD) extracted from

TFF2 proteins were used in the phylogenetic studies and gave rise

to a tree similar in topology for each TFF2 TD to that of TFF2 in

Figure 4 (Figure 5).

Discussion

1 Sequence analysis and structure prediction of ChTFF2
Results confirm that computational annotation correctly

predicted the putative chicken TFF2 nucleotide sequence, with

the exception of identifying additional 39 and 59 UTR sequences.

Despite scanning the chicken genome and other chicken cDNA

clones with TFF sequences from the Pfam trefoil motif in human,

mouse and other species with Genewise (http://www.ebi.ac.uk/

Tools/Wise2/), no other chicken TFF candidate genes were

detected. However, in mammals, there are three TFF members.

All three genes map to a single chromosome and reside near each

other in the following tandem orientation: 59-TFF1-TFF2-TFF3-

39. It has been suggested that this region is a consequence of gene

duplication and exon-shuffling events during evolution [26][27].

The TFF2 promoter contains a complex enhancer region.

Comparison of the chicken TFF2 promoter sequences with the

human homologue revealed several conserved regions (Figure. 1

E). Previous studies of the human TFF2 promoters demonstrated

that the HNF3 cis-acting element is located between 210 and 216

upstream of the TATAA box that is accessed during the acute-

phase response of TFF2 peptide [24]. Here, we document a

similar HNF3 binding motif (TAAACAT) within the chicken gene.

The predicted GATA enhancer element also is conserved between

chicken and human. However, the presence of the specific SPRE

cis-acting element that has been reported to be responsible for

TFF2 autoinduction [28] in chicken is uncertain based on

promoter sequence alignment.

The fact that trefoil loops are highly conserved during evolution,

particularly the amino acids surrounding the Cys residues,

indicates that these structures are important for the functionality

of this protein family. Comparison of human trefoil factors via H

nuclear magnetic resonance (NMR) showed distinct structural and

electrostatic properties of the loop2 and loop3 regions, and as the

authors suggested, it is possible that the functional diversity can be

increased by the interactions of each loop with different substrates

[25]. In aves, the trefoil motifs are highly conserved, with 8 to 9

residues more of intraspecific consensus compared to mammals.

This unique preserved region among avian species may indicate

species-specific structural or functional characteristics. For exam-

ple, the avian inter-TD domain is rich in negatively charged Lys,

and contains Lys-Lys-Val repeats that are not present in mouse or

human. This Lys-Lys-Val structure, which lies near secondary

structure elements, could protect these regions from proteolytic

processing [29].

Even though careful scrutiny of the available genome resources

failed to detect multiple TFF genes in chicken, it is possible that

other chicken TFF(s) exist in gaps that have yet to be sequenced or

in unmapped regions of the genome. Also, it is possible that the

avian counterpart(s) may have fewer member(s) or additional or

even distinct functional domains that differ significantly from their

mammalian counterparts. For example, in vitro studies in the toad

(Bombina maxima) have shown a 2-fold cell motility-inducing ability

at 100-fold lower concentration than that of human TFF2 [11].

Despite the fact that TFF are highly conserved among species, it is

probable that non-mammalian homologues may have additional

or even distinct functional characteristics from mammalian TFF

proteins.

2 Spatio-temporal ChTFF2 transcription – different
expression pattern from mammals

RT-PCR results demonstrated that the major sites of ChTFF2

expression are located within the glandular and muscular stomach,

which is equivalent to the expression pattern observed in the

mammalian stomach [30][21]. The colon, as well as small intestine

and crop, show intermediate levels of ChTFF2. However, both

mice and humans lack detectable TFF2 expression in the small

intestine at both the mRNA and protein levels, whereas TFF3 is

Figure 3. Spatio-temporal expression of TFF2 transcripts in chicken. Representative amplification plots of quantitative PCR (duplicates) for
measuring ChTFF2 (A) and 18S (B) in the small intestine; water was used as a control. Quantification of ChTFF2 transcripts in embryonic (E) and post-
hatch (H) ages in duodenum (C), jejunum (D) and ileum (E) using RT-qPCR; values were expressed in mean 6 SE, n = 5 to 8. The expression of ChTFF2
(F) and 18S (G) in different tissues; forty ng of cDNA were amplified for 33 cycles using a forward primer from RT-PCR1and a reverse primer from RT-
PCR2; reverse transcriptase was used (+) or omitted (2) for each tissue and all the RT-PCR products were examined by electrophoresis through a 3%
agarose gel in TBE.
doi:10.1371/journal.pone.0022691.g003

Trefoil Factor Evolution
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observed at relative high abundance in the small intestine [2][3].

