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RESEARCH ARTICLE Open Access

Comparison and contrast of genes and biological
pathways responding to Marek’s disease virus
infection using allele-specific expression and
differential expression in broiler and
layer chickens
Sudeep Perumbakkam1, William M Muir1, Alexis Black-Pyrkosz2, Ron Okimoto3 and Hans H Cheng2*

Abstract

Background: Marek’s disease (MD) is a commercially important neoplastic disease of chickens caused by the
Marek’s disease virus (MDV), a naturally occurring oncogenic alphaherpesvirus. Enhancing MD genetic resistance is
desirable to augment current vaccines and other MD control measures. High throughput sequencing was used to
profile splenic transcriptomes from individual F1 progeny infected with MDV at 4 days of age from both outbred
broilers (meat-type) and inbred layer (egg-type) chicken lines that differed in MD genetic resistance. The resulting
information was used to identify SNPs, genes, and biological pathways exhibiting allele-specific expression (ASE) in
response to MDV infection in each type of chicken. In addition, we compared and contrasted the results of
pathway analyses (ASE and differential expression (DE)) between chicken types to help inform on the biological
response to MDV infection.

Results: With 7 individuals per line and treatment group providing high power, we identified 6,132 single
nucleotide polymorphisms (SNPs) in 4,768 genes and 4,528 SNPs in 3,718 genes in broilers and layers, respectively,
that exhibited ASE in response to MDV infection. Furthermore, 548 and 434 genes in broilers and layers,
respectively, were found to show DE following MDV infection. Comparing the datasets, only 72 SNPs and 850
genes for ASE and 20 genes for DE were common between the two bird types. Although the chicken types used in
this study were genetically different, at the pathway level, both TLR receptor and JAK/STAT signaling pathways
were enriched as well as exhibiting a high proportion of ASE genes, especially at the beginning of both above
mentioned regulatory pathways.

Conclusions: RNA sequencing with adequate biological replicates is a powerful approach to identify high
confidence SNPs, genes, and pathways that are associated with transcriptional response to MDV infection. In
addition, the SNPs exhibiting ASE in response to MDV infection provide a strong foundation for determining the
extent to which variation in expression influences MD incidence plus yield genetic markers for genomic selection.
However, given the paucity of overlap among ASE SNP sets (broilers vs. layers), it is likely that separate screens need
to be incorporated for each population. Finally, comparison of gene lists obtained between these two diverse
chicken types indicate the TLR and JAK/STAT signaling are conserved when responding to MDV infection and may
be altered by selection of genes exhibiting ASE found at the start of each pathway.
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Background
Marek’s disease (MD) is a lymphoproliferative disease of
chickens caused by the Marek’s disease virus (MDV or
Gallid herpesvirus 2), a naturally occurring alphaherpes-
virus [1,2]. The virus targets lymphoid tissue such as the
bursa of Fabricius, thymus, and spleen, where it infects
B and T cells [3]. The pathological characteristics of MD
include mononuclear infiltration of the peripheral nerves,
gonads, iris, various viscera, muscles, and skin. Susceptible
chickens develop lymphomas in visceral tissues and enlarged
nerves resulting in paralysis, blindness, and eventually death.
Economic losses to the poultry industry due to condemna-
tion in broilers (meat-type) and reduction in egg produc-
tion in layers (egg-type) are estimated to be $1-2 billion
per year [4]. Due to the persistent nature of the virus in
the feather dander shed from MDV-infected birds, all
commercial chickens are exposed at a very early age. Al-
though MD vaccines can prevent the formation of tumors,
they do not prevent viral replication and bird-to-bird spread.
The lack of sterilizing immunity is thought to be a major
contributing factor for MDV field strains evolving to higher
virulence [5], which can result in unpredictable and devas-
tating disease outbreaks in vaccinated commercial flocks.
An attractive solution to augment MD vaccinal and

husbandry control measures is to increase genetic resist-
ance in commercial chicken lines through marker-assisted
or genomic selection, which avoids the need to expose
elite flocks under selection to a hazardous pathogen. In
the past, focusing on the experimental White Leghorn
(layer) lines 63 and 72, which are MD resistant and suscep-
tible, respectively, we have utilized multiple techniques
such as genome-wide QTL scans [6,7], transcript profiling
with microarrays [8], and protein-protein interaction [9]
screens to understand the response to MDV infection and
MD genetic resistance. Integrating the results from these
approaches identified three genes and many other strong
candidates that confer genetic resistance to MD [8,10,11].
While promising, these genes account for only a small
fraction of the observed genetic variation, a situation that
is similar for many other complex traits.
Allele-specific expression (ASE) is a powerful technique