In rodents, the gastric antrum and Brunner’s gland, but not the

lower intestine, are the two major sites of Tff2 expression under

physiological conditions [17]. However, a relatively lower level

ChTFF2 detected in duodenum is likely because avian species lack

the Brunner’s gland in the duodenum [31]. The ChTFF2

expression pattern may be similar to pigs, where immunoactive

pTFF2 were detected throughout the intestine [20]. However, the

duodenal ChTFF2 mRNA transcripts detected at embryonic day

14 are 1 to 2 logs higher than other segments of the small

intestine.

In the mouse, TFFs are detected by embryonic day 13 [32].

During this stage, patterning and organogenesis has already

occurred. Organs at this stage may require protective mechanisms

similar to those necessary in adulthood. Indeed, upregulation of

Tff was observed in the embryological gut following physical

wounding, suggesting a healing role of Tff prior to birth. In

addition, recent reports showed that human milk is rich in intact

TFF. These studies propose that TFFs are associated with the

development of the fetal gut and protection against various

diseases [33].

Unlike mammals, which receive bioactive peptides, including

TFF, from a maternal supply, avian species may require

significantly higher expression levels and storage of TFF(s) during

embryonic stages for adequate embryonic gut development and

post-hatch protection of the gut against potential stressors. The

present study examined the expression pattern of ChTFF2

transcripts during late embryogenesis and early after hatching by

quantitative RT-PCR. The small intestine was a primary focus

because in chickens, TFF2 is expressed in the small intestine at a

relatively high level; in humans and rodents, TFF2 is normally

absent in the small intestine, indicating that there may be different

functional properties of TFF2 in chickens compared to mammals.

Whole mount in situ hybridization studies demonstrated that the

mouse Tff2 gene was confined to the stomach and Brunner’s

glands during embryonic development, with stochastic expression

detected in predominate small intestine and caecum at embryonic

day 17.5 [32]. qRT-PCR date from this study reveal a punctuate

increasing pattern of TFF2 mRNA expression following embry-

onic and post-hatch development. This differs from developmental

expression of rat Tff3, the intestinal trefoil factor, where the

expression of TFF3 commences late in gestation and increases

Figure 4. Phylogenetic tree of TFF2. Forty five TFF2 proteins and related structure were aligned by using ClustalW, and the neighbor-joining tree
derived by the same program was shown. A. carolinensis: anole lizard. G.gallus: chicken. P. hamadryas: baboon. A. melanoleuca: giant panda. G. gorilla:
gorilla. P. pygmaeus: orangutan. A. platyrhynchos: duck. H. sapiens: human. P. troglodytes: chimpanzee. B. maxima: toad. L. africana: elephant. P.
vampyrus: megabat. B. Taurus: cow. M. domestica: opossum. R. norvegicus: rat. C. intestinalis: vase tunicate. M. eugenii: wallaby. S. scrofa: pig. C. jacchus:
common marmoset. M. gallopavo: turkey. S. tridecemlineatus: squirrel. C. lupus familiaris: dog. M. lucifugus: microbat. T. belangeri: tree shrew. C.
porcellus: guinea pig. M. mulatta: macaque. T. guttata: zebra finch. D. ordii: kangaroo rat. M. murinus: mouse. T. syrichta: tarsier. E. caballus: horse. O.
aries: sheep. T. truncatus: dolphin. E. telfairi: lesser hedgehog tenrec. O. garnettii: bushbaby. X. laevis: African clawed frog. F. catus: cat. O. princeps: pika.
doi:10.1371/journal.pone.0022691.g004

Trefoil Factor Evolution
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post-natally until adulthood [34]. In the chicken, relatively higher

expression of ChTFF2 in the duodenum is greater in embryos than

after hatch; whereas the ileum (distal small intestine) is higher post-

hatch. This expression shift suggests a spatial transition of

expression abundance from upper intestine to lower intestine as

the gut matures.

3 Role of aves in phylogeny of TFF2
The phylogenetic analysis helps to understand the role of TFF2

homologues in the conservation and divergence among different

animal species, particularly the transitional position of chicken

TFF2 during the evolutionary timeline. Avian TFF2 orthologs are

phylogenetically closer to reptiles than other species, and their

divergence occurred before mammals. This relationship is even

more evident when analyzing functional domains (TD). Interest-

ingly, the similarity among functional TD domains is greater

within avian species, which share a uniform relatively high TD

identity (50%) than that from most of other species. Inferred

neighbor-joining tree of TFF2 domains suggests that the two

functional domains (TD1 and TD2) are not evolutionarily distinct

and may be generated by domain duplication.

To further investigate whether amino acid substitutions

between species and functional domains could have caused

functional diversification, Type-1 functional divergence between

species clusters and TD domain clusters were estimated by

posterior analysis using the DIVERGE program algorithms

[35][36] (Table 2). This allows evaluation of the shifted

evolutionary rate at each sequence position and defines important

Figure 5. Phylogenetic tree of trefoil domains of TFF2. TD1 (red) and TD2 (black) were extracted from a range of animals as listed in Figure 4,
aligned by using ClustalW, and analyzed with the neighbor-joining method.
doi:10.1371/journal.pone.0022691.g005

Trefoil Factor Evolution
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amino acid residues responsible for altered functional constraints.

Significant site-specific altered selective constraints between

different animal species were observed (h.0), especially between

aves and amphibians (N = 78 when cut-off value is 0.67). The

coefficient of functional divergence between TD1 and TD2 as

well as the predicted number of divergent amino acid residues are

greater in aves versus mammals, suggesting a higher degree of

altered functional divergence between the two functional

domains. This is consisted with the hypothesis that there is a

higher likelihood that each domain of TFF2 confers a specific

protein function.

Overall, this study characterized encoding sequence and spato-

temporal expression patterns of the chicken TFF2, and analyzed

deduced amino acid sequences, structures and sequence homol-

ogies among different species.. Knowledge of sequence, phylogenic

and expression information will allow further experiments to

investigate its functionality and potential implications for wound

healing in the gastrointestinal tract.

Materials and Methods

Tissue sampling
All procedures and protocols were approved by Purdue

University Animal Care and Use Committee. Fertile chicken eggs

(n = 720) were obtained and incubated (Jamesway Incubator

Company Inc., Cambridge, Ontario, Canada). Since intestinal

segments can be identified by embryonic day 14,5, embryonic

intestinal tracts were dissected (from day 14.5 to days 16.5, 18.5,

and E21.5) and on post-hatch chickens (days 1, 3, 5). At each

stage, 5 to 8 animals per age group were assessed. We dissected the

following intestinal regions: duodenum (from the ventriculus to the

end of the pancreatic loop), jejunum (from the duodenum to the

yolk sac), and ileum (from the jejunum to the ileal-cecal junction).

Each segment was placed in RNALater (Ambion Inc., Austin, TX)

and snap-frozen.

To examine temporal expression of ChTFF2 RNA transcripts,

approximately 50 mg of the mid-length of duodenum, jejunum

and ileum were used for RNA isolation. 35 week-old adult White

Leghorn hens were euthanized by over-dose of carbon dioxide.

Tissue samples were collected and immediately frozen in liquid

nitrogen for subsequent RNA isolation.

RNA isolation and reverse transcription
RNA isolation was performed using TRIzolH reagent (Initrogen

Inc., Carlsbad, CA) followed by RNA purification with the DNA-

freeTM DNase Treatment and Removal Kit (Ambion Inc., Austin,

TX). Purified RNA was quantified by Nanodrop and aliquoted.

RNA integrity was verified by electrophoresis on a 1% agarose gel.

For RT-PCR, complementary DNA (cDNA) was synthesized and

diluted as described [37].