that measures the expression of each allele via a marker
single nucleotide polymorphism (SNP) within a RNA sam-
ple. When a gene shows allelic imbalance, it is sufficient to
identify a cis-acting regulatory element [12]. The key ad-
vantage of this approach is identification of a SNP exhi-
biting ASE, though likely not to be causative, is in tight
linkage disequilibrium with the causative polymorphism,
thus, essentially identifying a high-confidence candidate
gene (genetic factor) with expression variation. And since
variation in gene expression is thought to be a major fac-
tor accounting for phenotypic variation, genes with ASE
SNPs provide candidates and markers that may account
for the complex trait of interest.

In this study, the primary aim was to use ASE to iden-
tify SNPs associated with variation in transcriptional re-
sponse to MDV infection in both broilers and layers,
which would provide a strong foundation for future eva-
luations of genetic resistance to MD. In addition, the
resulting information allowed us to compare the identi-
fied SNPs, genes, and pathways enriched between these
two diverse chicken types. Furthermore, since RNA se-
quencing (RNA-Seq) data is comparable to microarray
data, gene counts were used to identify genes differen-
tially expressed (DE) in response to MDV infection and,
subsequently, used to evaluate the biological pathways
that were shared between the broiler and layer chickens.

Results
MD incidence in broilers
As the long-term objective is to improve MD genetic re-
sistance through genomic selection, we first needed to
identify broiler pure lines that differed substantially in MD
incidence; layer lines 63 and 72 are already known to be
MD resistant and susceptible, respectively [13]. Anecdotal
information suggested that Cobb-Vantress lines “Red” and
“Blue” used in this study differed in MD genetic resistance.
We confirmed these differences in two MDV challenge
trials (Table 1), where the Red line birds had about twice
the MD incidence as those from the Blue line.

Whole-Genome transcriptomics and ASE SNP discovery
In the present experiment, we sequenced RNA samples
from 7 uninfected and 7 infected birds for each type (broiler
or layer). For the broiler dataset, with one exception, the
average number of single end raw reads was approximately
27 million (Additional file 1: Table S1), and after quality
trimming was between 21 million and 29 million. Tophat/
Bowtie [14] aligned 68-81% of the reads to the chicken
genome with nearly 98.5% of the reads in the resulting
alignments having a mapping quality score of 30 or higher
(MAPQ≥30). These high quality scores were necessary to
confidently call SNPs with a minimum of false positives.
Using Freebayes [15], SNPs were called within alignments
from similar treatment samples (e.g., all 7 MDV-infected
layers), with criteria to contain at least 14 reads in the
population. The average number of SNPs finally called was
in approximate range of 200,000-310,000 per sample in the
broilers.
For layer samples, similar quality control measures were

undertaken to reduce false positives SNPs. For these RNAs,

Table 1 Marek’s disease (MD) incidence in two pure line
broilers

Pure line Trial 1 Trial 2

Red 57% 58%

Blue 32% 30%
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sequencing was performed using the Illumina HiSeq plat-
form, which not only produced more reads compared to
the broiler-generated data (Illumina GAII) but also produced
longer pair end fragments (Additional file 1: Table S2). The
average number of reads ranged from 40 to 95 million per
sample. The average number of SNPs called was in ap-
proximate range of 195,000-390,000 per sample in the
layers. The increase in reads provided more confidence in
SNP calls (read depth) but did not significantly increase
the number of SNPs called between the samples (broilers vs.
layers). Also, higher read depth did not significantly change
the Tophat/Bowtie [14] alignment statistics between the
samples (broilers vs. layers).
An analysis of variance (ANOVA) was used to identify

the SNPs that showed ASE due to MDV infection in
broilers or layers. After further filtering of the raw SNP
data, an ANOVA was performed on 150,403 SNPs from
the broiler SNP dataset and 134,953 SNPs for the layer
that passed our test criteria (see Materials and Methods).
Based on ANOVA significance (p<0.05), the number of
SNPs exhibiting ASE in response to MDV infection in
broilers and layers was 6,132 and 4,528, respectively
(Additional file 1: Tables S3 and S4). No correction was
made for multiple testing because the list of genes would
be tested subsequently for pathway enrichment. In the
Fisher exact test invoked in DAVID [16] to identify enriched
pathways, the proportion of genes submitted must be
significantly greater than the proportion of genes found
by chance. In this way, Type 2 errors (false negatives) are
reduced in the first step while the pathway test in the
second step includes an experiment wise error rate to
control for Type 1 errors (false positives).

Classification of ASE SNPs
The significant SNPs exhibiting ASE in response to MDV
infection for both broilers and layers were distributed on
chromosomes 1 to 28 of the chicken genome, with the
number of SNPs per each chromosome roughly propor-
tional to the size of the each chromosome in the chicken
genome assembly (Additional file 2: Figure S1).
To locate these SNPs on the chicken genome with respect

to genes and classify them based on function, ANNOVAR
[17] was used. In the broiler population, the largest number
of SNPs (1,780 or 29.0%) was classified as exonic (Table 2).
The second largest number of SNPs fell in the intergenic
group (1,610 or 26.3%), and the third largest group were
located downstream of a gene (1,073 or 17.5% of the SNPs).
As RNA was sequenced and analyzed, SNPs in both of
these latter categories reflect the incomplete or inaccurate
annotation of the chicken genome. Similarly in layers,
the two largest classifications of SNPs associated with
intergenic (1,059 or 25.4%) and exonic (1,501 or 24.8%)
regions (Table 2).

A nucleotide position match between broiler and layer
ASE SNPs showed 72 SNPs matched at the exact pos-
ition (Additional file 1: Table S5). These 72 SNPs were
distributed in 71 genes (Table 3). At the gene level, there
were 850 genes showing ASE in response to infection that
were common between the two chicken types (Table 3).
The observed overlap was not significant suggesting dif-
ferent genes are responsible for conferring MD resist-
ance between the broiler and layer lines examined.
The ASE data were further analyzed to quantify the

biological implications due to the presence of a SNP. A
function-based approach using ANNOVAR classified the

Table 2 Classification of allele-specific expression (ASE)
SNPs responding to Marek’s disease virus (MDV)
infection in broilers and layers

SNP type Broiler Layer

SNPs Genes SNPs Genes

Downstream 1,073 875 583 524

Exonic 1,780 1,501 1,123 947

Exonic Splicing 39 38 41 41

Intergenic 1,610 1,059 1,150 868

Intronic 541 394 913 691

ncRNA_exonic 1 1 3 3

Splicing 8 8 7 7

Upstream 94 88 118 109

Upstream:Downstream 47 41 41 36

UTR’3 863 694 467 414

UTR’5 74 67 81 77

UTR’3: UTR’5 2 2 1 1

Total 6,132 4,768 4,528 3718

Table 3 Classification of allele-specific expression (ASE)
SNPs in response to Marek’s disease virus (MDV)
infection in common between broilers and layers at the
nucleotide position and gene level

SNP type Nucleotide-level match Gene-level match

SNPs Genes Genes

Downstream 12 11 86

Exonic 18 18 231

Exonic Splicing 0 0 0

Intergenic 25 25 301

Intronic 6 6 117

ncRNA_exonic 0 0 0

Splicing 0 0 0

Upstream 1 1 9

Upstream:Downstream 0 0 2

UTR’3 9 9 101

UTR’5 1 1 3

UTR’3: UTR’5 0 0 0

Total 72 71 850
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SNPs as synonymous, nonsynonymous, stop gain, and stop
loss (Table 4). In broiler and layers, 1,818 and 1,163 SNPs,
respectively, were identified (Additional file 1: Tables S6
and S7). The largest category in both chicken types was
synonymous implying that the SNPs were neutral and
downstream amino acid changes were not significant.
The second largest category in both the chicken breeds
was nonsynonymous SNPs. A very small number of the
SNPs fell into the other two categories (stop gains and
stop loss).

Differential expression (DE) analysis in response to MDV
infection
DE was estimated by obtaining count data from each bio-
logical sample (broilers and layers) using the Htseq script
[18]. The ENSEMBL exon annotation file [19] identified
17,934 chicken genes of which 15,261 and 15,468 genes
were expressed in the broilers and layers, respectively.
DESeq analysis [20] was used to estimate DE and a total of
548 and 434 genes were revealed following MDV infection
(p<0.05) in broilers and layers, respectively (Additional
file 1: Tables S8 and S9). The fold change ranged from
−6.41 to 35.0 and −8.86 to 48.0 in broilers and layers,
respectively. Of the genes that were significant, only 20
were common between the broiler and layer chickens.