Full length cDNA amplification with RNA-ligase-mediated
rapid amplification of cDNA ends (RLM-RACE)

RLM-RACE was performed using the GeneRacerTM RLM-

RACE kit (Invitrogen Inc., Carlsbad, CA) according to the

manufacturer’s instructions. Briefly, full-length capped mRNA was

obtained by treating purified total RNA with calf intestinal

phosphatase (CIP), which removes fragmented mRNA and non-

mRNA. The protective 59 cap structure from full-length mRNA

was then dephosphorylated with tobacco acid pyrophosphatase

(TAP) to allow subsequent ligation of an RNA oligo to the 59 end

by T4 RNA ligase. Ligated mRNA was reverse transcribed using

SuperScriptTM III RT and GeneRacerTM Oligo dT primers. To

obtain the 39 end of the ChTFF2 transcript, first strand cDNA was

amplified with Advantage� 2 system (Clontech Laboratories, Inc.,

Mountain View, CA) using the 39 anchor GeneRacerTM primer

and a forward gene specific 39 primer (GSP). To amplify the 59

end of ChTFF2, a reverse complement 59-GSP was used with the

anchor 59 GeneRacerTM primer. GSPs were designed from initial

resultant sequencing contig of cDNA amplicons produced by two

internal primer pairs (Figure 1. A).

Cloning and sequencing
All products were cloned into the pCR-4 TOPO vector and

chemically transformed into TOP10 E. coli cells (Invitrogen Inc.,

Carlsbad, CA). Ten to twenty clones from each transformation

were grown in LB broth overnight. Plasmids from each clone were

prepared and purified using a Quicklyse Miniprep kit (Qiagen

Inc., Valencia, CA) and digested with EcoRI. Digested fragments

were resolved by gel electrophoresis on 1.5% agarose, 0.56TBE

gels. Three separate clones were sequenced bidirectionally using

Big Dye 3.1 (ABI, Life Technologies). The resultant sequences

were aligned using SequencherTM Software (Gene Codes Corp.,

Ann Arbor, MI).

Sequence analysis and phylogenetic tree
The full length chicken TFF2 coding sequence was translated using

an online Open Reading Frame Finder (http://www.ncbi.nlm.nih.

gov/gorf/gorf.html). The amino acid sequence was compared to

sequences from other species available in GenBank (http://www.

ncbi.nlm.nih.gov/genbank/), Ensembl (http://pre.ensembl.org/

index.html) and Pre Ensembl (http://uswest.ensembl.org/index.

html). All the sequences were aligned using ClustalW (http://www.

ebi.ac.uk/Tools/msa/clustalw2/). A phylogenetic tree was construct-

ed using neighbor-joining method based on sequence distance

matrix, and displayed using GeneiousTM Software (Biomatters Ltd,

Auckland, New Zealand). The search for potential transcriptional

binding sites was performed using an online Transcription Element

Search System (TESS, http://www.cbil.upenn.edu/cgi-bin/tess/

tess). Published human cis-acting elements for TFF2 were compared

as a reference.

Quantitative RT-PCR
Primer pairs for qRT-PCR analysis were optimized, and PCR

products were cloned (into the pCR-4TOPO vector) and

Table 2. Functional divergence estimated in TFF2 gene and
domains.

Comparison Sites1 h2 SE3 LRT4 N(0.5)5 N(0.67)5

TFF2

Mammal vs. Aves 78 0.25 0.22 0.23 2 1

Mammal vs. Amphibian 78 0.67 0.41 0.67 77 28

Aves vs. Amphibian 78 0.87 0.45 0.85 78 78

TD1 vs.TD2

Mammal 29 0.40 0.18 10.61 6 4

Aves 42 0.59 0.36 5.30 36 12

1Sites: the total number of amino acid residues.
2h is the coefficient of type I functional divergence; h.0 suggests altered
functional constrains occurred.

3SE: standard error.
4LRT is a likelihood ratio test.
5N(0.5) and N(0.6) means the numbers of divergent residues when the cut-off
value is 0.5 and 0.67, respectively.

doi:10.1371/journal.pone.0022691.t002
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sequenced for confirmation. Assays were carried out in 15 mL

reactions using iQ SYBR Green Supermix (Bio-Rad Laboratory,

Hercules, CA) with diluted first-strand cDNA. qRT-PCR

programs for ChTFF2 and 18S RNA were designed as: 5 min at

95uC, 40 cycles of 95uC for 15 sec, 56uC or 57uC for 15 sec, 72uC
for 15 sec and 82uC or 83uC for 15 sec data collection, followed

by 80 cycles for melting curve analysis. All cDNA samples

calculated from 100 ng of total RNA per reaction were assayed in

duplicate. Quantification standards were comprised of four 100-

fold dilutions of purified plasmid DNA (108 to 102 or 107 to 101

molecules) and assayed in triplicate in each plate with R square

values of 0.99 or above. Standards were used to calculate a linear

regression model for threshold cycle (Ct) relative to transcript

abundance in each sample. The log value of ChTFF2 transcript

starting abundance was calculated from the Ct values corrected by

a factor calculated from 18S RNA as previously described [37].