Pathway analysis of ASE and DE genes
To identify potential common pathways, gene lists obtained
by ASE and DE analysis were analyzed for biological
process and pathway enrichment using DAVID [16].
Due to the likely limited effect of SNPs falling in the
intergenic, intronic, and downstream regions of the chicken
genome (based on ANNOVAR classification), we further
filtered the input gene list to only include genes that corre-
sponded to SNPs that were found to be synonymous, non-
synonymous, or located at the 5’ UTR, and 3’ UTR regions.
From the initial gene list (Table 2), 2,156 and 1,207 genes
following ASE analysis in the broiler and layer samples,
respectively, were queried. Using functional annotation
clustering, at the highest classification stringency, 109 and
63 clusters were formed in broilers and layers, respectively.
When an enrichment cutoff at >1.0 was used, only 12 and
6 clusters were chosen in broilers and layer samples,

respectively (Additional file 1: Table S10 and S11). There
were no common enriched clusters between both datasets.
The pathways analysis invoked in DAVID yielded 13 and 6
pathways in the broiler and layer samples, respectively
(Table 5). Of these samples, there were three pathways
that were common between the two bird types: apop-
tosis, DNA replication, and amino and nucleotide sugar
metabolism. There were additional pathways found that
were unique to each chicken type (Table 5). DAVID ana-
lysis of nonsynonymous ASE SNPs from broilers and layers
also resulted in no common pathways that were found to
be enriched (Additional file 1: Tables S12 and S13) but 14
genes were obtained that were common to both bird lines
(Additional file 1: Table S14). Furthermore, out of the 14
common genes obtained, 6 genes were functional anno-
tated using DAVID (Additional file 1: Table S15).
Similar DAVID analyses were performed on the DE gene

list obtained from broiler and layer samples. Based on
functional annotation, 55 and 34 clusters were obtained in
the broiler and layer samples from an initial input of 528
and 430 gene IDs, respectively. With the enrichment
cutoff set to >1.0, there were 15 and 10 clusters in the
broiler and layer samples, respectively (Additional file 1:
Tables S16 and S17). Of these clusters, 2 clusters were
enriched and showed exact matches between the broilers
and layers (cluster 15 in broilers and cluster 5 in layers).
At the pathway level for DE genes, 7 and 9 pathways
were identified in broilers and layers, respectively (Table 6).
Two common pathways were found, which were Toll-like
receptor (TLR) signaling and JAK/STAT signaling.

Discussion
ASE is a powerful and elegant technique that separates
gene expression signals into allelic components resulting
in significantly increased sensitivity and added power, and
can be used to understand the genetics of gene regulation.
In this study, we used ASE to investigate transcriptional
regulation in response to MDV infection in two different
chicken types, specifically broilers and layers. The primary
objective of this study was to identify SNPs exhibiting
ASE responding to MDV infection, which would provide
a strong foundation for future experiments designed to
identify genes conferring genetic resistance to MD. Since

Table 4 Functional classification of allele-specific expression (ASE) SNPs in response to Marek’s disease virus infection
from broilers and layers in known genes

SNP type Broiler Layer Common

SNPs % of SNPs Gene SNPs % of SNPs Gene Gene

Nonsynonymous 442 24.3 399 317 27.3 291 14

Stop gain 4 0.2 4 5 0.4 5 0

Stop loss 2 0.1 2 1 0.1 1 0

Synonymous 1,370 75.4 936 840 72.2 735 162

Total 1,818 100 1,341 1,163 100 1,032 176

Perumbakkam et al. BMC Genomics 2013, 14:64 Page 4 of 10
http://www.biomedcentral.com/1471-2164/14/64



Table 5 DAVID analysis of allele-specific expression (ASE) genes in response to Marek’s disease virus (MDV) infection
(P<0.05) in broilers and layers

Category Term Count % P-Value

A. Broilers

KEGG_PATHWAY Nucleotide excision repair 13 0.6 2.30E-03

KEGG_PATHWAY DNA replication 10 0.5 1.70E-02

KEGG_PATHWAY Fatty acid metabolism 10 0.5 2.90E-02

KEGG_PATHWAY Apoptosis 19 0.9 3.10E-02

KEGG_PATHWAY Ribosome 19 0.9 3.10E-02

KEGG_PATHWAY Lysosome 23 1.1 3.50E-02

KEGG_PATHWAY Basal transcription factors 9 0.4 3.90E-02

KEGG_PATHWAY p53 signaling pathway 15 0.7 5.50E-02

KEGG_PATHWAY Base excision repair 8 0.4 6.60E-02

KEGG_PATHWAY Pyrimidine metabolism 19 0.9 8.30E-02

KEGG_PATHWAY Amino sugar and nucleotide sugar metabolism 10 0.5 9.40E-02

KEGG_PATHWAY Mismatch repair 6 0.3 9.60E-02

KEGG_PATHWAY Propanoate metabolism 8 0.4 9.90E-02

B. Layers

KEGG_PATHWAY Focal adhesion 27 2.2 3.40E-03

KEGG_PATHWAY Lysine degradation 8 0.7 2.40E-02

KEGG_PATHWAY Propanoate metabolism 6 0.5 6.40E-02

KEGG_PATHWAY DNA replication 6 0.5 7.40E-02

KEGG_PATHWAY Amino sugar and nucleotide sugar metabolism 7 0.6 7.80E-02

KEGG_PATHWAY Apoptosis 11 0.9 9.20E-02

Table 6 DAVID analysis of differentially expressed genes between uninfected and MDV-infection (P<0.05) in broilers
and layers

Category Term Count % P-Value

A. Broilers

KEGG_PATHWAY Cytokine-cytokine receptor interaction 15 2.8 4.90E-04

KEGG_PATHWAY Notch signaling pathway 7 1.3 4.20E-03

KEGG_PATHWAY Toll-like receptor signaling pathway 8 1.5 2.10E-02

KEGG_PATHWAY Jak-STAT signaling pathway 9 1.7 5.30E-02

KEGG_PATHWAY Cell adhesion molecules (CAMs) 8 1.5 5.80E-02

KEGG_PATHWAY Focal adhesion 11 2 9.30E-02

KEGG_PATHWAY Arachidonic acid metabolism 4 0.7 9.80E-02

B. Layers

KEGG_PATHWAY Steroid hormone biosynthesis 6 1.4 8.80E-04

KEGG_PATHWAY Calcium signaling pathway 11 2.5 7.30E-03

KEGG_PATHWAY Lysosome 8 1.9 1.50E-02

KEGG_PATHWAY Toll-like receptor signaling pathway 7 1.6 2.10E-02

KEGG_PATHWAY Vascular smooth muscle contraction 7 1.6 3.50E-02

KEGG_PATHWAY Drug metabolism 4 0.9 4.20E-02

KEGG_PATHWAY Metabolism of xenobiotics by cytochrome P450 4 0.9 4.20E-02

KEGG_PATHWAY Jak-STAT signaling pathway 8 1.9 4.20E-02

KEGG_PATHWAY Glutathione metabolism 4 0.9 7.00E-02

Perumbakkam et al. BMC Genomics 2013, 14:64 Page 5 of 10
http://www.biomedcentral.com/1471-2164/14/64



it takes 7 days post infection (dpi) for MDV to undergo its
first lytic cycle, transcriptional changes are most likely to
occur prior to the prevalence of this phenotypic observa-
tion and, thus, 4 dpi was chosen as the sampling window
captures to capture these transcriptional changes in the
birds. In this experiment, we were able to successfully
align RNA-Seq reads to the reference chicken genome
and identify high quality SNPs in both broiler and layer
chickens using our pipeline as described. As a result, we
identified 6,132 and 4,528 SNPs significant SNPs in 4,768
and 3,718 genes from broiler and layer samples, respectively.
In chicken, the power of RNA-Seq will not be fully

realized until the reference genome sequence is finished
[21] (9 of the 39 chromosomes are still wholly absent) and
gene models and annotation become more complete. For
example, while only exons should be transcribed, nonethe-
less, a large percentage of the SNPs, when classified using
ANNOVAR, fell into categories such as downstream, in-
tronic and intergenic regions. Poor genome annotation is
most likely responsible for the classification of SNPs in
non-exonic regions as we obtained high quality reads with
excellent coverage. We are in the process of developing
new gene models based on our experimental RNA-Seq
data from this study and additional ones.
At the SNP and gene level, 72 SNPs and 71 genes