Statistics for quantitative PCR
Log values for transcript abundance from each sample duplicate

were subjected to ANOVA using the MIXED procedure of SAS

for intestinal region and age effects, as well as the region 6 age

interaction. Random effect was defined as animal nested within

region 6 age. An alpha of 0.05 was used for all PCR analysis.

Supporting Information

Figure S1 Evolutionary tree and sequence alignment of
TFF2.
(TIF)
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27. Gött P, Beck S, Machado J, Carneiro F, Schmitt H, et al. (1996) Human trefoil

peptides: genomic structure in 21q22.3 and coordinated expression. Eur J Hum

Genet 4: 308–322.

28. Bulitta CJ, Fleming JV, Raychowdhury R, Taupin D, Rosenberg I, et al. (2002)

Autoinduction of the trefoil factor 2 (TFF2) promoter requires an upstream cis-

acting element. Biochemical and biophysical research communications 293:

366–74. Available: http://www.ncbi.nlm.nih.gov/pubmed/12054609. Accessed

2010 Oct 10.

Trefoil Factor Evolution

PLoS ONE | www.plosone.org 9 July 2011 | Volume 6 | Issue 7 | e22691



29. Jörnvall H, Persson B (1983) Amino acid sequence restriction in relation to

proteolysis. Bioscience Reports 3: 225–232. Available: http://dx.doi.org/10.

1007/BF01122454 DO - 10.1007/BF01122454. Accessed 2010 Oct 10.

30. Lefebvre O, Wolf C, Kédinger M, Chenard MP, Tomasetto C, et al. (1993) The

mouse one P-domain (pS2) and two P-domain (mSP) genes exhibit distinct

patterns of expression. The Journal of Cell Biology. pp 122–191. Available:

http://jcb.rupress.org/content/122/1/191.abstract. Accessed 10 Oct 2010.

31. Kokas E, Phillips JL, Brunson WD (1967) The secretory activity of the

duodenum in chickens. Comparative Biochemistry and Physiology 22: 81–90.

Available: http://www.ncbi.nlm.nih.gov/pubmed/6050002. Accessed 2010 Oct

10.

32. Otto WR, Patel K (1999) Trefoil factor family (TFF)-domain peptides in the

mouse: embryonic gastrointestinal expression and wounding response. Anatomy

and embryology 199: 499–508. Available: http://www.ncbi.nlm.nih.gov/

pubmed/10350130. Accessed 2010 Oct 10.

33. Vestergaarda EM, Nexob E, Wendtc A, Guthmannc F (2008) Trefoil factors in

human milk. Early Human Development 84: 631–635.
34. Lin J, Holzman IR, Jiang P, Babyatsky MW (1999) Expression of intestinal

trefoil factor in developing rat intestine. Biology of the Neonate 76: 92–99.

Available: http://www.ncbi.nlm.nih.gov/pubmed/10393993. Accessed 2010
Oct 10.

35. Gu X (1999) Statistical methods for testing functional divergence after gene
duplication. Molecular biology and evolution 16: 1664–74. Available: http://

www.ncbi.nlm.nih.gov/pubmed/10605109. Accessed 2010 Oct 10.

36. Gu X (2003) Functional divergence in protein (family) sequence evolution.
Genetica 118: 133–41. Available: http://www.ncbi.nlm.nih.gov/pubmed/

12868604. Accessed 2010 Oct 10.
37. Karcher DM, Fleming-Waddell JN, Applegate TJ (2009) Developmental

changes in insulin-like growth factor (IGF)-I and -II mRNA abundance in
extra-embryonic membranes and small intestine of avian embryos. Growth

Horm IGF Res 19: 60–60.

Trefoil Factor Evolution

PLoS ONE | www.plosone.org 10 July 2011 | Volume 6 | Issue 7 | e22691


	Purdue University
	Purdue e-Pubs
	7-29-2011

	Evolution of Trefoil Factor(s): Genetic and Spatio-Temporal Expression of Trefoil Factor 2 in the Chicken (Gallus Gallus Domesticus).
	Zhengyu Jiang
	Amy C. Lossie
	Todd J. Applegate
	Recommended Citation