(Table 2) were common between ASE broiler and layer
samples. The occurrence of identical SNP positions was
negligible, which was expected given the wide genetic
divergence between these two chicken types, and there-
fore is due to chance. Comparison of the enriched path-
ways obtained from ASE SNP positions also showed little
similarities between the two bird types (Table 5). We con-
clude, based on the lack of concordance between the lists
of identified SNPs, genes and pathways, there is no evi-
dence to suggest common genetic elements that respond
to MDV infection in these two bird types; this result also
supports the notion that MD genetic resistance is complex
and can result from different gene combinations. If true
on a broader scale, then genetic markers for complex traits
such as genetic resistance to MD based on ASE screens
will need to be performed on each population and cannot
be extrapolated from one bird line to another.
The chicken major histocompatibility complex (MHC)

plays an important role in the determination of resist-
ance to MDV [13]. The chicken chromosome 16 con-
tains 3 loci namely, the B locus, the Y (or Rfp-Y) locus
and the nucleolar-organizing region (NOR). Loci B and
Y are unlinked and evolve independently [22]. In this
study, in our analysis of nonsynonymous ASE SNPs in
broilers and layers, we found a SNP associated with a
gene that encodes for class I alpha chain of the Rfp-Y
loci (ENSGALG00000024348, Additional file 1: Table S15).
This result supports previous findings that have linked
MHC to MDV resistance. However, our predications are

limited due to incomplete sequence information of chromo-
some 16 for both galGal3 and galGal4 chicken genome
builds. This limitation combined with the fact that many
of the relevant genes have multiple family members hin-
dered our effects to ascribe ASE on MHC genes and the
pathways downstream.
Despite hindrances such as incomplete gene models,

we successfully identified two pathways namely, TLR sig-
naling and JAK/STAT signaling [23], by analyzing DE in
broilers and layers. Recently, Smith and co-workers [24]
reported the enrichment of the above-mentioned path-
ways in layers in response to MDV infection. Our data
suggest that broilers also show similar pathway enrich-
ment, thus, we conclude they have similar pathways for
responding to MDV infection.
Understanding the biological implications of large data-

sets generated by RNA-Seq can be challenging. Moreover,
to identify genetic effects that play an important role in
downstream regulation and expression is a major concern
in fully understanding the significance of pathways or net-
works. One hypothesis proposed by Clark et al. [25] was
to consider the association of upstream gene(s) or loci as
genetic factors that influence downstream processes such
as gene expression. In other words, downstream DE in
genes could be controlled by genetic factors (genes) up-
stream in key regulatory pathways. To dissect the influ-
ence of ASE on downstream DE analysis, we searched for
possible associations between pathways enriched for genes
with differential expression (i.e., DE gene lists) and genes
exhibiting variation in transcriptional response (i.e., ASE
gene lists).
Our data supports the above hypothesis of an under-

lying genetic component amplifying the expression of
downstream genes in a pathway. Specifically, examination
of the two common pathways (TLR signaling and JAK/
STAT signaling), as shown in Figures 1 and 2, genes exhi-
biting ASE in response to MDV were found at the begin-
ning of each pathway. Specifically, genes encoding CD14,
LY96 (aka MD-2), TLR4, and MyD88 exhibit ASE in re-
sponse to MDV infection and are found at the start of the
TLR receptor-signaling pathway, which contains genes with
DE in layers and especially for broilers. Likewise, IL5R,
IL21R of the Cytokine R module, PTPN6 (aka SHP1), and
PTPN11 (aka SHP2) are all found at the beginning of the
JAK/STAT pathway for broilers and layers. It is also inter-
esting to note that growth hormone (GH), one of the
three MD resistance genes identified [8], also lies at the
start of the JAK/STAT pathway though we could not
evaluate for ASE due to the lack of SNPs in the F1 pro-
geny. Interestingly, nuclear factor-kappa B (NF-κ B), which
regulates genes associated with cell survival, proliferation,
programmed cell death (PCD), stress, inflammation, and
immunity was previously shown to be a key component of
MDV infection [26] and showed ASE in the layers in this
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study as well as being a member of the TLR signaling
pathway among others (e.g., viral carcinogenesis, B and T
cell receptor signaling, chemokine signaling). If the genes
at the beginning of the aforementioned pathways do con-
fer genetic resistance to MD, then this has strong implica-
tions on how to analyze RNA-Seq data to identify strong
candidate genes in other complex traits.

Conclusions
In conclusion, we have successfully identified SNPs asso-
ciated with ASE in both broilers and layers chicken types,
as well as revealed genes and pathways that were common
or unique to each bird or analysis type. Thus, the method
is powerful for identifying SNPs and genes that exhibit
differential allelic response to MDV infection as well as
providing candidate markers and genes for MD genetic
resistance. Furthermore, we believe that greater explor-
ation should be performed placed on genes exhibiting
ASE at the beginning of pathways identified by gene ex-
pression enrichment analysis. The larger question that
still remains is how much do genes exhibiting ASE (i.e.,
expression variation) account for overall genetic variation
in complex traits such as MD genetic resistance? To
answer this question, we have developed a custom chip
containing ASE SNPs that is being genotyped on an MD
resource population, which will determine, if present, the
size of effect and which alleles are favorable for genetic
resistance to MD.

Methods
Animals and experimental design
Two chicken types, commercial broilers (meat-type) and
experimental layers (egg-type), were used in this study.
The broiler chickens were either chicks from two outbred
Cobb-Vantress pure lines or their F1 progeny as determined
by the experiment. The layer chickens were F1 progeny
from intermating Avian Disease and Oncology Laboratory
(ADOL) lines 63 and 72, two highly inbred layers lines that
are MD resistant and susceptible, respectively.
MD incidence in the broilers was measured in two trials.

For each trial, ~100 day old chicks were inoculated intra-
abdominally with 2,000 pfu MDV (686 strain). All the
chickens were housed in Horsfall-Bauer isolators during
the entire experiment, and mortality and MD incidences
were measured daily or at the termination date (8 weeks
post inoculation) by necropsy.
To generate material for determining ASE, F1 progeny

broiler and layer chicks were randomly divided into either
treatment group (challenged) or control group (unchal-
lenged). For the viral challenge, 2,000 pfu MDV (686 or
Md5 strain for broilers and layers, respectively) was
injected intra-abdominally at 2 days of age. At 4 days
post infection (dpi), 7 birds from each group were eutha-
nized, and splenic tissue samples collected and stored in
RNAlater W (Ambion, Austin, TX, USA). Animal care and
management followed the ADOL animal care and usage
committee policy.

Figure 1 The JAK/STAT signaling pathway in response to MDV infection. The JAK/STAT signaling pathway is displayed and genes that
exhibit either differential expression (DE) or allele-specific expression (ASE) following Marek’s disease virus (MDV) infection in both broilers and
layers are shown.
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RNA extraction and sequencing
Total RNA was extracted from splenic tissues using the
Stratagene Absolutely RNA Miniprep kit (Santa Clara,
CA, USA). RNA quality was determined using an Aligent
Bioanalyzer 2100 lab-on-a-chip and only samples with
RIN scores over 7 were submitted for sequencing.
Sequencing was done using Illumina sequencing plat-

forms. Broiler RNA (single end, 75 base read lengths) was
sequenced at Michigan State University ResearchTechnol-
ogy Support Facility (www.rtsf.msu.edu) using an Illumina
Genome Analyzer II. Layer RNA (pair-end, 100 base read
lengths) was sequenced at DNA Landmarks (Montreal,
Canada) using an Illumina HiSeq.

Mapping and assembling
All RNA-Seq data reads were trimmed of sequencing adap-
ters, and sequence statistics performed using FASTQC
program [27]. Based on these results, the reads were
further trimmed using Sickle, a program (https://github.
com/najoshi/sickle) that removes reads containing ‘N’
as well as pairing reads, if paired end sequencing was used
for down stream alignment. A minimum post-trimmed
length of 50 bases was set irrespective of single or paired-
end reads. The resulting FASTQ files were processed by

Tophat (Version 2.0.4) [28]. Alignments were invoked
inside Tophat using Bowtie (Version 2.0.6; [14]) by pro-
viding the library insert size for paired ended reads, the
reference chicken genome (galGal3), and the ENSEMBL
chicken gene GTF file list (Version 67). Read quality statis-
tics of the resulting alignment files were analyzed using
SAMStat [29] and the files were used to call SNPs and
estimate expression of genes.

SNP detection, ASE estimation and functional annotation
of SNPs
Unique read groups were added to each alignment file
and population level SNPs within each group (broiler or
layer) were called using Freebayes (Version 0.9.6), a Bayesian
SNP calling program [15]. The variant calling format (VCF)
files [30] derived from infected and uninfected birds
were merged with VCFtools [30] and further filtered
based on quality scores. SNP call statistics subsequently
determined by VCFtools and the raw SNPs were further
filtered on the basis of quality (Q=100), thereby, add-
itionally increasing the stringency of called SNPs. Sub-
sequently, a 4-column file with chromosome number,
nucleotide position, number of reference SNPs, and num-
ber of alternate SNPs were parsed out from each sample

Figure 2 Toll-like receptor signaling pathway in response to MDV infection. The Toll-like receptor signaling pathway is displayed and genes
that exhibit either differential expression (DE) or allele-specific expression (ASE) following Marek’s disease virus (MDV) infection in both broilers
and layers are shown.
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from the VCF file. Data was formatted and read into SAS
for ASE estimation.
The frequency of each SNP allele expressed as a pro-

portion of total number of reads for the allele present in
the reference genome, was analyzed using the following
linear model:

Yijk¼μþTiþCjþTCijþε ijð Þk

Where (Yijk) is the allele frequency in the kth individual
(k=1,6) within the ith treatment and jth cross, Ti is the
effect of treatment, Cj is the effects of cross, and TC is
the interaction of treatment with cross. The dependent
variable was the reference allele frequency with variation
among biological replicates within treatment used for test-
ing. SNPs were eliminated for a bird type if they had less
than 2 samples for any treatment group. A pooled error
term was used to test for significance. As a first pass, all
genes passing the 0.05 level of significance where chosen
for further analysis using pathway enrichment, in this way
the rate of Type 2 errors was reduced, yet allowed for a
final test using Fisher exact test for pathway enrichment
which controlled for Type 1 errors.
ANNOVAR [17] was used to functionally annotate

the putative SNPs. The ANNOVAR database was set up
as described [17] and each SNP was classified based on
its position in the reference chicken genome as exonic,
intronic, intergenic, 5’ UTR, 3’ UTR, splice acceptor or
donor site, downstream or upstream. Functional annota-
tion such as nonsynonymous, synonymous, stop codon
gain or loss, and amino acid changes was also determined
for each SNP.

Differential expression (DE) analysis
To test DE, alignments were analyzed using DESeq, a
negative binomial distribution-based [20] approach within
R [31]. For input data, the number of reads (count data)
that uniquely mapped to an exon was counted using
Htseq-count [18] and the provided reference chicken gene
list. The reads were processed in Htseq using a ‘union’
overlapping mode, ‘gene’ as feature, and with no strand-
specificity. The resulting data from all the individual sam-
ples were converted to text file imported into R and ana-
lyzed. A portion of the reads (5.7 and 12.6 million reads
on average in broiler and layer samples, respectively), were
assigned to “no feature.”

Pathway analysis using DAVID
ASE and DE significant genes (p<0.05) lists were sub-
mitted to DAVID [16]. The analysis classification strin-
gency was set to the highest level with suitable controls.
The resulting clustering was then limited to an enrich-
ment score of >1.00 and FDR for multiple testing was
performed by the Benjamin and Hochberg method

invoked within DAVID. Kyoto Encyclopedia of Genes
and Genomes (KEGG) pathway analysis was also per-
formed using DAVID.

Additional files

Additional file 1: Table S1. Broiler raw reads, alignment, and raw
SNPs. Table S2. Layer raw reads, alignment, and raw SNPs. Table S3. List
of ASE SNPs in broiler samples (p<0.05) in response to MDV infection.
Table S4. List of ASE SNPs in layer samples (p<0.05) in response to MDV
infection. Table S5. Common SNPs between broilers and layer ASE
samples in response to MDV infection. Table S6. ANNOVAR classification
of broiler SNPs based on function. Table S7. ANNOVAR classification of
layer SNPs based on function. Table S8. Genes differentially expressed
(P<0.05) following MDV infection in broilers. Table S9. Genes
differentially expressed (P<0.05) following MDV infection in layers. Table
S10. Functional annotatiion clustering of ASE genes in response to MDV
in broilers using DAVID. Table S11. Functional annotatiion clustering of
ASE genes in response to MDV infection in layers using DAVID. Table
S12. Functional annotatiion clustering of nonsynonymous genes in
response to MDV infection in broilers using DAVID. Table S13. Functional
annotatiion clustering of nonsynonymous genes in response to MDV
infection in layers using DAVID. Table S14. Common nonsynonymous
genes between broilers and layers. Table S15. Functional annotation of
14 common nonsynonymous genes between broilers and layers. Table
S16. Functional annotatiion clustering of DE genes in response to MDV
infection in broilers using DAVID. Table S17. Functional annotatiion
clustering of DE genes in response to MDV infection in layers using
DAVID.

Additional file 2: Figure S1. Distribution of SNPs exhibiting ASE in
response to MDV infection in chicken chromosomes.
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